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Abstract
Energy communities are not yet fully self sufficient,
mostly due to financial factors. Efforts are made
to reduce these factors. Communities invest in
community-owned assets, which provide more sav-
ings compared to individually-owned assets. Pro-
sumers share their loads for better energy distribu-
tion, this can provide a significant impact. A good
predictor for identifying the financial benefit for a
community is the diversity of the consumption be-
haviors of the prosumers. However, an open ques-
tion is how the diversity exactly affects the com-
munity costs. In this paper, we introduce Two-level
K-means, an improvement on K-means, and use it
on real consumption data to find energy profiles.
We use the energy profiles to model communities,
varying in diversity. Finally, we provide an analysis
of the affects of diversity on costs. Results from the
analysis show that an increased diversity factor can
provide financial benefit. This is a result of resid-
ual demand being compensated by excess energy
generated. However, the added financial benefit de-
pends on the composition of the community.

1 Introduction
Interest in renewable energy generation has rapidly risen, fol-
lowing the worldwide effort to fight climate change. With
this growing interest came a lot of improvements regarding
distributed and decentralized energy systems, i.e. systems
with little or no access to a central power grid. These de-
velopments created a shift from the larger companies to pro-
sumers, individuals that both consume and produce [Norbu
et al., 2021].

For a while, governments of developed countries offered
incentives, e.g. feed-in-tariffs, for individuals to adopt dis-
tributed energy sources, but soon it became clear that these
sources were financially unsustainable to support in the long-
term [Nolden, 2015]. As a result, the governments dropped
these incentives. Prosumers now wanted to improve their own
consumption and production, to minimize their dependency
on the central grid.

Over the last few years, more and more energy commu-
nities, made up of a number of prosumers, came into exis-
tence worldwide. Governments in the UK and EU deploy
these communities to support renewable energy generation
[Nolden, 2015; Commission, 2022]. In certain developing
countries, where there is little to no access to a central power
grid, energy communities help people gain access to electric-
ity. Communities in sub-Saharan Africa and even some in
South Asia are examples.

Currently, still a lot of improvements are made concern-
ing energy communities, since they are not yet fully self-
sufficient. This is mostly due to financial factors. Efforts are
being made to reduce these factors. So a lot of progress has
been made in improving different types of energy generation,
e.g. windmills and solar panels, as well as storage, e.g. new
types of batteries. Cooperation within energy communities

can provide significant impact, due to prosumers combining
their loads [Norbu et al., 2021]. Intuitively, this makes sense
due to different consumption behaviors allowing for a better
distribution of energy. An example would be two consumers,
one consumes most energy during the morning and the other
consumes most energy during the evening. This consump-
tion behavior distribution is more even, resulting in more bal-
anced consumption overall for the community. Thus, a good
predictor for identifying the financial benefit for a commu-
nity will be the diversity of the consumption behaviors of the
prosumers. However, an open question is how the diversity
exactly affects the community costs.

In this paper, we use a widespread technique used in en-
ergy demand modeling, i.e. clustering [Jeong et al., 2021], to
segment consumption profiles into different classes. Earlier
works often use historical consumption profiles to cluster, but
depending on the purpose different clustering models perform
better [Bidoki et al., 2011] [Xu and Tian, 2015] [Fränti and
Sieranoja, 2018]. For our purposes we want clusters in which
prosumers’ consumption profiles are somewhat similar, so we
can control the diversity of the community. Then we use the
distribution of these clusters to model multiple communities
varying in diversity. Finally, we will use these communities
to provide an empirical analysis on how the diversity impacts
costs.

The remainder of the paper is as follows: a discussion of
related work in this field is presented in section 2. The pro-
sumer community model and clustering method are described
in section 3. In section 4 we provide an empirical analysis of
the impact of diversity on costs for a large real life dataset. We
address the ethical implications of our research in section 5.
Ending with the conclusion in section 6.

2 Related Work
The different aspects concerning energy communities, clus-
tering and energy consumption profiles this paper touches
upon, are discussed in the paragraphs below.

