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PREFACE

Before you start reading this paper, there are a few things you should know. Firstly, this is a research
involving a robot, a social robot named NAO. Like other robots, NAO is physically embodied and on
top of that, NAO is able to produce human-like gestures by rotating its joints. Secondly, this thesis was
an instructive, challenging, and amazing project to be involved in. The seeds for this project were sown
in my first year, while following the courses Human-Machine Systems and The Human Controller. At
that moment, the exact specifics of the thesis were unclear, but after my internship in Japan, the country
that is forerunner in the field of social robotics, I was determined to continue exploring this fascinating
area.

At first, I want to thank my supervisor Joost Broekens for showing his enthusiasm in this project
from day one, for his guidance and support during the whole time span of project, and for allowing me
to use and test with the robots as often as I needed. I also thank Bas and the other team members of
Interactive Robotics, especially the developers Jurjen and Diony, who helped me to get acquainted with
programming the robot.

A special thanks should be given to Joost de Winter, my TU Delft supervisor, for his knowledge,
accurate comments, and valuable input during the virtual meetings. Without his feedback, this paper
would not have been at this quality. He introduced me to other interesting studies and researchers, such
as Dimitra Dodou, who I also would like to thank for her hard work on the meta-analysis.

I show my gratitude to Basisschool De Wijzer, De Paasbergschool, and the Pieter Bruegheschool
for kindly welcoming NAO and me during the experiments. Additionally, to all the curious and ener-
getic children who participated, I hope that your first interaction with a social robot has been a great
experience.

Lastly, I want to thank my family and friends for always showing interest in my robot adventures and
their support and encouragement. A special thanks to Sonia, Pieter, Floor, and Marnix for welcoming
NAO as a guest when I was testing the robot at home during the lockdown. To the reader, I can only
hope that reading this thesis sparks the same interest as I had when I started looking into social robots,
now more than a year ago. It was a pleasant ride, I hope you enjoy reading this thesis as much as I
enjoyed accomplishing it.

F.N.Moorlag
Amsterdam, 2021
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Abstract— In recent years there has been an increasing
interest in the development of social robots for educational
purposes. A presumed advantage is their physical presence
in the learner’s referential world. However, it remains an
open question whether this embodied presence of a robot
can be utilized to support learning with robots’ gestures.
The aim of our study was to program a social robot that
tutors mathematics through verbal explanations supported by
deictic, beat, and iconic gestures that align with explanations,
and to analyse its effectiveness on learning outcomes. The
learning outcomes entail cognitive outcomes and affective
outcomes. A between-subject experiment was performed to
research the effect of the robot’s use of supporting gestures
on cognitive and affective learning outcomes compared to a
robot that does not perform gestures or performs random
gestures. In total, 78 children (Mage= 8.3 years) from Dutch
primary schools participated. Results showed that the social
robot effectively taught children mathematical equivalence by
a significant increase in test scores between the pre- and
post-test. No differences were found in test scores between
participants in the supportive gesturing condition, the no
gesturing condition, and the random gesturing condition.
Participants showed high task and tutor engagement scores
and head direction estimations revealed that participants
were attentive towards the robot, but no differences were
found between the three conditions. However, the gestures
‘helpfulness’ was rated significantly higher by participants
in the supportive gesture condition than the random gesture
condition, suggesting that children felt the gestures mattered.

Index Terms—Social robots, Human-Robot Interaction, Ed-
ucational robots, Robot gestures

I. INTRODUCTION

In recent years there has been an increasing interest in
the development of social robots for educational purposes
(Minkelen et al., 2020) and, as argued by Mubin et al.
(2013), these robots show great potential to benefit the
field of education where the robots may deliver content
similarly to human tutors. A social robot is defined by
Bartneck and Forlizzi (2004) as “a (semi) autonomous robot
that interacts and communicates with humans by following
expected behavioural norms”. Like other robots, a social
robot is physically embodied, whereas avatars or on-screen
synthetic characters are not. When comparing these robots
to traditional learning tools, the presumed advantage is
their physical presence in the learner’s referential world
(Leyzberg et al., 2012). Wijnen et al. (2019) mentioned
that this physical presence enables the robot to interact more
naturally with the learner, for instance, by pointing, gazing,
or gesturing.

Furthermore, it is argued that gesturing might have a
‘grounding’ effect in learning new concepts by linking
existing perceptual and motor experiences to the meaning
of the concept (De Wit et al., 2020). Gestures that support
explanations are also mentioned to be a crucial part of
communication with children. These supportive gestures
consist of iconic, deictic, and beat gestures. Beat gestures
rhythmically align with speech, deictic gestures are per-
formed to direct a learner’s attention towards a specific
referent in the proximal or distal environment, whereas the
shape of iconic gestures has some physical similarity to its
referent (McNeil, 1992; Vogt et al., 2019).

Previous research has been conducted on the effect of
gestures on learning outcomes in educational child-robot
interactions. As mentioned by Schodde et al. (2019), cog-
nitive learning typically refers to skills and knowledge to be
learned by the student, whereas affective learning represents
aspects such as motivation and attitudes toward the subject
or content to be learned. Significantly higher learning
gains and engagement levels were found for children that
interacted with NAO with expressing gestures than for NAO
without gestures during a second language tutoring session
(De Wit et al., 2018). On the other hand, research by
Vogt et al. (2019) did not result in significant differences
in both cognitive and affective outcomes between children
that were taught a second language by NAO with iconic
gestures and NAO without iconic gestures. Consequently,
it remains an open question whether the embodied presence
of a social robot can be fully utilized to support learning
with a robot’s gesturing, and if so, what differences arise
between supportive and random gestures.

The implementation of gestures and nonverbal feedback
during mathematical tutoring sessions has so far not yet
been researched, but this seems an interesting addition
along with verbal interaction (Hindriks & Liebens, 2019).
Therefore, the projected aim is to program a social robot
that tutors mathematics through verbal explanations sup-
ported by deictic, beat, and iconic gestures that align
with these explanations, and to analyse its effectiveness
on learning outcomes. The following associated research
question is proposed:

• What is the effect on learning outcomes of a social
robot that tutors mathematics to primary school stu-
dents with supporting gestures?

Hypothesis: it is hypothesised that the learning outcomes
of students are positively affected by interacting with the
social robot tutor that demonstrates supportive gestures that
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align with explanations when tutoring mathematics (H1). It
is expected that the robot tutor that demonstrates supportive
gestures during mathematical explanations more positively
affects the student’s cognitive learning outcomes than (1)
a social without gestures (‘alive’) condition’ or than (2)
a social robot that demonstrates random gestures (H2).
It is also expected that participants that interact with the
supportive gesturing robot show different affective learning
outcomes, with higher engagement and attention towards
the robot, than participants that interact with a social
without gestures or with a social robot that demonstrates
random gestures (H3).

To test these expectations, an experiment was carried
out in April 2021. The experimental method was based on
related work, which is discussed in Chapter II, followed by
an examination of the robot’s explanation design for the
supportive gesturing condition, the no gesturing condition,
and the random gesturing condition in Chapter III. The ex-
perimental method will be introduced in chapter IV, and the
results are presented thereafter. Finally, a discussion with
limitations is considered in Chapter VI, and a conclusion
with future recommendations in Chapter VII.

II. RELATED WORK

In this chapter, studies related to supporting gestures
in education are reviewed. First, studies related to sup-
porting gestures that align with explanations in current
mathematical education for human-to-human interaction
(HHI) are discussed in Section II-A. In Section II-B, an
overview of research about supporting gestures in human-
computer interaction (HCI) is presented. Lastly, human-
robot interaction (HRI) research towards robots’ gestures
in education is introduced in Section II-C.

A. Supportive gestures in mathematical education in HHI

Human-robot interactions in education are often drawn
upon ways in which human teachers deliver content to
students in their learning activities (De Wit et al., 2018).
Previous human-to-human interaction research has been
conducted towards the effectiveness of observing teach-
ers’ gestures on learning mathematics. It was concluded
by Goldin-Meadow et al. (1999) that gestures facilitated
participants’ comprehension of the teachers’ math expla-
nations when they matched speech, and hindered partici-
pants’ comprehension of the math explanations when they
mismatched speech. Alibaba and Nathan (2012) argued
that mathematical cognition is embodied, based on action
and perception, and grounded in the physical environment.
Valenzeno et al. (2003) showed that pre-school children
who were taught symmetry by an instructor who presented
meaningful pointing gestures, learned more than children
who were not exposed to gestures, measured through post-
test scores. Related studies have found that observing
teachers’ gestures facilitates learning in other mathematical
paradigms, including the learning of mathematical equiva-
lence (e.g., 2+ 4+6 = +6; Perry et al., 1995; Singer &
Goldin-Meadow, 2005; Cook et al., 2013; Congdon et al.
2017; Wakefield et al., 2018).

Wakefield et al. (2018) conducted experiments with chil-
dren aged between 8-10 who were instructed mathematical
equivalence by human instructors using Speech alone and

Speech + (iconic and deictic) Gesture. The children had
never solved mathematical equivalence problems before and
conducted a pre- and post-test containing six missing ad-
dend equivalence problems. The problems were presented
both in Form A, the last addend on the left side is the same
as on the right side of the equals sign (e.g., 7+5+3 = +3),
and in Form B, the first addend on the left side is repeated
on the right side (e.g., 4 + 6 + 9 = 4 + ). After
the pre-test, the children watched six video instructions
and solved six mathematical equivalence problems. Post-
test scores revealed that children in the Speech + Gesture
condition answered significantly more problems correctly
than children in the Speech Alone condition.

Similar to Wakefield et al. (2018), Congdon et al. (2017)
conducted the equalizer strategy to explain mathematical
equivalence. This technique emphasizes that both sides of
the equal sign must yield the same numerical value, and
for each side, calculations can be performed separately
(Goldin-Meadow et al., 1999). In the study by Condon et al.
(2017), the instructor explained the problem 8+6+2 = +2
by saying; ‘I want to make one side equal to the other side,
eight plus six plus two is sixteen, and fourteen plus two is
sixteen. So, one side is equal to the other side’. It was found
that children performed significantly better on the post-test
after receiving simultaneous Speech + Gesture instruction
than after first the Speech and then Gesture instructions.

B. Supportive gestures in mathematical education in HCI

Furthermore, Cook et al. (2017) conducted research in
which children observed lessons on mathematical equiva-
lence explained by an avatar that either gestured or did not
gesture, while head position, lip movements, and eye gaze
remained identical across conditions. The avatar produced
both content gestures (beat, iconic, and deictic), created
to strengthen the conceptual content, and bimanual beat
gestures, aimed to increase the avatar’s charisma and ap-
peal. Form A and Form B problems were both explained
by the avatar, and children solved mathematical equivalence
problems at the computer. From post-test scores, it appeared
that children who observed the gesturing avatar learned
significantly more, and they solved the mathematical equiv-
alence problems more quickly.

C. Supportive gestures in education in HRI

The detailed and accurate motions humans make cannot
yet be performed by social robots due to their limited
degrees of freedom. De Wit et al. (2018) argued that
this could lead to a loss of understanding when human
gestures are being transferred directly to robots. However,
research by Bremner & Leonards (2016) suggested that a
social robot’s iconic gestures are almost as comprehensible,
compared to a human’s gestures. Thus far, research towards
gestures of social robots in education has mainly been
focused on language learning. De Wit et al. (2018) let
the social robot NAO perform iconic gestures and found
significantly better learning gains and higher engagement
for children with this robot than for the NAO without
gestures. Conti et al. (2019) also found significantly higher
test scores for children that engaged in memorizing games
with an expressive NAO with gestures compared to children
that interacted with a static NAO.
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Contrastingly, research by Vogt et al. (2019) studied the
effect between children that were taught a second language
by NAO with iconic gestures and NAO without iconic
gestures. No significant differences were found in both
cognitive and affective learning outcomes. Additionally, De
Wit et al. (2020) found that the robot’s use of gestures -
either repeated or varied - did not affect learning outcomes
during a second language learning tutoring session. Thus
far, it has not yet been researched what the effects are on
learning outcomes of children that interact with a robot that
performs iconic, deictic, and beat gestures compared a robot
without gestures and a robot with random gestures.

III. DESIGN OF THE ROBOT’S EXPLANATION

In this chapter, a design of interaction is introduced
with the explanations and gestures that were automatically
presented by a Softbank Robotics NAO v6. In Section
III-A, the explanations and gestures are introduced and
in Sections III-B, III-C, and III-D thereafter, the system
design of the three robot conditions are considered, with
the supportive gesturing condition, no gesturing (‘alive’)
condition, and the random gesturing condition respectively.
The overarching Python files with which the robot was
automatically controlled are discussed in the last section.

A. Gestures and speech performed by the social robot

As mentioned in the previous chapter, most gesture stud-
ies in mathematical education are focused on mathematical
equivalence. Furthermore, the equalizer strategy is often
used and found to be effective (Congdon et al., 2017;
Cook et al., 2017; Wakefield et al., 2018). Following these
previous studies in HHI and HCI, it was decided that the
social robot NAO would tutor mathematical equivalence
through the equalizer strategy with gestures that align with
speech, e.g. “One side equals the other side” with a right-
handed sweep followed by a left-handed sweep (iconic
gestures). For our study, it was chosen to execute a one-on-
one tutoring interaction between a child and NAO, with the
robot explaining this mathematical concept. It is believed
that one-on-one tutoring is the best way to learn, and it
offers the greatest potential for software systems (Belpaeme
et al., 2018). The beat, deictic, and iconic gestures and
explanations that were presented by NAO are shown in
Appendix A in Tables 6-8. These explanations and gestures
were based on research by Cook et al. (2017) as indicated
by the last column of the tables.

