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Abstract
The concept of motion planning for a path following task is highly relevant. Having a comfortable ref
erence motion is an advantage for automated vehicles, since this leads to more higher comfort for
the passengers, in turn leading to higher adoption of ADAS. Defining a speed profile can be done in
three different ways. First is a heuristics based methods, such as seen in IPG CarMaker’s driver model.
Secondly, lineofsight based methods use the knowledge that blind corners can contain potential mov
ing obstacles, leading to slower speeds to compensate for the braking distance. Finally, optimization
based methods, such as laptime optimization, can be used by defining dynamics, constraints and a
cost function to find the optimal motion for the given scenario. Comfort is primarily a function of accel
eration and jerk. The RMS of the acceleration should be as low as possible for more comfort, while
jerk lower than a determined value can be ignored from a comfort point of view. Finally, the scope and
the contributions to the state of the art have been brought forward.

A curvilinear approach in combination with a distance domain approach is utilized, since this allows
for only the curvature of the road to be used as a reference. To generate a speed profile longitudinal
point mass dynamics are utilized with the jerk as an input to the optimization. The maximum speed
is determined beforehand using the curvature of the road and assuming steadystate cornering. For
each point along the road a speed is now determined that should not be exceeded. Generating a speed
profile using a linear optimization can not be done accurately. However, an assumption can be made
that the vehicle takes the same time for each distance step, leading to an approximate solution. The
nonlinear optimization is able to overcome the shortcomings of the linear optimization, by including
the time as a state in the solution. By incorporating the lateral dynamics in the EOM the predetermined
maximum speed is no longer needed. The lateral dynamics are simplified by assuming the vehicle is
always aligned with the reference, therefore ignoring yaw dynamics. Leading to a complete description
of the longitudinal and lateral motion that can be solved using a nonlinear optimizationmethod. ACADO
is used for the nonlinear optimization.

A benchmark is performed against a state of the art literature example based on a nonlinear op
timization method that is able to minimize motion sickness based on vibrations experienced by the
passengers. The speed profile generation based on linear optimization is not able to reproduce the re
sulting speed profile as seen in the example. For the nonlinear optimization method the speed profile
obtained for the time optimal cost function is very close, however for the comfortable motion, the speed
through the corners was still too high to be considered comfortable. By minimizing the acceleration
and jerk the motion planning system including the lateral motion is able to accurately reproduce similar
speed profiles for the three different cost functions of the example.

In Simcenter Prescan a complex 10 degrees of freedom vehicle model containing both sprung and
unsprung mass has been presented. A driver model, based on two PD controllers for longitudinal con
trol and the Prescan builtin path follower for lateral control, has been introduced. The motion planning
containing both lateral and longitudinal motion has been used to define a comfortable reference speed
and trajectory. The simulation results show that the reference motion is comparable to the resulting
motion, both in the longitudinal and the lateral direction. Indicating that the motion planning system
produces accurate results. On the other hand it is also observed that the longitudinal control of the
vehicle needs a more complex control scheme. For the lateral control a predictive control scheme is
needed to be able to follow the road with low lateral offset.
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1
Introduction

In the automotive world selfdriving vehicles and driving assistance systems are becoming more preva
lent. Many new cars are equipped with advanced driver assistance systems (ADAS), such as adaptive
cruise control (ACC) and lane keep assist (LKA). These systems aim to improve safety for the occu
pants by helping the driver with the driving task. Widespread adoption of ADAS can therefore improve
safety on the road [26], not only for the vehicles that are equipped with these systems, but also the
other traffic participants, such as pedestrians and motorcycles. Acceptance of systems such as ACC
is higher than standard cruise control [28]

However, these systems will only help improve safety if they are actually used. The adoption of
safety systems will only happen if the users are willing to use it. Therefore comfort has to be an
important consideration in the design phase of the ADAS [12].

In the current interpretation of ADAS the control is usually divided into two separate systems that
aim to control the vehicle in parallel [30]. The main example for this is the combination of ACC and
LKA, which allows the driver to give control of the throttle and brakes to the ACC and the steering wheel
to the LKA. This is especially the case for longitudinal control for a vehicle. Where the control action
is not a result of a single integrated control system, but it is a combination of many different systems
either working together or overwriting the control input in specific situations. ADAS such as ACC have a
focus on comfort while maintaining safety. On the other hand, safety systems such as active emergency
braking (AEB), ABS and electronic stability control are focused on safety, while comfort has no priority
in system design. Many studies that focus on path following do so by decoupling the longitudinal
control from the lateral control. According to a survey on control schemes for automated highway
driving the control task is often partitioned into longitudinal and lateral control [30]. For lateral path
following many different methods are viable methods to accomplish decent results, even the simplest
methods can perform well in common scenarios. However a single type of control strategy used can
not obtain perfect results for each situation [33]. In low lateral acceleration scenarios with constant
longitudinal speeds such as during vehicle following on highwaylike tracks a linear feedback controller
with feedforward action shows good results [32].

This research will focus on the longitudinal part of path following and more specifically, building
reference speed profiles that can easily be followed and are able to adhere to specific requirements,
such as time optimality and comfort.

This introduction chapter goes over a literature review on speed planning methods. Then the scope
of the research and the contribution to the state of the art are discussed. The second chapter proposes
three ways to build speedprofiles for a known path. The third chapter benchmarks the proposed motion
planning method against a state of the art speed planning method based on minimization of motion
sickness. The fourth chapter verifies the proposed motion planning using the complex vehicle model
from Simcenter Prescan. Finally, the conclusions and recommendations for future work are presented.
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2 1. Introduction

1.1. Motivation
Using a linear controller such as PID means that with regards to comfort no constraints can be added
to the controller. And knowing that speed following is difficult due to the highly nonlinear nature of the
systems involved. The search for good ways to find a reference speed that can be used during path
following is an important step to good path following. When the reference speed is comfortable and
easy to follow the resulting motion when a path follower is subsequently used will be better.

Speed profile generation and motion planning are interesting from a comfort point of view in that
certain objectives, such as jerk minimization can be determined over a longer section than is typically
possible or convenient in predictive control methods. Speed profile generation can be easily done by
making use of smoothing functions based on set speed limits. However this completely ignores the
effects of the lateral motion. In this research a method is developed that will result in a speed profile
that can be used as a reference speed for a driver model. This method will take into account the
longitudinal motion and the lateral motion ensuring that a comfortable reference is created regardless
of the determined path.

The question then becomes how can this reference speed be determined and it what ways can it
be described as comfortable.

1.2. An Overview of Speed Planning
This section will go over the basic methods of generating a speedprofile. First, a definition for lateral
acceleration is defined that can be used to define a maximum velocity. Then, five different methods of
defining a speedprofile are discussed.

1.2.1. Speed during SteadyState Cornering
Assuming steadystate cornering an upper bound for the speed can be chosen. By choosing a value
for the lateral acceleration and using the curvature of the road the speed can be defined.

𝑢𝑚𝑎𝑥 = √𝑎𝑦 ⋅ 𝑅 (1.1)

with 𝑎𝑦 the maximum allowed lateral acceleration and 𝑅 the radius of curvature. When the desired
path is known, the curvature can be determined for every point, a comfortable lateral acceleration can
be chosen and the maximum longitudinal velocity is then defined [7]. However, if the curvature is not
smooth, the resulting speedprofile will not be smooth. The nonsmooth speedprofile can still be used
as a reference.

Extending this idea, instead of using just the lateral acceleration, the combined longitudinal and
lateral acceleration, a comfort parameter, can be used. This is done as follows:

𝑎𝑤 = √𝑛𝑥 ⋅ 𝑎2𝑥 + 𝑛𝑦 ⋅ 𝑎2𝑦 + 𝑛𝑧 ⋅ 𝑎2𝑧 (1.2)

Where 𝑎𝑖 are the accelerations in three directions with 𝑛𝑖 as their respective weights. The lateral
acceleration 𝑎𝑦 is replaced by the comfort parameter 𝑎𝑤 in 1.1. This results in a speedprofile based on
this comfort parameter instead of just the lateral acceleration.

1.2.2. Cubic Splines
Creating a speedprofile with continuous velocities and accelerations and a jerk minimization can be
achieved by interpolating cubic splines [4]. Possible speed profiles that are generated are seen in
Figure 1.1. The generated speed profiles are able to adhere to boundary conditions such as trajec
tory length and starting velocity. Since the profiles are generated using a third order polynomial, the
jerk can be taken into account. This approach is used in combination with an optimization algorithm
that iteratively tries to find suitable profiles with the lowest absolute jerk that adhere to the boundary
conditions. Resulting in minimal absolute jerk trajectories that are computationally simple due to their
algebraic nature. The main drawback lies in the fact that there is no limit on the amount of acceleration
that is allowed. This means that as long as the absolute jerk is low the acceleration is uncapped which
can be less than ideal for comfort.
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Figure 1.1: Six possible speed profiles using the cubic splines method from [4]

1.2.3. Third Order Jerk and Acceleration Limited
To combat the problem of uncapped accelerations a different strategy can be employed [13]. The
speedprofile is divided into different sections: The acceleration phase and the cruising phase. The
acceleration phase is comprised by using themaximum jerk until themaximumacceleration is achieved.
Then the maximum jerk (but in the opposite direction) is used to reduce the acceleration. The vehicle is
nowmoving with a constant speed, called the cruising phase. To slow down the vehicle the acceleration
phase is used again, but in reverse order. This can be seen graphically in Figure 1.2. Because the
algorithm uses maximum jerk and acceleration as much as possible it is timeoptimal while adhering
to maximum velocity constraints. The profile can be computed within 0.5𝑚𝑠 meaning that it is also a
good candidate for online generation.

Figure 1.2: A third order trajectory with jerk and acceleration limit [13]



4 1. Introduction

1.2.4. Speedprofile Generation in IPG CarMaker’s Driver Model
IPG CarMaker is an example of vehicle simulation software which contains a driver model with an
integrated speedprofile. The first step in determining the speedprofile is with the help of the cruising
speed ( Vcruising ), the maximum lateral acceleration and the curvature (k). The cornering speed is
determined from the curvature and the lateral acceleration as seen earlier. The desired speed is the
minimum of the cruising speed and the cornering speed. the second step is to reduce the slopes of the
speedprofile to make sure the maximum longitudinal acceleration/deceleration is not exceeded. The
final step is to smooth out the speedprofile to make sure the desired jerk does not go to infinity. This
step also includes a plausibility test to smooth out or entirely remove unnecessary peaks. These three
steps can be seen in Figure 1.3.

Figure 1.3: Generating a speedprofile in 3 steps as per IPG

1.2.5. LineOfSight Based Speed
A complete different way to generate a reference speed can be done on the basis of lineofsight and
potential hazards. When a driver comes up to an intersection that they are unable to overlook they will
naturally slow down. To model this the controller needs to have information not only about the field of
view, but also about the possible moving obstacles. The desired speed is determined by first assuming
an obstacle is right outside of field of view. This is illustrated in Figure 1.4. The stopping distance of
the vehicle is determined by the speed. The maximum speed is then chosen to be the speed at which
the vehicle is able to stop if an obstacle came around the corner. This leads to a speedprofile where
the vehicle will start to slow down coming to an intersection and then when getting closer to the blind
corner it will slowly start to speed up as the field of view increases. This behaviour can be modeled
and used to create a more comfortable driver model [31]. This method can also be used to create a
controller that is able to closely resemble human driving in urban environments with bad visibility. [37].
On top of being able to have a more comfortable ride it also safer since possible collisions are avoided
by slowing down to appropriate speeds.

Figure 1.4: Egovehicle facing a blind intersection. The vehicle anticipates potential moving obstacles coming from the blind
area and slows down. When the visibility of the intersection improves the vehicle accelerates [37].



1.2. An Overview of Speed Planning 5

1.2.6. Optimal Control Approach
Creating a speedprofile can be done by making use of optimal control procedures [34]. The motion
states 𝑥 , the control 𝑢, the initial time 𝑡0 and the final time 𝑡𝑓 need to be found that optimize the
performance index function J that measures the quality of the path.

𝐽 = Φ(𝑥, 𝑡0, 𝑢, 𝑡𝑓) +
𝑡0

∫
𝑡𝑓

Λ([𝑥, 𝑢, 𝑡])d𝑡 (1.3)

subject to state constraints (representing system dynamics) 𝑥 that contain the distance, velocity, ac
celeration and jerk.

�̇� = 𝑓[𝑥, 𝑢, 𝑡] (1.4)

The state constraints 𝐶 which contain the velocity, acceleration and jerk limits. These are the maximum
speed defined by the lateral acceleration and curvature and the maximum longitudinal acceleration and
jerk as set by comfort desires.

𝐶𝑚𝑖𝑛 ≤ 𝐶[𝑥, 𝑢, 𝑡] ≤ 𝐶𝑚𝑎𝑥 (1.5)

And finally the boundary conditions

𝜙𝑚𝑖𝑛 ≤ 𝜙[𝑥, 𝑡0, 𝑥, 𝑡𝑓] ≤ 𝜙𝑚𝑎𝑥 (1.6)

An example of a method to solve such an optimal control problem can be seen in Figure 1.5.

Figure 1.5: An example algorithm from [34]

Using this framework different performance measures can be defined: Minimum time or minimum
jerk. The minimum time method results in the following performance function

𝐽 = 𝑡𝑓 − 𝑡0 (1.7)

The minimum jerk can be defined in different ways. One way is to set the performance function as the
absolute value of the jerk 𝑗.

𝐽 =
𝑡𝑓

∫
𝑡0

|𝑗|d𝑡 (1.8)

Another way is to use the minimum square of the jerk.

𝐽 =
𝑡𝑓

∫
𝑡0

𝑗2d𝑡 (1.9)
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The biggest advantage lies in the fact that it is easily and clearly defined due to the performance function.
It is can also be extended to use methods like nonlinear MPC or neural networks to improve runtime
performance. Another nice advantage is that due to the fact that there is a performance index a value
can be assigned to the speedprofile and the quality of the speedprofile can be determined independent
of the vehicle dynamics and control.

1.2.7. Laptime Optimization
An extension of an optimal control approach is by taking a look at laptime optimizations. Laptime
optimization is used to determine the fastest way around a race track. This is usually done using very
complex vehicle dynamics models to get as accurate results as possible [21]. The main drawback
lies in the fact that the accuracy of the results are much more important than the computation time,
therefore resulting in very long computation times that are not feasible to compute in realtime. Since
a laptime optimization is based on general optimization the cost function (and/or underlying dynamics)
can be altered. An altered version can be used to generate a speedprofile that is able to minimize
motion sickness [16].

