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a b s t r a c t 

Real-time hydraulic modelling can be used to address a wide range of issues in a foul sewer system and 

hence can help improve its daily operation and maintenance. However, the current bottleneck within 

real-time FSS modelling is the lack of spatio-temporal inflow data. To address the problem, this paper 

proposes a new method to develop real-time FSS models driven by water consumption data from as- 

sociated water distribution systems (WDSs) as they often have a proportionally larger number of sen- 

sors. Within the proposed method, the relationship between FSS manholes and WDS water consumption 

nodes are determined based on their underlying physical connections. An optimization approach is sub- 

sequently proposed to identify the transfer factor k between nodal water consumption and FSS manhole 

inflows based on historical observations. These identified k values combined with the acquired real-time 

nodal water consumption data drive the FSS real-time modelling. The proposed method is applied to 

two real FSSs. The results obtained show that it can produce simulated sewer flows and manhole water 

depths matching well with observations at the monitoring locations. The proposed method achieved high 

R 2 , NSE and KGE (Kling-Gupta efficiency) values of 0.99, 0.88 and 0.92 respectively. It is anticipated that 

real-time models developed by the proposed method can be used for improved FSS management and 

operation. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Sewer networks are traditionally designed to collect wastewa- 

er from residential, commericaland/or industrial clients or possi- 

le stormwater from urban surfaces due torainfall events. Collected 

astewater is transported then downstream to wastewater treat- 

ent plants (WWTPs) or released directly into rivers ( Bailey et al., 

019 ). These sewer networks are often called combined sewer sys- 

ems (CSSs), which have been widely used in large cities around 

he world ( Li et al., 2014 ). In recent years, there is a growing trend

n separating CSSs into independent storm drainage systems and 

oul sewer systems (FSSs, Schilperoort et al., 2013 ). The former are 

sed to convey urban runoff solely to surface water bodies (e.g., 

ivers) and the latter deliver sewerage collected from houses and 

ommercial buildings before being conveyed to treatment facili- 
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ies. Such a separation is mainly driven by the purpose to improv- 

ng urban water environments as combined sewer overflows (CSOs, 

lack and Endreny, 2006 ) would inevitably threaten the ecological 

ealth of the receiving water (Joseph-Duran et al., 2015). 

Over the past decade, many FSSs around the world have experi- 

nced significant changes due to population growth and quick ur- 

anization, which is especially the case in many developing coun- 

ries such as China ( Sweetapple et al., 2018 ). These changes are 

ainly represented by the expanded spatial scales of FSSs, the 

ncreased complexity in their topology structures and the aged 

ystems ( Rokstad and Ugarelli, 2015 ; Huang et al., 2018 ). This, 

onsequently, results in significant challenges/difficulties for effec- 

ive FSS management and operation,and hence many issues exist 

 Garda et al., 2016 ). A typical issue is the deposits in the FSSs,

ncluding sediments ( Seco et al., 2018 ), fat, oil and grease(FOG, 

iu et al., 2016 ) and toilet papers ( Eren and Karadagli, 2012 ). All

hose deposits can directly affect flow capacity of the sewers, caus- 

ng overflows from CSOs and manholes as well as potential water 

uality issues (e.g, odor issues, Liu et al., 2016 ; Talaiekhozani et al., 

016 ). Another common issue is the illicit discharges from lo- 

al factories ( Irvine et al., 2011 ; Banik et al., 2017 ), where these
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ischarges often contain toxic substances (e.g., heavy metals) that 

re often beyond the processing capacity of the downstream 

WTPs. This, therefore, can result in functional failures of WWTPs 

nd consequently significant contamination of the receiving wa- 

er body ( McCall et al., 2016 ). In addition to issues of deposits

nd illicit discharges, leaks of the sewers, groundwater infiltra- 

ion and illicit connections between FSSs and stormwater pipes 

re frequently reported, inducing serious contamination to the sur- 

ounding water environments ( Lepot et al., 2017 ; Beheshti and Sae- 

rov, 2019 ). 

The issues mentioned above have appreciably affected the ur- 

an water environments due to the resultant overflows from 

SOs/manholes and leaks of FSSs. One way to address these issues 

s the placement of sensors within the FSS to monitor the water 

epths and sewer flows, thereby triggeringa warning when the ob- 

ervations are significantly higher or lower than the historical data 

 Ahm et al., 2016 ). However, due to the high purchase cost and

ntensive maintenance efforts associated with these sensors, the 

onitoring network is often sparse for the majority of the FSSs 

 Kleidorfer et al., 2012 ). Consequently, a warning associated with 

he potential issues (e.g., overflows or leaks) can be only available 

or the very limited number of FSS locations in the proximity of 

ensors. In addition, the abnormal observations at the monitoring 

ocations may be caused by sudden discharges increases caused by 

he water users, rather than the illicit discharges, resulting in a po- 

entially high likelihood of false warning ( Koch et al., 2011 ). More 

mportantly, relying solely on the observations from the sewer sen- 

ors cannot offer predictions on the hydraulic status of the entire 

SS in future ( Bruen and Yang, 2006 ). To this end, real-time sewer

ydraulic modelling can be promising in addressing the issues as- 

ociated with the FSSs as mentioned above, where the hydraulic 

ariables such as water depths and sewer flows across the entire 

SS are simulated in real-time. These simulations, combined with 

bservations at the monitoring locations, can be used to deduce 

hether leaks, illicit discharges, deposits and illicit connections ex- 

st in the FSS, as well as facilitate the localization of such events. 

Manhole inflow data (i.e., sewer discharges of the water users) 

t a high time resolution (say every 30 minutes) is the key to en-

ble the development of a real-time FSS hydraulic model. However, 

ischarge data of such a high temporal and spatial resolution are 

ypically unavailable in engineering practice, resulting in a large 

hallenge for real-time modeling of FSS ( Breinholt et al., 2013 ). 

o deal with this problem, a widely used approach is to calibrate 

 model to estimate manhole inflows with the aid of limited in- 

ewer observations ( Korving and Clemens, 2005 ). While some cali- 

ration methods are available in the literature (e.g., di Pierro et al., 

005 ; Khu et al., 2006 ; Broekhuizen et al., 2020 ), they mainly fo-

us on calibrating the underlying rainfall-runoff relationship for 

he combined sewer systems in an off-line manner, thereby pre- 

icting the floods or sewer overflows caused by rainfall. These pre- 

iously published methods, therefore, cannot be used or at least 

re difficult to estimate FSS manhole inflows in real-time. 

The real-time management of the FSS has received great at- 

ention over the past few decades, with the main focus on 

ystem real-time control based on observations ( Schütze et al., 

002 ; Sara et al., 2020). More specifically, real-time control is 

efined as a timely operation of an FSS based on continuously 

onitored process data. Those data are water levels and sewer 

ows in the system, with operations including the activation of 

umps, sluice gates and weirs used to improve system perfor- 

ance (e.g., reduce the overflows, Schütze et al., 2003 ). How- 

ver, these real-time control studies operated the hydraulic facil- 

ties (e.g., pumps) with the aid of system observations rather than 

SS simulations, and hence they differ significantly from the real- 

ime FSS hydraulic modelling, which is the aim of the present 

tudy. 
2 
The main difficulty associated with the calibration of FSS man- 

ole inflows based on the limited number of monitoring sites is 

he “equifinality” ( Khu et al., 2006 ). More specifically, a large num- 

er of manhole inflow combinations can produce similar agree- 

ents between simulated and observed water levels at monitoring 

ocations. As a result, it is very difficult, if not impossible, to iden- 

ify a particular parameter set (i.e., manhole inflow combination) 

hat can represent the true underlying spatial distribution of the 

ischarges from water users into the FSS. 

