

Delft University of Technology

A hybrid deep-learning-metaheuristic framework for bi-level network design problems

Madadi, Bahman; Homem de Almeida Correia, Gonçalo

DOI
10.1016/j.eswa.2023.122814
Publication date
2023
Document Version
Final published version
Published in
Expert Systems with Applications

Citation (APA)
Madadi, B., & Homem de Almeida Correia, G. (2023). A hybrid deep-learning-metaheuristic framework for
bi-level network design problems. Expert Systems with Applications, 243, Article 122814.
https://doi.org/10.1016/j.eswa.2023.122814

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.eswa.2023.122814
https://doi.org/10.1016/j.eswa.2023.122814

Expert Systems With Applications 243 (2024) 122814

Available online 7 December 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A hybrid deep-learning-metaheuristic framework for bi-level network
design problems

Bahman Madadi *, Gonçalo Homem de Almeida Correia
Department of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands

A R T I C L E I N F O

Keywords:
Graph neural networks
Road network design problem
User equilibrium traffic assignment problem
Combinatorial optimization
Decision support systems
Deep learning
Bi-level programming

A B S T R A C T

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road
network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user
equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness
function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks,
two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can
provide solutions within 1.5 % gap of the best results in less than 0.5 % of the time used by the exact solution
procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the
best infrastructure planning and management decisions under different scenarios. Given the flexibility of the
framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on
graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research
agenda for this topic. The key observation from our research that can shape future research is that the fitness
function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which
points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values
provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to
explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of
metaheuristics that are crafted for use with AI-powered predictors.

1. Introduction

Solving bi-level and NP-hard combinatorial optimization problems
in the transport domain is often very challenging (Migdalas, 1995).
Traditional approaches of tackling such problems include exact solu-
tions, approximation algorithms, and heuristics. Exact solutions might
be computationally impossible to obtain for large instances or non-
existent for some problem variants. Approximate algorithms are often
computationally more advantageous but suffer from weak optimality
guarantees and are not always available. Heuristics are usually the
fastest, yet they lack theoretical foundation and often require substantial
domain knowledge of the problem and a trial-and-error process for
successful implementations (Dai et al., 2017), which can yield quite
variable results.

On the other hand, many real-world applications require solving the
same problem or a subproblem within the main problem with slightly
different input regularly (e.g., shippers and freight forwarders deal with
vehicle routing problems on a daily basis). None of the traditional

approaches exploits this property of recurrence in optimization prob-
lems. In addition, many optimization problems are defined on graph-
structured data, yet many of the solution methods do not sufficiently
explore the graphs’ structure to accelerate the solving process.

This provides an opportunity for training models that can learn to
approximate such problems, particularly when the problems are defined
on graph-structured data. The main motivation behind this approach is
that after a one-time effort to train a model (e.g., a multilayer percep-
tron), this model can be used numerous times to approximate many
instances of the problem within a small fraction of the time required for
formal methods to solve new variations.

Moreover, artificial neural networks defined on graphs, which are
often referred to as graph neural networks (GNNs), can discover patterns
and structures in graphs using their deep architecture that engineers (of
heuristics) and formal optimization methods may not be able to
discover. In this paradigm, the deep learning model (e.g., a GNN) be-
comes the engineer of the algorithm and the researcher’s efforts shift
from engineering algorithms to designing deep learning models that can

* Corresponding author.
E-mail addresses: b.madadi@tudelft.nl (B. Madadi), G.Correia@tudelft.nl (G. Homem de Almeida Correia).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.122814
Received 15 May 2023; Received in revised form 30 November 2023; Accepted 30 November 2023

mailto:b.madadi@tudelft.nl
mailto:G.Correia@tudelft.nl
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.122814
https://doi.org/10.1016/j.eswa.2023.122814
https://doi.org/10.1016/j.eswa.2023.122814
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 243 (2024) 122814

2

themselves engineer solution algorithms by parametrizing decision rules
and policies that can lead to powerful algorithms (Kool et al., 2019).

The success of deep learning in various fields has prompted re-
searchers to use them to train models and heuristics for tackling recur-
rent optimization problems (Bello et al., 2017; Dai et al., 2017; Kool
et al., 2019; Manchanda et al., 2020; Mazyavkina et al., 2021; Nazari
et al., 2018). The prospect of designing new heuristics without the need
for having profound knowledge of the specific domain under consider-
ation, and hand-crafting details of the algorithms, makes deep learning
an even more promising approach for tackling NP-hard problems
(Nazari et al., 2018).

However, so far, efforts have mainly focused on classical combina-
torial optimization problems, such as the traveling salesman problem
(TSP) and the vehicle routing problem (VRP) (Bengio et al., 2021;
Mazyavkina et al., 2021). More challenging problems such as bi-level
optimization problems, particularly the ones in the transportation
domain, e.g., network design problems (Farahani et al., 2013), have not
received much attention from deep learning researchers yet. Even
though bi-level deep learning architectures (Wang et al., 2021) and bi-
level modeling of single-level graph optimization problems (Gammelli
et al., 2023) have been proposed in the literature, deep learning methods
for solving bi-level programing problems have not been proposed yet.

Although some bi-level programming problems might be too chal-
lenging to be solved using end-to-end deep learning methods, hybrid
deep learning approaches have been shown to perform well on complex
optimization problems where the optimization procedure can be
decomposed to delegate some tasks to (deep) machine learning models
and some others to classical approaches (Bengio et al., 2021). For
instance, supervised learning (decision trees in particular) has been used
within branch-and-bound methods to select branching variables (Gasse
et al., 2019). Bagloee et al. (2018) have used a combination of linear
regression as a supervised learning model and an exact solver to deal
with the upper-level and the lower-level of bi-level programming
problems, respectively. Another example of such hybrid methods is
combining unsupervised learning with simulation-based optimization to
learn the best combination of metrics to use within the simulation to
make optimal planning decisions in expert systems (Madadi & Aksakalli,
2020). The prime advantage of such hybrid methods is their flexibility
and explainability.

The main aim of this study is to demonstrate the potential of deep
learning for tackling network design problems (NDPs) as an essential
category of bi-level programming problems, which has not been done
before. In transport literature, strategic decisions regarding modifica-
tions to road networks (e.g., adding or removing lanes or stretches of
roads) are considered within the well-known road NDP framework
(Farahani et al., 2013; Yang et al., 1998). NDPs are often modeled as
Stackelberg leader–follower games, which are usually bi-level pro-
gramming problems where the leader (upper level) decides on the
infrastructure (road network) and the followers react with their travel
choices, namely their routes within the network (lower level). The
objective of the leader (i.e., transport planner) is typically to maximize
the social benefits provided to the followers (e.g., reduction in total
system travel time) given a certain budget for the infrastructure
adjustment cost (e.g., adding lanes), whilst the objective of the followers
(i.e., travelers) is to minimize their individual travel time (which do not
necessarily lead to minimum total system travel time) by selecting
routes, which leads to the user equilibrium (UE) traffic assignment
problem (Wardrop, 1952).

Therefore, in this study, we show how to learn to approximate the UE
traffic assignment problem, i.e., the lower-level problem of NDPs, using
a GNN and propose a hybrid deep-learning-metaheuristics approach
using the proposed GNN and the genetic algorithm (GA) to deal with a
class of bi-level NDPs, namely road network design problems, which are
commonly used to support intelligent road network infrastructure
planning decisions. We benchmark the performance of our framework
against an exact solution method, a mathematical program implemented

in a solver, using extensive numerical studies on three road networks. To
the best of our knowledge, this is the first study that tackles bi-level
NDPs using deep learning on graphs. We believe our proposed frame-
work can be applied to many other NDP variations as well and even-
tually become a common decision support tool for road planners.

The specific contributions of this study are as follows:

• Combining the knowledge of machine learning and operations
research with specific knowledge of the transportation field to tackle
a challenging and practical transportation problem, namely NDP,
which has not received attention from machine learning scientists
yet.

• Proposing a novel hybrid solution framework for tackling bi-level
NDPs, which is computationally super-fast, particularly the idea of
using the inferences made by a trained GNN for fitness function
evaluations of metaheuristics within a bi-level framework is novel.

• Showcasing the potential and scalability of the proposed framework
by conducting extensive numerical experiments including three road
networks, two network design problems, six variants for each prob-
lem on each network (36 problem variants in total), attempting to
solve each instance with an exact solution procedure as benchmark,
performing multiple replications of our solution procedure, and
providing a statistical analysis of the results.