However, the laptime optimization systems are not confined to traditional vehicle models. A gokart
is a specific type of racing car that does not utilize a differential to drive the rear wheels. A simulation
has been used to study the peculiar dynamics of gokarts and focused on the tyre slippage dynamics,
which are influenced by the lack of differential [22].

Another approach is presented in [6], where the optimization is focused on the longitudinal aspect
with an electric race car. Two different transmission strategies are compared to find which is the better
option.

A laptime optimization can also be used to find the effects of various vehicle parameters. The impact
on driven line, vehicle stability and manoeuvre time is evaluated for the different settings for the vehicle
model [17]. This allows the use of the optimization to find the best set up for a vehicle without having
to do real world tests.

1.2.8. Comfort from Driveability
The driveability of a vehicle is the terminology that describes vehicle responsiveness, operating smooth
ness and driving comfort. it evaluates the overall driver feeling under various driving conditions. The
following issues are considered as driveability problems [35]:

• Hesitation or delay

• Sluggish

• Hard start

• Surge

• Idle roughness and instability

• Noise and oscillations

for motion planning and control systems the interesting points are surge, and noise and oscillations.
Surge means that the engine power will vary under steady throttle. This is relevant in the sense that for
autonomous driving variation of speeds when they are not necessary, such as moving in a straight line,
should be avoided. Noise and oscillations are also obvious candidates. Interior noise level is mostly a
function of the sound dampening of the chassis of a vehicle, which can not be influenced by a vehicle
dynamics control system, but the engine rpm and load in an ICE vehicle do contribute. Meaning that
for comfort it is desirable to keep the load and RPM as low as possible. This can also have an effect on
safety since larger noise generation can decrease detectability of outside warnings and siren signals.
On the other hand oscillations can create discomfort in passengers. Vibrations between 0.5 and 80 𝐻𝑧
are significant in exciting human body response. Horizontal vibrations between 1 and 2 𝐻𝑧 especially
should be avoided, while for vertical vibrations between 4 and 8 𝐻𝑧 should be avoided. This can be
interesting for roads that contain speedbumps or other regular vertical uneveness since the frequency
of these vertical excitations are directly proportional to the speed of the vehicle. The speed should
therefore be set such that these vertical excitations do not occur with undesired frequency.
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1.2.9. Acceleration and Jerk Limits
Finding acceleration and jerk limits has been a topic of research even before automated vehicle systems
were feasible [14]. This study came back inconclusive to actual limits, but it did conclude that lower
acceleration and jerk lead to more a comfortable ride.

For lateral and longitudinal acceleration and jerk limits ISO 22179:2009 [1] can be referenced. Ac
cording to this the maximum lateral acceleration is between 𝑎𝑦 = 2.0𝑚/𝑠2 and 𝑎𝑦 = 2.3𝑚/𝑠2 depending
on the curve radius. This is derived from average driver behaviour in curves (95% of drivers). The av
erage deceleration (over 2 seconds) shall not exceed 3.5𝑚/𝑠2 and the negative jerk shall not exceed
2.5𝑚/𝑠3 while travelling above 20𝑚/𝑠. While travelling below 5𝑚/𝑠 they should not exceed 5𝑚/𝑠2 and
5𝑚/𝑠3 respectively. The average acceleration (over 2 seconds) shall not exceed 2𝑚/𝑠2 when the ve
hicle is travelling above 20𝑚/𝑠. The average acceleration should not exceed 4𝑚/𝑠2 when the vehicle
is travelling below 5𝑚/𝑠. This can be seen in table 1.1. The transition from the low speed to the high
speed values is linear, i.e., the acceleration at 12.5𝑚/𝑠 shall not exceed 3𝑚/𝑠2.

Longitudinal Direction Low Speed (≤ 5𝑚/𝑠) High Speed (≥ 20𝑚/𝑠)
Acceleration (𝑚/𝑠2) 4 2
Deceleration (𝑚/𝑠2) 5 3.5
Negative Jerk (𝑚/𝑠3) 5 2.5

Table 1.1: Longitudinal limits according to [1]

Another way to measure comfort is not by checking the acceleration and jerk limits, but by looking
at the Root Mean Square (RMS) of the acceleration [19]. The acceleration RMS value calculates the
average acceleration during a certain period of time. The variable �̃� is the weighted vehicle acceleration
in𝑚/𝑠2 filtered by a bandpass filter with the bandwidth of 1 to 32 𝐻𝑧. 𝑡𝑓 and 𝑡0 are the final and starting
time respectively.

𝑅𝑀𝑆 = √
𝑡0

∫
𝑡𝑓

�̃�2𝑑𝑡/(𝑡𝑓 − 𝑡0) (1.10)

According to ISO 26311 1997 [2] the following acceleration RMS values based on an 8hour exposure
can be used as a comfort reference as seen in table 1.2.

Table 1.2: Comfort reaction to vibration environments [2]

The RMS has been used in research to evaluate passenger comfort in automated vehicles [8]. The
RMS gives insight into comfort, since a road with many curves may lead to a higher RMS acceleration
than a road with less curves, even though the control strategy in both scenarios adheres to similar
acceleration and/or jerk limits.

During the design of transportation structures the lateral jerk has to be taken into account. During
a study the minimum horizontal curve radius was derived using the limit value of lateral jerk. The limit
value of the lateral jerk is determined to lies somewhere between 0.3 − 0.9𝑚/𝑠3 [18]. Any jerk value
lower than this limit should not influence comfort negatively.
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1.3. Scope
The use of lap time optimization frameworks to obtain a comfortable reference trajectory has not been
widely researched. The aim of this thesis was to gain an understanding of how motion planning can be
used to improve comfort for autonomous vehicles. This research focuses on optimization methods to
determine comfortable speedprofiles for known paths and motion planning combining both speed and
displacement with regards to the path to further improve comfort levels. To achieve this the following
research objectives are defined:

1. Apply a laptime optimization framework to propose comfortable speed and motion planning algo
rithms.

2. Benchmark the proposed motion planning against published results from literature.

3. Verify the resulting motion is feasible and accurate using the highfidelity simulation environment
of Simcenter Prescan.

This thesis does not cover motion planning based on extensive vehicle dynamics models. This has
been excluded since the accuracy of the results are heavily influenced by the quality of the dynamics
that are fed into the algorithm and such accurate vehicle dynamics models are not readily available.
A general architecture for complete motion planning is done in four distinct steps [27]. The first step
is the route planning, this is usually done by a navigation system. After, the behavioral layer is intro
duced. When determined what the vehicle is supposed to do the motion planning comes in to complete
a description for the states necessary to accomplish this goal. Finally, the local feedback control is in
troduced. This thesis is confined to the motion planning step. Therefore, it is assumed that the route
planning and behavioural layer have already happened. Meaning that all relevant information, such
as road curvature and width is known with perfect accuracy. The goal for the proposed algorithm then
becomes to complete a description that is able to be used as a reference for a driver model.

1.4. Contributions
This thesis contributes to the state of the art by bringing forward a threefold of assets:

1. Jerk based motion planning: The motion and speed planning is done using the jerk as the input.
This allows the algorithm to take into account jerk limits, but also jerk minimization by including
the jerk in the cost function for the optimization.

2. Simplified lateral dynamics: Instead of using complex lateral vehicle dynamic models that are
computationally expensive, simplified lateral dynamics are proposed. The longitudinal dynamics
are unaltered and can be extended. Allowing for less computationally expensive motion planning.

3. Optimization methods comparison: Three distinct speed profile generation methods are com
pared against each other. A linear and a nonlinear speed planning method are compared. On
top of that, these are compared to full motion planning. Therefore, additional knowledge has been
gained to decide which level of complexity is most suitable for a certain application.
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1.5. Summary
This chapter has introduced the concept of motion planning and shown its relevance. Having a comfort
able reference motion is an advantage for automated vehicles, since this leads to more higher comfort
for the passengers, in turn leading to higher adoption of ADAS. Defining a speed profile can be done in
three different ways. First is a heuristics based methods, such as seen in IPG CarMaker’s driver model.
Secondly, lineofsight based methods use the knowledge that blind corners can contain potential mov
ing obstacles, leading to slower speeds to compensate for the braking distance. Finally, optimization
based methods, such as laptime optimization, can be used by defining dynamics, constraints and a
cost function to find the optimal motion for the given scenario. Comfort is primarily a function of accel
eration and jerk. The RMS of the acceleration should be as low as possible for more comfort, while
jerk lower than a determined value can be ignored from a comfort point of view. Finally, the scope and
the contributions to the state of the art have been brought forward.





2
Proposed Motion Planning

In this chapter three different ways of building a speedprofile are discussed. To start, two important
design options are discussed, the coordinate system and the time domain against the distance domain.
To solve nonlinear optimization problems the software package ACADO is used. A short section is
given on the workings of the SQP and the active set method that ACADO utilises. The first method
to define a speed profile is based on a linear optimization using only the longitudinal dynamics, while
the second one is based on a nonlinear optimization. The third method takes into account the lateral
motion and is therefore able to not only generate a speed profile, but also a lateral offset from the
reference path.

2.1. Cartesian and Curvilinear Coordinates
Tracking the position of a vehicle with respect to the path the two most common ways to achieve this
are the following. The first way is to define the path as a series of points characterised by their 𝑋, 𝑌
coordinate and 𝜃. Where 𝜃 is the heading of the path.

Figure 2.1: A path defined as a series of points

The heading is needed to be able to define the heading error of the vehicle compared to the path.
To track the position and the orientation of the vehicle using this definition of the path is usually done by
taking the location of the vehicle in the global Cartesian frame of reference and every point of the path.
The distance between the vehicle location and each of these points are computed. The point which
has the shortest distance to the vehicle is used as the reference trajectory. The distance between two
points is usually defined by taking the euclidean distance.

𝑑(𝑝, 𝑞)2 = (𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 (2.1)

Where 𝑝 and 𝑞 denote the two points, in this case the vehicle location and a single point of the path, and
𝑑(𝑝, 𝑞)2 the distance between these points squared. Taking the square instead of the actual distance
reduces the computational complexity by avoiding a square root calculation for each point. This is valid
because the following holds.

𝑑21 < 𝑑22 then 𝑑1 < 𝑑2 𝑑 ∈ ℝ

11
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Therefore no square root calculation is needed to find the closest point. Another method to reduce
computational complexity is by indexing the path based on distance from the start. Combining this with
the fact that the vehicle is moving at a finite speed, only a small portion of the trajectory needs to be
considered, significantly reducing the search space for long trajectories.

Another method of tracking the position and orientation of the vehicle is by employing the triple
curvilinear coordinates (𝑠, 𝑛, 𝛼) [23]. Where 𝑠 is the distance along the path (longitudinal direction), 𝑛
the distance perpendicular to the path (lateral direction) and 𝜃 the heading relative to the road. This
results in a curved frame of reference that follows the curvature of the path.

Figure 2.2: A visual representation of curvilinear coordinates

To track the position and the orientation of the vehicle using the curvilinear method the location of
the vehicle in the global frame of reference is no longer sufficient to determine the relative position. The
curvilinear coordinates only define the trajectory with regards to the start of the path. This means that
the progression of the coordinates needs to be taken into account. The vehicle speed is related to the
curvilinear coordinates according to the following differential relations.

𝑑
𝑑𝑡 𝑠 =

𝑢 cos𝛼 − 𝑣 sin𝛼
1 − 𝑛𝜅(𝑠) (2.2)

𝑑
𝑑𝑡𝑛 = 𝑢 sin𝛼 + 𝑣 cos𝛼 (2.3)

𝑑
𝑑𝑡𝛼 = 𝑟 −

𝑢 cos𝛼 − 𝑣 sin𝛼
1 − 𝑛𝜅(𝑠) 𝜅(𝑠) (2.4)

Where 𝜅(𝑠) is the curvature of the road as a function of the distance. Assuming the path is flat and
contained in the 𝑥𝑦plane. The curvature of the road can be determined from the Cartesian coordinates
as a function of the travelled distance as follows:

𝜅(𝑠) = √(𝑑
2𝑥
𝑑𝑠2 )

2
+ (𝑑

2𝑦
𝑑𝑠2 )

2
(2.5)

The main difference between the two discussed methods lies in the fact that for the curvilinear
approach an integration of velocities is needed. For the cartesian vehicle tracking no prior location or
orientation information is needed to find the current location and orientation of the vehicle with respect
to the path. Another advantage of using curvilinear coordinates is that it is easier to identify longitudinal
and lateral kinematics. This is due to the fact that when the heading error is zero, the lateral and
longitudinal motions decouple. This can be seen when taking equations 2.2, 2.3, 2.4 and applying
𝛼 = 0. The differential relation of the longitudinal position 𝑠 is no longer a function of the lateral speed
𝑣 and the lateral position 𝑛 is no longer a function of the longitudinal speed 𝑢.

𝑑
𝑑𝑡 𝑠 =

𝑢 cos𝛼
1 − 𝑛𝜅(𝑠) (2.6)

𝑑
𝑑𝑡𝑛 = 𝑣 cos𝛼 (2.7)
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Motion planning is done with a fixed starting position. Therefore the ability of cartesian coordinates
being able to be used regardless of starting position is no longer relevant. Combining this with that
fact that for curvilinear coordinates only a curvature reference is needed means that the curvilinear
approach is the preferred method of position and orientation tracking for motion planning of a vehicle.

2.2. Distance Domain
Motion planning is a method to find a sequence of valid configurations that moves the object from the
initial point to the endpoint. In this context it is used to find the locations and velocities needed to
obtain a suitable trajectory to get from the starting position to the final position. As the final value of
the time variable 𝑡 is clearly undefined, while the curvilinear distance 𝑠 varies from between fixed initial
point 𝑠 = 0 and endpoint 𝑠 = 𝑆, it is convenient to mathematically formulate the problem in terms of
the independent variable 𝑠 instead of 𝑡. Taking the time variable 𝑡 as the free variable is referred to
as the time domain, while taking the distance variable 𝑠 is referred to as the distance domain. The
combination of using the distance domain and the curvilinear approach is one often found in laptime
optimization methods [6], [17], [21], [22].

Vehicle dynamics are generally defined as a set of differential equations in the time domain. To be
able to use the vehicle dynamics in the distance domain the equations of motion need to be altered.
The definition of the time derivative can be combined with the curvilinear approach to obtain a suitable
transformation. This allows the (vehicle) dynamics to be defined in the time domain and still be able to
be used in a distance domain framework.

