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A B S T R A C T

Securing critical infrastructures is a complex task. Required information is usually scarce or inexistent, and
experts’ judgments may be inaccurate and biased. In this paper, two methodologies dealing with data scarcity,
imprecision, and uncertainty are presented: Evidential network and Credal network. Evidential network is a
graphical technique based on Dempster-Shafer Theory to explicitly model the propagation of epistemic un-
certainty among variables while Credal network is an extension of Bayesian network to deal with sets of
probabilities, known as Credal sets, based on experts’ judgments. Both methodologies constitute robust frame-
works to account for high degree of imprecision on data, producing informative results despite the low-in-
formative input. In the present study, the power in expressing uncertainty of these two methodologies have been
showed, and their differences have been described through their application to a case study of security vul-
nerability assessment. Results demonstrate the substantial equivalence of the two methodologies in prognostic
analysis, thus, an approximate updating procedure of Evidential network through equivalent Credal network has
been proposed, to overcome the lack of possibility to compute updating in the context of Dempster-Shafer
Theory.

1. Introduction

Since the 9/11 terrorist attacks, the concern about malevolent ac-
tions against critical infrastructures has remarkably grown. Indeed,
before the tragedy of Twin Towers, the perception of risk was limited to
unintentional events, as natural disaster or technical failures of critical
systems (Baybutt and Ready, 2003). The discipline of security vulner-
ability assessment (SVA) is relatively young, and has been developed to
provide guidelines and methodologies to highlight weaknesses poten-
tially exploitable by adversarial agents to carry out high-consequences
detrimental actions against critical assets. The chemical and process
industry is one among the first industrial sectors where a number of
methodologies were developed to mitigate the risk of security-related
events (API (American Petroleum Institute), 2003; CCPS, 2003; Bajpai
and Gupta, 2005). According to API RP-70 (API (American Petroleum
Institute), 2003), the security risk is defined as the product of the
magnitude of consequences caused by an attack, the probability that
the attack will be carried out, and the success probability of the attack.

An attack’s conditional probability of success has to be estimated
considering the security system and its weaknesses. This step is com-
monly referred to as vulnerability assessment, and is a key step of the

analysis. Vulnerability in security risk assessment refers to any weak-
ness which can be exploited by a malevolent agent to gain access to an
asset (API (American Petroleum Institute), 2003). Thus, elements to
take into account in vulnerability assessment may include the location
of the plant, the potential failure of physical protection systems, the
equipment and its properties, and personnel practices. According to the
majority of these methodologies, the determination of scenarios, and
thus vulnerability assessments are based on semi-quantitative calcula-
tions, usually relying on experts’ judgments. Multilateral competences
and high expertise are needed because of the complexity of security
issues. The required information embraces various fields, varying from
technical to socio-political, whereas available historic data is scarce or
even inexistent. Thus, the mission of security research is to develop
methodologies able to provide reliable results despite the high level of
uncertainty and subjectivity characterizing this field.

Attempts to efficiently deal with the inherent uncertainty of para-
meters in SVA have been made, usually based on probabilistic techni-
ques and experts’ judgement. Argenti et al. (Argenti et al., 2016) pro-
pose to adopt Bayesian network (BN) to model the effectiveness of
security systems in process installations. Fakhravar et al. (Fakhravar
et al., 2017) propose a vulnerability analysis based on attack trees (ATs)
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and subsequent mapping through an innovative time-based BN. Clearly,
BN is an attractive tool for this aim, because it is able to gather variables
of various nature, and to probabilistically depict dependencies, in-
tuitively expressing uncertainty.

A criticism against the use of probabilities is that they may not be
easy to be assessed as point values. On the other hand, it may be more
natural for experts to represent their opinion through comparative
judgments, intervals of probability, or degrees of belief. Moreover, even
if experts were able to directly convert their statements in probability
values, numbers would be affected by epistemic uncertainty due to the
impossibility of practically obtaining some information or clearly
shaping dependencies. The objective of this paper is to specifically
examine the applicability of two methodologies to deal with epistemic
uncertainty and imprecision in SVA, and then comparing their features
and outlining the differences between the two approaches. The present
paper proposes a comparison between Dempster-Shafer Theory (DST)
and Credal network (CN). DST allows to explicitly model the propa-
gation of epistemic uncertainty among the variables of a system, de-
picted as an Evidential network (EN). This methodology may offer an
intuitive framework to use low informative judgments to obtain reliable
outcomes, keeping track of effects of the vagueness of input information
on the obtainable results, through simple mathematical functions. On
the contrary, CN is conceptually more similar to BN, and is based on the
specification of sets of probabilities rather than on point values. These
sets can be defined through geometrical figures whose edges can be
directly reconstructed starting from comparative judgments, through
mathematical procedures based on standardized interpretation of nat-
ural language. Both methodologies are suitable to produce robust out-
comes from low informative input data. Therefore, these methodologies
may be of great application to the field of SVA since SVA usually suffers
from qualitative judgments, biased subjective data, and imprecise in-
formation.

As such, EN may allow to evaluate the quality of results, producing
optimistic and pessimistic estimations of vulnerability via plausibility
and belief concepts while CN may allow the specification of prob-
abilities of primary events in a more robustly in the form of set of
possible values. That being said, the novelty of the present study lies in
the application of EN and CN to uncertainty modelling which has been
unprecedented not only in SVA but also safety risk assessment.

After revisiting the background of AT, BN, CN, and DST in Section 2,
the methodologies are applied to a case study in Section 3. Section 4 is
reserved for the discussion of results, comparing the methodologies,
and pointing out their shortcomings. Conclusions are reported in Sec-
tion 5.

2. Background

2.1. Attack tree

AT is a hierarchical graphical framework to model attacks against a
system, given some security constraints (Brooke and Paige, 2003). ATs
have been outlined for the first time by Schneier (Schneier, 1999, 2000)
in the field of informational technology. In his definition, ATs are

powerful tree-shaped representations and offer a clear view of the se-
curity system and its components. For a solid mathematical definition
of AT, the reader is referred to (Gribaudo et al., 2015). For the scope of
this paper, it is sufficient to indicate that ATs are analogous to Fault
trees (FTs) (US Nuclear Regulatory Commission, 1981) but that they are
used for security risk assessment rather than of safety risk assessment
(in case of FTs). AT makes it possible to model failure sequence of
countermeasures, or success of intermediate steps of attack via AND
and OR gates, shedding light on the vulnerabilities of security systems.
It is worth noting that there are some differences between ATs and FTs.
For example, the FT’s structure is linked to the architecture of the
system, so it is not mutable unless there is a change in the system, while
AT’s structure depends on the effect of countermeasures on attackers’
preferences, and so it may change radically after each improvement of
the security system (Gribaudo et al., 2015).

Fig. 1 depicts an AT for opening a safe. As shown in the figure, leaf
nodes are various types of attacks, and the root node “Open Safe” is the
goal the attacker wants to achieve. Actually, leaf nodes can also re-
present states of elements of the security system, and so their effec-
tiveness to stop an attack. As can be noted from Fig. 1, originally the
semantic rules adopted by Schneier (Schneier, 2000) are opposite to the
ones usually adopted in FT analysis (i.e., the “Open Safe” node should
be a leaf node depicting a top event). Since in the field of process en-
gineering FTs are widespread and well-known tools, for the rest of the
paper the semantics of FT was adopted also for ATs. Thus, in the rest of
the paper the basic events (i.e., types of attack, or state of elements of
security system) will be labelled as root nodes, while the vulnerability
(i.e., the probability of success of an attack) will be the top event, or leaf
node. This notation is more intuitive considering that ATs in this paper
will be mapped into directed acyclic graphs similar to BN.

