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Abstract
In 2021, noise pollution monitoring will be mandatory in the Netherlands, which requires data on traffic
that can be re-used for air quality estimation models. One of the important input parameters for the lat-
ter is the street type, which is required by the dilution parameterisation used within the air quality model.

The goal of this project is to show whether automatic street classification1 for air quality estimation is
feasible and reliable, considering the geo-spatial data currently available in The Netherlands. The mo-
tivation for this project originates from the common data used in noise and air quality monitoring tools
by the Dutch National Institute for Public Health and the Environment, (RIVM).

Currently, street classification is performed manually by many municipalities. The larger municipalities
are legally obliged to monitor air quality levels, which makes use of the street types. Automating the
process by using existing datasets can save a lot of time, costs, and resources, while providing stan-
dardised results in comparison to manual classification. In addition, our method is extendable to the
whole of the Netherlands. Consequently, our method can have a large societal impact, since it allows
the provision of air quality estimations for all municipalities; even those that are not yet required to do
so. To our knowledge, no similar work has been conducted in this field, which made it even a bigger
challenge.

The implementation of the automatic classification algorithm, which is thoroughly explained in this re-
port, shows very promising results. We first tested the approaches in a small area, theWeesperstraat in
Amsterdam, where we have success rates from 76.7% to 83.3% for the different classification methods
when compared to the NSL classification. After evaluating the performance of each of the methods,
the optimal approach has been tested on larger areas where visual inspection shows a priori promising
results as well.

In addition to the automatic classification algorithm, air quality measurements with new Flow sensors
from Plume Labs were performed in the city of Amsterdam. The goal was to investigate whether differ-
ent street types can be identified through the use of small air quality sensors. The limitedmeasurements
did not provide distinct patterns for the different street types, and therefore identification based on pol-
lutant concentrations was not possible within the project.

We hope that the results of this project will motivate public bodies and agencies in the Netherlands to
invest in automated workflows using currently available and high accuracy geo-spatial data. This can
potentially improve their efficiency, while creating a more standardised and scalable framework.

1Based on the ‘Standaard Reken Methode - 1’ (SRM-1) air quality estimation model.
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1
Introduction

By the first of January 2021 the “Dutch Environmental Legislation Act” [26] will be enforced, making
it mandatory for all Dutch municipalities to report, among others, their noise sources. To provide the
noise emission data, the municipalities will have to collect data such as street traffic intensities, street
speed limits, etc.

Nowadays, it has become mandatory for some municipalities such as Amsterdam to report on their
air quality levels. Consequently, the Ministry of Infrastructure and Water Management prescribes the
method for collecting this information, and the bigger municipalities then collect the required informa-
tion themselves. This includes categorising street types based on a manual classification method. The
re-use of already collected data is becoming more and more crucial for public and private agencies;
the National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en
Milieu, RIVM) is no exception to this.

The Standaard Reken Methode - 1 (SRM-1) model designed by RIVM to model air pollution [30], makes
use of similar data to the noise pollution model. SRM-1 also requires street types, which are not
necessary in the noise model. The street type is derived from the urban canyon layout, based on the
street width and building heights.
Based on statements from our client (RIVM) and our understanding of the current situation, there are
two goals set regarding air quality monitoring. Apart from creating a tool to model air quality levels, the
side goal is to make information on street types, traffic intensity, traffic speed etc. publicly available
and transparent to all citizens.

Currently, the legislation on European and National level is not so strict regarding the maximum al-
lowed values of pollutant concentrations and penalising policies [22, 25], unless extreme violation of
terms occurs [7, 8]. On the other hand, guidelines of theWorld Health Organisation (WHO) recommend
lower pollutant concentrations to benefit human’s health [21]. If these guidelines would be translated
into National legislation, a broader part of Netherlands would potentially be eligible for monitoring. In
this sense, air quality data could prove to be of crucial importance from a municipality up to a national
level.

Considering that the trend in air quality monitoring is moving towards a more rigorous framework, this
venture can only be seen positively. It is future-proofing while setting the foundations for official proce-
dures to be built upon, if and when the situation changes.

Problem Statement
In the case of Amsterdam, the municipality collaborates in the ‘Nationaal Samenwerkingsprogramma
Luchtkwaliteit’ (NSL) [4], which makes the municipality the responsible party to conduct the air pollution
monitoring. After verbal discussion with our client, it came to our knowledge that the street type classi-
fication is carried out manually by using Google’s street view service, and by people going into the field
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2 Introduction

to assess the streets. The required values, i.e. street width and building heights, are rough estimations
based on visual information. Digital tools, like Geographic Information Systems (GIS), are also used.
All these different methods are performed manually; they can introduce a lot of human errors and are
time and resource intensive. This negatively affects the classification accuracy.

This method induces a lot of human error in these values (e.g. visually estimating the height of buildings
and their distances to street), affecting the classification accuracy, while it is extremely consuming in
both time and resources.

Automating the classification procedure has plenty of benefits. By designing and implementing an al-
gorithm using up-to-date geo-datasets, street types could be identified automatically in a fraction of the
initial time. Moreover, any kind of human error would be eliminated. From a geometrical point of view
the accuracy would also be significantly higher. Finally, the biggest advantage of automating is the
scalability of the algorithm. Possessing all the required data covering Netherlands, it would be a matter
of choice to either focus on an individual municipality, or scale up to the whole country.

So, the research question is: “Would it be feasible to automate the whole process of street classification
up to the scale of a municipality like Amsterdam and still have valid results?”

It should be clarified that the project goal is to automate the street classification process. This means
automating the extraction of one and only one input parameter of the air pollution model. We are not
estimating the model values themselves.

Air quality measurements were also carried out with handheld air quality measurement sensors, pur-
chased specifically for this project. The purpose of this venture is both to see how well the sensors
perform, and to identify patterns of pollutant concentrations for the different street types.

This generated the second research question: “Would it be possible to identify the street type based
on the sensor measurements?”

The aim of this report is to provide the reader with an insightful understanding of all the aspects that
were tackled during the research procedure. This includes problems that could not be resolved or were
solved partially. It will also present the results of the research, followed by a final conclusion and elab-
orate on future work and suggested improvements.

More precisely, in the next chapter the WHO guidelines and the European Legislation on air quality
will be presented, alongside with the framework implemented by RIVM for estimating the air quality.
Chapter 3 will focus on the geo-datasets that are used as input, and on the pre-processing that was
carried out on these datasets. Chapter 4 will cover an in depth explanation about the core task of
this project, the street classification procedure including all the technical details needed to grasp how
the algorithm operates. Chapter 5 discusses the air quality measurements campaign that we set up,
measurements locations and give details on Plume Lab Sensors. Chapter 6 will present the results of
the algorithm, together with an extensive evaluation of the output that was produced by implementing
different alternatives of our algorithm (e.g. different classification method and input parameters). In
the final chapter we will present our conclusions and discuss the limitations and shortcomings of the
algorithm, and propose methods on how this algorithm can be further improved.
At the end of this report we hope that the reader will get a clear picture of the project, understanding
the underlying concepts and the small details that affected our decision making process.

Lastly, the amount of time invested on this project was 10 weeks in total. This includes the brainstorming
process, which was required because according to our knowledge, nothing similar has been attempted
before.



2
Theoretical framework

Air pollution has been a major political issue in Europe and worldwide since the 1970s [6]. According
to the World Health Organisation (WHO), it represents the main environmental risk in Europe, affecting
mainly people who live in urban areas [19]. In this chapter, we describe the air pollution sources, the
main air pollutants and their effects on humans’ health. Furthermore, we introduce the instruments and
legislative framework that limit their emissions, enforcing better air quality. Lastly, Dutch policies and
the Dutch model used to calculate air quality, SRM-1 (‘Standaard Reken Methode - 1’), are discussed.

2.1. Air pollution
Air quality depends on pollution emissions and different external factors. Air pollution emissions are
generated from different natural and man-made sources; these are classified as primary emissions
if substances are directly released in the atmosphere, and secondary emissions if they derive from
chemical reaction with other substances [1].

Figure 2.1: Air pollution - Health effects. Source: European Environmental Agency.

Particle Matter (PM) and Nitrogen Dioxide (NO2) represent the primary air pollutants in urban areas;
around 40% of their emissions is caused by road transport [1]. PM consists of solid and liquid sub-
stances, such as pollen and Black Carbon. It is classified on its dimension in PM2.5 (fine particles with
a diameter up to 2.5𝜇m) and PM10 (coarse particles with a diameter up to 10𝜇m) [19]. In particular,
PM2.5 derives mainly from combustion, while PM10 derives from mechanical processes. Particle Matter
negatively impacts the nervous system, can lead to breathing problems and cardiovascular diseases.
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4 Theoretical framework

NOx generates from combustion sources, and affects the liver, spleen and blood [2, 3]. Some of these
health effects are shown in Figure 2.1.

Other factors that influence air quality are the proximity to the source and the altitude at which pollutants
are released, topography and geographical location, interactions between pollutants and local weather
conditions [19]. In particular, weather conditions affect air pollution in numerous ways. Winds can
transport particles from the source to the nearby areas, determining higher concentrations in zones far
from the emission source. Contrarily, higher concentrations occur in the proximity of the source on wind
still days. Additionally, cold temperatures prevent particles from reaching the higher atmosphere, thus
elevated concentrations occur usually in the winter. However, NO2 reacts with Ozone in the sunlight,
causing upraised concentrations in spring and summer [14].

2.2. WHO guidelines and European legislation
The WHO guidelines and the European air quality directives are the main instruments fostering air
quality. The WHO is a special agency of the United Nations, whose aim is to promote and coordinate
international health [20]. In 2005, WHO published the “Air quality guidelines for particulate matter,
ozone, nitrogen dioxide and sulfur dioxide”. The document aims to offer guidance and to support deci-
sion making to limit health impacts of air pollution; the implementation of national air quality standards
is then the responsibility of each country. The text focuses on four main pollutants (PM, NO, O, SO);
for each, a threshold concentration value and a rationale for decisions are provided.

In Europe, the principal instruments fostering air quality are a series of Directives that set pollutants’
threshold values which must be respected by the Member States. The “2008/50/EC Directive on Ambi-
ent Air Quality and Cleaner Air for Europe” and “2004/107/EC Directive on heavy metals and polycyclic
aromatic hydrocarbons in ambient air” constitute the current legislative framework. Each Member State
(MS) should divide its territory into zones and agglomerations; for each, air pollution levels should be
measured and modelled empirically. Each MS should then report findings to the European Commis-
sion; additionally, each MS should develop a plan to limit pollution emissions where threshold values
are exceeded [6].

Figure 2.2 illustrates the limit values set by the European Union and WHO for PM2.5, PM10, NO2 and
O3. Limit values are set for an hourly and annual period; according to WHO, annual values should have
precedence toward hourly values, because occasional peaks have a smaller influence on the overall
value. However, it is important to respect hourly limits [21]. Furthermore, Figure 2.2 shows that WHO
guidelines are more restrictive than European ones.

Figure 2.2: Air pollutants threshold values of the EU legislation and WHO guidelines. Source: European Environmental Agency.
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2.3. Dutch policy
In the Netherlands, air quality standards are set in the Environmental Management Act, in accordance
with European directives; in particular, limit values for PM and NO are specified in “Title 5.2: air quality
requirements”. Furthermore, specific elements of the law are defined in Decrees and Ministerial Reg-
ulations [11].

Administrative units and governments are responsible for measuring and improving air quality. To do
so, they collaborate in the The National Air Quality Cooperation Program (NSL). The program defines
actions to meet European standards, such as monitoring and assessing the impact of spatial develop-
ment, ensuring citizens’ health [27]. Each year, local governments publish traffic and environmental
data and the progress of measurements and projects, among others. This information is then used to
compute air quality.

RIVM is the responsible body for air quality calculations. These are performed using the “Rekentool”
(calculation tool), commissioned by the Ministry of Infrastructure and Environment (IenM). Calculations
follow three standard methods: SRM-1, SRM-2 and SRM-3. SRM-1 is applicable to compute air quality
in built-up areas, SRM-2 is applicable in non-urban areas, while SRM-3 focuses on point and surface air
pollution sources such as chimneys. The study presented in this report focuses on street classification
in urban areas, thus we further analyse SRM-1 calculation method [30].