�̇� = 𝑑𝑥
𝑑𝑡 (2.8)

�̇� ⋅ 𝑑𝑡𝑑𝑠 =
𝑑𝑥
𝑑𝑡 ⋅

𝑑𝑡
𝑑𝑠 =

𝑑𝑥
𝑑𝑠 (2.9)

The definition for the change of states per distance step 𝑑𝑥
𝑑𝑠 is defined using eq. 2.2. This approach

immediately introduces a problem. Due to a division two distinct boundary conditions arise.

𝑢 cos𝛼 − 𝑣 sin𝛼 ≠ 0 (2.10)
1 − 𝑛𝜅(𝑠) ≠ 0 (2.11)

The first condition implies that the combined speed of the vehicle can not go to zero, meaning that the
vehicle has to keep moving (not necessarily only in the longitudinal direction). Moving only perpendic
ular to the direction of the path is also not permitted. These boundary conditions make intuïtive sense
in the way that either not moving or moving perpendicular to the path means that the time between
the current distance step and the next goes to infinity and therefore is not computable. The second
condition implies that the resulting motion can not pass the instant centre of rotation. At that exact point
the previous, current and next distance steps can no longer be disambiguated and the dynamics in the
distance domain fall apart.

Another advantage lies in the results that are obtained. The lateral offset and the speed are a
function of the distance, not the time, therefore it can easily be mapped onto the original path. If a part
of the resulting motion is no longer correct, a time based approach no longer works, while for a distance
domain approach the bad section can be easily removed and the rest of the motion could potentially
still be used. A bad section can result from changes in the road network, such as road works or data
corruption.

2.3. ACADO
ACADO is used for the nonlinear optimization. [15] ACADO for Matlab is a Matlab interface for ACADO
Toolkit. It brings the ACADO Integrators and algorithms for direct optimal control, model predictive
control and parameter estimation toMatlab. ACADO for Matlab uses the ACADOToolkit C++ code base
and implements methods to communicate with this code base. The freely availabe toolkit ACADO has
been show to solve multiobjective optimal control problems appearing in chemical engineering [20].
ACADO allows the user to explicitly define the equations of motion and then convert the system to an
optimal control problem. Meaning that the equations of motion (discrete or continuous), bounds and
cost function are directly implemented using ACADO for Matlab.
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2.3.1. SQP
ACADOworks using Sequential Quadratic programming (SQP). SQP type algorithms have been in use
for a long time, as early as 1963 [36]. SQP methods aim at solving nonlinear optimization problems
(NLP) by using a linearquadratic approximation of the original problem in each iteration [5]. This is done
by using newtons method on a series of problems with quadratic cost functions with linear constraints,
a socalled quadratic program (QP). A QP can be solved efficiently using dedicated solvers. The QP
solver used by ACADO is the Active Set Method via the software qpOASES [10].

Consider a general NLP problem of the form as discussed before.

min
𝑥

𝑓(𝑥)

𝑠.𝑡. ℎ(𝑥) = 0
𝑔(𝑥) ≤ 0

(2.12)

where 𝑓(𝑥) ∈ ℝ is the objective function to be minimized, ℎ(𝑥) ∈ ℝ𝑚 the equality constraints and
𝑔(𝑥) ∈ ℝ𝑝 the inequality constraints.

To convert the NLP into a QP problem, the first step is to define a Lagrange function 𝐿 as the
objective function of the OCP. Using Lagrange multipliers Lambda and mu, the Lagrange function is
defined as follows:

𝐿 = 𝑓(𝑥) + 𝜆ℎ(𝑥) + 𝜇𝑔(𝑥) (2.13)

The function L couples the constraints and objective function in one formulation. Taking the Jacobian
of the Lagrange function gives directly the first KKT condition as follows:

∇𝐿 = ∇𝑓(𝑥) + 𝜆∇ℎ(𝑥) + 𝜇∇𝑔(𝑥) = 0 (2.14)

The NLP can be converted into a QP in which the cost function is quadratic and the constraints are
linear functions. To achieve such a form, Taylor expansion is utilized. This step also shows the need for
a twice continuously differentiable cost function.The taylor expansion results in the following equations:

𝐿 ≈ 𝐿 + ∇𝐿(𝑥 − 𝑥𝑘) + 12(𝑥 − 𝑥
𝑘)𝐻𝐿(𝑥 − 𝑥𝑘) (2.15)

ℎ(𝑥) ≈ ℎ(𝑥𝑘) + ∇ℎ(𝑥𝑘)(𝑥 − 𝑥𝑘) (2.16)
𝑔(𝑥) ≈ 𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)(𝑥 − 𝑥𝑥) (2.17)

Where H is the hessian matrix of the cost function and one of the main computationally expensive steps
of the algorithm. The standard ACADO method is used, which is a method called the GausNewton
algorithm. To simplify the equations 𝑑(𝑥) = 𝑥 − 𝑥𝑘 is defined. Resulting in a QP problem to find the
next iterate for the SQP problem.

min
𝑑(𝑥)

∇𝐿𝑑(𝑥) + 12𝑑(𝑥)
𝑇𝐻𝐿𝑑(𝑥)

𝑠.𝑡. ℎ(𝑥𝑘) + ∇ℎ(𝑥𝑘)𝑑(𝑥) = 0
𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)𝑑(𝑥) ≤ 0

(2.18)

However, a QP problem containing inequality constraints is a nontrivial problem and is solved using
the Active Set Method (ASM) via the software qpOASES which is embedded in the ACADO software
package.

2.3.2. Active Set Method
The strategy for ASM is to start from an arbitrary point and then find the next iterate by setting

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2.19)

Where 𝛼𝑘 is the step length and 𝑑𝑘 is the search direction. The problem then becomes to determine
the search direction and the step length.
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First the search direction is determined. At the current iterate 𝑥𝑘 the index set of active inequality
constraints is determined.

𝒜𝑘 = {𝑗 | 𝑔𝑗(𝑥𝑘) + ∇𝑔𝑇𝑗 (𝑥)𝑥𝑘 = 0, 𝑗 = 1,… , 𝑝} (2.20)

The goal is to rewrite the system to an equality constrained QP. Reason being that the solution
process to solve equality constrained QP is linear. First step is to combine equation 2.18 and 2.19.
Leading to the following optimization problem.

min
𝑑𝑘

∇𝐿(𝑥𝑘 + 𝑑𝑘) + 12(𝑥
𝑘 + 𝑑𝑘)𝑇𝐻𝐿(𝑥𝑘 + 𝑑𝑘)

𝑠.𝑡. ℎ(𝑥𝑘) + ∇ℎ(𝑥𝑘)(𝑥𝑘 + 𝑑𝑘) = 0
𝑔(𝑥𝑘) + ∇𝑔(𝑥𝑘)(𝑥𝑘 + 𝑑𝑘) = 0 , 𝑗 ∈ 𝒜𝑘

(2.21)

Expanding this problem in accordance with [11] the final form of the QP problem is obtained.

min
𝑑𝑘

(𝑔𝑘)𝑇𝑑𝑘 + 12(𝑑
𝑘)𝑇𝐻𝐿𝑑𝑘

𝑠.𝑡. ∇ℎ(𝑥𝑘)𝑑𝑘 = 0
∇�̃�(𝑥𝑘)𝑑𝑘 = 0

(2.22)

Where 𝑔𝑘 and �̃�(𝑥) are defined as follows:

𝑔𝑘 = [𝐻𝐿𝑥𝑘 + ∇𝐿] (2.23)

�̃�(𝑥) = [
⋅

∇𝑔𝑇𝑗 (𝑥)
⋅

] , 𝑗 ∈ 𝒜𝑘 (2.24)

(2.25)

Leading to the KKT optimality conditions:

𝐻𝐿𝑑𝑘 + 𝑔𝑘 + ∇ℎ(𝑥)𝑇𝜆𝑘 + ∇�̃�(𝑥)𝑇𝜇𝑘 = 0 (2.26)
∇ℎ(𝑥)𝑑𝑘 = 0 (2.27)
∇�̃�(𝑥)𝑑𝑘 = 0 (2.28)

Where 𝜆 and 𝜇 are Lagrange multipliers corresponding to equality and active inequality constraints
respectively. The search direction is obtained by solving the QP such that the KKT optimality conditions
are satisfied. Algorithms for equality constrained QP can now be applied to obtain 𝑑𝑘. If 𝑑𝑘 is a solution
of QP then there are 𝜆 and 𝜇 such that the KKT optimality condition holds. Solving this QP for 𝑑𝑘 leads
to two different cases. First the case for when 𝑑𝑘 ≠ 0. Then a step length 𝛼𝑘 is needed that guarantees
𝑥𝑘 +𝛼𝑘𝑑𝑘 is feasible. A common 𝛼𝑘 that guarantees the satisfaction of all constraints as elaborated in
[11] is the following:

𝛼𝑘 =min {1,
𝑏𝑗 − 𝑏𝑇𝑗 𝑑𝑘
𝑏𝑇𝑗 𝑑𝑘

|𝑗 ∉ 𝒜𝑘 and 𝑏𝑇𝑗 𝑑𝑘 > 0} (2.29)

Finally, if 𝛼 = 1 the active index set is not updated.

𝒜𝑘+1 = 𝒜𝑘 (2.30)

And if 𝛼𝑘 < 1 the active index set is updated to remove the active inequality constraint as follows:

𝒜𝑘+1 = 𝒜𝑘 ∪ {𝐽0} (2.31)

The ASM then starts a new iteration using the new active index set.
The other case arises when 𝑑𝑘 = 0. When 𝑑𝑘 = 0 the system reduces to the following:

𝑔𝑘 + 𝐴𝑇𝜆𝑘 + 𝐵𝑇𝜇𝑘 = 0 (2.32)
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In this case, two subcases can be identified. If 𝜇𝑘 ≥ 0 the problem simplifies to the original problem.
Therefore, if 𝑑𝑘 = 0 and 𝜇𝑘 ≥ 0, 𝑥𝑘+1 = 𝑥𝑘 is a KKT point and the problem has converged and the
optimal solution is found.

In the case that some components of 𝜇𝑘 are negative , then 𝑥𝑘 is not the optimal solution. An
assumption is done 𝜇𝑗0 = min{𝜇𝑗|𝜇𝑗 < 0, 𝑗 ∈ 𝒜𝑘}. Then the index 𝐽0 is removed from 𝒜𝑘 and the
previous steps are repeated to determine 𝑑𝑘 and 𝜇𝑘, until the optimal solution has been found.

In short, an active set based on inequality constraints is defined. Then the inequality constraints
are converted to equality constraints and this modified QP is solved to find the search direction 𝑑𝑘.
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2.4. Linear Optimization
In this section a linear optimal control approach to determine a speedprofile will be proposed. By utilising
a linear approach based on a quadratic cost function, the optimization can be quickly performed. The
curvature of the path is assumed to be known for equidistant (ℎ) points along the path. Using the
curvature and an allowed lateral acceleration, the maximum speed can be determined using equation
1.1. Additionally a speed limit (𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡) is chosen for the low curvature (straight) sections. An upper
limit for the longitudinal speed at each point of the path is now defined.

𝑢𝑚𝑎𝑥,𝑠 = 𝑚𝑖𝑛(𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 , 𝑢𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒,𝑠) (2.33)

The optimal control procedure can now be defined, starting with the states that are to be optimized.
The state vector x consists of the speed 𝑢, acceleration 𝑎 and jerk 𝐽 for each distance step. For an
optimization of length 𝑖 the state vector is of length 3𝑖.

x = [𝑢1, 𝑎1, 𝐽1, … , 𝑢𝑖 , 𝑎𝑖 , 𝐽𝑖]
𝑇 (2.34)

The cost function is defined as the sum of the differences between the states and a set reference.
The reference for the speed is as seen in eq 2.33, while the reference for the acceleration and jerk are
set to zero. By utilising a zero reference minimization for the acceleration and jerk can be achieved.
This leads to the following cost function:

ℒ =
𝑖

∑
𝑠=1
𝑣𝑐 ⋅ (𝑢𝑚𝑎𝑥,𝑠 − 𝑢𝑠)2 + 𝑎𝑐 ⋅ 𝑎2𝑠 + 𝐽𝑐 ⋅ 𝐽2𝑠 (2.35)

Where 𝑣𝑐, 𝑎𝑐, 𝐽𝑐 are the cost variables for the different states.
Point mass dynamics are incorporated to ensure proper cohesion between the different states. The

acceleration is defined as a first order discrete derivative of the speed, while the jerk is defined as a
second order discrete derivative of the speed. The dynamics are employed as follows:

𝑑𝑡 ⋅ 𝑎𝑠 = 𝑣𝑠 − 𝑣𝑠−1 (2.36)
𝑑𝑡2 ⋅ 𝐽𝑠 = 𝑣𝑠+1 + 𝑣𝑠−1 − 2 ⋅ 𝑣𝑠 (2.37)

Since the timestep 𝑑𝑡 varies for each distance index due to the speed not being constant
Up to this point the system was linear and could be described using a linear set of equations.

However, the timestep 𝑑𝑡 can vary for each distance index since the speed is not constant. This leads
to nonlinearity. To simplify and make the problem linear, 𝑑𝑡 can be assumed to be constant. Using the
speedlimit 𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 for the timestep leads to the following definition.

𝑑𝑡 = ℎ
𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡

(2.38)

When 𝑑𝑡 is defined using the speed limit, the real timestep is always longer than the assumed
one. This is due to the boundary condition that the speed should never exceed the speedlimit. Since
𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 ≥ 𝑢𝑠, and thus 𝑑𝑡𝑟𝑒𝑎𝑙 ≤ 𝑑𝑡, therefore the calculated acceleration and jerk are always larger
than the real acceleration and jerk. Defining bounds on the calculated acceleration and jerk means
that the real acceleration and jerk will always be within the defined bounds. The speed constraint is
defined based on a set minimum speed, larger than zero, and the previously defined maximum speed.
The acceleration and jerk constraints can be freely defined.

