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Abstract. Support vector regression (SVR) is a common surrogate
model for computationally expensive simulation. It is able to balance
the model complexity and the error tolerance. Whether SVR interpolates
the training samples is dependent on its parameters. For the nonlinear
function approximation without noise, when SVR is not an interpolator,
it is advisable to model the errors and use them to compensate the pre-
diction response. In this paper, the errors of SVR are modeled by using
Gaussian process, and the final model response is obtained by the com-
bination of SVR and the Gaussian process of the errors. The numerical
experiments show the proposed method is able to further improve the
prediction accuracy of SVR.

Keywords: Support vector regression · Gaussian kernel · Error
modeling · Gaussian process

1 Introduction

Surrogate modeling is a technique used to replace computer simulation which
is complex enough or computationally costly. In the past several years, inten-
sive research on surrogate methods has been carried out, including polynomial
response surface [5], radial basis functions [9], support vector regression [7] and
Kriging [6]. Among these surrogates, SVR has gained wide attention because it
shows remarkable prediction ability [1–3].

SVR is able to balance the model complexity and the error tolerance.
Whether SVR interpolates the training samples is dependent on its parame-
ters. For the nonlinear function approximation without noise, when SVR is not
an interpolator, it is advisable to model the errors and use them to compen-
sate the prediction response. Hombal and Mahadevan modeled the errors of the
physics-based model [4], but their method is only suitable for model selection.
In this paper, we try to use Gaussian process to model the errors of SVR and
use them to compensate the prediction response. First, nonlinear SVR is built
and its parameters are updated manually. Then, the errors of SVR are modeled
by using Gaussian process. Finally, the actual model response is obtained by the
c© Springer International Publishing AG 2018
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combination of SVR and the Gaussian process of the errors. Numerical experi-
ments show that the proposed method is able to further improve the prediction
accuracy of SVR.

The remainder of the paper is organized as follows. Section 2 describes our
method, and Sect. 3 shows the numerical experiments and results. Finally, the
conclusion appears in Sect. 4.

2 The Proposed Method

2.1 Support Vector Regression

Considering linear SVR with n training samples x1,x2, ...,xn and the model
responses y1, y2, ..., yn

min
1
2
‖w‖2 +

C

n

n∑

i=1

(ξi + ξ∗
i )

s.t.

⎧
⎪⎨

⎪⎩

yi − wTxi − μ ≤ ε + ξi

wTxi + μ − yi ≤ ε + ξ∗
i

ξi, ξ
∗
i ≥ 0

(1)

where μ and w are respectively the bias term and weight coefficients of the
model, ε are the error limit which can be tolerated, ξi and ξ∗

i are the slack
variables, C is the regularization parameter to balance the model complexity
and errors.

The constrained optimization problem of Eq. (1) is solved using Lagrangian
function

L =
1
2
‖w‖2 +

C

n

n∑

i=1

(ξi + ξ∗
i ) −

n∑

i=1

(ηiξi + η∗
i ξ

∗
i )

−
n∑

i=1

αi(ε + ξi − yi + wTxi + μ) −
n∑

i=1

α∗
i (ε + ξ∗

i + yi − wTxi − μ)

(2)

where ηi, η
∗
i , αi and α∗

i are Lagrange multipliers. The minimization of L with
respect to w, μ, ξ and ξ∗ is obtained

∂L

∂w
= w −

n∑

i=1

(αi − α∗
i )xi = 0 (3)

∂L

∂μ
=

n∑

i=1

(αi − α∗
i ) = 0 (4)

∂L

∂ξi
=

C

n
− αi − ηi = 0 (5)
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∂L

∂ξ∗
i

=
C

n
− α∗

i − η∗
i = 0 (6)

From Eq. (3)

w =
n∑

i=1

(αi − α∗
i )xi (7)

Substituting Eqs. (3)–(6) into Eq. (2), linear SVR is expressed as

ySVR(x) = μ +
n∑

i=1

(αi − α∗
i )x

T
i x (8)

Replacing the dot product xT
i x with a kernel function φ(xi,x), we can get

nonlinear SVR

ySVR(x) = μ +
n∑

i=1

(αi − α∗
i )φ(xi,x) (9)

The most widely used nonlinear kernel function is Gaussian kernel

φ(xi,x) = exp
(

− ‖xi − x‖2
2σ2

)
(10)

where σ is the Gaussian kernel parameter.

