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A B S T R A C T

Time series of topographic data are becoming increasingly widespread for monitoring geomorphic activity.
Dense 3D time series are now obtained by near-continuous terrestrial laser scanning (TLS) installations, which
acquire data at high frequency (e.g. hourly) and over long periods. Such datasets contain valuable information
on topographic evolution over varying spatial and temporal scales. Current analyses however are mostly con-
ducted based on pairwise surface or object-based change, which typically require the selection of thresholds and
intervals to identify the processes involved and fail to account for the full history of change. Detected change
may therefore be difficult to attribute to one or more underlying geomorphic processes causing the surface
alteration. We present an automatic method for 4D change analysis that includes the temporal domain by using
the history of surface change to extract the period and spatial extent of changes. A 3D space-time array of surface
change values is derived from an hourly TLS time series acquired at a sandy beach over five months (2967 point
clouds). Change point detection is performed in the time series at individual locations and used to identify
change processes, such as the appearance and disappearance of an accumulation form. These provide the seed to
spatially segment ‘4D objects-by-change’ using a metric of time series similarity in a region growing approach.
Results are compared to pairwise surface change for three selected cases of anthropogenic and natural processes
on the beach. The obtained information reflects the evolution of a change process and its spatial extent over the
change period, thereby improving upon the results of pairwise analysis. The method allows the detection and
spatiotemporal delineation of even subtle changes induced by sand transport on the surface. 4D objects-by-
change can therefore provide new insights on spatiotemporal characteristics of geomorphic activity, particularly
in settings of continuous surfaces with dynamic morphologies.

1. Introduction

Earth surface morphology is continually shaped by dynamic pro-
cesses. Induced surface changes within a natural landscape occur at
varying locations and at different spatial scales, frequencies, and
movement rates. Monitoring of geomorphic activity therefore requires
the observation of a multitude of individual, often superimposed pro-
cesses. Alterations to surface morphology are often quantified based on
the distance between surface locations recorded at successive points in
time, referred to as epochs in geospatial analysis (Eitel et al., 2016;
Lindenbergh and Pietrzyk, 2015). At present, such change analyses are

mostly conducted as pairwise comparisons, referring to the quantifi-
cation of change between two epochs. Pairwise analysis involves the
drawback that change information is obtained as an aggregated re-
presentation of individual underlying processes. When observed as
local surface changes at single points in space and between only two
snapshots of the topography, it is not possible to infer which process led
to the current state of the surface and how it evolved through time. At
the same time, the underlying change is not necessarily distinguishable
into deposition, erosion, and transport without ambiguity (Fig. 1). Re-
lating quantified local surface change to the processes that shaped the
surface is therefore a widespread challenge in the analysis of
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geomorphic activity (Fey et al., 2019; Mayr et al., 2018).
Analysing time series of geospatial data has the potential to increase

insight into the mechanisms of geomorphic activity (Eltner et al., 2017;
O’Dea et al., 2019). This study focuses on the morphodynamics of a
sandy beach, where sediment transport is driven by an interplay of
agents, including wind and wave forcing, as well as anthropogenic
modifications. The resulting multi-process characteristics of periodic,
gradual and continual change processes occurring at different time
scales apply to a range of natural topographies, including rock slopes
(Kromer et al., 2015a), glaciers (Rossini et al., 2018), rock glaciers
(Zahs et al., 2019) or permafrost coasts (Obu et al., 2017). The ob-
servation of individual change processes and analysis of their con-
tribution to the geomorphic system requires data acquired at spatial
and temporal resolutions that account for the range of scales at which
the induced changes occur (Rumson et al., 2019).

As the research on and the variety of applications of geospatial
monitoring grow, more series of multitemporal data are being acquired
at repetition rates that are annual, monthly, or even shorter (Eitel et al.,
2016) with a range of topographic survey techniques. High-frequency
(sub-hourly to weekly repetition intervals) time series of high spatial
resolution (sub-centimetre to metre) and long acquisition periods
(months to years) are becoming increasingly available through near-
continuous terrestrial laser scanning (TLS; e.g. Kromer et al., 2017;
O’Dea et al., 2019; Vos et al., 2017; Williams et al., 2018).

While datasets are being captured at increasing temporal resolution,
methods for analysing surface change from geospatial time series
mostly follow the described approach of pairwise analysis of local
surface changes. This approach is well-established in analysing con-
ventional multitemporal LiDAR data of several epochs (typically <
100; e.g., Corbí et al., 2018; Fey et al., 2019; Mayr et al., 2018; Zahs
et al., 2019). Pairwise analyses are also suitable in settings where sur-
face change is progressing in a more or less uniform direction, i.e. de-
position or erosion is the dominant change type, and the effect on
surface morphology is irreversible. This applies, for example, in the
case of continuous erosion on a slope or rockfall on a cliff (e.g. Kromer
et al., 2017; Williams et al., 2018). In such settings, the possible change
processes are mostly known a priori and pairwise surface change can be
attributed to the respective (expected) process.