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑢𝑚𝑎𝑥,𝑠 (2.39)
𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠 ≤ 𝑎𝑚𝑎𝑥 (2.40)
𝐽𝑚𝑖𝑛 ≤ 𝐽𝑠 ≤ 𝐽𝑚𝑎𝑥 (2.41)

To solve an optimal control problem of this form the builtin Matlab command quadprog will be
considered. This solver takes input in the form of eq 2.42 and returns the optimized set of states x.
Due to the inherent limitations only the speed at each point will be used to evaluate the performance.
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The acceleration and jerk will be regarded as intermediate states that can give insight into limitations
that arise.

min
x

1
2x

𝑇𝐻x− 𝑓𝑇x such that{
𝐴 ⋅ x ≤ 𝑏
𝐴𝑒𝑞 ⋅ x = 𝑏𝑒𝑞
𝑙𝑏 ≤ x ≤ 𝑢𝑏

(2.42)

Converting eq 2.35 to the needed form the following matrices are found. The matrix 𝐻 is defined as
a square symmetric matrix of size 3𝑖 containing the cost parameters. The matrix 𝑓𝑇 is defined using
the maximum speed that is determined in equation 2.33 and is of size 3𝑖.

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑣𝑐 0 0
0 𝑎𝑐 0 0
0 0 𝐽𝑐

⋱
𝑣𝑐 0 0

0 0 𝑎𝑐 0
0 0 𝐽𝑐

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.43)

𝑓𝑇 = [𝑢𝑚𝑎𝑥,1, 0, 0, … , 𝑢𝑚𝑎𝑥,𝑖 , 0, 0] (2.44)

To take into account the relation between the speed, acceleration and jerk the equality constraints
are used. Having the equality constraints as a linear function significantly reduces the computational
complexity and is a prerequisite to using this specific solver. The equality matrix 𝐴𝑒𝑞 is of size 2𝑖 × 3𝑖
and corresponding equality vector 𝑏𝑒𝑞 of size 2𝑖 are defined as follows:

T = (
−1 −𝑑𝑡 0 1 0 0 0 0 0
−1 0 0 2 0 𝑑𝑡2 −1 0 0
0 0 0 −1 −𝑑𝑡 0 1 0 0
0 0 0 −1 0 0 2 0 𝑑𝑡2

) (2.45)

𝐴𝑒𝑞 = [
T 0

⋱
0 T

] (2.46)

𝑏𝑒𝑞 = [0,… , 0]
𝑇 (2.47)

The inequality constraint matrices 𝐴 and 𝑏 are not utilised int his implementation. Finally, the speed,
acceleration and jerk bounds are included as the following lower and upper bound matrices 𝑙𝑏, 𝑢𝑏:

𝑙𝑏 = [𝑢𝑚𝑖𝑛 , 𝑎𝑚𝑖𝑛 , 𝐽𝑚𝑖𝑛 , … , 𝑢𝑚𝑖𝑛 , 𝑎𝑚𝑖𝑛 , 𝐽𝑚𝑖𝑛]
𝑇 (2.48)

𝑢𝑏 = [𝑢𝑚𝑎𝑥,1, 𝑎𝑚𝑎𝑥 , 𝐽𝑚𝑎𝑥 , … , 𝑢𝑚𝑎𝑥,𝑖 , 𝑎𝑚𝑎𝑥 , 𝐽𝑚𝑎𝑥]
𝑇

(2.49)

Note that the lower bound the values are constant across the entire distance, while for the upper bound
the speed limit is a function of the distance index.
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2.5. NonLinear Optimization
To combat the shortcomings of the linear method a nonlinear method is proposed. ACADO for Matlab
has been used for the implementation. The nonlinear method can be seen as an extension of the
linear variant, where the states are extended to include the time 𝑡. Leading to the following state vector
x and control input u :

x = [𝑢, 𝑎, 𝑡]𝑇 (2.50)
u = 𝐽 (2.51)

Note that the state vector and control input are determined for each distance step.
This implementation allows for more complex cost functions. Common cost functions in literature

are time optimality, minimization of accelerations or a combination of both. This results in the following
cost functions:

ℒ = 𝑡 (2.52)

ℒ = 𝑤 ⋅ 𝑡 + ∫
𝑆

0
𝑎2𝑠𝑑𝑠 (2.53)

ℒ = ∫
𝑆

0
𝑎2𝑠𝑑𝑠 (2.54)

Where 𝑆 is the total length of the path and 𝑤 is a weight factor that determines the tradeoff between
the time and acceleration part. Since increasing the speed as much as possible leads to a minimization
of both the cost function in eq 2.52 and eq 2.35, with 𝑎𝑐, 𝐽𝑐 set to zero, it can be concluded that they
are equivalent.

The next step is to define the dynamics of the system. Discrete point mass dynamics are employed
that lead to the following definitions for speed 𝑢, acceleration 𝑎 and time passed 𝑡:

𝑢𝑠+1 = 𝑢𝑠 + 𝑎𝑠 ⋅ 𝑑𝑡𝑠 (2.55)
𝑎𝑠+1 = 𝑎𝑠 + 𝐽𝑠 ⋅ 𝑑𝑡𝑠 (2.56)
𝑡𝑠+1 = 𝑡𝑠 + 𝑑𝑡𝑠 (2.57)

All previous presented dynamics are linear as long as the timestep 𝑑𝑡 is constant. However, in this
implementation the timestep is variable for each distance step, leading to the definition of the timestep:

𝑑𝑡𝑠 =
ℎ
𝑢𝑠

(2.58)

Due to the fact that the timestep is a function of the speed, the dynamics can no longer be described as
a linear set of equations. Finally, state constraints are introduced as bounds on the speed, acceleration
and jerk. The maximum speed 𝑢𝑚𝑎𝑥,𝑠 is determined according to eq 2.33

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑢𝑚𝑎𝑥,𝑠 (2.59)
𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠 ≤ 𝑎𝑚𝑎𝑥 (2.60)
𝐽𝑚𝑖𝑛 ≤ 𝐽𝑠 ≤ 𝐽𝑚𝑎𝑥 (2.61)
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2.6. Motion Planning using NonLinear Optimization
By including the ability to deviate from the predetermined path the configuration space is extended,
allowing for more flexibility for the optimization to find a suitable motion. The equations of motion are
defined in multiple steps. Starting with the necessary assumptions and the states and control inputs.
Once both are defined, the equations of motion are derived.

The following three assumptions are made.

1. The equations of motion are defined in distance domain, not time domain with a curvilinear coor
dinates system using the curvature of the path as the only reference.

2. All dynamics are discrete.

3. The actor is always aligned with the reference, therefore the yaw dynamics are ignored.

The states for the EOM are comprised of the position, velocity, acceleration and global information.
The position information is defined using the lateral offset and the distance along the path, which is the
free variable in the distance domain. Therefore the position information is defined using only the lateral
offset (as a function of the distance).

• Lateral Offset (𝑛)

The velocity information is defined using the longitudinal and lateral velocity.

• Longitudinal Velocity (𝑢)

• Lateral Velocity (𝑣)

The acceleration information is similarly defined using the longitudinal and lateral acceleration.

• Longitudinal Acceleration (𝑎𝑥)

• Lateral Acceleration (𝑎𝑦)

The global information is comprised of the time and the global heading. The time is needed to be able
to define a minimum time cost function, while the global heading is used to check the integration of the
reference curvature.

• Time (𝑡)

• Global Heading (𝜃)

The control input is in the form of the longitudinal and lateral jerk.

• Longitudinal Jerk (𝐽𝑥)

• Lateral Jerk (𝐽𝑦)

The state vector x and the control input u for each distance step become the following:

x = [𝑛, 𝑢, 𝑣, 𝑎𝑥 , 𝑎𝑦 , 𝑡, 𝜃]
𝑇

(2.62)

u = [𝐽𝑥 , 𝐽𝑦]
𝑇

(2.63)

The length of the distance step is ℎ. The angle between the previous and the current step is repre
sented by 𝜙. The lateral offset at the current step is 𝑛𝑠 and the lateral offset at the next step is 𝑛𝑠+1. A
small angle approximation is used, this means that it is assumed that 𝑐𝑜𝑠(𝜙) = 1 and 𝑠𝑖𝑛(𝜙) = 𝜙.
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Figure 2.3: A visual representation of the simplified movement of the vehicle showing it is always aligned with the reference
(black line)

The goal of the equations of motion is to find a description for the evolution of the states only
depending on the control inputs and the states at a previous step.

x𝑠+1 = 𝑓 (x,u) (2.64)

In the following derivation, when there is no subscript attached to a state or control input the value at
arbitrary distance step 𝑠 is used. In other words x = x𝑠.

The first step is to determine how the angle 𝜙 is related to the reference curvature 𝜅𝑟𝑒𝑓.

𝜙 = 𝜅𝑟𝑒𝑓 ⋅ ℎ (2.65)

The distance travelled in direction (𝑑𝑥) of reference and perpendicular(𝑑𝑦) are defined as follows.

𝑑𝑥 = ℎ ⋅ 𝑐𝑜𝑠(𝜙) + 𝑛𝑠+1 ⋅ 𝑠𝑖𝑛(𝜙) (2.66)
𝑑𝑥 = ℎ + 𝑛𝑠+1 ⋅ 𝜙 (2.67)

𝑑𝑦 = 𝑛 − 𝑛𝑠+1 ⋅ 𝑐𝑜𝑠(𝜙) + ℎ ⋅ 𝑠𝑖𝑛(𝜙) (2.68)
𝑑𝑦 = 𝑛 − 𝑛𝑠+1 + ℎ ⋅ 𝜙 (2.69)

The time it takes between distance steps (𝑑𝑡) is defined by the longitudinal travelled path divided by
the longitudinal speed.

𝑑𝑡 = ℎ + 𝑛𝑠+1 ⋅ 𝜙
𝑢 (2.70)

Defining the evolution of the lateral offset starts with the relationship between the lateral speed, lateral
distance travelled and the time.

𝑣 ⋅ 𝑑𝑡 = 𝑑𝑦 (2.71)

substituting 𝑑𝑡 and 𝑑𝑦 we get the following:

𝑣 ⋅ [ℎ + 𝑛𝑠+1 ⋅ 𝜙]𝑢 = 𝑛 − 𝑛𝑠+1 + ℎ ⋅ 𝜙 (2.72)

Reordering the equation to include all 𝑛𝑠+1 terms at the left side we get the following:

𝑛𝑠+1 + 𝑛𝑠+1 ⋅
𝑣 ⋅ 𝜙
𝑢 = 𝑛 + ℎ ⋅ 𝜙 − 𝑣𝑢 ⋅ ℎ (2.73)
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This allows us to define the lateral offset at the next distance step 𝑛𝑠+1 as a function of current states.

𝑛𝑠+1 = [1 +
𝑣 ⋅ 𝜙
𝑢 ]−1 ⋅ [𝑛 + ℎ ⋅ 𝜙 − 𝑣𝑢 ⋅ ℎ] (2.74)

The next step is to complete a description of the lateral speed. The lateral speed is defined as follows:

𝑣𝑠+1 = 𝑣 + 𝑎𝑦 ⋅ 𝑑𝑡 (2.75)

The assumption that the vehicle is always facing in the same direction as the reference means that
the lateral speed needs to be defined more carefully. Therefore an additional factor is needed in the
calculation. This extra term makes sure that zero lateral speed and acceleration will go straight ahead
instead of following the reference curvature.

𝑣𝑠+1 = 𝑣 + (𝑎𝑦 − 𝑎𝑦,𝑐𝑜𝑟𝑟) ⋅
ℎ
𝑢 (2.76)

Where the correction factor 𝑎𝑦𝑐𝑜𝑟𝑟 is the expected lateral acceleration based on speed, lateral offset
and reference curvature.

𝑎𝑦,𝑐𝑜𝑟𝑟 = 𝑢2 ⋅
𝜅𝑟𝑒𝑓

1 + 𝑛𝑠+1 ∗ 𝜅𝑟𝑒𝑓
(2.77)

The global heading and the total time are defined as follows

𝑡𝑠+1 = 𝑡 +
ℎ + 𝑛𝑠+1 ⋅ 𝜙

𝑢 (2.78)

𝜃𝑠+1 = 𝜃 + 𝜙 (2.79)

The longitudinal speed is defined as follows

𝑢𝑠+1 = 𝑢 + 𝑎𝑥 ⋅
ℎ
𝑢 (2.80)

Finally, the lateral and longitudinal accelerations are defined as functions of the jerk input as follows

𝑎𝑥,𝑠+1 = 𝑎𝑥 + 𝐽𝑥 ⋅
ℎ
𝑢 (2.81)

𝑎𝑦,𝑠+1 = 𝑎𝑦 + 𝐽𝑦 ⋅
ℎ
𝑢 (2.82)

Now, all the states at the next distance step are defined only as a function of states at the current step
and/or the input states and the equations of motion can be written in the form as seen in eq 2.64.
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2.7. Summary
In this chapter the differences between a cartesian and curvilinear coordinate system have been dis
cussed. For this application a curvilinear approach is the more optimal solution. In combination with
a curvilinear approach, the distance domain is a better solution, allowing for only the curvature of the
road to be used as a reference. SQP and ASM have been presented, combined ACADO uses these
methods to solve nonlinear optimal control problems. To generate a speed profile longitudinal point
mass dynamics are utilized with the jerk as an input to the optimization. The maximum speed is de
termined beforehand using the curvature of the road and assuming steadystate cornering. For each
point along the road a speed is now determined that should not be exceeded. Generating a speed
profile using a linear optimization can not be done accurately. However, an assumption can be made
that the vehicle takes the same time for each distance step, leading to an approximate solution. The
nonlinear optimization is able to overcome the shortcomings of the linear optimization, by including
the time as a state in the solution. By incorporating the lateral dynamics in the EOM the predetermined
maximum speed is no longer needed. The lateral dynamics are simplified by assuming the vehicle is
always aligned with the reference, therefore ignoring yaw dynamics. Leading to a complete description
of the longitudinal and lateral motion that can be solved using a nonlinear optimization method.





3
Benchmark

This chapter benchmarks the proposed speed planning methods against a state of the art literature ex
ample. It starts by describing the scenario and the method that was used as a benchmark result. Then
it explains what differentiates speedprofiles from each other in terms of performance by introducing KPI
that can be used as performance evaluation. At the end the effects of the different settings that were
used are presented.

3.1. Benchmark Description
Benchmarking the proposed speedprofile generation methods is done against the method used in [16].
Minimizing motion sickness is done by minimizing the changes in speed and thus accelerations. A
more in depth look will be taken in the following section to understand the approach used.

The vehicle is simplified as a point mass model that can accelerate within bounds, the friction cir
cle. The dynamics equations are defined as the first and second derivative of the position, therefore
containing the position 𝑆, velocity 𝑣 and acceleration 𝑎 in both the longitudinal and lateral direction.

