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Abstract

Despite numerous theoretical investigations on the mechanical properties of graphene, an accurate
identification of its material behavior is still unattained. One hypothesis for this uncertainty
is that modeling graphene as a static membrane cannot describe the strong coupling between
mechanics and thermodynamics of this structure. Therefore, characterization methods built upon
static models could not capture these effects. In this paper, we propose a new method for building
a reduced order model for the dynamics of thermalized graphene membranes. We apply the
proper orthogonal decomposition algorithm on time responses obtained from molecular dynamics
simulations. As a result, a set of orthogonal modes is obtained which are then employed to
build a reduced order model. The proposed model can describe the motion of the suspended
graphene membrane over the whole spatial domain accurately. Moreover, due to its computational
efficiency, it is more versatile for exploring the nonlinear dynamics of the system. This model is
then employed for studying the nonlinear dynamics of graphene membranes at large amplitudes to
extract Young’s modulus. The obtained Young’s modulus incorporates the effects of nano-scaled
thermally induced dynamic ripples and hence, is temperature and size dependent. Our proposed
atomistic modal order reduction method provides a framework for studying the dynamics and
extracting the mechanical properties of other nano-structures at the molecular level.

Keywords: Graphene, Idenification, Nonlinear Dynamics, Molecular Dynamics, Proper
Orthogonal Decomposition, Reduced order modeling, Elasticity.

1. Introduction

The fabrication of graphene as a single atom thick membrane has been a promising step towards
down-scaling of Nano Electro-Mechanical Systems (NEMS) with potential applications in pressure
sensing [1], mass sensing [2, 3], and electronics [4–6]. The proper modeling and characterization
of graphene is a crucial step towards the development and commercialization of these advanced
applications. For this reason many experimental, theoretical, and computational studies have
been performed to investigate the limit of intrinsic mechanical properties of pristine graphene [7–
14]. However, there is still a large variation in the experimentally measured Young’s modulus
of graphene as compared to its theoretical limit [13]. For instance, Atomic Force Microscopy
(AFM) measurements have shown a large variation in the values of the Young’s modulus from
0.43-1.2 TPa [13, 14], respectively. On the other hand, theoretical methods have resulted in a
range of 650 to 1240 GPa for the Young’s modulus of graphene depending on the load direction,
temperature, the size of the structure [7, 8, 13].

Among others, ab initio calculations, Density Functional Theory (DFT), Molecular Mechanics
(MM), and Molecular Dynamics (MD) are the most commonly used algorithms for obtaining the
material properties of graphene, and in particular its elastic modulus, numerically [15, 16]. These
methods are usually based on static approaches, i.e. following the changes in the energy of the
system due to a stepwise static displacement at the boundaries of the membrane. By fitting a static
continuum based model to the response of such simulations, the Young’s modulus is identified.
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One hypothesis for the uncertainty in the obtained elastic modulus by these approaches, par-
ticularly for relatively small membranes, is the presence of thermally induced dynamic ripples in
the membrane (also known as flexural phonons) due to its Brownian motion at finite temper-
ature [7, 9, 17–21]. The dynamic ripples, being of the order of the thickness of a single-layer
graphene, are large enough to influence the mechanical response of the suspended membrane and
as such, also the obtained equivalent Young’s modulus via static approaches. In fact, graphene
at finite temperatures behaves as a dynamically corrugated plate and therefore, if it is statically
loaded, first, the stretching reduces the number of transverse phonons and ripples, and thus, causes
its entropy to reduce, corresponding to an entropic force. The elasticity of graphene is therefore,
like a rubber band, not purely due to the atomic potentials, but also governed by its thermo-
dynamics: it acts as an entropic spring at finite temperatures [22]. Only after these transverse
phonons have been quenched by tension, the intrinsic elasticity corresponding to atomic potential
of the carbon atoms is obtained [19, 23, 24]. Hence, the equivalent stiffness obtained from static
approaches exhibits a nonlinear behavior depending on the applied stretch [7, 8, 23, 24]. It is rather
difficult to disentangle the two sources of stiffness (from the deformation of the graphene lattice
or suppression of flexural phonons), and still capture their interplay in the available approaches.

Due to the presence of continuously appearing and disappearing dynamic ripples in graphene
membranes, a proper model for this material in a continuum framework can be also better achieved
via a dynamic approach. Such a model, if available, can set the foundation for proper parameter
identification of this material. For instance, for identification of Young’s modulus, the dynamic
characterization of the 2D nano-material using its Duffing-type nonlinear response can be em-
ployed [12]. In fact, the stiffness of a membrane in small deflections is dominated by its pretension.
In large deflections, an additional nonlinear geometrical stiffness appears in the elastic potential
of the system and hence, in the obtained set of equations of motion [11, 25]. As a result, nonlinear
effects emerge in the frequency response of the system as a change in the frequency of the peak
amplitude. This geometrical nonlinearity is a function of the Young’s modulus of the membrane
and therefore, can be used for identification of this property [12].