To address the “equifinality” issue, this paper proposes a new 

ethod to enable the development of real-time FSS hydraulic 

odel. Within the proposed method, the FSS model is integrated 

ith its corresponding water distribution system (WDS) hydraulic 

odel for the same area being considered. Such a model integra- 

ion approach is possible as the WDS models have already been 

idely used ( Walski et al., 2003 ). In addition, the number of sen-

ors (e.g., smart demand meters, pressure sensors and flow meters) 

eployed in the WDSs can be large, which is, at least partly, driven 

y the quick developments of the Internet of Things in recent years 

 Zheng et al., 2018 ). Such a dense sensor network can greatly facil-

tate the estimation of real-time nodal water consumption for the 

DS models as demonstrated in previous studies ( Creaco et al., 

019 ). This is especially the case in recent years as smart demand 

eters have been increasingly used in many WDSs, providing wa- 

er consumption data for many users (not only large users but also 

esidential users) in a real-time manner (typically every 15 or 30 

inutes, Creaco et al., 2018 ). Such near real-time and high-density 

patial water consumption data can be assimilated with the lim- 

ted in-sewer observations to develop a real-time FSS hydraulic 

odel. This is the key feature and novelty of the method presented 

n this paper. 

The concept of incorporating water consumption data into FSS 

odeling can be dated back to Bruke et al. (1986) , where an FSS

odel was calibrated using monthly water use records. More re- 

ently, Bailey et al. (2019) presented a new FSS model, where the 

tochastically simulated water demands were imported into the 

ewer networkmodel. While these limited previous studies have 

ade great contributions in assimilating water use records into FSS 

odelling (mainly used for FSS design purpose), the water con- 

umption data used are either collected manually at a very low 

ime resolution (e.g., monthly, Bruke et al., 1986 ) or provided by a 

tochastic simulator ( Bailey et al., 2019 ). Consequently, these data 

annot represent the true underlying temporal and spatial varia- 

ions of the manhole inflows. Therefore, they cannot be used to 

evelop real-time FSS models, which is the focus of this study. 

The key feature of the proposed method is that the real-time 

SS model is developed using a large number of existing sensors 

ithin the WDSs. This implies that it is not necessary to deploy a 

arge number of sewer sensors (which is often very expensive in 

erms of both sensor purchases and maintenance) to enable real- 

ime sewer modelling, making the proposed method attractive for 

ractical applications. This paper is organized as follows. The pro- 

osed methodology is described in Section 2 , followed by the de- 

criptions of the case studies considered in Section 3 . Results and 

iscussions are given in Section 4 . Finally, the conclusion section 

 Section 5 ) shows the main observations and implications of this 

aper. 

. Methodology 

.1. The overall modelling concept 

Fig. 1 illustrates the overall concept of the proposed method, 

here a foul sewer system (FSS) and a water distribution system 

WDS) for a small area are presented. Typically, raw water from 

eservoirs or rivesis pumped into the water treatment plants in 
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Fig. 1. An illustration of the concept for the proposed modelling method, where a water distribution system and a foul sewer system are presented. 
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rder to improve water quality to a required standard ( Wu et al., 

011 ). Subsequently, the treated water isconveyed to the WDS, sat- 

sfying demands for various users including residents, schools, hos- 

itals, industrial and commercial buildings, as shown in Fig. 1 . To 

nsure water supply safety, sensors are often deployed in the WDS 

 Fig. 1 ), including pressure sensors, flow meters and smart demand 

eters. The latter have been increasingly being deployed in recent 

ears to monitor water consumptions for the users in a near real- 

ime manner ( Creaco et al., 2018 ). 

Consequently, such a dense sensor network enables the devel- 

pment of real-time WDS modelling, which has been an important 

rend within the water supply domain (both research and industry) 

ue to its great merits in facilitating effective system management 

s highlighted in Creaco et al. (2019) . 

Inherently, local residents or commercial/industrial users dis- 

harge sewage after water consumption as illustrated in Fig. 1 . 

ewer pipes collect and convey the sewage to downstream 

astewater treatment plants, with a limited number of water 

epth or sewer flow sensors installed to monitor hydraulic state 

f the system. Consequently, the following equation can be used to 

epresent the underlying relationship between water consumption 

nd sewage discharge for user i : 

 i = F ( q i , k i , t i ) (1) 

here d i is the sewer discharge rate of user i (i.e., manhole in- 

ow rate) resulting from its water consumption q i taken from the 

DS, t i represents the time delay, i.e., the time between the clean 

ater entering the user property and the time it reaches the lo- 

al sewer network, k i is the transfer factor for user i , represent- 

ng the proportion of supplied water that ends up in the lo- 

al sewer network; k i typically has a value between 0.7 and 1.0 

 Behzadian and Kapelan 2015 ). Equation (1) represents the funda- 

entalrule/assumption in the proposed method used tobuild the 

onnections between the WDS water consumption data and the 

SS manhole inflows. 

Fig. 2 presents the overall methodology of the proposed 

ethod, with two modules involved.The first module consists of 

hree phases, which are carried only once in an offline manner, 

nd the second module involves only the fourth phase (Phase 4) 
3 
f the proposed method, which runs in real-time. The details are 

iven below. 

Phase 1: Integrate the WDS and FSS models (carry out once). 

Within this phase, the FSS and WDS models are developed 

withhydraulic facility information (e.g., water supply pipes, 

tanks, sewer pipes) taken from external sources such as 

the GIS or asset management system. This is followed by 

the building of the connections between each WDS demand 

node and the FSS manhole based on the spatial distance 

with details given in Section 2.2 . 

Phase 2: Calibrate nodal water consumptions of the WDS. It 

should be highlighted that the calibration of thenodal wa- 

ter consumptions in Phase 2 is conducted offline, which is 

used to provide data for Phase 3. More specifically, Based 

on a particular time period of historical data from pressures 

sensors, flow meters and smart demand meters deployed in 

the WDS, the nodal water consumption without smart de- 

mand meters are estimated for a given time resolution (of- 

ten equals the time resolution of the flow or pressure sen- 

sors) with details given in Section 2.3 . 

Phase 3: Estimate the transfer factor k for each manhole of the FSS. 

According to the identified relationship between WDS nodes 

and the FSS manholes in Phase 1, as well as the calibrated 

nodal water consumptions in Phase 2, the transfer factor k 

is determined.For this, an evolutionary algorithm(EA) is ap- 

plied with the objective function defined in Eqs. (9 - 13 ) and 

using sewer observations, with details given in Section 2.4 . 

Phase 4: Model the FSS in a real-time manner. Data from pressure 

sensors, flow meters and the available smart demand me- 

ters in the WDS are acquired at current time t . These data 

are used as the inputs for the real-time WDS modelling to 

estimate water consumption for each node ( q i ) within the 

WDS ( Section 2.3 ). Eq. (1) is subsequently used to update 

the manhole inflows d i based on the known q i and identified 

k values (Phase 3). Finally, the FSS is modelled by updating 

manhole inflows d i in real-time. This offers short-term hy- 

draulic predictions (water depths at manholes and flow rates 

in sewer pipes) of the entire FSS with a particular time res- 

olution (if say every 30 minutes used in this paper). 
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Fig. 2. The overall methodology of the proposed method. 

m

 

It is noted that a few assumptions are made in the proposed 

ethod, with the justification given below. 