�̇�𝑥 = 𝑢 (3.1)
�̇�𝑦 = 𝑣 (3.2)
�̈�𝑥 = 𝑎𝑥 (3.3)
�̈�𝑦 = 𝑎𝑦 (3.4)

The friction circle is chosen as a constraint and is defined as the euclidean distance between the
two acceleration components. Since the value for the friction constraint is not mentioned, the value is
assumed to be based on a friction coefficient of 𝜇 = 1 and gravitational acceleration 𝑔 = 9.81𝑚/𝑠2.

√𝑎2𝑥 + 𝑎2𝑦 = 𝜇𝑔 (3.5)

The curvature of the centreline of the road as a function of distance has been used as the only
reference. this means that a curvilinear approach in the distance domain has been utilised.

Motion sickness is determined based on whole body exposure to mechanical vibrations and re
peated shock. The total motion sickness dose value (𝑀𝑆𝐷𝑉) resulting from the the lateral and longitu
dinal motion is give as the following:

𝑀𝑆𝐷𝑉 = (∫
𝑇

0
(𝑎𝑥,𝑤(𝑡))2𝑑𝑡))

1
2
+ (∫

𝑇

0
(𝑎𝑦,𝑤(𝑡))2𝑑𝑡))

1
2

(3.6)

where 𝑎𝑥,𝑤 and 𝑎𝑦,𝑤 are frequency weighted accelerations with𝑊𝐹 the weighting factor.

𝑎𝑥,𝑤(𝑡) = 𝑎𝑥(𝑡) ×𝑊𝑓 (3.7)
𝑎𝑦,𝑤(𝑡) = 𝑎𝑦(𝑡) ×𝑊𝑓 (3.8)

25



26 3. Benchmark

A simple linear approximation between 𝑀𝑆𝐷𝑉 and the illness rating (𝐼𝑅) is given as follows:

𝐼𝑅 = 𝐾 ×𝑀𝑆𝐷𝑉 (3.9)

Where 𝐾 is an empirically derived constant set to 𝐾 = 1
50 [16]. In this implementation the illness rating

was used to represent the motion sickness.
Now that the objectives and dynamics are defined the next step is define the optimal control problem.

The cost function is defined for three distinct cases. The first case is the minimization of journey time.
The third case the minimization of motion sickness. For the second case a combination of the first and
third case is taken. This leads to the following cost functions.

Case 1 : 𝐽 = ∫
𝑆

0

1
�̇� 𝑑𝑠 (3.10)

Case 2 : 𝐽 = 𝑤1 ⋅ ∫
𝑆

0

1
�̇� 𝑑𝑠 + 𝑤2 ⋅ 𝐼𝑅 (3.11)

Case 3 : 𝐽 = 𝐼𝑅 (3.12)

Where 𝑤1, 𝑤2 are the weighting factors and 𝑠0, 𝑠𝑓 are the starting and final distance respectively.
A minimum speed of 𝑢𝑚𝑖𝑛 = 5𝑚/𝑠 has been utilised to overcome a problem that is introduced with
minimization of acceleration. A minimization of accelerations can lead to the speed going to zero and
this is to be avoided due to the limitations in using the distance domain.

The results that are obtained using the presented motion sickness minimization algorithm are based
on a simple road scenario. There are three road curvature profiles presented. The trajectories can be
seen in Figure 3.1. Only the most aggressive curvature road profile will be considered, which cor
responds to road K1. Which means the road consists of two hairpin turns joined together by three
straight sections. The radius of the corners is estimated to be 𝑅 = 8𝑚 corresponding to a curvature of
𝜅 = 0.125𝑚−1.

Figure 3.1: The three trajectories used in [16]

Taking the scenario as described above, the resulting speedprofiles are found in Figure 3.2. This
Figure contains the speedprofiles for the three different cases for a single trajectory. For case 3 it
can be seen that the speedprofile does not immediately go to the minimum speed, therefore it can
be concluded that time is still included in the cost function. This concludes the description for the
benchmark.
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Figure 3.2: The resulting speedprofiles from [16]

The reference curvature and the other boundary conditions that are to be used in the proposed
methods are now discussed. The length of integration has been set at 𝑆 = 250𝑚 with distance steps
of ℎ = 1𝑚. Influence of the change of the settings will be discussed at the end of this chapter. The
curvature profile that has been used as the reference can be seen in Figure 3.3, leading to the trajectory
in space as seen in Figure 3.4. The first corner starts at 78𝑚 and ends at 102𝑚, the second corner
starts at 178𝑚 and ends at 202𝑚. Acceleration limits are set to 𝑎𝑚𝑎𝑥 = 9.81𝑚/𝑠2, while jerk limits are
not enforced.

Figure 3.3: The curvature as a function of distance Figure 3.4: The trajectory in space

3.2. Key Performance Index
To be able to accurately asses the objective metrics for a comfortable ride it is necessary to divide
the resulting motion into individual maneuvers [3]. Therefore the KPI are defined with the benchmark
scenario in mind.

Travel time is the most important value in the context of lap time optimization, since this is the pri
mary goal. Also, it is an easy to intuitively understand parameter. Therefore travel time is a valuable
performance indicator in the context of time optimality and it can help differentiate strategies that per
form similarly from a comfort standpoint. Travel time is defined as the travelled distance divided by the
speed.

𝑡 =
𝑆

∑
𝑠=0

ℎ
𝑢(𝑠) (3.13)

According to [2] the RMS of the acceleration can be used as a comfort parameter. To approximate
the comfort parameters the RMS of the longitudinal acceleration is taken. The RMS is calculated as
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follows:

𝑎𝑅𝑀𝑆 = √
1
𝑆

𝑆

∑
𝑠=0
𝑎𝑥(𝑠)2 (3.14)

The RMS value shows how much change of speed occurs over the length of the trajectory. For the
motion planning the lateral acceleration is determined and thus an additional KPI is also included which
is based on RMS of the combined acceleration.

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = √
1
𝑆

𝑆

∑
𝑠=0
[𝑎𝑥(𝑠)2 + 𝑎𝑦(𝑠)2] (3.15)

The final KPI is the peak jerks in the longitudinal direction. Jerk limits are used to determine comfort
during curves and influences design of transportation structures [18]. The highest and lowest value
can be used to determine if the trajectory is deemed acceptable according to [1]. According to [18] the
lateral jerk of transportation infrastructure should not exceed 0.9𝑚/𝑠3. Therefore it can be concluded
that in a real world setting the lateral jerk is of this magnitude, therefore a longitudinal jerk that is lower
than this limit can be regarded as not having an influence on comfort. The values are presented as the
minimum value followed by the maximum value.

𝐽𝑥,𝑝𝑒𝑎𝑘 = [𝑚𝑖𝑛(𝐽𝑥(𝑠)) , 𝑚𝑎𝑥(𝐽𝑥(𝑠))] (3.16)

In short, up to four KPI values for performance evaluation are determined and are listed below,
with their accompanying preferred value. For the travel time, RMS acceleration and RMS acceleration
combined a lower value is always better than a higher value. For the peak jerk the value needs to only
be within bounds.

• The objective of the travel time is to achieve a value as low as possible.

• The objective of the RMS of the accelerations is to be as low as possible.

• The peak jerk should be lower than predetermined bounds, based on comfort criteria.
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3.3. Speedprofile using Linear Optimization
The cost functions of the linear method are slightly different to the functions used in the benchmark.
Time minimization is defined as the difference between the realised speed and the reference speed,
while the motion sickness is defined as the minimization of longitudinal acceleration. Since the lateral
acceleration is not taken into account during the optimization, the friction circle constraint can not be
guaranteed, only longitudinal acceleration limits. The initial speed, acceleration and jerk have not been
specified and thus are determined by the optimization.

Case 1, time minimization is realised by only including the speed cost in the cost function, which
ensures that the only goal for the optimization is to maximise the speed as much as possible. Repre
senting this, the following cost function values have been chosen.

𝑣𝑐 = 1 𝑎𝑐 = 0 𝐽𝑐 = 0

This leads to the speedprofile as seen in Figure 3.5 The linear method does not calculate the acceler

Figure 3.5: The speedprofile with a linear method for case 1

ation and jerk during the trajectory correctly. To determine the RMS for the acceleration and jerk only
the speedprofile is taken and the acceleration and jerk are determined afterwards. This can be done by
assuming a constant acceleration between the different speeds. Here, the timestep at each distance
index is also needed.

𝑑𝑡𝑠 =
ℎ
𝑢𝑠

(3.17)

𝑎𝑥,𝑟𝑒𝑎𝑙,𝑠 =
𝑢𝑠+1 − 𝑢𝑠
𝑑𝑡𝑠

(3.18)

𝐽𝑥,𝑟𝑒𝑎𝑙,𝑠 =
𝑎𝑥,𝑟𝑒𝑎𝑙,𝑠+1 − 𝑎𝑥,𝑟𝑒𝑎𝑙,𝑠

𝑑𝑡𝑠
(3.19)

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

18.7 4.59  [−224, 24.2]

Table 3.1: Case 1 KPI for the linear method benchmark

It can be seen that the RMS for the acceleration is fairly high, which is to be expected, since the
system is trying to optimize the travel time. However, that acceleration is not close to the acceleration
limit that is imposed. This is due to the fact that the timestep is not varying during the optimization
and is the result of eq 2.38. Peak jerk shows that the guidelines found in [1] are not adhered to,
which is to be expected since the optimization does not take into account comfort. The lower peak
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jerk indicates that the change from acceleration to deceleration is more sudden and to be expected,
since this value corresponds to the point in between the curves where the speedprofile goes from
increasing to decreasing, resulting in a change of acceleration twice the acceleration constraint in a
single distance step. this can be seen in Figure 3.6 where there is a single negative jerk data point
where the speedprofile goes from acceleration to deceleration.

The speedprofile shows a linearly changing speed with respect to distance, while the benchmark
result shows the speedprofile tapering off at higher speeds. The benchmark result shows expected
behaviour, since the higher the speed, the shorter the distance step takes, the lower the change in
speed over a given distance with the same acceleration. Linearly changing speed is an expected
shortcoming of the linear method, because the timestep is assumed constant.

Figure 3.6: The jerk as a function of distance

Case 2, motion sickness minimization is realised by a combination of minimisation of acceleration
and time minimization. Jerk has not been included in the cost function, leading to the following cost
functions. The specific values have been determined through trial and error to match the visual pattern
of the speedprofile to the result from the benchmark.

𝑣𝑐 = 1 𝑎𝑐 = 5 𝐽𝑐 = 0

This leads to the speedprofile as seen in Figure 3.7

Figure 3.7: The speedprofile with a linear method for case 2
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Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

21.2 1.59  [−2.84, 22.8]

Table 3.2: Case 2 KPI for the linear method benchmark

Travel time has increased by roughly 13% compared to Case 1. The RMS of the acceleration
has decreased by 65%. This means that there is a meaningful trade off between travel time and
minimization of acceleration. The fact that the jerk was not included in the cost function can be observed
by the peak jerk values. The peak negative jerk was significantly lower than the peak positive jerk,
indicating that the deceleration was done in a smoother fashion than the acceleration. The acceleration
plot can be seen in Figure 3.8 which supports this claim. The speed during the corners is constant, but
at the maximum allowed speed, leading to high lateral accelerations. Since the lateral acceleration is
not taken into account for the minimization of accelerations the speed is not reduced during the curves,
which explains why the travel time is only slightly longer than the time minimization case.

Figure 3.8: The acceleration as a function of distance

Up until this point the jerk term in the cost function was not used. However in the benchmark a
minimization was done of certain frequencies of acceleration. A vibration means quick changes in
speed and acceleration, meaning relatively large jerk values. Therefore, the jerk term is introduced in
the cost function for Case 3 leading to the following values.

𝑣𝑐 = 1 𝑎𝑐 = 5 𝐽𝑐 = 1

This leads to the speedprofile as seen in Figure 3.9

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

23.4 1.02  [−1.05, 0.85]

Table 3.3: Case 3 KPI for the linear method benchmark

The travel time has increased by 10% compared to case 2, which is explained by a twofold of
reasons. Firstly, the introduction of the jerk term means that the relative weight of the time minimization
term in the cost function is lower. Secondly, jerk minimization leads to less aggressive application
of accelerations, leading to more time between peak acceleration and deceleration, in turn leading to
longer travel times. RMS of the acceleration is lower compared to case 2. However the difference is not
deemed significant. The reason for this is that the lateral acceleration as a result of the speed during
the corners that is expected will have a much larger influence on total accelerations experienced. In
combination with peak jerks being lower, this leads to a more comfortable trajectory than found in case
2.Finally, it can be observed that the speed during the curves is no longer constant. This is consistent
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Figure 3.9: The speedprofile with a linear method for case 3

with results found in the benchmark, however this introduces a problem. Now there is longitudinal
acceleration during the curves, meaning that the friction circle constraint can no longer be guaranteed.

An advantage to using a linear optimization means that the computation time is very short. For this
scenario, regardless of the used cost function, the computation time was roughly 0.5 seconds. This
makes the linear approach feasible for online speedprofile generation from a computational complexity
point of view.
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3.4. Speedprofile using NonLinear Optimization
In this section the nonlinear speedprofile generation method will be compared to the benchmark re
sults. The nonlinear method aims to combat some of the shortcomings observed in the previous
section. The initial conditions are set to free variables and are to be determined by the optimization
algorithm.

For Case 1 time minimization the cost function is purely comprised of the time.

ℒ = 𝑡 (3.20)

Figure 3.10: The speedprofile for case 1 using the nonlinear method

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

15.0 8.80  [−324, 96.7]

Table 3.4: Case 1 KPI for the nonlinear method benchmark

Travel time is lower than in the linear variant. This is related to a good description of the acceleration
and jerk which can accurately predict the acceleration. this is also seen in the RMS of the accelera
tion, which is closer to the friction circle constraint than the value found in the linear method, meaning
that more of the available acceleration is used. The peak jerk indicates that this is not a comfortable
trajectory. Comparing the resulting speedprofile to the benchmark result a similar speed at the start,
at the peak on the second straight, and during cornering is observed. It can also be seen that the
speed tapers off at higher speeds, which is expected behaviour and shows that the nonlinear method
improves upon the linear variant in this regard.

For case 2 the cost function is made up of the time and the integration of the longitudinal accelera
tion. The value for the weighting variable has been determined as 𝑤1 = 0.001.

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
𝑎2𝑠𝑑𝑠 (3.21)

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

16.0 2.84  [−6.33, 72.7]

Table 3.5: Case 2 KPI for the nonlinear method benchmark

Travel time has increased by 6.7%with a reduction of the RMS for the acceleration of 68%. The only
slightly longer travel time can be attributed to having the same speed during the curves. At the same
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Figure 3.11: The speedprofile for case 2 using the nonlinear method

time the peak jerk has been lowered compared to case 1, but is still considered too high according to
[1].

