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Abstract

Labour shortage in the logistic sector and the poor work conditions as a baggage handler are a major
and highly relevant problem for airports around the world. A solution is provided by Vanderlande In-
dusties: a baggage loading robot. Since the efficiency of the stacking process is sufficeint, operators
that overlook the robot must intervene often. To minimse these interventions, better packings have
to be made. To make better packings, Vanderlande Industries can adapt the sequence in which the
items are presented to the robot. However, literature and the company are not aware of the effects of
sequencing. Thereby in this thesis, we conducted research into sequencing items in various ways for
the Multiple Container Loading Problem (MLCP). We attempted to find out which methods enhance the
fill rate of the packings. In order to understand the academic background of the MCLP, we first looked
at the literature. Additionally, state-of-the-art techniques have been investigated. A trip to Schiphol has
been undertaken to observe the real robot that is resolving the MCLP as a pilot project for Schiphol
in order to put the issue in its proper perspective. From this research, we concluded that there are
various methods for solving the MCLP, however, sequencing methods applied to so far are mostly kept
simple. Moreover, in practice, baggage items are placed in the order where size and weight are de-
creasing. The knowledge gap found was that sequencing for the MCLP is not researched. We present
two different types of algorithms to provide a well performing sequence. The first algorithm, the ge-
netic algorithm, makes use of multiple generations to optimise the sequence. The other algorithm, the
heuristic algorithm, makes use of a set of rules. The resulting packings formed with different sequenc-
ing methods show to be different. According to the simulation performed, the heuristic sequencing
strategy produces the best results for the main scenario in terms of the layer fill rate. The performance
of the packings can with the heuristic sequencer be increased by average with 11 % in comparison with
packings generated with a random item sequence. Additionally, the heuristic sequencer’s packings are
fairly consistent because it consistently manages to place 8 items in one layer of the container. Results
in this study point out that sequencing the items with size decreasing performs worse than the packings
formed from non-sequenced items, with a mean fill rate of 0.71 for the size decreasing items and 0.87
for the heuristically sequenced items. The alternate scenario produces fewer evident outcomes, but
we can point out that simple strategies, such as sorting the items by short side, perform effectively. The
results from this applied method: an increase of 7% in comparison with non-sequenced item packings.
We assume the simple sorting approach worked well since it grouped all similar shaped objects, re-
sulting in tight packings. The genetic algorithm produced slightly better results, with average outcomes
being similar (0.87), but much more consistent packings showing a lower standard deviation of 0.00917
(GA) versus a standard deviation of (0.01747). The results from the heuristic algorithm were the least
efficient. This demonstrates that sequencing using a heuristic is effective, but it is not a reliable strategy
in all circumstances. The genetic algorithm, in comparison, generates generally worse results, but it
can adjust to various situations and configurations. Although the results seem to be convincing, there
rise discussion points. One of the major drawbacks is the fact that in this study, simulations are only
done in two dimensions. This results in a few assumption regarding stacking behaviour. Thereby, a sig-
nificant point of future work can be done by introducing the sequencing algorithm to three-dimensional
simulations.
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Introduction

1.1. Background

Itis the 23rd of April 2022, Schiphol calls on travellers not to come to the airport due to heavy traffic and
a series of cancellations (NOS, 2022a). The military police had to close off the exit lanes to Schiphol.
This chaos was the result of a major strike from all baggage personnel, paired with the high traffic
around the airport. According to (FNV, 2022), the strike was organised for two reasons: poor working
conditions and enormous work pressure. In this introduction, we will explain that baggage handling
personnel have a proven point of concern regarding their work pressure and poor working conditions.

It is undeniable that the world’s demographics is fast changing as a consequence of ageing (United
Nations, 2019). Moreover, according to (Foot, 2008), the approaching retirement of the baby boom
generation raises the risk of future labour shortages. This results in a shortage of labour in some
working class sectors. Meanwhile, the aviation industry is growing significantly. A report from the (IATA,
2019) claims that passenger numbers of many markets will double (or more) by 2035. The problem is
particularly urgent for large airports, since most of them are frequently found in high-growth developing
countries with an even higher shortage of specialized labour (\World Maritime University, 2019). This
labour shortage also impacts the airport Schiphol, which is resulting in a growth in work pressure.

As Joost van Doesburg claimed in (FNV, 2022), baggage handling personnel also works under
poor working conditions. Multiple sources claim that baggage handling leads to pain in their lower back
and shoulders. Following research from (Bergsten et al., 2015), of all workers involved in baggage
handling, 70% and 60% reported pain in, respectively, the lower back and shoulder. Also, according to
(Oxley et al., 2009), 73% of baggage handlers reported trouble with their lower back. In 2000, (U. S.
Bureau of Labor Statistics, 2009), even revealed that airline workers lose time due to injuries up to 5
times the national average. Recent sources claim that these problems also apply to Schiphol (Holdert
& Meindertsma, 2022). These are worrying statistics that need to be addressed.
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(a) Unloading a cart at Stuttgart airport (b) Loading a ULD at Oslo Airport

Figure 1.1: Baggage Handling Work

Partly as a result of these problems, Schiphol cannot grow anymore and has to cancel flights on a
regular basis (NOS, 2022b).

One of the most physical demanding jobs of the baggage handler is baggage loading. Baggage
loading (or make-up) (see Figure 1.1b) is the process of efficiently stacking luggage pieces from the
baggage transport line in a Unit Loading Device (ULD) (Figure 1.2a) or on a cart (Figure 1.2b). To
decrease the work pressure and increase the working conditions for baggage handlers doing this job,
Vanderlande Industries is working on a modern solution to one of the problems: a baggage loading
robot.

(a) Unit Loading Device (ULD) (b) Cart

Figure 1.2: Various containers for baggage

The first project introducing robots for baggage loading was started in 2009 by Vanderlande. Over
the years, pilot setups were made and installed at airports as Schiphol and Heathrow Airport (see Fig-
ure 1.4). Although the few pilot projects involving this robot show major potential, the operational costs
of the setup are a bottleneck for further deployment. Although the robot does its work automatically,
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the operational costs are high since an operator is still needed. Due to the inefficient fill rates and poor
reliability regarding the handling of the bags by the robot, a baggage handler must oversee the robot
cell. Figure 1.3 provides a figure with a root cause analysis of the interventions of the operator. With
supervision, the robot is working properly, but the deployment of one handler per robot cell increases
the operational costs significantly. To cut the operational costs, Vanderlande is now working on a more
intelligent and efficient robot cell, which needs significantly less supervision by handlers. This thesis is
conducted in light of that strategy.

Repositioning of bags to Unnecessary manual
unblock opening intervention
6.7% 6.7%

Bag slides from stack
6.7%

Bag dropped from
gripper
26.7%

Repositioning of bags
(less skewed) to more
stable and less volume
occupying setup
53.3%

Figure 1.3: Root Cause Analysis for Manual Intervention Baggage Loading Robots by Vanderlande

One of the factors contributing to the efficiency of the robot cell is the stacking robot itself and the
software that is determining placement of the items. However, the robot is likely not to be designed and
programmed by Vanderlande Industries. The company does not control the stacking strategy of the
robot. However, Vanderlande controls the baggage loading process before the bags are given to the
robot, which means that they control the sequence. The aim of this thesis is to discover the possibilities
of sequencing methods for baggage loading.

1.2. Company

Vanderlande Industries is a market leading system integrator for airport logistics. Their services are
used all over the world, including 12 of the top 20 airports (Vanderlande, 2022). The company has
an R&D department divided up into an Innovate Department and a Development Department which
are constantly innovating the baggage handling systems’ business for their customers. They delineate
their activity into business units. The business units include airports, warehousing, Amazon, parcel and
fashion. The company has good relations with their key customers, especially in the airports business
unit (Vanderlande Industries, 2021). Schiphol was one of the first key customers. With the problems at
Schiphol and other airports having to schedule less flights, a strong market pull effect is created since
the market is asking for technical solutions to their problems. On the other hand, the R&D department of
Vanderlande Industries wants to innovate and apply new technologies in solutions and products. This
effect is called the technology push effect. When taken together, these effects provide for a convincing
business case for automating the baggage loading process.
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1.2.1. Current Setup

Baggage loading or make-up is the last step of the Baggage Handling Process (BHP). Firstly, baggage
is loaded at the check-in counter or at the self-service baggage drop points. From there, the size of the
baggage will be classified as Standard Normal Conveyable baggage (ST), Semi-Conveyable baggage
(SC), Out of Gage baggage (OG), Odd Size baggage (OS) or Special Baggage (SP) depending on size
and shape. Only ST baggage will be handled by the baggage loading robot. More about these baggage
types will be discussed in Chapter 3. After check-in and classification, the bags will be identified with
the barcode attached to the bag. Then, the bag will be transported to a screening unit and moved to
the Early Bag Store (EBS) or sorted to the correct make-up location. All baggage sorted directly to the
make-up locations will be loaded in a cart or ULD manually. Around 1.5 hours before departure, bags
that are stored in the EBS are transported to their make-up locations. The baggage loading robot loads
a small percentage of the luggage stored in the EBS, while the remainder of the cargo must be loaded
by hand. This is done since it will provide predictability over the baggage items.

The current robot cell consist of a simple Vertisorter (Vanderlande Industries, 2020), where the
incoming bags from two transport lines come together. After the right bag is chosen, the bag will be
conveyed to the end of the conveyor belt. Then, the robot will retrieve the bag from the conveyor belt,
and it will place the bag in the cart or ULD according to online load logic (see Figure 1.4). Afterwards,
the robot arm with camera on top will scan the cart or ULD and check if the baggage placement is
correct. If the placement did not succeed, an error message is given to the operator, and the operator
can stop the robot, enter the robot cell and fix the placement. In practice, the operator also intervenes
when inefficient stacks are made or baggage is placed skewed (see Figure 1.3). If the bag is placed
correctly, the next bag can be picked from the conveyor belt.

Figure 1.4: Baggage loading Robot at Heathrow Airport

After the cart or ULD is loaded, it will be attached to a vehicle and is transported to the corresponding
airplane. ULDs will be directly loaded into the belly of the airplane. The baggage loaded into carts will
be unloaded at the airplane and loaded manually into the under deck of the airplane piece by piece. A
more detailed description of the process can be found in Chapter 3.

1.3. Research Goal

The robot will make use of a container loading problem algorithm, an algorithm which determines the
placement of the items. The goal of a MCLP (Multi Container Loading Problem) algorithm is to fill a
minimal set of bins with a set of items. To make sure the fewest number of bins is used, the packing
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algorithm must fill each bin as optimally as possible which means is full as possible. In this thesis, we
will refer to this fullness with the term fill rate’. In practice, such an algorithm is used for the baggage
loading robot to fit as many as bags possible in a cart or ULD. In this thesis, the fill rate is considered as
the best metric to evaluate packings, however, over multiple runs, the consistency of the fill rate is also
key. As stated in Section 1.1, Vanderlande industries is very likely to buy the physical baggage loading
robot, and thereby, does not control robot. This means that Vanderlande does not have the influence
on how the packings are made. However, Vanderlande controls the Baggage Handling Process before
the robot, which means they control the sequence in which the bags are presented to the robot.

In this thesis, we will research the performance difference between various loading algorithms pro-
vided with non-sequenced items, a simple sequenced set of items, a heuristically sequenced item and
an item set sequenced with a genetic algorithm. Here, the variables fill rate, fill rate standard deviation
and computational time are taken into account. The algorithm combinations will be tested in various
testcases. The main setup consist of the baggage loading setup explained in Section 1.2.1 and the
alternative scenario will consist of a similar setup for parcel loading.