(i) Given that the proposed FSS real-time modelling method is 

driven by water consumption data from the WDS, the num- 

ber of available smart demand meters in the WDS is impor- 

tant to ensure the high accuracy of the FSS simulations. For 

the two case studies considered in this paper, the number of 

smart demand meters is reasonably high, making them per- 

fectly suited for the demonstration of the proposed method. 

However, some WDSs may have relatively low coverage of 

the smart demand meters (e.g., only installed for large de- 

mand users). While such a case would not affect the ap- 

plication of the proposed method, the accuracy of the WDS 

nodal water consumption values and the FSS real-time simu- 

lations can be affected. However, it is anticipated that smart 

demand meters areincreasingly used by water utilities as a 

result of the quick developments in the Internet of Things 

( Zheng et al., 2018 ; Creaco et al., 2019 ), and hence the ap-

plicability of the proposed method is only going to grow. 

(ii) The proposed method assumes that observations from the 

WDS and FSS sensors (including smart demand meters) are 

accurate within the applications in this study. However, in 

reality, observation errors can exist due to the sensor mal- 

functions or signal transmission issues. Therefore, it is nec- 

essary to incorporate the potential observation errors into 

the modelling framework. Although that is an important 
4 
study direction, it is beyond the scope of the paperand will 

be the focus of future work. 

(iii) As shown in Eq. (1) , the time t i implies that the nodal water 

consumption q i estimated at time t using the smart demand 

meter or the real-time calibration method ( Section 2.3 ) 

should correspond to the manhole inflow at time t + t i . The 

value of t i can be dependent on the particular user proper- 

ties, including the characteristics of the water supply area 

associated with the demand node, as well as the physi- 

cal characteristics (e.g., length and slopes) of the connect- 

ing sewer pipes between users and the corresponding man- 

holes. In this study, t i is ignored as this value is typically 

small, ranging from several minutes up to 15 minutes for 

many cases ( Wu et al., 2011 ). This assumption is considered 

valid in our study as the time resolution used for real-time 

FSS modelling in this paper is lower (i.e., 30 minutes). 

(iv) In this study, a linear transfer function with a constant fac- 

tor of k is proposed to describe the underlying relationship 

between nodal water consumption and manhole inflows. 

While being simple in practical implementation, the trans- 

fer function and the k factor can be affected by not only the 

time delay t i in Eq. (1) , but also the infiltration inflows and 

the properties of water users. More specifically, the transfer 

function may be different between the water users with or 

without smart demand meters, and the k factor may vary 

temporally, or even vary as a function of change in the type 
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Fig. 3. Illustration of the proposed integration method for FSS and WDS model de- 

velopments. 
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of water users. These influences need further consideration 

in future study along this research line. 

.2. Integrate the FSS and WDS models 

Typically, FSS and WDS models are developed with the aid 

f the geographic information system (GIS) or the asset manage- 

ent system for the analyzed area ( Behzadian and Kapelan, 2015 ; 

uang et al., 2018 ). The details (e.g., locations and length) of var- 

ous system components including pipes, tanks, valves and pumps 

an be taken from the GIS. This is often followed by system skele- 

onization in which many facilities (mainly small pipes) are re- 

oved or simplified without significantly affecting the hydraulic 

roperties of the original full system (Huang et al., 2020). To en- 

ble the practical application of Eq. (1) , it is important to build the

onnection between each demand node i, representing the water 

onsumption in the WDS model, and the manhole, representing 

he facility to collect the sewages in the FSS model. Such a con- 

ection indicates that the consumptionat the demand node i is re- 

eived by its associated manhole. To this end, the WDS and FSS 

odels are integrated within their development processes in this 

tudy. 

Fig. 3 illustrates the proposed integration method, where a wa- 

er demand node in the WDS model is assigned to the manhole 

f the FSS model within a shortest distance from each other. The 

ationale behind this is that manholes are often built near the wa- 

er users (nodes in the WDS model) to collect their sewerage dis- 

harges. Consequently, two cases are available as shown in Fig. 3 , 

hich are (i) one demand node is assigned to a manhole, and (ii) 

ultiple demand nodes are assigned to a single manhole. In addi- 

ion to these two relatively simple cases, in practice, one demand 

ode can be associated with multiple manholes, which is possi- 

le when this demand node represents many users. However, it 

s difficult to determine the proportion of the total discharge as- 

ociated with each relevant manhole. For the sake of simplicity, a 

ingle manhole with the minimum spatial distance to this demand 

ode is selected to deliver the total discharge. While such a sim- 

lification can cause an unrealistic hydraulic status in a very small 

rea relative to the original full system, its impact on the overall 

esults can be negligible. Since each demand node (say node i ) in 

he WDS is assigned to a particular manhole in the FSS model, 

he water consumptionof this node ( q i ) is considered as the ap- 

roximate manhole inflows ( d i ). Their underlying flow relationship 

eeds to be further accurately determined with the incorporation 

f the transfer factor k as shown in Eq. (1) . 
i 

5 
It is noted that when a higher level of accuracy is neededfor a 

ractical application, individual water consumption and sewer con- 

ections could be identified if required. This will lead to a slight 

odification on the WDS and FSS model topologies, which can 

etter reflect the flows of supplied drinking water and generated 

astewater by different users. 

.3. Calibrate nodal water consumption based on historical 

bservations 

Based on the built connections between each WDS node and its 

orresponding FSS manhole as described in Section 2.2 , nodal wa- 

er consumption is the driver for triggering the real-time FSS mod- 

lling. In the WDSs, many smart demand meters can be available, 

roviding near real-time water consumption data (if say every 15 

inutes or 30 minutes) for WDS nodes (users), especially for water 

sers with large demand. However,in practice, it may not be nec- 

ssary to have smart meters installed at each demand node, and 

ence this study adopts a calibration method to enable the esti- 

ation of water consumption at the nodes without smart demand 

eters. 

In this study, the numerical approach described in 

hang et al. (2018) is selected to calibrate the nodal water 

onsumptions due to its demonstrated efficiency. The objective 

unction of this adopted numerical method is formulated as the 

eighted sum of squared differences between the field-observed 

nd model-simulated responses (pressuresand flows) at monitor- 

ng points in the WDS within a particular time period (i.e., the 

ime resolution of the monitoring data), i.e. as follows: 

in : f (q ) = 

NH ∑ 

i =1 

w 

i 
h 

[
H 

o 
i − H i (q ) 

]2 + 

NF ∑ 

j=1 

w 

j 
q 

[
Q 

o 
j − Q j (q ) 

]2 

= 

[
H 

o − H (q ) 
Q 

o − Q (q ) 

]T 

W 

[
H 

o − H (q ) 
Q 

o − Q (q ) 