• Paving the way for future research on using deep learning to solve
NDPs by creating standard benchmark problem variants and datasets
that can be used for performance comparisons in future studies.

• Facilitating future research on this topic by providing a research
agenda that identifies opportunities for new developments in this
area.

The structure of this article is as follows. Section 2 provides a
background on UE traffic assignment problems, NDPs, and GNNs. Sec-
tion 3 describes our proposed hybrid deep-learning-metaheuristics
framework. Section 4 presents numerical experiments using three case
studies to benchmark the performance of our framework against an
exact solution procedure. Section 5 provides a discussion on the results.
And the last section includes conclusions and future research directions.

2. Network design problem description and preliminaries on
graph neural networks

As mentioned earlier, our framework deals with road NDPs using a
hybrid method based on a GNN. Therefore, we provide a brief back-
ground for road NDPs and GNNs in this section.

2.1. Network design problem

As briefly mentioned in the introduction, road network design
problems include the UE traffic assignment problem at the lower level
and the design problem at the upper level. The following subsections
elaborately describe each subproblem.

2.1.1. The lower-level user equilibrium (UE) problem
Consider a road network represented by the graph G = (V, E) where

V is the set of nodes, E denotes the set of edges (i.e., links or road seg-
ments), and an adjacency matrix of size |V| × |V| representing which
nodes are connected by an edge. The UE problem includes assigning the
origin–destination (OD) flows of travelers between the nodes through
edges in the network in such a way that each traveler cannot reduce their
travel time by changing routes. In its classical form, UE is a convex non-
linear mathematical programming problem formulated as follows.

UE:

min
∑

(i,j)∈E

∫ xij

0
tij(xij) (1)

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

3

s.t.
∑

j∈V;(i,j)∈E

xijs −
∑

j∈V;(j,i)∈E

xjis = dis , ∀i ∈ V,∀s ∈ D (2)

∑

s∈D
xijs = xij , ∀(i, j) ∈ E (3)

xijs ≥ 0 , ∀(i, j) ∈ E, ∀s ∈ D, (4)

where tij is the travel time of link (edge) (i, j) from node i to node j, D is
the set of destination nodes (D ⊆ V) and dis is the demand from node i to
destination node s. xijs is the flow traveling to destination s on edge (i, j)
and xij is the total flow on edge (i, j). It can be demonstrated that Eq. (1)
minimizes the individual travel time for each traveler, Eq. (2) guaran-
tees demand satisfaction for each OD, Eq. (3) ensures flow conservation,
and Eq. (4) prevents negative flows. The edge travel time is usually
estimated via the Bureau of Public Roads (BPR) function:

tij = t0
ij(1 + α(xij

πij
)

β
)

where t0
ij is the free flow travel time, πij is the edge capacity and α, β are

parameters. This makes the BPR function a polynomial function,
rendering the UE problem a non-linear but still convex mathematical
programming problem. It is worth noticing that other formulations exist
for the UE problem. However, the above-mentioned formulation stands
out as the most suitable one for using general-purpose solvers to obtain a
solution for the problem.

2.1.2. The upper-level design problem
In the upper-level design problem, the objective is to minimize

specific criteria, usually total travel time, by making network modifi-
cations (e.g., adding new lanes) given a predefined budget constraint
while evaluating the lower-level problem at its equilibrium state. The
following formally represents the classical discrete NDP.

NDP:

min
∑

(i,j)∈E

tij(xij) (5)

s.t.
∑

(i,j)∈E1

yijcij ≤ B (6)

xij ∈ argmin UE (7)

yij ∈ {0, 1} , ∀(i, j) ∈ E1, (8)

where yij is a binary decision vector assuming the value of one when a
new lane is added to the edge (i, j) and zero otherwise, cij denotes the
cost of changing/upgrading the edge (i,j), (e.g. adding a lane or repaving
the road), and B is the total budget. Eq. (7) implies flows used to
calculate total travel time must be equilibrium flows obtained by solving
the UE.

Different variants of NDP usually include one or more set of con-
straints to relate the edge travel time to the modifications made on the
network (e.g., capacity addition due to new lanes). We will discuss two
of these variants below, which are used in the numerical experiments in
this paper.

2.1.3. Network design problem with lane additions (NDP-LA)
This is one of the classical discrete NDPs where the road network can

be improved by adding new lanes to edges given a certain budget
constraint. The mathematical formulation of the NDP-LA will include
equations (1)-(8) as well as the equation (9) below to define the capacity
of each edge based on the value of the upper-level decision variables yij,
its initial capacity π0

ij and the capacity of an extra lane π0
ij.

πij = π0
ij + yijπ1

ij , ∀(i, j) ∈ E1, (9)

2.1.4. Network design problem with lane swap (NDP-LS)
This problem occurs when there is asymmetric demand in a certain

period (e.g., morning peak hour), therefore, the traffic manager
dynamically assigns lanes from one direction of an edge to the other
direction to account for the asymmetric traffic. This is a problem that
occurs daily in many cities around the world. Mathematically, NDP-LS is
formulated using Eqs. (1)–(8), excluding the budget constraint in
equation (6), whilst Eqs. (10)–(11) below are added to ensure the
changes imposed by the lane swaps, namely in terms of capacity and
unique existence of one of the traffic directions in the newly created
lane.

πij = π0
ij + yijπ1

ij , πji = π0
ji − yijπ1

ji , ∀(i, j) ∈ E1, (10)

yij + yji ≤ 1 , ∀(i, j) ∈ E1, (11)

2.2. GNN

The application of neural networks (NNs) for optimizing decisions in
combinatorial optimization problems dates back to the 1980s when
Hopfield and Tank (1985) applied a what came to be called a Hopfield-
network for solving small TSP instances. However, as explained before,
NNs are not per se aware of the structural properties of the graphs
representing certain combinatorial optimization problems such as TSP
and VRP. GNNs on the other hand are defined on graphs that charac-
terize specific problems (e.g., TSP, citation networks, and social network
analysis) and have shown strong representation power in dealing with
problems defined on graphs (Xu et al., 2019). This is the main reason
why they have enjoyed great success in dealing with graph-related
problems in recent years (Cappart et al., 2021; Huang et al., 2019;
Mandal et al., 2022; Vesselinova et al., 2020; Zhang et al., 2021, 2022).

In general terms, GNNs use a neighborhood aggregation scheme
(also known as message passing) where each node of the graph receives
and aggregates feature information (messages) from neighboring nodes
to calculate its new state in an iterative manner and use the final state of
the nodes after certain number of iterations to make predictions
regarding nodes, edges or the entire graph (Gilmer et al., 2017; Xu et al.,
2018).

To formally define GNNs, consider a graph G = (V, E) where V rep-
resents the set of nodes (vertices) each having the node feature vector xv
for ν ∈ V, E denotes the set of edges (links) with edge feature vectors xe,
and an adjacency matrix of size |V| × |V| represents which nodes are
connected by an edge. A GNN uses the node features xv, (optionally) the
edge feature xe and the graph topology captured in the adjacency matrix
to a learn a representation or state hv for each node ν. The node state is
calculated using a neighborhood aggregation schemes where the state of
the node is iteratively updated based on the state of its neighboring
nodes. After k iterations of aggregation, a node’s state captures the
structural information within its k-hop network neighborhood.
Formally, the k-th layer of a GNN is calculated as:

a(k)
v = AGGREGATE(k)({h(k− 1)

u : u ∈ η(v)}) (12)

h(k)
v = COMBINE(k)(h(k− 1)

v , a(k)v) (13)

where h(k)
v is the feature vector of node ν at the k-th iteration/layer,

h(0)
v = xv, and η(v) is a set of nodes adjacent to ν (i.e., neighborhood of

the node). The choice of AGGREGATE(k) and COMBINE(k) defines the
GNN variant and has a major influence on its capabilities.