2.3.1. Standaard Reken Methode - 1
“Standard Reken Methode - 1” is derived from the CAR II model. The CAR model was the first air qual-
ity calculation method developed in the Netherlands in the 1980s. CAR II, the improved version of this
model, was implemented in 2002. CAR II introduced high resolution background concentration values
from GCN (Generic Concentrations in the Netherlands) in the model. In the following years, further
improvements, such as the calibration factor and high resolution wind speeds, were implemented [30].

SRM-1 is used nowadays to compute air quality in built-up areas, which are characterised by the prox-
imity and density of buildings. The morphology of the city prevents air from flowing, determining the cre-
ation of “street canyons” with an upraised concentration of pollutants. SRM-1 classifies urban streets in
four categories, based on the heights of nearby buildings and their distance to the street axis. The latter
must be maximum 60 meters; building facades should not be farther than 15 meters and their heights
should be homogeneous [30]. Figure 2.3 provides a visual representation of the different classes as
specified in the SRM-1 model.

Figure 2.3: The different street types as specified by RIVM for the SRM-1 model. H = height of the building, L = distance from
street axis to building facade. Source: “Technisce beschrijving van standaard rekenmethode 1 (SRM-1)” [30].
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According to the technical standards of RIVM [30], streets are classified as follows:

Class 1 “more or less continuous buildings on both sides of the street at a distance of up to 60 meters
from the street axis, where the distance between street axis and facade is less than three times
the height of the buildings, but is larger than 1.5 times the height of the buildings”;

Class 2 “more or less continuous buildings on both sides of the street at a distance of a maximum of
60 meters from the street, where the distance between the street axis and facade is less than 1.5
times the height of the buildings”;

Class 3 “more or less continuous buildings on one side at a distance from a maximum of 60 meters
from the street axis, where the distance between the street axis and facade is smaller than 3
times the height of the buildings”;

Class 4 “all streets in an urban environment, other than street types 1, 2 and 3”.

RIVM also has some other requirements for the street segments [29], for which the scanned document
is attached in Appendix A. It states the following:

1. “the length of the street should be at least 100 meters”;

2. “an object is seen as a building if it has a minimum height of 3 meters”;

3. “a street should possibly get a different street type if the sum of the gaps between buildings along
the street is more than 15 meters”.



3
Datasets and preparation

This chapter will introduce the study area, including a smaller focus area used for testing purposes.
The software required for the project is also discussed, followed by the pre-processing steps for the
datasets.

3.1. Study area
The focus of this research will be mainly on the city of Amsterdam, since the project is in collaboration
with the Municipality of Amsterdam. The city lies in the province of North-Holland and is the capital of
the Netherlands. It provides an interesting study area, not only because of its size, but also because of
the city layout with its many narrow streets and canals. Being a big city has the advantage that a lot of
air quality information is collected in the area, which is useful as reference data for the project outputs.
Figure 3.1 shows the entire study area for the city of Amsterdam as taken into account in this research.
There will also be focus on a smaller area around the Weesperstraat. The Weesperstraat area is
interesting in particular, because it contains all four different street types.

Figure 3.1: The study area for the city of Amsterdam.
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8 Datasets and preparation

3.2. Software specifications
The implementation of the project makes use of multiple tools for analysis, computation and visualisa-
tion. These tools include QGIS, Python and 3dfier.
More specifically, 3dfier is a software tool developed by the 3D Geo-Information group at the TU Delft
[9]. It takes 2D GIS datasets and ‘3dfies’ them by extruding the polygons to 3D. It includes data prepa-
ration tools, and especially the script to prepare BGT datasets is of interest for this project.
Python is an open source programming language that allows the installation of multiple third party
packages [12]. This project requires the installation of Numpy, Shapely, Scipy, Rtree, Pyhull and
Fiona. Fiona is used to read the geo-spatial data files, and Shapely is mainly used for different spatial
operations on the data.
Lastly, QGIS is a free and open source Geographic Information System (GIS) [24]. It can be used
to create, edit, visualise and analyse geo-spatial information on different operating systems. Through
Open Geospatial Consortium (OGC) web services data can be (down)loaded, which proved useful for
background maps and retrieving national datasets.

3.3. Data
The project requires two types of datasets: data used as input for the street classification algorithm,
and data used as a reference for the air quality measurements and street classification results.

3.3.1. Algorithm input data
The classification algorithm requires building footprints, building heights, and road network data. The
building footprints are available in the ‘Basisregistratie Grootschalige Topografie’ (BGT), which can be
downloaded through ‘Publieke Dienstverlening op de Kaart’ (PDOK) [23]. Four tiles are downloaded,
as shown in red in Figure 3.2. These tiles cover most of the city of Amsterdam and all of our air qual-
ity measurement locations. The measurement locations will be discussed into more detail in Chapter 5.

Figure 3.2: The four BGT tiles that were downloaded of the city of Amsterdam from the PDOK website, highlighted in red.

The building height data is available in the 3D ‘Basisregistratie Adressen en Gebouwen’ (BAG) dataset,
which is generated by the 3D research group at TU Delft [10]. This dataset contains roof heights at dif-
ferent percentiles (25, 50, 75, 90, 95, and 99). The current, up-to-data version ‘Actueel Hoogtebestand
Nederland 3’ (AHN 3) is used to obtain the height values. In the case that AHN 3 is not yet available,
AHN 2 (the previous AHN version) is used to assign height values. For the city of Amsterdam AHN3 is
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available, but we will also test our algorithm on other cities and smaller towns in different parts of the
country which makes this important to mention.

The BAG building outlines could also be used as ‘footprints’. The BAG represents the buildings as if
you were looking at them from above. However, it also contains many underground structures that
often cover the street geometries. The same could happen if buildings have overhangs. This can pose
problems with the distance calculation from building facades to the street axis. Therefore, it is decided
to use the BGT building footprints as input data for the classification algorithm.

Lastly, a road network dataset is needed. ‘Nationaal Wegen Bestand’ (NWB), available through the
web services of PDOK, provides this data. The streets in this dataset are represented as lines, which
is different from the BGT, where streets are represented as polygons. This is a required feature, since
the distance from the building facade to the medial axis of the street is necessary for the classification
algorithm.

Figure 3.3 shows the BGT building data and the NWB street data that is input into the algorithm, and
Figure 3.4 shows the smaller study area around the Weesperstraat used for testing different parameter
combinations.

Figure 3.3: The BGT building data and NWB street data as it will be input into the street classification algorithm for the city of
Amsterdam.

3.3.2. Reference data
The output of the classification algorithm must be verified. ‘Nationaal Samenwerkingsprogramma
Luchtkwaliteit’ (NSL) is established to improve the air quality in the Netherlands [28], and the NSL-
Monitoring tool provides the user with data from RIVM on air quality and the different street types
[27]. Through the web interface, users can browse the data of different jurisdictions. When the data is



10 Datasets and preparation

Figure 3.4: The BGT buildings and NWB street data for the smaller study area around Weesperstraat. Weesperstraat is shown
in yellow.

downloaded, it contains receptor points, or calculation points, that have a street type assigned to them.
Comparing the automated classification tool to these manual classifications gives a good estimation of
the performance of the algorithm. However, we will never be able to verify the algorithm with a 100%
certainty, because the provided manual classification relies on the interpretation of different persons,
making it prone to human errors.

Besides the reference data for the street classification, there is also reference data needed for the air
quality measurements. Gemeente Amsterdam has multiple reference stations in the city of Amster-
dam, which can be accessed through the website of ‘Luchtmeetnet’ [31]. The reference station of our
interest is NL49014 in the Vondelpark. Figure 3.5 shows the Vondelpark reference station and two
other nearby reference stations on the map, together with our five air quality measurement locations.
The reference data can be used to perform comparisons to our own measurement data. Especially the
Vondelpark reference station is of interest to us, since it is used to determine the background pollution
in Amsterdam. Being stationed in the park, the traffic emissions are generally reduced. Therefore, the
Vondelpark measurements can be used to get an understanding of the contribution of traffic to the air
pollution in other zones in the city; the Vondelpark measurements are subtracted from the local mea-
surements.

In our research, Vondelpark is chosen as a measurement location for the following purposes;

1. To obtain a background pollution measurement for the sensors, and;

2. To compare the sensor measurements to the reference measurements to get an idea of how well
the sensors perform when there is a lack of additional pollution sources such as traffic.

3.4. Pre-processing
The datasets require some pre-processing before they can be input into the street classification algo-
rithm. The 3D BAG and NWB datasets both cover the whole of the Netherlands. They are clipped
to the extent of the corresponding BGT tiles to cover the same area. This is a relatively easy step to
perform. The following sections will describe the more complicated pre-processing steps.
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Figure 3.5: The three reference stations used from Luchtmeetnet. For each reference stations it is stated what is measures.
The red dots represent our five measurement locations.

3.4.1. Preparing BGT data
The BGT data downloaded from PDOK contains the geometry type CurvePolygon, which is not sup-
ported by software such as QGIS. Therefore, the type should be converted to the regular Polygon
geometry type before further processing steps can be applied. The software tool 3dfier contains the
‘BGT_Prepare’ script to perform this conversion, and it also filters the history of objects based on the
‘eindregistratie’ (end registration date) attribute [9]. If this attribute is not set, it means the object
currently exists. It is desired to filter on this attribute, because the algorithm requires the most up-to-
date representation of the street layout. The BGT conversion is stored in a GeoPackage file, which is
used in the next pre-processing step.

3.4.2. Combining 3D BAG and BGT
The BGT building footprints do not contain any height data. Therefore, the BGT must be enriched with
height data from the 3D BAG dataset. The BGT contains an attribute called ‘identificatieBAGPND’,
which is also available in the 3D BAG under the attribute name ‘identificatie’. QGIS is used to
perform a join on these two attributes. However, the 3D BAG and BGT do not use the same data types
for their attribute fields. The BGT uses an integer64 field, while the 3D BAG uses a string field.
This results in slightly different IDs; the 3D BAG IDs start with a zero depending on the ID length. The
3D BAG attribute field is therefore first converted to integer64, and then the datasets can be joined.
The result is a dataset with the BGT footprints, and the 3D BAG height data for the different roof height
percentiles.

3.4.3. Street simplification
It was also attempted to simplify the NWB street network data. The dataset contains many parallel
streets, and merging them into a single lane would reduce computation time because less streets have
to be classified. The first step in the simplification process is to identify parallel streets. This makes
use of two assumptions; streets are parallel:

1. when their endpoints do not touch. In other words, when they have a distance bigger than zero
from each other; and

2. when their centroids are within a certain distance from each other.
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However, this approach introduces some difficulties; streets do not always have the same length, result-
ing in their centroids being too far apart. The different street lengths also pose problems with snapping
the end points of the street. Figure 3.6 shows a street network, including the centroids and which
streets are detected as being parallel. The image makes it even more clear that it is hard to correctly
detect and merge street segments.
First of all, streets are not always detected as being parallel, even though their distance from each
other is similar to streets that are detected as being parallel. This is because their centroids are not
directly opposite of each other. Using a fixed distance threshold to check for closeness is not robust.
Secondly, street segments can contain more than two points, which introduces corners in the street if
the points are not collinear. In this case, the centroid of the street falls outside of the street segment.
The street is then split into different parts, and for each part the centroid is calculated again. Extra
computations are introduced, as more centroids and segments must be checked against the two rules
that were described above. In the end, the smaller segments of the streets should still refer to the
original street ID. It can now happen that the segments of one street get merged with multiple other
streets. This introduces difficulties with which street ID to keep for further processing.

These challenges, that showed up by doing our experiments, made it clear that it is not easy to simplify
the street network. Since the simplification does not affect the street classification in any way, we
decided not to investigate the problem any further. The feasibility and gains for the project were not
enough given the project time limit.
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Figure 3.6: The street simplification visualised. It can be seen that the detected red lines are not always parallel or in need of
merging. Other times, no parallel streets are detected where you would expect it.