ATs can be used both for qualitative and quantitative analysis of the
security system. Qualitative analysis is performed based on the graph
depicting dependencies, and allows experts to brainstorm knowledge,

Nomenclature

SVA security vulnerability assessment
IED improvised explosive device
PPS physical protection system
AT attack tree
FT Fault tree
BN Bayesian network
DAG directed acyclic graph
CPT conditional probability table

CS Credal Set
CN Credal network
DST Dempster-Shafer Theory
ET Evidence Theory
EN Evidential network
CBT Conditional belief table
BBA basic belief assignment
Pls Plausibility function
Bel Belief function

Fig. 1. AT for opening a safe (Schneier, 2000).
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and to enhance discussion (Ingoldsby, 2013). In order to conduct a
quantitative analysis, experts have to assess probabilities to each node,
and then find an efficient way to evaluate the model, which may be
time-demanding for systems with high number of components. As for
FTs evaluation (Bobbio et al., 2001), experts can map the ATs in BN and
compute the probability of successful attacks (Fakhravar et al., 2017;
Gribaudo et al., 2015).

2.2. Bayesian network

BN is a widespread probabilistic tool for eliciting knowledge and for
dealing with uncertainty (Pearl, 1988). BN synthetically represents
relations among random variables through a directed acyclic graph
(DAG) composed of nodes and arcs. The weight of dependencies is lo-
cally defined with conditional probability tables (CPTs). The joint
probability distribution of a set of random variables = …X X X X{ , , , }n1 2
can be easily computed, thanks to d-separation criteria (a set of criteria
to determine whether connected nodes are independent of each other
given the state of another node; for further details refer to (Pearl, 1988;
Charniak, 1991), and the chain rule considering conditional prob-
abilities of each variable given its immediate parents:

∏= … =
=

P X P X X X P X pa X( ) ( , , , ) ( | ( ))n
i

n

i i1 2
1 (1)

where pa X( )i is called parental set of Xi. For example, considering the
BN in Fig. 2, the joint probability distribution is

=P X X X X P X P X X P X X X P X X X( , , , ) ( )· ( | )· ( | , )· ( | , )1 2 3 4 1 2 1 3 1 2 4 2 3 .
One of the major features of BN is that it is possible to update

probabilities given new evidence through Bayes’ Theorem (Eq. (2)):

=
∑

P X E P X P E X
P X P E X

( | ) ( )· ( | )
( )· ( | )X E/ (2)

where P X E( | ) is the updated (posterior) joint probability given evi-
dence E, and ∑ P X P E X( )· ( | )X E/ is the summation over X except of E
(Charniak, 1991).

BN has been widely employed in system safety and reliability en-
gineering. Bobbio et al. (2001) and Khakzad et al. (2011) proposed to
map FT into BN for dependable systems; likewise, Khakzad et al. (2013)
developed an algorithm to map bow-tie diagram to BN to model de-
pendencies and probability updating. However, few works based on BN
are available in the field of security assessment (Argenti et al., 2016;
Fakhravar et al., 2017; Van Staalduinen et al., 2017).

In this study the GeNIe software (GeNle Modeler) is used to draw
and compute the developed BNs.

2.3. Credal Sets Theory and Credal network

Credal Sets Theory is a complete probabilistic theory based on
Credal sets (CSs), that is, closed convex sets of probabilities to express
knowledge imprecision (Corani et al., 2012). This theory is equivalent
to Walley’s theory of imprecise probabilities (Walley, 1991). CSs
adopted in this theory can be depicted as polytopes, where each inner
point has a valid probability mass, and can be obtained computing the
convex hull of a finite number of probabilities, called vertices (Cozman,
2000). A CS for a random variable Xi is labelled K(Xi), while the set
comprising its extreme points is denoted by ext[K(Xi]. In Fig. 3, an
example from (Piatti et al., 2010) has been illustrated: a CS over a
ternary categorical variable S, whose set of possible values is

= W D LΩ { , , },S is represented in barycentric coordinates as defined in
(Walley, 1991). This system of coordinates is based on the property that
the sum of probabilities of the three possible outcomes, for each point is
necessarily 1.0. That is why probability values are represented as points
inside the triangle of unitary height. The CS in Fig. 3 is coloured in red,
and has four vertices:

= ⎧
⎨⎩

⎡
⎣

⎤
⎦

⎫
⎬⎭

ext K S[ ( )] [0.5,0.3,0.2],[0.5,0.25,0.25],[0.4,0.4,0.2], 1
3

, 1
3

, 1
3 (3)

CSs can be defined univocally by explicit enumeration of vertices.
The vertices can be reconstructed starting from linear sets of inequal-
ities, through lrs, a well-known algorithm for Reverse Search Vertex
Enumeration (Avis and Fukuda, 2000, 1992). For example, the CS
presented in Fig. 3 can be reconstructed through lrs, starting from the
following set (Piatti et al., 2010):

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⩽
⩾

⩾
⩾
⩾

⩾
⩾
+ + =

P W
P W P D
P D P L
P L
P W
P D
P L
P W P D P L

( ) 0.5
( ) ( )
( ) ( )
( ) 0.2
( ) 0
( ) 0
( ) 0
( ) ( ) ( ) 1

The last line of the set is an equation rather than an inequality, and
represents the condition that the sum of the probabilities among all the
possible outcomes has to be one (i.e., the only accepted outcomes of the
variable S are W, D, and L). The possibility to represent the knowledge
as a set of inequalities can be useful because experts can easily express
their uncertainty about states of variables through comparative judg-
ments, and starting from their arguments it is possible to reconstruct a
limited set of probability masses. Furthermore, Walley (1991) proposes
a verbal scale to directly translate judgments into linear constraints. For
example, if an outcome xi of a variable X is said to be “very unlikely”, it
means that ⩽P x( ) 0.25i , while if xi is said to be “quite probable”, will be

⩾P x( ) 0.6i .
As said before, CSs are geometrically depictable as polytopes,

however, in practical applications we are interested in bounds of
probability provided by them. Lower and upper probabilities obtainable
for a variable Xi are respectively defined by Eqs. (4) and (5):

=
∈

P X P X( ) min ( )i
P X ext K X

i
( ) [ ( )]i i (4)

=
∈

P X P X( ) max ( )i
P X ext K X

i
( ) [ ( )]i i (5)

For example, the CS presented in Fig. 3 leads to =P D( ) 0.25,
=P D( ) 0.4, =P W( ) 1

3 , =P W( ) 0.5, =P L( ) 0.2, =P L( ) 1
3 .

It is worth noting that CSs over binary variables are intervals of
probability whose extremes are exactly [P X P X( ), ( )]i i : actually, prob-
ability intervals and p-boxes are special cases of CSs (Walley, 1996),

Fig. 2. A simple BN with four nodes.
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and represent aleatory uncertainty among the probability values. Thus,
each value inside CSs, as well as inside intervals, is a valid probability
mass.