]
(2) 

here q is the vector of nodal water consumptionsin the 

DS, including known water consumption data at nodes with 

mart demand meters and unknown nodal water consumption 

ata; N H and N F are the numbers of observed nodal pres- 

ures and pipe flows, respectively; w 

i 
h 

and w 

j 
q are the weight- 

ng factorsfor observed pressuresat the i th node and observed 

ows at the j th pipe, respectively, where w 

i 
h 

= 1 / (H 

o 
i 
) 2 and w 

j 
q = 

 / (Q 

o 
j 
) 2 are used in this study following Kun et al. (2015) and 

hang et al. (2018) . H 

o 
i 

and H i (q ) are the observed and sim- 

lated pressures at the i th node respectively; Q 

o 
j 

and Q j (q ) 

re the observed and simulated flowsat the j th piperespec- 

ively. Eq. (2) can be expressed in the matrix form (see above) 

y using H 

o = [ H 

o 
1 
, H 

o 
2 
, ..., H 

o 
NH 

] T , Q 

o = [ Q 

o 
1 
, Q 

o 
2 
, ..., Q 

o 
NF 

] T , H (q ) = 

 H 1 (q ) , H 2 (q ) , ..., H NH (q ) ] T , Q (q ) = [ Q 1 (q ) , Q 2 (q ) , ..., Q NF (q ) ] T , and 

 = diag([ w 

1 
h 
, w 

2 
h 
, ..., w 

NH 
h 

, w 

1 
q , w 

2 
q , ..., w 

NF 
q ]) . 

Expanding Eq. (2) through the first-order Taylor series: 

f (q + �q ) ≈
[
�H − J H �q 

�Q − J Q �q 

]T 

W 

[
�H − J H �q 

�Q − J Q �q 

]
(3) 

here �H = H 

o − H (q ) and �Q = Q 

o − Q (q ) are the differences

etween the observed and simulated values of nodal pressures and 

ipe flows, respectively; J H = 

∂H (q ) 
∂q 

and J Q = 

∂Q (q ) 
∂q 

are the Jacobian 

atrix with details given in Zhang et al. (2018) . Since Eq. (2) is

 convex function (Kun et al., 2015), the minimum objective value 

f Eq. (2) can be obtained when its first-order derivative ( Eq. (3) )

quals to zero, that is: 

df (q + �q ) 

d�q 

= −2 

[
J H 
J Q 

]T 

W 

[
�H − J H �q 

�Q − J Q �q 

]
= 0 (4) 
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By solving Eq. (4) , �q can be obtained as follows: 

q = 

( [
J H 
J Q 

]T 

W 

[
J H 
J Q 

]) −1 [
J H 
J Q 

]T 

W 

[
�H 

�Q 

]
(5) 

 

s +1 = q 

s + �q 

s (6) 

here s = 0 , 1 , ..., S is the iteration number ( S is the maximum al-

owed number of iterations). It is highlighted that the water con- 

umption at nodes with smart demand meters are known within 

he entire calibration process and hence �q is only considered for 

he nodes without smart meters. To ensure the estimated nodal 

ater consumption valuesare practically meaningful, the domain 

nowledge has been incorporated within the calibration process in 

his study as shown below ( Wu et al., 2010 ): 

 

s +1 
i 

= 

{ 

q min 
i 

, if q s +1 
i 

< q min 
i 

q max 
i 

, if q s +1 
i 

> q max 
i 

q s +1 
i 

, others 

(7) 

here q min 
i 

= (1 − p) × q initial 
i 

and q max 
i 

= (1 + p) × q initial 
i 

are the

inimum and maximum allowed water consumptions at node i 

espectively; p is the percentage generally within 10%~20% in prac- 

ice ( Zhang et al., 2018 ); q initial 
i 

is estimated using 

 

init ial 
i = 

l i 
L T − L M 

( Q T − Q M 

) (8) 

here l i is the length of the pipe associated with node i ; L T and 

 M 

is the total pipe length of all nodes and the length of pipes 

ssociated with smart demand meters, respectively; Q T is the total 

ater consumption of the WDS over a given time period (e.g., 30 

inutes), which is estimated based on the flow meters installed 

t the outlet of the water treatment plants and volume changes 

n the tanks if available; Q M 

is the sum of the water consumption 

alues measured by the available smart demand meters within the 

DS over a given time period. 

The calibration process at each time period (i.e., the time reso- 

ution of the monitoring data, e.g. 30 minutes) is executed by iter- 

tively updating �q in Eq. (6) until the maximum value of vector 

| �q || is smaller than a given threshold value ε (e.g. ε = 0 . 1 ). The

ntire calibration process is executed again once the monitoring 

ata from sensors are updated, representing a real-time hydraulic 

alibration for the WDS. It is noted that the pipe resistance coeffi- 

ients are not calibrated in a real-time manner as these values are 

ot likelyto changeover a short time period (Kun et al., 2016). 

.4. Estimate the transfer factor k for each FSS manhole 

As stated in Eq. (1) , the nodal consumption data determined 

n Section 2.3 ( q i ) cannot be directly taken as the manhole in- 

ows ( d i ) due to the inevitable loss during the transporting process 

ithin the facilities of the users ( Behzadian and Kapelan, 2015 ). In 

his study, a transfer factor k i is used to represent the proportion 

f water consumption used by node i that has been collected by 

ts corresponding manhole. Such a factor can vary as a function 

f the properties of the water users, such as user types (commer- 

ial users or common resident users) and habits of water usages 

 Bailey et al., 2019 ). Therefore, the transfer factor needs to be cali-

rated for each demand node based on the nodal water consump- 

ion data and the sewer observations (e.g., sewer flow rates or wa- 

er depth in the manholes) in the FSS. In this study, the transfer 

actor k i associated with each demand node is considered to be 

pproximately constant over time because the user properties are 

verall constant over a short time period ( Bailey et al., 2019 ). 

To calibrate the transfer factor K = [ k 1 , k 2 , ... k n ] 
T of the entire 

SS with a total of n manholes with external inflows, the following 

bjective function is defined, 
6 
in : F (K ) = 

T ∑ 

t= T w 

( 

M ∑ 

i =1 

[
g 
(
h o i (t) 

)
− g 

(
h s i (t) 

)]2 + 

N ∑ 

j=1 

[
g 
(

f o j (t) 
)

− g 
(

f s j (t) 
)]2 

) 

(9) 

h 

s 
i , f 

s 
j 

]
= 

[
h s i ( t 1 ) , h 

s 
i ( t 2 ) , ..., h 

s 
i (T ) ; f s j ( t 1 ) , f 

s 
j ( t 2 ) , ..., f 

s 
j (T ) 

]
= F s (D (T )) 

(10) 

 (T ) = 

⎡ 

⎢ ⎣ 

d 1 ( t 1 ) , d 2 ( t 1 ) , ... d n ( t 1 ) 
d 1 ( t 2 ) , d 2 ( t 2 ) , ... d n ( t 2 ) 
................................. 

d 1 (T ) , d 2 (T ) , ... d n (T ) 

⎤ 

⎥ ⎦ 

(11) 

 i (t) = k i × q i (t) (12) 

 

min 
i ≤ k i ≤ k max 

i , i = 1 , 2 , ..., n (13) 

here T is the time period with observations used for FSS 

alibration; T w 

is the warming-up time period for model set- 

ing up ( Guo et al., 2020 ); M and N are the numbers of ob-

erved water depths at the manholes and flow rates in the sewer 

ipes,respectively; h o 
i 
(t) and f o 

j 
(t) are observed water depth at 

anhole i and observed flow rate at sewer pipe j at time t respec- 

ively; h s 
i 
(t) and f s 

j 
(t) are simulated water depth at manhole i and 

imulated flow rate at sewer pipe j at time t respectively; g() is a 

inear function used to convert water depths and pipe flow rates 

nto the same scale, thereby enabling both terms in the right side 

f Eq. (9) are approximately equivalent in terms of the objective 

unction value. 