An alternative approach to surface change quantification is object-
based geomorphic change analysis (Anders et al., 2013; Liu et al.,
2010). These methods quantify the surface or volume change and dis-
placement of individual geomorphic features or objects within a scene.
Such features are extracted from each epoch of the multitemporal data
and are typically based on morphometric properties, such as breaks in
curvature at edges or planar surfaces on objects. The approach is used,
for example, to monitor the change of characteristic units or structures
on beaches (Corbí et al., 2018; Fabbri et al., 2017; Le Mauff et al., 2018)
or the displacement of breaklines as geomorphic features, representing
scarps or ridges (Mayr et al., 2018; Pfeiffer et al., 2018). The required
identification and classification of objects typically implies the

definition of morphometric properties for target objects from the outset.
This becomes particularly challenging when monitoring over long
periods, where features can occur in many variations of their spatial
properties. It also requires that objects can be spatially delineated
within each epoch, which is only possible if they have a distinct mor-
phology. In the flat and gently sloping surface morphology of a sandy
beach, for example, the exact spatial extent of an accumulation form is
difficult to determine even to a human observer both on site and in
high-resolution topographic data.

Binary surface change information (change/no change) between
successive epochs has been considered for the spatial delineation of
objects in the segmentation of morphometric features (Mayr et al.,
2017). Change objects are defined as spatially connected areas of
pairwise change, which has been introduced into coastal monitoring
(Liu et al., 2010). If such object-based assessment considers change
between only two epochs, the spatial boundary of individual change
types may remain concealed by coinciding surface alterations caused by
multiple processes. For example, localised accumulations within an
area of large-scale accretion will be aggregated into a single change
object of combined extent. The spatial and temporal properties of the
processes involved, however, often differ over time. Accretion is a slow,
continual process while local accumulation may occur more rapidly
and, from this, become distinct in the evolution of surface change at the
location. This additional information that can be gained from the
temporal domain, and in particular the history of change of each point
on the surface is difficult to integrate into the interpretation of change
for a given location at a single, specific point in time. The identification
of objects therefore requires the entire history of change of a given
point on the surface.

Our research develops a novel approach to 4D (3D + time) change
analysis that fully incorporates the temporal domain, with the aim of
improving the identification of change processes in time series of
geospatial data. We make use of the full available history of surface
change for the purpose of spatiotemporal object segmentation, in doing
so advancing the concept of pairwise change objects to ‘4D objects-by-
change’. Spatial neighbourhoods that experience similar surface change
within certain periods are delineated based on their similarity in the
temporal domain. This removes the requirement of object detection and
re-identification in single or pairwise snapshots and removes the need
of having a strict definition of object in terms of temporal processes or
morphometric properties, such as size and shape. Integrating time
series into surface change analysis allows the inclusion of a variety of
spatial and temporal scales (extent, magnitude and duration) in the
identification of geomorphic change. A metric of time series similarity
integrates flexibility of spatial extent in object extraction. Otherwise,
spatial delineation of change may mainly depend on the definition of
threshold values even if object boundaries are difficult to determine
conceptually.

Our method provides a novel view on time series-based surface
change analysis, which allows automatic and generic extraction of the

Fig. 1. Pairwise observation of change
types ‘deposition’, ‘erosion’, and ‘trans-
port’ co-occurring in a geomorphic
system. The processes that underlie
single values of local surface height
change are ambiguous. (A) Observed
change can result from superimposed
surface alterations (e.g. D1 and D2). The
spatial extent of accumulation form D2

on the continuous surface is not dis-
tinct. (B) Local surface height decrease
at the source of transported material
and increase at the target location
cannot be attributed unambiguously to
the respective change types erosion E
and transport T.
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4D geoinformation present in time series of 3D topographic data. 4D
objects-by-change generate more detailed histories of identified surface
change as compared to pairwise surface change analysis. This will
provide a basis for relating individually identified change types to
specific geographic processes, and to assess their contribution to the
dynamic shaping of a landscape.

2. Study site and data

We present our method using a time series of 3D point clouds ac-
quired at the sandy beach of Kijkduin (52°04′14″N, 4°13′10″E; Fig. 2),
the Netherlands. A Riegl VZ–2000 TLS (Riegl LMS, 2017) was mounted
in a stable reference frame overlooking the beach during the winter of
2016–2017 (Vos et al., 2017). The scene was scanned every hour with a
vertical and horizontal point spacing of 9 mm at 10 m measurement
range. The target area of the beach ranges between 100 and 600 m from
the sensor resulting in point densities of 2–20 points/m2.

The period examined starts on 2017–01–15 at 13:00 (Central
European Time; UTC + 1), following a storm event in the days before,
and ends on 2017–05–26 at 8:00, which is the end date of the fixed TLS
acquisition at this site. Several epochs are missing due to rainfall that
prevented any data from being acquired at the measurement range of
the target area. In total, the time series comprises 2967 point clouds.
Gaps in local areas of an epoch may exist due to missing data in the
respective point cloud caused by occlusion of the ground surface (e.g.
temporary objects such as machinery and people) or the presence of
water on the surface (e.g. at high tides) during scan acquisitions.