For instance, in the pooling variant of GraphSAGE (Hamilton et al.,
2017), the following aggregation is used:

a(k)
v = MAX({ReLU(W.h(k− 1)

u), ∀u ∈ η(v)}) (14)

where W is a learnable matrix, and MAX represents an element-wise
max-pooling. The COMBINE step here is a concatenation of the cur-

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

4

rent aggregate score and the previous iteration’s state.
A more sophisticated node embedding scheme uses a multilayer

perceptron (MLP) to aggregate neighborhood information. This is uti-
lized in the graph isomorphism network (GIN) introduced in Xu et al.
(2019) where the authors use the graph isomorphism test to argue for
the representation power of GIN using MLPs. GIN updates the node state
as:

h(k)
v = MLP(k)((1 + ε(k)).h(k− 1)

v +
∑

∀u∈N(v)

h(k− 1)
u) (15)

where the neighborhood aggregation function h(k)
v is an MPL rather than

a straightforward function (e.g., max, mean, sum) and ε is a learnable
parameter.

In this study, we use GIN with a few modifications as our preferred
GNN in the hybrid deep-learning-metaheuristics framework. The mod-
ifications will be discussed in the next section where we introduce our
framework.

3. The hybrid deep-learning-metaheuristic framework (GIN-GA)

Simply put, our framework includes training a GIN to approximate
the UE and using it in combination with a genetic algorithm (GA) to
approximate the solution of NDPs. Given the bi-level structure of the
NDP, the GA attempts to find optimal or near-optimal solutions for the
upper-level problem while using GIN to approximate the lower-level
problem (i.e., the UE) in its fitness evaluations. Deploying such a
framework requires some preparation steps, which are described in this
section. Note that our framework is very flexible and allows using any
deep learning model to learn to approximate the UE and any heuristic to
find solutions for the NDP. In this study, we use GIN as our preferred
deep learning model and GA as our choice of metaheuristics, but as
discussed in the conclusion section, many other deep learning models
and heuristic algorithms could fit this framework. Fig. 1 presents a visual
summary of the steps involved with our hybrid framework. In the
following subsections of this section, which correspond to the grey boxes
in Fig. 1, we describe each step in detail.

3.1. Bi-level problem class definition

The framework introduced in this article is suitable for a class of bi-

level problems whose lower level can be solved using a single algorithm
and thereby can be learned to be approximated using a single deep
learning model. In this study, we focus on NDPs with upper-level deci-
sion variables indicating changes in edge capacity and the lower level
(UE) problems including capacity and demand variations. The two NDP
variants introduced earlier, namely, NDP-LS and NDP-LA, meet these
criteria and belong to this class of NDPs. Therefore, we use these two
problems in our numerical experiments. However, many other NDPs
belong to this category (Farahani et al., 2013) and can be tackled using
this framework.

3.2. Feature engineering

Most solution procedures for solving NDPs entail solving the UE
problem numerous times, which justifies the one-time effort of training a
model to approximate the UE given that after this one-time training, the
deep learning model (in this case the GIN) can find high-quality solu-
tions to the UE problem in an extremely small fraction of the time
required for solvers to solve this problem.

In order to train the GIN model to solve instances of the UE, first we
need to define a graph representation in such a manner that each UE
problem instance can be uniquely defined by an attributed graph
including edges, nodes, edge attributes, and node attributes. Moreover,
the solution to each UE instance needs to be represented by a vector of
edge labels. Therefore, each data point (graph) used for training includes
an edge label vector representing the equilibrium flows (i.e., the solution
to the UE problem), and an attributed graph, which includes a road
network and a travel demand matrix. For each edge of the graph, edge
features include capacity and free flow travel time, and for each node,
node features include incoming and outgoing demand from and to all
other nodes. Therefore, the edge features are |E| × 2 matrices, node
features are |V| × |V| matrices and edge labels are |V| × 1 vectors.

3.3. Dataset generation

The first step in generating a training dataset is identifying relevant
problem instances. We want GIN to be able to approximate solutions to
any UE problem with capacity and demand variations. Therefore, we
first generate variations of UE with perturbations on demand and ca-
pacity. Then, we solve each problem instance using an exact solver, and

Fig. 1. Summary of the steps of hybrid deep-learning-metaheuristic framework (GIN-GA) for bi-level NDPs.

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

5

save equilibrium flows as edge labels. This process is elaborated on in
Section 4. Finally, we create a dataset including all graphs (i.e., data
points) with edge and node attributes, representing UE problem in-
stances, and one vector of edge labels (UE flows) for each graph.

3.4. Train-test pipeline

After creating a dataset with solved UE instances, we divide the
dataset into training, validation, and test sets, and then train and vali-
date the GIN to predict the equilibrium UE flows (i.e., edge labels) as an
edge regression task. Regarding the model architecture, the main com-
ponents of GIN were introduced in the previous section and are
described in detail in (Xu et al., 2019). The key modifications made in
this study to tailor GIN to solving the UE are listed below.

• For neighborhood aggregation, instead of the standard adjacency
matrix (with zeros and ones), a weighted version is used where
instead of ones representing the existence of edges between two
nodes, the value of free flow travel time divided by the edge capacity
is used to capture the impacts of different edge capacities, speeds,
and lengths.

• Edge scores (the values predicted by the model for UE flows on each
edge) are based on an MLP that takes the node features of the source
and sink node as well as the edge features of the corresponding edge
as input and returns a score for UE flow on the edge.

• The model is trained with the mean square error (MSE) difference
between edge labels and edge scores as the loss function, yet the
value we are interested in is the total travel time, which is calculated
afterwards using the BPR function. This is essentially equivalent to
performing a graph regression task (as opposed to edge regression,
which is used here) with the BPR function as the readout or graph
aggregation function. However, since based on the knowledge of the
problem we know the best readout function in this case is the BPR
function, we use it instead of experimenting with different functions.

3.5. Model deployment

The trained GIN is deployed within a hybrid framework in combi-
nation with a GA to tackle the NDP in an iterative optimization-
assignment scheme, where the GA deals with the upper-level (optimi-
zation) problem and the GIN approximates the lower-level UE (traffic
assignment) problem. The decision variables of the upper-level corre-
spond to the edges on which the lane modifications happen, and the
objective function is the total travel time (Eq. (5)). The GA fitness
evaluations are performed using the inferences made by the trained GIN,
which predict UE edge flows for calculating the objective function. For
the NDP-LA variants where there is a budget constraint, a penalty term is
added to the objective function value to ensure budget-feasible solutions
by penalizing the infeasible solutions. Since GNNs can make inferences
for an entire batch very efficiently, the inferences are made in batches of
size equal to the population size of the GA. It will be shown in the next
section that such deployment of trained GNN model inferences can
reduce the GA fitness evaluation times by a factor of at least 1000. Upon
termination of the GA, a certain number of the solutions within the
population of the last generation is evaluated using an exact UE solver to
identify the best-found solution based on the exact objective function
value. The number of the solutions of the last generation devalued is a
model parameter. We will refer to the proposed framework including the
GIN and the GA as GIN-GA in the remainder of this article.

4. Numerical experiments

4.1. Experiment setup

To showcase the performance of our proposed framework, we
conduct extensive numerical experiments on three road networks, two

network design problems, and six variants for each problem on each
network, which culminates in 36 problem variants in total. The road
networks studied are Sioux Falls, Eastern Massachusetts, and Anaheim,
which are selected from the well-known “transportation networks for
research” repository (Stabler et al., 2016) to provide a small, medium
and large network, respectively, for benchmarking purposes. Table 1
provides a summary of their characteristics, and they will be further
described in dedicated subsections. The NDPs considered are NDP-LA
and NDP-LS, described in Section 2.1. Variants of NDP-LA are created
by perturbing the budget and number of lanes on each edge (which
defines how much capacity is added to the edge by adding a lane).
Variants of NDP-LS are created by perturbing feasible edges for lane
swap, number of lanes on each edge, and demand. Demand variation
matters in this case since the daily lane-swap plan is affected by the day-
to-day variations in demand. The demand for each OD pair on each
variant is generated by uniform perturbations within 20 % of the orig-
inal demand.

4.2. Benchmarking

To benchmark the performance of our framework, we use an exact
solution procedure, namely, the system-optimal relaxation-based
(SORB) method (Wang et al., 2013) with piece-wise linear approxima-
tions of the BPR travel time function. The SORB method takes advantage
of the fact that an optimal solution for an NDP under the System Optimal
(SO) principle can serve as a good approximation for a solution under
the UE principle. The method sorts the solutions of relaxed subproblems
(i.e., SO-relaxation-based solutions) in ascending order based on their
objective function value (i.e., total travel time). The optimality of the
solution is ensured when the lower bound of the total travel time for
unexplored solutions under the UE principle is greater than or equal to
the total travel time of a known solution under the UE principle. For
details, the reader is referred to (Wang et al., 2013).