The explanations and gestures that were performed by
NAO during the tutoring sessions were developed through
the platform ‘https://platform.robotsindeklas.nl’, created by
‘Interactive Robotics’, which is cloud connected to the
robot. With the ROM (Robot Operation Module) and the
RIE (Robot Interaction Engine), the NAO tutoring system
was directly and indirectly controlled to manage its speech
and movements. The scripts were created in Python 3.8
and through connection with the WAMP server, actions
were generated by the robot1,2. Each explanation section
with speech and an aligned iconic, beat, or deictic gesture
was separately programmed, and these were sequentially

1The Gitlab with Python codes may be shared upon request
2https://www.youtube.com/channel/UCape8hI2xD4J1Imxus3MAWQ

called in one overarching file. As examined in the following
sections, different techniques were implemented for deictic
gestures, and iconic and beat gestures, as well as for the
supportive gesture condition, for the no gesture (‘alive’)
condition and the random gesture condition.

B. System design for the supportive gesturing robot condi-
tion

In this section, the implementation of iconic and beat
gestures for the supportive gesture robot is discussed
first, followed by the implementation design of the deictic
gestures.

1) Implementation of iconic and beat gestures: To align
gestures with speech, various models and implementation
techniques have been introduced. According to Holroyd
and Rich (2012), languages that are based on Petri nets,
have been used to control many virtual agents and is also
making an introduction for the implementation in robot
applications. These Petri nets were also used in the present
study to coordinate the timing of speech and gesturing
described in Section III-A and presented in Tables 6-
8 in Appendix A. As shown in Figure 15 in Appendix
B, these Petri nets consist of certain places (represented
as circles) and transitions (represented as vertical bars).
Each place represents a synchronisation point of a gesture,
and the transitions represent changeovers between these
points (Kopp et al., 2006; Holroyd & Rich, 2012). In each
explanation section, the speech is partitioned into an intro
and a main (and, if applicable, an end) part, in which
the robot is supposed to gesture, as can be derived from
the video material provided by Cook et al. (2017). An
example is shown in Appendix B, where the robot presents
a beat gesture while saying; [‘about the equal sign’], and
no movements are generated while saying; ‘Today we are
going to learn’.

The Python scripts for the explanation sections with
iconic and beat gestures were thus constructed in similar
frames and examined in Figure 19 in Appendix C. Each
explanation section was separately programmed, and these
were sequentially called in one overarching file. To control
the movements of NAO, each of the gesture phases was
planned in time frames with certain movement data. From
the Aldebaran documentation (Robotics, 2015), joints and
joint ranges (radians) that can be rotated by NAO were
provided and these were used for the movement data
to reproduce the gesture that is performed by Cook et
al.’s (2017) virtual agent. The timing in milliseconds was
retrieved from the videoclips provided Cook et al. (2017)
and adjusted when this exceeded the angular velocity of
the NAO robot’s joints. Joints include head joints (yaw and
pitch), left and right arm joints (shoulder pitch and roll,
elbow yaw and roll, wrist yaw, and hand), and left and
right leg joints (hip pitch and roll, knee pitch, and ankle
pitch and roll). The elaboration of such a frame with timing,
movement data, and synchronisation can also be found in
Figure 19 in Appendix C.

2) Implementation of deictic gestures: To let NAO pro-
duce the deictic gestures, or pointing gestures, a different
technique was developed in which the use of Aldebaran’s
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landmark detection is exploited (Robotics, 2015). Through
this vision module, the robot can recognise special land-
marks, Naomarks, with specific patterns on them by cap-
turing images with the two identical videocameras located
in the forehead (up to 1280x960 resolution at 30 frames
per second). The Naomarks can be placed at different
locations in the robot’s field of action and information can
be obtained on the location of the robot with respect to
those landmarks. In Figure 1, a mathematical equivalence
problem that the NAO robot explained through pointing
gestures, is shown with Naomarks, containing id’s 68, 119,
107, 85 from left to right respectively, placed on top of the
sum.

Figure 1: Mathematical equivalence problem with
Naomarks 68, 119, 107, 85 from left to right, respectively,

placed on top of the sum

Whenever a robot detects one of these Naomarks, the
following information is extracted; [abs-x, abs-y, size, rel-x,
rel-y, rot, id]. Through the absolute x-angle and the absolute
y-angle, the location of that specific Naomark with respect
to the robot’s forehead, and so the pointing direction, can be
obtained. In Figure 21 in Appendix C, the Python scripts for
the explanation sections with deictic gestures are presented.
At first, a head movement index was created to let the robot
‘search’ for the Naomarks. The head movement list consists
of 16 datapoints that the robot followed while the vision
was streaming to find Naomarks. Whenever Naomarks were
detected, a dictionary was filled with ‘time’: capturing time,
‘data’: ‘body’: [abs-x, abs-y, size, rel-x, rel-y, rot, id]. In
the case that more than one Naomark was captured, the
‘body’ dictionary was filled with multiple lists.

If the robot detected the specific Naomark that was
needed for a certain explanation section, e.g., Naomark
107 where the robot said ‘what goes inside the blank’ after
pointing at the blank spot, the absolute x- and y-angle (α
and β respectively) were retrieved. With these angles, the
desired pointing direction of the robot’s head and arm were
obtained. For Naomarks 107 and 85, on right side of the
equal sign, NAO used the right shoulder joints to point
when the angle was smaller than 0.1 rad (positive abs-x on
the left side of the robot’s viewing direction) and the left
shoulder joint for angles larger than 0.1 rad. For Naomarks
68 and 119, located on the left side of the equal sign,
NAO used the left shoulder joints to point if the angle was
larger than -0.1 rad and the right shoulder joint for angles
smaller than -0.1 rad. To prevent overshooting, the final
pitch and yaw directions of the robot’s head and shoulder
joints arrived in steps, e.g. timestep-1 is 2

3α and timestep-2
is α. This frame is shown in Figure 21 in Appendix C.

C. System design of the no gesturing robot condition

In this section, the system design for the second condi-
tion, the no gesture (‘alive’) condition is examined. The
implementation of iconic and beat gestures is discussed

first, followed by the implementation design of the deictic
gestures. However, instead of performing gestures, the
robot in the no gesture condition merely generated small
movements to look alive.

1) Implementation of iconic and beat gestures: Similar
techniques were implemented for the no gesture condition
as for the supportive gesturing condition including syn-
chronisation points, transitions, and partitioned speech. The
same frame was implemented for the no gesture condition
as for the gesture condition in Section III-B1(Figure 19 in
Appendix C), including timing, head joints (yaw and pitch),
left and right leg joints (hip pitch and roll, knee pitch, and
ankle pitch and roll), and synchronisation. However, the
arm joints (shoulder pitch and roll, elbow yaw and roll,
wrist yaw, and hand) were left out. Through this approach,
the frequency and intensity (duration) of the movements
were equal to the supporting gesture condition, while the
no gesture robot did not perform any gestures but looked
‘alive’.

2) Implementation of deictic gestures: The same tech-
niques were also implemented for the no gesture condition
as for the supportive gesturing condition for the deictic
gestures. In Figure 22 in Appendix C, the Python scripts
for the explanation sections with deictic gestures are pre-
sented for the ‘alive’ condition. Again, a head movement
index was created at first to let the robot ‘search’ for the
Naomarks. If the robot detected the specific Naomark that
was needed for a certain explanation section, e.g., Naomark
107 where the robot said; ‘what goes inside the blank’,
the vision stream was ended and the robot returned to the
gestureend and says the speechmain (and is applicable
speechend). With this framework (as described in Figure
22 in Appendix C), the no supporting gesture robot looked
‘alive’, and the structure and durations of the explanation
sections were similar to the explanation sections of the
supportive gesturing robot.

D. System design of the random gesturing robot condition

The system design for the random gesturing condition
is presented in this section. The implementation of iconic
and beat gestures is discussed first, followed by the imple-
mentation design of the deictic gestures. However, instead
of performing these gestures, the robot in the random
gesturing condition performs randomly generated gestures.

1) Implementation of iconic and beat gestures: Again,
similar techniques were implemented for the random ges-
ture condition as for the supportive gesturing condition in-
cluding synchronisation points, transitions, and partitioned
speech. The random movements of the robot were generated
from the 23 standard ‘bodytalk’ gestures that are available
by default on the NAO. For each iconic, deictic, or beat
gesture in the supportive gesturing condition, the robot
performed one of these 23 gestures that were randomly
selected per session. To ensure that the frequency and
intensity of the movements were equal to the supporting
gesture condition, the random movement was performed the
same number of times as the supportive movement through
the functions yield sleep (equal number of seconds
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as supporting gesture) and yield stop (Figure 20 in
Appendix C).

2) Implementation of iconic and deictic gestures: For
the random ‘deictic’ gestures, similar techniques were
implemented for the random gesture condition as for the
supportive and no-gesturing condition. The same mathe-
matical equivalence problem that shown in Figure 1 with
Naomarks, containing id’s 68, 119, 107, 85 from left to
right respectively, placed on top of the sum were used
in this condition. However, instead of pointing towards
these, the robot looked towards them and performed random
gestures. The gestures in the random gesture condition were
generated from the 23 standard ‘bodytalk’ gestures, in the
same way as explained in the previous section. In Figure
23 in Appendix C, the Python scripts for the explanation
sections with deictic gestures are presented for the random
condition. Again, a head movement index is created at
first to let the robot ‘search’ for the Naomarks. If the
robot detected the specific Naomark that was needed for
a certain explanation section, e.g., Naomark 107 where
the robot said; ‘what goes inside the blank’, the vision
stream was ended, and the robot performed the random
gesture for the same amount of time as the supportive
gesture in the condition with supporting gestures, and said
the speechmain (and if applicable speechend). With this
framework (Figure 23 in Appendix C), it is ensured that
the frequency and intensity of the movements were equal
to the supporting gesture condition.

E. Overarching robot control

1) Name storage and timing: Prior to the explanation
sections, the participant’s name was acquired through an
input() function and stored as a json file. Throughout
the tutoring session, the stored name was called and referred
to by the robot in some explanation sections; e.g. ‘Okay,
[name] now it’s your turn’, to personalize the session
(De Wit et al. 2020). This was equal for all conditions.
Additionally, each of the gesturing sections were timed in
the overarching file with the function time() for analysis.

2) Turning towards and away from the screen: When-
ever the robot pointed to the screen, or only searched for a
Naomark and performed a random or no gesture, the robot
had to turn towards the screen first. This was achieved by
calling ‘turnleft’ or ‘turnright’ behaviours that are available
by default on the NAO. By capturing the duration of the
turns, it was found that the robot needed to turn 3.7 seconds
to the left to face the screen and after the deictic explanation
sections, 3.7 seconds right to face the participant again. This
is implemented by yield sleep(3.7).

3) Controlling the screen: During the tutoring session,
the robot gave examples of mathematical equivalence that
were presented on a screen, such as shown in Figure 1.
At first, a blank was presented and once the robot had
explained the mathematical equivalence problem, the right
answer appeared on the screen e.g. for Figure 1, the sum
8 + 6 + 2 = + 2 changed into 8 + 6 + 2 = 14 + 2.
A PDF was created with the mathematical equivalence
problems and their outcome on the next slide that were

shown on the screen during the robot’s explanation
(Appendix D). To ensure that the presentation aligned
with the explanation, an app with this file was created
on the portal ’https://platform.robotsindeklas.nl’ with. To
show the next slide, yield sess.publish (‘rie.
legacy.slide control’, ppt command =
’NEXT’) was called in the overarching file and the app
automatically showed the next slide.

IV. EXPERIMENTAL METHOD

A between-subject experiment was carried out in April
2021 to research the effect of the robot’s use of support-
ing gestures on cognitive and affective learning outcomes
compared to a robot that does not perform gestures or
performs random gestures. The following experimental
conditions were tested: 1) Supportive gestures, the robot
performs iconic, beat, and deictic gestures that align with
explanations. 2) No gestures, the robot uses speech to
explain mathematical equivalence and does not perform
iconic, beat, and deictic gestures that align with speech, but
the robot moves to look ‘alive’. 3) Random gestures, the
robot uses speech to explain mathematical equivalence and
performs random gestures. Other than the differences in the
social robot’s use of gesturing, the experimental conditions
were identical.

Prior to the experiments, a pilot study was carried out
at the University of Leiden in February 2021 to test the
experimental method plans. Two children (aged 9, female
and male) that had no prior knowledge of mathematical
equivalence participated in the pilot study and interacted
with the social robot. The procedure and robot’s gestures
in the pilot study were similar to the tutoring session of this
study. The participants, measures for cognitive and affective
outcomes, and the procedure are examined below.