Pre-processing of the TLS data consists of fine alignment of each
point cloud to a global reference point cloud of the first day
(2017–01–15, 15:00). This fine alignment is conducted with an
Iterative Closest Point method (Besl and McKay, 1992). The alignment
accuracy is assessed based on point-to-plane distances for planar sur-
faces distributed in the stable region of the point cloud scene, which are
distinct from the surfaces used for fine alignment. The method of fine
alignment and the determination of alignment accuracy are described
in detail in Anders et al. (2019). The pre-processed TLS time series has a
mean alignment accuracy of 4 mm with a standard deviation of 2 mm.
The minimum detectable change is further limited due to a range-de-
pendent refraction effect in the LiDAR measurements that varies over
time with atmospheric conditions (cf. Friedli et al., 2019). At the
measurement range of the beach area, the minimum detectable change
is estimated to reach up to 0.05 m (cf. Anders et al., 2019). The tem-
porally dense measurements of the dataset can be leveraged to reduce

uncertainty from the quantified change. We make use of this in a
temporal averaging step (Section 3.1). Each point cloud is filtered to
remove off-terrain points based on the relative height of points over the
local minimum in a neighbourhood of 1.0 m raster cells. The filtering
threshold is set to a maximum relative height of 0.2 m to account for
surface roughness and the slightly sloping terrain morphology. We use
the software OPALS (Pfeifer et al., 2014) for the pre-processing steps of
fine alignment and terrain filtering. This time series of pre-processed
point clouds is used for all subsequent analyses in this paper.

3. Methods

For the extraction of 4D objects-by-change, we develop a method of
spatial segmentation with respect to the history of surface change. The
method identifies change processes as temporal features within the time
series of surface change. The features include both raising of the surface
followed by lowering and lowering of the surface followed by raising.
The locations are used in a regular grid structure, derived from point
cloud distances per epoch. Local neighbourhoods are then spatially
grown into 4D objects-by-change based on the similarity of time series
segments (Fig. 3). The methodological steps are presented in detail in
the following sub-sections (Sections 3.1, 3.2 and 3.3). We evaluate the
results of our approach in comparison to the current standard proce-
dure of pairwise, binary threshold-based analysis (Section 3.4), which
provides single images of surface change between two epochs instead of
the full history of surface change contained in our approach.

3.1. Deriving a space-time array of surface change

For the developed approach, the time series of 3D point clouds is
processed into a time series of surface change in a regular grid struc-
ture. Re-sampling into this 3D space-time array of surface change values
facilitates data access along the temporal domain.

We quantify surface change on the beach as the vertical distance of
the surface between each epoch and a reference point cloud on the first
day of the analysed period (2017–01–15, 13:00). The epoch at this time
of day was selected due to the low tide, enabling measurements over a
large extent of the beach area. Point cloud distances are derived using
the Multiscale Model to Model Cloud Comparison (M3C2) algorithm
(Lague et al., 2013). We use a regular grid with 0.5 m horizontal spa-
cing to define the 2D locations at which distances between the two
point clouds are calculated. This spacing is chosen regarding the lowest
point spacing in the target scene (Section 2). The projection radius

Fig. 2. (A) Terrain elevation of the study site (based on TLS data) with extent designated in (B) aerial imagery of the beach at Kijkduin with map of the study site
location in the Netherlands. Data: Aerial imagery © pdok.nl 2017, World Borders © thematicmapping.org 2017.
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(Lague et al., 2013), representing the neighbourhood within which the
position of each point cloud is averaged during distance calculation,
was set to 1.0 m. The distance calculation at the regular grid locations
uses all original TLS points within the projection radius.

Using the obtained space-time array of surface change, we perform
averaging of the surface change values for every 2D point location on
the beach along the temporal domain, i.e. based on the values at pre-
vious and successive points in time. This enables the identification of
values that notably deviate from their temporal neighbours and are less
likely to represent actual change rather than measurement errors in the
point cloud. Each surface change value in the time series of a location is
averaged by setting it to the median of its temporal neighbourhood in a
window of defined size. The approach benefits from sampling re-
dundancy in the temporal domain particularly if the acquisition fre-
quency exceeds the rate of observed surface change. Accordingly, the
averaging window needs to be sufficiently small to avoid smoothing out
the temporal trend of the actual surface change (Kromer et al., 2015b).
We use a temporal averaging window of one week (168 h) on the beach
data in this study. This offers a compromise between removing tem-
poral measurement effects from variable atmospheric conditions
(Anders et al., 2019) and preserving morphologic change, providing an
interdependent combination of exceeding the minimum detectable
change (in terms of magnitude) and the temporal scale (in terms of
duration).

3.2. Identification of temporal change features

Our approach to 4D change analysis begins by identifying the oc-
currence of a change-inducing process in the time series of change
values (Fig. 4). We first determine the points in time at which the height
change values in the time series change with respect to the mean. These

change points are used to delineate change features in the temporal
domain based on the shape of the time series.