SORB is an exact solution procedure, which means that given suffi-
cient computation time and memory for each instance of the problem,
this method is guaranteed to find the global optimum, which is the ul-
timate measure for benchmarking any heuristic solution procedure for
optimization problems. However, it is known that NDPs are among the
most challenging problems in the transport domain and exact solutions
for such problems are rare and cumbersome to implement (Farahani
et al., 2013; Yang et al., 1998), hence even medium-size NDPs can
present serious computational challenges (Rey, 2020) and become
practically infeasible due to the need for solving many subproblems,
each one being a large mixed-integer non-linear programming problem.
Fortunately, it has been shown that the solution found by the SORB
within the first 10 iterations is often optimal or within a very narrow gap
of the lower bound for the optimal value (Rey, 2020; Wang et al., 2013),
even though the method requires many iterations to confirm the opti-
mality of the found solution by iteratively tightening the lower bound.

We choose therefore to run the SORB method with a four-hour time
limit for each problem instance as a strong heuristic for benchmarking
the performance of our framework. Since the aim of this study is to show
that our proposed framework can find high-quality and optimized (not
necessarily optimal) solutions in a very short time, we run GIN-GA with
a one-minute time limit for each problem instance and compare the
solutions to the solutions found by SORB in four hours, i.e., the

Table 1
Main characteristics of the networks used in case studies.

Case study Number of
Edges

Number of
nodes

Number of OD
pairs

Case study 1: Sioux Falls 76 24 576
Case study 2: Eastern-

Massachusetts
258 74 5476

Case study 3: Anaheim 914 416 1444

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

6

computation time limit for SORB is 240 times the computation time limit
of GIN-GA. Since GIN-GA is stochastic, for each problem instance, we
run five replications of GIN-GA and provide a statistical analysis of the
results to show the consistency of its performance as well. To demon-
strate its scalability, we use three different road networks with gradually
increasing sizes and analyze its performance on networks with different
sizes as well.

The following summarizes the procedure for performance compari-
sons used in this study.

o For each network (Sioux Falls, Eastern Massachusetts, Anaheim):
o For each problem (NDP-LA & NDP-LS):

o For each variant (feasible lane and lane capacity variations):
• Run SORB with four-hour time limit & record key perfor-

mance indicators (KPIs)
• Run GINGA with one-minute time limit five times & record

KPIs:
• Compare and statistically analyze minimum, maximum,

average and confidence intervals for KPIs

4.3. Section key performance indicators (KPIs)

When approximating the UE with GIN, our main variable of interest
is total travel time. However, our experiments showed that using edge
flows as labels to train the GIN yields better results for predicting total
travel times. Therefore, we used edge flows as labels and calculated total
travel times using the BPR function. It should be noted that this is
equivalent to using the BPR function as the readout function (or graph
aggregation function) in a graph regression task using GIN. As for the
loss function, we used mean squared error (MSE) between edge labels
and model inferences (predictions) for edge flow values. Regarding
model accuracy, we calculate and report total travel time prediction
accuracy (mean absolute percentage (MAP)). To show how well the
trained model fits the data, we measure and report R-squared.

As for the NDPs, the main performance indicator was total travel
time (TTT) as calculated in Eq. (5). Therefore, we calculate the TTT (i.e.,
the NDP objective function value) obtained by SORB for each problem
instance as well as the minimum, average, and maximum TTT across five
stochastic replications of GIN-GA runs. In addition, we calculate the
minimum, average, maximum, and 95 % confidence intervals for the
gap between the TTT obtained by SORB and the TTTs obtained by GIN-
GA (i.e., the TTT gap) across five runs for each problem variant.

4.4. Hardware and software

SORB and GIN-GA method used in experiments presented in this
study were coded in Python and ran on a Windows PC with an Intel(R)
Core(TM) i7-1185G7 CPU @ 3.00 GHz and 16 GB RAM. No GPU was
used for the experiments reported in this study.

To prepare the datasets for training GINs, we utilized AequilibraE
(AequilibraE 0.9.3, n.d.), an open-source and comprehensive Python
package for transportation modeling to solve the UE problems using the
bi-conjugate Frank-Wolfe (BFW) algorithm (Mitradjieva & Lindberg,
2012), which is shown to provide the best performance among the
existing algorithms for solving the UE traffic assignment problems
(Mitradjieva & Lindberg, 2012). The computation times of solving UE
problem instances using AequilibraE based on the BFW algorithm to
reach the gap threshold of 10e− 6 for case studies considered here given
the hardware described above is always below ten seconds. Note that
convex (non-linear) UE problems such as the ones considered in this
study can be solved using exact mixed integer non-linear programing
solvers as well. However, for large networks, computation times of such
solvers are practically infeasible when numerous instances of UE prob-
lems need to be solved.

To solve the NDPs with SORB, we coded SORB in Python using the
CPLEX solver (Nickel et al., 2022), one of the best-in-class optimization

solvers, to solve the mixed-integer non-linear subproblems (with piece-
wise linear approximations) within iterations of SORB. The UE sub-
problems within SORB were solved by means of AequilibraE using the
BFW algorithm, which provides significant computational gains
(approximately by a factor of 10) compared to solving the UE with
general solvers as in the original study proposing the SORB method.

The graph features and datasets for training GIN were processed
using the DGL package in Python for more efficiency, GIN was coded
using the PyTorch package in Python, and its hyper-parameter tuning
was performed by means of Bayesian optimization using the Hyperopt
package (Bergstra et al., 2013) in Python with maximum 100 samples
per network. The GA was implemented using the Geneticalgorithm2
package (Pascal, n.d.) in Python in combination with inferences made by
the trained GIN models using PyTorch. Adam optimizer (Kingma & Ba,
2017) was used in training to optimize the GIN. The training requires a
one-time effort of 4–16 h (depending on the network size, dataset size,
and the number of epochs) on a regular desktop computer, described
above (which could be accelerated using GPU). Regarding the GA mu-
tation and crossover, we used uniform crossover with mutation rates of
0.05 and 0.02 for NDP-LA and NDP-LS, respectively. The rest of the GA
parameters were default values of the Geneticalgorithm2 package.

4.5. Case studies

4.5.1. Case study 1: Sioux Falls network
The first (and the smallest) case study is based on the Sioux Falls

network, which is popular among transport researchers for benchmark
studies. The network data is available at (Stabler et al., 2016) and in-
cludes 76 edges, 24 nodes and 576 OD pairs. For the Sioux Falls network,
we created a dataset with 20,000 solved instances of UE with pertur-
bations in demand and edge capacity. 18,000 of these instances were
used for training, 1000 for validation, and 1000 for testing. Note that
validation and testing in this context are not important since the ulti-
mate test of the model in this framework is how well it performs for
inference (in combination with GA) during the optimization process,
which is discussed below.

After hyper-parameter tuning, the best training accuracy and test
accuracy (MAP) achieved for this network were 97.30 % and 96.51 %,
respectively. The Best R-squared for training and test were 98.91 % and
97.93 % respectively, which indicates strong expandability of the vari-
ations in input by the model. The trained model is used for inferences in
all variants and scenarios reported in this case study. Fig. 2 summarizes
the training results for the Sioux Falls network.

It should be noted that being able to deal with different demand
profiles at least within a certain range of the known demand is crucial for
generalization capacity and applicability of this method. Without vari-
ations in demand, higher accuracies could be achieved with GIN.
However, that would mean that for every variant of the problem or with
each small perturbation in demand, a new model would need to be
trained. This is not practically feasible for problems with daily-
fluctuating demand, such as the NDP-LS. Therefore, at the price of a
slightly lower inference accuracy, we achieve better generalizability by
training the model using a dataset that includes different demand pro-
files. It is shown in all three case studies presented in this section that the
single model trained on each network with demand and capacity vari-
ations performs well in all NDP-LA and NDP-LS variations studied.