To summarize, the main goal of this thesis is to answer the following research question:

How does sequencing items improve fill rate of simple container loading algorithms in a
baggage and parcel loading context?

We believe that sequencing items in most cases will work to improve fill rate of the simple online
container loading algorithms. Because with sequencing, one can be a step ahead in packing efficiently
and plan for significant better placement for the items. A more efficient placement can result in more
items placed in a container, which results in higher fill rates and thus better performance. We expect
that sequencing algorithms specifically designed for a scenario with known items and container sizes
will perform better than general sequencing rules or algorithms. However, a stricter sequencing plan
leads to a less adaptable packing algorithm for errors and less performance in different scenarios.

1.4. Outline

The remainder of this thesis is structured as follows. In Chapter 2, the container loading problem will be
explained and variations, simple and state-of-the-art methods will be discussed. Chapter 3 will explain
the dataset and the robot cell of the various setups. The design and results of the genetic sequencing
algorithm will be discussed in Chapter 4. The design and results of the final algorithm, the heuristic
sequencing algorithm, will be explained in Chapter 5. In Chapter 6 all the results will be compared and
benchmarked to the regular sequencing strategies. Also, this chapter will elaborate on a new proposal
regarding a sequencing setup. Finally, we will summarize and discuss all results in Chapter 7. Also,
future work will be elaborated upon in this chapter.
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Related Work

This chapter is about understanding the Multi Container Loading Problem (MCLP) and the methods for
solving the problem. The first section, Section 2.1, will explain the concept in mathematical terms, also
variations and constraints of the MCLP will be discussed. Next, classic simple solutions to the problem
will be discussed in Section 2.1.3. Afterwards, in the third section, Section 2.2, a set of metaheuristic
algorithms will be presented. Finally, we identify a knowledge gap in the final subsection Section 2.3.

2.1. Multi Container Loading Problem

The MCLP is a mathematical geometric assignment problem, in which three-dimensional items have
to be packed into large rectangular containers such that a minimum amount of containers is used and
feasibility conditions hold (Bortfeldt & Wascher, 2013). The general constraints in the MCLP are that the
items must not overlap and items must be placed completely inside their respective containers. When
just a limited number of containers are available, a subset of the available items must be selected in
order to minimise the quantity of containers used. In literature, this problem is often called the 'Bin
Packing Problem’. In this thesis, we will refer to it as the Multi Container Loading Problem or MCLP.
In essence, the problem with a single container resembles the popular three-dimensional Tetris game
from 1984, in which a player must place cubes on a platform efficiently. The game promotes placement
of the pieces such that horizontal layers are constructed by removing every completed horizontal layer
while increasing the score. The game has a limited amount of item types which results in perfectly
fitting stacks or layers. Many of the variations of the MCLP deal with a more diverse item set. Details
of item heterogeneity will be discussed in 2.1.2.

(a) Tetris the video game, Source:
https://alchetron.com/Tetris-(Game-Boy)

(b) Tetris 3D, Source: https://www.bol.com/

Figure 2.1: Tetris games
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The MCLP belongs to the cutting & packing problems and was first researched by (Kantorovich,
1960). By now, according to (Skiena, 1997), the MCLP is the second most requested academic prob-
lem, in part because of its widespread application. The MCLP has a wide range of uses in contemporary
packaging, transport, and manufacturing (H. Zhao et al., 2021). Furthermore, the use of the online vari-
ant of the problem extends to other sectors like Bandwidth Allocation, Cloud Computing and Operation
Room Scheduling (Perez-Salazar et al., 2021). Moreover, in our increasingly connected society, where
speed and efficiency in the delivery of goods are key concerns, logistics and transportation systems
play a crucial role. As a result, the problem is intensively researched in the field of operational research
during the previous few decades (Duan et al., 2019).

2.1.1. Problem Definition

While Tetris is mostly played in 2D, the problem also comes in one and three-dimensional form. The
most simple variant is the one dimensional variant. Logically, this problem is called the one-dimensional
MCLP. In that problem, there must be more than 1 container in which to load the items in. All items
have weights (or volumes) and all containers have a maximum capacity for weight (or volume). Items
must be assigned to multiple containers such that the total weight of items in a container is below the
container its capacity (H. Zhao et al., 2020) and the amount of containers used is minimised. The
mathematical formulation goes as follows. Given a set of n > 0 items N = 1,...n with sizes of each
item s; with 4 € N and 0 < s; < a. Also, there exists a set of m containers (C};), all with the same
capacity a > 0. The one-dimensional MCLP concerns placing items in the container while the sum of
the item sizes does not exceed a and the amount of containers used is minimised.

Ue

N (2.1)

> si<a, 1<j<m, i€N (2.2)

The two-dimensional MCLP is slightly different. Here, there exists a setof n > Oitems N =1,..n
with items having a width and a height w;, h; and containers having a width and height W;, H; where for
eachitem0 < w; < W;A0 < h; < H;, which means that the item is smaller than the container. When the
MCLP allows rotating the items over 90 degrees, 0 < w; < W; A0 < h; < H;V0 < w; < H;N0 < hy < W;
applies. Again, the two-dimensional multi container loading problem concerns placing items in the
container while the items do not overlap and the stack of items does not exceed the size of the container.
An example of this is shown in Figure 2.2a.

100

40
60

100 100 80

(a) 2D Container Loading Problem by darkmakukudo @ Github, (b) 3D Container Loading Problem by (inpacking)

Figure 2.2: Container Loading Problem
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The focus of research on the MCLP will be three-dimensional formulation. This version is the same
as the two-dimensional MCLP, but extended with one extra dimension. There exists a set of n > 0
items N = 1,...n with items having a width, a height, and a length w;, h;,l; and containers having a
width, height and length W;, H;, L; where for each item 0 < w; < W; A0 < h; < H; A0 < I; < L,
which means that the item is smaller than the container. Compared to the other two versions, the two-
dimensional MCLP concerns placing items in the container while the items do not overlap and the stack
of items does not exceed the size of the container. An example of this is visible in Figure 2.2b.

The MCLP is a classic NP Hard (non-deterministic polynomial-time hardness) type problem (Duan
et al.,, 2019), (Silva et al., 2019), (H. Zhao et al., 2020). In short, following (Rayward-Smith, 1986),
"every problem L in NP can be solved in polynomial time by an oracle machine with an oracle for H”. In
spite of the NP hardness, when the problem is comprehensible enough, MCLP can be solved exactly.
This type of methods are called Exact methods. Examples of exact methods will be given in 2.1.3.

2.1.2. Problem Variations

As discussed in the previous section, the first variable for the MCLP is the dimensionality of the problem.
Nonetheless, there are many problem variants found in the literature. In this section, we will elaborate
on the most occurring variations. First, the online and offline variant will be explained. In the online
variant, the problem must be solved iteratively. All the items arrive one at the time and the MCLP
algorithm has to make a (irreversible) decision where to pack the item before the characteristics of the
next item are known. The online MCLP algorithm does not know if there are any more items to pack.
The offline variant of the MCLP is the problem where all item characteristics are known in advance.
This makes the algorithm able to adapt the sequence of the items before placing the items. Also, offline
MCLP algorithms select any of the items from the sequence while a part of the stacking is already done.
Most of the time, this type of algorithm outperforms the online variant regarding fill rate. Other variants
of the MCLP depend on the items to pack and the containers to be packed. Following (Bortfeldt &
Wascher, 2013), a set of distinctions can be made. Bortfeldt and Wascher name MCLPs with a weakly
heterogeneous set of items cutting stock problems and MCLPs with a strongly heterogeneous set of
items.

» Single Stock-Size Cutting Stock Problem (SSSCSP): Packing a weakly heterogeneous set of
items into a minimum number of identical containers.

Multiple Stock-Size Cutting Stock Problem (MSSCSP): The assignment of packing a weakly het-
erogeneous set of items into a weakly heterogeneous set of containers such that the number of
used containers is minimized.

Residual Cutting Stock Problem (RCSP): The CLP where a weakly heterogeneous set of items
needs to be packed into a strongly heterogeneous set of containers such that the number of used
containers is minimized.

Single Bin-Size Bin Packing Problem (SBSBPP): Packing a strongly heterogeneous set of items
into @ minimum number of identical containers.

Multiple Bin-Size Bin Packing Problem (MBSBPP): The assignment of packing a strongly hetero-
geneous set of items into a weakly heterogeneous assortment of containers such that the number
of used containers is minimized.

* Residual Bin Packing Problem (RBPP): The MCLP where a strongly heterogeneous set of items
needs to be packed into a strongly heterogeneous set of containers such that the number of used
containers is minimized.

» Open Dimension Problem (see Figure 2.3) with a weakly heterogeneous set of items: The assign-
ment of packing a weakly heterogeneous set of items into a single container with one or more
variable dimensions such that the container volume is minimized

* Open Dimension Problem (see Figure 2.3) with a strongly heterogeneous set of items: The as-

signment of packing a strongly heterogeneous set of items into a single container with one or

more variable dimensions such that the container volume is minimized
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Figure 2.3: Open Dimension Problem by Marius Merschformann @ Github

As stated in the list, three variables need to be specified: the heterogeneity of the items, the con-
tainer sizes and the open dimension variant.

In literature, the MCLP is solved with a few general constraints. As stated in the first paragraph of
this section, general constraints in the MCLP are that the items must not overlap and items must be
placed completely inside their respective containers. Although in all literature, the MCLP is constrained
with these rules, many additional constraints can also be found. For example, vertical stability is often
considered as one of the most important constraints beyond the general constraints. When this con-
straint is not satisfied, a load can be damaged because items fall from the stack. Many papers do not
explicitly mention load stability because authors argue that stability is an immediate result of high fill
rates. The stability also depends on the presence of walls. In the classic 'palletizing case’, the container
is not walled and in some cases, cling wrap is used to prevent stacks from falling (see Figure 2.4b).
This is also the case with the automated case picking robot from Vanderlande Industries (Figure 2.4a).
According to (Bortfeldt & Wascher, 2013), load stability is taken into account by demanding that the
base of an item must be supported for at least 70% by an item or the container. In some cases, hori-
zontal stability is also taken into account, which is important when moving the container. When vertical
stability is taken into account during moving, the inertia of the items must not change the structure of
the stack.

‘l
-l
9

(a) Automated Case Picking (b) Packing wrapped with cling wrap

Figure 2.4: Automated Case Picking by Vanderlande Industries

The MCLP algorithm used for the bag loading robot is special. It can control the sequence of the
items, however, it treats the items iteratively in an online way. Within Vanderlande Industries, this online
MCLP algorithm is called Ad Hoc Load Logic, referring to the irreversibility of the placement decision
of each item. The items that need to be placed in the containers are typically strongly heterogeneous,
since each bag is different in size. The container type for the baggage loading robot depends on what
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type of plane the bags needed to be loaded for. In case of a narrow body plane, carts are used as
containers. These are rolling containers open on the front and top. One can argue that for this type
of loading, the open dimension problem with strongly heterogeneous items is solved. In the case of a
wide body plane, ULDs are used. These are containers with a specific shape to fit in an airplane. For
this type of container, the single bin-size bin packing problem is solved. More information regarding
the container and item characteristics in Chapter 3.

2.1.3. Classic Solutions

In this subsection, we will discuss classic solutions to the MCLP. When considering multiple containers,
a MCLP algorithm can choose in which container the item must be placed. This can be done with one
of the following heuristics, using the online variant of a MCLP algorithm.