Change point detection can be performed by comparing the dis-
tribution of values between two successive periods, i.e. segments of the
time series. The instants at which this relationship changes are to be
detected as change points (Kawahara and Sugiyama, 2012; Truong
et al., 2019). Segments are derived based on changes in the median of
the change values, i.e. the central point of the value distribution within
a segment, with least absolute deviation as measure of homogeneity
(Bai, 1995; Truong et al., 2019). The change point detection method
uses a sliding temporal window to compute the discrepancy between
two adjacent windows that move along the signal. This sliding temporal
window is subsequently referred to as change point detection window.
Peaks in the discrepancy curve determine the position of change points
(Truong et al., 2019). As the number of change points to be detected is
unknown in our application, a constraint needs to be introduced for
dividing the time series into increasingly small segments. We use a
complexity penalty in the time series segmentation which acts in rela-
tion to the amplitude (i.e. magnitude) of changes to detect. The higher
the penalization, the stricter the change point detection. Conversely,
the lower the penalization value, the more change points are detected
down to discrepancies that derive from noise in the signal (Maidstone
et al., 2017; Truong et al., 2019).

We use a change point detection window of 24 h, considering that
change values are smoothed in an averaging window of one week
(Section 3.1). This ensures that the smallest temporal scale of change
occurrences that are contained in the time series dataset are detected.
We set the penalty for change point detection to 1.0, such that the
number of detected change points does not strongly alter with an in-
crease or decrease of the penalty. The step size of the change point
detection window is 1 h, so change points can potentially be detected at

Fig. 3. Approach for the extraction of 4D
objects-by-change. A change process is de-
tected and delineated in the time series of
surface change at one location. The tem-
poral change feature is used as seed for
spatial region growing. The homogeneity
criterion for region growing is the similarity
of time series in the period of the temporal
change feature. The segmented 4D object-
by-change has a temporal and spatial extent
in the space-time array.

Fig. 4. Schematic representation of temporal change feature delineation using the earliest change point that is not within a previous change feature as a starting
point. The end point is increased as long as the volume of surface change (area under the curve) increases with respect to the starting point’s change value as baseline.
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each epoch of the time series. We constrain the change point detection
by setting a minimum distance of 12 h between change points so that
there is no overlap between temporal windows of detected change
points. The change point detection is performed using the im-
plementation in the Python library ruptures (Truong et al., 2018).

Change processes are identified within the time series of surface
elevation change by using a normalised volume maximization approach
to identify their start and end times (Piltz et al., 2016). From a detected
change point as starting point, the change feature is grown along the
temporal axis by increasing the time of the end point for as long as the
area under the curve of surface change values is increasing. The in-
crease or decrease of the change volume is determined relative to the
value of the starting point as baseline. In the process, the cumulative
surface change of the change feature is maximized. As soon as adding
another epoch of surface change has the effect of decreasing this cu-
mulative value, the process is stopped (Fig. 4). This step is applied to all
change points detected in the time series, starting from the earliest.
Successive change points are only used as new starting points if they do
not lie within a previously detected change feature. By this, over-sen-
sitively detected change points are automatically discarded. To be able
to delineate both positive and negative change features, we include a
check if the surface change in epochs following the starting point is
negative (relative to the starting point). For negative features, the time
series is inverted so the same procedure of delineation can be applied.
All time series are shifted to contain only positive values for this step.
Once a change feature is delineated in the temporal domain of a loca-
tion, the next step is to segment the 4D object-by-change spatially based
on neighbouring locations of similar temporal change features.

3.3. Spatial segmentation of 4D objects-by-change

We assume that geomorphic change at a given location causes si-
milar surface alterations within a local neighbourhood. We use this to
group spatially contiguous locations with a similar history of surface
change in the period of a temporal change feature. In a region growing
approach, an area is segmented based on the similarity of neighbouring
time series as homogeneity criterion (Fig. 5), to form a 4D object-by-
change.

For the period of features derived in Section 3.2, we derive the si-
milarity of the time series for each point in the grid using Dynamic Time
Warping (DTW, Berndt and Clifford, 1994). This method finds the
alignment between two time series by stretching and shrinking a re-
ference time series along the temporal domain. The sum of minimized
distances between point pairs in the time series yields the DTW distance
as a similarity measure (Berndt and Clifford, 1994; Salvador and Chan,
2007). We subtract the median value from each input time series seg-
ment for this calculation to assess the time series similarity independent
from the previous history of surface change. As surface change is
quantified using a fixed epoch as reference, this history may differ
between neighbouring locations but they still belong to the same 4D
object-by-change. We compute the DTW distance using the im-
plementation of the Fast DTW algorithm (Salvador and Chan 2007) in
the Python library fastdtw (Tanida, 2019).

The spatial region growing starts at a seed location by computing
the DTW distance to all eight connected spatial neighbours of the 2D
time series locations. If the distance of a compared location exceeds a
defined similarity threshold, it is discarded. Otherwise, the similar lo-
cations are added to the current segment. We use a stricter, but adap-
tive criterion of using a segmented location as a new search location
based on the distribution of distance values in the current segment. A
location for searching further spatial neighbours as candidates is added
if the DTW distance of the segmented location is smaller than the 95th
percentile of all distance values segmented so far (Rabbani et al., 2006).
The percentile threshold of adding candidates as additional search lo-
cations initiates when the segment reaches a minimum segment size of
10, corresponding to an area of ~2.5 m2 for the dataset in this study.
Before this segment size is reached, all segmented locations are used as
neighbour search locations. After checking all neighbours of a current
search location, the candidate with the lowest DTW distance is used.
The growing of a segment is stopped when no more search locations are
available.

