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Abstract

FPT algorithms for cluster editing are relatively successful in practice,
however there is still the need for a fast weighted graph data-structure
that allows merging vertices and deleting edges while keeping track of a
lower bound. This paper presents such a data-structure with at worst

O(n2) time complexities for basic operations on graphs with n vertices. 
Furthermore an open-source implementation of the data-structure and an
algorithm for cluster editing is provided, written in Rust for performance
and readability.

1 Introduction

Cluster Editing has been studied since the 1960s. Although the problem
seems very abstract it has found some applications and inspired algorithms for
other clustering problems [3]. The problem itself is intuitively to turn a graph
into a disconnected set of fully connected clusters by adding and removing the
minimum set of edges.

There have been gradual improvements to the time complexity of fixed pa-
rameter tractable algorithms for this, parameterized by the number of modifica-
tions k. The best known algorithms for unweighted graphs has time complexity
O(1.62k +m+n) [2]. And the best time complexity above a special lower bound
l is O(4k−l + m + n) [11]. Here n and m are the number of vertices and edges.

There has also been practical research into fixed parameter algorithms for
cluster editing [4, 5, 7]. In particular [5] has provided the source code for an
algorithm called PEACE that makes use of the same vertex merging as the best
theoretical algorithm [2].

To make algorithms based on the theory such as PEACE faster, there is a
need for a fast data-structure for vertex merging and cluster editing that can
keep track of a lower bound. With this paper we hope to provide this and also
improve on the lower bound that was used in previous papers.
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Next to that the prior approach of approaching the value of k from below by
repeatedly starting a new search with a higher value is challenged. Instead the
cluster editing algorithm from this paper approaches the value of k from above.

An open source implementation of the data-structure and algorithm is pro-
vided written in pure Rust code that can be used as reference for future research.
Rust was chosen for this as it is a high performance language with great read-
ability and is excellent for working on complicated algorithms.

The rest of the paper is structured as follows: First in Section 2 the formal
problem description is given with explanation of some of the important concepts.
Then in Section 3 the implementation is explained. In Section 4 there are
subsections for all the different aspects that have been experimented with. And
this section includes a comparison to the results from [9]. Then Section 5 will
quickly touch on the reproducability of the experiments. And finally Section 6
will give a general conclusion of this work and provide possible directions for
future research.

2 Preliminaries

This section gives a quick overview of the required background knowledge to
understand this paper. Next to that it also provides definitions of all required
concepts.

Cluster Editing

We will use (V,w) to denote an undirected weighted graph with vertices V and
edge weight function w. Edges are defined as sets of two vertices e ∈

(
V
2

)
and

have a weight w(e).
A cluster editing solution is a partition of all vertices into clusters such that

the total weight of positive edges between cluster minus the total weight of
negative edges in clusters is minimized. For an example see Figure 1. Finding
this partition and the cost for weighted graphs is called Weighted Cluster
Editing or Correlation Clustering.

An unweighted graph (V,E) can be transformed into a weighted graph by
using w(e) = 1 if e ∈ E else w(e) = −1, where E is the set of edges in the
unweighted graph. This way any Unweighted Cluster Editing problem
can be transformed into a Weighted Cluster Editing problem.

Fixed Parameter Tractability

Algorithms based on FPT theory often use a recursive algorithm that decreases
the fixed parameter k for every recursive call. The run time of these algorithms
depends on how much k can be reduced in each recursive call. This can be
easily represented by a branching vector. For example an algorithm that always
has two recursive calls, where k decreases by 1 and 2 would have branching
vector (1, 2). From the branching vector it is possible to calculate the branching
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Figure 1: Examples of an unweighted graph A, the corresponding weighted
graph B and two solutions to this graph C and D, both with cost 3. The
clusters are shown in blue and the required edge modifications are shown in red.

number x using the corresponding polynomial x = x−1 + x−2, this example
gives us x ≈ 1.62. Using this branching number and assuming every step takes
constant time we can conclude that the algorithm has complexity O(xk).

Conflict Triples

A conflict triple in a weighted graph is a set of three vertices between which the
edges are not transitive. This means that two of the edges have positive weight,
and one edge has negative weight. If a graph contains three vertices like that
it is impossible for there to be a cluster editing solution with cost zero. The
opposite is not true, if there are no conflict triples it does not mean that there
is a solution with cost zero. This is because zero edges can be required to be
positive by one triple of vertices and negative by another triple of vertices.