After the definition of CSs, it is possible to define a Credal network
(CN), that is, a BN whose parameters can vary according to closed
convex sets. A CN over a set of random variables = …X X X X{ , , , }n1 2 is a
DAG where dependencies among variables are defined by a set of
conditional CSs as K X pa X( | ( ))i i for i= 1… n. In analogy with BN, it is
possible to define a joint CS as follows:

∏= =

∈ = …

XK CH P X P x P x pa X

where P X pa X ext K X pa X i n

( ) { ( ): ( ) ( | ( ))

( | ( ) [ ( | ( ))], 1 }
i

i i

i i i i (6)

where CH is the convex hull operator, applied to the probabilities
computed for the combination of all the vertices of all the conditional
CSs. The joint XK ( ) defined in Eq. (6) is called strong extension of the
CN. For further details about the meaning of strong extension, and other
possible extensions the reader is referred to (Cozman, 2000; Antonucci
and Zaffalon, 2008; Couso et al., 1999). In the following, the definition
provided by Eq. (4) was applied, since literature focuses more on strong
extension than on other definitions of joint CS. Furthermore, strong
extension is the only which is possible to compute through the available
software. Roughly speaking, the strong extension represents a set of BN
obtained by visiting each possible combination of vertices of all the
conditional CSs (Walley, 1996).

CN takes the advantage of a generalization of Bayes’ Theorem to
compute posterior probability bounds, with respect to the strong ex-
tension XK ( ). Given the set of vertices of ≡=X XP ext K{ ( )} [ ( )]j j

v
1 , the

posterior lower probability = =P X x X x( | )q q e e , given the evidence
=X xe e, can be computed according to Eq. (5):

∏

∏
=

∑

∑= …
P x x

P x pa x

P x pa x
( | ) min

( | ( ))

( | ( ))
q e

j v

x
i

j i i

x x
i

j i i1, ,

M

M q, (7)

where ∈ ⧹ ∪x X X X X· ({ } )m M q E , with XM is the set of variables excluding
Xq and XE, and the values of xi and pa x( )i are consistent with (x x x, , )q M e
(Corani et al., 2012; Antonucci, 2008). To obtain the posterior upper
probability it is sufficient to replace the minimum operator with the
maximum. Despite the task of computing posterior bounds is generally
NPPP- complete (Corani et al., 2012), that is, it belongs to a class of
problems whose solution cannot be efficiently located, two available

tools implementing different algorithms were developed. The first tool
is JavaBayes, a software tool originally designed for robustness analysis
in BN (Cozman), implementing an approximate algorithm (Cano et al.,
1994), while the second is GL2U, a software tool specifically designed
for CN (Sun, 2008), implementing a more accurate inference algorithm
(Ide, 2004). Some applications of CN to deal with imprecise knowledge
are reported in the literature (Antonucci et al., 2004, 2013).

2.4. Dempster-Shafer theory and Evidential network

Dempster-Shafer Theory (DST), also known as Evidence Theory
(ET), has its starting points in the studies of Dempster (1967) and of
Shafer (1976). Basically, it can be interpreted as a generalization of
Bayesian probability, assigning a number between 0 and 1 to degree of
belief supporting a certain proposal. It is worth to specify that even if
this assessment may resemble probability assignment, it has not a
probabilistic meaning. This above-mentioned procedure is called basic
belief assignment (BBA) and is made defining a belief mass function (or
Shafer’s basic probability structure) →M: 2 [0,1]Ω , which verifies:

∅ =M ( ) 0 (8)

∑ = =
∈

M X s( ) 1
s

i
X

Ωi
X (9)

where Ω is the set of disjoint states of M, called frame of discernment of
focal elements of M. The fact that M is defined starting from the pow-
erset of the frame of discernment, allows softening the probability
framework in a more flexible structure. It is possible to allocate a
quantity supporting the focal element s s{ , }i

X
j
X , which means that the

variable X can both be in the state si
X or sj

X and we are not able to
determine the amount of masses to attribute to each state. This is a
method to characterize epistemic uncertainty about the state of the
variable, and the focal element s s{ , }i

X
j
X is called epistemic state. For

example, considering a typical binary variable, a typical frame of dis-
cernment may be = True FalseΩ { , }, the powerset where we define the
BBA is = = ∅ = = =M X M X True M X False M X2 { ( ), ( ), ( ), (Ω

True False{ , })}, where the last element is the epistemic state.
Once the BBA has been realized, it is possible to obtain information

about the states of the variables, computing two functions called
Plausibility and Belief functions. The Plausibility function (Pls) expresses
the plausibility of a state, given the evidence of the masses which
contribute to its realization. Formally →Pls: 2 [0,1]Ω is defined by Eq.
(10):

∑= = =
∩ ≠∅

Pls X s M X s( ) ( )i
X

s s s
j
X

|j
X

i
X

j
X (10)

The Belief function (Bel) expresses how much the proposal =X si
X is

believable, given the evidence of the masses of the frame of discern-
ment. Formally →Bel: 2 [0,1]Ω is defined by Eq. (11):

∑= = =
⊆

Bel X s M X s( ) ( )i
X

s s s
j
X

|j
X

j
X

i
X (11)

Recalling the previous example, if we assign
= = = = = =M X True M X False M X True False( ) 0.1, ( ) 0.8, ( { , }) 0.1, it is

easy to compute = =Bel X True( ) 0.1, = =Bel X False( ) 0.8,
= =Pls X True( ) 0.2 and = =Pls X False( ) 0.9. Thus, Pls and Bel func-

tions are needed to redistribute epistemic uncertainty among possible
states of variables, without considering any unnecessary additional
assumption. According to Shafer:

= ⩽ = ⩽ =Bel X s P X s Pls X s( ) ( ) ( )i
X

i
X

i
X (12)

Given Eq. (12), it is possible to associate an interval-valued prob-
ability to an assumption =X si

X , with minimum and maximum prob-
abilities as Bel and Pls, respectively (Cheng, 2000). Fig. 4 helps clarify
the quantification of the uncertainty about a certain hypothesis given a
BBA. It is also possible to reconstruct BBAs from Pls and Bel functions,

Fig. 3. Barycentric representation of a Credal set over a ternary variable (Piatti
et al., 2010).
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through a Möbius Transformation (Smets, 2002).
This theory can be applied to describe complex systems, and the

involved variables. This scope leads to the foundation of Evidential
network (EN), which is a DAG where dependencies among its nodes are
defined by a set of belief distributions (Simon et al., 2008). Despite its
similarity with BN, in EN, relations between variables are not prob-
abilities, but belief masses. Practically, CPTs are replaced with CBTs
(Conditional Belief Tables). Furthermore, additional nodes to represent
Bel and Pls of variables of interest are added to the network.

Although DST is a flexible generalization of Bayesian theory able to
represent information obtained directly from experts’ judgments (i.e.,
degrees of support to hypothesis), only a few toolboxes exist such as IPP
Toolbox (IPP Toolbox), and TBMLAB (Smets, 2004). This is the main
reason why Simon et al. (2008) propose to employ BN algorithm to
compute belief propagation in EN. Furthermore, the same authors
propose to adopt EN to map FT when there is imprecision on data and
on experts’ judgments (Simon and Weber, 2009), according to the
methodology for modelling uncertainty previously defined by Guth
(1991). Other applications in the fields of reliability and safety can be
found in Kay (2007) and Limbourg et al. (2007), while Benavoli et al.
(2009) propose an EN for threat assessment in military operational
research.