A. Participants

In total, 78 participants (35 male and 43 female, Mage=
8.3 years, SD = 0.5 years) from Arnhem and surrounding
areas participated in the experiment. Primary schools in this
area were contacted and 17 children from Basisschool De
Wijzer in Arnhem, 36 from De Pieter Brueghel School,
and 25 from De Paasbergschool in Oosterbeek partici-
pated in the experiment. To take the novelty effect into
account, children were introduced to NAO in a classroom
introductory session prior to the one-to-one experiments.
Similar to gestural robotics research by De Wit et al.
(2020), the participants were pseudo-randomly assigned to
one of the conditions with a balanced distribution of school,
age, and gender. The study was approved by the research
ethics committee of the Delft University of Technology and
informed consent was given by the children’s parents and
teachers prior to their participation. The information letter
and informed consent forms for the parents/legal represen-
tatives are shown in Appendix E and F. Furthermore, the
experimenter followed the RIVM-guidelines concerning the
COVID-19 situation as the prescribed 1.5-m distance was
being maintained and the researcher wore a facemask.

B. Measures for cognitive learning outcomes

Children’s mathematical equivalence knowledge was
measured at different times by means of a test based on
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Cook et al. (2017) and Wakefield et al. (2018). Pre-, mid-,
post-, and delayed post-test questions consisted of ten novel
equal addends equivalence problems. The tests started with
three problems in Form A (a + b + c = + c) and three
problems in Form B (p+q+r = p+ ), which had identical
formats to the problems explained by the robot. The tests
ended with two problems with equal addends located in a
matching position (x + y + z = + x) and two problems
with no equal addends (l +m+ n = o+ ). The formats
of the pre-, mid-, post-, and delayed post-test were thus
identical, and the questions were randomly generated by a
Python model; integers between 1 and 15 were summed
up, and the final summations added up to integers between
10 and 20. The tests were identical for all participants and
are represented in Appendix I, J, K, and L. No feedback
was given to the participants when they were answering the
questions on the tests to prevent learning that could arise
because of this feedback.

C. Measurement methods for affective outcomes

The affective outcomes were measured using multiple
methods, including a questionnaire and head directions
estimated from recorded videos that were captured during
the experiments. In the sections below, both methods are
further discussed.

1) Questionnaire: The questionnaire was created with
(1) a Task and Tutor Engagement Questionnaire (Serholt et
al., 2014) and (2) a Self-Assessment Manakin (Lang and
Bradley, 2005; 1994). The questionnaire was provided to
the participants after interacting with the robot, and it was
intended to measure their immediate reaction to the task.
The statements were read out loud by the researcher, and the
participants indicated whether they agreed (1 = completely
disagree to 5 = completely agree), which was noted down
by the researcher. In Tables 1 and 2, the questionnaire is
shown; the corresponding Dutch version is presented in
Appendix H.

The Task and Tutor Engagement Questionnaire was
based on research by McGregor and Elliot (2002) and
has been adjusted by Serholt et al. (2014) to assess how
engaging the activity and interaction with the robot is per-
ceived from the children’s perspectives. The questionnaire,
as shown in Table 1, highlights engagement, as well as the
enjoyment and level of interaction with the robot instructor
(Ryan & Patrick, 2001). It also reveals whether participants
want to continue engaging with the robot. According to
Serholt et al. (2014), this aims to examine the degree, at a
minimal level, to which a socio-emotional bond had started
to form between the robot and the student. In this study,
‘instructor’ was replaced by the word ‘robot’ and translated
to Dutch (Appendix H).

Additionally, one extra question was added to the ques-
tionnaire about the robot’s instructions. The robot did not
adapt the tempo of the explanation per participant, so the
instructions could be perceived too easy (and too slow)
or too hard (and too fast). Therefore, participants were
asked about the rapidity of robot’s explanation; ‘I found
the robot’s instructions too fast’.

To identify how the participants perceived the robot’s
gestures, three questions were asked specifically about the

Table 1: Task and Tutor Engagement Questionnaire (Ser-
holt et al., 2014)

Task Engagement Social Engagement

I enjoyed this activity I would like to do another
activity with this robot

I found this activity hard I was wanted to show the
robot I was doing a good job

I would like to continue with
this activity

I wanted to keep practicing
with the robot

It was important for me to do
a good job I found the robot helpful

I found this activity easy to
understand

I found it easy to follow
instructions presented to me

I found this activity boring I found the robot boring

gestures (see Table 2). One open question was asked,
after which two Likert-scale questions were presented. The
statements were read out loud by the researcher, and the
participants indicated whether they agreed (1=completely
disagree to 5=completely agree), which was noted down
by the researcher.

Table 2: Gesture-specific questions in the questionnaire

Question Type Type
What did you think of this robot’s gestures? Open
I found the robot’s gestures helpful Likert-scale
I liked the robot’s gestures Likert-scale

Finally, the Self-Assessment Manikin (SAM) was im-
plemented to elicit participants’ affective responses. Lang
and Bradley (2005; 1994) developed this instrument to
measure affective responses on three dimensions: valence,
arousal, and dominance. The pictographic format of this
tool makes it accessible for participants with low literacy
skills, including children. The first row of SAM presents the
range of emotions in the pleasure dimension, with faces
that go from a frown to a smile. In the second row, the
arousal dimension is depicted, going from sleepy to excited.
Finally, the last row shows feelings of dominance, where
the biggest figure represents an in control and dominant
being, as opposed to the smallest figure, that represents a
submissive and controlled one (Hayashi et al., 2016). In this
research, the pictographics were shown and explained to the
participants, and they appointed their feelings themselves.

2) Head direction estimation: Besides the questionnaire,
affective outcomes were also measured by estimating par-
ticipant’s head directions of video recordings. It is argued
that gaze expresses how participants attend to varying
stimuli, how engaging these stimuli are found, and what
amount of attention is assigned to them (Argyle & Cook,
1976). According to Tanaka (2014), head direction and
gaze are measures to interpret the level of engagement
and interest towards the subject within an activity and
interaction with others. Kennedy et al. (2015) suggest that
gaze can be a reflection of a child’s attention. In the present
study, participants were video recorded using the GoPro
HERO 7+ Black edition during the child-robot interaction.
The GoPro captured videos with 1920x1080 resolution and
30 frames per second. Through OpenFace, a tool capable
of facial landmark detection and head pose estimation with
available source code (Baltrušaitis, 2018), head locations
and rotations were extracted per frame by post-processing
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(a) (b)

Figure 2: Experimental setup of the one-on-one interaction with participant, screen, the robot, and the video camera
with a) the topview and b) the front view

the video recordings. By analysing the extracted data in
Python, it was possible to acquire a global indication of
whether the participant’s head was directed towards NAO,
the computer screen, or elsewhere.

D. Procedure

Prior to the experiment, an information letter was read to
the children by the experimenter so the participants were
prepared for what they could expect (Appendix G). The
experimenter was always present during the sessions and
seated on the left or right rear side of the children as
shown in Figure 2. The children themselves sat behind a
table facing the robot, the screen, and a GoPro. During the
tutoring session, the robot was connected to the schools’
internet with an ethernet cable.

The experiment started with a pre-test that was filled out
by the participants. After that, the robot started the first
explanation part which was followed by a mid-test that the
participants filled out on paper. Subsequently, the robot
continued with the second part of the explanation and
afterwards the participants made the post-test. When the
participants were filling out the tests on paper, NAO was
sitting on the desk in the crouched position. At the end of
the experiment, the children participated in a questionnaire
that was read aloud by the experimenter. Each step is
further examined below and an overview of the in total
30-minutes-lasting procedure is shown in Figure 3.

Pre-test. To measure participant’s pre-existing knowledge
of mathematical equivalence, the children were asked to
complete the pre-test on paper, as shown in Appendix
I. The experimenter timed the task duration and was
available to assist but did not typically give assistance or
feedback and provided minimal response when children
do not know how to solve the problems (e.g., “You can
skip the problems or guess if you do not know the answer.”)

Tutoring sessions and mid-test. After the pre-test,
children took part in a one-to-one interaction with NAO
that was designed to explain the mathematical equivalence
problems, either with supporting, random, or no gestures.

NAO explained four problems, two of which were
Form A and the other two were Form B. During the
explanations, mathematical equivalence problems were
shown at the screen at which the robot looked and pointed
to. The experimenter sat down at the chair during the
robot’s explanations and did not say anything. After the
explanation of the first two problems by NAO (Form A),
the experimenter handed over a mid-test with mathematical
equivalence problems on paper in the same format as the
pre-test that the children solved (Appendix J). Children
did not receive feedback from NAO or the experimenter
on whether their answers were correct. When the children
were finished with the mid-test, NAO explained the last
two problems (Form B). During the robot’s explanations of
Form A and B, the children were captured by the GoPro
to track their head directions for analysis.

Post-test. Subsequently, children were handed over a
post-test by the experimenter and asked to complete this
(Appendix K). Similar to the pre- and mid-test, the task
was timed, and no feedback was given to the children
when solving the problems on this test.

Questionnaire. At the end of the experiment, the
experimenter sat down next to the children and read the
questions from the questionnaire out loud from a paper
and wrote down the children’s answers (Section IV-C1
and Appendix H). The outcomes were inserted in Excel
for further analysis of the affective learning outcomes.

Delayed post-test. One week after the experiment, the
experimenter returned to the school to test the participants
for retention with a delayed post-test. The children indi-
vidually completed the delayed post-test and were timed
during this task (Appendix L).

E. Analysis

To evaluate the learning outcomes, participant informa-
tion and tests-scores of the pre-, mid-, post-, and delayed
post-test scores, and durations of task-completing were
derived and stored in one Excel file with each participant on
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Figure 3: Diagram of the 30-minute enduring tutoring session procedure including the in order presented pre-test,
explanation of Form A, mid-test, explanation of Form B, post-test, and questionnaire, and the delayed post-test one

week after the session

a row. Likewise, ranked scores of questionnaire questions
were stored in the data file, as well as head directions
per explanation part (Form A and Form B) and head
directions per specific explanatory section. To estimate the
head directions, post-processing of the recorded videos was
performed with OpenFace, and subsequently with python
frameworks which are examined in next section.

1) OpenFace and framework to estimate head direction:
By postprocessing the videos in OpenFace, the location of
the head with respect to the camera in millimetres (Tx, Ty ,
and Tz) and the rotation of the head in radians with the
camera being located at the origin (Rx, Ry , and Rz) were
extracted per frame, with 30 frames per second. Positive
Tx is on the right side of the camera, a positive Ty is
downwards from the camera, and a positive Tz is away from
the camera. The head rotations include pitch (Rx), yaw
(Ry), and roll (Rz), and are in radians around the X, Y, and
Z axes with the convention R = Rx ∗Ry ∗Rz , left-handed
positive sign (Tadas Baltrušaitis, 2018). This indicates that
the head pitch (Rx) is positive when the participant’s head
is nodding down and negative for the participant’s head
when nodding up. The yaw (Ry) is positive when the
participant’s head is rotating to his or her right and negative
when rotating left (Figure 27 in Appendix M).

The setup of the experiment and the coordinates of the
robot (XR, YR, ZR), the screen (XS , YS , ZS), and the
participant (XC , YC , ZC), with the camera the origin (0, 0,
0), are shown in Figure 4. The robot- and screen coordinates
were manually measured as minimum and maximum outer
coordinates from the camera. Since the robot was moving
during the explanation, XR1 and ZR1 were ascribed to the
outer left landmark of the robot, whereas XR1 and ZR1

were ascribed to the outer right landmark of the robot. The
coordinates YS1 and YR1 represent the top of the screen and
the top of the robot (with y being negative upwards from the
origin), respectively, and YS1 and YR1 represent the bottom
of the screen and the bottom of the robot, respectively.

With the coordinates of the robot and the screen, and
the location and rotation of the participant’s head, it was
estimated whether the participant’s head is directed towards
the robot, the computer screen or elsewhere. Through a
framework in Python the head direction was estimated per
frame and outcomes were saved in Excel for analysis.
This framework and the formulas to derive head direction

distances on the coordinate system with respect to the
camera-origin in Figure 4 are examined in Appendix M.

Figure 4: Mathematical equivalence problem with
Naomarks 68, 119, 107, 85 from left to right, respectively,

placed on top of the sum

2) Statistical analysis: As mentioned in Section IV-A,
a total of 78 children participated in the experiments. One
participant did not continue with the experiment, so data of
a total of 77 participants were analysed and are presented
in Chapter V. As one participant was not present during
the delayed post-test, the test scores of 76 participants
were considered for the analysis of the cognitive learning
outcomes. Two participants were not recorded during the
first explanation part (Form A) and four participants were
not recorded during the second explanation part (Form B),
so the head directions of 75 participants were considered
for the analysis of the attention towards the robot, screen,
or elsewhere during Form A. The head directions of 71
participants were considered for the analysis of the attention
during Form B. Using IBM SPPS Statistics version 27,
General Linear Models were used to evaluate participant’s
cognitive and affective learning outcomes and perform
statistical analyses, that were validated through statcheck.io,
which will be further examined in the next chapter.
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Table 3: Demographic information of study participants, including condition, mean age, gender, school (W= De Wijzer,
Pa = De Paasbergschool, Pi = De Pieter Brueghelschool), pre-test scores and number of participants per condition

Condition N Mean age (years) Male/Female School Pre-test score
Supportive gestures 27 Mage= 8.3, SD = 0.45 10 M: 17 F 6 W: 8 Pa: 13 Pi Mscore= 2.77, SD = 3.47
No gestures 25 Mage= 8.4, SD = 0.56 10 M: 15 F 5 W: 9 Pa: 11Pi Mscore= 2.20, SD = 3.53
Random gestures 25 Mage= 8.3, SD = 0.54 15 M: 10 F 5 W: 8 Pa: 12 Pi Mscore= 2.20, SD = 3.80

V. RESULTS

The results of the experiments are represented in this
chapter to answer the research question and test the hy-
potheses. First, the cognitive learning outcomes will be
analysed, after which the affective learning outcomes will
be examined, consisting of an analysis of the questionnaire
and of the head direction estimation. The demographic
information of the 77 children in the participant group
is shown in Table 3. Univariate General Linear Model
ANOVA with pre-test scores as dependent variable and
condition as an independent fixed factor, showed no sig-
nificant differences between the scores of the pre-tests,
F (2, 74) = .228, p = .797, η2p = .006, indicating similar
pre-test scores for all three conditions.