h 

s 
i 
= [ h s 

i 
( t 1 ) , h 

s 
i 
( t 2 ) , ..., h 

s 
i 
(T )] is a vector representing the simu-

ated water depths of manhole i over the entire time period of T ; 

 

s 
j 
= [ f s 

j 
( t 1 ) , f 

s 
j 
( t 2 ) , ..., f 

s 
j 
(T )] is a vector representing the simulated

ewer flow rates of pipe j over the entire time period of T ; D (T ) is

 T × n matrix, representing the inflows of all manholes across the 

otal time period of T . The values of h 

s 
i 

and f s 
i 

are computed using

 s (D (T )) as shown in Eq. (11) . In this study a simulation package

alled Storm Water Management Model (SWMM, Rossman, 2010 ) 

s employed to calculate h 

s 
i 

and f s 
i 
. In Eq. (12) , d i (t) is the inflow

ate of manhole i at time t , and q i (t) is the water consumption of

ode i at time t determined by real-time WDS modelling as de- 

cribed in Section 2.3 . k min 
i 

and k max 
i 

are the minimum and max- 

mum allowable values of k i , which can be determined by engi- 

eering experience. In this study, the value of k min 
i 

= 0 . 7 is used

or all WDS demand nodes (regardless of whether these are me- 

ered or not). The value of k max 
i 

= 1 . 0 is used for WDS nodes with

mart demand meters, and k max 
i 

= 1 . 3 is used for WDS nodes with-

ut smart meters. This is because water consumptions of nodes 

ithout smart meters are calibrated using the method described 

n Section 2.3 , and hence the identified values can to a certain ex- 

entdeviate from the true water consumption values. To mitigate 

hispotential impact, the maximum value of the transfer factor for 

hese nodes is increased to 1.3. In this paper, an Evolutionary Al- 

orithm (EA, Zheng et al., 2017 ) combined with the SWMM mod- 

lling software is employed to solve the optimization problem de- 

ned in Eqs. (9 - 13 ). While different EAs are available in the litera-

ure, Borg ( Hadkaand Reed, 2013 )methodis used in this study due 

o its well-demonstrated performance in dealing with complex wa- 

er resources optimization problems. Additional algorithm details 

re given in Section 3.2 . 

In the proposed FSS calibration method, manhole inflows are 

onsidered as the only calibration parameters due to their large 

emporal and spatial variations, with which the transfer factor k for 

ach manhole can be estimated. It should be noted that Manning’s 

oughness coefficients of the sewer pipes can also affect the hy- 
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raulics of the FSS. However, previous studies have shown that the 

mpacts of the small to moderate variation in Manning’s roughness 

oefficients of sewer pipes are limited ( Rossman and Huber, 2017 ). 

n addition, the physical pipe properties (e.g., pipe ages and mate- 

ials) that affect the Manning’s roughness coefficient are unlikely 

o vary in a short time period ( Zhang et al., 2018 ) and hence it is

ot considered within the real-time FSS modelling. It is highlighted 

hat the values of K = [ k 1 , k 2 , ... k n ] 
T are calibrated using a particu- 

ar time period of historical water consumption data and in-sewer 

bservations in an offline manner (carried out once as shown in 

ig. 2 ). 

.5. Model the FSS in real-time 

It is noted that Phases 1-3 in Sections 2.2 - 2.4 are carried of-

ine (in the offline module as shown in Fig. 2 ), aimed to identify

he transfer factors between the WDS nodal water consumptions 

nd the FSS manhole inflows. This is followed by the real-time 

SS modelling (real-time module of the proposed method in Fig. 2 ) 

ith the following steps. 

Step 1 : Collect the data from pressure sensors, flow meters and 

the available smart demand meters in the WDS at current 

time t , 

Step 2 : Estimate the water consumption for each WDS node 

without smart demand meters, q i (t) in Eq. (1) , using the 

method described in Section 2.3 (Phase 2) based on the ob- 

servations from Step 1. 

Step 3 : Update the manhole inflow d i (t) based on q i (t) and the

identified transfer factor k in Phase 3 of the offline module 

using Eq. (1) . 

Step 4 : Run the FSS hydraulic model based on the manhole 

inflow d i (t), producing the water depths and sewer flows 

for the entire FSS within the time resolutions (30 minutes 

in this study). This is followed by moving to Step 1 at t = 

t + �t where �t is the time resolution of the FSS modelling 

( �t = 30 minutes in this study). 

.6. Metrics used for performance evaluation 

Five statistical metrics are used in this paper to evaluate the 

erformance of the proposed method in simulating the FSS hy- 

raulic variables. They are the absolute percentage error ( APE ), the 

ean absolute percentage error ( MAPE ), the coefficient of deter- 

ination ( R 2 ), the Nash-Sutcliffe model efficiency ( NSE ), and the 

ling-Gupta Efficiency ( KGE ). These five metrics are selected due to 

heir wide applications in assessing the model performance within 

he water resources domain ( Mu et al., 2020 ). The APE between the

 

th observation Y i and its corresponding simulation ̂

 Y i is defined as 

P E = 

∣∣∣∣Y i − ˆ Y i 
Y i 

∣∣∣∣ × 100% (14) 

AP E = 

1 

n 

n ∑ 

i =1 

∣∣∣∣Y i − ˆ Y i 
Y i 

∣∣∣∣ × 100% (15) 

here n is thetotal number of data points. As shown in 

qs. (14) and (15) , a lower value of APE or MAPE indicate an overall

etter model performance. The R 2 is a goodness-of-fit measure for 

inear regression models, which can be mathematically described 

s ( Gujarati et al., 2009 ): 

 

2 = 

(
n ∑ 

i =1 

(
Y i − ˜ Y 

)(
Y i − Ȳ 

))2 

n ∑ 

i =1 

(
Y i − ˜ Y 

)2 n ∑ 

i =1 

(
Y i − Ȳ 

)2 
(16) 
7 
here Ȳ represents the mean of the observations and 

˜ Y is the 

ean of the simulations. A large value of R 2 represents a better 

odel performance. The NSE is defined as follows ( Nash and Sut- 

liffe, 1970 ), with a larger value implying a better model perfor- 

ance: 

SE = 1 −

n ∑ 

i =1 

(
Y i − ˆ Y i 

)2 

n ∑ 

i =1 

(
Y i − Ȳ 

)2 
(17) 

The KGE metric is mathematically described as follows 

 Knoben et al., 2019 ): 

GE = 1 −
√ 

( r − 1 ) 
2 + 

(
σsim 

σobs 

− 1 

)2 

+ 

(
μsim 

μobs 

− 1 

)2 

(18) 

here r is the linear correlation between observations and simula- 

ions; σsim 

and σobs are the standard deviation in simulations and 

bservations, respectively; μsim 

and μobs are the mean of simula- 

ions and observations, respectively. A large value of KGE means 

hat the simulations can match observations better, with KGE = 1 

epresenting the best model performance. 