3. Results

3.1. The case study

We applied the two methodologies of interest to map ATs developed
for the illustrative case study. The chemical storage plant whose pre-
mises are highlighted in Fig. 5 was chosen as a target for SVA. In Fig. 5
different assets can be distinguished. The main storage farm area is
composed of eight tanks (of different volumes), and a loading dock,
where ships can charge and discharge chemicals and materials. For the
sake of simplicity, only a single attack made with improvised explosive
device (IED) was considered, which could be detonated with a remote
controller. Two possible intrusion paths were considered, that is, via
ground, and via water from the area of the loading dock. The loading
dock itself can be considered as potential target. However, according to
a rough estimate of relative attractiveness of targets, we decided to
choose the storage farm area as the target, due to the high quantity of
hazardous materials stored, and the high visibility of the tanks.

Indeed, the aim of this study is to compare two robust methodolo-
gies to assess uncertainty and deal with imprecision, highlighting their
features, rather than to conduct a complete SVA. In Fig. 5 a schematic
representation of the two possible intrusion paths available to adver-
saries to reach the tank area have been denoted by arrows.

An assumption considered is that if perpetrators choose to carry out
an attack via water, they have to complete the intrusion by a short
secondary path via ground to reach the storage farm area, to set the
explosive, and then regress before remotely detonating it.

This assumption implies that the attack will be successful only if
perpetrators manage to regress to a safe distance from the storage plant.
This assumption should be softened considering different kinds of

perpetrators such as suicidal bombers who do not mind saving their
lives to consider an attack successful (Bhashyam and Montibeller,
2016).

Considering the storage farm, two simple ATs have been developed,
one for each path to get into the plant premises. In this study, for the
sake of simplicity time has not been considered as a variable, even if
there are similar applications suggesting that the intrusion process
should be considered a timed sequence of actions. For example,
Fakhravar et al. (2017) developed dynamic attack trees with priority
AND (PAND) and Sequential Failure (SEQ) Gates, where the sequence
of actions matters. Although considering AND-Gates instead of more
complex PAND-Gates is a simplification, the results obtained will be
conservative because PAND is a subset of AND (Gribaudo et al., 2015).

Two ATs, respectively depicting the intrusion processes via ground
and via water, are displayed in Figs. 6 and 7.

As can be noted from Figs. 6 and 7, the right part of the two ATs is
the same. Conceptually, perpetrators need to position an improvised
explosive device (“IED”) at the storage farm and regress (“Regress”)
before detonating the IED. The main difference between these graphs is
related to the branches on the left, that is, the intrusion process. In
Fig. 6 the left branch describes the situation when perpetrators decide
to attack via ground. They may choose to force the “Main Gate” or to
open an access on the outer fence “First Fence”. After that, they need to
penetrate “Patrol” to overcome the “First Security Layer”. At this point,
“CCTV”, and an additional fence “Second Fence” have been considered.
If perpetrators manage to elude both, the intrusion process “Intrusion”
is considered successful.

In Fig. 7, the intrusion branch reports the path to be followed if
perpetrators decide to carry out an attack via water. “Patrol”, and
“Docking Barriers” have been considered as the first security layer.
After penetrating both, perpetrators have to continue via ground, so
they have to penetrate the same “CCTV”, and “Second Fence” con-
sidered in the former AT.

This means that there are dependencies between the two ATs due to
the presence of shared physical protection systems (PPSs). Such de-
pendence cannot be outlined directly in ATs, but has to be considered
during calculations.

According to recent works of Bobbio et al. (2001) in the field of
reliability analysis, Gribaudo et al. (2015) in the field of computer se-
curity, and Khakzad et al. (2011, 2013) in the field of process safety,
mapping trees in BN allows a more efficient computation of prob-
abilities, accounting for dependencies, and other advantages like
probability updating and adapting.

Fig. 8 depicts the BN equivalent to the merged ATs, where the nodes

Fig. 4. Quantification of uncertainty through Bel and Pls functions. From
Rakowsky (2007).

Fig. 5. Case study: premises of the storage farm are outlined in white. The two
intrusion paths considered, “Via Ground” and “Via Water”, are reported as
white arrows.
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“Explosion”, “CCTV”, “Second Fence”, and “Patrol” are shared by the
two attack scenarios. In the merged mapping, a single leaf node “At-
tack” has been considered.

All variables in Fig. 8 are binary. Each variable can be in the state of
“success” or “failure”. Nodes corresponding to AND and OR operators
have specific CPTs (Bobbio et al., 2001). Probabilities of the root nodes
have to be assessed from data, or experts’ judgments as point values,
and then computed through algorithms available for BN.

In the following subsections the ATs are mapped through the two
methodologies, in order to compare results, and usability of EN com-
pared to CN.

3.2. Converting Attack trees to Evidential network

The main weakness related to traditional approach based on BN is
that point values of probabilities are needed. The root nodes of the AT
should be quantified probabilistically, but usually there is a significant
lack of data and information. Thus, experts’ judgments are the most
used source of data (Nai et al., 2009). Given these premises, it seems
clear that estimates of likelihood of events in SVA are inherently af-
fected by epistemic uncertainty: data are affected by incompleteness,
incoherency and sometimes are hard to be determined experimentally.
EN may be employed alternatively as a framework to obtain robust yet
less precise results from low informative data sources; it is because it is
possible to associate part of the belief to the epistemic state (see Section

2.4). The epistemic state allows to define the amount of information
which is not possible to associate with any of the other states. Pls and
Bel functions can then be used to reconstruct confidence intervals for
the states of the variables of interest.

The approach of Simon et al. (2008), Simon and Weber (2009) has
been applied to convert the BN of Fig. 8 to the EN of Fig. 9. The
methodology is based on the transformation of each binary variable of
the BN in Fig. 8 into a ternary Dempster-Shafer structure in the EN in
Fig. 9, in which the first two states correspond to the same states of the
node in the BN while the third state is the epistemic state. Having the
EN constructed this way, the BN standard inference algorithms can
readily be used to compute belief propagation in the EN.

It is worth remarking that EN should not be interpreted as a prob-
abilistic network since the values represent the degrees of support
(belief) rather than probabilities. It is clear that the structure of the EN
in Fig. 9 is very similar to the BN’s in Fig. 8, yet augmented with “Pls”
and “Bel” nodes. These two additional nodes are defined for explicit
computation of Pls and Bel functions as the upper and lower bound
probabilities, respectively, of the states of variables of interest (in our
case, the Pls and Bel functions of the “Success” state of the primary
events nodes).

The variables “Patrol”, “Docking_Barriers”, “Main_Gate”,
“First_Fence”, “Patrol”, “CCTV”, “First_Security_Layer”, and
“Second_Fence” represent the PPSs from attackers’ point of view, and so
the state of the variables in the EN describe the attacker’s ability to

Fig. 6. Attack tree for intrusion and attack process via ground (In Fig. 6, we considered the possibility of attack through the “Main Gate” as it was the case for the
attack to the Air Products Gas Company in Saint-Quentin Fallavier: https://www.ict.org.il/Article/1430/Saint-Quentin-Fallavier-Attack).
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overcome the security barriers, and proceed the attack. For example,
“Patrol”= “Success” means that perpetrators manage to penetrate the
patrol.