First-Fit (FF): This algorithm attempts to stack the item in the first container in which it fits.
Next-Fit (NF): This algorithm only keeps one container open and places the item in that container.
If the item does not fit, the current container is closed, the next container is opened and the item
is placed in this next container (see Figure 2.5).

Best-Fit (BF): This algorithm keeps all containers open, when an item arrives. It will attempt to
place the item in the container with the smallest unused area after placement of that item.
Worst-Fit (WF): This algorithm keeps all containers open, when an item arrives. It will attempt
to place the item in the container with the largest unused area after placement of that item (see

Figure 2.6).
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Figure 2.5: Next Fit Algorithms
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Figure 2.6: Bin Packing Algorithms by (Quarrrb, 2022)

With the offline variant, the sequence of the items can be controlled. Typically, the items will be
sorted by size (or weight). The term decreasing will be added to the name of the algorithm that first sorts
the items from largest to smallest. For example, a first-fit algorithm, will be named first-fit decreasing.

In the next subsections, we will discuss the placement methods for the MCLP. When the container
is chosen with one of the heuristics from this subsection, the item will be placed in the container on the
location calculated by such a placement method.
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Exact Solutions

The first placement algorithm types are the exact solution methods. Because of the complexity of
the MCLP, the literature offers few exact solution methods. (Chen et al., 1995) provided the first Mixed
Integer Programming for the MCLP based on the relative positions of items. In another paper, a branch-
and-bound algorithm is applied to reach an optimal solution for the MCLP by (Martello et al., 2000).
When exact methods find a solution, the solution is optimal, the problem is the time needed to calculate
such an optimal solution. Exact methods are computationally demanding. Only moderate sized prob-
lems are solved in optimality, and they are typically very slow. Far more used methods for the MCLP
are placement heuristics.

Placement Heuristics

In this section, we will discuss various placement heuristics. Placement heuristics are efficient methods
to solve the MCLP within reasonable time, reaching near optimal solutions. An example of a placement
heuristic is the Block Building Approach (BBA). In (Zhu et al., 2012), they came up with a BBA structure
where they identify the key decision components for a BBA. As a result, they structured the BBA to 6
elements:

How to represent free space in the container

How to generate a list of blocks (of items)

How to select a free space

How to select a block

How to place the selected block in the selected space
What is the overarching search strategy

A “
i s
-
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(a)

4
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Figure 2.7: Block Building Algorithm by (Zhu et al., 2012)

In essence, BBAs are dividing the container space into blocks and clustered items, afterwards, it
matches the clusters with the blocks (see Figure 2.7). Another commonly used placement heuristics
is the layer-building heuristic (George & Robinson, 1980). For horizontal layer building (or floor layer
building), during the construction of a stack, a layer that is parallel to the ground of the container is
created (Moon & Nguyen, 2014). Afterwards, the height of this layer is filled with smaller items to fill
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up the space. An example packing, packed with a layer building heuristic, is displayed in Figure 2.8b.
For a vertical layer (or wall) building, this process is done perpendicular on the side of the container:
a wall of items is made parallel to the walls of the container (see Figure 2.8a). Although it is a simple
technique, it is frequently used in literature (Saraiva et al., 2015), (Harrath, 2021), (George & Robinson,
1980), (Zhang et al., 2012), (Duarte Alonso et al., 2011). Also, during our research on site at Schiphol,
we recognized that the current baggage loading robot uses a horizontal layer building algorithm to
work properly (Interview with van Bavel, 2022). In our opinion, these type of algorithms work well with
non-rigid items since each layer forms a stable base for the next layer, ensuring maximum overlapping
area with items underneath. Another placement heuristic is the special points rule from (Crainic et al.,
2008), where the procedure is to scan the free space specified within a container by the shapes of the
items that are already placed. When these corner points are scanned, a representative free space is
constructed to pack items with simple online heuristics discussed in Section 2.1.3. A last placement
heuristic is quite similar to the special point rule: itis called the skyline heuristic and is used by (Wei et al.,
2009). The Skyline data structure only keeps a list of the "skyline” or horizon edges that are created
by the highest edges of rectangles that have previously been packed. This list increases linearly in
length and is very simple to maintain. The item which is needed to be placed will be placed by default
at the bottom left point from the skyline structure (Skyline Bottom Left). However, the position of the
item can also for each point in the structure be evaluated for lost area. Then, where a minimal area
is lost, the item will be placed. This algorithm is called the Skyline Best Fit algorithm (Jylanki, 2010).
Another commonly used algorithm is the Maximal Rectangles algorithm (also known as Maxrects). The
Maximal Rectangles algorithm stores a list of free rectangles that represents the free area of the bin
after an item is packed.

(a) Wall Building Algorithm by (Saraiva et al., 2015) (b) Horizontal Layer Building by (Elhedhli et al., 2017)

Figure 2.8: Placement Heuristic

2.2. Meta Heuristics

Metaheuristics are approaches that aim to provide an approximation of a solution to a MCLP in a rea-
sonable time. In most cases, metaheuristics can be applied to other optimization problems since they
are methods to search through a solutions space. Metaheuristics generate, find or select a heuristic
and thus act on a higher level. In most cases, these types of algorithms work in combination with
a placement heuristic. Thus, metaheuristics are approaches to guide the search for a near—optimal
solution. The task of preventing these algorithms from becoming stuck in local minima is challenging.
The local minima are points in the space of possible solutions that, in comparison to the other possible
solutions in the immediate area, seem to be the best option. However, when seen in the context of the
whole range of possible solutions, the answer is not ideal.

A classic meta heuristic is the tree search method. Simplified, with tree search, a (binary) tree is made
for the solution space. Every branch in the tree has a node containing a possible solution to the prob-
lem as key. While the algorithm is running, every branch is explored consorting a set of logical rules or
heuristics. According to (Cormen et al., 2010), each node’s key must be better than any solutions in
subtrees on the left and worse than any keys in subtrees on the right for a tree to act as a search tree.
The method is simple and intuitive, which contributes to its wide use in research and industry. (Sheng-
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ming et al., 2020) applied this algorithm to baggage loading. The resulting packings are computed fast
and have good stability characteristics.

Tabu search is another commonly used metaheuristic. It is a specific search method that allows the al-
gorithm’s search on local minima to continue, by acknowledging new directions that do not necessarily
improve the solution (X. Zhao et al., 2016) (Pardalos et al., 2013). To further avoid local minima, it also
can declare certain solutions as tabu, so the algorithm does not consider that solution again.

(Stepan, 2009) presented a metaheuristic called GRASP. GRASP stands for Greedy Randomized
Adaptive Search Procedure. The GRASP is made up of iterations that are composed of repeated
constructions of a greedy randomized solutions (Feo & Resende, 1995). Afterwards, local search is
used to iteratively refine the solution. (Dechow & Douglas J, 2000) presented such a solution applied
on the MCLP.

Genetic algorithms are popular algorithms that mimic the process of evolution (Gongalves & Resende,
2012). Generally, a genetic algorithm (seen in Figure 2.9) starts with a set of random solutions to the
problem (1 in Figure 2.9). After that, it will assign a fitness score to every solution. Only the most
effective x solutions are chosen (2 in Figure 2.9) after being evaluated using the fitness score. From
there, the solutions undergo two different operations: cross-over, and mutation. A cross-over operation
is the action where two solutions are combined into one (3 in Figure 2.9). This refers to the creation
of a child’s genetics from the parent’s genetics. The second action, called mutation, is an operation in
which the solution is altered slightly (4 in Figure 2.9). This action is done to prevent the algorithm to
end up in local minima. When a genetic algorithm is running, new generations are made by applying
the cross-over and mutation actions on the best solutions (5 in Figure 2.9). In this way, it searches for
a near-optimal solution.

a 425612553124 221567174103
275199243518 1426 73201933
9 275199243518 221567174103

e 275199174103

Q 275109174143

9 1275199243518 275199243518
275109174143 5275109174143

Figure 2.9: ULD filled with Parcel Items
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2.3. Knowledge Gap

As illustrated in this literature review, a significant amount of research is done for the MCLP. Following
the introduction of this chapter, the MCLP is a highly requested academic problem, in part because of its
widespread application. Thus, the question of how items are placed into containers is already answered
in literature with a various amount of different approaches. Moreover, the online MCLP algorithms
provide less performance than the offline MCLP algorithms, where extending the lookahead of the
online algorithms, should improve the performance significantly (H. Zhao et al., 2020). An interesting
extension of the state-of-the-art packing algorithms is the optimization of the sequence in which the
items arrive in. The sequence of items in literature is mostly captured in sub-problems (Oliveira et al.,
2020) (Jiang & Yin, 2012). Also, according to experts, the sequence items arrive in, heavily determines
the fill rate of certain online algorithms (Internal Communication, 2022). The purpose of this thesis is
to quantify the impact of the arrival sequence on the fill rate of the containers.
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Dataset and Robotcell

In this chapter, we will discuss the two scenarios where sequencing for the MCLP can take a role for
Vanderlande Industries regarding increasing the fill rate of the final packing. At first, the main setup will
be discussed in 3.1, where the CLP involves baggage loading. The second section, 3.2, will consist of
the setup used for parcel loading. This is a case where the same process is executed and sequencing
can also play a role.

3.1. Main Setup

3.1.1. Main Robotcell

As indicated in the introduction of this thesis, the main setup will be the bag loading setup. In this
section, we will elaborate on the baggage loading robot cell. Logically, every passenger airplane that
takes off has people on board with baggage. This baggage needs to move from the airport itself to the
aircraft, either via cart or ULD. This work is one of the activities that has a high workload and a high
percentage of all personnel got injured while doing this job. All baggage that is checked in will end up at
the make-up station. At Schiphol, only baggage retrieved from the early bag store can be transported
to the baggage loading robot.

Firstly, a container is needed to place in the robot cell. This container can be in the bag loading
setup, a ULD or a cart (Figure 3.1a). More details about the container types will be explained in 3.1.2.
Once the container is at the correct place, the gate can be closed and the packing process can start.
To begin, the container has a specific destination and code. Bags matching this destination and code
are selected and sent from the EBS to the robot. The order in which the items will be sent is dependent
on the weight and size (Figure 3.1b) of the baggage. The largest and heaviest bags will be sent first
and the small and light baggage will be sent last. This bag information is already available from the
classification action much earlier in the baggage handling process. The bags will be transported to
the robot cell (Figure 3.1c¢) and arrive at one of the two transport lines. From there, a Vertisorter will
choose the heavier and larger of the two baggage pieces to transport to the actual robot. The bags will
arrive high up in the robot cell above the container (Figure 3.1d). There, the bag is again scanned for
dimension, weight, and orientation on the conveyor belt. Then, the robot arm will move up on down to
let the camera attached to the robot arm create a three-dimensional image of the container. With the
knowledge of the item and the knowledge of the environment (the container), an algorithm will calculate
an optimal placement position for the item. This optimal placement position will be calculated using so-
called Ad Hoc Logic. In practice, it is likely to be a simple horizontal layer building placement heuristic
that is used as discussed in Section 2.1.3. Although the use of horizontal layer building algorithm is not
confirmed, the approach is clearly visible when watching the robot execute the stacking process in real
life (Interview with van Bavel, 2022) and on video footage (Internal Communication, 2022). Afterwards,
the robot will calculate the motion the robot arm has to make for placing the item correctly. Then, the
arm will move under the conveyor belt, the conveyor belt will rotate, and the bag will be moved on
the robot arm’s gripper (which is a small conveyor belt itself). Next, the robot arm will execute the

17
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calculated plan and rotate the gripper’s conveyor belt, placing the bag in the container (Figure 3.1e).
Then, the arm will move to let the camera make a three-dimensional image of the stack to check if
placement of the bag is achieved successfully. Now, the next bag can be transported, scanned and
placed in the container. This process is looped for ULDs as long as there is room for the gripper to
place the bags (the gripper takes 70 cm space). With carts, the robot can stack to full capacity. During
this process, a baggage handler oversees the process. This is because the robot makes mistakes
and makes inefficient. If that is the case, the operator will stop the robot and rearrange some bags to
improve fill rate (Figure 3.1f). If the container is packed to its capacity, the operator will stop the robot
and open the gate. Then, it will connect the ULD or container to a vehicle, which will transport it to its
designated airplane. In practice, it does not matter in which cart or ULD the bag is placed, as long as
the container or cart is transported to the correct airplane.