A. Cognitive learning outcomes

In this section, the results of the cognitive learning
outcomes are examined. Table 4 and Figure 5 show the
mean scores on the four tests (pre-, mid-, post-, and delayed
post-test) per condition, indicating a similar increase in
mathematical equivalence knowledge over time between
conditions.

Table 4: Means and standard deviations of pre-, mid-, post-,
and delayed post-test scores, and number of participants per
condition

Condition Mean Std. Dev. N
Pre-test Supportive gestures 2.77 3.536 26

No gestures 2.20 3.488 25
Random gestures 2.20 3.797 25

Mid-test Supportive gestures 6.23 3.592 26
No gestures 6.48 3.417 25
Random gestures 6.24 3.756 25

Post-test Supportive gestures 8.19 3.150 26
No gestures 7.76 3.562 25
Random gestures 7.16 3.760 25

Delayed Supportive gestures 7.65 3.566 26
post-test No gestures 6.96 3.646 25

Random gestures 6.76 4.075 25

A General Linear Repeated Measures ANOVA was used
to evaluate the participant’s cognitive learning outcomes
with test-scores (pre-test, mid-test, post-test, and delayed
post-test) as within-subjects dependent variable, and condi-
tion as a between-subjects independent factor.

The analysis showed a significant effect of test,
F (3, 219) = 77.992, p < .001, η2p = .517, which
indicates that the participants learned about mathematical
equivalence from their interactions with the robot regardless
of the robot’s gesturing condition. Multiple comparisons
using Bonferroni adjustments, for which the p-value of the
least significant differences is multiplied by the number of
tests, revealed a significant difference between the pre-test
and mid-test, Mdif = 3.92, p < .001, between the pre-test
and post-test, Mdif = 5.31, p < .001, and between the

pre-test and delayed post-test, Mdif = 4.73, p < .001.
Additionally, a significant difference was also found
between the mid- and post-test, Mdif = 1.38, p = .001. No
significant differences were shown between the mid- and
the delayed post-test, Mdif = .80, p = .208, and between
the post- and delayed post-test, Mdif = −.58, p = .235.

1) Between-subject outcomes: No main effect was found
of gesturing condition based on the linearly independent
pairwise comparisons among the estimated marginal
means of the tests, F (2, 73) = 0.28, p = .756, η2p = .008,
which reveals that the robot’s use of gestures – either
supportive gestures, no gestures, or random gestures
– did not significantly affect the cognitive learning
outcomes. Additionally, Univariate General Linear
Model ANOVA with scores as dependent variable and
condition as independent fixed factor, also showed no
significant differences between the scores of the mid-tests,
F (2, 74) = .028, p = .972, η2p = .001, nor between the
scores of the post-test, F (2, 74) = .649, p = .526, η2p =
.017, and not for the scores of the delayed post-test,
F (2, 73) = .398, p = .673, η2p = .011. Therefore,
hypothesis H2 is rejected as no effect was found of
gesturing condition on children’s cognitive learning
outcomes.

2) Within-subject outcomes: One-way repeated
measures ANOVA with tests as within-subject variables
showed that for the gesture condition, pairwise Bonferroni
adjustments revealed significant differences between the
pre- and the mid-test scores, Mdif = 3.46, p < .001,
pre- and the post-test scores, Mdif = 5.42, p < .001,
and between the pre- and the delayed-test scores,
Mdif = 4.89, p < .001. For the no gesture condition,
significant differences were found between the pre- and
the mid-test scores, Mdif = 4.28, p < .001, pre- and the
post-test scores, Mdif = 5.56, p < .001, and between the
pre- and the delayed-test scores, Mdif = 4.76, p < .001.
Finally, for the random gesture condition, differences were
also significant between the pre- and the mid-test scores,
Mdif = 4.04, p < .001, pre- and the post-test scores,
Mdif = 4.96, p < .001, and between the pre- and the
delayed-test scores, Mdif = 4.56, p < .001. An overview
of the mean differences between test-scores per condition
are presented in tables 9-11 in Appendix N. These effects
are shown in Figure 5 and confirm hypothesis H1; that
children learned mathematical equivalence from a social
robot by showing significant higher scores on mid-, post-,
and delayed post-tests than on pre-tests.

3) Duration: The duration to complete the tests was
timed and a General Linear Repeated Measures ANOVA
was used to evaluate the participants’ durations to complete
the tasks (pre-test, mid-test, post-test, and delayed post-
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Figure 5: Mean pre-, mid-, post-, and delayed post-test scores and Confidence Intervals that are 95.0% as a function of
condition (* p < .001)

test) as within-subjects dependent variable, and condition as
between-subjects independent factor. The analysis showed
a significant effect of test on duration of task, F (3, 219) =
17.603, p < .001, η2p = .194. Pairwise Bonferroni adjust-
ments revealed significant differences between duration to
complete the pre- and the post-test, Mdif = 26.48, p =
.024, demonstrating that the post-test was finished 26.48
seconds faster than the pre-test, and between the pre- and
delayed post-test, Mdif = 53.77, p < .001, indicating
that the delayed post-test was completed 53.77 seconds
faster than the pre-test. Furthermore, a main difference
was found between the duration to complete the mid-test
and the delayed post-test, with the delayed post-test being
completed Mdif = 40.86 seconds, p < .001, faster than
the mid-test (Figure 29 in Appendix O).

No main effects were found on condition based on
the linearly independent pairwise comparisons among the
estimated marginal means of the durations, F (2, 73) =
.871, p = .423, η2p = .023, indicating that the robot’s use
of gestures – either supportive gestures, no gestures, or
random gestures – did not affect the duration to complete
the pre-, mid-, post-, or delayed post-test.

B. Affective learning outcomes from Questionnaire

1) Questionnaire Self-Assessment Manakin: To analyse
the Self-Assessment Manakin for the valence, arousal, and
dominance dimension, a Univariate General Linear Model
procedure was carried out. In Figure 6, the means, and
upper and lower bounds of the 95% Confidence Intervals
are shown for each dimension per gesturing condition.
From the figure, it can be seen that overall, the partic-
ipants were positive, felt relaxed, and in charge during
the interaction. The correlation matrix with the Pearson
correlation coefficient between the dimensions is shown in
Table 12 in Appendix P and indicates that the dimensions
have no significant correlations. The One-way ANOVA
with condition as independent fixed factor and dimension
as dependent variable revealed that no significant effect of
condition was found on valence, F (2, 74) = .659, p = .521,

on arousal, F (2, 74) = .091, p = .913, and on dominance,
F (2, 74) = .050, p = .952.

Figure 6: Mean Self-Assessment Manakin scores (5 =
Strongly agree, 4 = Agree, 3 = Neither agree nor

disagree, 2 = Disagree, 1 = Strongly disagree) as function
of condition

2) Questionnaire Tutor and Task Engagement,
Gesture specific questions: Figures 7 and 8 visualize
the second part of the questionnaire, the task engagement
questionnaire, the tutor engagement questionnaire, and
the gesture-specific questions. A Multivariate General
Linear Model ANOVA with questions as dependent
variables and condition as independent fixed factor was
executed. Outcomes showed that for the task and tutor
engagement questionnaire, no significant differences
were found between the conditions. For one gesture-
specific question; ‘I found the robot’s gestures helpful’,
significant differences were found between the conditions,
F (2, 74) = 8.396, p < .001, η2p = .185. Participants in
the gesture condition (M = 4.15, SD = 1.03) and in
the no gesture condition (M = 3.68, SD = 1.07) rated
this question significantly higher than participants in the
random condition (M = 2.88, SD = 1.27). Adjustment
for multiple comparisons using Bonferroni showed a
significant difference between gesture and random gesture
condition, Mdif = 1.27, p < .001, and between the no
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Figure 7: Mean Task Engagement scores (5 = Strongly agree, 4 = Agree, 3 = Neither agree nor disagree, 2 =
Disagree, 1 = Strongly disagree) as a function of experimental condition (∗p < 0.05 using Bonferroni adjustments)

Figure 8: Mean Tutor Engagement and gestures specific scores (5 = Strongly agree, 4 = Agree, 3 = Neither agree nor
disagree, 2 = Disagree, 1 = Strongly disagree) as a function of experimental condition (* significance with p < 0.05

using Bonferroni adjustments, + significance with p < 0.05 using LSD adjustments)

gesture and random condition, Mdif = .800, p = .042,
with a significant mean difference at the 0.05 level.
Additionally, the correlation matrices with the Pearson
correlation coefficient between the questions are shown
in Tables 13 and 14 in Appendix P and indicate which
questions have significant correlations.

Furthermore, multiple comparisons adjustment using the
Least Significant Difference (equivalent to no adjustment)
revealed significant differences for two more questions;
‘I found the robot’s instructions too fast’ and ‘I liked
the robot’s gestures’. Participants in the no gesture
condition (M = 1.64, SD = 0.86) rated ‘I found the robot’s
instructions too fast’ significantly lower than participants
in the random condition (M = 2.24, SD = 1.33), with
Mdif = .600, p = .040. Participants in the gesture
condition rated ‘I liked the robot’s gestures’ significantly
higher (M = 4.22, SD = .85) than participants in the random
condition (M = 3.68, SD = .85), Mdif = .542, p = .024,
as well as the no gesture condition (M = 4.16, SD = .85)
compared to the random condition, Mdif = .480, p = .050.

3) Open gesture question: Besides the closed questions,
one open question was asked during the questionnaire;
‘What did you think of this robot’s gestures?’ Children in
the supportive gesture condition indicated; “It is indeed
useful that the robot says and portrays ‘one side’, and
then the ‘other side”, and “So the left side is the same
as the right side, he presented that very clearly.” One

participant reported that; “Sometimes the gestures made
it a bit difficult to hear.” Another participant commented
on the robot’s deictic gestures; “Also handy because you
can show where you are, by pointing to the screen.” One
participant in the no gesture condition indicated that “the
robot’s walking made a lot of noise”, another participant
added “I was frightened when the robot started walking.”
It was also mentioned that “the teacher also does this, but
the teacher also points towards the board” Children that
interacted with the robot with random gestures indicated
that the gestures were “hard to understand” and “I did not
totally get them.” One participant mentioned that “I found
it nice because when you just stand still, you are less likely
to be looked at.” In Table 15 in Appendix Q, the Dutch
answers with English translations are presented.

Table 5 represents an overview of certain phrases (e.g.,
funny – grappig, frightening – spannend, and noisy –
lawaaiierig) that were mentioned by participants in the three
conditions. It can be noted that participants in the supportive
gesturing condition often indicated the gestures as funny
(8x), useful (9x) and good (8x), whereas participants in
the no gesturing condition referred to the gestures as funny
(7x) and frightening (5x) and participants in the random
gesturing condition often mentioned nice (5x) and difficult
to understand (6x).

Given the outcomes of the SAM, and the task and
tutor engagement questionnaire, it can be noted that hy-
pothesis H3 is partially rejected; that participants who
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Table 5: Word count of given answers to the open question ‘What did you think of the robot’s gestures?’ with participant
ID numbers; condition (G = supportive gestures, N = no gestures, R = random gestures) – number – school (W= De
Wijzer, Pa = De Paasbergschool, Pi = De Pieter Brueghelschool)

Supportive gestures No gestures Random gestures

Funny
G6W, G3Pa, G4Pa,
G2Pi, G3Pi, G10Pi,
G9Pi, G12Pi

N3W, N4W, N1Pa,
N2Pa, N2Pi, N3Pi,
N10Pi

R1Pa

Nice
G2W, G5W, G3Pa,
G5Pa, G3Pi, G4Pi,
G6Pi

N6Pa, N7Pi, N8Pi R1Pa, R2Pa, R2Pi,
R9Pi, R5Pi

Useful
G6W, G5W, G2Pa,
G5Pa, G1Pi, G4Pi,
G10Pi, G11Pi, G7Pi

N4Pi

Good
G1W, G1Pa, G2Pa,
G7Pa, G8Pa, G4Pi,
G11Pi, G8Pi

N6Pi R7Pa, R11Pi, R3Pi,
R8Pi

Proper/plain G3W, G4W, G3Pi N2Pa R5W, R5Pa
Cute R8Pa
Crazy G2Pi R6Pi

Noisy G3W, G4W, G6Pa,
G8Pi N5W, N9Pa R4W, R6Pa, R12Pi,

R4Pi

Frightening N3Pa, N4Pa, N8Pa,
N7Pi, N11Pi

Annoying N5Pa
Difficult to
understand G2Pi, G3Pi N1W, N10Pi, N9Pi R1W, R3W, R2Pa,

R3Pa, R7Pa, R12Pi
I did not care N2W, N7Pa, N1Pi R1Pi

I do not know G13Pi R2W, R4Pa, R10Pi,
R7Pi

interact with the supportive gesturing robot show different
affective learning outcomes than participants that interact
with a social without gestures or with a social robot that
demonstrates random gestures. However, participants in the
supportive gesturing condition rated the robot’s gestures
helpfulness significantly higher than the participants in the
random condition. Furthermore, answers to open questions
revealed that gestures were thought of as good, useful, and
nice by participants in the supportive gesturing condition
more often than by participants in the random or no
gesturing condition, and therefore partially accepting H3.