4
Street classification

In this chapter, we explain into detail the core steps of our algorithm. Firstly, the association between
streets and buildings is discussed. This includes a more in depth look at how buffers and the Voronoi
diagram can be used to identify which buildings face a chosen street. Later, the four different street
classification methods that we developed are explained. And lastly, some ways to speed up the algo-
rithm are introduced, which improves the scalability of the algorithm. Figure 4.1 provides a high-level
overview of the steps.
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Figure 4.1: A flow-chart of the entire classification process.

13



14 Street classification

4.1. ‘Eerstelijns bebouwing’
The RIVM classification method requires knowledge on the buildings along the street segment. As-
sociations between the street segment and the buildings must be made; the so called ‘eerstelijns be-
bouwing’ (first line of buildings along a street) should be found. This detection is performed in several
steps, which are discussed in the following sections. All different implementation methods that have
been attempted, but did not make it in the final implementation, are attached in Appendix C.

4.1.1. Respecting the 60 meter rule
The technical description for the street type classification by RIVM states that the buildings should be
at a maximum distance of 60 meters from the medial axis of the street segment [30]. Buildings that are
further away are not considered. In order to satisfy this rule, a buffer implementation is used.

The Shapely library contains a buffer function which can be called on a geometry; a LineString in
the case of a street. When the street has a more complex geometry (e.g. many sharp corners), the
buffer can self-intersect. These intersections can lead to ‘wrong’ buffer shapes, or no buffer is created
at all. This problem is solved by splitting the street into parts if the LineString is defined by more than
two points. For every part of the street a buffer is created, and a separate classification is performed.

The buffers are created by using a 60 meter offset with respect to the street segment. The offset
results in another line segment, which gets combined with the original street line segment to create a
Polygon; the newly created buffer. The buffer is then used to detect buildings within 60 meters of the
corresponding street; a building satisfies this rule if it intersects with the buffer. Figure 4.2 displays a
street segment, its buffers and the buildings that intersect with the buffers. The next step in the process
is to detect which buildings are facing the street.
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Figure 4.2: Overview of the buildings that fall inside of the 60 meter buffer (blue dashed line) around the street segment (red
line). Buildings on the left side of the street are depicted in blue, and buildings on the right side in green.

4.1.2. Associate buildings to streets
Finding the relationship between streets and buildings proved to be difficult. We have studied several
alternatives; the solution must be flexible, because urban environments have heterogeneous street
layouts. A simple buffer at a fixed distance is not sufficient; the distance from the street to the building
facade differs even within the same street segment. Another possible solution would be to discretise
the street segment into points, and to cast rays perpendicular to the left and right of the street segment.
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The first intersection with the ray provides the building facing the street. This approach has the limita-
tion that the distance between the points on the street matters; buildings can get skipped otherwise.

A more robust solution to this problem is the use of a so-called Voronoi diagram (VD) [5]. It consists
of convex cells, which are generated by data points; the generators. When 𝑛 points are input, the VD
consists of 𝑛 cells. The Voronoi vertices are equidistant from three generators, and the Voronoi edges
are equidistant from two generators. The adjacency of Voronoi cells, including the corresponding gen-
erators, can be used to detect which buildings are facing the street segment. Figure 4.3 shows an
example VD with its different properties. Voronoi cells on the edge are infinitely big.

Figure 4.3: An example of a Voronoi diagram with the generators (data points), Voronoi vertices, and Voronoi edges.

For our application, the VD is created from the street and building data. It is required to first convert
the geometries into a set of points, which can then be used as input for the VoronoiTess function
of the Pyhull library. Figure 4.4 shows the VD for a street of the Amsterdam dataset. It should also
be mentioned that a bounding box of the extent of all geometries in the scene is used to avoid infinite
Voronoi cells for the street and building points at the border. This reduces the chance of wrong build-
ings to street classifications. Figure 4.5 illustrates what happens when no bounding box is included; a
lot of buildings on the side get classified as facing the street.

The VD is used to find ‘ridges’, which are pairs of generators that are adjacent to each other through
their Voronoi cells. Separate lists for buildings points and street points are used, and this provides a
way to check if the points in the ridge pair belong to both the street and a building. If this is the case,
we mark the building as facing the street. The checking process is repeated for all the ridge generator
pairs. Once this step is done, we know which buildings are facing the street, and on which side of the
street these buildings are located. Figure 4.6 shows which buildings are detected as facing the street
(green), and which buildings are not (red).

The Voronoi method also has limitations, for which we have tried to find solutions. Firstly, in some rare
cases no VD could be created. This is due to precision errors in qhull of the Pyhull library. The
lower precision results in a non-convex shape, which is not allowed in a VD. For these street segments
it cannot be detected which buildings are facing the street. Therefore, it is decided to give them class
‘None’. Chapter 6 will provide actual numbers on how often this problem occurs in the different datasets.
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Voronoi plot of the road, buildings, and bounding box

Figure 4.4: A Voronoi diagram created from points making up the street, the buildings and the bounding box around all
features. The points represent the generators, and the Voronoi edges are shown in grey.
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Figure 4.5: A Voronoi diagram created from points making up the street and the buildings. The points represent the generators,
and the Voronoi edges are shown in grey. Buildings that do not face the street are detected as facing the street because of the

infinite Voronoi cells.
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Figure 4.6: A Voronoi diagram where the green buildings have neighbouring cells to the street cells, and the red buildings do
not. This allows to detect which buildings face the street. The street end points are excluded.
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Figure 4.7: A Voronoi diagram where the green buildings have neighbouring cells to the street cells, and the red buildings do
not. The street end points are not excluded, and we see that there is a building wrongly associated to the street.
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Secondly, the bounding box limits the Voronoi cells generated by the street and building points around
the edges, but there are still buildings wrongly associated to the street segment. This happens at the
end points of the street segment, especially if the street Voronoi cell is large. It introduces a higher
chance of the building Voronoi cells touching the street Voronoi cell. Therefore, it was decided to ex-
clude the two end points of the street in the association checking process; all cells adjacent to these
two cells are ignored. Figure 4.7 depicts this problem; the bounding box is present, but the street end
points are not excluded in the process of finding buildings that face the street. The arrow points at the
building that should not be associated to the street segment.

Lastly, it can happen that a Voronoi cell of a building ‘blocks’ the Voronoi cell of another building that
is facing the street. This can be seen in Figure 4.6, where on the right side the red curved building is
facing the street, but it is not detected. The Voronoi cells of the green building next to it are blocking
the Voronoi cells of the red building. This is a characteristic of the VD that we have no influence on,
but it must be kept in mind that this problem can occur in some cases.

4.2. Street classification
Here, we explain in detail the four classification methods implemented in our algorithm: the aver-
age method, weighted average method, single-sided ray casting method and double-sided ray casting
method. These procedures are used to classify streets in accordance with RIVM’s ‘Standard Reken
Methode - 1’, see 2.3.1. Each method takes as input one street and the buildings associated to it.
The average and weighted average methods output one classification value for each street; the single-
sided ray casting and double-sided ray casting methods output a per-building classification, which is
then aggregated into one street classification. The output of all classification methods is written to a
CSV file containing the street ID, class and feature geometry. This can be used for further analysis or
visualisation purposes.

4.2.1. Average method
In the average method, buildings facing the street on both sides of the street are considered; in Fig-
ure 4.8 these are represented by the green buildings in side 1 and 2. Firstly the shortest distance
of each building to the corresponding street is computed. In a second step, distances and buildings’
heights are summed up separately and divided by the total number of buildings, eleven in the case
shown in Figure 4.8. Thus, the average distance and average height values are obtained. These are
then used to classify the street segment.
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Figure 4.8: The averaging method, where for both sides the average distance and average building height is calculated. These
are then used for the classification.
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This procedure is straightforward and reliable for streets presenting continuous and parallel buildings;
however, it could lead to uncertainties when buildings’ heights, distances and facade lengths vary
greatly in the same street segment. Buildings with a narrow facade count the same as buildings with
a wide facade. If two extremes of buildings are present in the segments, averaging everything out can
lead to a classification on the ‘middle-ground’, which is not necessarily preferred.

4.2.2. Weighted average method
Buildings on both sides of the street are considered in the weighted average method. In Figure 4.9
these are represented by the green buildings in side 1 and 2. While each building has a weight of one
in the average method, in this procedure, we assign a weight to each building. The weight is applied to
its height and distance to the street. The weight is an integer value, determined during the association
of the building to street procedure, as described in 4.2.1. It corresponds to the number of Voronoi cells
belonging to the same building that “touch” the street Voronoi cells. Figure 4.10 shows the building
Voronoi cells (in green) that are adjacent to the street Voronoi cells (in red).
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Figure 4.9: The weighted average method, where for both sides the weighted average distance and building height is
calculated. These are then used for the classification.

The weights are then normalised; each one is divided by the total number of building cells facing the
same street segment. After that, the shortest distance of each building to the corresponding street is
computed. Later, the weight is applied to the distances and building heights, which are then summed
and divided by the number of buildings. Thus, the weighted averages for the distance and height values
are obtained. These are then used to classify the street segment.

This procedure introduces an improvement in the accuracy of the classification if buildings are con-
tinuous and of the type Polygons. Multi-parts, i.e. when a building is a MultiPolygon, should be
minimised. Weights based on the Voronoi diagram could cause errors if discontinuities occur. For
example, some of the buildings in the BGT dataset present columns facing the street because of the
footprint representation of the BGT buildings. When these buildings are converted into Voronoi cell
generators, see Figure 4.5, points representing the polygon would be sampled at different distances.
In the main structure of the building, points would be created at a fixed distance based on the build-
ing’s length, for example 1 meter. However, supposing that columns are two meters apart from each
other, one point for every column would be created. Consequently, bigger cells would originate where
columns are present, thus the building weight might be biased. Larger cells lead to less cells touching
the street cells, and the weight of the building facade will be compromised.
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Figure 4.10: A Voronoi diagram where the green buildings have neighbouring cells to the street cells, and the red buildings do
not. The green fill shows the part of the building Voronoi cell touching the street Voronoi cell. The red fill shows the part of the

street Voronoi cell touching the building Voronoi cell.

Also, a larger building construction might be on top of these smaller structures, which is not taken into
account. Figure 4.11 provides a visual representation of this problem.
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Figure 4.11: A Voronoi diagram where the green buildings have neighbouring cells to the street cells, and the red buildings do
not. The columns of the building on the left result in bigger Voronoi cells, affecting the results of the weighting average method.
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4.2.3. Single-sided ray casting method
In the single-sided ray casting method, the side of the street that has most buildings is selected; side 1
in Figure 4.12.
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Figure 4.12: The single-sided ray casting method, where the side with the most buildings is used to cast a ray to the other side.
The point on the building nearest to the street is used. The street points get classified, and a voting mechanism classifies the

entire street.

For each building the nearest point to the street is computed, using the shapely nearest_points
function. The function takes as inputs two geometries and returns two points, one for each geometry,
which is the segment with the smallest distance between them. In this way, ideally we “draw” a ray
from the building to the street segment, the orange lines in Figure 4.12. The two points are then used
to compute a third point belonging to the same ray, on the other side of the street.