(d) Items arrive on top (e) Placement of items (f) Reordering of items by operator

Figure 3.1: Baggage Loading Process

3.1.2. Main Items and Containers

In this main scenario, the items that are packed by the robot are baggage pieces. To specify further,
the items are ST baggage pieces. ST refers to the category of bags, where each category is handled
different at the airport.

+ ST: Normal Conveyable baggage. Baggage that can fit in a box of 1000 x 750 x 650 mm.

+ SC: Semi-Conveyable baggage. Baggage that can potentially become a problem or irregular
baggage. This includes baggage pieces which become very sensitive to rolling when packed.

+ OG: Out Of Gage baggage. This type is larger and mostly heavier than the regular ones (does
not fit in box of size: 3000 x 2000 x 500 mm and weights between 0.5 and 80 kg).

+ OS: Odd Size baggage. Baggage items that are either too small or too large to be handled by
the system. These items will be delivered manually to their destinations. Examples are: musical
instruments, art, walkers, extremely wide or extremely flat baggage.

» SP: Special baggage. Every luggage piece that does not meet the conditions of one of the above
requirements will be classified as special baggage. Also, OG baggage falls in this category if the
system can not handle the form of the piece. Examples are: living animals, chemical products,
baggage supported on wheels, open filled bottles, super slippery items. This category of luggage
will also be handled manually.
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Baggage categories and dimensions
The picture below shows the dimensions of the specified baggage categories:

Figure 3.2: Bag Categories

This means that the size of baggage which the robot is stacking is limited to items that fit in a box
of 1000 x 750 x 650 mm. A full overview of the categories alongside with the dimensions are visible
in Figure 3.2.

Every piece of baggage is different, but they can be divided into certain categories provided by the
IATA in Figure 3.3. Each item has characteristics that have influence on stacking performance. Here,
the material is most important. Some baggage is made from Polycarbonate, which is referred to as
hard case items. These items provide good stability for items stacked on top of. Other baggage is
made of more soft material, Polyester. When placing bags on top of these kinds of baggage pieces,
the soft case baggage will partially deform. This deformation will decrease stability characteristics of
the stack, which will make it more likely for baggage to fall during the stacking process.
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Figure 3.3: IATA Baggage I|dentification Chart by (IATA, 2016)
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In practice for baggage loading, type 02 and type 01 from Figure 3.3 are the most common baggage

types.
To limit computation and due to non-available detailed data for this thesis algorithm, some assump-

tions have to be made about the items. The first one is that the items are rigid cuboids. Here, the
item’s outer edges are taken, and a rectangular box is drawn fitting these outer edges (see Figure 3.4).
Another simplification is the omission of item weight and material.

WW
—

Figure 3.4: Outer Edges of Item

To translate this to the specifications of (Bortfeldt & Wascher, 2013), the baggage loading case
has strongly heterogeneous items, every bag is different in size. In the figure below (Figure 3.5), the
distribution is shown of the different dimensions of the items. In the algorithm, samples will be taken
from this normal distribution to simulate actual baggage items.
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Figure 3.5: Distribution Dimensions Baggage

As mentioned earlier in this thesis, the baggage loading case has two different types of containers:
ULDs and carts. ULDs are containers that will be placed entirely into the underbelly of wide body
airplanes (see Figure 3.6a). When baggage has to be moved to narrow body airplanes, a cart is used
to move the baggage to the airplane (see Figure 3.6b). Once arrived, baggage handlers will place the
items into the underbelly of the airplane one by one.

(a) Unit Loading Device (ULD) (b) Cart

Figure 3.6: Various Containers for Baggage

The containers for each airplane are similar in shape. Table 3.1 below, shows the dimensions of
the containers used in this thesis.
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Width [mm] | Height [mm]
Baggage Cart | 2831 1370
Baggage ULD | 1470 1400
Parcel ULD 3175 2235

Table 3.1: Container Sizes

The ULD used in this case will be the AKE ULD, where only the rectangular dimensions are taken.

Since all containers used for each airplane are similar, according to the terminology used by (Bort-
feldt & Wascher, 2013), the "Single Bin-Size Bin Packing Problem” will be solved, however, in this
thesis, we will refer to it as the Multi Container Loading Problem (MCLP).

In this thesis, the MCLP will be limited to a 2.5 dimensional problem. Since the main scenario
involves a horizontal layer building robot, the problem can be solved in parts for every layer. Each layer
solves the two-dimensional CLP. When all layers are solved, these layers can be stacked on top of each
other. Thus, all the slices are stacked and thereby make a 2.5 dimensional problem. However, one
could argue that the height of the items is not incorporated within this approach. This is true, however, in
this thesis, we will assume that items will deform vertically when pressure is applied on top. Assuming
this, when pressure is applied to the layer, the layer is flattened to a certain extent which makes it able
to make form a new stable layer on top.

3.2. Alternative Setup

3.2.1. Alternative Robotcell

The alternative robot packs parcel instead of baggage. Although the item sizes, variations and contain-
ers are different, the process is similar. It must be noted, that this is the likely setup in which parcel
loading will take place, since it is not an already existing product.

Firstly, a ULD is needed to place in the robot cell. Once the container is at the correct place, the
gate can be closed, the packing process can start. To begin, the items that need to go to the destination
where the container is going will be sent to the robot cell in non-specefied order. There the items are
scanned for dimension, weight, and orientation on the conveyor belt. Then, the robot arm will scan
the container in the same way as the baggage loading robot to create a three-dimensional image of
the inside of the container. With the knowledge of the item and the knowledge of the environment
(the container), an algorithm will calculate an optimal placement position for the item. Afterwards, the
robot will calculate the motion the robot arm has to make for placing the item correctly. Then, the
arm will move under the conveyor belt, the conveyor belt will rotate, and the parcel will be moved on
the robot arm’s gripper. Next, the robot arm will execute the calculated plan and enable the gripper’s
conveyor belt, placing the item in the container. Then, the arm will move to let the camera make a
three-dimensional image of the stack to check if placement of the item is achieved successfully. Now,
the next item can be transported, scanned and placed in the container. This process is looped for ULDs
as long as there is room for the gripper to place the parcel (the gripper takes 70 cm space). During this
process, it is likely that a handler oversees the process. If the container is packed to its capacity, the
operator will stop the robot, and open the gate. Then, it will connect the ULD to a vehicle, which will
transport it to its designated airplane.
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Figure 3.7: ULD filled with Parcel Items

3.2.2. Alternative Items and Containers

The items in the parcel case are parcel pieces. These items are typically smaller than baggage pieces.
In this alternative scenario, the rigid cuboid shape of the parcel is incorporated into the algorithm, which
means that on shape, no simplifications are made. However, the weight of the items is not taken into
account for stacking. Therefore, we assume that all items can be placed on top of each other. The
items for this case are also strongly heterogeneous (Bortfeldt & Wascher, 2013). In Figure 3.8 below,
the distribution of the dimension for parcel items are displayed.
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Figure 3.8: Distribution Dimensions Parcel

From the images, it is clear that there is less variation of the parcel items. This means that some
items are the same size in at least one dimension.

The containers used in the parcel case are ULDs. The ULDs in which parcel is transported are
typically larger than baggage ULDs, because the ULDs can be placed on the main deck of an airplane
since the airplane is only used for cargo. Below, a figure with some different ULD containers are shown
(Figure 3.9).
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Figure 3.9: Different Types of Parcel ULDs

3.2.3. Generating Dataset

To create a set of items with representative dimensions, a function is created. This function makes a
three-dimensional normal distribution of all dimensions. From this three-dimensional normal distribu-
tion, the function samples points, where each point in three-dimensional space refers to an item with
the width, length, and height according to its position. This algorithm makes sure that items of dimen-
sions that occur more times, also occur more often as sample. The function can create as many items
(n_items) as needed.
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Genetic Algorithm

This chapter will present the design (Section 4.1), the tuning (Section 4.2) and the results (Section 4.3)
of the genetic algorithm used to sequence for the MCLP.

4.1. Design Genetic Algorithm

A genetic algorithm is an algorithm from the family of evolutionary algorithms. It is a technique for
solving optimization problems that is based on natural selection, the mechanism that drives biological
evolution. The natural selection aspect is the process that determines how the solutions change over
time. At each stage of the process, a traditional genetic algorithm chooses members (or solutions) of
the existing population to serve as parents and then uses those parents to generate children for the
subsequent generation. In Figure 4.1 below, a schematic overview is given.

This method is used for a number of applications such as data mining (Fan & Luo, 2013), image
processing (Verma, 2015) and the shortest path problem (Selvanathan & Tee, 2003). According to
(Lambora et al., 2019), genetic algorithms come with a great set of advantages. To begin, there is
no need for a model or information that can be replicated. In addition, a genetic algorithm seeks the
optimal solution and improves over time. Lastly, GAs are effective for huge search spaces. GAs are
employed for the single and MCLP in, for example, (Wu et al., 2010), where a genetic algorithm is used
altering the relative placements of objects inside a Mixed Integer Program (MIP). This is possible thanks
in part to the benefits listed above. Also, (Gongalves & Resende, 2012), presents a successful GA for
the MCLP where they developed a method that combines a new placement operation with a multi-
population genetic algorithm based on randomly generated keys. There is a major difference between
the genetic algorithms that are discussed in these works and the genetic algorithm that is developed
by us for this thesis. The majority of the previously published research make use of a genetic algorithm
to establish optimized placement of the items. In the design that we are going to show in this thesis,
the genetic algorithm will be used to optimise the sequence in which the items are given to an MCLP
algorithm.

In the following paragraph, we will describe how the genetic algorithm is designed for sequencing
in order to solve the multi container loading problem. As described in Section 2.2, a genetic algorithm
consists of multiple steps: initialisation, evaluation, selection, cross-over, mutation, and termination. In
the next subsections, which have been given titles that are appropriately descriptive, a more in-depth
discussion of the phases will be provided, as well as an explanation of the many design decisions.

25



4.1. Design Genetic Algorithm 26
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Figure 4.1: Schematic Structure Genetic Algorithm

4.1.1. Initialisation Genetic Algorithm
During the initialization phase, the initial parameters such as container dimensions and items sizes
are given their default values. It is necessary to determine the setup before attempting to collect the
parameters. Two different scenarios are dealt with, both of which are outlined in Chapter 3. The setup
of the first scenario is the cart and ULD loading robot for airports. The second setup is the parcel ULD
loading case. When a setup is chosen, the dimensions are set for the items and the containers.