C. Affective learning outcomes from head directions

In this section, the outcomes of the head directions will
be evaluated to evaluate the participants’ attention. First,
the analysis of the head direction estimation per form will
be analysed, followed by the analysis of the head direction
per explanatory section. Finally, distributions of head
direction distances during the intro (Table 6 in Appendix
A) will be presented.

1) Head direction estimation per Form: In Figure 9,
an overview of the estimated participants’ head directions
is shown for Form A and B per condition. The figures
represent the average percentages of the time that par-
ticipants looked towards the robot, towards the screen,
or elsewhere. The arrows show the average number of
transitions, indicating how often the participants shifted
from one direction to another per explanation part given the
30 frames per second. From the figures can be noted that
all participants – either supportive gestures, no gestures, or
random gestures – looked at the robot around half of the
time during both explanation parts. It can also be seen that
for both explanatory parts, participants in the supportive

gesturing condition switched more between the robot and
elsewhere, and less between the screen and elsewhere than
the other two conditions.

A Multivariate General Linear Model ANOVA was
used to evaluate the participant’s head direction with to-
tal percentages directed towards the robot, total percent-
ages directed towards the screen, and total percentages
directed elsewhere as dependent variables, and condition
as between-subjects independent fixed factor. For the first
explanation part, the introduction and Form A, no signifi-
cant differences were found between the three conditions,
neither for the total percentage directed towards the robot,
F (2, 72) = .065, p = .937, η2p = .002, nor for the
total percentage directed towards the screen, F (2, 72) =
1.027, p = .363, η2p = .038. A Multivariate General Linear
Model ANOVA with transitions between the robot and
elsewhere and transitions between the screen and elsewhere
as dependent variables, and condition as between-subjects
independent fixed factor showed no significant difference
between the conditions, neither for the transition between
the robot and elsewhere F (2, 73) = .599, p = .552, η2p =
.016, nor for the transitions between the screen and else-
where F (2, 73) = 1.680, p = .193, η2p = .044.

For the second explanation part, Form B, also no
significant differences were found between the three
conditions, neither for the total percentage directed
towards the robot, F (2, 70) = .278, p = 0.758, η2p = .008,
nor for the total percentage directed towards the screen,
F (2, 70) = 1.111, p = .335, η2p = .031. Furthermore,
no significant differences were found between the
conditions for the number transitions between the robot
and elsewhere, F (2, 73) = .845, p = .434, η2p = .023
and for the number of transitions between the screen and
elsewhere F (2, 73) = .407, p = 667, η2p = .011.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Mean percentages of head direction towards the robot, screen, or elsewhere and mean number of transitions
made between the robot – elsewhere and between the screen – elsewhere for the a) supportive gesturing condition in
Form A, b) supportive gesturing condition in Form B, c) no gesturing condition in Form A, d) no gesturing condition

in Form B, e) random gesturing condition in Form A, f) random gesturing condition in Form B

• .
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2) Head direction estimation per explanatory section:
The average percentages of the head directions towards the
robot, screen, or elsewhere per explanatory section for Form
A and Form B, with time in seconds on the horizontal
axis are shown in Figure 10. From the figures, it can be
noted that all participants – either supportive gestures, no
gestures, or random gestures – looked at the robot most
often during the iconic gesturing sections, regardless of the
condition or Form. As the robot started to look and, for
the gesture condition only, point towards the screen, the
participants directed their heads more towards the screen or
elsewhere. This could indicate that, regardless of gesturing
condition, the attention towards the robot is related to the
explanatory section.

A Multivariate General Linear Model ANOVA was used
to evaluate the participant’s head direction per explanatory
section with total percentages directed towards the robot,
total percentages directed towards the screen, and total
percentages directed elsewhere as dependent variables, and
experimental condition as between-subjects independent
fixed factor. No significant differences were found between
three conditions, for the total percentage directed towards
the robot, for the total percentage directed towards the
screen, and for the total percentage directed elsewhere for
any of the explanatory sections. Given the non-significant
effect of condition on the head directions, hypothesis H3
is partially rejected as no effect as was found of gesturing
condition on children’s attention.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Mean percentages of head direction towards the robot, screen, or elsewhere during specific explanation
sections for participants in the a) supportive gesturing condition in Form A, b) supportive gesturing condition in Form
B, c) no gesturing condition in Form A, d) no gesturing condition in Form B, e) random gesturing condition in Form

A, f) random gesturing condition in Form B
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3) Distributions of head direction distances during the
intro: In Figure 12, histograms with plotted standard nor-
mal distributions show the distribution of the distances in
mm between camera-origin and direction of the head, when
directed towards the robot, on the x-axis (with respect to
the camera) during the intro per frame for all participants
in the gesture condition, no gesture condition and random
gesture condition respectively. In Figure 11, the distance
in mm between camera-origin and direction of the head
is illustrated. During the intro, which was part of Form A
and endured 35.4 seconds on average, the robot did not turn
left or right towards the screen or point towards the screen,
and the supportive robot solely performed iconic and beat
gestures (Table 6 in Appendix A). In Figure 28 in Appendix

R, the distances are plotted over time for each participant
per condition.

From Figure 12, it can be seen that the data of all the
participants in the no gesture and in the random gesture
condition roughly follow a normal distribution, whereas this
does not apply for participants in the supportive gesture
condition. The histograms may suggest that participants
in the no gesture and random condition to a large extent
directed their heads towards the centre of the robot, but that
participants in the supportive gesture condition also directed
their heads towards other components of the robot. This
may indicate that different head direction patterns existed
between the participants in the supportive gesture condition
and the random and no gesture conditions. However, no

Figure 11: Illustration of distance in mm between camera-origin and direction of the head, when directed towards the
robot, on the x-axis (with respect to the camera)

(a) (b)

(c)

Figure 12: Histograms with plotted standard normal distributions of the distances in mm between camera-origin and
direction of the participants’ heads, when directed towards the robot, on the x-axis (with respect to the camera) during

the intro per frame for a) Supportive gesture condition (µ = 593.53, σ = 163.20), b) No gesture condition
(µ = 544.58, σ = 160.56), c) Random gesture condition (µ = 542.85, σ = 133.05)
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significant differences were found between the supportive
gesturing condition, no gesturing condition, and random
gesturing condition, with distance as dependent variable
and condition as between-subjects independent fixed factor,
F (2, 72) = .585, p = .560, η2p = .016.

To further explore this, histograms were generated with
plotted standard normal distributions that show the distri-
bution of the distances in mm between the bottom of the
robot and direction of the head on the y-axis, when directed
towards the robot, during the intro per frame (Figure 14).
These figures indicate to which height point on the y-axis
the participant’s head is directed, with the desk on which the
robot is placed as 0-point and a positive distance upwards
from the desk (Figure 13). In Figure 30 in Appendix R,

the distances are plotted over time for each participant per
condition. Figure 14 shows a higher mean distance for the
no gesture condition than for the supportive and random
gesture conditions. Therefore, the participants in the no
gesture condition looked on average on a higher component
of the robot than the gesturing conditions. This may indicate
that different head direction patterns existed between the
participants in the no gesture condition compared to the
supportive and random gestures conditions. However, a
Multivariate General Linear Model ANOVA showed no
significant differences between the conditions, with distance
as dependent variable and condition as between-subjects
independent fixed factor, F (2, 72) = 2.121, p = .127, η2p =
.056.

Figure 13: Illustration of distance in mm between bottom of the robot and direction of the head, when directed
towards the robot, on the y-axis

(a) (b)

(c)

Figure 14: Histograms with plotted standard normal distributions of the distances in mm between the bottom of the
robot and direction of the head on the y-axis, when directed towards the robot, during the intro per frame for a)

Supportive gesture condition (µ = 181.04, σ = 148.49), b) No gesture condition (µ = 214.69, σ = 119.85), c) Random
gesture condition (µ = 165.38, σ = 125.53)
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VI. DISCUSSION

In this paper, a large-scale evaluation study is presented
that was conducted to investigate to what extent social
robots can contribute to mathematical equivalence tutoring
with the use of supporting gestures. Three different robot
conditions were compared; one with iconic, beat, and
deictic gestures, one with no gestures, and one with random
gestures. A total of 78 children from the fifth grade of three
Dutch primary schools participated in the experiments in
which they interacted one-on-one with the social robot. The
participants conducted pre-, mid-, post-, and delayed post-
tests to measure the cognitive learning outcomes. After the
30-min enduring tutoring session, they answered a question-
naire, including a Self-Assessment Manakin, task and tutor
engagement questions, and gesture specific gestures, to
measure the affective learning outcomes. To further evaluate
the affective learning outcomes, the participants were video
recorded during the robot’s explanations to analyse the
attention through head direction estimations.

To summarise the main findings, evidence was found to
support hypothesis H1; that children learned mathematical
equivalence from a social robot that demonstrated deictic,
beat, and iconic gestures that align with explanations by
showing significant higher scores on mid-, post-, and de-
layed post-tests than on pre-tests. However, no evidence
was found to support hypothesis H2; that children who
interacted with a social robot that demonstrated supportive
gestures showed greater cognitive learning outcomes than
children who interacted with the social robot with no ges-
tures, or than children who interacted with the social robot
with random gestures. It was found that all participants
showed high tutor and task engagement by strongly agree-
ing to enjoying the task and social robot and wanting to
continue with the robot. Finally, no evidence was found to
support hypothesis H3; that a significant difference would
be revealed between the affective learning outcomes of the
participants in the supportive gesturing robot condition and
the participants in the no gesturing robot condition and the
random gesturing robot condition. However, participants in
the supportive gesturing condition rated the robot’s gestures
helpfulness significantly higher than the participants in the
random condition. Furthermore, answers to open questions
revealed that gestures were thought of as good, useful, and
nice by participants in the supportive gesturing condition
more often than by participants in the random or no
gesturing condition, and therefore partially accepting H3.
Although previous studies with a social robot or avatar in
educational context have demonstrated a positive effect of
supportive gestures on learning compared to no gestures
(De Wit et al., 2018; Conti et al., 2019; Cook et al., 2017),
the present study does not confirm this. In the remainder
of this section, these findings will be elaborated.

A. Cognitive learning outcomes

In line with the study by Cook et al. (2017), the children
learned the concept of mathematical equivalence from a
social robot that demonstrated deictic, beat, and iconic
gestures that align with explanations. Contradictory, Cook
et al. (2017) also found that children who observed the
gesturing avatar learned significantly more, and they solved
the mathematical equivalence problems more quickly than

children who observed a non-gesturing avatar. This is
compelling because identical gestures were used for the
supportive gesturing robot in the present study as for Cook
et al.’s (2017) gesturing avatar. One remark that multiple
participants made; “Sometimes the gestures made it a
bit difficult to hear” and the suggestion by Kennedy et
al., (2015a) that robot’s behaviour and movement could
lead to more distraction, may suggest that gestures, and
their noise, could draw attention away from the content.
Furthermore, the effect of the screen was not considered in
the present study. From head direction estimations resulted
that during the deictic gesturing explanation sections, in
which the robot pointed towards the screen, participants in
the supportive gesturing condition, as well as participants
in the no gesturing and random gesturing condition directed
their head towards the screen more than during the iconic
gesturing explanation sections. This indicates that all par-
ticipants directed their head towards the screen in similar
quantities, regardless of condition, and may have absorbed
information from the sum displayed on the screen.

B. Affective learning outcomes

Analysis of the questionnaire and head direction esti-
mations showed that in the present study, no significant
differences were found in tutor engagement, task engage-
ment, or attention between the three conditions which is
similar to research by De Wit et al. (2018). This held for
all questions in the questionnaire, except for one question;
‘I found the robot’s gestures helpful’, which was rated sig-
nificantly higher by participants in the supportive gesturing
and no gesturing condition than participants in the random
gesturing condition and shows that the manipulation was
successful. Additionally, children in the supportive gestur-
ing condition noted that the robot’s gestures were ‘useful’
and ‘good’, whereas participants in the random gesturing
condition mentioned that the gestures were ‘difficult to
understand’, indicating that the supportive gestures may
have been a useful addition to the explanation.