For case 3 the following cost function is used. The weighting variables are determined to be 𝑤1 =
0.001 and 𝑤2 = 0.005.

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
𝑎2𝑠𝑑𝑠 + 𝑤2 ⋅ ∫

𝑆

0
𝐽2𝑠 𝑑𝑠 (3.22)

Figure 3.12: The speedprofile for case 3 using the nonlinear method

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

21.2 1.85  [−1.04, 2.26]

Table 3.6: Case 3 KPI for the nonlinear method benchmark

Travel time is now noticeably longer than previous cases. Mainly two reasons can be thought of for
this, the first being the lower speeds on the middle straight, the other reason is the lower speed during
the curves. However as was the case with the linear method, the friction circle constraint can not be
guaranteed, since there is longitudinal acceleration during the curves. With peak jerk values that are
considered comfortable case 3 shows the most comfortable trajectory of the three different strategies.
Nonlinear optimization is more computationally complex than a linear optimization. The nonlinear
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optimization took 88𝑠 for case 3 using the settings as specified, which is substantially longer than the
travel time. However, the computation time is heavily influenced by the specific settings used and the
effects of settings section goes more in depth.

These results show that the nonlinear method is able to more accurately capture the dynamics that
are necessary to produce not only a comfortable trajectory, but especially a more time optimal one,
compared to the linear method. This comes at the tradeoff in computation time which is significantly
shorter for the linear variant. However another shortcoming has emerged here in the fact that the lateral
motion is not taken into account and even with a seemingly comfortable speedprofile the comfort during
lateral motion is determined only by a lateral acceleration limit. In the next section motion planning is
utilized that will aim to combat this shortcoming and produce suitable speedprofiles taking into account
both longitudinal and lateral motion.
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3.5. Speedprofile using NonLinear Optimization with Lateral Mo
tion

Main two differences between the motion planning and the linear/nonlinear method are firstly that the
lateral motion is now taken into account and the cost functions will be changed to reflect this. Resulting
in no longer needing a reference speed and therefore this reference speed is no longer included in the
results plots. Secondly, the amount of distance steps has been reduced to 125resulting in a stepsize of
ℎ = 2𝑚. This is done to reduce the computational load and make the calculation of the result feasible.

Case 1 is done using the following cost function:

ℒ = 𝑡 (3.23)

The following speedprofile is found:

Figure 3.13: The speedprofile for case 1 using motion planning

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

15.0 8.80 9.78 [−189, 52.5]

Table 3.7: Case 1 KPI for the motion planning benchmark

For the motion planning, exactly the same travel time and RMS acceleration as the nonlinear
method are found. Where this does not hold is when looking at the jerk. The jerk is applied at a
single step with the required magnitude to apply the highest possible acceleration at the following dis
tance step. Since the step size is taken as ℎ = 2𝑚 compared to ℎ = 1𝑚 for the nonlinear method the
jerk is applied for a longer distance and thus longer period of time, resulting in a lower peak jerk. RMS
for the combined acceleration is close to the friction circle constraint suggesting that the used method
is time optimal.

For case 2, minimization of accelerations, the combined longitudinal and lateral accelerations term
has been added to the cost function. The main difference between this implementation is that the lateral
acceleration is considered during the optimization and thus is included. Leading to the cost function
below with the weight factor 𝑤1 = 0.001.

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
[𝑎2𝑥,𝑠 + 𝑎2𝑦,𝑠] 𝑑𝑠 (3.24)

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

17.3 3.95 5.40 [−8.23, 46.5]

Table 3.8: Case 2 KPI for the motion planning benchmark
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Figure 3.14: The speedprofile for case 2 using motion planning

The travel time has increased by 15%, which is more than the nonlinear method, which is explained
by the lower speed during the curves.By including the lateral acceleration in the cost function, the speed
in curves is lowered slightly compared to the nonlinear optimization, where this approach was not
posssible. RMS acceleration compared to case 1 has been lowered, but is too high to be considered
comfortable.

For case 3 the longitudinal jerk has been included in the cost function. Only the longitudinal jerk is
used in the cost function, not the lateral jerk. The lateral jerk is mostly defined by the curvature of the
road and since the curvature in this scenario is not smooth, the result has high lateral jerk. Leading
to speedprofiles that will minimize speed on corner entry and exit, which introduces more changes in
speed than is desired from a driveability point of view. Case 3 is done using the following cost function
with the weighting values 𝑤1 = 0.0001 and 𝑤2 = 0.00005:

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
[𝑎2𝑥,𝑠 + 𝑎2𝑦,𝑠] 𝑑𝑠 + 𝑤2 ⋅ ∫

𝑆

0
𝐽2𝑥,𝑠𝑑𝑠 (3.25)

Figure 3.15: The speedprofile for case 3 using motion planning

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

26.7 1.44 2.22 [−0.84, 1.99]

Table 3.9: Case 3 KPI for the motion planning benchmark
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Travel time increased has increased by 78% compared to case 1, however a reduction in RMS
acceleration can also be noted. More interestingly the lateral acceleration has also been reduced as
can be seen by the RMS acceleration combined, which is only slightly higher than the RMS acceleration,
as a result of the slower speed during the curves. The jerk minimization means that jerk has been
reduced to below the limits, therefore this speed profile can be considered comfortable. By including
the longitudinal jerk in the cost function for the motion planning algorithm a speedprofile can be found
that possesses similar properties to one found that is able to minimise motion sickness. Therefore
concluding that a jerk minimization using the implementation of the motion planning is able to produce
comfortable speedprofiles. Due to themore complex nature of the equations of motion, the computation
time of the motion planning algorithm was similar to that of the nonlinear method even though the
motion planning used half the amount of distance steps (125, against 250 for the nonlinear method).
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3.6. Effects of Settings
Different settings for the dynamics, cost function or ACADO result in different outcomes. In this section
four different settings are further examined. First, the decision to omit the lateral jerk in the cost function
for the motion planning is elaborated and the effect is demonstrated with an example. Second, the
distance step size is varied to investigate the trade off between computational complexity and accuracy.
Third, the linear method timestep is varied to find the effects a larger assumed timestep has on the
resulting motion. Finally, the initial conditions for the ACADO optimization are varied to show that for
similar scenarios there can be a significant difference in computation time and convergence.

3.6.1. Cost Function Weights
The goal of the benchmark is to check the results of the proposedmotion planning against the described
state of the art example. The resulting speed profile is dependent on the weights that are chosen for
the acceleration and jerk. Since the KPI of the benchmark reference results are not known, the chosen
weights of the cost function were not done based on KPI. By increasing the weights the optimization will
put less focus on the travel time and more focus on the acceleration and jerk. To show the potential of
the proposed motion planning algorithms, the weights are chosen such that the resulting speedprofile
has a similar visual profile. On top of that, there was extra attention given tomake sure the speedprofiles
have a somewhat similar starting speed and top speed on the straight between the two corners. By
presenting the results in a similar visual format as the benchmark reference result, it can be observed
that the proposed motion planning algorithm is able to produce similar speed profiles.

Figure 3.16: The resulting speedprofiles using the proposed motion planning method in the benchmark format

3.6.2. Lateral Jerk Inclusion in Motion Planning
The lateral jerk is not included in the cost function for the motion planning optimization in the benchmark
results. The reason for this is that the results better resemble the benchmark results when the lateral
jerk is omitted from the cost function. The lateral jerk is a function of both the speed and the change
of curvature of the road. Therefore when the road curvature changes, such as at the start and end
of a constant radius corner, high lateral jerk is required to be able to follow the road. Minimization of
the lateral jerk leads to a minimization of speed only at the start and end of a corner. To illustrate this
the following cost function is set up with the weights equal to those used in the benchmark scenario,
𝑤1 = 0.005 and 𝑤2 = 0.002.

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
[𝑎2𝑥,𝑠 + 𝑎2𝑦,𝑠] 𝑑𝑠 + 𝑤2 ⋅ ∫

𝑆

0
[𝐽2𝑥,𝑠 + 𝐽2𝑦,𝑠] 𝑑𝑠 (3.26)

The resulting speedprofile can be seen in figure 3.17. During cornering the speed is not constant,
but lower at the corner entry, peaking at the middle of the corner and then slow again at the corner
exit. This behaviour is not ideal from a comfort point of view, because this introduces more changes
of acceleration, jerk, which impacts comfort negatively. Looking at the KPI for this speed profile it can
be seen that the travel time has increased with a lower 𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 indicating the opposite, a more
comfort oriented trajectory. However, where the lateral jerk minimization does not improve on comfort
is in the peak longitudinal jerk, which is double that of the values seen in the benchmark and they
are too high to be considered comfortable. Showing that when no control can be had over the lateral
motion, including the lateral jerk in the cost function does not necessarily improve comfort and needs
to be considered on a case to case basis.
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Figure 3.17: The speedprofile including lateral jerk using the motion planning method

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

29.0 1.48 1.96 [−0.95, 4.37]

Table 3.10: KPI for the motion planning with lateral jerk inclusion

3.6.3. Distance Step Size
Distance step size is the amount of length between each data point for which a speed is determined.
Since the benchmark trajectory is a fixed length of 250𝑚, varying the distance step is done by adjusting
the amount of steps the trajectory is divided into. The amount of steps influences the computation time
by needing to perform more calculations. On the other hand when the step size increases too much the
accuracy of the results are compromised and no longer useable. Here To see the effects the amount
of steps for the speedprofile generation the KPI for four different step sizes are shown in table 3.11.

Distance steps
[]

Step size
[m]

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

Computation time
[𝑠]

250 1 15.0 8.80 [−324, 96.7] 236
125 2 15.0 8.78 [−159, 52.5] 30
50 5 14.4 8.86 [−64.5, 24.9] 2.0
25 10 14.6 8.60 [−32.0, 15.0] 0.40

Table 3.11: KPI and computation time for different stepsizes for the nonlinear method benchmark

First thing to notice is the peak of the longitudinal jerk, which is proportional to the amount of dis
tance steps. Since the amount of distance steps is inversely proportional to the step size, this is to be
expected. The jerk is assumed to be applied over the entirety of a distance step. Therefore a larger
step size leads to a longer application of the jerk, which in turn leads to a lower peak value. There
fore, without jerk limitation or minimization the step size is the defining parameter that defines peak
jerk values. Next is the fact that the travel time is shorter with less steps, suggesting that the obtained
results are not accurate. To investigate this further the speedprofile for 25 distance steps is shown in
figure 3.18. This figure clearly shows that the step size is too large to gain accurate results. In this
symmetrical scenario the optimal speed profile should also be symmetrical, however this is not the
case, in combination with a different travel time compared to the short step sizes the result is deemed
inaccurate and not usable.
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Figure 3.18: The speedprofile for case 1 using the nonlinear method with only 25 distance steps

3.6.4. Timestep Variance for Linear Method
The linear method simplifies the dynamics by assuming a constant speed across the whole trajectory
for the timestep calculation.

𝑑𝑡 = ℎ
𝑈 (3.27)

where 𝑈 denotes the assumed speed in 𝑚/𝑠 and ℎ the distance step in 𝑚. Therefore the selected
assumed speed has a significant influence on the results. For the benchmark the most conservative
approach was taken in the form of taking the highest speed possible, the speedlimit 40𝑚/𝑠, as the
assumed speed. When the assumed speed is higher than realised speeds the acceleration and jerk will
always be overestimated. On the other hand, when the assumed speed is lower than the realised speed
the acceleration and jerk are underestimated and can become infeasible due to exceeding friction circle
constraints. Taking the benchmark scenario with case 3 jerk minimization the effects of the assumed
speed is investigated. Table 3.12 shows the KPI for various different assumed speed.

Assumed Speed
[𝑚/𝑠]

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

Acceleration Peak
[𝑚/𝑠2]

Speed Peak
[𝑚/𝑠]

40 24.6 0.66 [−0.33, 0.53] 1.27 13.5
30 22.5 1.38 [−1.05, 1.18] 2.49 17.1
20 19.4 3.43 [−4.12, 3.39] 6.05 24.3
10 15.8 9.72 [−19.6, 16.9] 17.3 36.1

Table 3.12: KPI for different timesteps for the linear method benchmark

It can be seen that all the KPI are dependent on the assumed speed. To get the most accurate
results the assumed speed should therefore be chosen such that they are as close as possible to the
realised speed. The last entry shows the peak speed as determined by the linear optimization. The
difference between the peak speed and the assumed speed is a good indication for the accuracy of
the results. When the assumed speed is larger than the peak speed the acceleration and jerk are
overestimated and therefore a longer travel time and more comfortable KPI are observed. Conversely,
a lower assumed speed than peak speed indicates that the acceleration and jerk are underestimated
and the real values are higher. Leading to a lower travel time and less comfortable KPI with higher
accelerations and jerk. In the case of an assumed speed of 10𝑚/𝑠 the peak acceleration exceeds
the friction circle constraint, meaning that not only is it not an accurate result, it is also not a feasible
trajectory. To highlight the different cases figure 3.19 shows the acceleration and jerk as estimated
by the algorithm and as determined afterwards based on the speedprofile. The real acceleration and
jerk are always lower than the real values when the assumed speed is overestimated. When the
assumed speed is underestimated the real acceleration is consistently higher than expected values.
The real difference is when looking at the jerk, not only is the magnitude too high, but the sign is often
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in the opposite direction. Therefore, an overestimation of the assumed speed leads to a conservative
estimate of the optimal solution, while an underestimation of the assumed speed leads to inaccurate
and/or infeasible results.

Figure 3.19: Acceleration and jerk for the linear method as determined by the algorithm (Input) and calculated afterwards (Real).
Assuming a speed of 40𝑚/𝑠 (left) and 10𝑚/𝑠 (right)

3.6.5. Initial Conditions for NonLinear Method and Motion Planning
For the motion planning algorithm using ACADO the initial guess that is used for initialization of the
SQP problem is based on the bounds that are set. Setting the speed at the first step of the trajectory
influences the computation time and even the overall convergence. This effect is shown in table 3.13.