To do so, we compute the angle between the two points, using the formula:

𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑥 − 𝑥 , 𝑦 − 𝑦 )

Then, we calculate the third point, which is stored as a tuple:

𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 = (𝑥 + 61 ∗ 𝑠𝑖𝑛(𝑎𝑛𝑔𝑙𝑒), 𝑦 + 61 ∗ 𝑐𝑜𝑠(𝑎𝑛𝑔𝑙𝑒))

Extended point corresponds to a point, laying on the same ray as the nearest points computed
earlier. Extended point is at a maximum distance 61 meters from the point belonging to the street;
the value was selected as it is slightly above the value indicated by RIVM (60 meters) as the maximum
distance between a building and the street. At this point, we create a LineString geometry connect-
ing the street point and extended point. This way, we look for buildings on the other side of the street,
checking if the LineString intersects with any of the buildings on the side with fewer buildings. If an
intersection occurs, we retrieve the corresponding building height and its distance from the street. Then,
we classify the point on the street based on the RIVM SRM-1 specifications as discussed in 2.3.1. The
same procedure is repeated for each building; the output corresponds to a number of classified points
on the street, which are related to the number of buildings on the side of the street with most buildings.
Lastly, we use these points to output one classification for the whole street segment, based on a vot-
ing system. This system counts the number of street type occurrences based on the classified points.
The most dominant class is assigned to the entire street segment. In the case that different classes
occur equally often, the class belonging to the first maximum value found in the list is assigned to the
street. For example, classes 2 and 3 both occur five times, then the street segment is assigned class 2.
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This procedure introduces advantages and disadvantages. As only one side of the street is considered
to cast rays, the method allows for a fast implementation. However, some buildings on the other side
of the street could be excluded from the classification procedure if they are not directly opposite of
another building, or if they have a narrow facade. Furthermore, the side with most buildings does not
always correspond with the most occluded side. In fact, the length of the buildings facing the street is
not considered in this method. Moreover, the voting system could lead to an inaccurate classification.
This may occur in streets where buildings’ variety would lead to different punctual classifications. For
example, in a street where the same number of points belong to different classes, the voting system
would always assign the classification of the last point.

4.2.4. Double-sided ray casting method
The double-sided ray casting method follows the same procedure as the single-sided ray casting
method described in 4.2.3. The latter selects the side of the street segment where most buildings
are, while the former repeats the same procedure for both sides.
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Figure 4.13: The double-sided ray casting method, where from both sides rays are cast to the other side. The point on the
building nearest to the street is used. The street points get classified, and a voting mechanism classifies the entire street.

With the double-sided ray casting method, a higher computation effort is necessary; however, a more
exhaustive representation of the street is made possible, since more rays are created. Thus, the street
type is computed in more locations. This method could lead to building oversampling, for example,
a long building could be taken in consideration more than once. This aspect is seen as a positive
consequence, as it introduces a basic form of weighing. Figure 4.13 provides a visual representation
of the double-sided ray casting method.

4.3. Speeding up the algorithm
In order to optimise the runtime of the algorithm, two different improvements are implemented. We will
first discuss the use of an index for faster spatial queries, and then explain a line simplification method
to reduce geometry complexity.

4.3.1. Indexing building geometries
The steps described in the previous sections are performed for every street segment. This can get
resource intensive when the datasets are large. Especially the step of intersecting the buffer with the
buildings takes up a lot of computation time; the intersection with the buffer is performed on every build-
ing in the dataset.
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Figure 4.14: A simple example for a 2D R-tree. Source: PostGIS.net

To improve the intersection step, an R-tree is implemented on the building geometries using the rtree
library in Python. It groups nearby objects based on their minimum bounding rectangle (MBR). A tree
structure is created, and when going down in the tree structure each node will contain less objects than
the level above it. At the leaf level, the rectangles describe a single object. Figure 4.14 provides a
visual representation of what this would look like.

The intersection query is then performed on the buffer and the created R-tree index, in order to provide
an initial filtering step. Only the MBRs that intersect with the buffer are returned, which limits the
amount of buildings that must be checked individually. The algorithm runs more than three times faster
for the dataset of the city of Amsterdam with the use of an R-tree, which allows better scalability of the
algorithm. Chapter 6 contains results on how much time the algorithm needs to process datasets of
different sizes.

4.3.2. Simplifying line segments
A single street can consist of many coordinates, resulting in possibly small street parts. We want the
street parts to be as long as possible, while also preserving the topology of the streets. These longer
street segments are necessary for the RIVM air quality calculations model (SRM-1); street segments
are preferred to have a minimum length of 100 meters [29]. It must be said that the simplified streets
are not guaranteed to be longer than 100 meters.

The line segments are simplified using the simplify function from Shapely, which makes use of the
Douglas-Peucker algorithm. Douglas-Peucker tries to find a line similar to the original line, only with
fewer points. The points in the new line are a subset of the points of the original line. A tolerance is
specified, and the simplified geometry will contain only points within this tolerance. We set the toler-
ance to five meters. The function respects the topology of the original line segment.

The simplified streets are not only beneficial because of the longer street parts, but also because fewer
segments must be processed. This reduces computation time, which will become more noticeable
when the datasets are larger. Chapter 6 will provide statistics on the distribution of street lengths for
the simplified and non-simplified streets.

https://postgis.net/workshops/postgis-intro/indexing.html




5
Air quality measurements

This chapter covers details about the air quality measurements, which are performed in parallel to the
design of the automatic road classification algorithm. First, we describe the sensors we use in this
project, including some of its features. After that, we explain the purpose of these measurements and
how they were performed. This includes the measurement locations, the measurement days and the
method used.

5.1. Plume Labs and the Flow sensor
The measurements are performed with the Plume Labs Flow sensors, which is shown in Figure 5.1.
Plume Labs provides a mobile application which displays the current pollution values in an orderly man-
ner. The application is linked to a sensor, and the phone then connects to the sensor via Bluetooth.
The GPS of the phone is used to track where the measurements are taken. Figure 5.2 shows what the
app looks like.

Figure 5.1: The Flow sensor. Source: Plume Labs [15]. Figure 5.2: The mobile application showing a daily overview.

From the application we can see the different pollutants that are measured by the sensor: PM2.5, PM10,
NO2 and Volatile Organic Compound (VOC). The first three pollutants are already explained in Chap-
ter 2. VOC are molecules which consist mainly of carbon and they move around as gasses in the air
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[16]. Since they are very volatile, they can be found far away from where the original emission took
place. Sources emitting VOC include traffic and the residential sector among others.

In order to retrieve the measurement data from the sensors, an e-mail should be send to Plume Labs.
They then send the data back in CSV format. The file contains raw data for NO2 and VOC in parts per
billion (ppb), and for PM2.5 and PM10 in 𝜇𝑔/𝑚 . Plume Labs also includes data for their own established
index [18], but we will not make use of it in this research.

5.2. Measurement campaign
The measurements are performed at five different locations, which are shown in Figure 5.3. Table 5.1
provides the geographical coordinates of the locations. These coordinates are used to ensure that
we measured at the same location every time. Four of the locations were chosen to reflect the four
different street types of the RIVM method, while the fifth location is really close to a reference station
of the Gemeente Amsterdam. Since this location is in the park, it is supposed to give a better sense of
the background concentration.

The aim of performing the measurements is to get an idea of how well the sensors perform. In addition,
to the best of our knowledge, these sensors have not been previously compared with reference stations
in real urban environments. Their performance has been tested inside the lab [17], but we have not
found any information regarding their performance outside the lab. Therefore, within this project, we
focus on a qualitative assessment with the goal of identifying street types through the measured values
(PM10, PM2.5 and NO2). To ensure the reliability of the measurement data, we measure the same
location with different sensor each time.

Figure 5.3: The five different measurement locations for the measuring campaign.

Location Street Type Coordinates Comments
Weesperstraat 1 52°21’55.2”N 4°54’19.2”E High & low buildings
Weesperplein 2 52°21’39.7”N 4°54’25.7”E Similar height buildings
Frederiksplein 3 52°21’35.7”N 4°54’01.6”E Park & buildings
Stadhouderskade 4 52°21’43.1”N 4°52’54.9”E Canal & buildings far away
Vondelpark - 52°21’30.0”N 4°51’56.5”E Open space in park

Table 5.1: The five different measurement locations with their corresponding street type and coordinates.

5.2.1. Measurement dates and times
The measurements were performed in the same time frame on three different days: the 17th and 20th
of May (Friday and Monday) and the 13th of June (Thursday) 2019. Arriving at the location at 10:00,
we let the sensors stabilise for 30 minutes before the actual measurement. From 10:30 till 14:30, the
sensor would measure the air quality at an interval of one minute. This interval is constant as long as
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the button on the sensor was pressed once every 15 minutes. The measurements are limited to days
with no rain, since the small sensors are sensitive to humidity.

5.2.2. Measurement setup
The sensors were mounted on a tripod. The height of the tripods was set to 1.5 meters across all
measurements, which is the pedestrian-level height used in the RIVM SRM-1 model. One GoPro
Hero camera was available to monitor street activity, and was also attached to the tripod. The camera
recorded a time-lapse picture every 60 seconds on the 17th of May, and every 10 seconds on the
13th of June. The GoPro took pictures for the entire measurement duration. Street types 1 and 4
were recorded with the GoPro. In addition, every 15 minutes notes were taken on temperature, cloud
conditions, humidity, wind speed and traffic intensity. All this information is available in Appendix D.

Figure 5.4: Setup of the PlumeLab Flow Sensor and the GoPro Hero camera mounted on the tripod.





6
Results and findings

This chapter presents the results of both the automatic street classification algorithm and the air quality
measurements. It also presents observations and initial conclusions about the results.

6.1. Street classification
6.1.1. The different test datasets
The testing procedure for the street classification algorithm makes use of several datasets. First, the
four different classification methods are run on the smaller dataset of the Weesperstraat area for two
different height percentiles from the 3D BAG; the 95th and 99th percentile. We chose the area as the
location of sensor measurements, which were described in Chapter 5, because it contains the four
different street types; consequently we selected it as a reference for the classification algorithm. So,
in total the algorithm is tested for eight scenarios; each classification method was combined with 95th
and 99th height percentile. From these results, the ‘optimal’ solution is selected; i.e. the combination
of a height percentile and a classification method (see Chapter 6.1.2 and Table 6.2).

The parameters are then used to perform tests on three different datasets for the city of Amsterdam;
a small, medium and large dataset. The datasets ‘grow’ from the same region, which means that the
medium and large dataset contain the area of the small dataset, and the large dataset contains the
area of the medium dataset. The region they cover is the city centre of Amsterdam, and the larger
the dataset, the bigger the area of the city centre that is covered. We selected this area, because of
its dense urban environment. The three different datasets, including details such as the number of
buildings and street segments, are described in Table 6.1.

Dataset Filesize (MB) #Buildings #Street Segments
Amsterdam Small 6.17 6582 1176
Amsterdam Medium 10.85 12538 2337
Amsterdam Large 14.20 15890 3209

Table 6.1: The different datasets of the city of Amsterdam with their filesize, the number of buildings and the number of street
segments.

6.1.2. The Weesperstraat area
The results of the average and weighted average methods for both height percentiles are shown in
Figure 6.1, while Figure 6.3 shows the results for the single-sided ray cast and double-sided ray cast
methods. The figures also show the receptor points as downloaded from the NSL-Monitoring tool. The
classes of the receptor points are coloured in the same way as the classes of the street classification.
The two top images contain the same classification method, but for different height percentiles. The
same holds for the two bottom images. So, the upper left and lower left, and the upper right and lower
right both display the same height percentile, but for a different classification method. As can be seen
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from a visual inspection of the figures, the results are significantly similar, showing that the behaviour
of different algorithms is similar as well.
Table 6.2 presents howmany streets are classified correctly when comparing them to the receptor point
classes. We assume that the manually classified streets as available from the NSL tool contain correct
street types and can therefore be used as ground truth. However, in some cases we have doubts about
the correctness of the manually classified streets; further research is required to confirm their quality.
Furthermore, it must be noted that there is no direct link between the streets and receptors, and the
numbers in the table are based on visual analysis only. We will now discuss the smaller details and
differences between the four methods.

First, we analyse the outcomes of the average method and the weighted average method, shown in
Figure 6.1. Here we compare differences between the two height percentiles; the horizontal axis in the
figure. For both methods, differences can be seen only on the upper part of the study area. This zone
presents a peculiar urban layout: a wide building on the east side of the street, and an open area on the
west side. Figure 6.2 shows the 3D city layout of this area. With the 95th height percentile the methods
assigned both streets type 4 (‘base type’); while with the 99th height percentile, both methods classified
one part of the street as type 1 (wide street canyon) and the other as type 4. The 99th height percentile
implies a bigger chance that the street will be classified as a street canyon. This is because same
buildings most probably will have bigger heights. Table 6.2 shows that the different height percentiles
barely affect the classification results; for both methods, only the aforementioned street is classified
differently.