Tables 2 and 3 summarize the results of the GIN-GA method
benchmarked against the SORB algorithm for NDP-LA and NDP-LS based
on the Sioux Falls network. As evidenced by the results, GIN-GA ach-
ieves better results for NDP-LS for this case study. All solutions obtained
for NDP-LA were budget feasible, indicating that the penalty function
used in GA objective function to penalize budget-infeasible solutions
was effective. For the Sioux Falls network, on average, GIN-GA achieves
results with less than 1.5 % gap of the optimal results within a minute
(which is less than 0.5 % of the average total time required for SORB) for
NDP-LS. For NDP-LA, this average is about 4.34 %, which leads to the

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

7

average of 2.89 % gap for the Sioux Falls network. As indicated by Ta-
bles 2 and 3, the variability within the five replication of GIN-GA for
each problem instance is low with the average difference between best
and worse results being 0.48 % for NDP-LS and 1.62 % for NDP-LA,
indicating the stability of the framework results. Moreover, narrow
95 % confidence intervals for average TTT gaps imply that each sto-
chastic run of GIN-GA is highly likely to yield an average within the
indicated interval, which is desirable for the computation time budget
provided, even at its upper bound.

4.5.2. Case study 2: Eastern-Massachusetts network
The second case study in this article is based on the Eastern-

Massachusetts Network, which is also available at (Stabler et al.,
2016). It is a medium-size network that includes 258 edges, 74 nodes
and 5476 OD pairs. Due to higher memory requirements, for the larger
case studies, namely, Eastern-Massachusetts and Anaheim networks, we
created a dataset with 5,000 solved instances of UE with perturbations in
demand and edge capacity. 4000 of these instances were used for
training, 500 for validation, and 500 for testing. Yet, as indicated later in
this section, 5000 instances are sufficient for proper training of the GIN
model and desirable performance on NDP instances.

The best training and test TTT accuracy for the Eastern-
Massachusetts Network were 98.88 % and 98.68 % respectively,
which are remarkably high. The best training and test R-squared for this

Fig. 2. Summary of GIN training results for Sioux Falls network ((a) R-squared, and (b) prediction accuracy (MAP) of TTT for training and test data).

Table 2
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LS on Sioux Falls network (TTT gap values are based on MAPE showing the percentage gap between
the TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA. 95%
confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Sioux Falls Network (NDP_LS)

SORB
(benchmark)

GIN-GA

Feasible
edges

Swapped Lane
Capacity

TTT Min TTT Average TTT Max TTT Min TTT
Gap

Average TTT
Gap

Max TTT
Gap

95 % Confidence
Interval (TTT Gap)

25 % 50 % 7401566.49 7526638.97 7526638.97 7526638.97 1.69 % 1.69 % 1.69 % 1.69 % 1.69 %
25 % 25 % 7397287.95 7467055.63 7467055.63 7467055.63 0.94 % 0.94 % 0.94 % 0.94 % 0.94 %
50 % 50 % 7401526.27 7526638.97 7526638.97 7526638.97 1.69 % 1.69 % 1.69 % 1.69 % 1.69 %
50 % 25 % 7424377.71 7519035.93 7519035.93 7519035.93 1.27 % 1.27 % 1.27 % 1.27 % 1.27 %
75 % 50 % 7424377.71 7529281.50 7632973.31 7736362.61 1.41 % 2.81 % 4.20 % 1.08 % 4.54 %
75 % 25 % 7424377.71 7441247.86 7443222.13 7451119.23 0.23 % 0.25 % 0.36 % 0.18 % 0.33 %
Average 7412252.30 7501649.81 7519260.82 7537808.56 1.21 % 1.44 % 1.69 % 1.14 % 1.74 %

Table 3
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LA on Sioux Falls network (TTT gap values are based on MAPE showing the percentage gap between
the TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA. 95%
confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Sioux Falls Network (NDP_LA)

SORB
(benchmark)

GIN-GA

Budget Added Lane
Capacity

TTT Min TTT Average TTT Max TTT Min TTT
Gap

Average TTT
Gap

Max TTT
Gap

95 % Confidence
Interval (TTT Gap)

25 % 50 % 4857212.76 5026025.65 5103802.01 5230757.49 3.48 % 5.08 % 7.69 % 2.93 % 7.22 %
25 % 25 % 5726249.39 5834988.83 5865845.71 5925293.25 1.90 % 2.44 % 3.48 % 1.67 % 3.20 %
50 % 50 % 4383951.83 4701676.38 4719821.83 4738488.78 7.25 % 7.66 % 8.09 % 7.22 % 8.10 %
50 % 25 % 5309461.76 5401115.95 5411827.58 5422778.30 1.73 % 1.93 % 2.13 % 1.70 % 2.16 %
75 % 50 % 4357733.23 4644231.20 4673929.56 4689454.57 6.57 % 7.26 % 7.61 % 6.75 % 7.76 %
75 % 25 % 5284122.32 5320690.54 5374406.53 5405711.38 0.69 % 1.71 % 2.30 % 0.85 % 2.57 %
Average 4986455.22 5154788.09 5191605.54 5235413.96 3.60 % 4.34 % 5.22 % 3.52 % 5.17 %

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

8

case study were 99.6 % and 99.3 % respectively, which indicate good
model fit, particularly given how close the training and test statistics are.
Eastern-Massachusetts case study training results are summarized in
Fig. 3.

The trained model is used for inferences within the GIN-GA for all 12
NDP variants for this case study, and the results are shown in Tables 4
and 5. The average TTT gap achieved with Gin-GA for this case study is
0.80 % with average performance on NDP-LA being better (0.48 %) than
the average on NDP-LS (1.13 %). All solutions obtained for NDP-LA were
budget feasible. The variability of TTT gaps within replications of GIN-
GA and problem instances is remarkably low for this case study with the
average difference between the best and the worst results being 0.31 %
and for NDP-LS and 0.34 % for NDP-LA. This low variability along with
the narrow confidence intervals for TTT gaps provide compelling evi-
dence for stability and consistency of GIN-GA.

4.5.3. Case study 3: Anaheim network
Our third case study is a relatively large case based on the Anaheim

network, selected from the “transportation networks for research” re-
pository (Stabler et al., 2016). It entails 914 edges, 416 nodes and 1444
OD pairs. For this case study, similar to the Eastern-Massachusetts
Network, we generated a dataset based on 5,000 solved instances of
UE using the BFW algorithm, of which, 4,000 were used for training, 500
for validation and 500 for testing. It will be shown in this section that
this is a sufficient number of datapoints (i.e., graphs representing in-
stances of UE) for training an effective GIN model for inference within
the GIN-GA.

For the Anaheim network, the GIN model used in this study reaches
the best training and test accuracy of 97.68 % and 97.85 % respectively,
which indicates outstanding out-of-sample prediction power. The best
training and test R-squared achieved for this case study are 97.9 % and
97.8 % respectively, implying excellent model fit. Fig. 4 depicts the
evolution of training and test R-squared and TTT prediction accuracy for
the Anaheim network.

Regarding the performance of GIN-GA in this case study, as reported
in Tables 6 and 7, the average TTT gaps achieved for NDP-LS and NDP-
LA are 0.21 % and 1.33 % respectively, indicating good performance by
GIN-GA, particularly given the one-minute time limit. All solutions ob-
tained for NDP-LA were budget feasible. As for the stability of GIN-GA
performance, average gap between the best and the worst-case perfor-
mance among five replication is 0.1 % for NDP-LS and 0.57 % for NDP-
LA, which shows consistency among replications. The standard errors of
TTT gap mean estimation based on the replication performed in this case
study are 0.11 % and 0.28 % for NDP-LS and NDP-LA, respectively,
confirming the stability of GIN-GA performance.

5. Discussion

In this section, we briefly discuss the performance, stability, scal-
ability, and generalizability of GIN-GA results based on the case studies,
problems, and variants considered in this article.

5.1. Performance

Considering the average TTT gaps obtained by GIN-GA as a surrogate
for performance (with the target gap being zero), the average among all
NDP-LS problem instances in the three case studies considered was 0.93
%, and the average for NDP-LA instances was 2.05 %, resulting in an
overall average TTT Gap of 1.49 %, with gaps as low as 0.03 % obtained
for some problem instances. Given the one-minute time limit for GIN-GA
compared to the four-hour time limit of SORB as benchmark, the results
indicate great promise for deployment of GIN-GA in practice. It is
noteworthy that transport planners deal with problems such as NDP-LS
on a daily basis with slight variations in demand. Therefore, exact so-
lution procedures, such as SORB, are practically infeasible for real-time
operations, particularly for large networks due to the exponential
growth of computation times of repeatedly solving mixed-integer pro-
graming problems. In these settings, finding solutions with one or two
percent optimality gaps in one minute with minimal modeling and
implementation effort provides excellent value for transport planners
and professionals.