Contradictory to these findings, De Wit et al. (2020)
did find significant differences in engagement between the
gesturing conditions and the no gesturing condition. One
major difference between the two studies is the number of
tutoring sessions. Although the participants in the present
study were introduced to the social robot during a classroom
introductory lesson, the participants interacted one-on-one
with NAO for the first time during the tutoring session
and may have been influenced by the ‘novelty effect’.
According to Minkelen et al. (2020), this entails that the
users are initially excited to interact with a new technology,
such as a tutor robot, resulting in high engagement. When
users become familiarised with the new technology and the
novelty threshold is surpassed, the novelty effect wears off,
and users’ engagement tends to decrease. In the present
study, participants in all three conditions showed high
task and tutor engagement scores and directed their head
towards NAO often, showing high attention towards the
robot. However, when there would have been less effect of
novelty, differences between the three gesturing conditions
could have appeared.
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C. On the experimental design

During the development of this project, several design
choices were made which have been reported in the paper.
Based on previous educational gesture research (Cook et al.,
2017; De wit et al., 2020), the designed explanations and
presented gestures were equal for the participants in each
condition group. This entailed that the robot’s explanation
speed and difficulty level of the mathematical equivalence
problem were identical for each child, regardless of the
child’s understanding of the concept. It could be an in-
teresting feature to adapt the problem level and speed
to the performance level of a student (Schadenberg et
al., 2017). Such systems could feature a detailed learner
model to profile children and their needs (e.g., knowledge
state, engagement level and learning speed) to provide for
personalised adaptation for each student.

Moreover, the experimental design was limited by an
absence of gaze directions. Previous tests pointed out that
the gaze direction was not accurately measured by the
OpenFace Model and therefore, the head direction was
chosen to measure attention. Post-testing showed that the
head directions were estimated accurately by the model, but
that participants’ heads were sometimes directed elsewhere
(e.g., towards the GoPro) while its eyes are directed towards
either the robot or the screen. Each of the conditions
encountered this matter and it did not differ between
conditions, but gaze directions would have provided more
accurate attention outcomes. Furthermore, timing the per
specific gesture (e.g., point gesture towards the number
8) instead of timing per gesture group (e.g., deictic ges-
tures) could have provided more accurate comparisons
between conditions for head directions per specific gesture.
Additionally, during the experiments, it was noted that,
although the one-on-one interactions with the participant
and the robot were held in a separate room, there still
were background noises and distractions from children in
the school hallways. Future robot designs should consider
these real-life scenarios and test real use case to be able
to develop social robots that can integrate in daily life and
educational context.

VII. CONCLUSION AND RECOMMENDATIONS

A study in which a social robot was used to teach
mathematics to primary school children is presented in
this paper. The aim of the study was to program a social
robot that tutors mathematics through verbal explanations
supported by deictic, beat, and iconic gestures that align
with these explanations, and to analyse its effectiveness
on learning outcomes. Results showed that the social robot
effectively taught children mathematical equivalence by an
increase in test scores, but no differences were found in
test scores between participants in the supportive gesturing
condition, the no gesturing condition, and the random
gesturing condition. Participants showed high task and
tutor engagement scores and head direction estimations
revealed that participants were attentive towards the robot,
but no differences were found between the three conditions.
However, the gestures ‘helpfulness’ was rated significantly
higher by participants in the supportive gesture condition
than the random gesture condition, suggesting that children
felt the gestures mattered. Several design choices were

made during development of the experiment (e.g., regarding
the robot’s gestures and interaction with the screen), which
have been documented in this paper.

A. Future research

Arguably, the main contributions of the presented re-
search are the introduction of the social robot as mathemat-
ical equivalence tutor that tutors mathematics with iconic,
deictic, and beat gestures that align with explanations,
and the comparison made between supportive gestures and
random gestures in Human-Robot Interaction research as
well as in Human-Computer Interaction research. It is
believed that more research is needed to further investi-
gate the effectiveness of supportive gestures in educational
HRI. The present study consisted of one single tutoring
session and did thus not investigate any potential long-
term effects that supportive gestures of social robots might
have compared to no gestures or random gestures. Besides
that, the use of social robot’s gestures could be further
discovered in other teaching domains. Finally, it would be
interesting to compare the learning outcomes of participants
that interact with a social robot that uses gestures to support
explanations and the learning outcomes of participants that
interact with an avatar that uses the exact same gestures
(e.g., the avatar created by Cook et al., 2017) to investigate
whether there is an effect of the physical presence of a
physically embodied robot. There is a need of more large-
scale studies towards social robots in an educational context
to increase the effectiveness of introducing robots to further
benefit the field of education.
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APPENDIX A - BEAT, DEICTIC, AND ICONIC GESTURES AND EXPLANATIONS PER EXPLANATION
SECTION

Table 6: Script with gestures and explanations for the intro (only part of Problem script Form A)

Gesture Category Explanation section Reference
Right-handed wave Iconic gesture ‘[Hi name].’
Two handed outward-focused
gesture Beat gesture

‘Today we are going to learn about [the
equal sign].’

Cook et al. (2017)

Two handed outward-focused
gesture Beat gesture

‘[The equal sign is a symbol] that tells
us about the two things on both sides
of it.’

Left-handed outward-focused
gesture Beat gesture

‘[Whatever is on one side of the equal
sign] needs to be the same amount..’

Right-handed outward-focused
gesture Beat gesture

‘..[as whatever is on the other side of
the equal sign].’

Cook et al. (2017)

Right-handed outward-focused
gesture Beat gesture

‘Okay name, [now let’s see how this
works].’

Table 7: Poblem script Form A (repeated for two problems - example problem: 8 + 6 + 2 = _ + 2)

Gesture Category Explanation Reference
Two handed outward-focused
gesture Beat gesture ‘Remember, [the equal sign means]..

Right-handed balance gesture Iconic gesture
‘..[that the total amount on the left
side must be the same]..’

Left-handed balance gesture Iconic gesture
‘..[as the total amount on the right
side].’

One-handed point to blank Deictic gesture
‘This will help us figure out [ ] what
goes inside the blank.’

Cook et al. (2017)

Right-Handed sweep right side Iconic gesture ‘[One side]..’
Left-Handed sweep left side Iconic gesture ‘..[needs to equal the other side].’

Goldin-Meadow,
Kim, & Singer,
(1999), Albibaba &
Nathan (2012),
Cook et al. (2013),
Cook et al. (2017)

Two-handed balance gesture Iconic gesture
‘You know you have the right answer,
[when the two sides are the same
amount].’
‘Let’s figure out how to do this’

One-handed point to 8 and 6
on left side Deictic gesture ‘[ ] Eight plus six equals fourteen.’

One-handed point to 2 on
left side Deictic gesture ‘[ ] Fourteen plus two is sixteen’

One-handed point to blank Deictic gesture
‘[And what number plus two] equals
sixteen?’

One-handed point to blank Deictic gesture ‘[Fourteen plus two equals sixteen].’

Two-handed balance gesture Iconic gesture
‘If you look at both sides, [they equal
the same amount].’

Left-handed outward-
focused gesture Beat gesture ‘[Which is sixteen],..’

Right-handed outward-
focused gesture Beat gesture ‘..[and sixteen].’

Cook et al. (2017)
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‘So, one side equals the other side.’

Goldin-Meadow,
Kim, & Singer,
(1999), Albibaba &
Nathan (2012),
Cook et al. (2013),
Cook et al. (2017),
Wakefiel et al. (2018)

Two handed outward-focused
gesture Beat gesture

‘Okay name, [let’s look at the next
sum].’

Table 8: Problem script Form B (repeated for two problems – example problem: 5 + 3 + 9 = 5 + _)
Gesture Category Explanation Reference
Two handed outward-focused
gesture Beat gesture

‘Remember, [the equal sign
means]..’

Left-handed balance gesture Iconic gesture
‘..[that the total amount on the left
side must be the same]..’

Right-handed balance gesture Iconic gesture
‘..[as the total amount on the right
side].’

Cook et al. (2017)

Right-Handed sweep right side Iconic gesture ‘[So, one side]..’
Left-Handed sweep left side Iconic gesture ‘..[needs to equal the other side].’

‘Let’s figure out how to do this’
One-handed point to 5 and 3
on left side Deictic gesture ‘[ ] Five plus three is eight’

One-handed point to 9 on left
side Deictic gesture

‘[ ] Eight plus nine equals
seventeen’

One-handed point to blank Deictic gesture
‘[And five plus what number]
equals seventeen?

One-handed point to blank Deictic gesture
‘[Twelve plus five equals
seventeen]’

Two-handed balance gesture Iconic gesture
‘If you look at both sides, [they
equal the same amount]..’

Left-handed outward-focused
gesture Beat gesture ‘..[which is fourteen]..’

Right-handed outward-focused
gesture Beat gesture ‘..[and fourteen].’

Goldin-Meadow,
Kim, & Singer,
(1999), Albibaba &
Nathan (2012),
Cook et al. (2013),
Cook et al. (2017)

‘So, one side equals the other side.’

Goldin-Meadow,
Kim, & Singer,
(1999), Albibaba &
Nathan (2012),
Cook et al. (2013),
Cook et al. (2017),
Wakefield et al.
(2018)

Two handed outward-focused
gesture Beat gesture ‘Okay name, [now it’s your turn]!’ Cook et al. (2017)
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APPENDIX B – EXAMPLE OF PETRI NETS USED TO COORDINATE THE ROBOT’S SPEECH AND
GESTURES

An example of using Petri nets to coordinate timing of speech and gestures is shown in this section, where the robot
presents a beat gesture while saying; [‘about the equal sign’], and no movements are generated while saying; ‘Today we are
going to learn’.

Figure 15: Synchronisation points and transitions based on Petri Nets for explanatory speech

Each gesture provided by Cook et al. (2017) can be partitioned into synchronisation points that follow phases which
can consist of a start, ready, stroke-start, stroke, stroke-end, relax, and an end stage (Kopp et al., 2006). For the two-handed
outward-focused beat gesture, an example is shown in Figure 16.

Figure 16: Synchronisation points and transitions based on Petri Nets for an explanatory beat gesture (footage by Cook et
al., 2017)

The explanatory speech and beat gesture in Figures 15 and 16 can be aligned in a Petri net, as shown in Figure 17. The
synchronisation point ‘main’ is now overlapping with the gesture phases ‘ready’ until ‘relax’. To assure the synchronisation
transitions, the function yield is called in the python script. For each explanation section in Tables 6-8 in Appendix A, the
iconic and beat gestures were scripted in such Petri nets.

Figure 17: Petri net with synchronisation points and transitions to align speech and gesture

Figure 18: Synchronisation points and transitions for an explanatory beat gesture for NAO

The final synchronisation of speech and the beat gesture in Figure 17 is above in Figure 18.
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APPENDIX C – PYTHON FRAMES DESCRIBING SYNCHRONISATION OF SPEECH AND GESTURES

Figure 19: Python frame of iconic gestures for the supportive gesturing condition with required input and results

Figure 20: Python frame of iconic gestures for the random gesturing condition with required input and results
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Figure 21: Python frame of deictic gestures for the supportive gesturing condition with required input and results for
Naomark 107 or 85, for Naomark 68 and 85 if αangle ≤ 0.1 then is replaced by if αangle ≤−0.1 then and if

angle ≤ 0.1 then is replaced by if αangle ≤−0.1 then
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Figure 22: Python frame of deictic gestures for the no gesturing condition with required input and results

Figure 23: Python frame of deictic gestures for the random gesturing condition with required input and result
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APPENDIX D - MATHEMATICAL EQUIVALENCE PROBLEMS EXPLAINED BY THE ROBOT

Figure 24: Mathematical equivalence problems of Form A that were explained by the robot and presented on the screen

Figure 25: Mathematical equivalence problems of Form B that were explained by the robot and presented on the screen
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APPENDIX E - INFORMATION LETTER FOR PARENTS/LEGAL REPRESENTATIVE OF PARTICIPANTS

DEELNEMER INFORMATIE BRIEF OUDERS/VERZORGERS 

 

 

 

 

23-02-2021 
 

Sociale robots in het onderwijs 

 

Geachte heer/mevrouw, 

Uw kind is gevraagd om deel te nemen aan het onderzoek: ‘Sociale robots in het onderwijs’. Dit 
onderzoek wordt gedaan door Fleur Moorlag, MSc studente van de TU Delft. In deze brief vindt u 
informatie over het onderzoek. Voor vragen of opmerkingen kunt u altijd contact opnemen. 

Details van het onderzoek 

Achtergrond van het onderzoek 

Sociale robots worden steeds vaker op scholen gebruikt waar kinderen vaak enthousiast zijn om met 
de robot te leren. Met dit onderzoek willen we bestuderen hoe een robot rekenproblemen het beste 
kan uitleggen aan basisschoolkinderen. Met de uitkomsten kunnen we in de toekomst de rekenuitleg 
van de robot verbeteren. Een voordeel van dit onderzoek is dat uw kind op een leuke manier iets 
over rekensommen kan leren van de sociale robot! 

Doel van het onderzoek 

Het doel van dit onderzoek is om uit te zoeken wat het effect is van de gebaren van een sociale robot 
tijdens de uitleg van rekensommen. De gegevens worden gebruikt voor een MSc thesis project van 
de TU Delft. 

Wat houdt deelname aan het onderzoek in? 