The variables “Docking”, “Intrusion_via_Water”,

“Intrusion_via_Ground”, “IED”, “Regress”, “Explosion”, and “Entrance”
represent steps the perpetrators have to successfully achieve to carry
out an attack. For example, “Regress”= “Failure” means that perpe-
trators were not able to regress after setting the IED near the tanks.

Fig. 7. Attack tree for intrusion and attack process via water.

Fig. 8. ATs merged together in a BN. The central part comprises the shared variables.
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The variables “Attack_via_Water”, “Attack_via_Ground”, and
“Attack” depict the success or the failure of the attack. That is,
“Attack_via_Water”= “Success” means that the attack via water is
successful, while “Attack”= “Success” means that an attack, either via
ground via water, or both results in a success.

The methodology proposed by Simon et al. (2008), Simon and
Weber (2009) has been applied to define CBTs of AND and OR gates.
For example, “Docking” is an AND gate, so it can result in “Success”,
only if the states of both its parents “Patrol”, and “Docking_Barriers” are
“Success”. This means that attackers have to penetrate the patrol and to
overcome the docking barriers to successfully dock near the premises of
the plant. According to that, the CBT of this variable with respect to the
parents are reported in Table 1.

To define OR nodes, the same logic has been followed. For example,
considering the “Attack” node, which is an OR node, its state can be
“Success”, if at least one of its parents (“Attack_via_Ground” and
“Attack_via_Water”) is “Success”. Table 2 reports the CBT for this
variable.

The nodes in red represent the Bel and Pls functions are computed
for every output of the parent variables. For example, “Bel_A_Success”,
and “Pls_A_Success” are nodes reporting the values of Bel(Attack =
“Success”), and Pls(Attack = “Success”). The CBTs proposed to compute
their values are, respectively, reported in Tables 3 and 4.

The “Pls” and “Bel” nodes have been provided for attack nodes
“Attack_via_Water”, “Attack_via_Ground”, and “Attack” as well as pri-
mary events. This choice was made because the presence of a high
number of nodes may affect the readability of the graph. Furthermore,
the values of Bel and Pls functions are of interest only for some vari-
ables. Indeed, according to Eq. (12) presented in Section 2, it is possible

to directly reconstruct probability bounds from Bel and Pls, and this is
useful to estimate the possibility of success of an attack, as an indication
of the vulnerability of the security system. With respect to the basic
events “Patrol”, “Docking_Barriers”, “CCTV”, “Patrol”, “Main_Gate”,
“First_Fence”, “Second_Fence”, “IED”, and “Regress”, red nodes have
been provided because they report the probability intervals used as CSs
in CN application presented in Section 3.3. They are not strictly ne-
cessary, but allow to directly show the probability bounds needed to
compare the EN with the CN presented in the next subsection.

For illustrative purposes only, a priori belief mass assignments for
each primary node were chosen as in Table 5.

Given these input data, forward analysis of belief propagation
through GeNIe software was performed. Since the quantification of
vulnerabilities is of interest, the results are the values of Bel and Pls,
related to the state “Success” of the three attack nodes. Results obtained
are reported in Table 6.

These values can be used directly as estimates of vulnerability.
According to Table 6, a single value representing the vulnerability, i.e.,
the probability that, given an attack, it will be successful and will cause
damage to the storage area, cannot be determined exactly. However,
according to definition of Belief and Plausibility functions, we can define
the former as the minimum degree of belief that the plant is vulnerable
to an attack, while the latter is the maximum vulnerability.

For example, the minimum belief that an “Attack_via_Ground” will
be successful is equal to Bel (X= “Success”)= 1.24e−3. If we consider
also the uncertainty, that is, the belief mass associated to the epistemic
state “Success, Failure”, the vulnerability to an “Attack_via_Ground”
would be equal to Pls (X= “Success”)= 7.49e−3. It is worth noting
that values of Bel (Attack = “Success”) and Pls (Attack = “Success”) are

Fig. 9. EN of attack scenarios.

Table 1
CBT of “Docking” as an AND gate.

Patrol Success Failure Success, Failure

Docking_Barriers Success Failure Success, Failure Success Failure Success, Failure Success Failure Success, Failure

Docking Success 1 0 0 0 0 0 0 0 0
Failure 0 1 0 1 1 1 0 1 0
Success, Failure 0 0 1 0 0 0 1 0 1
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the highest among the values reported in Table 6. This is reasonable
because the variable “Attack” is intended to represent a generic attack,
which can be either via ground, or via water.

Specifying the CBT of this variable as an OR node implies the pos-
sibility that both scenarios can occur at the same time. This can happen,
for example, when a group of adversaries decides to attack from dif-
ferent paths to have higher possibilities to achieve success. If a single
adversary capable of carrying out only one kind of attack is considered
(e.g., the attacker is a lone-wolf), the CBT of “Attack” node should be

defined as a XOR (i.e., Exclusive OR) gate, to exclude the possibility
that both attack paths can be followed at the same time. The XOR logic
gate produces a true output only if one, and only one of the inputs is
true (Simpson, 1987). In practice, the OR-CBT reported in Table 2
should be substituted with the XOR-CBT presented in Table 7.

3.3. Converting Attack trees to Credal network

Differently from EN, CN can be used both to conduct forward ana-
lysis and to update probabilities. CNs are based on a generalization of
Bayes’ theorem, as presented in Section 2. In order to make a direct
comparison between the two methodologies, a CN equivalent to the EN
presented in the previous subsection has been developed using the
software JavaBayes (Cozman) in Fig. 10.

As shown in the figure, the names of the variables are the same used
in the previous subsection. In the CN, however, the variables are binary,
and the possibility space of each of them comprises only the states
“Success” and “Failure”. CSs describing binary variables are probability
intervals, thus, in order to assign probabilities to primary nodes, the
values presented in Table 5 were converted to probability bounds using
Bel and Pls functions, and conservatively considering the widest interval
using Eq. (13):

= = = = =P X x P X x Bel X x Pls X x[ ( ), ( )] [ ( ), ( )] (13)

where X is a variable, and x is one of the allowed states of the variable
X. Prior interval-valued probabilities used in the CN model are reported
in Table 8. As shown in Section 2, the methodology proposed by Walley
(1991) to translate language in probability bounds may also be
adopted, since it represents a simple framework converting verbal
judgments into probabilistic constraints, which may be of great interest
due to the fact that SVA heavily relies on the value of experts’

Table 2
CBT of “Attack” as an OR node.

Attack_via_Water Success Failure Success, Failure

Attack_via_Ground Success Failure Success, Failure Success Failure Success, Failure Success Failure Success, Failure

Attack Success 1 1 1 1 0 0 1 0 0
Failure 0 0 0 0 1 0 0 0 0
Success, Failure 0 0 0 0 0 1 0 1 1

Table 3
CBT for Bel_A_Success. This node reports the value of Bel(Attack= “Success”) as an OR gate.

Bel_A_Success Attack= “Success” Attack= “Failure” Attack= “Success, Failure”

Believe (Attack= “Success”) 1 0 0
Not Believe (Attack= “Success”) 0 1 1

Table 4
CBT for Pls_A_Success. This node reports the value of Pls(Attack= “Success”) as an OR gate.

Pls_A_Success Attack= “Success” Attack= “Failure” Attack= “Success, Failure”

Plausible (Attack= “Success”) 1 0 1
Not Plausible (Attack= “Success”) 0 1 0

Table 5
Basic Belief Assignment for the primary nodes.