5.2. Stability

Regarding the stability of GIN-GA performance, small margins be-
tween the best- and worst-case performances as well as narrow widths of
confidence intervals for mean TTT Gap values are observed throughout
case studies and problem instances. The minimum, average and
maximum bandwidths for mean confidence intervals (i.e., two times the
standard error) were 0 %, 0.6 %, and 1.72 %, respectively, indicating
high stability for GIN-GA performance.

5.3. Scalability

To assess the scalability of GIN-GA, we evaluate the differences in its
performance among different case studies with varied sizes, different
NDP variants, and problem instances. Based on the results shown in
Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7, there is no
systematic difference in the performance of GIN-GA on two NDPs
considered in this study, namely, NDP-LA and NDP-LS. Considering the
average TTT Gap for each case study as the main indicator, on average
GIN-GA performs better in NDP-LA on the Eastern-Massachusetts

Fig. 3. Summary of GIN training results for Eastern-Massachusetts network ((a) R-squared, and (b) prediction accuracy (MAP) of TTT for training and test data).

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

9

network, and on NDP-LS on Sioux Falls and Anaheim.
As for the impact of network size on performance, for NDP-LS, the

TTT gap decreases on average as the network size increases, indicating a
better relative performance compared to SORB for larger networks. And
for NDP-LA, the TTT gap is lower for both the mid-sized network
(Eastern-Massachusetts) and the large network (Anaheim) compared to
the small network (Sioux Falls). Given the constant one-minute
computation time limit we enforced on GIN-GA regardless of the
network size, one can expect GIN-GA to have a favorable performance
on networks larger than the ones considered in this study while there is
no evidence in the literature for exact solution procedures of NDPs being
capable of dealing with networks larger than Anaheim (900 + edges). It
should not go unnoticed that the time required for generating a training

dataset with solved UE instances and training the GIN increases with the
size of the network. However, as shown in this study, after a one-time
training effort, the trained model can be used for many NDP variants
and instances. Moreover, the time can be shortened by reducing the
dataset size and/or training epochs.

5.4. Generalizability

The GIN model proposed in this study is capable of approximating
solutions for a wide range of UE problem instances with variations in
demand and capacity. Therefore, it has great potential for use in many
NDP variants where the lower level includes variations in demand and/
or lane capacity. In this study, we showcase its potential on two NDPs,

Table 4
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LS on Eastern-Massachusetts network (TTT gap values are based on MAPE showing the percentage gap
between the TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA.
95% confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Eastern-Massachusetts Network (NDP_LS)

SORB
(benchmark)

GIN-GA

Feasible
edges

Swapped Lane
Capacity

TTT Min TTT Average
TTT

Max TTT Min TTT
Gap

Average TTT
Gap

Max TTT
Gap

95 % Confidence
Interval (TTT Gap)

25 % 50 % 27330.91 27552.40 27625.33 27684.54 0.81 % 1.08 % 1.29 % 0.77 % 1.38 %
25 % 25 % 27537.23 27782.91 27782.91 27782.91 0.89 % 0.89 % 0.89 % 0.89 % 0.89 %
50 % 50 % 27273.24 27716.41 27746.63 27764.36 1.62 % 1.74 % 1.80 % 1.64 % 1.83 %
50 % 25 % 27462.56 27530.04 27642.97 27716.18 0.25 % 0.66 % 0.92 % 0.20 % 1.11 %
75 % 50 % 27216.96 27745.88 27790.11 27826.32 1.94 % 2.11 % 2.24 % 1.97 % 2.24 %
75 % 25 % 27441.20 27509.31 27534.06 27572.40 0.25 % 0.34 % 0.48 % 0.23 % 0.44 %
Average 27377.02 27639.49 27687.00 27724.45 0.96 % 1.13 % 1.27 % 0.95 % 1.32 %

Table 5
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LA on Eastern-Massachusetts network (TTT gap values are based on MAPE showing the percentage gap
between the TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA.
95% confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Eastern-Massachusetts Network (NDP_LA)

SORB (benchmark) GIN-GA

Budget Added Lane Capacity TTT Min TTT Average TTT Max TTT Min TTT Gap Average TTT Gap Max TTT Gap 95 % Confidence
Interval (TTT Gap)

25 % 50 % 26723.22 26869.32 26886.14 26905.29 0.55 % 0.61 % 0.68 % 0.54 % 0.67 %
25 % 25 % 27326.66 27386.12 27450.86 27477.16 0.22 % 0.45 % 0.55 % 0.29 % 0.62 %
50 % 50 % 26720.33 26828.82 26864.65 26888.51 0.41 % 0.54 % 0.63 % 0.44 % 0.64 %
50 % 25 % 27307.49 27347.89 27405.29 27429.78 0.15 % 0.36 % 0.45 % 0.21 % 0.51 %
75 % 50 % 26720.29 26806.44 26897.33 27005.04 0.32 % 0.66 % 1.07 % 0.28 % 1.05 %
75 % 25 % 27307.44 27338.40 27380.81 27417.52 0.11 % 0.27 % 0.40 % 0.11 % 0.42 %
Average 27017.57 27096.16 27147.51 27187.22 0.29 % 0.48 % 0.63 % 0.31 % 0.65 %

Fig. 4. Summary of GIN training results for Anaheim network ((a) R-squared, and (b) prediction accuracy (MAP) of TTT for training and test data).

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

10

namely NDP-LS and NDP-LA using different case studies and problem
variants. Our results indicated comparable performance on both NDPs,
despite the fact that the GIN was trained only once to handle general
perturbations on demand and capacity without specific training for a
specific NDP. In dealing with all problems considered in this study, GIN
approximated numerous unseen UE problem instances, which points to
the likelihood of performing well on many other NDPs where the lower-
level UE problem can be represented by an attributed graph containing
node and edge features.

6. Conclusions and future research directions

In this study, we proposed a novel hybrid deep-learning-
metaheuristic framework with a bi-level architecture for NDPs. We
created datasets of solved instances of UE instances and trained a GIN
model to approximate the solutions of UE instances at the lower level
and used inferences of the trained GIN in combination with a GA at the
upper level to approximate solutions for NDPs. We conducted extensive
computational experiments, which entailed solving 30,000 instances of
the UE problem on three networks to train the GIN models, as well as
generating and approximating 216 instances of NDP using three road
networks, two NDPs, six NDP variants for each problem on each
network, an exact solution procedure as a benchmark, and five repli-
cations of the proposed GIN-GA method. The experiments showed that
on average, our proposed framework can provide solutions within 1.5 %
gap of the optimal results given less than 0.5 % of the time used by the
exact solution procedure. In addition, we provided evidence for per-
formance stability, scalability, and generalizability of the framework.
Our framework can be used in an expert system for infrastructure
planning to intelligently determine the optimal infrastructure manage-
ment decisions. The framework is highly flexible and can be easily
adapted to many other decision problems that can be modeled as bi-level

problems on graphs. Moreover, this flexibility allows the use of other
deep learning models and metaheuristics within the same framework for
bi-level problems.

Since this is the first exploratory study on this topic, there are
certainly a few shortcomings and areas of improvement that can be
further investigated in future research. Regarding the GIN model
training, the supervised learning scheme used in this study requires a
training dataset, which might occupy large memory space for large
networks, need long computation times for generating large datasets,
and is dependent on existence of exact solutions for UEs. In addition,
inferences made by any deep learning model, including GIN, are always
subject to an error margin. This causes inaccuracies in GA, which is not
designed to deal with noisy fitness functions evaluations, and thereby
pointing out to a need for new metaheuristics.

On the other hand, these shortcomings point to opportunities for
interesting future research directions. Therefore, we provide a research
agenda below and briefly discuss these opportunities.

Existing metaheuristics are designed to find good solutions in a short
amount of time by exploring an exceedingly small fraction of the search
space. This is because fitness function evaluations for these algorithms
are generally time-consuming. However, inferences made by the GIN
model we used in this study for GA fitness evaluations (and GNN in-
ferences in general) are extremely efficient (e.g., each inference made in
this study takes less than one millisecond). On the other hand, inferences
made by GIN (and GNNs in general) are noisy and never 100 % accurate.
This points to an opportunity as well as a need for novel heuristics that
1) can cope well with noisy fitness function values, and 2) can use the
resulting significantly enlarged computation time provided by GNNs to
explore the search space effectively (rather than efficiently). This opens
a new avenue for a modern class of metaheuristics that are crafted for
use with AI-powered predictors.