Initial Speed
[𝑚/𝑠]

Computation time
[𝑠]

SQP iterations
[]

Convergence
[]

 26.3 35 YES
5 37.6 48 YES
6 45 55 YES
8 89.5 79 YES
10 16.4  NO
15 17.1  NO

Table 3.13: Computation time and convergence for case 3 motion planning benchmark

For an initial speed of more than 10𝑚/𝑠 it can be seen that ACADO is no longer able to find a
solution. This comes from the fact that ACADO uses the bounds of the system for a starting state.
Setting the speed at every point along the trajectory to 10𝑚/𝑠 will lead to an infeasible state, since
that speed would lead to lateral acceleration during the corner that would exceed the friction circle
constraint. By looking at the final solution of the optimization we can see that the initial speed actually
exceeds this value. Now looking at the computation time it is observed that there is high variance
between the different initial speeds. This stems from the fact that more SQP iterations were needed
to get to the optimal solution. This example shows that even for seemingly similar scenarios there can
be a significant difference in computation time or even convergence as a whole. For this reason the
computation time is not included as a KPI, even though it is mentioned.
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3.7. Summary
This chapter introduced a state of the art literature example based on a nonlinear optimization method
that is able tominimizemotion sickness based on vibrations experienced by the passengers. The speed
profile generation based on linear optimization is not able to reproduce the resulting speed profile as
seen in the example. For the nonlinear optimization method the speed profile obtained for the time
optimal cost function is very close, however for the comfortable motion, the speed through the corners
was still too high to be considered comfortable. The motion planning system including the lateral motion
is able to accurately reproduce similar speed profiles for the three different cost functions. The effects
of the different settings for the cost function have been presented. It has been shown that the initial
conditions chosen for ACADO can have an impact on computation time and convergence.





4
Comparison of Motion Planning Against

a Complex Vehicle Model
This chapter goes over the simulation results to verify the effectiveness and accuracy of the motion
planning algorithm. The vehicle model and the simulation are first presented. Then KPI are defined
to evaluate the simulation results. A driver model is defined by two PID based controllers for the
longitudinal inputs and the builtin Prescan path follower for the lateral control. Finally, the simulation
results are presented and discussed.

4.1. Vehicle Model and Experiment Settings
In the Prescan GUI there are many different vehicle types available. For this experiment a Mazda RX8
has been chosen with a vehicle model called 3Dsimple. For this research the most important things to
note are the width of the vehicle, the width of the road and the dynamics model of the vehicle. The width
of the vehicle is a function of the vehicle it is based on. A Mazda RX8 has a width of 1.77𝑚. The width
of the road is set to 3.5𝑚, which is the standard width of a dutch road. To make sure the simulation has
good enough accuracy, the simulation is set to 200ℎ𝑧, the recommended simulation frequency for the
dynamics model used.

The dynamics model consists of two different masses that are connected, the sprung and the un
sprung mass. The sprung mass (the mass that is supported above the suspensions) has 6 degrees of
freedom. Three displacements (x, y and z) and three rotations (roll, pitch and yaw). And the unsprung
mass (the mass below the suspensions; the 4 wheels) has 4 degrees of freedom namely the 4 vertical
displacements. Between the sprung mass and unsprung mass are placed the suspensions. The sus
pension transmits forces between the unsprung mass of the wheels and the sprung mass of the body.
For each individual wheel a stiffness and a damping is defined. The steering system directly connects
the angle of the front wheels with the angle of the steering wheel. It also dictates the maximum amount
of steering angle that is permitted.

Figure 4.1: The 10 degrees of freedom of the vehicle dynamics model. Source: Prescan help guide

The engine model consists of a torque map that can be modified. The torque map indicates the

45



46 4. Comparison of Motion Planning Against a Complex Vehicle Model

engine torque as a function of the throttle position and the engine rpm. This allows for engine braking
when no throttle is applied. The driveline and the transmission indicate the resulting wheel torque as
a function of engine torque and the chosen gear. In this research the vehicle is operating in a single
gear, therefore reducing the driveline to a simple reduction gear set powering the rear wheels.

All the parameter values that are used for the vehicle can be found in the Appendix.



4.2. Key Performance Index 47

4.2. Key Performance Index
In the works from [9] the controller was tuned according to the RMSof the lateral error. In this experiment
the lateral error RMS does not give insight into the following of the path through the corner, which is
the most interesting section from a controller performance point of view. On top of that, if the vehicle
has a steady state error on the straight, leading to a high RMS value, does not necessarily mean that
the performance is poor. The vehicle is allowed to operate freely within the lane boundaries, therefore
the lateral controller is evaluated as a satisficing controller, instead of an optimizing controller. Instead
of searching for a lateral offset as small as possible, anywhere in the lane is fine. The main KPI that
indicates the lateral performance is therefore chosen to be the maximum lateral offset compared to the
centerline of the road, not the reference trajectory.

𝑛𝑚𝑎𝑥 =max (𝑒𝑦 + 𝑛𝑟𝑒𝑓) (4.1)

The centerline of the road directly correlates to the border of the road, which should not be exceeded.
Maximum allowed offset is determined by the width of the vehicle and the width of the road. The width
of the used vehicle is 1.77𝑚, combined with a standard dutch road of width 3.5𝑚, leads to the following
value for the maximum lateral offset to make sure the vehicle does not leave the road:

𝑛𝑚𝑎𝑥 = 0.865𝑚 (4.2)

Comfort is determined mainly by the jerk experienced by the passengers. According to different
sources from the literature the peak jerk should not exceed certain values. In this research any jerk
lower than 0.9𝑚/𝑠3 is considered to be trivial and can be ignored, therefore an important KPI for comfort
is in the form of the peak jerk, both in the longitudinal and the lateral direction.

RMS of the acceleration is an indicator of comfort according to [2], therefore it is a good KPI to eval
uate the comfort of the resulting motion. The acceleration RMS should not be considered without taking
into account the other KPI, since a lower RMS value can be obtained by bad tracking performance. To
compute the RMS of the acceleration the following definition is used:

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = √
1
𝑆

𝑆

∑
𝑠=0
[𝑎𝑥(𝑠)2 + 𝑎𝑦(𝑠)2] (4.3)

To compare the acceleration from the simulation and the reference the ratio of the peak acceleration
is compared. The peak acceleration ratio is defined by taking the peak of the acceleration from the
simulation and the reference as follows.

𝑎𝑥,𝑟𝑎𝑡𝑖𝑜 =
𝑎𝑥,𝑠𝑖𝑚,𝑝𝑒𝑎𝑘
𝑎𝑥,𝑟𝑒𝑓,𝑝𝑒𝑎𝑘

(4.4)

The peak acceleration ratio indicates how much the vehicle has to ’catch up’ to the changing reference
speed. It has to be noted that this ratio is a function of the performance of the longitudinal controller,
which is not the scope of this research. Only the longitudinal direction is considered, since the lat
eral acceleration showed very good results and adding this value does not help the evaluation of the
resulting motion.

To evaluate the performance of the simulation four different KPI have been established with an
explanation of their preferred value below.

• The border of the road should not be exceeded, thus the lateral offset has to be within bounds.

• The objective of the peak jerk is to keep within comfortable bounds.

• The RMS of the acceleration should as low as possible.

• The objective of the peak acceleration ratio is get a value as close as possible to 1.
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4.3. Driver Model
For the control scheme a PID controller is utilised. Ease of implementation and lack of constraint
handling features make it a good controller to evaluate the reference quality.A PID controller is a linear
feedback controller that takes an error signal and produces a control input 𝑢. For the error the difference
between the current value and a reference is taken in addition to the integral and the derivative.

𝑢 = 𝐾𝑝 ⋅ 𝑒 + 𝐾𝑖 ⋅ ∫ 𝑒 + 𝐾𝑑 ⋅
𝑑
𝑑𝑡 𝑒 (4.5)

Longitudinal control is done based on the current speed and the reference speed. The derivative
part of the controller corresponds to direct acceleration control.

Therefore the error is defined as follows:

𝑒𝑙𝑜𝑛𝑔 = 𝑢𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑢𝑟𝑒𝑓 (4.6)

The output of the longitudinal controller is split into two different controls for the throttle and the brakes.
The throttle input is in the form of a percentage of travel and thus operates between 0− 100, while the
input for the brakes is brake pressure in bar, which ranges from 0 − 150. To account for the different
dynamics and control input ranges two separate controllers are used for the throttle and the brakes.

The vehicle has three control inputs: Throttle, brakes and steering.
A different controller for each of these was utilised, resulting in three different controllers that to

gether are able to control the vehicle. For the throttle control 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 a PD control scheme with
feedforward action based on reference acceleration is implemented. Leading to the following throt
tle control:

𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 𝐾𝑝,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 ⋅ 𝑒𝑙𝑜𝑛𝑔 + 𝐾𝑑,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 ⋅
𝑑
𝑑𝑡 𝑒𝑙𝑜𝑛𝑔 + 𝐾𝑓𝑓,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 ⋅ 𝑎𝑥,𝑟𝑒𝑓 (4.7)

The obtained controller gains are the following:

𝐾𝑝,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 20
𝐾𝑑,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 40
𝐾𝑓𝑓,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 = 20

The next control input is the brakes 𝑢𝑏𝑟𝑎𝑘𝑒𝑠. The controller for the brakes is a PD controller without
feedforward action. Leading to the following brakes control:

𝑢𝑏𝑟𝑎𝑘𝑒𝑠 = 𝐾𝑝,𝑏𝑟𝑎𝑘𝑒𝑠 ⋅ 𝑒𝑙𝑜𝑛𝑔 + 𝐾𝑑,𝑏𝑟𝑎𝑘𝑒𝑠 ⋅
𝑑
𝑑𝑡 𝑒𝑙𝑜𝑛𝑔 (4.8)

where the found controller gains are the following:

𝐾𝑝,𝑏𝑟𝑎𝑘𝑒𝑠 = 80
𝐾𝑑,𝑏𝑟𝑎𝑘𝑒𝑠 = 40

The lateral control is achieved by the steering input. Simcenter Prescan comes included with a
sophisticated path follower. The Path Follower is based on the Optimal Preview Control theory [24]
[25]. It calculates the optimal front wheel steer angle to minimize the lateral error of the actor position
(vehicle center of gravity) and a reference path. It approximates average human driver behavior.
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Figure 4.2: The error defined by the path follower from Prescan. Source: Prescan help guide

The algorithm uses 10 preview points to calculate the steering wheel angle. The preview distance
is calculated by multiplying the actor velocity in 𝑚/𝑠 by the ’Preview time’ (default 1 second). This
is actually the distance the vehicle moves in the preview time of 1 second. The 10 lateral errors are
calculated by first finding the closest point on the trajectory and then the distance from this point to
the actor longitudinal axis. The path follower settings are the default ones and can be found in the
Appendix.

4.3.1. Controller Tuning
PID tuning is done by trial and error [9]. The goal of the controller is to find gains for both the longitudinal
and the lateral controller that are able to achieve satisfactory results. Tuning is done based on a set
of priorities. First priority is the longitudinal control, then the lateral control. The speed of the vehicle
influences how the steering behaviour should change, therefore making sure the vehicle is able to
somewhat follow the speedprofile is the first step. Longitudinal control tuning is done by evaluating the
steady state error that is obtained and the oscillations in the control input that are needed to obtain
this error. It was observed that high frequency oscillations, chattering, in the control input lead to good
speed following behaviour. Therefore the trade off in the longitudinal control input was to find the
tuning values without chattering, that still lead to decent speed following. For the brake control gains,
the proportional gain is increased until oscillations occurred. Then the derivative gain was increased
to try and dampen these. The derivative gain translates to direct acceleration control.

𝑑𝑒𝑙𝑜𝑛𝑔
𝑑𝑡 = 𝑑𝑢𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑑𝑡 +
𝑑𝑢𝑟𝑒𝑓
𝑑𝑡 = 𝑎𝑥,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑎𝑥,𝑟𝑒𝑓 (4.9)

The integral part of the controller was not utilised, since it introduced more oscillations and worsened
performance. The longitudinal gains were chosen such that the peak jerk is a value of around 0.9𝑚/𝑠3.

For the throttle control the first step was to find a gain for the feedforward action that is able to
somewhat follow the acceleration reference. This extra control gain is needed to overcome the bias
in longitudinal control where no control action equates to a slightly deceleration due to external factors
such as rolling and aerodynamic resistance. When a suitable gain is established a similar tuning pattern
was used for the proportional and the derivative gain as the brake control.

Tuning of the lateral controller turned out to not be necessary, since the default settings of the path
follower resulted in suitable lateral results. Suitable results in this scenario were marked by a lateral
offset lower than the width of the road minus the width of the vehicle as defined in the KPI’s and lateral
jerk that was lower than a value of 0.9𝑚/𝑠3 with minimal oscillations and/or chattering.
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4.4. Scenario Motion Profile
The scenario is inspired by the benchmark scenario. The road consists of three straight sections con
nected together by two curved roads with a radius of 8𝑚. The total length of the road is 235𝑚 due to
shortening of the final straight compared to the benchmark. A picture of the road as built in the prescan
GUI can be seen in figure 4.3.

Figure 4.3: The road in Prescan

From the road the curvature is extracted. Resulting in the curvature plot as seen in figure 4.4.

Figure 4.4: The curvature of the road in Prescan

Most notable from this plot is the fact that the curvature does not seem to be consistent during the
corners. This is due to the way Prescan handles building the road. In the background of prescan the
road is built from a series of points that are connected to each other, where the any point between is
determined using interpolation. A combination of the way the interpolation works and the amount of
points used to create the road lead to the curvature shown.

For the reference that is used in the simulation the motion planning algorithm is used. The maximum
allowed lateral offset is set to 0.5𝑚 to allow a small lateral offset to still be within the lane borders. The
resulting motion profile is defined using two main parameters. The first one being the speed profile
that makes sure the vehicle slows down before the corners. The second parameter is the lateral offset,
which is defined as a function of the centerline of the road. To allow the vehicle to be able to follow the
reference a comfortable motion profile is defined. The cost function that is used is similar to the one
used in case 3 of the benchmark.

ℒ = 𝑡 + 𝑤1 ⋅ ∫
𝑆

0
[𝑎𝑥2𝑠 + 𝑎𝑦2𝑠 ] 𝑑𝑠 + 𝑤2 ⋅ ∫

𝑆

0
𝑗𝑥2𝑠 𝑑𝑠 (4.10)

With the following weights:
𝑤1 = 0.05 𝑤2 = 0.2 (4.11)

A stepsize of ℎ = 1𝑚 is used since this showed good results compared to larger distance steps and is a
good trade off between accuracy and computation time. The obtained speed profile can be seen in fig
ure 4.5. The speed profile is charaterised by slow speeds during the corners and smooth accelerations
on the straights, which is ideal for comfort.
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Figure 4.5: The speedprofile as a function of distance used
as the reference for the simulation

Figure 4.6: The lateral offset as a function of color over
the resulting trajectory

Lateral motion is visualised in figure 4.9. The color indicates the lateral offset compared to the
centerline of the road, where red means the reference is to the right and blue to the left of the road
centerline. The lateral motion is characterised by a ’racing line’ through the corners making use of the
entire width of the road to lengthen the radius of the corner. For the second corner similar behaviour is
observed as in the first corner.