In this paper, a comprehensive numerical method on modeling the dynamics of graphene while
accounting for the temperature dependent nano-scaled dynamic ripples is presented. The proposed
method is then used for extracting the elastic modulus of single-layer graphene at high frequencies.
To achieve this, first, MD is employed to obtain the time response of all atoms of a graphene
membrane when excited with an initial velocity. Next, a Proper Orthogonal Decomposition (POD)
algorithm is utilized to obtain the Proper Orthogonal Modes (POMs) of the vibrations of the
single-layer graphene membrane. Using a Lagrangian approach, the equations of motion are then
discretized with the obtained POMs from MD as the admissible basis functions. As a result, a
reduced order model consisting of a set of nonlinear ordinary differential equations is obtained.
This atomistic reduced order model can capture the dynamics of the graphene membrane on
the whole spatial domain accurately, and yet, with much less degrees of freedom. Finally, by
minimizing the error between the nonlinear frequency responses of the reduced-order model and
MD, the equivalent elastic properties of graphene are estimated at different temperatures. Due to
strong reduction in the number of degrees of freedom by POD, the proposed reduced order model
is more versatile for studying on the nonlinear dynamics of such a system as compared to the full
atomistic models.

In what follows, the proposed atomistic reduced order modeling method is described in details.
In Section 2 the method and its mathematical foundations are described and in Section 3 the
method is applied to analyze the nonlinear dynamics of graphene membranes to characterize
graphene’s material properties. Finally conclusions and future outlook are discussed.

2. Methodology

In this section, we describe our approach to model the nonlinear dynamics and to identify the
equivalent elastic modulus of graphene membranes. For this purpose, we use a clamped circular
graphene membrane, with a radius of 10-18 nm, as our test-case. The choice of circular drums
is because 2D NEMS devices with circular shape yield better structural flexibility as compared
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to other geometries and have no corners or sharp edges that can induce high residual stresses
in practical applications [26, 27]. Moreover, in experimental setups, these nano-resonators are
commonly fabricated by transferring graphene flakes on the top of circular cavities [11, 12]. Using
such a method, due to the adhesion between graphene and the substrate, the resonator will have
fully clamped boundary conditions which is our motive to choose clamped over hinged boundary
condition in our simulations.

The flowchart of the nonlinear material parameter identification from MD simulations is given
in Figure 1. The steps of this approach are as follows:
Step 1. MD simulations of the thermalized graphene membrane are performed.
Step 2. POD algorithm is employed to obtained a set of POMs that describe the motion of the
atoms with minimum error. The Fast Fourier Transform (FFT) is then employed convert the
time response into frequency components, and to obtain the frequency associated with the peak
amplitude of each POM.
Step 3. By using the Lagrangian approach and by employing the most dominant POMs as the set
of basis functions, we obtain a reduced order model comprising a set of nonlinear equations which
describe the motion of the membrane. These equations will be in terms of unknown parameters
such as Young’s modulus, bending rigidity, or pretension.
Step 4. By fitting the results of these equations of motion in the frequency domain to those of the
MD simulations, the Young’s modulus can be identified.

Figure 1: The flowchart of the nonlinear material parameter identification from MD simulations.

In what follows, steps taken will be detailed out.
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2.1. Molecular Dynamics Simulations

In the first step, MD simulations are employed to get the time response of all the atoms of
an initially excited graphene membrane. For performing the MD simulations, we used the open-
source software LAMMPS [28]. In this software, the equations of motion are integrated using the
velocity-Verlet integrator algorithm, with a time step of 1 fs. The model consists of a circular
flat layer of carbon atoms, ordered in a hexagonal grid with an inter-atomic distance of 1.42 Å.
The edges are fully clamped via fixing the position of atoms in three rings of atoms closest to the
boundary. The diameter of the drum is 20 nm, and the forces between atoms are described by the
Tersoff potential, which is suitable for modeling the atomic interactions in diamond, graphite and
graphene [29].

Since the initial position of the atoms may not exactly correspond to equilibrium or the min-
imum potential state, the system is relaxed by minimization of the total potential energy. The
minimization is performed by the Polak-Ribiere conjugate gradient algorithm [30]. The employed
objectives in this minimization are 1 × 10−10 eV for energy or 1 × 10−10 eV/Å for force. While
relaxing the system, the out of plane coordinates are fixed, to prevent curling of the membrane.
Next, the system is allowed to equilibrate in the constant volume and constant temperature en-
semble (NVT) using the Nose-Hoover thermostat [31]. This algorithm is performed for 50 ps (i.e.
50000 time steps) to ensure a stable temperature is achieved. During thermalization, the bound-
aries of the membrane are fixed. This means the membrane will be stretched, as a result of the
negative thermal expansion of graphene.

After the temperature is stable, we change the thermostat to an energy conserving ensem-
ble (NVE) [31]. In this step, we excite the membrane with an initial velocity and obtain the
amplitude-dependent frequencies of the membrane in a ring-down process. For exciting the
membrane around its first resonance, the membrane is actuated by applying a velocity field mim-
icking the fundamental mode of a membrane in continuum mechanics. To excite the membrane
with large amplitudes, different initial velocities are applied, ranging from 0.001 Å/ps to 1 Å/ps.
The simulation is performed for a time range of 30 ns. For post processing only a part of the avail-
able data, consisting of the time responses of a set of 400 to 1500 atoms out of 13026 atoms, is
chosen so as to represent the full structure. The atom coordinates are saved every 0.5 ps (500 time
steps), which correspond to approximately 20 points per vibration period of the fifth resonance of
the system at 300 K.