In de eerste sessie wordt de robot door de onderzoeker klassikaal geïntroduceerd door middel van 
een leuke en leerzame proefles (60 min). In de dagen die hierop volgen, vindt per leerling een 
tweede 1-op-1 sessie plaats met de rekenrobot en de onderzoeker (30 min). In deze sessie maakt de 
leerling een aantal rekenopgaven, en luistert en kijkt de leerling naar de uitleg van de robot. 
Voorafgaand geeft de onderzoeker informatie en naderhand vindt een korte debrief plaats.  

Veiligheid en Privacy 

Risico's van deelname 

Er zijn geen risico's zijn bij deelname aan dit onderzoek. Tijdens het experiment volgen de 
onderzoeker en deelnemers de RIVM-richtlijnen met betrekking tot de huidige COVID-19 situatie 
aangezien de leraar, de onderzoeker en het kind de voorgeschreven afstand van 1,5 m in de klas 
kunnen aanhouden en zowel de leraar als de onderzoeker zullen mondmaskers dragen. 
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Procedures voor terugtrekking uit het onderzoek 

Deelname aan dit onderzoek is geheel vrijwillig. Als uw kind meedoet aan het onderzoek, hebben u 
en uw kind de vrijheid om op elk moment terug te komen op deze beslissing. De verzamelde 
gegevens zullen direct daarna vernietigd worden. U kunt ook verzoeken om inzage in en rectificatie 
of verwijdering van persoonsgegevens. U hoeft geen verklaring te geven voor uw beslissing. Dit kunt 
u doen door contact op te nemen met Fleur Moorlag via het e-mailadres zoals vermeld onderaan 
deze brief. 

Vertrouwelijkheid van gegevens 

Met dit onderzoek worden de volgende persoonlijke gegevens verzameld en gebruikt: voornaam, 
leeftijd en geslacht, antwoorden van drie werkbladen met rekenopgaves, een enquêtevragenlijst en 
video-opnamen. Om de vertrouwelijkheid van persoonlijke gegevens van uw kind te waarborgen en 
te behouden, zullen de nodige beveiligingsmaatregelen worden genomen. De gegevens van uw kind 
worden opgeslagen in een beveiligde opslagomgeving bij de TU Delft. Alle gegevens worden 
vertrouwelijk verwerkt en opgeslagen met uitsluitend een deelnemersnummer. De naam van uw 
kind wordt alleen op het formulier voor geïnformeerde toestemming aan een deelnemersnummer 
gekoppeld. Het formulier voor geïnformeerde toestemming wordt digitaal opgeslagen op een aparte 
en veilige locatie. Zo blijven al uw gegevens vertrouwelijk. Alleen de onderzoeker (Fleur Moorlag) en 
haar twee begeleiders kunnen weten welk deelnemersnummer uw kind heeft. De tot personen 
herleidbare gegevens (toestemmingsformulier, werkbladen met rekensommen, video-opnames, en 
vragenlijsten) worden bewaard zo lang als nodig voor dataverwerking en analyse, en worden 
vernietigd na afronding van het afstudeeronderzoek. 

De resultaten en geanonimiseerde data van deze studie zullen in mogelijke toekomstige 
wetenschappelijke publicaties (master thesis rapport, wetenschappelijke publicaties, rapporten) 
worden gepubliceerd. Persoonlijke gegevens en video-opnames zijn alleen toegankelijk voor de 
onderzoeker en haar twee begeleiders voor analyse en zullen nooit gedeeld worden met derden. 

Beveiliging en privacy  

De verwerking van de data zal in overeenstemming zijn met de AVG en gegevens worden alleen 
gebruikt voor het doel van dit onderzoek. Ook is een Data Protection Impact Assessment uitgevoerd. 

Contactgegevens 

Bij klachten over de vertrouwelijkheid van uw gegevens kunt u contact opnemen met de Functionaris 
Gegevensbescherming TU Delft (Erik van Leeuwen) via privacy-tud@tudelft.nl of rechtstreeks bij de 
Autoriteit Persoonsgegevens. 

Bij voorbaat dank namens de onderzoekers voor uw eventuele medewerking, 

Fleur Moorlag 
(mail: f.n.moorlag@student.tudelft.nl) 
Joost Broekens 
(mail: d.j.broekens@liacs.leidenuniv.nl), en 
Joost de Winter 
(mail: j.c.f.dewinter@tudelft.nl) 
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APPENDIX F - INFORMED CONSENT FOR PARENTS/LEGAL REPRESENTATIVE OF PARTICIPANTS

Toestemmingsformulier voor sociale robots in het onderwijs 
  

Vink de juiste vakjes aan Ja Nee  

Deelnemen aan het onderzoek    

Ik heb de onderzoek informatie [DD / MM / JJJJ] gelezen en begrepen, of het is mij 
voorgelezen. Ik heb vragen kunnen stellen over de studie en mijn vragen zijn naar 
tevredenheid beantwoord. 

□ □  

Ik geef als ouder/verzorger vrijwillig toestemming voor mijn kind om deel te nemen aan dit 
onderzoek en begrijp dat hij/zij kan weigeren om vragen te beantwoorden en dat hij/zij zich 
op elk moment uit het onderzoek kan terugtrekken, zonder een reden op te geven. 

□ □ 
 

 

Ik begrijp dat deelname aan het onderzoek een enquêtevragenlijst inhoudt die door de 
onderzoeker is ingevuld. 

□ 
 

□ 
 

 

Ik begrijp dat deelname aan het onderzoek drie werkbladen met rekenopgaven omvat die 
door de deelnemer worden ingevuld. 

□ 
 

□ 
 

 

Ik begrijp dat deelname aan het onderzoek inhoudt dat er een video van de deelnemer wordt 
opgenomen, die alleen beschikbaar zal zijn voor de geaccrediteerde onderzoekers. 

□ 
 

□ 
 

 

Ik begrijp dat de onderzoeker en de deelnemers de RIVM-richtlijnen met betrekking tot de 
huidige COVID-19 situatie zullen volgen.  
 
Gebruik van de informatie in het onderzoek 

□ 
 

□ 
 

 

Ik begrijp dat de informatie die mijn kind geeft, zal worden gebruikt voor 
onderzoeksdoeleinden in een MSc thesis project aan de Technische Universiteit Delft. 

□ 
 

□ 
 

 

Ik begrijp dat persoonlijke informatie die over mijn kind is verzameld en die hem/haar kan 
identificeren, zoals zijn/haar naam, leeftijd, geslacht en videobeelden, niet buiten het 
studieteam zal worden gedeeld. 

□ 
 

□ 
 

 

 
Toekomstig gebruik en hergebruik van de informatie door anderen 

   

Ik geef toestemming om de geanonimiseerde data van mijn kind, te archiveren in de 
datacollectie van de TU Delft zodat deze gebruikt kunnen worden voor toekomstig onderzoek 
en leren. 

□ □ 
 

 

 
Handtekeningen 
 
 

   

 
_________________________________________   ____________________             ______ 
Naam deelnemer en wettelijke vertegenwoordiger   Handtekening        Datum 

   

    
Ik heb het informatieblad nauwkeurig geschreven voor de ouder/verzorger van de potentiële 
deelnemer en, naar mijn beste vermogen, ervoor gezorgd dat de ouder/verzorger begrijpt 
waar hij/zij vrijelijk mee instemt. 
 
Fleur Moorlag                                       ____________________       ______ 
Onderzoekers naam                                     Handtekening           Datum 
 
Contactgegevens voor meer informatie:  
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APPENDIX G – INFORMATION LETTER PARTICIPANTS

DEELNEMER INFORMATIE BRIEF LEERLINGEN 

 

Hoi (naam leerling), 

Je bent gevraagd om mee te doen aan een onderzoek over robots op scholen. Dit onderzoek wordt 
gedaan door mij, Fleur, van de universiteit in Delft. Door deze brief aan jou voor te lezen, geef ik je 
wat informatie, laat het me weten als je vragen hebt! 

Robots zien we steeds vaker en ze worden nu ook op scholen gebruikt, misschien ook wel op jouw 
school. Heb jij al wel eens een robot gezien? Met het onderzoek willen we iets leren over hoe een 
robot het beste sommen kan uitleggen. Misschien kunnen we hiermee de reken uitleg van de robot 
nog meer verbeteren. 

Het leuke is dat je iets over rekenen kunt leren van deze robot! De robot zal je nooit pijn doen. 

Eerst word je gevraagd een werkblad in te vullen met rekensommen. Daarna legt de robot je iets uit 
en gaan jullie samen sommen oefenen. Hierna mag je nog twee keer een werkblad in te vullen. Aan 
het einde zal ik nog een paar vragen stellen over wat je van de robot vond. 

Als je het niet leuk vindt om samen met deze robot sommen te oefenen, kan je me dat laten weten 
en kan je op elk moment stoppen. 

Er zal een videocamera in het klaslokaal zijn en deze zal een video van je maken wanneer de robot je 
iets uitlegt. Met deze video leer ik iets over de robot. Behalve ik en twee andere onderzoekers ziet 
niemand anders de werkbladen en de video. 

Heb je vragen over de robot, het onderzoek of mij? 

Fleur 
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APPENDIX H - QUESTIONNAIRE

Name:                             Nr. :                  
 
To be read by researcher: Goed gedaan, dat waren de laatste sommen. NAO blijft hier nu zitten en ik 
ga jou nog een aantal vragen stellen over wat jij ervan vond om te leren met NAO. Hieronder staan 
een paar poppetjes, misschien teken je er zelf ook wel eens een. Kan jij mij per rij aanwijzen hoe jij je 
voelde tijdens het leren met deze robot? 
 

1. De eerste rij gaat over hoe blij je je voelde tijdens het leren. Voelde het leren goed of juist 
slecht. Denk aan blij, enthousiast, trots, tevreden en dankbaar, maar ook aan niet blij, 
verveeld, schaamte, ontevreden en boos. 

 
 

2. De tweede rij gaat over hoe rustig je je voelde. Werd je rustig van het leren of juist actief. 
Denk aan rustig, saai, tevreden, moe, verdrietig, en dankbaar, en aan onrustig, actief, 
opgewonden, enthousiast, super wakker, en kwaad. 

 
 

3. De derde rij gaat over hoe onzeker jij je voelde tijdens het leren. Voelde het leren met de 
robot als iets waarvan je dacht “Yes, dat doe ik wel even”, of dacht je juist “Hmm, ik weet niet 
of ik dat wel kan”. Denk aan onzeker, angstig, dankbaar, gehoorzaam, verdrietig, en onder de 
indruk, maar ook aan zeker, stoer, boos, de baas zijn, en trots. 

 
 
Dan heb ik nu een paar vragen over hoe je het vond om over het ‘is-gelijk teken’ te leren. Ik lees de 
zinnen aan jou voor en dan kan jij zeggen of je het er (1) helemaal niet mee eens bent, (2) oneens mee 
bent, (3) niet eens en niet oneens mee bent, (4) eens mee bent, of (5) helemaal mee eens bent. 
 

1. Ik vond het leuk om te leren over het is-gelijk teken 
  

O  O  O  O  O 
 

2. Ik vond het moeilijk om te leren over het is-gelijk teken  
O  O  O  O  O 
 
 

3. Ik wil graag doorgaan met leren over het is-gelijk teken 
O  O  O  O  O 
 

Helemaal 
oneens           Oneens          Niet eens 

of oneens          
Helemaal 
eens          Eens          
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4. Ik wilde graag goed m’n best doen 
O  O  O  O  O 

 
5. Ik vond het saai om te leren over het is-gelijk teken  

O  O  O  O  O 
 

6. Ik vond het makkelijk 
O  O  O  O  O 
 

Oké, bedankt voor je antwoorden. Nu heb ik een paar vragen over hoe je het vond om samen met deze 
robot te leren. Ik lees weer de zinnen aan jou voor en kan jij dan aan mij aangeven of je het er (1) 
helemaal niet mee eens bent, (2) oneens mee bent, (3) niet eens en niet oneens mee bent, (4) eens mee 
bent, of (5) helemaal mee eens bent. 
 

1. Ik wil graag nóg meer doen met deze robot 
 

O  O  O  O  O 
 

2. Ik wilde aan deze robot laten zien dat ik goed m’n best deed 
O  O  O  O  O 

 
3. Ik wilde doorgaan met oefenen met deze robot 

O  O  O  O  O 
 

4. Ik vond dat deze robot goed hielp 
O  O  O  O  O 

 
5. Ik vond het makkelijk om deze robot te begrijpen 

O  O  O  O  O 
 

6. Ik vond deze robot saai 
O  O  O  O  O 

 
7. Ik vond de uitleg van de robot te snel gaan 

O  O  O  O  O 
 
En dan heb ik nu een paar vragen over de gebaren van deze robot. 
 

8. Wat vond je van de gebaren van de robot? 
 

Oké, bedankt voor je antwoord. Kun je me nu weer aangeven of je het (1) helemaal niet mee eens 
bent, (2) oneens mee bent, (3) niet eens en niet oneens mee bent, (4) eens mee bent, of (5) helemaal 
mee eens bent met deze zinnen? 