For the segmentation threshold, there is no single DTW distance that
can be used as general similarity value, as the order of DTW distance
values between two time series that are regarded as similar relate to the
overall change energy, i.e. the total surface height changes within the
process, as well as magnitude and duration of the respective change

Fig. 5. Spatial segmentation of a 4D object-by-change starting from the location of the detected temporal change feature as seed and computing the Dynamic Time
Warping (DTW) distance as similarity criterion for adding locations to the segment and using them as additional search locations for region growing.
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process. We therefore selected a threshold by assessing the distribution
of DTW values within the 10 × 10 m neighbourhood of initial seeds.
According to the results of this assessment, we set the threshold to the
mean of DTW distance values.

3.4. Test cases and comparison to pairwise surface change analysis

To evaluate the time series-based change analysis compared to re-
sults from simple pairwise analysis, we pick representative cases of
change processes with different spatial and temporal properties to ex-
amine the improvement in information obtained from the 4D approach.
The following cases are selected from the acquisition period at the
Kijkduin beach scene:

(1) An accumulation of sand that was later removed by heavy ma-
chinery. The change has a high magnitude (> 1.5 m surface height
increase) and is limited to a small spatial extent (~4 × 4 m). Both
accumulation and removal of the sand occur quickly relative to the
time interval of monitoring.

(2) A sand bar that forms and later disappears near the shoreline. The
sand bar has a high magnitude of change (> 0.8 m) but does not
have distinct spatial borders (Section 1) as it translates and deforms
over time.

(3) A mass of sand transported towards the upper beach area on de-
struction of the sand bar. The resulting temporary surface height
increase (> 0.15 m) is well above the minimum detectable change
but only subtly visible in the topography, which makes it difficult to
spatially delineate.

For comparison to a pairwise analysis, we use individual 2D slices
from the 3D space-time array, which represent pairwise surface height
change of an epoch to the reference epoch. These change rasters are
derived from the epochs in the beginning and end of a segmented 4D
object-by-change, and at the highest magnitude of surface change
within the period of the change process.

4. Results

In this section, we present the results of the change feature deli-
neation and spatial segmentation based on time series similarity. We
then present the extracted 4D object-by-change of selected cases as
compared to pairwise surface change.

4.1. Identification of temporal change features

The examples of change described in Section 3.4 were detected from
the time series of surface change (Fig. 6). Additional change features
were detected in the time series of cases 1 and 3. In case 3, the second
change feature is not completed with an end point, as the time series
ends before completion.

The method for change point detection accurately delineates the
periods of change in the selected cases. These cases show that the
spatial scale and temporal pattern of surface change does not influence
the delineation of the targeted features. The placement of starting and

end points in the change features may not provide the optimal positions
to determine the onset and end of a change process for all types. For
example, the starting point of accumulation in a change feature may be
set at a point after surface height increase of the process has already
started (Fig. 6, case 1). This does not influence the extraction of 4D
object-by-change, but can become relevant to subsequent analyses, for
example to quantify the contribution of individual change processes to
the volume budget in the geomorphic system.

For the dataset at hand, we perform retrospective change point
detection, that is, all data has been collected and the full time series is
processed. As we use a window-based approach that can continuously
advance into the future independently from past occurrences, the
method can be applied in an operational, online setting to detect
change processes as soon as possible after or even while they occur.

4.2. Spatial segmentation of 4D object-by-change

We show the result for the three selected cases as time series plots of
all segmented locations within the period of the change feature, and the
spatial extent on the beach area (Fig. 7). We additionally show the
distribution of DTW distance values, which altogether provides a visual
summary of the information contained in a 4D object-by-change.

The time series plots (Fig. 7, subfigures A) show the constellation of
(i) the temporal course of surface change values and (ii) the spatial
scale of surface change values within the segment. The skewness in the
distribution of DTW distance values (Fig. 7, subfigures B) expresses the
characteristics of continuous change of the sandy surface. Starting from
a central seed location of high magnitude in a local elevation maximum,
the similarity will gradually decrease mainly with increasing spatial
distance. Limiting the region growing into space by the percentile
threshold of adding new search locations (Section 3.3) provides a sui-
table means of constraining the segmentation.

The decisive factor in the spatial delineation of 4D objects-by-
change is the parametrization of the segmentation, i.e. the selection of a
suitable DTW distance threshold for adding locations to the segment.
The segmentation threshold influences the strictness in the spatial de-
lineation of change processes. A larger threshold increases the spatial
extent of a segmented change object, which is expressed in the dis-
tribution of DTW distance values, i.e. similarities in the history of
surface change over time. However, no definition of spatial object
boundaries for individual change processes is required. A variation of
similarities within the area of a 4D object-by-change represents the
degree of vagueness in its spatial extent.