With the container size determined, the items can be generated. In the figure below (Figure 3.4),
a subset of actual parcel and baggage items is shown. Next to this example, the mean and standard
deviation is displayed, calculated from the whole dataset. A histogram of the whole set can be found
in figure Figure 3.5 and Figure 3.8.
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4

(a) Baggage Items (b) Parcel Items

Figure 4.2: ltems with rectangular boxes around outer edges

First the items are generated according to the method described in Section 3.2.3. At this point,
there are sufficient amounts of items. The next step is to form solutions from these items. For that, the
items are randomly shuffled m_solutions times and added to a list. This list forms the first generation:
generation 0. Below, such two different solutions are shown in Figure 4.3. The next step is to evaluate
the solutions.

Figure 4.3: Example Solutions: Sequences of ltems

4.1.2. Evaluation Genetic Algorithm

A key part of this genetic algorithm is the evaluation process. This is done with a so-called fitness
function. With this genetic algorithm, the fitness of a solution is determined by the fill rate of the container
after the algorithm stacked the items in the order from the solution. The fill rate of the packing is the sum
of the area covered by each item, divided by the total area (see Equation 4.1). For example, when a set
of items in a specific order stacked in a container cover half of the area of the container, the fitness of this
solution will be 0.5. Following (Internal Communication, 2022) and research by (Bortfeldt & Wascher,
2013), fill rate is the most important metric for the MCLP and, in this case, also for sequencing for the
MLCP. The algorithm presented in this thesis will always pack more layers. To incorporate this in the
fill rate score, the parameter [ is introduced. Also, to incorporate the items from all layers, an extra sum
is involved. In Equation 4.2, the mathematical formulation is displayed.

f:zziy (4.1)
Cp * Cy

fo ity 4.2)
Cp ¥ Cy k|

As a practical matter, the fill rate is very dependent on the quantity of items that can be forced into
a packing, given that the items are generally of comparable dimensions.

The genetic algorithm has a function to evaluate the fitness given a heuristic packing algorithm. In
the end of the stage, all the solutions have a fithess associated to a specific sequence.

4.1.3. Selection Genetic Algorithm
When the fitness scores are known, a selection of the solutions must be made. Herein lies the relevance
of the parallel to natural selection. By disrupting a bad solution, the principle of survival of the fittest is



4.1. Design Genetic Algorithm 28

applied to the selection. Here, the fittest refers directly to the solutions with the highest fitness score.
In the genetic algorithm presented in this thesis, the best p_selected solutions are selected for the next
phase of this algorithm: crossover and mutation.

4.1.4. Cross-Over Genetic Algorithm

In most genetic algorithms, a cross-over action will be made during execution of this algorithm. This
action refers to combining two solution into one. Here, two solutions can be seen as two chromosomes.
The first chromosome will be split at a random place in the solution, while another chromosome (or
solution) is split at the same place. Then, in order to create a new solution, the first portion of the
first solution and the second half of the second solution are joined together. This process refers to the
creation of humans genes when two parents produce a child.

In our algorithm, this action leads most of the time to infeasible solutions. This is the case since the
solution is a sequence of items. When cross-over would be applied and for the first solution, one item
occurs early, while the same item occurs later in the other solution. Combining these solutions into one
will result in the specific item occurring twice in the children solution, which is not possible. The figure
below (Figure 4.4) displays this problem. To be clear, this action is not used in the genetic algorithm
designed for this thesis.

127112981361054 310714119821265

12711298982/1265

Figure 4.4: Unfeasible Combination, the highlighted number (or items) occur twice in the children solution

4.1.5. Mutation Genetic Algorithm

Mutation is an action where a solution is slightly altered. This process has also similarities to the
ecological process of evolution theory, where the DNA of children, compared to the parents’ DNA, is
slightly altered.

The genetic algorithm presented in this thesis applied this type of action in each generation. An
alternation in the solution translates to two random items in the sequence being swapped. The items
selected for this action can be actually the same item, in that case, the mutation action does not alter
the solution.

4.1.6. Termination Genetic Algorithm

In this stage of the generation, the new solutions do not have a fitness score, and therefore have to
be evaluated. When this is done, one generation of the genetic algorithm is finished. The next stage
is to check if the best solution from the solutions reaches the criterion. With the algorithm presented
in this thesis, the criterion is that f = 1.0. This means that the algorithm can stop when the solu-
tion produced will result in a packing being filled 100%. However, this is almost impossible due to
the nature of the item and container dimensions. Consequently, another criterion is also evaluated:
n_generation. The algorithm can run as long as necessary, but since the optimal score is likely never
to be reached, a max of generations must be given to stop the algorithm. After each generation, the
statement n_generation < max_generations is checked to be True or False. When the equation re-
turns True, the loop is continued, and the next generation can be created by selecting the best solutions.
When the amount of generations reached the maximum, the algorithm is terminated.
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41.7. End

When the algorithm is terminated, it will return the best solution found during the whole search over all
generations. Also, it will return the fitness score or fill rate.

4.2. Tuning Genetic Algorithm

For the genetic algorithm presented in this thesis, three parameters can be tuned: m_solutions, max_generations
and p_selected. Here m_solutions refers to the initial set of solutions that is created. max_generations

refers to the max amount of generation that can run before termination of the algorithm. p_selected is

the parameter that sets the amount of solutions selected after evaluation. In Table 4.2, all parameters

values are shown.

Parameter Values

m_solutions [5, 10, 20, 50, 80, 100]
mazx_generations | [5, 10, 25, 35, 50, 80, 100]
p_selected [5, 10, 20, 50]

Table 4.1: Parameters Genetic Algorithm

When comparing performance, it is shown that for each parameter, a greater value corresponds to
a longer calculation time. This is due to the fact that each parameter affects the number of solutions to
be evaluated. The algorithm takes the most time computing the fitness score of each solution, so high
m_solutions, max_generations or p_selected result in a longer calculation time.

Because the initial solution population size, also known as m_solutions, is the factor that has the
greatest impact on performance in terms of fill rate, a large number has been chosen for this parameter.
The max_generations have more impact on computational time than performance, therefore a mod-
erate amount of maximum generations is chosen for the final algorithm. For the p_selected, a value
of 20 is selected since this value limits the computational time, while guaranteeing good performance
regarding fill rate.

Parameter Chosen Values

m_solutions 100

max_generations | 35

p_selected 20

Table 4.2: Chosen Parameters Genetic Algorithm

4.3. Results Genetic Algorithm

When the genetic algorithm is executed, it will normally take roughly two seconds to run through 35
generations, and the algorithm will provide an update after each generation that it goes through. In
the next two sections, we will elaborate in detail on the results of the main, and the alternative setup
respectively

4.3.1. Results Genetic Algorithm on Main Setup

The first results on single runs look promising. When applying the algorithm to baggage items, the
differences between sequenced item sets (Figure 4.5a) and non-sequenced item sets (Figure 4.5a)
are directly visible. The difference is also expressed at their respective fill rate, where the fill rate of the
sequenced item set packing is 0.75, and the fill rate of the container packed with the sequenced set is
0.87.
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Packing withouth Sequencing Items sequenced by Genetic Algorithm
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(a) Non-sequenced items (b) Sequenced ltems with GA
Figure 4.5: Main Setup, Skyline Wastemap Heuristic at Cart Top View
In the remainder of this section, we will look at results of the sequencing genetic algorithm, varying

the heuristic. Also, the algorithm will be run several times to compare the distribution of the different
results. In table Table 4.3 below, the different approaches will be shown.

Modes Heuristic Algorithm Loading Unit

Sequenced by GA | Skyline Wastemap Reduction ULD

Random Sequence | Guillotine Best Area Fit Longer Axis Split | Cart

MaxRects

Table 4.3: Sequencing Approaches

The first modes compared to each other are already shown in Figure 4.5. Furthermore, in the plot
below (Figure 6.6), the normal distribution can of the performance of a sequenced set regarding the
top view of a cart loaded with a Skyline Wastemap Reduction heuristic.

Distribution Results Cart Loaded with a Skyline Wastemap Reduction heuristic

50 4 = Sequenced by GA
——— Random Sequence

0.72 074 0.76 0.78 0.80

Figure 4.6: Distribution Fill Rate of Packings of Non-Sequenced Items and Items Sequenced by GA (Cart, Skyline Wastemap
Reduction Heuristic)

The graph reveals two significant points. The first point is the significant difference in mean fill
rate. The randomly sequenced items results point to a mean of 0.75, which means that a large portion
of the times when items are generated, the fill rate after packing containers is around 0.75. This is,
a respectable score; nevertheless, as the graph makes clear, the standard deviation is rather large
(0.01395). The sequence produced by the GA generally leads to significantly higher fill rates. The
mean of these result is 0.79, which is almost 5% up from the random sequence performance. Also,
the standard deviation in fill rate is remarkably lower than the randomly sequenced item set results,
0.00777 precisely. Overall, it is possible to draw the conclusion that the outcomes of the sequenced
item set lead to fill rates that are both greater and more consistent. Because of this consistency, the
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algorithm produces results that are more dependable, which is beneficial when it is employed in the
real world.

As can be seen in Figure 4.5, the genetic algorithm tends to sequence the items in a way that eight
items fit. For that to happen, a rectangle of items needs to exactly fit in the right corner, this is not
always the case as displayed in Figure 4.7. If it does not exactly fit, only seven items can be packed in
the container.

Iltermns sequenced by Genetic Algorithm

500 1000 1500 2000 2500

Figure 4.7: Example packing sequenced items by GA, Packing seven items
Moreover, we will look at the performance results in the ULD loading case for bag loading.
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Figure 4.8: Example packing ULD case with Genetic Algorithm and with Non-Sequenced ltems
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Figure 4.9: Main setup, Skyline Wastemap Heuristic at ULD

From Figure 4.9, the same patterns are visible. In the container filled with the sequenced items, the
rectangular pattern is shown more often than in the container packed with the non-sequenced items.
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Distribution Results ULD Loaded with a Skyline Wastemap Reduction heuristic
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Figure 4.10: Distribution Fill Rate of Packings of Non-Sequenced Items and ltems Sequenced by GA (ULD, Skyline Wastemap
Reduction Heuristic)

From Figure 4.10, the exact same shapes of the normal distribution can be seen as in the cart
loading case. The biggest difference in performance is the mean of the results of the random sequenced
items and the sequenced items by the GA, which are respectively 0.64 and 0.72. This refers to the
case where there fit three or four items in the layer. With three layers, the container is filled with a score
of 0.64 and with four items, the container is filled with a score of 0.74. Again, sequencing the items in
a particular proves to be beneficial.

When assuming sequencing is working, the genetic algorithm can work with a various set of heuris-
tics to sequence for. In Figure 4.11 below, the fill rate results are shown for different heuristics.

Distribution Results Cart Sequenced items with various Heuristics
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Figure 4.11: Distribution Fill Rate of Packings of ltems Sequenced by GA (Cart, Various Heuristics)

Looking at the presented graph, major differences are evident. Firstly, the Guillotine heuristic does
not work as an online MCLP algorithm. Moreover, the distribution of the results for that heuristic is very
wide, with a standard deviation of 0.0148. The best performer of the heuristic approaches is the Skyline
Wastemap Heuristic, showing the results already discussed. The Maxrects heuristic is the option with
results in between the Skyline and Guillotine heuristics. The standard deviation of the results are
maijorly tight (0.0015), almost ten times as less distributed as the results of the guillotine heuristic. The
following examples of packings from Figure 4.12 clearly show the variations in fill rates.
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Items sequenced by Genetic Algorithm Items sequenced by Genetic Algorithm

1200 1200

1000 1000
ano 800
600 600
400

200 200

o

0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

(a) Example Packing, packed with Guillotine Heuristic (b) Example Packing, packed with Maxrects Heuristic

Figure 4.12: Example Packing Packed with Different Heuristics

4.3.2. Results of Genetic Algorithm on Alternative Setup

In this setup, the appropriate heuristic needs to be determined since the algorithm for alternative setup
is unknown. For that we will test the three known heuristics: Skyline Wastemap, Guillotine Best Area
Fit Longer Axis Split and Maxrects. First, the three example packing approaches will be shown via
example packings in Figure 4.13.