2.2. Proper Orthogonal Decomposition

In this section, the decomposition algorithm to obtain a set of basis function from the results
of MD simulations is introduced. POD is a tool for extracting spatial and temporal information
from a set of numerically generated or experimentally measured time response of a structure at
multiple points [32–34]. Although POD has been initially introduced in the field of fluid dynamics
for investigating turbulence [35, 36], it has been successfully applied to measure displacement of
discrete structures for estimation of normal modes of vibration as well [37–39]. Such a decom-
position leads to a set of POMs, by linear summation of which, the snapshots of the measured
time response can be expressed with minimum error. These modes can be used as an orthogonal
basis for efficient representation of the motion of the structure and hence, can be incorporated for
reduced order modeling purposes yielding multiple orders of magnitude reduction in simulation
costs [32, 40].

The POD algorithm is as follows. Suppose we have the time history of a vector u containing
the displacement, velocity, or acceleration of a structure at M discrete locations in a domain.
The time history consists of N snapshots of the motion as [u(t1),u(t2), ...,u(tN )]. We remove
the time average (mean values) of the responses, u, by obtaining the time-varying part, x(ti) =
u(ti)−mean(u). Next, a discrete matrix X is formed such that each row corresponds to a time
response of one location and each column corresponds to a snapshot of the structure at a specific
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time:

X = [x(t1) x(t2) ... x(tN )] =


x1(t1) ... x1(tN )
. . .
. . .
. . .

xM (t1) ... xM (tN )

 . (1)

where xi(tj) is the response at time tj and location i. The POD of such data can be obtained
by using the singular-value decomposition (SVD) of the discrete matrix X. The SVD operator
decomposes X to a factorization of the form:

X = UΣV∗, (2)

where U is an M ×M real or complex unitary matrix, Σ is a M ×N rectangular diagonal matrix
with non-negative real diagonals σi, V is an N × N real or complex unitary matrix, and V∗ is
the conjugate transpose of V. The diagonal entries σi are known as the singular values of X,
and the columns of U and V are called the left-singular vectors and right-singular vectors of X,
respectively. It can be mathematically shown that the left-singular vectors correspond to POMs
that can linearly express all the snapshots of the motion with a minimum error (see Ref. [33]) . We
refer to each POM (columns of matrix U) as Υi with i = 1...M . The right-singular vectors hold
information about the time coefficients of the POMs and the singular values σi are the relative
kinetic energy captured by each POM.

As a result, each snapshot of the measured time response (x) at the time tj can be approximated
by a linear combination of the obtained modes:

x(tj) ≈
M∑
i=1

Qi(tj)Υi, (3)

where Qi is the time coefficient (amplitude) of the i−th mode, and can be extracted either directly
from ΣV, or equivalently, by using the orthogonality condition of the obtained POMs. According
to the orthogonality condition, the inner product of Equation (3) with each POM (Υi) gives:

Υi.x(tj) = Qi(tj), (4)

where (.) denotes the inner product of two vectors. Since the obtained POMs (the columns of the
matrix U) are discrete (M × 1) vectors, to employ them in reduced order modeling, we need to
fit a parametrized surface function to each of these modes. Hence, we assume the mode shape to
be expressed by an approximate function:

Φi(ρ, θ) =
( K∑
k=0

Cki(ρ)k
)

cos (Biθ + φi), (5)

where ρ = r/R and θ are polar coordinates, Ck, Bi, and φi are parameters which are obtained by
fitting the function Φi(ρ, θ) to the vector Υi over the discretized domain. K is the smallest natural
number that ensures converged solution. This form of the function is simply chosen due to its
resemblance to linear vibration modes of a circular membrane. As a consequence, the measured
time response (x) at the time tj can be approximated by the continuous function:

χ(tj , ρ, θ) ≈
n∑
i=1

Qi(tj)Φi(ρ, θ) (6)

where n < M is the minimum number of POMs which shall be adopted to describe the response
(x) with the acceptable range of error.

We employ this approach to the time response obtained from MD simulations of initially
excited thermalized graphene membrane. For this purpose, the time response of a set of M atoms
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chosen to represent the full membrane together with POD algorithm are employed to obtain POMs
(Υi). With Equation (5) these functions can be converted to spatially continuous functions as an
orthogonal basis that can be incorporated for reduced order modeling. In addition, the singular
values or the relative energy captured by each POM is employed to assess the time evolution of
each mode.

2.3. Reduced Order Modeling

In this section, by using the Lagrangian approach and by employing the most dominant modes
obtained by POD as the set of basis functions, we obtain a parametrized reduced order model.
This model comprises of a set of nonlinear equations which describe the motion of the membrane.
For this purpose, the displacements, strains, and strain energies of the membrane are modeled by
using the nonlinear von Kármán plate theory, which accounts for finite deflections and moderate
rotations [41]. The membrane is assumed to be isotropic and homogeneous [5]. The radius of the
membrane is R and its thickness is h. The Young’s modulus, bending rigidity, Poisson ratio and
the mass density of the membrane are E, D, ν and µ, respectively.