Formally the set of all conflict triples is:

C = {t ∈
(
V

3

)
: (∃e ∈

(
t

2

)
)[w(e) < 0] ∧ |{e ∈

(
t

2

)
|w(e) > 0}| = 2}

The cost of a conflict triple is equal to the smallest edge weight that is part
of the triple:

c(t) = min
e∈(t

2)
|w(e)|

A conflict triple packing is a set of conflict triples of which the combined
cost gives a lower bound on the cluster editing cost. Some examples are the
vertex disjoint packing in which no conflict triples share a vertex. And the edge
disjoint packing in which no conflict triples share an edge.

Kernelization

A final concept is kernelization [6]. This technique has the goal of reducing
the problem size while possibly also reducing the solution cost. All forms of
kernelization also allow finding the optimal solution to the original problem
using the optimal solution to the reduced problem. In the context of cluster
editing, the kernel size is the maximum number of vertices of the reduced graph.
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For example, a kernel size of 2k means that |V ′| ≤ 2k′ , where V ′ are the vertices
of the reduced graph, and k′ is the minimum cost of a solution to the reduced
graph.

3 Algorithm

The implementation in this paper makes use of the cut and merge operations
from the theory [2]. This is different from the approach used by some other
implementations that only mark edges as permanent or forbidden [7]. Merging
vertices has the advantage of reducing the graph size. And simple rules like
adding a third permanent edge when there are two permanent edges is unnec-
essary. Furthermore a lot of cost can already be counted when merging vertices
which improves the lower bound. The downside is that merging brings with it
some complexity, because the graphs it works on have to be weighted.

Another possible difference with prior work is that this paper uses a branch
and bound search instead of trying increasing values for k. This means that the
algorithm starts with as upper bound the cost of a trivial solution and every
time it finds a better solution the upper bound is decreased. Whenever the
algorithm finds a branch for which the lower bound is equal to or greater than
the upper bound it will skip that branch.

Representation

The graph is stored as an adjacency matrix, from a few tests this was faster
than an adjacency list and it is also easier to implement. Of course this does
mean that the algorithm requires more space, but this is not a problem for the
instances tested. And we still have the same worst case space complexity of
O(v2 + |P |) for the whole algorithm.

The adjacency matrix is intentionally made to store up to twice as many
vertices as there are in the initial graph. This extra space is used for merged
vertices such that no further allocations need to be made. For quick iteration
there is an additional unsorted list that contains the indices of the active vertices.

Again, during the search no allocations are made. When cutting an edge,
the weight is replaced and the original edge weight is stored on the stack. When
merging two vertices, the vertex indices get removed from the active list and
a new index is added that points to a new row of the adjacency matrix that
gets initialized. To undo cutting an edge, the edge in the adjacency matrix is
replaced by the edge on the stack. And to undo merging of two vertices, the
merged vertex index is removed from the active list and the two original indices
are added back. When a new optimal solution is found, the relevant part of the
solution gets copied over the previous best solution.

The space requirement for the whole search is O(v2 + |P |). Of which O(v2)
space to store the graph that is being edited. O(v) space to store the solution.
O(v2) space on the stack to store the modifications made to the graph so that
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Figure 2: A: Edge disjoint conflict triple packing can not reuse edges and the
maximum packing has a cost of one. B: Cost disjoint conflict triple packing can
reuse the edges with weight two and the maximum packing has a cost of three.

they can be undone. And O(|P |) space to store the conflict triple packing, |P |
is at most v3.

Cost Disjoint Packing as Lower Bound

Edge disjoint conflict triple packing is an effective method to get a lower bound
for the cost of cluster editing unweighted graphs [5]. The same lower bound can
be calculate on weighted graphs by summing the cost of the conflict triples in
the packing. However for weighted graphs a better lower bound is available. It
is possible to generalize unweighted edge disjoint packing to weighted conflict
disjoint packing, which can give a better lower bound as can be seen in Figure
2.

The idea is that an edge with weight w(e) can be part of multiple conflict
triples t from a packing P if the total cost of those triples c(t) is less than or
equal to the absolute weight of the edge:

(∀e∈E)[|w(e)| ≥
∑

t∈P :e∈(t
2)

c(t)]

The sum of the cost of the conflict triples in this packing is guaranteed to give a
lower bound, because it is impossible to resolve multiple conflicts in this packing
without using at least their combined cost:

lower =
∑
t∈P

c(t)

One important observation is that the order in which conflict triples are se-
lected can have influence on the lower bound and thus changes the performance.
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To quickly know which edges have already been used and how much, there is
an extra integer stored for every edge.