The spatial extents resulting for the selected cases show that the
determination of the DTW distance threshold is independent of the
spatial scale of a change process. Both a small area (case 1) and larger
areas (cases 2 and 3) with different ranges of DTW distance values are
spatially delineated (Fig. 7, subfigures C). Automatic parametrization is
important for the application of the approach in operational geo-
morphic monitoring, where multiple process types can be detected. The
transferability of the parameter determination method to other types of
change processes and use cases requires investigation.

The spatial segmentation of the different change processes for the
selected cases is compared to pairwise surface change in the following

Fig. 6. Result of temporal change feature
delineation for the selected cases of (A) an
accumulation of sand shifted by heavy ma-
chinery works, (B) a sand bar forming and
disappearing near the shoreline, and (C) a
mass of sand being transported that is
manifested in local surface height increase
and decrease at the selected location.
Starting and end point of change features
are marked by triangles. Dates are provided
as month-day.
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section and shows how the 4D objects-by-change in our use case re-
present the change forms.

4.3. Evaluation of 4D objects-by-change in relation to pairwise change
detection

In this section we compare the results obtained from the pairwise
analysis to the 4D objects-by-change. Animated visualizations are pro-
vided to illustrate the temporal evolution of surface change reflected in
the time series segments of respective 4D objects-by-change
(Supplements I-III).

The sand accumulation shifted by heavy machinery (case 1) is a case
of surface change that is easily identifiable in the pairwise change de-
tection as a spatially contiguous area of surface change increase. Our
approach is able to extract the change process at least as well in its
spatial extent (Fig. 8).

In comparison to the pairwise surface change analysis, the 4D ob-
jects-by-change provides additional information on the detected change

process, such as its temporal evolution. It becomes apparent that the
accumulation occurred rapidly and only little material was removed or
shifted subsequently (Fig. 8A). From the simultaneous appearance and
disappearance in the time series at all locations within the 4D object-by-
change, we can deduce that it is a local accumulation form and no
movement of the sand body occurred.

The sand bar (case 2) is a natural accumulation that is visible in the
topography but is not easily detected in the surface change data, as its
spatial extent is difficult to define quantitatively. The segmented 4D
object-by-change presents the spatial extent of the form with increasing
vagueness towards the borders, while the elongated core area shows
high inner-segment similarity regarding the time series of surface
change during existence of the sand bar (Fig. 9B).

The pairwise raster of the sand bar shows a state where the change
object becomes distinguishable as a high-magnitude accumulation ob-
ject (Fig. 9C, 2017–02–21). However, the visible pattern in the course
of time series segments indicates that the sand bar deformed. Further,
the sand bar moved over the time of its existence. This becomes visible

Fig. 7. 4D object-by-change for three example cases resulting from region growing segmentation based on Dynamic Time Warping (DTW) distance as time series
similarity in the period of a temporal change feature at a seed location. (A) Time series of all 2D locations included in the segment coloured by DTW distance, with the
reference time series (in blue) as seed location marked with star in (C) overview map. (B) Distribution of DTW distances in the segment with Gaussian kernel density
estimate. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in the animation of pairwise surface change, where the sand body is
shifted in the bounding box of the 4D object-by-change (Supplement II).
The 4D change analysis therefore provides a more comprehensive as-
sessment on the spatial extent of the sand bar than individual epochs of
positive surface height change.

This aspect is advanced with the third case of sand material trans-
ported on destruction of a sand bar. This is only subtly manifested in the
areal surface change, although it is well-delineable in the time series at
individual locations (Fig. 10A). The relevance of considering the tem-
poral domain for identifying this change process becomes particularly
evident here. The change does not appear as distinctly delineable in the
pairwise surface change and would likely not be identified from such
analysis. Particularly in contrast to the surrounding higher magnitude
changes, the surface change is hardly identifiable in individual rasters
as spatially contiguous, delimited area of an individual change process
(Fig. 10C). With this, time series-based change analysis improves the
detection of change processes. To illustrate the representation of the
change process in the combined spatial and temporal domain, we refer
to the animation provided in Supplement III.

5. Discussion

At present, standard approaches to geospatial change analysis are
based on pairwise comparison between epochs. In multi-process geo-
morphic settings, this will often lead to quantified surface change being
ambiguous to the underlying geomorphic change. Observed change can
then not be linked to individual change processes.