Items sequenced by Genetic Algorithm Items sequenced by Genetic Algorithm

Items sequenced by Genetic Algorithm

o 500 1000 1500 2000 2500 3000

o

(a) Example Packing Alternative Setup with (b) Example Packing Guillotine Best Area Fit

Skyline Wastemap Heuristic Longer Axis Split Heuristic (c) Example Packing Maxrects Heuristic

Figure 4.13: Different Example Packing Heuristics for Alternative Setup

It is evident that the first two heuristics reflect the behaviour of layer building heuristics. Where
the Skyline heuristic builds vertical layers and the Guillotine heuristic builds the same type of layers
but rotated 90 degrees. The Maxrects heuristic uses a different approach, which is explained in Sec-
tion 2.1.3. Regarding only these example packings, the Maxrects algorithm seems to gain the highest
fill rate. To check this fact, the normal distribution of the three heuristics will be plotted against each
other in Figure 4.14.
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Distribution Results ULD Sequenced items for various Heuristics
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Figure 4.14: Distribution Fill Rate of Packings of ltems Sequenced by GA (ULD, Various Heuristics)

The graph confirms that Maxrects reaches the best performance (0.864 mean fill rate score). How-
ever, the Guillotine algorithm provides similar results (with 0.854 mean fill rate score). The results
also look identical regarding the distribution of the results, both being very consistent, with a standard
deviation of 0.00662 for the Guillotine algorithm and 0.00596 for the Maxrects algorithm. Overall, the
performance of the Guillotine algorithm is clearly lacking and provides very poor results with a mean
fill rate score of 0.669 with a wide standard deviation of 0.02153. In other tests, Maxrects will be the
algorithm used.

Next, the sequenced items by genetic algorithm will be tested against the non-sequenced items to
check if sequencing has impact on performance of the algorithm.

Distribution Results ULD Sequenced with GA, Short Side and Random Seqguence
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Figure 4.15: Distribution Fill Rate of Packings of Non-Sequenced Items and ltems Sequenced by GA (ULD, MaxRects
Heuristic)

Figure 4.15 shows that sequencing the items before packing has worked for the scenario with the
alternative setup. However, the performance advantages are not nearly as significant as they are in the
main setup. The reason for this is the size of the items relative to the container. In the main setup, the
items were relatively big. Which resulted in the phenomenon that different sets of items fit differently.
Also, if there is an extra item that fits in the main setup, the fill rate significantly improves since this
placed item takes a lot of space. In the alternative scenario, the items are small and when more items
are placed, it does not mean the fill rate significantly improves.

Another set of very simple sequencing methods are sorting approaches based on characteristics of
the items. In Table 4.4, a list of all sorting methods is shown.
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Sorting Methods

Area

Difference Width and Height
Short Side

Long Side

Perimeter
Ratio Width / Height

Table 4.4: Simple Sorting Methods

Here, Area refers to the items sequenced from largest to smallest area. Difference refers to the
items sequenced from the largest difference between the length of the sides to the smallest. Short
Side orders the items based on the smaller side descending and Long Side does the same, but with
the longer side of the item. Perimeter is the length of all sides combined, again, ordered from largest
to smallest. The next graph will present an overview of the results of all sorting methods to compare
the methods and choose the best performing one.
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Figure 4.16: Distribution Fill Rate of Packings of Items Sequenced by Simple Sequencing Methods (ULD, Maxrects Heuristic)

In Figure 4.16 above, the results can be seen of all sorting methods presented in Table 4.4. Re-
garding performance, the Difference sorting method is providing the worst results with a mean of 0.85.
However, the results of the items ordered in the Long Side approach are not much better. As expected,
the sorting methods Area and Perimeter provide very similar performance, since most items with a high
perimeter also require relatively more space, therefore the sequences are very similar and the accord-
ing fill rates are also similar. Sorting the items with descending Short Side results in the best packings
with a mean fill rate score of 0.88. Some of the stacking behaviour is visible in Figure 4.17, where the
Short Side sorted items provide much tighter packings than the Difference sorted item packings.
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Items sequenced by Genetic Algorithm
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(a) Example Packing, ltems Sorted by Difference between sides,
packed with Maxrects Heuristic

(b) Example Packing, Items Sorted by Short Side, packed with
Manxrects Heuristic

Figure 4.17: Example Packings Alternative Scenario

Lastly, to test if simple sorting methods can outperform our GA, we compare the results of the
packings of the items sorted randomly, the packing by the items sorted by Short Side and the packings
of the items sorted by the GA. The results can be seen in Figure 4.18.

Distribution Results ULD Sequenced versus Random Sequence
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Figure 4.18: Distribution Fill Rate of Packings of Non-Sequenced Items and ltems Sequenced by GA (ULD, Skyline Wastemap
Reduction Heuristic)

From Figure 4.18, two lessons are learned. The first is that sequencing does improve performance
by about 5% till 10%. The sequencing step leading to the highest results is the simple sorting method:
sort by short side. Sorting with the genetic algorithm presented in this thesis will also improve fill rate
by 5 percent to a mean of 0.85. The second lesson is the consistency regarding the performance of
the sequencing methods. Sequencing the items by short side improves the performance the most but
is less consistent than the GA, with standard deviations of 0.01606 and 0.00670 respectively. The
best sequencing method is thus dependent on the wish of the performance. If the wish is to maximise
predictability, the GA is the algorithm to choose. On the other hand, if mean performance is valued the
highest, the items can be sorted according to their short side in a descending manner.
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Some interesting patterns become clear when approaching the MCLP with a genetic algorithm in the
main scenario. To begin, it is clear to see the difference between high-percentage fill rate packing and
low-percentage fill rate packings. Also, most packings are similar to one of the next three packings
(Figure 5.1).
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(a) Example Packing, with Sequenced ltems (b) Example Packing, with Sequenced ltems (c) Example Packing, with Sequenced ltems
by Genetic Algorithm by Genetic Algorithm by Genetic Algorithm

Figure 5.1: Example Packings, with Sequenced ltems by Genetic Algorithm

In Figure 5.1 we see that packing ¢ works well, being able to place eight items. However, packing a
and b are worse performing packings and also occur often. This pattern of packing is fairly similar since
the objects are relatively comparable in size. In addition to this, a crucial factor is the comparatively big
size of the objects in comparison to the size of the container. Because the quantity of objects putin the
packings has such a significant influence on the fill rate, the last factor also has the effect of making the
performance similar to a discrete value. In this chapter, we will present a heuristic algorithm that will
strive to construct consistent high fill rate packings. In other words, the algorithm will aim to maximise
efficiency. The focus of this algorithm will be on the main cart loading scenario, since that is the focus
of this study, however, we will elaborate on the design for the alternative scenario in Section 5.2.

5.1. Design Heuristic Algorithm

In the succeeding packing from Figure 5.1, one of the layers consists of eight items. To begin, we
shall determine whether or not it is possible to coerce an algorithm into always packing in such a
subsequent packing structure. However, this did not work out as planned, since the rectangle structure
from Figure 5.1c only works for certain item sizes. To make the algorithm useful, different items sizes
must be fitted in a layer.

The next step is to think creatively about packaging that can handle eight items on a cart. Consid-
ering the average dimensions of the objects and the size of the container, there seems to be space for
precisely five upright items at the bottom of the container. When items are placed this way, there is
645 mm room above the first row of items on the bottom. This is where items can fit with length down.
The structure can be seen in Figure 5.2 below.

37
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Figure 5.2: Packing plan

The next stage was to determine whether or not such packaging consistently fit in the container.
Below some examples that show the packings fit (see Figure 5.3).

Items sequenced by Heuristic Algorithm, layer Items sequenced by Heuristic Algorithm, layer Iltems sequenced by Heuristic Algorithm, layer
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Figure 5.3: Example Packing in Preferred Packing Structure

At this point, a heuristic can be made to sequence and rotate the items correctly for the Skyline
Wastemap Reduction Heuristic algorithm to pack the correct structure. The steps done by this algorithm
will be explained in the next subsections.

5.1.1. Initialisation Heuristic Algorithm

First, the items must be created with a similar algorithm used in the genetic algorithm from Section 4.1.1.
Also, within this step, the container dimensions are set. From there, two types of subsolutions are
created. As indicated in the section above, the first row of items needed to be packed is the five items
placed on their short side. So for this step, solution are created of random sets of five items, rotated
90 degrees. Meanwhile, there are also three items selected from the item list which will not be rotated.
These solutions will be evaluated just like a genetic algorithm.

5.1.2. Evaluation Heuristic Algorithm

The evaluation step is similar to the genetic algorithm. However, the score does not consist of the
fill rate of the packing. The score for the first row is majorly determined by the container width minus
the sum of all items in the x direction. The width of the red part in Figure 5.4 indicates the lost space.
However, the inverse is taken, since the highest score will be considered good.

Weontainer — § Wn,
n

€solution = 1 — (51)

Weontainer
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Figure 5.4: Score Calculation of Down Layer, the width of the container minus the width of the sum of the items, indicated in red

For the second row, the longest three items will be selected to be placed on top. Therefore, a similar
evaluation score is made but with only three items in the length direction instead (see Figure 5.5).
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Figure 5.5: Score Calculation of Upper Layer, the width of the container minus the width of the sum of the items, indicated in
red

5.1.3. Selection Heuristic Algorithm

In this step, solutions with the highest score will be selected. The first five items that are rotated will in
that shape be removed from the items list. The three items selected for the upper row are also removed
from the item list.

5.1.4. Sequencing Heuristic Algorithm

The selected items are then given one by one to a heuristic Skyline Wastemap Reduction algorithm,
which packs the items according to the approach mentioned at the beginning of this section. It is impor-
tant to point out that the packing algorithm cannot rotate the items to its preference. This is because the
rotation of the pieces has been predetermined by the sequencing algorithm. The sequencing algorithm
described in pseudocode is presented in Algorithm 1.

5.2. Design Heuristic Algorithm for Alternative Scenario

The heuristic algorithm is completely tailored for the main baggage loading setup, since this scenario
is the main use of this thesis. However, the algorithm can be slightly modified to sequence for the
alternative scenario.

In this case, the mean of width of the items is 285 mm, which means that probably at least nine
items fit in one row. The other difference is that there are five rows of items made instead of of five or
three.

5.3. Results Heuristic Algorithm
When the heuristic algorithm runs, it will typically take less than one second to run and come up with a
feasible solution. The algorithm does not work in generations as the GA did, so the first solution is the
final solution

In the next two sections, we will elaborate in detail on the results of the main, and the alternative
setup respectively.