Deletion Triples as Upper bound

In order to get an upper bound we need to have a solution. One way to get a
solution is to separate all vertices that have an edge between them with weight
zero or less. We can give an upper bound on the cost of this by looking at deletion
triples. These are very similar to conflict triples except they also include triples
where two edges are positive and one edge is zero:

D = {t ∈
(
V

3

)
: |{e ∈

(
t

2

)
: w(e) > 0}| = 2}

The cost of a deletion triple is the minimum of the positive edges:

d(t) = min
e∈(t

2):w(e)>0
w(e)

The upper bound is then given by the sum of the cost of all deletion triples:

upper =
∑
t∈D

d(t)

This upper bound is not proven correct, but for the rest of the paper this is not
necessary. What is important is that if there are no deletion triples, the graph
has been solved. This can be seen because in that case there is a trivial solution.
All edges inside the clusters will have positive weight and all other edges will
have zero or negative weight.

Heuristic Edge Selection

The choice of which edge to branch on is extremely important for the perfor-
mance of the implementation. Two things to consider are which edge brings the
lower and upper bound closest together and which edge is most likely to require
an edit. In the implementation is made use of three heuristics that try to bring
the upper bound down. However these heuristics also turn out to select edges
that are likely to require editing.

The first heuristic selects the edge e that is part of the most deletion triples.

heur1 = maxe|{t ∈ D : e ∈
(
t

2

)
}|

The second heuristic selects the edge e that has the highest contribution to
the deletion triple upper bound.

heur2 = maxe

∑
t∈D:e∈(t

2)

d(t)
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The third heuristic selects the edge e that is part of the most deletion triples
where the other two edges are expensive.

heur3 = maxe

∑
t∈D:e∈(t

2)

minf∈(t
2):f 6=e|w(f)|

For all these heuristics if not a single edge gets a value more than zero,
that must mean that the graph has been solved. If at least one edge gets a
value greater than zero, then the edge with the highest value is merged if its
edge weight is less or equal to zero and cut when its weight is more than zero.
This makes sense intuitively because this resolves the conflicts that the heuristic
indicates.

Interesting to note is that in case the upper bound is correct, it is also
possible to subtract the lower bound contribution in a packing P of each edge
from the upper bound as a heuristic.

maxe

∑
t∈D:e∈(t

2)

d(t)−
∑

t∈P :e∈(t
2)

c(t)

However, this does not improve the performance on the tested instances. Most
likely this is because removing an edge that was contributing to the lower bound
does not necessarily reduce the lower bound. The cost could be moved to another
edge.

Connected components

Connected components can be found with a simple flood fill in time O(v2).
Because the implementation uses a list of active vertex indices it is very easy to
deactivate part of the graph and solve a sub-graph. This has no performance
penalty because there is no need for a copy of the graph components and the
active list was already needed to deactivate merged vertices.

Kernelization and Reduction Rules

The 2k kernel from [6] was implemented and evaluated on the input graphs from
PACE, but this did not reduce most of the instances. This is most likely because
most PACE instances have less than 2k vertices. Also a few simple reduction
rules on conflict triples from [11] did not reduce most instances. Using these
reduction rules during the search was not tested.

Some other reduction rules that can be used for cluster editing:
On unweighted graphs:

1. Vertices that have at most one common neighbour do not have to be
connected [10].

2. Vertices that have the same closed neighborhood have to be connected [1].

On weighted graphs:
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1. If cutting out one of the vertices next to a negative edge costs less or the
same as adding the edge, then the two vertices never have to be connected
[3].

Interestingly, none of these reduction rules seem to have any effect on the
performance of the algorithm. This is most likely because the reduction rules are
somewhat implied by the heuristic edge selection. For example the rules on the
unweighted graphs apply to vertices with one or zero conflicts. These will almost
never be selected by the heuristic and are thus not modified in compliance with
the rules.

The parameter dependent (k+1) reduction rule from [7] is applied implicitly
because the algorithm selects edges that are part of many conflicts. If adding
or removing the selected edge brings the lower bound up to the current upper
bound, then the branch is skipped in compliance with the (k + 1) rule.

Runtime complexity

For reference, basic operations have the following complexities, where v is the
number of vertices. The time complexities for undoing these operations are the
same.

• Merge two vertices: O(v)

• Cut edge O(1)

• Calculate conflict triple packing O(v3)

• Update conflict triple packing O(v2)

• Select edge to branch on O(v2)

• Split into connected components O(v2)

Notice that calculating the conflict triple packing only needs to be done at
the start of the search. After that the conflict triple packing can always be
kept synchronised by updating. Thus all operations that are required during
the search are O(v2).