Considering that the initial excitation of the membrane resembles its first radially symmetric
first vibrational mode (because this is imposed in the molecular dynamics initial conditions), we
assume that the asymmetric in-plane modes which occur at relatively much higher frequencies
will not be excited. Hence, for simplicity, we neglect the tangential displacement and only the
radial (u) and transverse (w) displacement components are considered. Here, we use a Lagrangian
approach to obtain a reduced order set of equations describing the motion of the membrane. In
this approach, the displacement components are approximated by the superposition of a finite
number of suitably chosen basis functions:

w(ρ, θ, t) =

n∑
i=1

qi(t)Φi(ρ, θ), (7a)

u(ρ, t) = ξ0Rρ+

m∑
i=1

qi+n(t)RΨi(ρ), (7b)

where ρ = r/R and θ are the polar coordinate, and, qi(t) are dimensionless generalized coordinates.
The parameter ξ0 models the initial uniform strain due to the pretension N0 in the membrane:

ξ0 =
N0(1− ν)

Eh
. (8)

The functions Φi(ρ), and Ψi(ρ) are basis-functions satisfying the boundary conditions. Here, the
POMs obtained from Equation (5) are utilized as the transverse basis-functions Φi(ρ) to capture
the spatial motion at the atomistic level. It should noted that in the current approach, since the
transverse mode shapes are adopted from POD algorithm, direct implementation of the boundary
conditions will not be required. In other words, our method is capable of capturing the effect
of boundary conditions implemented in MD directly in the CM model. For the in-plane basis-
functions (Ψi), polynomials satisfying continuity and symmetry at ρ = 0, are adopted:

Ψi(ρ) = ρi(1− ρ), i = 1...m. (9)
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Next, the strain components of the membrane are calculated as [41]:

εr =
1

R

∂u

∂ρ
+

1

2R2

(
∂w

∂ρ

)2

, (10a)

εθ =
1

R

u

ρ
+

1

2R2

(
∂w

ρ∂θ

)2

, (10b)

εrθ =
1

R2

∂w

∂ρ

∂w

ρ∂θ
, (10c)

κr = − 1

R2

∂2w

∂ρ2
, (10d)

κθ = − 1

R2

(
∂w

ρ∂ρ
+

∂2w

ρ2∂θ2

)
, (10e)

κrθ = − 2

R2

(
∂2w

ρ∂ρ∂θ
− ∂w

ρ2∂θ

)
, (10f)

The total potential energy of the system consists of the potential associated with elastic deforma-
tion due to the stretching (Us) and the bending (Ub) of the membrane [42];

U = Us + Ub, (11)

which can be approximated by:

Us =
EhR2

2(1− ν2)

∫ 2π

0

∫ 1

0

(
ε2r + ε2θ+ 2νεrεθ +

1− ν
2

ε2rθ

)
ρdρdθ, (12)

Ub =
D

2

∫ 2π

0

∫ 1

0

(
κ2r + κ2θ+ 2νκrκθ +

1− ν
2

κ2rθ

)
ρdρdθ, (13)

The kinetic energy of the system can be expressed as:

T = πµR2h

∫ 1

0

(ẇ2 + u̇2)ρdρ, (14)

where overdot indicates differentiation with respect to time. When the membrane is excited
around its first resonance, in-plane displacement u is a higher order function of w, and hence,
u̇2 can be neglected as compared to ẇ2. Employing the relations given in Equations (7a)–(14),
the Lagrangian of the system L = T − U can be expressed in terms of generalized coordinates
L(qi, q̇i, t), and the Lagrange equations can be employed to obtain the equations of motion:

∂L

∂qi
=

d

dt
(
∂L

∂q̇i
). (15)

As a result of neglecting the radial inertia, Equation (15) leads to a system of nonlinear equations
comprising n differential equations associated with the transverse generalized coordinates and m
algebraic equations for in-plane degrees of freedom. The system of differential equations associated
with the transverse generalized coordinates can be expressed as:

¯̄Mq̈ + [ ¯̄K(N0, D) + ¯̄N3(q)]q = 0, (16)

where ¯̄M is the mass matrix, ¯̄K is the linear stiffness matrix and accounts for the pretension and
bending stiffness, ¯̄N3 is matrix representing the cubic (Duffing) nonlinearity due to geometrical
stiffness, respectively, and is a function of the elasticity of the membrane. The natural frequen-
cies of such a system ωi are obtained from the characteristic equation of the linearized system
(i.e. det[ω2

i
¯̄M− ¯̄K] = 0).
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In order to obtain adequate number of transverse and in-plane basis functions (n and m), the
convergence of the periodic solutions and the frequency response of the system at large amplitudes
for a set of assumed material parameters is studied. For this convergence analysis, q is determined
at different amplitudes by considering different number of degrees of freedom. We seek periodic so-
lutions in a regime of free vibrations by building a one-dimensional family of orbits parameterized
with respect to the orbit period. These responses subsist only for zero damping and constitute the
so-called ”backbone curve” [43]. The numerical solutions are obtained with the toolbox ”COCO”
for continuation along families of periodic orbits [44]. The backbones are obtained by releasing
simultaneously both the system period and damping and allowing these to vary during the con-
tinuation. Nevertheless, the damping value remains approximately 0 (O(10−15)), since unforced
periodic orbits with nonzero amplitude exist only if damping is zero.