Variable X M (X= “Success”) M (X= “Failure”) M (X= “Success,
Failure”)

Main_Gate 0.1 0.8 0.1
First_Fence 0.3 0.6 0.1
Patrol 0.2 0.7 0.1
Docking_Barriers 0.2 0.7 0.1
CCTV 0.2 0.7 0.1
Second_Fence 0.3 0.6 0.1
IED 0.7 0.2 0.1
Regress 0.4 0.5 0.1

Table 6
Results obtained from the EN using GeNIe.

Variable X Bel (X= “Success”) Pls (X= “Success”)

Attack_via_Ground 1.24e−3 7.49e−3
Attack_via_Water 6.72e−4 4.32e−3
Attack 1.67e−3 9.56e−3

Table 7
CBT of “Attack” as a XOR gate.

Attack_via_Water Success Failure Success, Failure

Attack_via_Ground Success Failure Success, Failure Success Failure Success, Failure Success Failure Success, Failure

Attack Success 0 1 0 1 0 0 0 0 0
Failure 1 0 0 0 1 0 0 0 0
Success, Failure 0 0 1 0 0 1 1 1 1
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knowledge. However, in this case study the aim is to compare the two
methodologies, so the same input data is used.

Conditional probability tables for AND and OR gates have been
realized following the same approach adopted in BN (Bobbio et al.,
2001). For example, Table 9 reports the CPT of an AND gate (e.g.,
“Docking”) with respect to its parents.

Table 10 reports the CPT for an OR gate (e.g., “Entrance”) with
respect to its parents.

In order to perform forward analysis, the package JavaBayes was
used. This software tool was originally intended to compute robustness
analysis of BNs, but can incorporate the CPTs as CSs. The software is
able to compute only CNs according to strong extension.

The results obtained querying the CN are reported in Table 11.
As can be seen from Tables 6 and 11, the results obtained through

the two methodologies are the same.
Mapping ATs to CN allows updating probabilities given new evi-

dence. This, however, is not allowed with DST. Since computing PPSs’
posterior probability after a security event may be of great interest to
make diagnosis of security system, JavaBayes was used for updating
probabilities. The updating algorithm in CN usually produces wide
posterior intervals (Seidenfeld and Wasserman, 1993), thus the results
are not always informative though the methodology is more robust than
BN, due to a lower amount of information needed to start the calcula-
tion (i.e., prior probabilities do not need to be point values, and a range
of values is sufficient).

Results obtained querying the model, given new evidence, are re-
ported in Table 12. Two tests have been made: (i) setting the evidence
“Attack= Success” and computing the updated reliability of the PPSs,
and (ii) setting the evidence “Attack= Failure” and again computing
the updated reliability of PPSs.

From Table 12, it is evident that uncertainty among posteriors is
generally higher than among priors. This is due to the expansion of
posteriors expected in CN updating (Seidenfeld and Wasserman, 1993).
Actually, setting Attack= “Success” may lead to unitary posterior
probability of some variables. For example, P (CCTV= “Success” |
Attack= “Success”)= 1.0, indicating that in case of a successful attack
the CCTV must have successfully disabled or eluded already by the
attackers. In the next section, this problem is outlined with an example,
and relaxation of the deterministic AND/OR gates is proposed in order
to compute CN.

Fig. 10. CN of the attack scenarios.

Table 8
Probability intervals assigned to primary nodes in the CN.

Variable P (X= “Success”) P (X= “Failure”)

Main_Gate [0.1, 0.2] [0.8, 0.9]
First_Fence [0.3, 0.4] [0.6, 0.7]
Patrol [0.2, 0.3] [0.7, 0.8]
Docking_Barriers [0.2, 0.3] [0.7, 0.8]
CCTV [0.2, 0.3] [0.7, 0.8]
Second_Fence [0.3, 0.4] [0.6, 0.7]
IED [0.7, 0.8] [0.2, 0.3]
Regress [0.4, 0.5] [0.5, 0.6]

Table 9
CPT for “Docking” as an AND gate.

Water_Patrol Success Failure

Docking_Barriers Success Failure Success Failure

Docking Success 1 0 0 0
Failure 0 1 1 1

Table 10
CPT for “Entrance” as an OR gate.

Main_Gate Success Failure

First_Fence Success Failure Success Failure

Entrance Success 1 1 1 0
Failure 0 0 0 1

Table 11
Results obtained querying the CN through Javabayes.

Variable X JavaBayes. P (X = “Success”)

Attack_via_Ground [1.24e−3, 7.49e−3]
Attack_via_Water [6.73e−4, 4.32e−3]
Attack [1.67e−3, 9.56e−3]
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4. Discussion

4.1. Comparison of results

As reported above, the results obtained in forward analysis through
DST and CN are coincident. It was also shown that the DST belief
propagation approach is applicable to multiconnected networks. This
result is worthwhile, since previous applications have been limited to a
single FT, resulting in a polytree-shaped EN (Simon et al., 2008; Simon
and Weber, 2009). In the present study, however, the methodology was
applied to merge multiple attack trees in a single multiconnected EN.

The results were compared with those obtained through JavaBayes,
which in forward analysis adopts the same Bayesian propagation al-
gorithms employed in GeNIe. The results are in sufficient agreement,
thus suggesting that it is possible to use a standard Bayesian propaga-
tion algorithm, embedded in commercial packages, to merge trees and
analyse multi-connected ENs.

4.2. Evidential network vs. Credal network

EN allows to explicitly depict the propagation of epistemic un-
certainty thanks to the presence of the epistemic state. Actually, vari-
ables are binary, but BBA is carried out for the four elements of the
power set of the states. For example, for a variable X whose possible
states are x1 and x2, the power set is ∅ x x x x{ , , ,{ , }}1 2 1 2 , where the last
element is the epistemic state. According to Eq. (8) no belief mass was
assigned to the first element (e.g. = ∅X ), that was thus neglected in the
EN. A belief mass was assigned to the other three elements. Forward
belief propagation was computed as if the network was a BN comprising
only ternary variables, even if the epistemic states represent the amount
of uncertainty affecting each node rather than variables’ states. Keeping
track of epistemic uncertainty through the epistemic state may be of
great relevance to understand where the lack of information is more
relevant.

Despite the advantages of EN in uncertainty propagation modelling,
no specific software is available; as such, algorithms originally intended
for BN were used for this purpose (Simon et al., 2008; Simon and
Weber, 2009).

EN should not be considered as a probabilistic tool, since the DST is
based on belief masses rather than probabilities. Indeed, probability
bounds obtained through CN with values of Bel and Pls functions were
compared in the present study, instead of belief masses. Thus, in DST,
Bel and Pls can be interpreted as tools to reconstruct probabilities from
experts’ basic belief assignment. The non-probabilistic nature of DST
leads to one of the major shortcomings of EN with respect to CN, that is,
EN cannot perform probability updating. Since DST is a more general
framework than probability theory, belief mixing rules would be
needed to take into account new information, and these rules are not
embedded in commercial Bayesian software.

As previously outlined, only a few packages to deal with DST are
available (IPP Toolbox; Smets, 2004) though they are not easy to use,
and are usually designed to compute single Dempster-Shafer structures
rather than ENs. In the literature, there is a huge criticism against
mixing rules (Zadeh, 1979; Tchamova and Dezert, 2012). On the con-
trary, CN can take the advantage of a generalization of the Bayes’
Theorem, and thus algorithms to efficiently compute it are embedded in
the available packages.