4 Experiments

In this section we will show the results of some experiments with alternative
implementations and to show the significance of the different features.

The experiment in Figure 5 was executed on an Intel Core i7-3770 and
includes the non exponential parts of the algorithm like loading the graph. All
other experiments were run on an AMD Ryzen 5 5600X and the times in those
experiments only include the exponential part of the algorithm.
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Figure 3: Algorithm run-time using incremental lower bounds relative to recal-
culating lower bounds.

Incremental Lower Bound

There are two implementations of the lower bound calculation. The first version
just recalculates the lower bound for every branch, this takes time O(v3). And
then there is the incremental version that updates the previous lower bound,
which takes time O(v2). Figure 3 shows that while recalculating the lower bound
is faster for instances with low vertex count, the incremental calculation is faster
for larger graphs.

Another interesting observation that can be made about Figure 3 is that for
a fixed number of vertices, higher instance numbers seem to benefit more from
incremental lower bound updates. This is possible because PACE instances are
sorted first by vertex count and then by edge count. It is not clear why instances
with higher edge count would benefit more from incremental updates.

No Lower Bound

We also conducted a small test to see what the performance without lower bound
was like. In that case not a single branch of the search tree is skipped, the result
of this can be seen in Figure 4. Only the first six instances are shown because
the algorithm without lower bound timed out for the bigger graphs.
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Figure 4: Performance without lower bound.

Comparison of heuristics

The three implemented heuristics were compared in performance. heur1 per-
forms pretty good overall and is what is used in all the other benchmarks. heur2
is slightly worse than heur1 for every instance except instance 33, where it is
much worse. Finally heur3 is again slightly worse for most instances, but it is
much better than the two other heuristics on instance 21. It also performs the
best on instance 33 where heur2 failed. Because all three heuristics have such
similar performance, Figure 6 has been placed in the appendix.

Connected components

The implementation can split the input graph in connected components only at
the start or for every branch. Splitting the graph into connected components
for every branch visited does not significantly change the performance. This
could mean that splitting is really fast or that the speed-up from the smaller
search tree counteracts the overhead. Because the two approaches are so similar
in performance, Figure 7 has been placed in the appendix.

Comparison with MaxSAT solver

The implementation from this paper was compared to a MaxSAT based solver
from [9]. The results are shown in Figure 5. While the implementation from this
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Figure 5: Performance comparison with MaxSat based solver.

paper is much faster for simple graphs. The algorithm as presented does not
seem to scale well to harder instances when compared to the MaxSAT solver,
which is much faster on hard instances. The MaxSAT based solver can also
solve more instances, this is not shown in the graph.

The first reason for the difference in performance is most likely that the
MaxSAT solver needs more time to start and thus performs worse on easy
graphs. However some hard graphs like instance 13 are solved faster by the
implementation from this paper. This might be because the reductions used by
the MaxSAT solver are not effective on this instance and the implementation in
this paper is really fast at traversing the search tree.

5 Responsible Research

This work should be fully reproducible by downloading the implementation
source from GitHub1 and the exact track public problem instances from the
PACE website2. The source can be build with Rust 1.53.0. The MaxSAT solver
that is compared to is from [9].

1https://github.com/LHolten/Cluster-Editing
2https://pacechallenge.org/2021
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6 Conclusion and Future Research

The presented data-structure for vertex merging and accompanying cluster edit-
ing algorithm can be useful to implement other fast algorithms for cluster edit-
ing. This paper furthermore shows a powerful generalization of a lower bound
to weighted graphs. It is shown that a lower bound is extremely important for
the search. The choice of heuristic for choosing an edge to branch on is not triv-
ial, and there are multiple heuristics that work. Further connected components
can be applied during the search, but this does not seem to make a difference.
Finally the source code is available on GitHub and can be used as reference
material for future research.

Future research might be directed at finding the differences between the
graphs and improving the heuristic or lower bound. A good candidate for the
lower bound would be to use the edge deletion algorithm from [8] on a relaxed
version of the graph. Another option is to try to improve the MaxSAT solver
to be as fast as the implementation from this paper on all graphs.

It would also be interesting to see if it is possible to exploit the similarity
between the branches that are searched in a dynamic programming fashion. This
could improve the performance substantially because searching those branches
repeatedly is the time consuming part of the algorithm.

A Appendix
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