2.4. Nonlinear Parameter Identification

In this section, based on the results of the convergence analysis, we assume that the large am-
plitude vibrations of the graphene membrane around its fundamental frequency can be expressed
by including a single transverse mode shape only (i.e. in Equation (16), n = 1). The validity
of this assumption will be discussed in the next section. In this case, the reduced order model
obtained by using the POMs will be simplified to a Duffing equation, which if divided to the first
modal mass, can be expressed as follows:

q̈1 + ω2
0q1 + k3q

3
1 = 0, (17)

where ω0 is the natural frequency of the system. The parameter k3 is the cubic spring constant
and is a function of the Young’s modulus and Poisson’s ratio, and its convergence and accuracy is
determined by using different number of terms in the expression of the radial displacement (m in
Equation 7b). It should be noted that the expressions of k1 and k3 depend on the employed basis
functions in the Lagrangian approach and for example, these expressions would be different for a
classical membrane or plate, as compared to the obtained modes from POD. In this study, k3 is
employed as the fitting parameter to minimize the error between the continuum model and the
results of the MD simulations, which leads to identification of the equivalent Young’s modulus.

The effect of cubic nonlinearity only gets dominant in large amplitudes of vibrations [12]. As a
consequence of this nonlinearity, the frequency of the peak amplitude increases when the amplitude
of vibration is increased. In order to obtain the relation between the nonlinear behavior and the
cubic nonlinearity, here, we utilize the harmonic balance method [43]. This method entails the
solution of nonlinear equations to be approximated by a steady state truncated Fourier series.
With such assumption, the frequency of the peak amplitude (qmax) approximately occurs at the
the backbone curve given by [45]:

ω2
backbone = ω2

0 +
3

4
k3q

2
max (18)

By fitting Equation (18) to the amplitude versus frequency curves obtained from MD simulations,
the parameter k3 can be estimated and hence, the Young’s modulus can be identified. For this
purpose, the frequency and amplitude of vibrations shall be extracted from the time response of
the atoms from the MD simulations. The amplitude of vibrations is approximated by Equation (6)
and the fundamental frequency (frequency at which the system tends to oscillate without driving
force) is obtained by FFT of the time response. The frequency associated with the peak amplitude
of the each POM can be obtained by employing FFT on the time history of its coefficient Qi derived
from POD algorithm.

It is worth noting that the proper choice of the time range to extract the amplitude and
frequency from MD simulations is a key step in this process. In fact, to get an accurate estimation
of the amplitude and natural frequencies of the system, the FFT algorithm shall be performed on
the steady-state time response. However, as it will be shown in Section 3, when graphene is excited
with an initial velocity, due to the equipartition of energy, the energy applied to the system leaks
to higher modes of vibration and therefore, the amplitude and frequency of the first mode will be
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continuously decreasing. This decrease has a much higher rate at the begining. If the simulation
time is long enough so that the motion of the graphene is steady, the amplitude of vibration will
be relatively small and as a result, the effect of cubic nonlinearity on the frequency associated
with the peak amplitude will be negligible. Moreover, due to energy transfer from the first mode,
the amplitude of this mode becomes small such that Equation (17) will not be valid anymore.
To avoid this problem, we employ the time evolution of the energy of the POMs to find a time
domain in which (i) the measured response is steady, (ii) the vibrations are still at relatively large
amplitudes, and (iii) the time response is periodic and can be approximated by employing POMs.
We will show in the proceeding section that the proper choice of the time domain for performing
our dynamic analysis can be justified by observing the kinetic energy of the fundamental mode
of vibration. In particular, we find that in all our studied cases, a steady state response can be
assumed in a time range where the energy transfer between the fundamental mode of vibration
and other modes is less than 5% per ns. Moreover, to ensure geometric nonlinear vibrations, we
excite the membrane with different initial velocities in such a way that a shift of 10% or higher is
observable in the fundamental frequency of the membrane with respect to that obtained from the
spectrum of its Brownian motion.

The natural frequency and amplitudes obtained from the measured time response from MD
simulations are then utilized to form the backbone curve. By fitting Equation (18) to the data
from MD simulations, the parameters ω0 and k3 and thus, the equivalent Young’s modulus can
be estimated.

3. Results and Discussion

In this section, we discuss the results of the proposed identification algorithm in Section 2
for a single-layer graphene membrane. The results are first discussed for a membrane with 20 nm
diameter at 300 K and later, the temperature and size dependency of the results will be addressed.

First, in order to investigate the time evolution of the results, the MD simulations are performed
over a long time range of 30 ns, and the POD algorithm is performed for time ranges of 0.25 ns in
every 5 ns. A snapshot of the motion of the graphene membrane excited with an initial velocity
of 0.5 Å/ps, together with its first eight POMs are illustrated in Figures 2, 3, and 4.

Figure 2: A) The positions of the chosen subset of atoms in Cartesian coordinate in Å, in a snapshot of the motion
of the graphene membrane excited with an initial velocity mimicking the first mode shape with a maximum of
0.5 Å/ps in a time range of 5 to 5.25 ns, B) the first 8 POMs, Ti is the relative energy captured by each POM in
the specified time domain

9



Figure 3: A) The positions of the chosen subset of atoms in Cartesian coordinate in Å, in a snapshot of the motion
of the graphene membrane excited with an initial velocity mimicking the first mode shape with a maximum of
0.5 Å/ps in a time range of 20 to 20.25 ns, B) the first 8 POMs, Ti is the relative energy captured by each POM
in the specified time domain.

Figure 4: A) The positions of the chosen subset of atoms in Cartesian coordinate in Å, in a snapshot of the motion
of the graphene membrane excited with an initial velocity mimicking the first mode shape with a maximum of
0.5 Å/ps in a time range of 30 to 30.25 ns, B) the first 8 POMs, Ti is the relative energy captured by each POM
in the specified time domain.