. Case studies 

.1. Case study description 

Two real-world FSSs in China, the Benk network (BKN) and the 

iuzhou network (XZN), are selected as case studies to demon- 

trate the utility of the proposed method. These two FSSs are se- 

ected as their associated WDSs have good coverage of monitoring 

ensors, especially the smart demand meters. In addition, BKN and 

ZN respectively represent scales of a relatively small region and 

town, aimed to demonstrate the utility of the proposed method 

n handling the FSSs with differentcom plexity levels. 

BKN consists of one outlet, 64 manholes and 64 sewer pipes 

 Fig. 4 ), delivering the wastewater for the users with water sup- 

lied by a WDS (referred to as WDS-BNK). WDS-BNK is composed 

f one reservoir, 65 nodes and 93 pipes, as well as one flow me- 

er, three pressure sensors and 40 smart water demand meters 

 Fig. 4 ), providing approximately 4,800 m 

3 of water per day. As 

hown in Fig. 4 , one in-sewer flow meter and three water depth 

ensors with a 30-minute time resolution have been installed in 

KN, with an average discharge of about 4,100 m 

3 /day. The dot- 

ed arrow lines in Fig. 4 represent the receiving manhole for each 

emand node determined based on the spatial distances. Observa- 

ions from the WDS-BNK and BNK sensors are recorded for con- 

ecutive 31 days without rainfall or snowfall events in winter with 

 30-minute time resolution. 

The XZN system is a large-scale complex FSS in Jiaxing City, 

ith a total length of approximately 86 km and an average dis- 

harge of about 21,500 m 

3 /day. The layout of the XZN network is 

hown in Fig. 5 , consisting of one outlet, 1,214 manholes and 1,214 

ewer pipes. As shown in Fig. 5 , three flow meters and eight wa-

er depth sensors have been installed in this FSS. The WDS that 

upplies water demands for this area (refereed as WDS-XZN) has 

ne reservoir, one pump station, 1,119 nodes and 1,137 water con- 

umption pipes as shown in Fig. 6 . In the WDS-XZN network, five 

ow meters, eight pressure sensors and 525 smart demand me- 

ers are deployed as illustrated in Fig. 6 . The WDS-XZN network- 

upplies approximately 23,150 m 

3 per day for a population about 

07,500 living in this area within the Jiaxing City. As the same for 

he BKN network, the data from the WDS-XZN and XZN sensors 

re recorded for consecutive 31 days without rainfall or snowfall 

vents in winter with a 30-minute time resolution. 
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Fig. 4. The layout and sensor locations of the BKN case study and its corresponding WDS-BKN. 

Fig. 5. The layout and sensor locations of the XZN case study. 
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.2. Implementation of the proposed method 

The EPANET2.0 and SWMM5.1 ( Rossman, 20 0 0 ; 2010 ) were 

sed as WDS and FSS hydraulic simulation model respectively in 

his study. For both case studies, historical data of the first 17 con- 

ecutive days from WDS sensors with a 30-minute time resolution 

ere used to estimate the water consumptions of nodes without 

mart meters. This led to a total of 816 ( 17 × 24 × 2 ) time peri-

ds with nodal water consumptionsto be calibrated for each WDS. 

hese estimated nodal water consumption data were subsequently 

sed to identify the transfer factors k of the FSS based on sewer 

bservations at the first 17 days. 
8 
The WDS and FSS sewer observations of the remaining 14 days 

 14 × 24 × 2 data points used for model validation) were used to 

un the real-time FSS models with a 30-minute time resolution. In 

ther words, the first set of WDS observations at the validation pe- 

iod (the last 14 days) was considered as the observations at time 

 in the real-time module of Fig. 2 ( �t = 30 minutes), followed by

he execution of the four steps in Section 2.5 . 

For the nodal water consumption calibration, the termination 

rror was set as max (|| �q || ) ≤ 0 . 1 ( Eq. 6 ), the maximum allowed

terations was S = 100 ( Eq. 6 ), and the adjustment range of nodal

ater consumptions was p = 20% for each WDS ( Eq. 7 ). For the

DS-BNK ( Fig. 4 ), observations of the first 17 days from two pres-
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Fig. 6. The layout and sensor locations of the WDS-XZN. 

Fig. 7. The probability density distribution of the errors between observations and simulations for all monitoring locations of the WDS-BKN and WDS-XZN. 
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ure sensors (H1 and H3) and the flow meter F1 were used for 

alibration, and the records of pressure sensor H2 were used for 

alidation. For the WDS-XZN ( Fig. 6 ), observations of the first 17 

ays from H1, H3, H4, H6 and H8 pressure sensors, as well as F2, 

3, F4 and F5 flow meters were utilized for model calibration, and 

he records of H2, H5, H7 and F1 were used for validation. The first 

hree days were considered as the warming-up time period for the 

g

9 
SS model setting up as stated in Eq. (9) , i.e., T w 

= 3 days. The

bservations of the next 14 days were used for FSS model calibra- 

ion, and the remaining observations of 14 days were utilized for 

alidating the performance of the real-time FSS models. The linear 

cale function g() in Eq. (9) for each case study is defined as 

(x ) = 

x − x min 

x − x 
(17) 
max min 
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Fig. 8. Nodal water consumptions of the two WDSs at a typical day with a 30-min time resolution. 

Fig. 9. The density probability distribution of the identified transfer factor k for the 

BKNandXZN case study. 
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here x represents the observed or simulated values at monitoring 

oints; x min and x max are the lower and upper bounds, respectively. 

hese two parameters for each monitoring point are determined by 

nalyzing historical observation data over 14 days (i.e., the calibra- 

ion time period) in this paper. 

The evolutionary algorithm Borg Hadkaand Reed, 2013 ) was se- 

ected to solve the proposed calibration problem defined in Eqs. (9 - 

13) due to its great performance in handling complex urban wa- 

er resources and engineering optimization problems ( Reed et al., 

013 ; Zheng et al., 2016 ). The initial population size of Borg ap-

lied to BKN and XZN case studieswere 500 and 1,0 0 0 respec- 

ively, and the maximum allowable iterations are 50,0 0 0 for both 

ase studies. The default values of the other parameters of Borg 

ere used in this study as they have been validated throughvar- 

ous applications (Wang et al.,2014). Five Borg runs with different 

andom number seeds were applied to each case study, and the re- 

ults showed that the final optimization results were overall simi- 

ar across different runs. Therefore, the results of a typical Borg run 

ere presented to enable discussions for each of the two FSS case 

tudies. 
10 
. Results and discussions 

.1. Calibration results of WDS nodal water consumptions 

For each FSS case study, nodal water consumptions of its as- 

ociated WDS need to be calibrated at each time period, resulting 

n a total of 816 calibration runs using the calibration method as 

escribed in Section 2.3 . The resultant time consumption was ap- 

roximately 25 seconds and 10 minutes for WDS-BKN and WDS- 

ZN systems, respectively, on a PC with a 2.60-GHz Intel Core 

9-7980XE and 2 GB of RAM. Fig. 7 shows the density plot of 

he errors between observations and simulations at the monitor- 

ng locations for both case studies. It is seen that, for the WDS- 

KN case, more than 90% of the absolute errors ( AEs ) is less than

.30m for each pressure monitoring point (including the H2 sen- 

or used for model validation), with the maximum AE being 0.32m 

cross the three pressure monitoring points. In terms of flow, more 

bout 93% of absolute percentage errors ( APEs ) are smaller than 

.5%, with the maximum APE being 2.40% as shown in Fig. 7 (a, b).

or the WDS-XZN ( Fig. 7 (c, d)), the differences between the sim- 

lated and observed pressurevalues at the eight monitoring loca- 

ions are negligible (including H2, H5 and H7 used for validation), 

ith all AEs being lower than 0.4m. Relative to pressure, the devi- 

tions between the flow simulations and observations are slightly 

arger ( Fig. 7 (d)), with the majority of APEs smaller than 5% and

he maximum APE being 9.8% (F1 used for validation). 