5.1. Improvement over pairwise surface change and implications for
geomorphic analyses

Existing methods of pairwise surface and object-based change ana-
lysis mostly require epochs to be selected for change quantification and
thresholds to be set to detect and delineate observed objects and
changes, which is typically based on their morphometric parameters.
This requirement is difficult to meet on continuous surfaces, as given by

the morphology of sandy beaches. Beach morphology and changes
therein have conventionally been examined using surface elevation
profiles (Smith and Zarillo, 1990), with multitemporal LiDAR being
used to supplement these data in recent years (e.g. Miles et al., 2019;
Stockdon et al., 2009; van Houwelingen et al., 2006). Accumulation
forms, such as sand bars, can be localised in profiles based on their
crests, and troughs in between, and their migration can be detected
from the displacement of crests in repeatedly sampled profiles (Cohn
et al., 2018; Levoy et al., 2013; Miles et al., 2019, Reichmüth and
Anthony, 2008). This approach is convenient as the shaping and mi-
gration of forms is mainly wave-driven in a cross-shore direction.
Sampling of parallel cross-shore profiles accounts for long-shore
variability in beach morphology (Grunnet and Hoekstra, 2004;
Masselink and Anthony, 2001). However, it has become evident that
more comprehensive consideration of 3D morphology is required, for
example, to understand the evolution of bar systems from their in-
dividual width and volume (Miles et al., 2019). LiDAR data provide
high-resolution 3D morphology of surfaces, yet describing morphologic
forms from these data requires an approach for spatial delineation.
When analysing the evolution of change forms, our method enables
delineation directly in the spatial domain by making use of the surface
change history, removing the need to localise morphometric parameters
as is done in terrain profiles. Obtained 4D objects-by-change provide a
basis for analysing the spatial properties of extracted forms.

In addition to improved spatial delineation, we obtain information
regarding the evolution of the surface for all change types delineated in
a 4D object-by-change in drawing upon the temporal domain. The
temporal evolution of surface change can be used to interpret detected
change processes. Considering the representative cases of morphologic
change on the beach shown in this paper, cases 2 and 3 in particular
require change evolution as information to deduce the types of geo-
morphic activity involved. The transport of a sand mass given in case 3
does not become evident in either the spatial or temporal domain. If
considered as image of pairwise surface change, the process would
likely be interpreted as overall accretion on the surface within the
spatial domain. Considering the time series of surface change at a single

Fig. 8. 4D object-by-change extracted
for an accumulation of sand built up
and removed by heavy machinery
(case 1). (A) Time series of all 2D lo-
cations included in the segment co-
loured by the similarity metric
(Dynamic Time Warping distance). (B)
Spatial extent and location of the re-
ference time series (seed location,
marked by star). (C) Rasters of pair-
wise surface height change at the start,
maximum magnitude, and end of the
temporal change feature compared to
the first epoch of the time series. Start
and end are marked by the triangles in
the time series plot (A). Axes grid has a
spacing of 20 m.
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location, the change process may represent local accumulation and
disappearance of material, formed naturally or by anthropogenic
modification as in case 1. These aspects highlight the enhanced level of
information given by a 4D object-by-change. The method uses this in-
formation in combining the spatial and temporal domains for spatio-
temporal delineation, while current methods consider smaller subsets of
data (pairwise) or information (only spatial or temporal domains). The
further interpretation of identified and extracted change processes
holds potential for improved comprehensiveness in the analysis and
interpretation of geomorphic activity, for example by linking the
transported sand mass as consequence to the destruction of a sand bar.
Identifying and understanding relations between change processes is an
important task in geomorphology, which is supported by our method. A
prominent example is the detection of pre-failure deformation leading
up to a rockfall event (Kromer et al., 2017; Royán et al., 2014). By
spatially segmenting the area affected by pre-failure deformation using
our method, the spatiotemporal properties of the resulting 4D object-
by-change can provide information on the mechanisms of failure evo-
lution. The detection of precursors to geomorphic change events and
their spatiotemporal delineation represents an opportunity to apply our
method, which can be integrated to increase the understanding of
geomorphic process dependencies and the realization of early warning
systems in hazard management (cf. Abellán et al., 2016).

The ability to detect and delineate increasingly subtle change forms
is a useful addition to the interpretation of change. We show this in our

use case with the example of a mass of sediment being transported on
destruction of a sand bar (case 3). Time series-based surface change
analysis enables the capture of transient forms, which are important
features of temporary sediment mobility particularly in the context of
aeolian sand transport (Nield et al., 2011). Such short-term mobility
and resulting displacement of sand mass was identified from linear
trends in surface height change by de Vries et al. (2017) using short-
term sub-hourly TLS time series acquired in a beach plot. Applying the
extraction of 4D objects-by-change to the time series data could provide
additional information on the behaviour of mobilised sand in this set-
ting. Similar to case 3 in this paper, migrating features would be deli-
neated as individual objects and can be separated from locations that
are subject to local erosion or accumulation only. By delineating change
forms spatiotemporally, our approach enables to decouple them from
other potentially overlapping changes, such as longer-term overall ac-
cretion on the beach co-occurring with the transient change form of
case 3.