2.2 Gaussian Process

Gaussian process (GP) regards the real model responses as random variables
that are generated from a joint Gaussian distribution [8]. GP is defined as

yt ∼ GP(Fβ,C) (11)

E[(yt − Fβ)(yt − Fβ)T] = C (12)

where yt is the true model responses, F is the regression function matrix of
the training samples, and β is the regression coefficient vector. In the actual
engineering applications, the Gaussian correlation function is often used

Cij = σ̂2R(θ,xi,xj) = σ̂2
m∏

d=1

exp(−θd(xd
i − xd

j )
2
) (13)

where σ̂2 is the process variance, and θ = [θ1, θ2, ..., θm]T is the correlation
parameter. Commonly, after F is determined, β, σ̂2 and θ can be estimated by
using maximal likelihood estimation.
After the derivation, the prediction of GP for a new sample x is

yGP(x) = fTβ + rTR−1(yt − Fβ) (14)

where f ∈ R
p is the regression function vector of x, and r is the correlation

vector between x and the training samples

r = [R(θ,x1,x), R(θ,x2,x), ..., R(θ,xn,x)] (15)
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2.3 Combination of SVR and GP

Assuming that there is no noise in the training samples, when SVR is unable
to interpolate all the training samples, the training errors appear. We try to
model the errors by using Gaussian process. The parameters of Gaussian process
are automatically estimated by using maximal likelihood estimation. Then, the
Gaussian process of the errors and SVR are added to get the final response

ŷ(x) = ySVR(x) + yGP(x) (16)

In this way, ŷ(x) is still an interpolater at the training samples because
Gaussian process interpolates the training errors.

3 Numerical Experiments

3.1 Benchmark Functions

1. Branin-Hoo function

y(x) =
(

x2 − 5.1x2
1

4π2
+

5x1

π
− 6

)2

+ 10
(

1 − 1
8π

)
cos(x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15]
(17)

2. Friedman function

y(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

xi ∈ [0, 1]
(18)

3.2 Designs of Experiments

Latin hypercube sampling (LHS) is used to generate the training and testing
samples. The training and testing samples are obtained by maximizing the
minimum distance between design samples with 20 iterations. The number of
the training and testing samples for the benchmark functions are displayed in
Table 1.

Table 1. The number of the training and testing samples for the benchmark functions

Training Testing

Branin-Hoo function 12 2000

Friedman function 42 2000
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3.3 Results

In the numerical experiments, ε is set as 1 × 10−4 and C is set as 1 × 108.
A constant is used as the regression function of GP, and genetic algorithm is
used to search for the optimal solution of maximal likelihood estimation. The
prediction accuracy is evaluated by the root mean square error (RMSE), which
is defined as follows

RMSE =

√√√√ 1
ntest

ntest∑

i=1

e2i (19)

where ei is the error between the prediction and the actual response in the i-th
test sample, and ntest is the number of the test samples.

For the Branin Hoo function, the Gaussian kernel parameter increases from
0.2 to 5 by 0.2. In Fig. 1(a), it can be observed that with the increase of the
Gaussian kernel parameter from 0.2 to 2.2, SVR is still an interpolater and the
training errors are so small, so the Gaussian process response of the errors are also
so small and do not have an effect on the prediction accuracy. However, with the
increase of the Gaussian kernel parameter from 2.2, SVR is not an interpolater
any more and the Gaussian process response of the errors will influence the
prediction accuracy.

For the Friedman function, the Gaussian kernel parameter increases from 1
to 20 by 1. In Fig. 1(b), it can be observed that with the increase of the Gaussian
kernel parameter from 6 to 20, the RMSE of SVR increases. The RMSE of our
method begins to decrease from the Gaussian kernel parameter of 8 and perform
better than SVR.
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Fig. 1. Comparison of RMSE of different kernel parameters for the benchmark func-
tions

4 Conclusion

In this paper, Gaussian process is used to model the errors of SVR, and the final
response of the proposed method is the combination of SVR and the Gaussian
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process of the errors. When SVR does not interpolate the training samples,
the Gaussian process of the errors will have an effect and further improve the
prediction accuracy of SVR. When SVR interpolates the training samples, the
Gaussian process of the errors will not influence the prediction accuracy of SVR.
Thus, it is advisable to use Gaussian process to model the errors and enhance
the prediction ability of SVR.
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