These figures are obtained for time ranges of 5 to 5.25 ns, 20 to 20.25 ns, and 30 to 30.25 ns,
respectively. Moreover, the relative energy captured by each POM in the specified time domain
which is obtained from singular values of Equation (2) is indicated in these figures. As it can be
observed from the snapshots of the motion, although the graphene membrane has been excited
with an initial velocity mimicking the first mode, after only a few nanoseconds, the dynamic
ripples start to appear in the motion of the membrane and their effects gradually get more and
more dominant.

The first eight POMs of the motion in different time ranges in Figures 2, 3, and 4 are ordered
with their relative energy. At 5 ns, the first POM (with an approximately similar shape to the
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Figure 5: Time evolution of the relative kinetic energy of the first four modes based on their frequency order, for
a graphene membrane excited with an initial velocity of 0.5 Å/ps in a time range of 0-50 ns obtained from MD
simulations.

imposed velocity), has approximately 20% of total transverse kinetic energy (see Figure 2-B), while
this number reduces to 8% at 20 ns (Figure 3-B), and to less than 3% at 30 ns (Figure 4-B). In
fact at 5 ns, the motion of the membrane is dominated by its vibrations at its natural frequency,
while, at 30 ns, the relative energy of all POMs are in a similar range (<4%). It is interesting to
notice that the POM resembling the shape of the fundamental mode of the membrane becomes the
3rd POM at 30 ns. In this situation, the motion of the membrane resembles a random Brownian
motion rather than an imposed vibration with a defined shape.

It is worth to note that at first 5 ns, the kinetic energy of the first POM is first transferred to
the other axi-symmetric modes (see Figure 2-B). However, after 20 ns, different and rather random
modes of vibration appear for a short time and then, disappear due to the transfer of their energy
to the other modes. After 30 ns, there is hardly any clear vibration excluding the continuously
appearing and disappearing dynamics ripples and, as a matter of fact, the total initial kinetic
energy given to the system is transformed into the thermal energy. However, since the added
energy is much lower as compared to the total energy, it mildly increases the overall temperature.

Figure 5 illustrates the time evolution of the relative kinetic energy of the POMs of a graphene
membrane excited by an initial velocity of 0.5 Å/ps in a time range of 0-50 ns. These modes are
numbered with the order of their peak frequency (from FFT). At first 100 ps, the imposed kinetic
energy is transferred from the first mode to the other modes of vibration at a very high rate.
However, the rate of this energy transfer reduces to a large extent at 5 ns. After 25 ns, the energy
transfer has a very low rate and in fact, it occurs more randomly from all modes. At this point, in
order to simulate the dynamics of graphene with the proposed reduced order model, we need to
include a large number of modes. Moreover, the amplitude of vibrations at this time range are not
large enough such that the effect of geometrical stiffness on the frequency associated with peak
amplitude to be significant. Hence, the time range of 5-10 ns is chosen for obtaining the mean
amplitude and frequency of vibrations so that the motion of the graphene membrane is almost
steady-state and the amplitude is large enough such that the frequency response is nonlinear. In
this time range the average rate of energy transfer from the first mode to the other modes for all
the imposed initial velocities is less than 5% per ns, which justifies the time response of this mode
as steady state. Moreover, in this time range, the first mode has the most contribution in the
motion.

As mentioned in Section 2.4, the natural frequency of the graphene membrane is obtained
by taking the FFT of the time response from MD simulations. The time evolution of the FFT
of the out-of-plane motion of a graphene membrane, and over a time range of 5-10 ns, for an
initial velocity of 0.5 Å/ps, are shown in Figure 6-A and -B, respectively. As it can be observed
in Figure 6-A, the frequency associated with the peak amplitude is reducing over time. At the
beginning (0-5 ns), the energy of the first mode is high and its amplitude is large. Therefore, a
significant geometrical stiffness is induced in the system which leads to a larger natural frequency.
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Figure 6: A) The time evolution of the Fast Fourier transform (FFT) for the out-of-plane motion of a graphene
membrane obtained from MD, B) FFT of the time response in a time range of 5-10 ns, for an initial velocity of
0.5 Å/ps.

As the energy of the first mode reduces with time, its amplitude decreases and so do the resulted
geometrical stiffness and the frequency of the peak amplitude. Figure 6-A shows that at 5 ns
and 10 ns, the nonlinear hardening is still apparent in the dynamics of the system and yet, the
rate of the changes are much lower as compared to 0 ns. In fact, in this time range, the shift in
the natural frequencies at large initial velocities (i.e. 0.5-1 Å/ps) is 10-12%, which confirms the
suitability of this time range for performing parameter identification. For other radii or geometries
of the membrane, the given initial velocities should be adapted to observe similar range of shift in
the frequencies.

It is worth noting that the obtained POMs and their associated peak frequency are temperature
dependent. In fact, the thermal vibrations of the atoms of graphene, not only change the tension in
the membrane but also affect the shape of the POMs. The transverse deflection of the membrane
can be approximated by substituting the obtained POMs and their time coefficient in Equation (3).
The number of the POMs adopted for this approximation depends on the time range and the
amplitude of vibrations. Figures 7 and 8 illustrate the approximated deflection at the center of
the membrane for different initial velocities and time ranges.