Method Percentile #Correct #Incorrect Visual Accuracy (%)
Average 95 23 7 76.7
Average 99 24 6 80
Weighted Average 95 24 6 80
Weighted Average 99 25 5 83.3
Single-Sided Ray Cast 95 23 7 76.7
Single-Sided Ray Cast 99 23 7 76.7
Double-Sided Ray Cast 95 24 6 80
Double-Sided Ray Cast 99 24 6 80

Table 6.2: The four different classification methods in combination with the two height percentiles. For each method the
number of correctly and incorrectly classified streets are shown for the Weesperstraat area. These results are based on a

visual inspection.

Now we compare dissimilarities in the results between the average and weighted average method; the
vertical axis in the figure. Considering both methods with the corresponding height percentile, we can
notice that the differences are consistent. Only a few street classifications are conflicting; in two cases,
the average method classified one street as type 1, while the weighted average method classified it as
type 2.

Furthermore, we analyse the differences with the NSL receptor points; these are in general consistent
with our classification. The minimal differences appreciated between the two methods above, make
the weighted average method more consistent with the classification in the NSL-Monitoring tool than
the average method. Thus, we take this method in consideration for further comparison.
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Figure 6.1: The average and weighted average method for both the 95th and 99th height percentile of the roof.
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Figure 6.2: The north (upper) area of the Weesperstraat dataset. This displays the distinct urban layout with a big building on
the east side, and a quite open area on the west side.

Second, we discuss the outcomes of the single-sided ray casting method and double-sided ray cast-
ing method shown in Figure 6.3. This reflection should be consistent with that of the two previously
discussed methods; the average and weighted average method. When comparing the two different
height percentiles for both methods, we see that they behave exactly the same. In contrast, there is
one notable difference between the two methods in two streets of the upper area of the Weesperstraat.
In the single-sided ray casting method both street segments have type 4 (‘base type’), while having
type 1 (wide street canyon) using the double-sided ray casting method. This could be due to the fact
that the double-sided ray casting method takes more points into consideration for the final classification
of the street segment.

Oncemore, the comparison with the NSL receptor points, as shown in Table 6.2, highlights the similarity
between the two methods and height percentiles. Given the urban layout and the visual comparison,
the double-sided ray casting method is preferred over the single-sided ray casting method since it
classifies one more street correctly. This method will be used for further analysis and comparison.

Optimal classification parameters
In this section we explain how we identified the optimal classification method and height percentile
match based on the previously presented results. Comparing the weighted average method and the
double-sided ray casting method, we believe that double-sided ray casting approach gives a more re-
liable solution for the street classification. The method takes every building on the street segment into
consideration; moreover, it introduces a basic weighing in the classification. Large buildings are more
likely to be considered multiple times, influencing the results. In contrast, the weighted average method
takes into account the buildings’ importance, but the methodology can be considered unreliable in some
cases. As mentioned in 4.2.2, discontinuities in building geometries can lead to underestimation of their
weights.

Furthermore, the visual comparison of the results shows that the double-sided ray casting is more
conservative than the weighted average, since it implements the worst case scenario; the shortest dis-
tance from each building to the street is used. This increases the chance of a narrow street canyon
classification (class 2). For air quality calculations, it is better to overestimate pollutant concentrations
than to underestimate them. Table 6.2 shows that the weighted average method did classify 25 streets
correctly, and the double-sided ray casting method 24. However, for the reasons stated above, the
double-sided ray casting method is chosen as the most optimal solution.

The height percentile that is chosen as the optimal parameter is the 95th percentile. According to
RIVM, the highest building point should be considered for air quality computations. However, the 99th
percentile may bias the classification; for example, chimney outliers could be counted as the highest
points. Thus, the combination of the double-sided ray casting method with the 95th height percentile is
used for further processing and analysis. It must be said that this classification method deteriorates the
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Figure 6.3: The single-sided and double-sided ray casting method for both the 95th and 99th height percentile of the roof.
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data to some extent, since first points are classified individually and then converted, thus generalised,
to a street-based classification.

These optimal parameters are applied to the city of Amsterdam and the other test areas because of
the arguments stated above. The next sections will present and discuss these results.

6.1.3. City of Amsterdam
This section discusses the results for the dataset of the city of Amsterdam. The results are generated
using the selected double-sided ray casting algorithm with the 95th height percentile. Figure 6.4 shows
the street classification results.

Street	Class
1

2

3

4

None

Buildings

Water	Surface

Legend

Municipality	of	Amsterdam	
Double-Sided	Ray	Casting	Method	|	Height	Percentile	-	95%

Figure 6.4: The result of the double-sided ray casting method with the 95th height percentile for the whole city of Amsterdam.

We see that along the more narrow canals, street type 1 is a common classification. This street type
corresponds to the broad street canyon. The streets along the wider canals have either street type 3
or 4; the one-sided buildings and ‘base type’ respectively. Streets that are not adjacent to canals are
often classified as type 2, the narrow street canyon. Especially in a city like Amsterdam, with its many
narrow streets, this seems a sensible classification.

Table 6.3 shows the distribution of classes for the complete dataset of Amsterdam. Type 2 is the most
common street type for the city centre of Amsterdam, followed by street type 3, 4 and 1. Table 6.4
shows the receptor point class distribution for the same area of Amsterdam. The numbers differ be-
cause there is no one to one relationship of streets and receptors. However, the receptor data also
shows that street type 2 occurs the most in this area, followed by types 3, 4 and 1. This is the same as
in the automatic street classification algorithm.

It can be noted that the percentages of class 1 and 4 significantly increases from Table 6.4 to Table 6.3.
First and foremost, this could happen because the streets on the edges of the datasets do not neces-
sarily have buildings surrounding them. This happens when the datasets are cropped; the buildings
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Class #Street Segments %
1 488 15.21
2 1149 35.81
3 919 28.64
4 649 20.22

None 4 0.12

Table 6.3: The distribution of classes for the whole city of
Amsterdam. Class None is assigned when no Voronoi

diagram could be created.

Class #Receptors %
1 14 1.13
2 698 56.43
3 444 35.89
4 81 6.55

None - 0

Table 6.4: The distribution of receptor points classes for the
whole city of Amsterdam. Class None does not exist in the

RIVM classification.

and streets are selected on ID for the same area, but the streets can have a long length resulting in
these ‘empty’ streets. Another reason could be that the classification algorithm runs for every street in
Amsterdam, including those facing the canals, bridges and non-urban roads; the former are mainly as-
signed to class 1, while the latter two are assigned to class 4. Instead, receptor points are only placed
on the busier streets; the spatial distribution for the classes in both datasets is not taken into account
in the tables.

The automatic classification algorithm contains an extra type, the None class. This type is assigned
when no Voronoi diagram could be created, and thus no buildings facing the street can be detected.
Only four street segments are assigned type None, which is only 0.12% of the street segments in this
entire dataset. These streets could also be classified as the ‘base type’; class 4.

Dataset Runtime (s)* Runtime Optimised (s)* Speed-up
Amsterdam Small 107.38 51.93 2.1x
Amsterdam Medium 308.76 102.68 3.0x
Amsterdam Large 465.67 135.22 3.4x

*The average of 6 measurements. Performed on HP ZBook Studio G5 Mobile Workstation laptop
running on Linux Ubuntu 18.04.2 LTS, with the following specifications: Intel i7-8750H processor, Nvidia
Quadro P1000 GPU, 16GB DDR4 2667MHZ RAM, 512GB SSD PCIe NVMe storage.

Table 6.5: The different datasets of Amsterdam with how long it takes to run them. The 95th percentile is used in combination
with the double-sided ray casting method. Both the ‘original’ and spatially indexed runtimes are shown.

The automatic classification algorithm is also assessed in terms of runtime. Different dataset sizes are
used, which are described in Table 6.1. The results of the timing experiments are shown in Table 6.5. It
shows the runtime of both the non-optimised algorithm and the optimised algorithm. The latter makes
uses of a spatial index, the R-tree. The entire process of reading the data, creating the buffers, finding
buildings facing the street, classifying the streets, and writing the output to the CSV file is almost 3.5
times faster using the spatial index. The speed-up of the algorithm becomes more significant when the
dataset size increases. This is logical, because the larger datasets contain more streets and buildings.
For every street segment, all buildings in the dataset are checked twice to find the buildings within 60
meters of the street. This becomes computationally expensive very quickly, and thus the speed-up is
most noticeable when the number of features in the dataset increases.

When we look at the runtime of the small and medium datasets, and compare it to the runtime of the
large dataset, it can be said that the runtime doubles when the filesize doubles. This is for the specific
datasets of Amsterdam, and it should be further investigated if this statement holds up for more cases.
Lastly, a comparison of the street length distribution in the original street segments and in the simplified
street segments was carried out. The original streets consist of many more small parts than the simpli-
fied streets. Even though the the simplification changes the street geometry slightly, the larger street
segments are preferred for the RIVM air pollution calculation model. Using the simplified street network
with the automatic classification algorithm is recommended. Computation time will also be reduced by
using this network. Table 6.6 shows the number of street segments in the original and non-simplified
dataset for the city of Amsterdam.
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Length (m) #Non-Simplified Streets #Simplified Streets
<20 2575 486
20-40 1204 691
40-60 683 625
60-80 439 481
80-100 249 261
>100 483 665

Table 6.6: The street length distribution for the whole city of Amsterdam for the original and simplified street segments. The
length is measured for every street part that gets classified separately.

6.1.4. Other cities
The purpose of the automatic classification algorithm for RIVM is to make it easier to derive street types
for the whole of the Netherlands. Therefore, the double-sided ray tracing method, with the 95th per-
centile, was used to classify the streets in other cities and towns in the Netherlands as well. Rotterdam,
Delft and Groningen were chosen as other test cities, while Posterholt was chosen as a test area for a
smaller village. The datasets and the results of the automatic classification algorithm are attached in
Appendix B.

The smaller town of Posterholt does not have any NSL data available; only the information about the
different street types provided by our algorithm exists. The cities of Rotterdam, Delft and Groningen
do have information available in NSL. An initial visual inspection of the results, in comparison to the
classes of the NSL receptor points, proved to be promising. However, further research is needed to
evaluate the results into more depth, and to refine the algorithm for other areas in the country as well.

6.2. Air quality measurements
This section presents the results of the air quality measurements that were performed with the Plume
Labs Flow sensors. Figure 5.3 shows where the five measurement locations are with respect to each
other. The calibration of the sensors is discussed first, followed by an analysis of the measurement
data from Amsterdam.

6.2.1. Calibration measurements
First of all, the sensors should be compared against each other. Differences in measuring behaviour
among the five sensors should be identified in order to perform proper analysis of the measurement
results. Figure 6.5 shows the sensor calibration for NO2, PM10 and PM2.5. The first thing that stands
out is that sensor 4 did not measure during the calibration period.
When looking at the NO2 concentrations, sensor 3 predicts the highest concentrations, while also being
the most insensitive to changes in NO2 concentrations compared to the other three sensors. Sensor
1 and 5 seem to be correlated, and sensor 2 shows similar tendencies to sensor 1 and 5, but it has a
certain bias compared to the other two measures.

For PM10, sensor 1 predicts the highest peak concentrations. However, the concentrations for sensor
1 also drop to zero very quickly compared to the other sensors, which is unexpected behaviour. The
lowest peak concentrations of PM10 are predicted by sensor 5. Sensors 3 and 5 have some correla-
tion between them regarding the peaks, where sensor 3 always measures higher concentrations than
sensor 5.

Lastly, we will analyse themeasured concentrations of PM2.5. Again, sensor 1 predicts the highest peak
concentrations, and similar to its trend in PM10, it again drops to zero very quickly when compared to
the other sensors. Sensor 5 measures the lowest peak concentrations for PM2.5. As with the PM10
concentrations, sensors 3 and 5 appear to have some correlation between them regarding the peak
concentrations. Sensor 3 always measures higher concentrations than sensor 5.
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Figure 6.5: Comparison of four of the sensors during the calibration on the 14th of June 2019. This graph shows
concentrations of NO2, PM10 and PM2.5.

6.2.2. Amsterdam measurements
In this section we describe the pollutant concentration patterns we found for the four different street
types. The focus lies on concentrations of NO2, PM2.5 and PM10. First, we will provide a brief overview
of the conditions during the measurement sessions in the four different streets.