5.2. Methodological considerations for 4D objects-by-change

We present the detection and delineation of surface change acting
bidirectionally on a location, such as the formation and disappearing of
an accumulation form (cases 1 and 2) or the transient form of a
transported sand mass that appears in local surface change only tem-
porarily (case 3). The methodological aspect to be highlighted here is

Fig. 9. 4D object-by-change extracted for a sand bar (case 2). (A) Time series of all 2D locations included in the segment coloured by the similarity metric (Dynamic
Time Warping distance). (B) Spatial extent and location of the reference time series (seed location, marked by star). (C) Rasters of pairwise surface height change at
the start, maximum magnitude, and end of the temporal change feature compared to the first epoch of the time series. Start and end are marked by the triangles in the
time series plot (A). Axes grid has a spacing of 50 m.
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that the temporal delineation of bidirectional change is independent
from the temporal scale, i.e. definitions of timing and duration of a
change process. Given a topographic time series, bidirectional change
can therefore be captured and considered in the analysis of volume
change in a geomorphic system. The effect of such changes being lost to
the observation was highlighted in Anders et al. (2019), where ob-
served volume change on a sandy beach was reduced by a factor of five
if temporary accumulation forms, such as the existence of a sandbar
over few weeks, are not included in the analyses. The application of our
method is not necessarily exclusive to surface change values, as it may
also be used directly upon time series of gridded elevation data (e.g.
Digital Elevation Models) and then does not require a decision on the
reference epoch. The strength of our approach and previously outlined
improvements over current approaches of surface change analysis apply
particularly in geomorphic settings where material is deformed and
transported over predominantly continuous surface morphology.

While focusing on the detection of bidirectional change which
characterises complex geomorphic settings, the temporal change deli-
neation in our presented method can be extended to include further
geomorphic change types. Generically, this regards the identification of
unidirectional changes such as erosion being permanent after a discrete
event or on conclusion of a continual change process. This will require
application-dependent definitions of when a change is considered per-
manent to conclude a change process, such as continuous surface height
increase through accretion on the beach. Discrete events on the beach

can be erosion induced by heavy storms, which often interrupt con-
tinual processes (O’Dea et al., 2019). While time series-based surface
change analysis thereby provides an approach for comprehensive ob-
servation of geomorphic activity in multi-process systems, it might be
less useful to replace current approaches in settings where morphologic
change occurs predominantly unidirectionally and event-driven. For
example, in rockfall monitoring on a coastal cliff – in contrast to
rockfall events embedded in the multi-process setting of an active
landslide – discrete events are distinctly identifiable in the three-di-
mensional surface morphology and their volume can be quantified from
pairwise comparison of the pre- and post-event state of the surface
(Williams et al., 2018). For general applicability to the analysis of
geomorphic activity, we expect our method to be useful as soon as the
temporal sampling of the topographic data exceeds the movement rate
of change, i.e. the transition from the initial to the altered surface
morphology is represented in several epochs of the time series. To what
temporal resolution the time series can be reduced for different change
types and use cases will require investigation.

In addition to the spatial and temporal properties of a surface
change process, the spatial-temporal grouping of time series segments
provides a new information layer given in the similarity metric of DTW
distance. Grouping change processes extracted from large geospatial
time series builds the basis for identifying patterns, such as periodicity
in the timing of occurrence or spatial-temporal sequences of change
types. For example, sand bar evolution can be investigated on the level

Fig. 10. 4D object-by-change extracted for a form expressed through sand transport (case 3). (A) Time series of all 2D locations included in the segment coloured by
the similarity metric (Dynamic Time Warping distance). (B) Spatial extent and location of the reference time series (seed location, marked by star). (B) Rasters of
pairwise surface height change at the start, maximum magnitude, and stop of the temporal change feature compared to the first epoch of the time series. Start and
stop are marked by the triangles in the time series plot (A). Axes grid has a spacing of 50 m.
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of single objects, but also regarding patterns of migration within the
system for different object types (cf. Section 5.1). For this, the inner-
segment distribution of similarities provides an attribute for semantic
classification of process types for a number of objects, even generically
where not all occurrences are known. This renders the approach ad-
vantageous also for change analysis where the delineation of areas or
objects underlying morphologic change is distinct and defined. Where
spatial boundaries are not definite, the distribution of DTW distances in
the area of an identified change process reflects extensional un-
certainty, for example in case of decreasing similarity towards the
spatial boundary of an object. This vagueness in the spatial extent of
objects has been subject to research particularly for the case of sandy
beaches (Molenaar and Cheng, 2000; Stein et al., 2004). When handling
geomorphic objects or change forms as vague spatial objects (Dilo et al.,
2007), DTW distances could be used as quantification of vagueness
provided in a 4D object-by-change.

6. Conclusion

We have presented a technique to extract 4D objects-by-change
using time series-based change analysis of natural surfaces within set-
tings of spatially and temporally variable change. The approach im-
proves the level of information that can be gained from time series of
topographic data compared to standard pairwise analysis. It enables the
detection of processes of change over a range of timescales and without
requiring a selection of epochs to use for surface change quantification.
Change forms are spatially delineated, which is independent of
thresholds that are typically required for extracting objects from epochs
of surface change. The extracted 4D objects-by-change provide in-
formation on the characteristics of change processes with detailed
histories of identified surface change that are present in geospatial time
series. Several fields of application are discussed where the method can
improve change analysis and provide new insights on spatiotemporal
properties of geomorphic activity. This methodological advancement is
particularly relevant in light of the growing availability of time series
data both through continued survey repetitions and increasing numbers
of near-continuous TLS acquisitions at increased temporal resolution.
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