Figure 7 shows the time response at the center of the graphene membrane excited with an
initial velocity of 0.5 Å/ps, obtained from MD (blue dots) and approximate solution obtained
from POD with adopting 1 mode (red line) and 10 modes (black line) in different time ranges.
These approximations are obtained by using Equation (3). It can be observed that the amplitude
of the motion decreases with time and the higher frequency modes with low amplitude become
more dominant in the motion at the center of the membrane. In addition, in the time range of
0–10 ns, the motion is strongly dominated by the first mode. In fact, in this time range, if the
motion is approximated with a single mode only, the average error of this approximation is less
than 0.33 Å. Moreover, in this time range, the difference between approximating with 1 and 10
modes is negligible. Clearly, the accuracy of the approximation reduces at 30 ns, but still, retaining
10 modes results in a slightly better approximation than 1 mode only.

Figure 8 shows the time response of the center of the graphene membrane excited with different
initial velocity of 0.1 Å/ps, 0.5 Å/ps, and 1 Å/ps, in a time range of 5–5.15 ns. The graphs in
this figure are obtained by MD (blue dots) and POD with adopting 1 mode (red line) and 10
modes (black line). This figure shows that in all three cases, the motion is highly influenced by
the first mode and the difference between employing 1 and 10 modes in approximating the motion
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Figure 7: Time response of the center of the graphene membrane excited with an initial velocity of 0.5 Å/ps,
obtained from MD (blue dots) and POD with adopting 1 mode (red line) and 10 modes (black line) in time ranges
of (A) 0–0.15 ns, (B) 5–5.15 ns, (C) 10–10.15 ns, and (D) 30–30.15 ns.

Figure 8: Time response of the center of the graphene membrane excited with different initial velocities of
A) 0.1 Å/ps, B) 0.5 Å/ps, and C) 1 Å/ps obtained from MD (blue dots) and approximation obtained from POD
with adopting 1 mode (red line) and 10 modes (black line) in a time range of 5–5.15 ns.

is negligible. However, at large amplitude vibrations the effects of dynamic high frequency modes
is less dominant and hence, the relative error in approximating the motion with a single mode
is smaller than low amplitude vibrations. In the time range of 5-10 ns, the average error of an
approximation with 1 mode for all the imposed initial velocities is 0.22 Å, which shows the accuracy
of approximating the motion with 1 mode only, and justifies the suitability of the time domain in
which our nonlinear identification will be performed. In fact, the dynamic ripples which occur
at very high frequencies have much lower amplitudes as compared to the imposed motion due
to the initial velocity. Moreover, the motion at larger amplitudes is approximately periodic and
hence, the harmonic balance can be employed to simplify the motion at such amplitudes more
accurately. For this reason, in the identification process we employ the data from MD simulations
for membranes that are excited with initial velocities of more than 0.5 Å/ps.

Next, for nonlinear parameter identification, the POD algorithm is performed for a long time
range of 5-10 ns. The time response of the center of the graphene membrane extracted directly
from MD (black line) and the coefficient of the first POM (red line), in the time range of 5 to
10 ns, are illustrated in Figure 9. As it can be observed, the motion of the membrane in this
time range is highly dominated by the first mode only. Moreover, the amplitude of vibrations is
approximately steady in this range.

To form the basis functions for reduced order modeling, the discrete POMs are approximated
by continuous functions as expressed in Equation (5) with least squares method. The cross section
of the approximated shape functions for the first three mode shapes (ordered by their associated
frequency) are shown in Figure 10. For comparison, the vibration modes of an equivalent classical
plate, are illustrated in this figure as well. As it can be observed, the mode shapes of the graphene
membrane is different from a classical plate. This difference is due to (i) presence of thermally
induced ripples and (ii) different bending stiffness of graphene as compared to a plate. In this
paper, in order to capture the difference of the graphene membrane with an ideal membrane,
not only we use the actual modes obtained from POD algorithm, but also, we employ the finite
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Figure 9: Time response of the center of the graphene membrane excited with an initial velocity of 0.5 Å/ps,
obtained from MD (black line) and POD by considering first mode only (red line) in a time range of 5 to 10 ns.

bending stiffness suggested by statistical mechanics of elastic membranes [46].
Next, using the obtained POMs and Equations (7a)–(16), the reduced order model is built

and the convergence of the model is studied to verify the accuracy of employing single transverse
degree of freedom for expressing the nonlinear effects at large amplitude. Figure 11 illustrates
the backbone curves of the periodic solutions of the nonlinear set of equations in (16), for free
vibrations. The graphs in Figure 11-A are obtained considering different number of transverse
and in-plane degrees of freedom (n and m in Equations (7a) and (7b)). As it can be observed,
the response of the system converges with considering one transverse and three in-plane degrees of
freedom. This convergence analysis verifies that the large amplitude vibrations and the induced
geometrical stiffness in the motion of the graphene membrane can be mimicked by including a
single transverse mode, only. In fact, Figure 11 shows that at large amplitudes of vibrations
(e.g. at time range of 0-10 ns in MD simulations), even if the higher modes are included in the
reduced order model, they do not have much contribution in the additional geometrical stiffness at
large amplitudes. As a consequence, Equation (16) can be simplified to Equation (17) while still
capturing the effects of geometrical stiffness at large amplitudes, accurately. We shall remind that

Figure 10: The first 3 POMs of the graphene membrane excited with an initial velocity of 0.5 Å/ps, obtained from
time response of the MD in a time range of 5 to 10 ns, in comparison to a classical plate mode shapes.
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Figure 11: Amplitude of vibrations as a function of the its frequency when E = 800 GPa, N0 = 0.35 N/m, and D=
A) Convergence of the solution by using 1 transverse and 3 in-plane modes in the reduced order model, and B)
good agreement of the results of harmonic balance method with the reduced order model.

in this method the influence of thermal vibration on the natural frequency (i.e. linear stiffness,
or ω2

0 in Equation( 17)) and the mode shape (which appears in the relation of k3) are included.
Moreover, For comparison the backbone curve obtained by using harmonic balance approximation
is also shown in Figure 11-B. Figure 11-B shows that the harmonic balance approximation is
adequately accurate for obtaining the backbone of the system.