2.1 Clustering
In [Xu and Tian, 2015], different clustering methods are re-
viewed. They look at 19 different clustering methods, most
notably are K-means, Affinity Propagation and OPTICS, and
identify their strengths and weaknesses. In [Bidoki et al.,
2011], different clustering methods used for classifying en-
ergy consumption profiles are compared and analysed. From
the analysed clustering methods, we use K-means to classify
energy consumption profiles. In [Fränti and Sieranoja, 2018],
the performance of K-means on different datasets is analysed.
They find one of the biggest weaknesses of K-means to be
incorrect clustering with unbalanced datasets. They briefly
consider two improvements to K-means, i.e. better initial-
ization and Repeated K-means. We plan on introducing an
improvement to K-means, inspired by Repeated K-means, to
address this weakness. In [Bubeck and Von Luxburg, 2007],
overfitting and how to avoid it is discussed. Overfitting is an-
other possible weakness of K-means, that we want to avoid
during the experiment. In [Kodinariya and Makwana, 2013],
different methods for finding the optimal number of clusters



in K-means are reviewed. We use the reviewed elbow method
during the experiment.

2.2 Energy Community and Energy Consumption
In [Bayliss and Hardy, 2012], the diversity factor is explained
and the formula for how to calculate it is given. We need
this to compute how diverse consumption behavior in an en-
ergy community is. In [Jeong et al., 2021], energy consump-
tion patterns of residential customers are clustered using K-
means. The resulting cluster profiles are named according to
the shape of consumption behavior. We use the introduced
naming scheme for the corresponding profiles we find.

3 Methodology
The community model, community cost, diversity factor,
sampling, dataset filtering and clustering, are discussed in the
following paragraphs.

3.1 Prosumer Community Modelling
We model an energy community according to the model in-
troduced in [Norbu et al., 2021], consisting of 200 prosumers.
We use this model for our experiment, because of the intro-
duced financial benefits. The prosumers, who generate, store,
consume and trade energy within the community, collectively
own a wind turbine and a battery. Sharing a wind turbine and
a battery achieves a lower annual cost because both require a
lower optimal capacity for the same services.

Community cost
[Norbu et al., 2021] defines the annual cost cN for the com-
munity N as follows:

cN (T ) =

T∑
t=1

ci(t)−
T∑

t=1

ve(t) + cd(T ) (1)

where ci(t) and ve(t) are the import cost of energy from the
grid and export revenue of energy to the grid by the whole
community at time t respectively, and cd(T ) is the depreca-
tion cost of community-owned assets, i.e. wind turbine and
battery, for the period T.

Diversity factor
The diversity factor DF shows how diverse energy demands
are within a community N . As described in [Bayliss and
Hardy, 2012], It is calculated using the following formula:

DF =

∑
i∈N max(di)

max(D)
(2)

where di is the demand data from prosumer i and D is the
aggregated demand data of the community.

Sampling
We sample from consumption profiles to model an energy
community, according to the model discussed above. Then,
we calculate the diversity factor and the corresponding cost
on the community models, varying in diversity, to find how
the diversity factor affects the community cost.

Dataset filtering
During some energy community projects, e.g. [Networks,
2017] and [Networks, 2015], consumption readings are taken
at certain intervals over a certain amount of time. For our
research, all this demand data needs to be filtered since we
want to find the data that is most interesting to us. The most
important data is the consumption behavior of prosumers on
an average work day.

3.2 Finding Unique Consumption Profiles
A key challenge in classifying diversity is identifying con-
sumption behavior. So, a proven method, used in research
[Kodinariya and Makwana, 2013], is clustering to identify
this behavior. Here, clustering means the dividing of data
points, representing consumption, into a number of clusters
such that the data points in the same cluster are more similar
to each other than they are to data points in another cluster.

K-means
In this paper, we use the K-means algorithm for clustering.
K-means is an unsupervised learning algorithm [Kodinariya
and Makwana, 2013]. The algorithm divides data into K, a
pre-defined number of, clusters. It works as follows:

1. Specify the number of clusters K.
2. Select K data points randomly as the initial cluster cen-

ters.
3. Assign each data point to the closest cluster center by

calculating the euclidean distance between the data point
and all centers.

4. Find the new centers by calculating the average of all
data points that belong to each cluster, i.e. the Euclidean
distance.