4.3. Different tools may provide different results in Credal network

The main advantage of CN over EN is the possibility of updating the
results given new evidence. The updating procedure can be carried out
through algorithms embedded in tools specifically developed for Credal
Sets Theory, mainly experimental and open-source, as GL2U (Sun,
2008) and JavaBayes (Cozman). Despite the fact that in the previous
section only the results of JavaBayes are reported for forward analysis,
applicability of GL2U was also examined. GL2U is hard to set up and
not intuitive to use, leading to difficulties in developing the network,
and in interpretation of the outcomes. GL2U is designed to compute
only purely probabilistic networks, and the necessity to map AND Gates
can create some problems during updating. For example, in Table 13
posterior probabilities obtained through GL2U, given a successful at-
tack, are compared with those obtained through JavaBayes, presented
in Table 12.

As evident from the table, the results are not in agreement.
Considering a successful attack, results obtained through GL2U for the
variables “CCTV” and “Second_Fence” are not consistent. Since these

Table 12
Posterior Intervals of primary nodes obtained through JavaBayes.

X= “x” P (X= “x” |
Attack= “Success”)

P (X= “x” |
Attack= “Failure”)

Main_Gate= “Success” [1.61e−1, 3.62e−1] [9.93e−2, 2.00e−1]
First_Fence= “Success” [4.93e−1, 7.04e−1] [2.98e−1, 4.00e−1]
Patrol= “Success” 1 [1.95e−1, 2.98e−1]
CCTV= “Success” 1 [1.95e−1, 2.98e−1]
Second_Fence= “Success” 1 [2.95e−1, 3.99e−1]
IED= “Success” 1 [6.97e−1, 8.00e−1]
Regress= “Success” 1 [3.95e−1, 4.99e−1]
Docking_Barriers= “Success” [3.25e−1, 5.37e−1] [1.99e−1, 3.00e−1]

Table 13
Posterior Intervals of primary nodes obtained through JavaBayes, and through
GL2U.

X= “x” JavaBayes. P (X= “x” |
Attack= “Success”)

GL2U. P (X= “x” |
Attack= “Success”)

Main_Gate= “Success” [1.61e−1, 3.62e−1] [9.70e−2, 1.99e−1]
First_Fence= “Success” [4.93e−1, 7.04e−1] [2.90e−1, 3.98e−1]
Patrol= “Success” 1 [1.77e−1, 2.93e−1]
CCTV= “Success” 1 [1.22e−1, 2.42e−1]
Second_Fence= “Success” 1 [2.11e−1, 3.50e−1]
IED= “Success” 1 [7.26e−1, 9.99e−1]
Regress= “Success” 1 [4.52e−1, 9.97e−1]
Docking_Barriers= “Success” [3.25e−1, 5.37e−1] [1.91e−1, 2.98e−1]

Table 14
CPT for relaxed AND gate of “Docking”.

Patrol Success Failure

Docking_Barriers Success Failure Success Failure

Docking Success 0.99 0.01 0.01 0.01
Failure 0.01 0.99 0.99 0.99

Table 15
CPT for relaxed OR gate of “Entrance”.

Main_Gate Success Failure

First_Fence Success Failure Success Failure

Entrance Success 0.99 0.99 0.99 0.01
Failure 0.01 0.01 0.01 0.99

Table 16
Results obtained through JavaBayes and GL2U, with relaxation assumption to
the logic gates.

Variable X JavaBayes: P (X = “Success”) GL2U: P (X = “Success”)

Attack_via_Ground [1.41e−2, 2.15e−2] [1.40e−2, 2.10e−2]
Attack_via_Water [1.36e−2, 1.85e−2] [1.40e−2, 1.80e−2]
Attack [3.67e−2, 4.67e−2] [3.70e−2, 4.90e−2]
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primary nodes are connected with AND gates, the states of these vari-
ables have necessarily to be “Success” given a successful attack. For
example, the attackers’ successful evasion of the CCTV system, ac-
cording to the ATs, is a necessary step to have a successful intrusion.
The same rationale can be followed observing the values obtained for
“IED”, and “Regress”. As stated at in Section 3, the attackers consider an
attack successful if and only if they manage to regress from the plant.
Thus, given a successful attack, the value of “Regress”= “Success”must
be unitary, which is not the case in GL2U.

This inconsistency is due to the algorithm employed by GL2U.
Indeed, the implemented code is not able to compute updating in pre-
sence of variables whose CPTs contains only zeros and ones. For more
information about this issue, the reader can refer to literature con-
cerning zero-conditioning events (Corani et al., 2012; Walley, 1991).
Thus, GL2U is applicable for backward analysis only in case of purely
probabilistic networks, that is, networks not containing any determi-
nistic relation (e.g., it cannot be applied to compute diagnostic analysis
in case of presence of AND and OR logics).

4.4. Relaxing AND and OR gates in Credal network

A possible solution to the issue of zero-conditioning could be to
relax deterministic AND and OR gates, mapping the ATs in a purely
probabilistic CN. An approach that may be applied is to adopt an im-
precise noisy-OR gate, as presented by Antonucci (2011). However, in
Antonucci’s work only an extension of the OR gate is presented, while
an extension for the AND gate is not outlined, and the definition of the
imprecise noisy-OR gate requires the specification of additional as-
sumptions to define the CS.

Noisy OR-Gate has been defined for the first time by Pearl (1988), as
a disjunctive operator adoptable to reduce the number of parameters
needed to set up BN. An interesting possibility can be to adopt the
framework proposed by Henrion (1989), that is, to model hidden causes
together in a leak probability. The leak parameter may be used to ex-
press the lack of possibility to experimentally define all the possible
causes leading to some effect, and for this reason it may be suitable to
account for epistemic uncertainty about dependencies. Likewise, the
noisy AND-gate is an operator to account for multiple necessary con-
ditions to achieve a result. The reader may refer to Galán and Díez
(2000) for more information about noisy AND-gate, and leaky noisy
AND-gate.

The approach followed in our analysis is to change the CPTs, re-
placing “1” values with “near-to-1” values, e.g., 0.99. Tables 14 and 15
respectively show the relaxed CPTs adopted for AND and OR gates of
“Docking”, and “Entrance” nodes.

Adopting this relaxed framework, the CN comprises only probabil-
istic nodes, and the algorithms can deal with the computation. Results
obtained in forward analysis through the two packages are compared in
Table 16.

According to Table 16, results obtained in forward analysis using
the two packages are in agreement. It is remarkable that the level of
vulnerability, i.e., the probability of a successful attack, adopting re-
laxed gates according to Tables 14 and 15 are more severe than those
considering deterministic nodes. For example, the probability interval
that “Attack”= “Success” was [1.67e−3, 9.56e−3], considering de-
terministic OR and AND gates (i.e., Table 11), while relaxing the gates
it turns out to be [3.67e−2, 4.67e−2]. Considering that ATs are tools
intended to represent situations of high uncertainty (i.e., the analyst
may not be able to outline perfectly the options available to the at-
tackers), and comparing data of Tables 11 and 16, it can be concluded
that the usage of deterministic gates may be not suitable for all the
applications. Therefore, given the high level of uncertainty affecting
security vulnerability assessment, it may be better to soften the op-
erators, e.g., via noisy gates.