Street specifications
According to the types as defined by the SRM-1 model, street type 4 is assigned to street segments that
cannot be classified in any of the other classes. From the visual representation shown in Figure 2.3,
these streets are open and not obstructed by buildings. Therefore, one could assume that this street
type has lower pollutant concentrations, thanks to higher dilution; this is because it is not surrounded by
buildings, which is different from the other street types. However, in the case of the street we chose, it
turned out to be the most busy street in terms of traffic and transit when compared to the other streets.
This definitely affects the concentrations of different air pollutants, yielding worse air quality than what
would be expected from looking at the street type alone. The streets of type 1 and 2 were also busy
with moderate and heavy traffic, while the type 3 street had a low traffic intensity. In addition, the lo-
cations of street types 1 and 3 had a significantly bigger number of trees along the street compared to
the locations of street types 2 and 4. This also affects the concentration and dilution of pollutants.

This makes clear that the street type is just an indication for the air quality levels for every street. In
fact, the model takes into account many more parameters, such as traffic intensity, traffic speed etc. to
estimate the air quality. Keeping this notion in mind will help to better understand the graphs presented
in the next sections.

Street measurement values
The graphs presented in Figures 6.6 and 6.7 present the recorded concentrations of PM2.5 particles
by our sensors for all four different street types. The annual PM2.5 value, obtained through the NSL-
Monitoring tool, is also plotted for each graph. This line, in combination with the three measurements,
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shows well how much the PM2.5 concentrations fluctuate during the day.

Under no circumstances should someone extract reliable conclusions by direct comparison between
the annual value and our sensors’ values. The time span of each of our measurement sessions was
four hours. This implies that these measurements are greatly affected by local conditions during that
specific four-hour time slot. To obtain values that can be directly compared to RIVM’s annual values,
the time span of the measurement campaign should be at least one year. The mean of those values
would be directly comparable to the annual value calculated by RIVM.
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Figure 6.6: The measured PM2.5 concentrations for street types 1 and 2.

Figure 6.6 shows street types 1 and 2 and the corresponding PM2.5 concentrations. There is a quite
noticeable spread between the sensor predictions. Sensor 4 always predicts higher values compared
to the other two sensors, but since the sensor could not be calibrated, it is unclear if sensor 4 has a
bias. Regarding sensors 1 and 5, we see that they consistently predict lower values than the other
sensors.

Something else noteworthy are the peaks around 10:00 (UTC), which is 12:00 (CEST). This could fit
with the hypothesis that more people go out during their lunch break, and thus more movements are
happening at that time. However, this hypothesis needs to be supported with further measurements,
since the amount of data recorded is limited.
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Figure 6.7: The measured PM2.5 concentrations for street types 3 and 4.

The concentrations of PM2.5 for street types 3 and 4 are shown in Figure 6.7. The graphs show that
sensor 2 predicts larger values than sensor 1, which was also the case in Figure 6.6. Instead, sensor
3 predicts lower values for PM2.5. Again, the peaks around 10:00 (UTC), 12:00 (CEST), are present.

Date Street Type Sensor NO2 (𝜇𝑔/𝑚 ) PM2.5 (𝜇𝑔/𝑚 ) PM10 (𝜇𝑔/𝑚 )
17/05/2019 1 1 229.94 16.54 39.35
17/05/2019 2 2 101.33 102.31 123.10
17/05/2019 3 3 246.33 26.91 32.26
17/05/2019 4 4 638.72 58.29 139.97
17/05/2019 Reference 5 60.92 19.92 30.49
20/05/2019 2 1 35.45 15.87 49.18
20/05/2019 3 2 33.67 59.11 193.46
20/05/2019 4 3 29.70 12.19 27.51
20/05/2019 Reference 4 103.19 73.50 191.07
20/05/2019 1 5 298.51 12.44 34.63
13/06/2019 3 1 283.96 6.15 10.70
13/06/2019 4 2 124.47 19.73 35.02
13/06/2019 Reference 3 656.39 34.88 37.10
13/06/2019 1 4 40.76 39.91 71.39
13/06/2019 2 5 146.81 1.58 4.28

Table 6.7: The mean values for the five sensors during the three measurement days.

The concentrations of PM10, for the four different street types, are shown in Figures 6.8 and 6.9. These
concentrations, although fairly similar to those from PM2.5, are consistently higher than these values.
As before, we still observe that sensors 2 and 4 always provide higher overall pollution levels. This is
further supported by computing the means across the four-hour measurements for all days (see Ta-
ble 6.7), where sensor 4 consistently recorded higher pollution levels no matter of its location. This
behaviour should be further analysed through longer calibration of the five sensors.
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Figure 6.8: The measured PM10 concentrations for street types 1 and 2.
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Figure 6.9: The measured PM10 concentrations for street types 3 and 4.
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Lastly, the concentrations of NO2 are compared for the four different street types. The results are shown
in Figures 6.10 and 6.11. We see that the concentration spread in the NO2 measurements is larger
than that for particle matter. This can be specifically observed for sensors 1, 2 and 5. Measuring NO2
is still a challenging task for small measurements, due to the uncertainties surrounding the chemical
reactions that lead to the NO2 production thanks to solar radiation [3].

When looking at Figure 6.10 into more depth, we see that sensors 1 and 5 show similar trends for
concentration values across time for street type 1. When looking at street type 2, we see that sensor 1
reports lower concentrations when compared to sensors 2 and 5.

For street type 3, shown in Figure 6.11, we see similar predictions for sensors 1 and 3, while sensor 2
predicts much lower values. Instead, for street 4 sensor 2 predicts values larger than sensor 3, which
could be related to different local conditions or sensor drifting across time. Additional measurements
could help shed some light regarding these hypothesis.
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Figure 6.10: The measured NO2 concentrations for street types 1 and 2.
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Figure 6.11: The measured NO2 concentrations for street types 3 and 4.

6.2.3. Comparison to reference measurements
Each measurement day, one sensor (different sensor each time) is located at the same location in Von-
delpark as close as possible to the reference station of the municipality of Amsterdam. This is done to
obtain a context for the accuracy of the Plume Labs Flow sensors. In addition, the background pollution
without contribution from traffic is measured.

The reference data provides hourly averages of different pollutant concentrations. Figure 6.12 shows
the NO2 concentrations for the three measurement days. We observe changes in concentrations more
frequently than for PM in the sensors. Again, sensor 5 seems to be the one closest to the reference
station data, while sensors 3 and 4 overestimate the values.

Figure 6.13 shows the PM2.5 concentrations for the sensors and reference station. When the reference
data was retrieved from the API (Application Programming Interface), we found that the hourly aver-
ages for PM2.5 were not available for the 13th of June 2019. Looking at the graphs, when excluding the
peaks shown by sensor 5, we see that the concentrations measured by this sensor match the hourly
level reported by the reference station. However, sensor 4 seems to over-predict the reference mea-
surements consistently. This could be because of the probable bias of sensor 4, which has already
been pointed out before.



6.2. Air quality measurements 43

0

100

200

08:00 09:00 10:00 11:00 12:00 13:00

Time (UTC)

N
O

2
 (

µg
/m

3
)

Vondelpark Flow 5 at vondelpark

17th May 2019

0
50

100
150
200

08:00 09:00 10:00 11:00 12:00 13:00

Time (UTC)

N
O

2
 (

µg
/m

3
)

Vondelpark Flow 4 at vondelpark

20th May 2019

0
200
400
600
800

08:00 09:00 10:00 11:00 12:00 13:00

Time (UTC)

N
O

2
 (

µg
/m

3
)

Vondelpark Flow 3 at vondelpark

13th June 2019

Figure 6.12: NO2 concentrations for sensors 3, 4 and 5, including the hourly average of the reference station measurements.
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Figure 6.13: PM2.5 concentrations for sensors 4 and 5, including the hourly average of the reference station measurements.
PM2.5 was not measured by the reference station during the last measurement day (13/06/2019), and is therefore excluded in

the plot.
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Figure 6.14: PM10 concentrations for sensors 3, 4 and 5, including the hourly average of the reference station measurements.

Lastly, the PM10 concentrations are shown in Figure 6.14. The patterns look similar to those for the
measurements of PM2.5. Again, sensor 5 is close to the reference data when the peaks are excluded.
Both sensors 3 and 4 overestimate the concentrations compared to the hourly reference values.

The thorough analysis in this section gave insight on the air pollution fluctuation in the five locations;
however, it doesn’t show a strong correlation between street types and air pollution levels. Also, the
consistent spread from the sensor measurements is an important conclusion, highlighting the need for
systematic daily sensor calibration, before and after the experiments.



7
Conclusions and future work

In this chapter the research questions of this research will be answered and the conclusions will be
discussed. Furthermore, we describe future work that could be carried out to improve the automatic
street classification algorithm, and we elaborate on how the air quality measurements can be conducted
in a more reliable manner.

7.1. Conclusions
The study presented in this report originated from the necessity to find a feasible and automatic solu-
tion to street classification in urban areas to calculate the air pollution produced by traffic. The project
originated as an initiative of our client at RIVM, who saw the opportunity to gain new insights on the
problem from a geo-spatial perspective. The project spanned over ten weeks, investigating two main
research questions:

1. Would it be feasible to automate the whole process of street classification up to the scale of a mu-
nicipality like Amsterdam and still have valid results?

Wedeveloped an automatic street classification algorithm that takes as input street and building (height)
data (see Chapter 3) and classifies street segments according to RIVM’s ‘Standaard Reken Methode -
1 (SRM-1) model. The main focus area was on the city of Amsterdam, and the results of the automatic
street classification for the double-sided ray casting method looks promising (see Chapter 6). It shows
the feasibility to automatically classify streets based on the four street types as required by SRM-1.
First, the similarities of the outcomes with the manual classification carried out by ‘Nationaal Samen-
werkingsprogramma Luchtkwaliteit’ (NSL) show that the algorithm is reliable and that the topic can be
further researched. Moreover, the scalability of the algorithm is reflected in its runtime, which makes
it feasible to run the algorithm for the whole country. The algorithm, as in its current state, has some
limitations. The suggestions for further improvements are discussed in section 7.2.1.

2. Would it be possible to determine a street type, based on the Plume Labs sensors measurements?

In the limited time frame of this project, we did not find any correlation between air pollution levels and
the street classification. We performed air quality measurements on five measurements locations in the
city of Amsterdam, see Chapter 5. However, we only measured on three days and the short amount
of time strongly affects the results. Therefore, only a qualitative comparison can be made; for the first
day the measurements and reference values are quite similar, but for the second and third day larger
differences are observed. Also, the yearly averages near the measurement locations are not directly
comparable to our measurements. It does, however, show that during the day the pollutant concentra-
tions fluctuate greatly.

Another problem with the results could be related to the sensor calibrations. Due to constrains in time,
we could not assess each sensor independently against the reference stations. This resulted in little
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information regarding their measuring accuracy. Sensor calibration was only performed at the end of
the measurements. However, performing calibration every measurement day, before and after the data
collection, would have provided further insight in each sensor’s peculiarities. This is something to keep
in mind for future measurement campaigns with small air quality sensors.

Additionally, it must be considered that measurements were performed only in a limited number of
streets, each one representing a street type and one to serve as reference with the Vondelpark ref-
erence station. These locations are not necessarily representative for other streets with the same
classification. Lastly, the Plume Labs sensors are sensitive to many factors, such as rain and humidity.
They also drift with time. These factors might have influenced the overall performance of the measure-
ment campaign.

From the measurement campaign we gained useful experience that can be used in future similar
ventures. Suggestions on how to improve the measurements are discussed into more detail in sec-
tion 7.2.3.

7.2. Future work
This section contains suggestions for possible improvements of the algorithm, and recommendations
on how the air quality measurement campaign can be made more successful. For the first part, a
distinction is made between aspects related to the implementation of the algorithm and the SRM-1
model. It should be noted that input from an air quality expert is required for most specific and targeted
improvements, to implement the optimal solution from an air quality point of view.