To further demonstrate the quality of calibration results, the cri- 

eria defined in Walski et al. (2003) were used to verify the sim- 

lation accuracies. As stated in Walski et al. (2003) , a satisfactory 

DS model calibration should ensure 85% of pressureerrors within 

0.2m, 100% of pressure errors within ±0.5 m, trunk main flow 

rrors(flows more than 10% of the total demands) within ± 5%, 

nd the other flow errors within ± 10%. The calibration results 

f the two WDSs satisfied these criteria, implying that the cali- 

ration was successful as the resultant nodal water consumptions 

an reproduce the overall hydraulics of the WDS. Fig. 8 presents 

he nodal water consumptions over the 31 days with a resolu- 

ion of 30-minute for the two WDSs ((a) for the WDS-BKN and (b) 

or WDS-XZN), where the grey solid lines represent the calibrated 

odal water consumptions and the orange dotted lines indicate the 

odal water consumptions measured by smart demand meters. De- 

pite some variations, all the nodal water consumptions exhibited 
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Fig. 10. Observations versus simulations, as well as the APE (%) and AE(L/s) values for C1 in the BKN, and C3 in the XZN within the calibration period (the first 17 days), 

where C1 and C3 are shown in Figs. 4 and 5 respectively. 
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n overall similar trend for both WDSs, with two peak demand pe- 

iods occurring at each demand node as shown in Fig. 8 , which 

atches well with the typical water use properties ( Zhang et al., 

018 ). 

.2. Estimated transfer factor values 

Fig. 9 shows the distribution of the probability density of the 

dentified transfer factor k values for all manholes of the BKN and 

ZN based on the historical data over the first 17 calibration days 

observations of the first three days were used as model setting- 

p). Such an optimization ( Section 2.4 ) took 4.86 and 56 hours re-
11 
pectively based on the same computing platform as mentioned 

bove. It can be seen that the majority of k values is within the 

ange of 0.7~1.0 for the BKN and XZN, with a mean value of 0.83 

nd 0.92 respectively, meaning that around 83% and 92% of the 

otal water consumptions have been collected by the FSS of BKN 

nd XZN in this area, respectively. This demonstrates that the cali- 

rated k values for all manholes were overall practically meaning- 

ul ( Behzadian and Kapelan, 2015 ). 

It is noted that around 10% and 28% calibrated k values were 

reater than 1 as shown in Fig. 9 . Such values were only allowed

or the WDS nodes without smart demand sensors, and hence their 

odal water consumptions were estimated using the calibration 
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Fig. 11. Observations versus simulations, as well as the APEs or AEs for the four monitoring locations (shown in Fig. 4 ) within the validation period of the BKN case study. 
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u

ethod described in Section 2.3 . While Fig. 7 showed that the cal- 

bration results can reproduce the overall hydraulics of the WDS at 

he monitoring locations, the calibrated nodal water consumptions 

ight inevitably deviate from the true values at a certain extent 

 Zhang et al., 2018 ). To mitigate this potential impact, the value of

 for the FSS manholes associated with WDS nodes without smart 

emand meters was allowed to have a range between 0.7 and 1.3, 
12 
s previously stated. This led to that a proportion of k values were 

reater than 1 as shown in Fig. 9 . 

Fig. 10 shows the FSS calibrated results (the first17 days) cor- 

esponding to the transfer factor values presented in Fig. 9 . It is 

een that the simulated flows in C1 in the small BKN case study 

atched well with the observations ( Fig. 10 (a)), where all APE val- 

es were lower than 5.0% and the mean APE value was 1.16%. 
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Fig. 12. Observations versus simulations, as well as the APEs or AEs for the four monitoring locations (shown in Fig. 5 ) within the validation period of the XZN case study. 
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t

or the XZN case study ( Fig. 10 (e)), the maximum and the mean

PE values between simulations and observations within the cal- 

bration period at the C3 monitoring location were 13.68% and 

.02% respectively. Therefore, it can be deduced that the simula- 

ions matched well with the observations for such a large XZN case 

tudy. While the APE values during the period with relatively low 

ewer flows were proportionally large, their corresponding abso- 

ute errors( AE s) were low overall as shown in Fig. 10 (c,f). For ex-

mple,the maximum AE value was 1.88 L/s for the BKN case study 

ith an average flow of 48.47 L/s in C1 ( Fig. 10 (c)). The average AE
13 
alue was 9.58 L/s for the XZN case study with an average flow of 

55.10 L/s in C3 ( Fig. 10 (f)). 

Tables 1 and 2 present the values of the performance metrics 

pplied to the simulations and observations at monitoring loca- 

ions for both case studies. As shown in this table, for the BKN case 

tudy, the averaged values of MAPE, R 2 , NSE and KGE over four dif- 

erent monitoring locations within the calibration period are 3.61%, 

.99, 0.94 and 0.94, respectively. For the large XZN case study, the 

veraged values of MAPE, R 2 , NSE and KGE over 11 different moni- 

oring locations within the calibration period are 4.98%, 0.98, 0.89 
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Table 1 

Values of the performance metrics applied to the simulations and observations 

within the validation period for the BKN case study. 

Sensor 

ID 

Calibration period Validation period 

MAPE (%) R 2 NSE KGE MAPE R 2 NSE KGE 

M1 3.18 0.99 0.97 0.93 3.20 0.99 0.96 0.93 

M2 2.06 0.99 0.97 0.93 2.12 0.99 0.97 0.92 

M3 8.05 0.99 0.84 0.89 8.04 0.99 0.84 0.88 

C1 1.16 0.99 0.99 0.99 1.15 0.99 0.99 0.98 

Average 3.61 0.99 0.94 0.94 3.63 0.99 0.94 0.93 
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nd 0.93, respectively. This implied that FSS calibration (aimed to 

stimate the transfer factor) was overall successful. 

.3. Performance of the real-time FSS modelling 

Results in the calibration period demonstrated that the pro- 

osed method was capable of identifying suitable transfer factors 

hat can match well simulations and observations at the monitor- 

ng locations. This section validated the performance of the real- 

ime FSS models driven by the WDS consumption data in mod- 

lling the sewer hydraulics and such a performance evaluation was 

onducted using the observations from the 17 th to the 31 st days 

i.e., validation period). The steps of the real-time FSS modelling 

ere presented in Fig. 2 (real-time module). Figs. 11 and 12 show 

he observations versus observations of the monitoring locations 

very 30 minutes within the validation period for both case stud- 

es. 

It is seen from Fig. 11 that the sewer flow and the water depth

imulations matched well with the observations within the vali- 

ation period at the four monitoring locations (C1, M1, M2 and 

3) in the BKN case study. More specifically, the maximum flow 

PE value was 4.91%, and the maximum absolute error of water 

epth was 0.7cm across M1, M2 and M3 locations. Similarly, the 

ifferences between the simulation and observations for C1, C2, M1 

nd M5 monitoring locations were also matched very well for the 

ZN case study as shown in Fig. 12 . For this large FSS,the maxi-

um flow APE value was 13.45% and the maximum absolute error 

f water depth was 1.4cm (similar observations can be made for 

ther monitoring locations). 