4.5. Attempt to update EN through the equivalent CN

The main advantage of CN over EN is the possibility of updating the
information, given new evidence. In case a backward analysis is
needed, EN is not applicable. An idea can be to construct a BN con-
sidering the mean value of [Bel (X= x), Pls (X= x)], and then to up-
date the probabilities of the primary nodes given new evidence. Zhang
and Thai (2015) adopted this approach to simplify a CN in a case of
reliability analysis in maritime engineering. However, there is no way
to reconstruct probability intervals only from these updated middle
points. Thus, this approach leads to loss of information concerning the
epistemic uncertainty among variables.

This is the reason why computing updating through an equivalent
CN was considered in the present study. After finding posterior intervals
corresponding to [Bel (X= x | evidence), Pls (X= x | evidence)], the
Dempster-Shafer structures (i.e., the distribution of belief masses) could
be reconstructed through Möbius Transformation (Smets, 2002), and

Table 17
Attempt to update Dempster-Shafer structures of primary nodes, given the evidence of “Attack = Failure”.

X= “x” Javabayes M (X= “x”) M (X= “−x”) M (X= “x, −x”)

Main_Gate= “Success” [9.93e−2, 2.00e−1] 9.93e−2 8.00e−1 1.01e−1
First_Fence= “Success” [2.98e−1, 4.00e−1] 2.98e−1 6.00e−1 1.02e−1
Patrol= “Success” [1.95e−1, 2.98e−1] 1.95e−1 7.02e−1 1.03e−1
CCTV= “Success” [1.95e−1, 2.98e−1] 1.95e−1 7.02e−1 1.03e−1
Second_Fence= “Success” [2.95e−1, 3.99e−1] 2.95e−1 6.01e−1 1.04e−1
IED= “Success” [6.97e−1, 8.00e−1] 6.97e−1 2.00e−1 1.03e−1
Regress= “Success” [3.95e−1, 4.99e−1] 3.95e−1 5.01e−1 1.04e−1
Docking_Barriers= “Success” [1.99e−1, 3.00e−1] 1.99e−1 7.00e−1 1.01e−1

Table 18
Attempt to update Dempster-Shafer structures of primary nodes, given the evidence of “Attack”= “Success”.

X= “x” Javabayes M (X= “x”) M (X= “−x”) M (X= “x, −x”)

Main_Gate= “Success” [1.61e−1, 3.62e−1] 1.61e−1 6.28e−1 2.11e−1
First_Fence= “Success” [4.93e−1, 7.04e−1] 4.93e−1 2.96e−1 2.11e−1
Patrol= “Success” 1 1 0 0
CCTV= “Success” 1 1 0 0
Second_Fence= “Success” 1 1 0 0
IED= “Success” 1 1 0 0
Regress= “Success” 1 1 0 0
Docking_Barriers= “Success” [3.25e−1, 5.37e−1] 3.25e−1 4.63e−1 2.12e−1
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updated results were calculated. For example, updated outcomes for
primary variables given “Attack”= “Failure” are presented in Table 17
in term of belief masses. For the sake of clarity, in each row the interval-
valued posteriors of primary nodes obtained through JavaBayes are
reported along with the belief masses of the corresponding Dempster-
Shafer structures.

In Table 17, “x” refers to the first outcome, i.e., “Success”, whereas
“−x” refers to the second outcome, i.e., “Failure”. The last column
contains the belief mass associated to the epistemic state, labelled with
“x, −x”.

For example, the posterior probability interval found through
JavaBayes for Main_Gate= “Success” is [9.93e−2, 2.00e−1], resulting
in a belief mass of 9.93e−2 for “Success”, a belief mass of 8.00e−1 for
“Failure”, and a belief mass of 1.01e−1 for epistemic uncertainty.

It is worth noting that the mass left to the uncertainty has slightly
grown for each variable: this was actually expected, because the up-
dating procedure in CN enhances the size of CSs (i.e., in this case the
width of the probability interval) (Seidenfeld and Wasserman, 1993).

In Table 18 the updated outcomes are reported for primary nodes,
given a successful attack.

It is worth noting that in this case, five variables have no un-
certainty, because the reported outcomes (e.g., CCTV= “Success”) are
necessary conditions for a successful attack, given the presence of AND
gates. The other three variables, on the contrary, are affected by high
uncertainty.

4.6. Summary of results

Sections 4.1–4.5 provide some comments based on the application
of the EN and CN to the case study in Section 3, with an emphasis on the
applicability of the tools, and their relative advantages and drawbacks.
The results have been summarized in Table 19.

5. Conclusions

In the present study, two methodologies to assess epistemic un-
certainty and imprecision have been presented, together with a com-
parison of their respective characteristics: (i) DST-based network, also
known as Evidential network (EN), and (ii) Credal network (CN), a
generalization of Bayesian network. Evidential network constitutes an
intuitive framework for experts to assign belief masses in case of epis-
temic uncertainty, or necessity to use expertise. It is not intended to be a
probabilistic tool, and the network propagates degrees of belief rather
than probabilities. On the contrary, Credal network is a probabilistic
tool, very similar to Bayesian network. Conditional probabilities are
replaced with closed convex sets of probability masses called Credal
sets (CSs). Tools to directly convert constraints from experts’ judgments
to Credal sets have been found, and may be used to directly reconstruct
a probabilistic framework from verbal comparative judgments.

In order to compare the methodologies, two ATs have been mapped
and then analysed through Evidential network and Credal network to
compute the level of vulnerability of the security system, given two
scenarios. Evidential network is easier to implement because it can be
built up using commercial Bayesian packages like GeNIe (GeNle
Modeler); Credal network can be computed only employing experi-
mental and open-source codes, like JavaBayes (Cozman). The two
methodologies produced the same outcomes, so they are mainly
equivalent. Actually, the meaning of the networks is slightly different.
Evidential network is a directed acyclic graph propagating belief
masses, while Credal network propagates probabilities.

Regarding the usability of the methodologies, Evidential network
seems more intuitive. Indeed, the presence of the epistemic state may
be useful to experts to assign directly the amount of information they
are not sure about. Credal network requires the prior definition of
Credal sets, which is relatively easy for binary variables, but may be-
come time demanding for multinomial variables. Furthermore, the

explicit propagation of epistemic uncertainty in the Evidential network
through the presence of the epistemic state allows to keep track of the
effect of imprecision on the computation of results, while in Credal
network the vagueness has to be estimated from the extent of Credal
sets, the width of probability intervals in case of binary variables.

Although Credal network can be employed to conduct backward
diagnostic analysis, updating leads to the expansion of the intervals’
width producing less informative outcomes. Since Credal network and
Evidential network have been found to produce equivalent results in
forward analysis, we propose to approximately update Evidential net-
work, considering its equivalent updated Credal network. From pos-
terior probability intervals it is then possible to reconstruct updated
values of Evidential network, to be used to revise experts’ belief as-
signments.

In summary, in case only forward analysis is needed, Dempster-
Shafer Theory can be used to map Attack trees into Evidential network
because the creation of the network is intuitive and allows to explicitly
keep track of propagation of uncertainty. Experts may easily asses a
priori beliefs about variables, and standardized commercial software
can be employed. If backward analysis is needed to update knowledge
given new evidence, Credal network represents a theoretically more
solid approach.
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