5.3. Results Heuristic Algorithm 40

Algorithm 1 Heuristic Sequencing Algorithm

while n < ny4yers do
while m < m,.,,s do
Sample 5 items (i,),n =1,..,5 > For the down layer
i (width) = i, (height), i, (height) = i, (width)

Weontainer — E Wnp,
n

Em = 1 o ) Weontainer
Score = [in, em

in < Max Score
Output: jdovn
while m < m,.,,s do
Sample 3 items (i,),n =1,..,5 > For the upper layer

Weontainer — Wn,

n

em=1-— Weontainer
Score = [in, em

in ¢ Max Score

Output: P

5.3.1. Results Heuristic Algorithm Main Setup

It was anticipated that the results of the heuristic algorithm would provide highly consistent packings
regarding the fill rate. This was due to the fact that the same packing structure could be packed in
each container. Below in Figure 5.6 some examples show that the identical packing structure works
for different items.

Items sequenced by Heuristic Algorithm, layer Items sequenced by Heuristic Algorithm, layer Iltems sequenced by Heuristic Algorithm, layer
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Figure 5.6: Example Packing in Preferred Packing Structure

The expectation is that this packing structure can always be made. However, when a container
is not packed with the eight items, problems accumulate to other layers. A packing error can lead to
one of the items not being packed according to plan. For instance, when only seven items are packed
and one of the top items is missing, as in Figure 5.7. This results in the fact that the non-rotated item
selected for the top row of the packing will be packed first at the next layer. This means that the plan
does not match with the packing, since the plan is to begin the packing of the layer with five rotated
items. Instead, the first item is now a non-rotated item which means that the packing structure cannot
be maintained in this layer, leading to less than eight items being packed. The error accumulates,
because now there will be more non-rotated items not packed in the according layer. They have to be
packed in the new layer, again making it impossible to stack according to the packing plan.
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(a) First layer, error occurs (b) Second layer, error accumulates

Figure 5.7: Accumulating Error

The significantly lacking robustness is one of the drawbacks of the specifically designed heuristic
algorithm.

Although the expectation was that the algorithm could find great packings consistently, to check

this hypothesis we will need to look into the distribution of the fill rate results (Figure 5.8), running the
algorithm various times.
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Figure 5.8: Distribution Fill Rate Sequenced with Heuristic and Non-Sequenced Items Methods

The distribution of the result regarding fill rate show that sequencing in this scenario in most cases
does help very consistently improving the fill rate. Here, the mean fill rate with the sequenced item
packings is 0.87, where the non-sequenced item packings only reach a mean fill rate of 0.75. This indi-
cates that the heuristic for sequencing has the potential to enhance the fill rate in this particular case by
an average of 12%, which is a substantial gain. Also, the consistency proves to be as expected. Apart
from specific outliers, the consistency is high. Outliers included, the standard deviation is 0.01113. As
already explained in Section 4.3, the non-sequenced item packings have a much larger standard devi-
ation, in this case it has the value of 0.02545. The outliers in the results of the heuristically sequenced
items are likely the result of the accumulating problems described above.

The heuristic sequencing algorithm presented in this thesis is made for the Skyline Wastemap Re-
duction algorithm, other algorithms lead to worse packings like Figure 5.9.
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Figure 5.9: Example Packing Heuristic Sequenced Items provided to Maxrects algorithm

Distribution Results Cart Sequenced with Heurtic and Non-Sequenced Items with MaxRects Algorithm
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Figure 5.10: Distribution Fill Rate of Packings of Non-Sequenced Items and ltems Sequenced by Heuristic (Cart, Skyline
Wastemap Reduction Heuristic)

The distribution shown in Figure 5.10 also confirm that other heuristics such as Maxrects paired
with the heuristic sequencer do not acquire the same results.

In conclusion, this heuristic sequencing algorithm that is presented in this thesis is specifically ad-
justed to one case. In this case, most of the time, the sequencer works very well, improving the per-
formance of the packing algorithm with 12% extra fill rate. The drawback of the algorithm is that it is
tailor-made for one case and that it is not robust to errors since the error accumulates over other con-
tainers, resulting in outliers in the results. However, the non-robust character is not a problem when
the algorithm is used in the baggage loading context, where the arriving items’ dimensions are varying
within a domain, and the container sizes are the same.

5.3.2. Results Heuristic Algorithm Alternative Setup

As indicated earlier in this chapter, the algorithm is made for the main scenario. This is also expected
to see in the results when using the heuristic as sequencer in the alternative scenario. Below, a few
examples are shown to see what packings by the heuristic look like (see Figure 5.11).
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Figure 5.11: Example Packing Alternative Setup

It is plain to see that the method of layer building does not function as well as it does in the main
setup. This is due to the fact that the dimensions of the items are spread out more evenly. The poor
performance is also made apparent in the Figure 5.12, which shows that the sequencing component
only modestly improves fill rate. It is essential to note the results demonstrate the outcome of packings

utilising the Skyline Wastemap Reduction packing method.
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Figure 5.12: Distribution Fill Rate of Packings of Non-Sequenced ltems and ltems Sequenced by Heuristic (ULD, Skyline
Wastemap Reduction Heuristic)

However, as discovered in Section 4.3, the Maxrects algorithm does outperform the Skyline Wastemap
Reduction significantly. Therefore, the results are also benchmarked to the results of non-sequenced
items using a Maxrects packing algorithm in Figure 5.13.

Figure 5.13 shows that, the sequenced items perform similarly to the random items packed by the
Maxrects algorithm. Therefore, one can conclude that the heuristic sequencing algorithm does not
work in the alternative scenario.
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Distribution Results ULD Sequenced with Heurtic and Non-Sequenced [tems with Packed by Various Heurisicts
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Figure 5.13: Distribution Fill Rate of Packings of Non-Sequenced ltems and Items Sequenced by Heuristic and ltems Packed
with MaxRects Packing Algorithm (ULD, Skyline Wastemap Reduction Heuristic and Maxrects)



Comparing Results & Setup Proposal

This chapter will consist of two sections. The first section, Section 6.1, will compare all the packing re-
sults regarding the main scenario and setup. In the latter section, Section 6.2, the alternative scenario’s
results are compared.

6.1. Comparing Results of Main Scenario

The primary scenario is elaborately described in Section 3.1.2. Here, we showed that in the main
scenario, the items are strongly heterogeneous. In this section, we will discuss and compare all se-
quencing methods for this scenario. First, several packing examples are provided below in Figure 6.1
to illustrate the packing features after sequencing using different approaches.

Items sequenced by Heuristic Algorithm, layer

Packing withouth Sequencing
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0

(b) Example Packing Sequenced Items by Heuristic
(a) Example Random Packing Algorithm

Items sequenced by Genetic Algorithm

1z00
looo

0

(c) Example Packing Sequenced ltems by Genetic (d) Example Packing Sequenced Items by Descending
Algorithm Area, Used by Vanderlande Industries

Figure 6.1: Example Packings with Various Sequencing Methods in Main Scenario

It is obvious from the above packing example that the majority of sequencing techniques combined
with the Skyline Wastemap Heuristic packing algorithm starts packing with flat-positioned items. Only
the heuristic sequencing algorithm does otherwise, and forcefully rotates the first 5 items to pack. Ad-
ditionally, the heuristically sequenced items and the genetically sequenced items are the only sample
packings that place eight items, which results in improved performance in these layers. This is be-
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cause the genetic algorithm and the heuristic both sequence the items in order to make more efficient
packings.

Lastly, we notice that in contrast to the randomly sequenced item packings and packings with items
sequenced by the genetic algorithm, the items sequenced by descending area, only pack the largest
items. This results in the fact that the space next to the three first flat positioned items, is too small for
another rotated item. Also, the items that must be placed next, in this case, are also relatively large,
resulting in a even lower chance of the item being able to be packed in the right corner. The results
of the algorithms running 300 times are shown in Figure 6.2, in order to provide a complete overview
of the findings and to demonstrate how the algorithms function across many runs. The accompanying
statistics are summarized in Table 6.1.
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Figure 6.2: Results Main Scenario with Various Sequencing Methods

Mean | Stdd
GA 0.84 | 0.0156
Non-Sequenced | 0.76 | 0.0375

Heuristic
Area 0.71 0.0303

Table 6.1: Main Results

Maijor variability can be seen between the sequencing methods and are visible in Figure 6.2 and
Table 6.1. As explained in Chapter 3, Vanderlande Industries currently applies the Descending Area
method, where all items are sequenced according to area in descending order. The performance in
comparison with the fill rate of packings with items in a random sequence, according to the data pre-
sented in this thesis, is worse with a mean fill rate of 0.71. Also, the standard deviation of 0.0303 shows
how inconsistently this sequencing algorithm manages to reach this fill rate. In earlier sections, Sec-
tion 4.3 and Section 5.3, we already showed the performance of the designed sequencing methods.
Figure 6.2 confirms the usefulness of both methods, where the heuristic algorithm works the best with
a mean of 0.87. Also, the consistency could improve majorly by adding a heuristic sequencer to the
MCLP pipeline, since the standard deviation can improve from 0.0303 (descending area) to 0.00347.

For the other container type, the ULD, we did not run our heuristic algorithm, but we will compare
the results of the genetic algorithm, with the items sorted by area and random packings. Below, some
example packings for running the different sequencing strategies are shown (Figure 6.3).
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Figure 6.3: Example Packings Baggage ULD case

From the images of Figure 6.3, it is evident that the genetic algorithm reaches a much higher fill rate
score, since it packs 4 items. The first two packings are very similar, the only difference is the overall
size of the items being packed. Here, the example packing with the items sequenced by area packs
larger items, resulting in a higher fill rate. To further look into the performance of these strategies, a
distribution of the results will be shown in Figure 6.4.
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Figure 6.4: Distribution Results for Various Sequencing Methods in Baggage Loading Case with ULD container

Mean | Stdd

GA
Non-Sequenced | 0.71 0.0361
Area 0.72 | 0.0364

The graph above, confirms the characteristics visible in Figure 6.3. The GA outperforms the other
simple methods significantly, with a mean fill rate score of 0.80 versus a mean fill rate score of 0.71
with randomly sequenced items. Also, the consistency is better, with a standard deviation of 0.0147 for
the GA, and 0.0364 for the non-sequenced items. The items sequenced by descending area create
overall slightly better packings with 1% performance difference versus the randomly sequenced items.



6.2. Comparing Results of Alternative Scenario 48

This is the case since the same packing structures are made, but the items are slightly larger, since the
largest items are packed.

6.2. Comparing Results of Alternative Scenario

Chapter 3 also described the alternative scenario involving the alternative setup where parcel is stacked
in ULDs. All of the several sequencing techniques will be explored and compared in this section. Sev-
eral packing examples are provided below (Figure 6.5) to illustrate the features of the packings that
emerge from various sequencing methods.

Packing withouth Sequencing

Items sequenced by Heuristic Algorithm, layer Itemns sequenced by Genetic Algorithm

o 500 1000 1500 2000 2500 3000 1000 1500 2000 500 3000

Figure 6.5: Example Packings with Various Sequencing Methods in Alternative Scenario

From the packing examples, a few lessons can be learned. When packing the items sequenced by
area, one can see a variation in shapes, but similar in area packed after each other. This means that
the different shapes do not match and do not stack well together. On the contrary, sorting the items
along one side descending leads to a sequence where similar items are sequenced next to each other.
The result is a much more filled container, as can be seen in Figure 6.5. The heuristic sequencer places
the items row per row. It seems that the items after the first row do not fit properly, resulting in a packing
similar to the random packing.
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Distribution Results Various Sequencing Methods Main Setup
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Figure 6.6: Example Packing from Genetic Algorithm

Mean | Stdd
GA
Non-Sequenced | 0.80 0.0276
Heuristic 0.80 0.0308
Short Side 0.0175
Area 0.84 | 0.0326

The distribution results show some interesting insights. As already hinted in the example packings,
the random packing actually provided better performance than the heuristically sequenced items. Or-
dering the items in descending area, seems to improve the results, however, only a 4% increase of fill
rate is made on average. The best sequencing methods are the sequencing with descending short side.
As previously said, one explanation for this might be because comparable items pack together closely,
producing excellent packings. The best performing sequencer is the genetic algorithm, which proves
to be robust to this alternative scenario, with a mean fill rate of 0.87 and a small standard deviation of
0.0092.