The values of performance metrics applied to the observations 

nd simulations within the validation period for both case stud- 

es are also presented in Tables 1 and 2 , respectively. As shown in

hese two tables, the averaged values of MAPE, R 2 , NSE and KGE 

ver four different monitoring locations within the validation pe- 

iod are 3.63%, 0.99, 0.94 and 0.93 respectively for the BKN case 
Table 2 

Values of the performance metrics applied to 

the validation period for the XZN case study. 

Sensor 

ID 

Calibration period 

MAPE (%) R 2 NSE KGE

M1 7.85 0.98 0.78 0.87

M2 6.49 0.97 0.83 0.90

M3 6.82 0.98 0.81 0.89

M4 8.09 0.98 0.77 0.87

M5 2.83 0.98 0.95 0.96

M6 7.09 0.97 0.79 0.89

M7 3.56 0.98 0.93 0.91

M8 3.10 0.97 0.95 0.92

C1 2.89 0.99 0.99 0.99

C2 3.00 0.99 0.99 0.99

C3 3.02 0.99 0.99 0.99

Average 4.98 0.98 0.89 0.93

14 
tudy. The averaged values of MAPE, R 2 , NSE and KGE over four dif- 

erent monitoring locations within the validation period are 5.23%, 

.97, 0.88 and 0.92 respectively for the XZN case study. Overall, the 

erformance of the FSS models within the validation period was 

imilar or slightly worse than the calibration period for both case 

tudies (see Tables 1 and 2 ). This indicated that (i) there was a 

ow likelihood of over-fitting within the calibration process due to 

he similar performance between the calibration and validation pe- 

iod, and (ii) the real-time FSS models driven by WDS water con- 

umption data were effective in accurately simulating the sewer 

ydraulics at a high time resolution (every 30 minutes). 

The real-time model was able to offer a great opportunity to 

nable the comparison between the simulations and observations 

t monitoring locations at a very high time resolution (every 30 

inutes in this paper), followed by a warning trigger if large de- 

iations between the simulations and observations were observed. 

ore specifically, a threshold can be determined by long-term his- 

orical data for each monitoring location as did in Qi et al. (2018) . If

he deviations between the simulations and observations at a par- 

icular monitoring location go beyond the specified range, a warn- 

ng can be triggered efficiently. It should be highlighted that since 

he real-time FSS model developed using the proposed method has 

lready accounted for the inflow variation caused by the change in 

ater consumption, the false warning rate is expected to be signif- 

cantly reduced. Therefore, the proposed real-time FSS model can 

e a useful tool for the development of an efficient warning sys- 

em, aimed to detect the potential hydraulic issues (e.g., leaks and 

llicit inflows) for the FSSs. 

In addition to providing accurate simulations at the monitor- 

ng locations, the proposed method was also able to produce real- 

ime simulations for the manholes and sewer pipes without mon- 

toring sensors. While the accuracies of these simulations cannot 

e directly evaluated due to the unavailability of observations, it 

an be anticipated that they can reasonably represent the true hy- 

raulics of the manholes and sewer pipes without monitoring sen- 

ors. This was because the real-time FSS model was driven by the 

ater consumption data from the water distribution system, where 

odal water consumptions were either measured by smart demand 

eters or estimated with the aid of an intensive sensor (pressure 

nd flow sensors) coverage. As shown in Fig. 13 , water depths of 

0 manholes near M5 sensor of the XZN case study over a typical 

ay within the validation period exhibited a similar and reason- 

ble trend. These accurate hydraulic simulations at the manholes 

nd pipes without monitoring sensors can be useful to enable the 

fficient localization of leaks, deposits or illicit inflows, through 

omparing the simulations with the sampled observations from the 

eld survey. 
the simulations and observations within 

Validation period 

 MAPE (%) R 2 NSE KGE 

 7.79 0.97 0.77 0.87 

 6.81 0.96 0.80 0.88 

 6.43 0.96 0.81 0.89 

 8.08 0.97 0.77 0.87 

 3.33 0.96 0.94 0.96 

 7.07 0.96 0.79 0.88 

 4.23 0.96 0.91 0.91 

 3.45 0.96 0.94 0.91 

 3.20 0.99 0.99 0.99 

 3.57 0.98 0.98 0.99 

 3.62 0.98 0.98 0.99 

 5.23 0.97 0.88 0.92 
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Fig. 13. Water depth simulations and observations of M5, as well as the water depth simulations of 10 manholes near M5 without sensors in the XZN case study in 18 th 

day within the validation period. 
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. Conclusion 

This paper proposes a novel method to develop a real-time 

oul sewer system (FSS) model driven by water consumption data 

rom its associated water distribution system (WDS) that often has 

 large number of sensors such as pressure sensors, flow meters 

nd smart demand meters.Within the proposed method, the FSS 

nd the WDS models are integrated to build physical connections 

etween water consumption nodes and their corresponding man- 

oles based on spatial distances. This is followed by a proposal of 

n optimization approach to identify the transfer factor k between 

odal water consumptions and FSS manhole inflows according to 

istorical observations. Subsequently, real-time nodal water con- 

umption data are acquired using an efficient calibration approach 

ased on the dense sensors in the WDS. Finally, these nodal water 

onsumption data combined with the identified k values drive the 

SS real-time modelling. 

Two real FSS case studies, the smaller BKN with 64 sewer pipes 

nd 64 manholes and the large ZXN case study with 1214 sewer 

ipes and 1214 manholes have been used to test/validate and 

emonstrate the proposed method. The results obtaineddemon- 

trate that the proposed method can produce real-time predic- 

ionsof water depths and flows that are in good agreements with 

he corresponding observations at monitoring locations. The ev- 

dence for this can be found in the high mean values of R 2 ,

SE and KGE metrics obtained across different monitoring loca- 

ions, which are 0.99, 0.94 and 0.93 of the small BNK case study, 

nd 0.97, 0.88 and 0.92 for the large XZN case study, respec- 

ively. In addition to providing accurate simulations at the moni- 

oring locations, the proposed method is expected to produce rea- 

onable real-time simulations for the manholes and sewer pipes 

ithout monitoring sensors. This deduction is based on that the 

eal-time FSS model is driven by the WDS water consumption 

ata that are either measured by smart demand meters or es- 

imated based on a large number of sensors (pressure and flow 

ensors). This implies that the “equifinality” problem can be suc- 

essfully addressed by using the proposed method. Therefore, the 

eveloped real-time FSS model offers an important tool to facil- 

tate effective and efficient foul sewer system management and 

peration. 

Finally, it is acknowledged that the proposed method is devel- 

ped ignoring a number of uncertainties that exist in reality. These 

nclude potential inaccuracies of WDS and FSS sensor measure- 

ents (e.g., smart demand meters, water depth sensors, flow sen- 

ors), the potential impacts of the ignorance of the water travel- 

ing time within the user property and the influence of the vari- 

tion in Manning’s coefficients of the sewer pipes. These uncer- 

ainties need to be more systematically investigated in a future 

tudy. 
15 
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