7.2.1. Algorithm related improvements
Buildings and street proportion
The algorithm detects all the collateral buildings of each street segment in order to classify the street.
Thus, if few buildings are present on both sides of the street, the algorithm will classify the whole street
segment based on very few buildings. This would lead to incorrect classification in cases where the
number of buildings is relatively small and/or does not “cover” the whole length of the street segment.

Facing road
Buffer
Road
Extended line
Road point

Figure 7.1: Example of a street segment with few collateral buildings.

Figure 7.1 provides a graphical example of this issue. The street segment will be classified based on
the five buildings, but since these buildings do not actually form an urban canyon the classification will
be incorrect.
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In dense urban environments such a case does not occur very often, and the algorithm is expected
to perform well. However, when the urban environment is not dense, for example in suburbs or rural
areas, the algorithm could lead to incorrect classifications. For such applications the algorithm should
be improved to take in consideration the proportion of the street length covered by buildings. In this
way, if two small buildings are directly opposite of each other, but the street segment is a lot longer than
the building facades facing the street, the street can get a different classification taking this knowledge
into account. Flaws of the current Voronoi method are discussed in the next section, together with
proposed solutions. These could also help solving the limitation described in this section.

Length of facades as weights
Currently, weights are assigned to buildings in the weighted average classificationmethod. Each weight
corresponds to the number or Voronoi cells of a building, divided by the total number of cells “touching”
the street segment. This method presents some limitations; first it does not allow to compute the per-
centage of the street that is ‘surrounded by’ buildings, and secondly, it does not consider that Voronoi
cells could have slightly different dimensions between buildings.

In the ray casting methods, to aggregate the classification from the street points to the street segment,
a voting system is implemented. It counts how often each class occurs along the street segment, and
the most frequent class is assigned to the street. Initially, we thought that the most accurate method to
aggregate would be to calculate the length of the facade of each building facing the street, and to use
this as the weight with the respect to the total street segment length. Soon, we realised that despite
the fact that it looks simple from a human perspective to find a way to calculate facade lengths, it is
not that trivial. Calculating the facade length based on the polygon geometry representation of every
building is a big challenge, because one would need to identify only the vertices facing the street, out
of an arbitrarily arranged list of vertices for every polygon.

Another approach is to calculate the distance between the projected building points on the street seg-
ment, as they could be considered to be the projection of the facade on the street. This method though,
can only be used for the single-sided ray casting method. In many cases, it happens that the closest
point of the building to the street is almost at the corner of the building. But there is no guarantee that
for the next building the corner will be the closest point to the street. So, if for any reason the “equiva-
lent” corner is not the closest point to the street, then the length between two consecutive points has
no physical meaning.

For possible future improvements we consider this challenge one of the most important ones to be
dealt with. The capability to calculate facade lengths for all collateral buildings could also be used to
solve the previous aspect. For example, an index could be created to quantify the percentage of the
street segment length “surrounded by” buildings. That index could be used to make the algorithm much
smarter and accurate on the classification procedure.

Splitting streets based on classification distribution
The ray casting methods project points on the street segment. It can happen that the classification of
these points is uniform in parts of the street, i.e. consecutive points have the same class. In these
cases, it is desirable to split the street segment between the transition points, i.e. points were the
classification changes. In this way, the accuracy of the output of the classification algorithm would
improve because less generalisation along the street segment is introduced. The implementation of
this method requires the projected points to be sorted along the street segment. Decisions should also
be made about cases where the distribution is almost uniform in one part of the street, e.g. one point
has a different class from the other points in that street sub-part.

Testing of different input datasets
The automatic street classification algorithm was developed using the BGT building geometries, which
are integrated with the 3D BAG building heights. The reason is that BGT dataset contains building
footprints, while BAG includes both underground buildings and roof construction outlines. However,
the BGT geometries could lead to issues, related to the presence of columns for example, which are
excluded in the BAG dataset. Further research could include testing of new input datasets. For ex-
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ample, a thorough investigation of BAG attribute data could enable to discard underground geometries
while eliminating low constructions and columns.

Validation of the algorithm
Currently we perform visual analysis to obtain comparisons between results of the automatic classifi-
cation algorithm and the NSL receptor points. In the future, an automatic validation method could be
implemented. For example, receptor points could be associated with the street they belong to; this
could be done using attribute values available in the street dataset of the NSL. Then, for each segment
correspondences or discrepancies could be checked. It must be noted that the NSL street dataset only
contains street geometries where there are receptor points present. All other streets are eliminated in
this dataset.

7.2.2. SRM-1 model related improvements
The 100 meter rule
According to RIVM’s SRM-1 model, the street segments need to be at least 100 meters long for the
classification to be suitable for air pollution calculations. The road network dataset we worked with has
the streets segmented based on junctions, which made the most sense for the classification. There are
many segments that are less than 100 meters, and which according to the model should be merged
to form longer segments. This specification was not implemented in the algorithm due to a number of
reasons, which are listed below.

First, it is not straightforward to merge street segments in a road network, especially around junctions.
This is because consecutive street segments are not labelled consistently (e.g. through ID), and the
angles between the segments should be considered. On a junction for example, one would have to
make sure the algorithm would recognise segments in the extension of the original street, and avoid
merging street segments perpendicular to the original segment.

In addition, the street segment is the primitive entity used for classification. Adjacent segments, espe-
cially around junctions, may have different classifications if merging is applied; thus, this could lead to
lower overall accuracy. The same classification would be applied to larger street segments, inducing
inaccuracy. Finally, by implementing this rule it would directly contradict with the 15 meter rule ex-
plained in the next section.

Our suggestion is that the minimum length of the street segment, required by the SRM-1 model, should
be reconsidered as it should be adapted to the city’s layout. Given our Geomatics expertise, this
suggestion comes from a spatial-analysis point of view, not taking into consideration air propagation
model implications.

The 15 meter rule
The SRM-1 model also specifies that if along a 100 meter segment the sum of the distances among
buildings on the same street is more than 15 meters, this should lead to different street types. This
implies splitting the street segment, so that the distance among buildings of every split part is less than
15 meters. This statement contradicts with the aspect explained in the 100 meter rule. If one was
supposed to merge segments to form a segment that is larger than 100 meters, it would be more likely
that the 15 meters rule would not be fulfilled. This would result in splitting the segment again, which
would contradict the 100 meter rule.
Apart from the contradiction, implementing this capability was also not feasible in the time frame of this
project, again because of increased complexity. It is already quite a challenge to “sort” the buildings in
a consecutive way with respect to a street segment and to calculate the distance between them.

Selection of appropriate streets
The results for the city of Amsterdam look promising, but it must be kept in mind that the SRM-1 model
is only applicable to urban environments. The input datasets should adhere to this requirement. Other
types of streets, such as highways, might have other street classification requirements. The datasets
used in this research might contain non-suitable streets, because no distinction is made between areas
that might require the use of a different classification model. Automatically detecting which model
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should be applied did fall outside of the scope of this research, but could be an interesting topic to
investigate in the future. For the ‘Nationaal Wegen Bestand’ (NWB) dataset no appropriate attribute
was found for automatic detection, but there might be other datasets available which can be used to
obtain the necessary information. For example, a dataset with the location of built areas known as the
“bebouwde kom”.

7.2.3. Air quality measurement improvements
Sensor calibration and validation
As stated before, the sensors were only calibrated once after all measurements sessions. This should
have been done before and after the measurements each day, in order to characterise each sensor’s
behaviour across time, and to detect different meteorological conditions on-site. In addition, the sen-
sors were compared to each other from 14-16h in the afternoon, on the 14th of June 2019. This is not a
good time of day, especially for NO2 concentrations since they are affected by solar radiation [3]. The
calibration time frame was fairly short, because there were limitations in time and the data that had to
be retrieved from Plume Labs via e-mail. Especially the latter could sometimes took long.

In the optimal situation, the sensors are placed next to a reference station for an extended period of
time to validate their measuring behaviour. In the scope of this project, this was not feasible. Our main
focus was to measure the pollutant concentrations and to see how the sensors compare to each other.

Quantitative assessment of sensors
The current measurement values do not allow for a quantitative analysis of the results; only a qualitative
analysis can be performed. The measuring period is too short, and not enough different days and types
of weather have been covered to ensure repeatability. More measurements is the key for this aspect. It
would be interesting to quantify the performance of the different sensors, since to our knowledge their
performance has only been measured in lab conditions.

Computation of yearly values
The relationship between air quality and the different street types can be further investigated. When
there is a discrepancy between the automatic street classification and the NSL receptor classification,
new yearly air pollution values can be calculated with the SRM-1 model. The inputs for the model will
be the current and newly established street type as computed by the automatic classification algorithm.
This can either positively or negatively impact the pollutant concentrations. Especially the cases where
the air pollution deteriorates are of interest for further investigation.





A
RIVM scanned document

Figure A.1: Physical scan of an document by RIVM from the 1980s about the road classification.
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B
Datasets and results for other cities and

towns
In this appendix four other datasets are presented; the cities of Rotterdam, Delft and Groningen, and
the smaller town Posterholt. The automatic classification algorithm was also ran for these datasets.
The results are included here as well.
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Figure B.1: The BGT building data and NWB road data as it will be input into the road classification algorithm for the city of
Rotterdam, Zuid-Holland. The map is turned 90 degrees counter clockwise.
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Figure B.2: The result of the road classification algorithm for the city of Rotterdam, Zuid Holland.
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Figure B.3: The BGT building data and NWB road data as it will be input into the road classification algorithm for the city of
Delft, Zuid-Holland. The map is turned 90 degrees counter clockwise.
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Figure B.4: The result of the road classification algorithm for the city of Delft, Zuid Holland.
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Figure B.5: The BGT building data and NWB road data as it will be input into the road classification algorithm for the city of
Groningen, Groningen. The map is turned 90 degrees counter clockwise.
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Figure B.6: The result of the road classification algorithm for the city of Groningen, Groningen.
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Figure B.7: The BGT building data and NWB road data as it will be input into the road classification algorithm for the town of
Posterholt, Limburg. The map is turned 90 degrees counter clockwise.
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Figure B.8: The result of the road classification algorithm for the city of Posterholt, Limburg.





C
Attempted implementations

This appendix will describe all the alternative methods that we implemented, but did not yield good
classification results.

C.1. Buffer methods to associate buildings to roads
To associate buildings along the road segment, we implemented a buffer method, which limits the
buildings to those within 60 meters from the road axis. This step is required to proceed with the identi-
fication of the first line of buildings facing the road, respecting RIVM’s requirements [30]. The method
we use is described in section 4.1; it requires roads segments to be split if they consist of more than
two coordinates. In fact, road segments that present complex geometries introduce problems in the
implementation of the buffer. Initially, we attempted to tackle them, leaving the geometry of the road un-
changed. However, these implementations would require large computation efforts, while introducing
uncertainties. The following sections describe three buffer approaches that did not provide a satisfac-
tory outcome.

C.1.1. Shapely buffer function
The Shapely buffer function takes as input one geometry and outputs a polygon at a given distance
to the input. The user can choose between many parameters, but cannot choose the buffer side [13].
In the current study, the distinction of buildings on the left and right side of the road is necessary. Thus
firstly, we decided to use Shapely parallel_offset function. The function takes as input one
LineString and returns a parallel geometry at a given distance. Later we created left and right buffer
polygons using the road coordinates and the output LineString coordinates. However, for complex
geometries the Shapely parallel_offset function would often output an empty LineString;
for this reason, this method was discarded.

Secondly, we decided to create the buffer polygon for every road on both sides and to split it using the
Shapely split function. The function takes as input two geometries and splits the first geometry
by the second geometry. Then, it returns a collection of geometries representing the sub-parts [13].
However, the Shapely split function led to different problems. In a high number of cases, the
buffer polygon would not be divided, as the road geometry was not recognised as a splitting geometry.
This problem is caused by low floating point precision in Shapely geometries. We attempted to
solve this problem by extending the road segment and by adding the road coordinates to the buffer
polygon. Nevertheless, the issue could not be solved for every occasion. Thus, this implementation
was abandoned.