6.3. New Setup Proposal

In this section, we propose a new approach to the loading of bags or parcel into containers. Again, the
section is split between the main scenario (Section 6.3.1) and the alternative scenario (Section 6.3.2),
since they acquire different design decisions.

6.3.1. New Setup for Main Scenario
In this scenario, we would like to propose two option for Vanderlande Industries to improve their bag
loading setup’s performance.

Main: Option 1

As described in Chapter 3, the bag load setup requires to pull items from the EBS. In the current
scenario, the robot can not load items that come directly from check-in. In this way, the robot as able to
take more time loading the containers, since the robot takes more time than manual loading. Making
use of this system, as option 1, we propose to let the heuristic sequencer calculate a packing plan, per
layer, before the items are retrieved from the EBS. If the plan succeeds and over 83% of the container
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can be filled with the 8 proposed items in each layer, the process will proceed to the next step. If
less than the required fill rate is reached, the genetic algorithm will be used to try to plan for better
packings which reach at least the 83% requirement. Then, the items will be sent to the robot in the
correct sequence. Also, the information must be sent to the robot telling that the first 5 items must be
placed rotated 90 degrees. This would be to make sure that the packing plan succeeds. An advantage
of this setup is that it does not need extra hardware, while this proposed setup can gain up to 12% fill
rate. A downside is that the items often do not arrive at the robot in the order they were sent from the
EBS. This occurs since the transport lines from the EBS to the robot are highly redundant, and multiple
routes can be taken. The Vertisorter in the end of the transport lines to the robot can be of help for this
problem, since it allows switching up different items when the arrival. Option 2 eliminates this problem.

Main: Option 2

With this option, we would like to propose an extra component in the logistical system for bag loading:
the exact sequencer. This component will retrieve the items the same way as option 1, but it can reorder
the items when the arrival sequence does not match the planned sequence. A major downside of this
option, is that it is costly, since a new component has to be made for resequencing the items. On the
other hand, it allows for impurities in the arrival sequence of the items. Also, it allows items to be sent
directly from the check-in lines. It remains for further investigation if the option is cost worthy.

6.3.2. New Setup for Alternative Scenario

Since the current alternative setup does not have an EBS where all the parcel can be stored, for im-
provement of the performance of the packings, we would like to propose the use of a sequencing
element as well. The same as in option 2 above, it will be an element that can buffer certain items.
Within this buffer, the genetic sequencing algorithm designed in this thesis will be used to propose a
sequence in which the items have to arrive at the robot. The element then will send the items in the
correct sequence for the robot to be packed. However, before this system will be used, the algorithm
needs to be tested more extensively. Also, the packing approach of the robot packer must be known
in order to work properly.



Conclusion, Discussion and Future Work

In this chapter, firstly, we will conclude the research done in this thesis in Section 7.1. Afterwards, we
are going to discuss the drawbacks of the methods used in Section 7.2. Finally, there will be elaborated
on future work in Section 7.3 that can be done to further develop sequencing strategies for the MCLP.

7.1. Conclusion

In this thesis, we conducted research into sequencing items in various ways for the MLCP in a bag and
parcel load context. In this report, we attempted to find an answer to the following research question:

How does sequencing items improve fill rate of simple container loading algorithms in a
baggage and parcel loading context?

Firstly, we looked into the literature to get a grip of the academic landscape regarding the MCLP. Also,
there has been looked into state-of-the-art methods. To see the problem in its context, a visit was made
to Schiphol to see the physical robot which is solving the MCLP as a pilot project for Schiphol. From
this research, we concluded that there are various methods for solving the MCLP, however, sequencing
methods are mostly kept simple. Also, in practice, baggage items are placed in the order where size
and weight are decreasing. The knowledge gap found was that sequencing for the MCLP is not done,
especially not for in an industrial context. This knowledge suits the desire for Vanderlande Industries
to research the use of sequencing methods on their product in the baggage and parcel case.

In the chapters Chapter 4 and Chapter 5 we presented two kinds of algorithms to provide a calcu-
lated sequence. Here, the heuristic algorithm makes use of a set of rules and the genetic algorithm
makes use of multiple generations to optimise the sequence. The resulting packings show to be differ-
ent, varying the sequencing approach. Some of the example packings for the main baggage scenario
are shown in Figure 6.1. For the main scenario, according to the simulation made, the heuristic se-
quencing method proves to generate that best results regarding the fill rate of the layers. On average,
the performance of the packings can with the heuristic sequencer be increased by average with 11 %
in comparison with packings generated with a random item sequence. Also, the consistency is very
high since it always manages to position eight items in one layer of the container. As mentioned earlier
in this section, Vanderlande Industries sequences the items by descending size and weight. However,
results in this study point out that these methods performs worse than random sequenced items, with a
mean fill rate of 0.71. Although the heuristic worked well in this scenario, it is lacking robustness, since
it performs the worst in the alternative scenario.

The alternative scenario shows less obvious results, however, simple techniques like sorting the
items from descending short side show to work well. The results using this method are: an increase
of 7% in comparison to random item sequence packings. We assume the simple sorting approach
worked well since it grouped all similar shaped objects, resulting in tight packings. Slightly better results
were generated by the genetic algorithm, producing on average similar results (0.87) but significantly
more consistent packings indicated with a lower standard deviation of 0.00917 (GA) versus a standard
deviation of (0.01747). As stated earlier, the heuristic produced the worst results. This proves that
sequencing with a heuristic works, but it is not a robust method for any scenario. On the contrary, the
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genetic algorithm produces a bit less performing results, but it can adapt to different scenarios and
setups.

To finalise, sequencing helps improve fill rate for simple container loading problems. In the main
setup, the baggage case, the fill rate can be improved with 12% and in the alternative scenario or parcel
case, the fill rate can be improved with 7%. This improved sequence is made with a heuristic algorithm
for the baggage case and a genetic algorithm in the parcel case. We think sequencing is working the
best in cases where the item dimensions are relatively large compared to the container that needs to
be packed. This results in the fact that great sequences can lead to more items to be packed, resulting
in significantly higher fill rates.

Regarding the robustness of the algorithms, the hypothesis stated in Chapter 1 is met, since the
more general approach of the genetic algorithm results in a flexible algorithm which can be applied to
different cases. On the other hand, we expected a tailored algorithm to work only in a specific case.
This is also reinforced in this thesis with the great results of the heuristic algorithm in one case.

With this conclusion, we filled the knowledge gap regarding the sequencing part of simple packing
methods, given light into what sequencing is able to do in two industrial scenarios.

7.2. Discussion

Although hard conclusions may seem to be taken from the results, there were some critical assumptions
made in the design of the algorithm and for testing the algorithm in simulation. Firstly, the assumption
was made that all items were cuboid. This was done to make it able for existing heuristics to pack
the items. As a result, the packing became more efficient and fitting. In real life packings of the main
scenario, the items are not cuboids like illustrated in Figure 4.2. As explained in Chapter 3, the outer
edges of typical baggage pieces are taken to simulate the baggage items. This assumption results in
a mismatch of the fill rate of actual packings and simulated packings. This must be taken into account
when looking into the results. If the actual shape is taken account into the simulation, it will also have
influence on stability characteristics of the stack. Since the items in the layer on top of the other layer
are less supported in real life than when simulated as rigid cuboids. An example is visible in research
by (Shengming et al., 2020). Figure 7.1 shows the difference between simulated and real life packings.
Also, in Chapter 3 explains that baggage pieces deform depending on the material of the luggage.
This is also something that is not incorporated in the stacking algorithm since we assumed that for
each layer, the layer on top will be supported with a flat layer underneath since the layer underneath
deforms until itis a flat layer. We are not sure till what extent this would happen, it was assumed to make
the calculations and stacking easier. This ensured that we could only simulate with two-dimensional
MCLPs, which made the overview and structure easier. Although the baggage case seemed to work
in layers, for the parcel case this assumption is not supported.

(a) Simulated Packing (b) Real Life Packing

Figure 7.1: Simulated Packing and Real Life Packing by (Shengming et al., 2020)

A second discussion point is that the item data was very limited. For the baggage case, we sampled
the dimensions of possible baggage items from a three-dimensional normal distribution taken from
actual data. However, in practice, the baggage did look very similar, even more similar than in real life.
This limits representativeness of the actual packings, since items can be very different. In the parcel
case, we sampled from existing parcel items. Although, the amount of items was very limited and in
the future, more items needed to be added.
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Adding up, sequencing must be done given a certain packing algorithm. In this thesis, we made
the assumption that in most cases, the packing algorithm is a Skyline Wastemap Reduction algorithm.
This was assumed since it seemed to behave like a horizontal layer building heuristic, which was likely
to be used in the Schiphol pilot project. For the alternative scenario, the packing algorithm was also
compared to a Maxrects algorithm, showing better results. Before using the sequencing algorithms in
other scenarios than the bag loading robot, one would have to make sure to know the actual packing
algorithm. If the algorithm is unknown, one must pick an algorithm which makes packings a similar
approach.

Moreover, in this thesis, we assumed that in sequencing of items is deterministic. This means that
when a specific order of items is sent to the robot, the items will arrive in this order. In practice, the
system is not deterministic and some items get delayed in the transportation system since there are
multiple routes that can be taken in the maze of conveyors at for example Schiphol. This phenomenon
will result in the fact that planned packings do not always match with the actual packings, they are likely
to be less efficient.

A last, but major discussion point is the genetic algorithm. Since there is no crossover action used
in the genetic algorithm presented in this thesis, it does not actually converge to an optimal solution.
This affects the result significantly and only when such a step is incorporated, the true potential can be
seen of this algorithm. However, it would also extend the running time of the algorithm significantly.

7.3. Future Work

An opportunity to develop the sequencing method further is to add an action in one of the algorithms.
As already indicated in Section 7.2, the crossover action is not incorporated in the current genetic
algorithm. In (Wu et al., 2010), the problem of non-feasible children solutions from parents also occurs.
However, they use two type of repairing schemes to fix the children solution. So-called Sequential
Repair aims to repair the solutions to take the missing items, and replacing the items which occur twice
in the sequence with it. The other repair method they present is the random repair action. Here, a
random doubled item is taken and replaced by a random item which is not in the sequence, repairing
the solution. The crossover action and this repairing action can provide the algorithm with a better
solution, since the combination of solution can also be used in that case.

Also, more research can be done on the predictability of the system. As described in Section 7.2,
the planning does most of the time not match up with actual packing. Since in the baggage case, the
fill rate is highly dependent on the sequence, we would like to point out that more research needs to be
done on this aspect. Furthermore, when packings are made, sometimes errors are made by the robot.
In this case, the operator has to step in and has to fix the issues. By doing this, he or she is likely to
adjust the packing. This also has influence on the performance. In future work, one could design a
sequencer that is robust in these kind of situations.

A third point can be to add stability to the simulation. In that case, a top layer can only lean on a
bottom layer on the places the bottom layer is filled. This would limit the placement of all items not on
the first layer of the container.

As a final point of future work, we would like to test the algorithms in three-dimensional simulations
to know how sequencing affects the results of three-dimensional packings.
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