Resulting in the following KPI values for the motion profile as described.

Travel time
[𝑠]

𝑎𝑅𝑀𝑆
[𝑚/𝑠2]

𝑎𝑅𝑀𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠2]

𝐽𝑝𝑒𝑎𝑘
[𝑚/𝑠3]

40.4 0.52 0.86 [−0.16, 0.3]

Table 4.1: KPI for the motion planning reference used in the simulation

Peak jerk indicate that the resulting motion are considered comfortable, while the acceleration com
bined RMS indicate that the value is lower than what is defined as uncomfortable. Therefore it can be
concluded that the resulting motion is considered comfortable and a good fit as a reference for a path
follower.

4.5. Simulation Results
The results of the simulation are split into two sections, longitudinal and lateral. Since the vehicle is
operating under very low accelerations and jerk, the vehicle model can be approximated by a linear
bicycle model. Meaning that the longitudinal and the lateral dynamics are no longer coupled. The
resulting motion as predicted by the motion profile should be a good fit for a vehicle that experiences
low accelerations and jerk. Since a vehicle that is operating at low accelerations can be modeled
accurately with a linear bicycle model [29]. The resulting KPI are as follows:

𝑛𝑚𝑎𝑥
[𝑚]

𝐽𝑥,𝑝𝑒𝑎𝑘
[𝑚/𝑠2]

𝐽𝑦,𝑝𝑒𝑎𝑘
[𝑚/𝑠2]

𝑎𝑟𝑚𝑠,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
[𝑚/𝑠3]

𝑎𝑥,𝑟𝑎𝑡𝑖𝑜
[𝑚/𝑠2]

0.68 0.62 0.86 0.85 1.05

Table 4.2: KPI for the motion planning simulation results

From the KPI it can be seen that the lateral offset is lower than the road width. Both the longitudinal
and lateral jerk are lower than the 0.9𝑚/𝑠3 threshold, meaning that from a comfort point of view the
maximum jerk values are acceptable. RMS acceleration is not considered uncomfortable and shows
similar values to the motion planning. Peak acceleration ratio comes in at 1.05, meaning that there is
only a 5% overshoot, indicating good acceleration following.
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4.5.1. Longitudinal Results
The longitudinal results are represented by the speed, acceleration, jerk and control inputs.

Figure 4.7: The resulting speed over the trajectory Figure 4.8: The resulting longitudinal acceleration

Speed following shows good performance, especially during deceleration. During acceleration there
is a slight undershoot in speed leading to the vehicle not reaching the maximum speed on the straight.
The speed difference on the straight is around 0.4𝑚/𝑠, which for speed in a straight line is not signifi
cant and will only influence travel time. The acceleration reference shows the difference in acceleration
and deceleration following. Looking at peak acceleration shows the 5% overshoot during acceleration.
When switching between acceleration and deceleration there is a noticeable change in rate of accel
eration. This effect can be seen right around 150𝑚. Combining these results shows that the speed
profile with accompanying acceleration are able to be followed fairly accurately.

Figure 4.9: The resulting longitudinal jerk Figure 4.10: The longitudinal control inputs
as a function of distance

Peak longitudinal jerk is higher than predicted from the motion planning, but it is within reasonable
bounds from a comfort point of view. When the controller switches between throttle and brake inputs,
namely around 90𝑚, 150𝑚 and 190𝑚, there is a noticeable spike in jerk. Therefore the higher than
predicted jerk is a direct result of the control action. On the other hand, the steady state jerk from the
simulation is very close to the values predicted by the motion planning, as seen around the 110𝑚 to
140𝑚 mark. Combining these two points it can be concluded that the motion planning algorithm is able
to accurately predict the longitudinal acceleration and jerk.
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4.5.2. Lateral Results
The lateral results are represented by the lateral offset, acceleration, jerk and control input.

Figure 4.11: The resulting lateral offset compared to
the centerline of the road

Figure 4.12: The resulting lateral acceleration

The lateral offset shows that the vehicle is able to stay within the lane boundary at 0.86𝑚 at every
point on the track. The vehicle is on the outside of path, which can be seen by a positive lateral offset
in the first curve and a negative lateral offset in the second curve. Similar profiles are observed in both
corners, just mirrored. Indicating that there is no direction dependency. The changing lateral offset
during the middle straight is followed close, without noticeable oscillations or lateral error. The lateral
acceleration that is expected based on steadystate cornering matches the realised lateral acceleration
from the simulation. This means that the determined lateral acceleration from the motion planning is
close to the values that are to be expected in the real world. The simulation shows slightly lower lateral
acceleration than the reference from the motion planning. This is due to the fact that the vehicle has
a lateral offset compared to the reference, leading to the vehicle following a lower curvature path than
the reference. A lower curvature with a similar speed amounts to lower lateral accelerations during
steadystate cornering.

Figure 4.13: The resulting lateral jerk Figure 4.14: The steering wheel angle as a function of distance

The controller shows a smooth input without any noticeable oscillations. The result of this smooth
control input results in a smooth lateral jerk without large peaks. Due to the good control from the
Prescan path follower the resulting lateral jerk is very similar to the expected jerk as predicted by the
motion planning algorithm. The fact that the lateral jerk from the simulation is very similar to the jerk as
predicted by the motion planning, both in magnitude and profile, indicates that the assumptions made
in the motion planning algorithm are valid.
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4.6. Summary
This chapter has presented a scenario where the motion planning method has been used in Simcenter
Prescan. A complex 10 degrees of freedom vehicle model containing both sprung and unsprung mass
has been presented. KPI to evaluate the performance of the simulation have been defined. As a
driver model two PID controllers have been established for the throttle and the brake control. For the
steering, the built in path follower from Prescan has been used. To ensure representative results the
method for tuning the controller has also been presented.The motion planning containing both lateral
and longitudinal motion has been used to define a comfortable reference speed and trajectory. The
simulation results show that the reference motion is comparable to the resulting motion, both in the
longitudinal and the lateral direction. Indicating that the motion planning system produces accurate
results. On the other hand it is also observed that the longitudinal control of the vehicle needs a more
complex control scheme for optimal speed tracking, mostly to improve during the switching between
throttle and brakes. For the lateral control a predictive control scheme is needed to be able to follow
the road with very low lateral offset.
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Conclusions and Future Work

5.1. Conclusions
In the literature review it was shown that motion planning as a reference for a subsequent path fol
lower has advantages for automated driving tasks. The proposed motion planning algorithms that are
designed are able to construct comfortable reference motion based on the curvature of the road. To
validate the proposed methods, they are benchmarked against a state of the art literature example. The
resulting motion is used as a reference trajectory and speed in a simulation using a complex vehicle
model. This allows the comparison of the resulting motion with the predicted motion as determined by
the motion planning algorithm. Accurate results are obtained showing that the assumptions are valid
under these conditions. Therefore, below mentioned are the main conclusions that are obtained.

Speed profile generation using a linear optimization is a fast and relatively accurate method that
can be used if computation speed is of utmost importance.

Jerk based motion planning using a nonlinear optimization gives a more flexible solution than
speedprofile generation with similar accuracy. In a situation where computation time is important linear
speedprofile generation is preferred over nonlinear speedprofile generation, because it is not quick
enough. At the same time, for accuracy dependent situations motion planning is preferred for the extra
flexibility.

The results for the proposed motion planning are feasible and have been shown to be good refer
ence signals for a path follower.

Finally, the largest shortcomings from the motion planning are from two different sources. The first is
the fact that all dynamics are discrete. The second is the fact that due to the nature of the simplifications
that are made the lateral dynamics can not (easily) be extended to include for instance a bicycle model.
Therefore this method is not suited for situations where the lateral dynamics are important, such as
laptime optimization. This method however is very suited to extension of longitudinal dynamics, such
as powertrain or aerodynamics models.
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5.2. Recommendations and Future Work
During this research, a jerk based motion planning algorithm was designed, that has been shown to
be able to tackle different goals, from time optimality to motion sickness minimization. However, the
results are not perfect. Future work can be divided into two directions. First is general improvements in
the optimization framework and further implementation. The second is in the equations of motion used
for the optimization. Computation times for the nonlinear optimization were very long compared to the
length of the planned motion. In combination with bad convergence, there is a lot of improvements to
be had to be able to deploy such a system in a realtime algorithm. On the other hand the EOM are
currently based on point mass dynamics assuming steadystate cornering, which is a simplification that
is not valid with larger accelerations.

Below mentioned are different points in which the current designed method can be improved and
extended.

• Improvements in the optimization framework to reduce computation time and improve conver
gence for more general situations. One of the ways this can be achieved is by using a different
solver that is more suited to this specific optimization problem.

• More complex longitudinal dynamics. By incorporating the likes of drivetrain dynamics and aero
dynamic drag. This can be done to not only result in a speedprofile, but also reference throttle
and brake inputs.

• Use of themotion planning algorithm inmore complex road situations. In this research two corners
put together with straight roads have been used. The optimization approach allows the motion to
be much more comfortable when both longitudinal and lateral acceleration are to be combined.

• For motion planning algorithms for automated driving the goal is to be able to compute the re
sulting motion in realtime. Receding horizon implementation is a good candidate to keep the
computation time feasible. This also allows the algorithm to be able to adapt the path and speed
to changing environments.

• The reference curvature that was used in the creation of the reference motion assumes perfect
knowledge. As the saying goes garbage in, garbage out. The effect of imperfect knowledge of
the reference curvature has to be researched and if necessary estimators have to be used to
compensate.
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A.1. Linear Speedprofile Generation Final EOM
States x and Inputs u:

x = [𝑢, 𝑎]
u = [𝐽]

The EOM:

𝑢𝑠+1 = 𝑢𝑠 + 𝑎𝑠 ⋅ 𝑑𝑡
𝑎𝑠+1 = 𝑎𝑠 + 𝐽𝑠 ⋅ 𝑑𝑡

𝑑𝑡 = ℎ
𝑢𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡

Constraints:

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑢𝑚𝑎𝑥,𝑠
𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠 ≤ 𝑎𝑚𝑎𝑥
𝐽𝑚𝑖𝑛 ≤ 𝐽𝑠 ≤ 𝐽𝑚𝑎𝑥

A.2. NonLinear Speedprofile Generation Final EOM
States x and Inputs u:

x = [𝑢, 𝑎, 𝑡, 𝑑𝑡]
u = [𝐽]

The EOM:

𝑢𝑠+1 = 𝑢𝑠 + 𝑎𝑠 ⋅ 𝑑𝑡𝑠
𝑎𝑠+1 = 𝑎𝑠 + 𝑗𝑠 ⋅ 𝑑𝑡𝑠
𝑡𝑠+1 = 𝑡𝑠 + 𝑑𝑡𝑠

𝑑𝑡𝑠 =
ℎ
𝑢𝑠

Constraints:

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑢𝑚𝑎𝑥,𝑠
𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠 ≤ 𝑎𝑚𝑎𝑥
𝐽𝑚𝑖𝑛 ≤ 𝐽𝑠 ≤ 𝐽𝑚𝑎𝑥
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A.3. Motion Planning Final EOM
States x and Inputs u:

x = [𝑛, 𝑢, 𝑣, 𝑎𝑥 , 𝑎𝑦 , 𝑡, 𝜃]
𝑇

u = [𝐽𝑥 , 𝐽𝑦]
𝑇

A visual representation of the directions of the motion and reference:

Figure A.1: A visual representation of the simplified motion as assumed by the motion planning algorithm

In figure A.1 the direction of the longitudinal speed 𝑢 is always aligned with the reference, while the
lateral speed 𝑣 is always perpendicular. For the angle 𝜙 a small angle approximation is utilised.

The EOM:

𝑛𝑠+1 = [1 +
𝑣𝑠 ⋅ 𝜙𝑠
𝑢𝑠

]−1 ⋅ [𝑛𝑠 + ℎ ⋅ 𝜙𝑠 −
𝑣𝑠
𝑢𝑠
⋅ ℎ]

𝑢𝑠+1 = 𝑢𝑠 + 𝑎𝑥,𝑠 ⋅
ℎ
𝑢𝑠

𝑣𝑠+1 = 𝑣𝑠 + (𝑎𝑦,𝑠 − 𝑢2𝑠 ⋅
𝜅𝑟𝑒𝑓,𝑠

1 + 𝑛𝑠+1 ∗ 𝜅𝑟𝑒𝑓,𝑠
) ⋅ ℎ𝑢𝑠

𝑎𝑥,𝑠+1 = 𝑎𝑥,𝑠 + 𝐽𝑥,𝑠 ⋅
ℎ
𝑢𝑠

𝑎𝑦,𝑠+1 = 𝑎𝑦,𝑠 + 𝐽𝑦,𝑠 ⋅
ℎ
𝑢𝑠

𝑡𝑠+1 = 𝑡𝑠 +
ℎ + 𝑛𝑠+1 ⋅ 𝜙𝑠

𝑢𝑠
𝜃𝑠+1 = 𝜃𝑠 + 𝜅𝑟𝑒𝑓,𝑠 ⋅ ℎ
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Constraints:

𝑛𝑚𝑖𝑛 ≤ 𝑛𝑠 ≤ 𝑛𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑢𝑚𝑎𝑥
𝑎2𝑥 + 𝑎2𝑦 ≤ 𝑎2𝑚𝑎𝑥

A.4. Benchmark Format Results

Figure A.2: The resulting speedprofiles from [16]

Figure A.3: The resulting speedprofiles using the linear method in the benchmark format

Figure A.4: The resulting speedprofiles using the nonlinear method in the benchmark format
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Figure A.5: The resulting speedprofiles using the motion planning method in the benchmark format

A.5. Vehicle Parameters

The vehicle used can be described by the physical dimensions, the suspension, and the engine.

Figure A.6: The parameters for the vehicle used in the Prescan simulation
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Figure A.7: The suspension stiffness and damping for the vehicle used in the Prescan simulation

Figure A.8: The engine torque map for the vehicle used in the Prescan simulation
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A.6. Path Follower Parameters

Figure A.9: Path follower settings used in the Prescan simulation
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