 
9. Ik vond het leuk om naar de gebaren van deze robot te kijken 

O  O  O  O  O 
 

10. Ik vond dat de robot duidelijke gebaren maakte 
O  O  O  O  O 

 

Helemaal 
oneens           Oneens          Niet eens 

of oneens          
Helemaal 
eens          Eens          
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APPENDIX I - PRE-TEST

Pre-test 
Naam = ______________             Nr. = _______ 
 
 
 
2 + 11 + 7 = ___ + 7 
 
 
4 + 10 + 6 = ___ + 6 
 
 
12 + 2 + 5 = ___ + 5 
 
 
 
2 + 4 + 7 = 2 + ___ 
 
 
7 + 5 + 1 = 7 + ___ 
 
 
9 + 8 + 2 = 9 + ___ 
 
 
 
7 + 4 + 9 = ___ + 7 
 
 
3 + 2 + 11 = ___ + 3 
 
 
7 + 8 + 4 = 5 + ___ 
 
 
4 + 7 + 2 = 8 + ___  
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APPENDIX J - MID-TEST

Mid-test 
Naam = ______________             Nr. = _______ 
 
 
 
11 + 3 + 4 = ___ + 4 
 
 
7 + 5 + 2 = ___ + 2 
 
 
4 + 4 + 8 = ___ + 8 
 
 
 
10 + 2 + 7 = 10 + ___ 
 
 
2 + 15 + 3 = 2 + ___   
 
 
5 + 10 + 4 = 5 + ___ 
 
 
 
3 + 4 + 9 = ___ + 3 
 
 
2 + 10 + 8 = ___ + 2 
 
 
9 + 4 + 1 = 8 + ___ 
 
 
6 + 7 + 2 = 5 + ___ 
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APPENDIX K - POST-TEST

Post-test 
Naam = ______________             Nr. = _______ 
 
 
 
2 + 7 + 2 = ___ + 2 
 
 
12 + 3 + 3 = ___ + 3 
 
 
7 + 4 + 6 = ___ + 6 
 
 
 
4 + 7 + 2 = 4 + ___ 
 
 
6 + 7 + 2 = 2 + ___ 
 
 
1 + 10 + 4 = 1 + ___ 
 
 
 
4 + 3 + 7 = ___ + 4 
 
 
6 + 1 + 11 = ___ + 6 
 
 
4 + 9 + 5 = 3 + ___ 
 
 
9 + 2 + 7 = 6 + ___ 
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APPENDIX L - DELAYED POST-TEST

Delayed post-test 
Naam = ______________             Nr. = _______ 
 
 
 
9 + 2 + 7 = ___ + 7 
 
 
2 + 12 + 3 = ___ + 3 
 
 
6 + 6 + 4 = ___ + 4 
 
 
 
10 + 3 + 6 = ___ + 6 
 
 
8 + 1 + 3 = ___ + 3 
 
 
9 + 6 + 2 = ___ + 2 
 
 
 
6 + 4 + 3 = ___ + 6 
 
 
3 + 14 + 1 = ___ + 3 
 
 
6 + 4 + 3 = 5 + ___ 
 
 
7 + 2 + 10 = 3 + ___ 
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APPENDIX M – PYTHON FRAMEWORK FOR ESTIMATING PARTICIPANTS’ HEAD DIRECTIONS

Figure 26: Python-model for estimating the participant’s head direction per frame

Formulas to derive head direction distances during the intro:
To calculate the distances in mm between camera-origin and direction of the head, when directed towards the robot, on
the x-axis (with respect to the camera) during the intro per frame, the formula: Tx + tan(−Ry) ∗Tz was implemented. The
formula Ty + tan(Rx)∗Tz was used to derive the distances in mm between direction of the head on the y-axis, when directed
towards the robot, during the intro per frame (Figure 11). This was then multiplied by −1 and the camera height was added
to find the height point on the y-axis, with the desk on which the robot was stated, as 0-point and a positive distance upwards
from the desk (Figure 13).
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Figure 27: An example of the OpenFace model outcomes with location of the head with respect to the camera in
millimetres (Tx, Ty,and Tz) and the rotation of the head (in this example in degrees) with the camera being located at the

origin (Rx, Ry, and Rz)
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APPENDIX N – MEAN DIFFERENCES BETWEEN TEST-SCORES PER CONDITION

Table 9: Mean differences between pre-, mid-, post-, and delayed post-test for the
supportive gesturing condition (* significance at the .05 level)

Pre-test Mid-test Post-test Delayed
post-test

Pre-test Mdi f = 3.46*,
p <.001

Mdi f = -5.42*,
p <.001

Mdi f = -4.89*,
p <.001

Mid-test Mdi f = 3.46*,
p <.001

Mdi f = -1.96*,
p = .036

Mdi f = -1.43,
p = .209

Post-test Mdi f = 5.42*,
p <.001

Mdi f =1.96*,
p = .036

Mdi f = 0.54,
p = 1.000

Delayed
post-test

Mdi f = 4.89*,
p <.001

Mdi f =1.43,
p = .209

Mdi f = -0.54,
p = 1.000

Table 10: Mean differences between pre-, mid-, post-, and delayed post-test for the
no gesturing condition (* significance at the .05 level)

Pre-test Mid-test Post-test Delayed
post-test

Pre-test Mdi f = -4.28*,
p <.001

Mdi f = -5.56*,
p <.001

Mdi f = -4.76*,
p <.001

Mid-test Mdi f = -4.28*,
p <.001

Mdi f = -1.28,
p =.438

Mdi f = -0.48,
p =1.000

Post-test Mdi= -5.56*,
p <.001

Mdi f = 1.28,
p =.438

Mdi f = 0.80,
p = .834

Delayed
post-test

Mdi f = -4.76*,
p <.001

Mdi f = 0.48,
p =1.000

Mdi f = -0.80,
p = .834

Table 11: Mean differences between pre-, mid-, post-, and delayed post-test for the
random gesturing condition (* significance at the .05 level)

Pre-test Mid-test Post-test Delayed
post-test

Pre-test Mdi f = -4.04*,
p <.001

Mdi f = -4.96*,
p <.001

Mdi f = -4.56*,
p <.001

Mid-test Mdi f = 4.04*,
p <.001

Mdi f = -0.92,
p =.435

Mdi f = -0.52,
p =1.000

Post-test Mdi f = 4.96*,
p <.001

Mdi f = 0.92,
p =.435

Mdi f = 0.40,
p =1.000

Delayed
post-test

Mdi f = 4.56*,
p <.001

Mdi f = 0.52,
p =1.000

Mdi f = -0.40,
p =1.000
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APPENDIX O – DURATION TO COMPLETE THE TESTS PER CONDITION

Figure 28: Mean durations to complete the pre-, mid-, post-, and delayed post-test with Confidence Intervals that are
95.0% as a function of condition (∗p < .001)

43



APPENDIX P – CORRELATION MATRICES BETWEEN QUESTIONNAIRE METRICS

Table 12: Correlation matrix showing the Pearson correlation coefficient between the dimensions from the
Self-Assessment Manakin (** Correlation is significant at the 0.01 level, 2-tailed, * Correlation is significant at the 0.05

level, 2-tailed)

Valence Arousal Dominance

Valence 1
-.146
(p = .206)

.156
(p=.090)

Arousal -.146
(p = .206) 1

-.056
(p=.629)

Dominance .156
(p=.090)

-.056
(p=.629) 1

Table 13: Correlation matrix showing the Pearson correlation coefficient between the Task Engagement questions (**
Correlation is significant at the 0.01 level, 2-tailed, * Correlation is significant at the 0.05 level, 2-tailed)

I enjoyed
this
activity

I found this
activity hard

I would like
to continue
with this
activity

It was im-
portant for
me to do
a good job

I found this
activity
boring

I found this
activity
easy to
understand

I enjoyed this
activity 1

-.345**
(p=0.002)

.552**
(p<0.001)

.144
(p=.213)

-.536**
(p<0.001)

.261*
(p=.022)

I found this
activity hard

-.345**
(p=.002) 1

-.045
(p=.698)

.014
(p=.904)

.352**
(p=.002)

-.691**
(p<.001)

I would like to
continue with
this activity

.552**
(p<.001)

-.045
(p=.698) 1

.311**
(p=.006)

-.418**
(p<.001)

.083
(p=.473)

It was important
for me to do a
good job

.144
(p=.213)

.014
(p=.904)

.311**
(p=.006) 1

-.275*
(p=.015)

.004
(p=.974)

I found this
activity boring

-.536**
(p<.001)

.352**
(p=.002)

-.418**
(p<.001)

-.275*
(p=.015) 1

-.471**
(p<.001)

I found this
activity easy
to understand

.261*
(p=.022)

-.691**
(p<.001)

.083
(p=.473)

.004
(p=.974)

-.471**
(p<.001) 1
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APPENDIX Q – ANSWERS TO OPEN QUESTION (DUTCH AND ENGLISH)

Table 15: Answers (in Dutch and English) given by the participants to the open question: ‘What did you think of the
robot’s gestures?’ per condition

Condition What did you think of the robot’s gestures

Supportive gestures

“It is indeed useful that the robot says and portrays ‘one side’, and then the ‘other side.
(Wel handig dat die de ene kant zegt en uitbeeld en dan de andere kant.)”
“So the left side is the same as the right side, he presented that very clearly. (Dus de
linkerzijde is hetzelfde als de rechterzijde dat deed die heel duidelijk).”
“Sometimes the gestures made it a bit difficult to hear. (Soms kon je het door de
gebaren een beetje slecht verstaan).”
“Also handy because you can show where you are, by pointing to the screen. (Ook wel
handig want je kan dan laten zien waar, door op het bord te wijzen).”
“I was able to better understand it because he pointed towards everything. (Ik kon het
toen wel beter begrijpen omdat hij alles aanwees.)”
“Handy if, for example, can’t hear very well. (Handig als je bijvoorbeeld niet zo goed
kan horen.)”
“It was clear with his arms, but not so well with his fingers.” (Je zag het met z’n armen
wel goed, niet zo goed met z’n vingers.)
“Useful because then you knew where he was explaining. (Wel handig want dan wist je
waar die was met uitleggen.)”

No gestures

“The robot’s walking made a lot of noise. (Het lopen maakte veel kabaal.)”
“I was frightened when the robot started walking (Ik schrok toen hij ging lopen).”
“The teacher also does this, but the teacher also points towards the board. (Dat doet
de meester ook alleen de meester wijst ook naar het bord.)”
“Sometimes the robot would turn and move its head but I didn’t care. (Soms dan
draaide de robot en bewoog hij z’n hoofd maar dat maakte mij niet uit.)”
“Useful because it helped me understand it more. (Wel handig omdat ik het daardoor
wel meer snapte.)”
“Not very clear. (Niet heel duidelijk.)”
“I could not really understand them. (Ik kon ze niet echt begrijpen.)”

Random gestures

“hard to understand (moeilijk om te begrijpen)”
“I did not totally get them. (Ik snapte ze niet helemaal)”
“I found it nice because when you just stand still, you are less likely to be looked at.
(Ik vond het wel goed want als je alleen maar stil staat dan ga je minder snel naar
diegene kijken).”
“a little crazy (beetje gek)”
“It would not have been so much fun without gestures. (Zonder was gebaren was het
niet zo leuk geweest.)”
“Everyone knows this moving is talking with your arms and hands. (Iedereen weet
dat dit bewegen met je armen en handen praten is.)”
“Very hard to explain how I thought of it. (Heel moeilijk om uit te leggen wat ik
ervan vond.)”
“Sometimes he did something and then I did not really understand the gestures.
(Soms deed hij iets en dan snapte ik de gebaren niet echt.)”
“What is this gesture? (Wat is dit gebaar?)”
“He moved and that made a lot of noise. (Hij bewoog en dat maakte veel lawaai.)”
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APPENDIX R – HEAD DIRECTION DISTANCES DURING THE INTRO

(a)

(b)

(c)

Figure 29: Distances between camera-origin and direction of the participants’ heads, when directed towards the robot, on
the x-axis (with respect to the camera) per participant over the intro time (Tx + tan(−Ry)∗Tz), for the a) Supportive gesture

condition (µ = 593.53,= 163.20), b) No gesture condition (µ = 544.58,σ = 160.56), and c) Random gesture condition
(µ = 542.85,σ = 133.05)

.
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(a)

(b)

(c)

Figure 30: Distances in mm between the bottom of the robot and direction of the participants’ heads on the y-axis, when
directed towards the robot, per participant over the intro time for a) Supportive gesture condition (µ = 181.04,= 148.49),

b) No gesture condition (µ = 214.69,σ = 119.85), and c) Random gesture condition (µ = 165.38,σ = 125.53)
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APPENDIX S – HEAD PITCH AND HEAD YAW (IN DEGREES) DURING THE INTRO TIME

(a) (b)

Figure 31: a) Head yaw (Ry), µ =−21.87,σ = 12.53 and b) head pitch (Rx), µ = 2.51,σ = 7.59 in degrees per participant
in the supportive gesturing condition during the intro time, head pitch (Rx) is positive when the participant’s head is

nodding down, head yaw (Ry) is positive when the participant’s head is rotating to his or her right

(a) (b)

Figure 32: a) Head yaw (Ry), µ =−19.32,σ = 16.74 and b) head pitch (Rx), µ = 2.12,σ = 8.29 in degrees per participant
in the no gesturing condition during the intro time

(a) (b)

Figure 33: a) Head yaw (Ry), µ =−18.45,σ = 13.01 and b) head pitch (Rx), µ = 3.34,σ = 6.49 in degrees per participant
in the no gesturing condition during the intro time,
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