C.1.2. Convex hull method
The convex hull method aims at tackling complex roads geometry issues, without splitting the road
segment. The convex hull corresponds to the smallest convex polygon including all the points in a
given set. If one road consists of more than two coordinates, sub-buffer polygons are created for each
straight line segment and in both directions. Later, the convex hull of these polygons is created using
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the Shapely convex_hull function. The function takes as input any geometry, reads its coordinates
and outputs the convex hull polygon.

This polygon should then be used as a buffer to detect buildings. However, this implementation lead
to many particular cases. Complex road segments present different shapes; for example, they can
be convex or concave, or present arches facing opposite sides. Thus, the convex hull polygon would
need to be cut in correspondence to the road to avoid the inclusion of buildings from the wrong side.
The process is simple for road segments made of three coordinates, but gets increasingly difficult and
computational expensive for longer road segments. Furthermore, a few segments introduced additional
issues, for example, a parallel offset could cross the road. For these reasons, we decided to not further
use this implementation.
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Figure C.1: The image shows the convex hull on the left of a
complex road segment
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Figure C.2: The image shows the convex hull on the right
side of a complex road segment
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Figure C.3: The image shows the sub buffers created to
compute the convex hull of a complex road segment
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Figure C.4: The image shows the final buffers obtained from
the convex hull, after cutting the wrong parts

C.1.3. Alpha shape method
The alpha shape method aims at solving the errors introduced with the convex hull buffer method. The
alpha shape creates a concave hull around a finite set of input points, using an alpha parameter (𝛼).
“An edge of the alpha-shape is drawn between two members of the finite point set whenever there
exists a generalised disk of radius 1/𝛼 containing the entire point set and which has the property that
the two points lie on its boundary.” [32]

We used the alphashape library for Python in our algorithm. However, we encountered many issues.
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The alpha parameter has a strong influence on the outcome of the algorithm and it is not feasible
to determine one value that works for the whole urban layout. The alphashape function allows the
user make the alpha parameter flexible, as a consequence though the algorithm speed is seriously
compromised. Thus, we discontinued investigating this method.
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Figure D.1: The measuring location in Vondelpark.

Figure D.2: The measuring locataion at Weesperstraat. Figure D.3: The measuring location at Weesperplein.

Figure D.4: The measuring location at Frederiksplein. Figure D.5: The measuring location at Stadhouderskade.
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Street type 1 - Weesperstraat

Sensor ID 1 5 4
Date 17-05-19 20-05-19 13-06-19
Measurement number 1 2 3
Start - end battery life - - 82 - - -
Go Pro Yes No No

Clouds Traffic Clouds Traffic Clouds Traffic
[0: Sunny, [0: Light, [0: Sunny, [0: Light, [0: Sunny, [0: Light,

Elapsed Time Temperature RH Wind 1: Some clouds, 1: Moderate, Temperature RH Wind 1: Some clouds, 1: Moderate, Temperature RH Wind 1: Some clouds, 1: Moderate,
[min] [C] [%] [km/h] 2: Cloudy] 2: Heavy] [C] [%] [km/h] 2: Cloudy] 2: Heavy] [C] [%] [km/h] 2: Cloudy] 2: Heavy]

0 13 71 - 2 0 13 93 - 2 0 16 - - 2 2
15 13 71 - 1 0 13 93 - 2 1 - - - 2 2
30 14 67 - 1 0 13 93 - 2 1 - - - 2 1
45 14 67 19 1 1 13 93 - 2 1 - - - 1 1
60 14 65 21 2 2 13 93 - 2 1 - - - 1 1
75 14 68 21 1 2 13 87 - 2 1 - - - 2 1
90 14 64 21 1 1 13 87 - 2 1 - - - 2 1
105 14 63 - 2 2 13 93 - 2 1 - - - 2 1
120 15 62 - 2 1 13 93 - 2 1 - - - 2 1
135 15 62 - 2 0 13 93 - 2 1 - - - 2 1
150 14 64 - 2 0 13 93 - 2 1 - - - 2 1
165 14 65 18 2 0 13 93 - 2 1 - - - 1 1
180 14 65 19 2 1 13 93 - 2 2 - - - 1 1
195 14 63 19 2 1 14 88 - 2 2 - - - 2 1
210 14 62 19 2 0 13 87 - 2 0 - - - 2 1
225 14 62 19 2 1 13 87 - 2 1 - - - 2 1
240 15 59 19 2 1 14 87 - 2 1 - - - 2 1

Figure D.6: The notes made during the three measurement days for street type 1 - Weesperstraat.

Street type 2 - Weesperplein

Sensor ID 2 1 5
Date 17-05-19 20-05-19 13-06-19
Measurement number 1 2 3
Start - end battery life 92 69 - - 96 -
Go Pro No No No

Elapsed Time Temperature RH Wind Clouds Traffic Temperature RH Wind Clouds Traffic Temperature RH Wind Clouds Traffic
[min] [C] [%] [km/h] [C] [%] [km/h] [C] [%] [km/h]

0 13 71 21 2 1 14 89 16 2 0 14 82 - 2 0
15 13 71 21 2 1 14 88 18 2 0 14 82 - 2 1
30 13 71 21 1 2 14 88 18 2 0 14 82 - 1 1
45 14 65 21 1 1 14 90 18 2 0 14 82 - 2 0
60 14 66 19 2 2 14 89 18 2 0 15 76 - 2 0
75 14 62 21 2 2 14 87 18 2 0 15 76 - 2 0
90 14 63 21 2 2 14 87 18 2 0 16 72 - 1 0
105 14 63 21 2 2 14 88 18 2 0 16 67 - 1 0
120 15 62 19 2 1 14 89 18 2 0 16 67 - 2 1
135 15 62 19 2 1 14 89 18 2 0 16 67 - 2 2
150 15 62 19 2 1 14 90 18 2 0 17 63 - 2 1
165 14 64 19 2 2 14 90 18 2 0 16 67 - 2 1
180 14 64 19 2 2 14 91 16 2 0 16 67 - 2 1
195 14 63 19 2 2 14 86 16 2 0 16 67 - 2 0
210 14 62 19 2 2 14 86 16 2 0 - - - 2 1
225 15 60 19 2 2 14 86 16 2 0 - - - 2 1
240 15 59 19 2 2 15 85 16 2 0 - - - 2 0

Figure D.7: The notes made during the three measurement days for street type 2 - Weesperplein.

Street	type	3	-	Frederiksplein

Sensor	ID 3 2 1
Date 17/05/2019 20/05/2019 13/06/2019
Measurement	number 1 2 3
Start	-	end	battery	life 92 69 96 - 82 -
Go	Pro No No No

Clouds Traffic Clouds Traffic Clouds Traffic
[0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light,

Elapsed	Time Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate,
[min] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy]

0 13 71 19 1 1 13 91 14 2 0 14 77 31 2 0
15 13 71 19 1 0 14 89 18 2 0 14 77 31 2 0
30 13 71 19 1 1 14 89 18 2 0 15 74 32 1 0
45 14 66 19 2 1 14 90 18 2 0 15 74 32 2 0
60 14 66 19 2 0 14 89 18 2 0 16 71 31 2 0
75 14 66 19 2 0 14 87 18 2 0 16 72 31 2 0
90 14 66 19 2 0 14 87 18 2 0 16 71 31 1 0
105 14 64 21 2 0 14 88 18 2 0 16 69 32 1 0
120 14 64 21 2 1 14 89 18 2 0 17 65 34 2 0
135 14 64 21 2 0 14 89 18 2 0 17 65 34 2 0
150 15 62 18 2 0 14 90 18 2 0 17 64 34 2 0
165 15 62 18 2 0 14 90 18 2 0 17 63 34 2 0
180 14 65 19 2 0 14 91 16 2 0 17 63 32 2 0
195 15 62 18 2 0 14 86 16 2 0 17 65 34 2 0
210 14 62 19 2 0 14 86 16 2 0 17 64 34 2 0
225 14 62 19 2 0 15 87 16 2 0 16 65 32 2 0
240 14 62 19 2 0 15 87 16 2 0 17 63 31 2 0

Figure D.8: The notes made during the three measurement days for street type 3 - Frederiksplein.
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Street	type	4	-	Entrance	of	Vondelpark

Sensor	ID 4 3 2
Date 17/05/2019 20/05/2019 13/06/2019
Measurement	number 1 2 3
Start	-	end	battery	life - - 94 70 86 75
Go	Pro No Yes Yes

Clouds Traffic Clouds Traffic Clouds Traffic
[0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light,

Elapsed	Time Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate,
[min] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy]

0 15 - - 0 2 13 90 14 2 2 14 77 31 2 1
15 - - - 0 2 13 90 14 2 2 14 77 31 2 1
30 - - - 0 2 14 89 18 2 2 15 74 32 2 1
45 - - - 1 2 14 89 18 2 2 15 74 32 2 1
60 - - - 2 2 14 89 18 2 2 15 74 32 2 1
75 - - - 2 2 14 89 18 2 2 16 72 31 2 1
90 - - - 1 2 14 87 19 2 2 16 72 31 2 1
105 - - - 2 2 14 87 19 2 2 16 69 32 2 1
120 - - - 2 2 14 89 18 2 2 17 65 34 2 1
135 - - - 2 2 14 89 18 2 2 17 64 34 2 1
150 - - - 2 2 14 91 18 2 2 17 64 34 2 1
165 - - - 2 2 14 91 18 2 1 17 63 34 2 1
180 - - - 2 2 14 91 18 2 2 17 64 32 2 1
195 - - - 2 2 14 91 18 2 2 17 65 34 2 1
210 - - - 2 2 14 91 18 2 2 17 65 34 2 1
225 - - - 2 2 14 87 18 2 1 17 65 32 2 1
240 - - - 2 2 14 87 18 2 2 17 66 31 2 1

Figure D.9: The notes made during the three measurement days for street type 4 - Stadhouderskade.

Reference	station	-	Vondelpark

Sensor	ID 5 4 3
Date 17/05/2019 20/05/2019 13/06/2019
Measurement	number 1 2 3
Start	-	end	battery	life 89 - - - 96 69
Go	Pro No No No

Clouds Traffic Clouds Traffic Clouds Traffic
[0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light, [0:	Sunny,	 [0:	Light,

Elapsed	Time Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate, Temperature RH Wind 1:	Some	clouds,1:	Moderate,
[min] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy] [C] [%] [km/h] 2:	Cloudy] 2:	Heavy]

0 13 70 0 1 - 14 - - 0 - 14 78 29 2 -
15 13 70 0 0 - - - - 0 - 14 77 29 2 -
30 13 71 0 1 - - - - 1 - 15 74 32 2 -
45 13 70 0 1 - - - - 1 - 15 74 32 2 -
60 13 70 0 2 - - - - 1 - 15 74 32 2 -
75 13 66 0 1 - - - - 1 - 15 74 32 2 -
90 13 66 0 0 - - - - 1 - 16 71 31 2 -
105 13 66 0 2 - - - - 1 - 16 71 31 2 -
120 15 71 0 2 - - - - 1 - 16 71 31 2 -
135 15 62 0 2 - - - - 1 - 16 71 31 2 -
150 13 62 0 2 - - - - 1 - 17 64 34 2 -
165 13 71 0 2 - - - - 1 - 17 64 34 2 -
180 13 71 0 2 - - - - 1 - 17 64 32 2 -
195 14 71 0 2 - - - - 1 - 17 64 32 2 -
210 14 62 0 2 - - - - 1 - 17 64 34 2 -
225 14 62 0 2 - - - - 1 - 17 64 34 2 -
240 - - 0 - - - - - 1 - 17 64 34 2 -

Figure D.10: The notes made during the three measurement days for Vondelpark.
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Figure D.11: The temperatures for street type 1.
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Figure D.12: The relative humidity for street type 1.
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Figure D.13: The temperatures for street type 2.
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Figure D.14: The relative humidity for street type 2.
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Figure D.15: The temperatures for type 3.
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Figure D.16: The relative humidity for type 3.
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Figure D.17: The temperatures for street type 4.
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Figure D.18: The relative humidity street type 4.
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Figure D.19: The temperatures for Vondelpark.
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Figure D.20: The relative humidity for Vondelpark.
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