Eventually, the equivalent Young’s modulus is identified by fitting the backbone curve obtained
directly from MD simulations and from the reduced order model as expressed in Equation (18).
Figure 12 shows the backbone curves from both models using E as the fitting parameter. The
MD data is obtained by exciting the membrane with different initial velocities, ranging from 0.5
Å/ps to 1 Å/ps. The graphs in this figure are obtained for two different temperature of 5 and 300
K. The extracted equivalent Young’s moduli which fits the numerical backbone curve to the data
from MD at 5 and 300 K are E = 925 GPa and E = 771 GPa, respectively. For comparison two
backbone curves of an equivalent system with E = 600 GPa and E = 1000 GPa are also shown in
Figure 12.

It can be observed from Figure 12-B that the data obtained from MD simulations at 300 K
are more scattered. This is because the time evolution of the kinetic energy in 300 K occurs faster
as compared to 5 K and hence, at 300 K in the time range of 5-10 ns the motion is not quite
steady as compared to 5 K. Therefore, we chose two time ranges of 5 to 7.5 ns, and 5 to 10 for
this temperature in order to increase the accuracy of fitting.

The obtained Young’s modulus as a function of temperature is illustrated in Figure 13. As

Figure 12: Maximum amplitude of vibrations as a function of the frequency of the peak amplitude at temperature
of A) 5 K, where ω0 = 31.794 GHz and E = 925 GPa and B) 300 K, where ω0 = 28.794 GHz and E = 771 GPa,
obtained from harmonic balance (red line) and MD (blue dots).
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Figure 13: The obtained Young’s modulus as a function of the temperature A) by using different set of mode shapes
in the Lagrangian approach, and B) via dynamic and static approaches.

it can be observed, the Young’s modulus is monotonically decreasing with temperature. For
comparison the Young’s modulus has been extracted by same methodology though with assuming
the vibrational mode-shapes of a classical plate as the set of basis functions in building the reduced
order model. The difference between the extracted Young’s moduli in Figure 13-A shows the
importance of using the POD algorithm for calculating the proper mode-shapes of the graphene
membrane. Moreover, for comparison, the tangent elastic moduli of graphene at strains of 0% and
1% obtained by Ref. [19] are given in Figure 13-B. The latter obtains the elastic modulus in MD
simulations via static loading. As it can be observed, our obtained dynamic modulus is closer to
the tangent elastic modulus at 1% strain where the thermally induced ripples are suppressed due
to the relatively large static deformation. It shall be noticed that our obtained dynamic Young’s
modulus at room temperature (E = 771 GPa) is smaller than the elastic modulus in static loading
as suggested by Ref. [19] (E = 840 GPa) and Ref. [24] (E = 890 GPa). This difference may
originate from different elastic behavior of graphene in dynamic and static loading, but also due
to the interplay between the dynamic ripples and the stiffness of the lattice of the graphene
membrane, which cannot be captured if the ripples are suppressed in the static loading.

In addition, the simulations have been repeated for different radii of the membrane (i.e. R=10-
18 nm) at T=150 K, and the obtained Young’s moduli are given in Table 1. As it can be observed
the Young’s modulus of graphene slightly reduces with the size of the membrane. These results
are in agreement with observations of Ref. [19]. In fact, increasing the radius of the membrane
at smaller scales, similar to the temperature, will enhance the thermal fluctuations and therefore,
reduces the Young’s modulus.

Table 1: The obtained Young’s modulus for different radii of the graphene membrane at T=150 K.

Radius (nm) Young’s modulus (GPa)

10 822.1 (±32.2)
12 717.0 (±22.3)
14 790.0 (±15.8)
16 782.5 (±33.0)
18 779.4 (±16.7)

4. Conclusion

In this paper, we proposed a reduction method based on atomistic simulations for character-
ization of graphene membranes. In this model, we employed the POMs obtained from a POD of
the data extracted from molecular dynamics simulations. Therefore, the obtained reduced order
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equations of motion can accurately model the dynamics of the nano-membrane with much less
degrees of freedom and hence, they are suitable for investigating the nonlinear dynamics.

By using the obtained reduced order model, we proposed an identification algorithm which
makes use of the nonlinear response of the membrane at large amplitude vibrations for estimating
its Young’s modulus. This approach can obtain the dynamic Young’s modulus while capturing the
effects of dynamic ripples due to Brownian motion on the natural frequencies and mode shapes,
accurately. Moreover, using this method, it was shown that the dynamic elastic modulus of the
membrane reduces monotonically with temperature and size of the membrane, and it is slightly
lower than the static elastic modulus provided by Ref. [24] and Ref. [19]. Our methodology has the
potential to serve as the next generation of characterization techniques for other nano-structures
in finite temperature.
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