While dealing with bi-level programming problems, so far, deep-

Table 6
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LS on Anaheim network (TTT gap values are based on MAPE showing the percentage gap between the
TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA. 95%
confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Anaheim Network (NDP_LS)

SORB
(benchmark)

GIN-GA

Feasible
edges

Swapped Lane
Capacity

TTT Min TTT Average TTT Max TTT Min TTT
Gap

Average TTT
Gap

Max TTT
Gap

95 % Confidence
Interval (TTT Gap)

25 % 50 % 1331733.95 1333162.12 1333217.93 1333311.46 0.11 % 0.11 % 0.12 % 0.10 % 0.12 %
25 % 25 % 1332441.45 1332849.45 1332852.91 1332855.22 0.03 % 0.03 % 0.03 % 0.03 % 0.03 %
50 % 50 % 1331786.88 1334619.24 1334924.97 1335293.73 0.21 % 0.24 % 0.26 % 0.21 % 0.27 %
50 % 25 % 1331798.79 1332401.73 1332551.89 1333022.10 0.05 % 0.06 % 0.09 % 0.03 % 0.08 %
75 % 50 % 1331293.53 1336253.10 1340747.40 1342256.17 0.37 % 0.71 % 0.82 % 0.47 % 0.95 %
75 % 25 % 1331035.85 1332725.39 1332942.70 1333120.56 0.13 % 0.14 % 0.16 % 0.13 % 0.16 %
Average 1331681.74 1333668.50 1334539.63 1334976.54 0.15 % 0.21 % 0.25 % 0.16 % 0.27 %

Table 7
TTT and TTT gap comparison between GIN-GA & SORB for NDP-LA on Anaheim network (TTT gap values are based on MAPE showing the percentage gap between the
TTT value calculated by GIN-GA and SORB with SORB TTT being the reference value. Min, average and max values are based on 5 replications of GIN-GA. 95%
confidence intervals are based on the standard error of mean TTT gap values of 5 GIN-GA replications).

Anaheim Network (NDP_LA)

SORB
(benchmark)

GIN-GA

Budget Added Lane
Capacity

TTT Min TTT Average TTT Max TTT Min TTT
Gap

Average TTT
Gap

Max TTT
Gap

95 % Confidence
Interval (TTT Gap)

25 % 50 % 1210379.00 1235968.96 1240590.09 1248174.42 2.11 % 2.50 % 3.12 % 1.99 % 3.01 %
25 % 25 % 1243757.68 1259359.95 1262404.13 1264404.47 1.25 % 1.50 % 1.66 % 1.30 % 1.70 %
50 % 50 % 1210114.12 1222201.04 1227669.29 1237950.54 1.00 % 1.45 % 2.30 % 0.84 % 2.07 %
50 % 25 % 1243919.66 1253006.00 1255151.78 1257226.44 0.73 % 0.90 % 1.07 % 0.74 % 1.07 %
75 % 50 % 1210119.40 1221499.99 1222554.52 1223978.50 0.94 % 1.03 % 1.15 % 0.93 % 1.12 %
75 % 25 % 1243926.18 1250531.28 1251199.22 1251880.89 0.53 % 0.58 % 0.64 % 0.54 % 0.63 %
Average 1227036.01 1240427.87 1243261.50 1247269.21 1.09 % 1.33 % 1.66 % 1.05 % 1.60 %

B. Madadi and G. Homem de Almeida Correia

Expert Systems With Applications 243 (2024) 122814

11

learning-based frameworks have been used only at the upper level or the
lower level. However, they have the potential to be used for both dealing
with the upper-level problem as well as the lower-level problem in a bi-
level framework. In the previous research agenda item, we mentioned
the need for novel heuristics that are tailored to AI-powered predictors
for their fitness evaluations. Deep learning frameworks can learn to
approximate such heuristics with the mentioned characteristics.

In this study, we selected GIN as our choice of the deep learning
model due to its expressive power and showed that it is suitable for our
framework. However, other GNNs and deep learning models in general
can be used within the framework proposed in this study as well. Future
research could investigate the performance of other deep learning
models with this framework.

In practice, NDPs should include considerations for multiple user
classes (e.g., trucks, manually driven vehicles, automated vehicles) with
different behavioral assumptions. These problems are often tackled
using heuristics and metaheuristics (Madadi et al., 2020, 2021b, 2021a)
since multiple classes with asymmetric travel time interactions make the
lower-level problem (UE) non-convex, thereby excluding the exact so-
lution options for the bi-level problem. However, there are solutions
available for the multiclass UE problem, which means the GIN intro-
duced in this study can be effectively trained to have comparable per-
formance for NDPs with multiple classes while no exact solution is
available for such problems.

We examined the performance of our framework on three networks
with 76, 257, and 914 edges, respectively. While for academic purposes,
the Anaheim network with 914 edges is considered a rather large
network, in practice, NDPs can be defined on road networks with more
than 50,000 edges (Madadi et al., 2021b, 2021a). In such cases, exact
solution procedures, such as SORB, are highly unlikely to produce
optimal results in practically feasible time frames whereas the frame-
work introduced here is likely to perform well given the magnitude of
computation time gains it has provided in this study. However, the
computation time and resources required for dealing with large-scale
practical NDPs (e.g., with 50,000 edges) makes comprehensive bench-
marking studies such as the one presented in this article, which included
solving UEs 30,000 times and NDPs 216 times, far from feasible on such
networks.

CRediT authorship contribution statement

Bahman Madadi: Conceptualization, Data curation, Formal anal-
ysis, Methodology, Software, Visualization, Writing – original draft.
Gonçalo Homem de Almeida Correia: Conceptualization, Formal
analysis, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The code used for this study is available at the following repository
(the data used can be generated using the code or requested from the
first author): https://github.com/bahmanmdd/HDLMF_GIN-GA

References

AequilibraE 0.9.3. (n.d.). Retrieved July 25, 2023, from http://www.aequilibrae.com/pyt
hon/latest/.

Bagloee, S. A., Asadi, M., Sarvi, M., & Patriksson, M. (2018). A hybrid machine-learning
and optimization method to solve bi-level problems. Expert Systems with Applications,
95, 142–152. https://doi.org/10.1016/j.eswa.2017.11.039

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2017). Neural Combinatorial
Optimization with Reinforcement Learning. ArXiv:1611.09940 [Cs, Stat]. http://
arxiv.org/abs/1611.09940.

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational
Research, 290(2), 405–421. https://doi.org/10.1016/j.ejor.2020.07.063

Bergstra, J., Yamins, D., & Cox, D. (2013). Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures.
Proceedings of the 30th International Conference on Machine Learning, 115–123.
https://proceedings.mlr.press/v28/bergstra13.html.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., & Veličković, P. (2021).
Combinatorial optimization and reasoning with graph neural networks. ArXiv:
2102.09544 [Cs, Math, Stat]. http://arxiv.org/abs/2102.09544.

Dai, H., Khalil, E., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing
Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05
b8cbdf4fd8b13a1-Abstract.html.

Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban
transportation network design problems. European Journal of Operational Research,
229(2), 281–302. https://doi.org/10.1016/j.ejor.2013.01.001

Gammelli, D., Harrison, J., Yang, K., Pavone, M., Rodrigues, F., & Pereira, F. C. (2023).
Graph reinforcement learning for network control via bi-level optimization (arXiv:
2305.09129). arXiv. Doi: 10.48550/arXiv.2305.09129.

Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., & Lodi, A. (2019). Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural
information processing systems, 32. https://proceedings.neurips.cc/paper/2019/hash
/d14c2267d848abeb81fd590f371d39bd-Abstract.html.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. Proceedings of the 34th international
conference on machine learning, 1263–1272. https://proceedings.mlr.press
/v70/gilmer17a.html.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30. https://proceedings.ne
urips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in optimization
problems. Biological Cybernetics, 52(3), 141–152. https://doi.org/10.1007/
BF00339943

Huang, T., Ma, Y., Zhou, Y., Huang, H., Chen, D., Gong, Z., & Liu, Y. (2019). A Review of
combinatorial optimization with graph neural networks. 2019 5th International
Conference on Big Data and Information Analytics (BigDIA), 72–77. Doi: 10.1109/
BigDIA.2019.8802843.

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization (arXiv:
1412.6980). arXiv. Doi: 10.48550/arXiv.1412.6980.

Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing
Problems! ArXiv:1803.08475 [Cs, Stat]. http://arxiv.org/abs/1803.08475.

Madadi, B., & Aksakalli, V. (2020). A stochastic approximation approach to spatio-
temporal anchorage planning with multiple objectives. Expert Systems with
Applications, 146. https://doi.org/10.1016/j.eswa.2019.113170

Madadi, B., van Nes, R., Snelder, M., & van Arem, B. (2020). A bi-level model to optimize
road networks for a mixture of manual and automated driving: An evolutionary local
search algorithm. Computer-Aided Civil and Infrastructure Engineering, 35(1), 80–96.

Madadi, B., van Nes, R., Snelder, M., & van Arem, B. (2021a). Multi-stage optimal design
of road networks for automated vehicles with elastic multi-class demand. Computers
and Operations Research, 136. https://doi.org/10.1016/j.cor.2021.105483

Madadi, B., van Nes, R., Snelder, M., & van Arem, B. (2021b). Optimizing road networks
for automated vehicles with dedicated links, dedicated lanes, and mixed-traffic
subnetworks. Journal of Advanced Transportation, 2021, 1–17. https://doi.org/
10.1155/2021/8853583

Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S., & Singh, A. (2020). Learning
heuristics over large graphs via deep reinforcement learning (arXiv:1903.03332). arXiv.
http://arxiv.org/abs/1903.03332.

Mandal, D., Medya, S., Uzzi, B., & Aggarwal, C. (2022). MetaLearning with graph neural
networks: methods and applications. ACM SIGKDD Explorations Newsletter, 23(2),
13–22. https://doi.org/10.1145/3510374.3510379

Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134,
Article 105400. https://doi.org/10.1016/j.cor.2021.105400

Migdalas, A. (1995). Bilevel programming in traffic planning: Models, methods and
challenge. Journal of Global Optimization, 7(4), 381–405. https://doi.org/10.1007/
BF01099649

Mitradjieva, M., & Lindberg, P. O. (2012). The stiff is moving—Conjugate direction
Frank-Wolfe methods with applications to traffic assignment. Transportation Science.
https://doi.org/10.1287/trsc.1120.0409

Nazari, M., Oroojlooy, A., Snyder, L., & Takac, M. (2018). Reinforcement learning for
solving the vehicle routing problem. Advances in Neural Information Processing
Systems, 31. https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70f
ba5afe0b039a550-Abstract.html.

Nickel, S., Steinhardt, C., Schlenker, H., & Burkart, W. (2022). IBM ILOG CPLEX
Optimization Studio—A primer. In S. Nickel, C. Steinhardt, H. Schlenker, &
W. Burkart (Eds.), Decision Optimization with IBM ILOG CPLEX Optimization Studio: A
Hands-On Introduction to Modeling with the Optimization Programming Language (OPL)
(pp. 9–21). Springer. https://doi.org/10.1007/978-3-662-65481-1_2.

Pascal, D. (n.d.). geneticalgorithm2: Supported highly optimized and flexible genetic algorithm
package for python (6.8.5) [Python; OS Independent]. Retrieved July 25, 2023, from
https://github.com/PasaOpasen/geneticalgorithm2.

B. Madadi and G. Homem de Almeida Correia

https://github.com/bahmanmdd/HDLMF_GIN-GA
http://www.aequilibrae.com/python/latest/
http://www.aequilibrae.com/python/latest/
https://doi.org/10.1016/j.eswa.2017.11.039
https://doi.org/10.1016/j.ejor.2020.07.063
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://doi.org/10.1016/j.ejor.2013.01.001
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1007/BF00339943
https://doi.org/10.1007/BF00339943
https://doi.org/10.1016/j.eswa.2019.113170
http://refhub.elsevier.com/S0957-4174(23)03316-X/h0090
http://refhub.elsevier.com/S0957-4174(23)03316-X/h0090
http://refhub.elsevier.com/S0957-4174(23)03316-X/h0090
https://doi.org/10.1016/j.cor.2021.105483
https://doi.org/10.1155/2021/8853583
https://doi.org/10.1155/2021/8853583
https://doi.org/10.1145/3510374.3510379
https://doi.org/10.1016/j.cor.2021.105400
https://doi.org/10.1007/BF01099649
https://doi.org/10.1007/BF01099649
https://doi.org/10.1287/trsc.1120.0409
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://doi.org/10.1007/978-3-662-65481-1_2

Expert Systems With Applications 243 (2024) 122814

12

Rey, D. (2020). Computational benchmarking of exact methods for the bilevel discrete
network design problem. Transportation Research Procedia, 47, 11–18. https://doi.
org/10.1016/j.trpro.2020.03.067

Stabler, B., Bar-Gera, H., & Sall, E. (2016). Transportation Networks for Research [dataset].
https://github.com/bstabler/TransportationNetworks.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., & Boman, M. (2020). Learning
combinatorial optimization on graphs: A survey with applications to networking.
IEEE Access, 8, 120388–120416. https://doi.org/10.1109/ACCESS.2020.3004964

Wang, R., Hua, Z., Liu, G., Zhang, J., Yan, J., Qi, F., … Yang, X. (2021). A bi-level
framework for learning to solve combinatorial optimization on graphs. Advances in
Neural Information Processing Systems, 34, 21453–21466. https://proceedings.neurip
s.cc/paper/2021/hash/b2f627fff19fda463cb386442eac2b3d-Abstract.html.

Wang, S., Meng, Q., & Yang, H. (2013). Global optimization methods for the discrete
network design problem. Transportation Research Part B: Methodological, 50, 42–60.
https://doi.org/10.1016/j.trb.2013.01.006

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers. Proceedings of the Institution of Civil Engineers.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? (arXiv:1810.00826). arXiv. http://arxiv.org/abs/1810.00826.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., & Jegelka, S. (2018).
Representation learning on graphs with jumping knowledge networks. Proceedings of
the 35th international conference on machine learning, 5453–5462. https://
proceedings.mlr.press/v80/xu18c.html.

Yang, H., Bell, H., & M. g.. (1998). Models and algorithms for road network design: A
review and some new developments. Transport Reviews, 18(3), 257–278. https://doi.
org/10.1080/01441649808717016

Zhang, Z., Cui, P., & Zhu, W. (2022). Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering, 34(1), 249–270. https://doi.org/
10.1109/TKDE.2020.2981333

Zhang, Z., Wang, X., & Zhu, W. (2021). Automated machine learning on graphs: A
survey. Proceedings of the thirtieth international joint conference on artificial intelligence,
4704–4712. Doi: 10.24963/ijcai.2021/637.

B. Madadi and G. Homem de Almeida Correia

https://doi.org/10.1016/j.trpro.2020.03.067
https://doi.org/10.1016/j.trpro.2020.03.067
https://doi.org/10.1109/ACCESS.2020.3004964
https://proceedings.neurips.cc/paper/2021/hash/b2f627fff19fda463cb386442eac2b3d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b2f627fff19fda463cb386442eac2b3d-Abstract.html
https://doi.org/10.1016/j.trb.2013.01.006
https://doi.org/10.1080/01441649808717016
https://doi.org/10.1080/01441649808717016
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333

	A hybrid deep-learning-metaheuristic framework for bi-level network design problems
	1 Introduction
	2 Network design problem description and preliminaries on graph neural networks
	2.1 Network design problem
	2.1.1 The lower-level user equilibrium (UE) problem
	2.1.2 The upper-level design problem
	2.1.3 Network design problem with lane additions (NDP-LA)
	2.1.4 Network design problem with lane swap (NDP-LS)

	2.2 GNN

	3 The hybrid deep-learning-metaheuristic framework (GIN-GA)
	3.1 Bi-level problem class definition
	3.2 Feature engineering
	3.3 Dataset generation
	3.4 Train-test pipeline
	3.5 Model deployment

	4 Numerical experiments
	4.1 Experiment setup
	4.2 Benchmarking
	4.3 Section key performance indicators (KPIs)
	4.4 Hardware and software
	4.5 Case studies
	4.5.1 Case study 1: Sioux Falls network
	4.5.2 Case study 2: Eastern-Massachusetts network
	4.5.3 Case study 3: Anaheim network

	5 Discussion
	5.1 Performance
	5.2 Stability
	5.3 Scalability
	5.4 Generalizability

	6 Conclusions and future research directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