5. Repeat steps 3 - 4 until the cluster centers no longer
move.

The consumption profiles are clustered by minimizing the
following objective function:

f =

K∑
i=1

∑
x∈gi

|x − µi|2 (3)

where gi is the i-th cluster, x is the data point in gi, µi is the
center of gi and K is the number of clusters. The distance
from data points to the cluster centers is measured by the Eu-
clidean distance:

dist(x, µi) = |x − µi|2 (4)

K-means improvement: Two-level K-means
One of the biggest weaknesses of K-means is incorrect clus-
tering with unbalanced datasets [Fränti and Sieranoja, 2018].
This becomes a problem when applying K-means cluster-
ing to energy consumption profiles, since it is very common
for the majority of prosumers to display very similar con-
sumption behavior and only a small minority displaying a
significant deviation [Bidoki et al., 2011]. To address this
problem, we introduce an improvement to K-means, inspired
by Repeated K-means introduced in [Fränti and Sieranoja,
2018]. Namely, two-level K-means, which consists out of



two phases. First, we apply K-means to identify representa-
tives by overestimating K. Then, we apply K-means again on
the identified representatives to identify the unique clusters.

A weakness that remains is the possibility of overfitting
[Bubeck and Von Luxburg, 2007]. Overfitting is the idea that
a model is fitted exactly or too closely to a dataset, e.g. taking
K = n, where n is the number of datapoints.

Finding the optimal number of clusters K
Now we have a method for identifying the different consump-
tion behaviors, we need to find a value for the optimal num-
ber of clusters K. We will use the elbow method to find this
value.

Elbow method
The elbow method is a visual method, since we have to look
at the elbow plot to find the optimal K value. As described
in [Kodinariya and Makwana, 2013], the idea is to run the
K-means algorithm on different values of K, starting with
K = 2, increasing K by 1 at each step. At every time step,
we calculate the inertia, i.e. the average distance of each data
point to their closest cluster center. For a number of values of
K the inertia drops significantly. At some value for K the in-
ertia starts decreasing in a linear fashion when K is increased
further, i.e. the inflexion point. This is the optimal K value.

4 Experimental Setup and Results
In the following section the experimental setup and results are
discussed.

4.1 Dataset
For this experiment, we are using a collection of energy de-
mands of households connected to a smart grid during a trial,
i.e. Low Carbon London [Networks, 2015]. The dataset con-
tains the energy demands of 5567 households over a timespan
of 2.5 years, recorded every 30 minutes. The data collection
has been performed by UK power networks.

Dataset filtering
We filter the dataset to find data that represents the average
day. This means we have to filter out the days that are dif-
ferent from the average day. The first days we filter on are
weekdays. This means we filter out holidays and weekends,
since on these days individuals do not have to go to work.
We count Friday as weekend since not every individual has
to work on that day. This leaves us with data for Monday to
Thursday for the entire timespan of 2.5 years.

Now we filter on are specific calendar days, i.e. seasons.
Seasons have a lot of influence on consumption behavior.
During summer, when the temperature is high, most indi-
viduals consume less energy. During winter, when the tem-
perature is low, most individuals consume more energy, e.g.
for electrical heating. Since we are interested in energy con-
sumption, we choose to filter on winter days. This leaves us
with demand data on winter-weekdays.

4.2 Unique Consumption Profiles
To find the consumption profiles, we use the K-means algo-
rithm. Before we apply this algorithm on the data, we first

Figure 1: Dataset filtering

normalize the data, because we are interested in the consump-
tion patterns, not the consumption amounts.

Finding the optimal K for K-means
Now we need to find the optimal number of clusters K. We
perform the elbow method on the data. In figure 2, we see the
elbow value to be between 8 and 12. We do not overestimate

Figure 2: Elbow method on normalized data

K = 12, since we want to avoid overfitting K [Bubeck and
Von Luxburg, 2007]. Instead, We overestimate K = 10.

K-means
Using the overestimated value K = 10, we find 10 clusters.
We show the cluster means in figure 3. We find clusters 0 and
2 which follow the same pattern as evening peak consumers,
3 and 8 which follow the same pattern as energy saving con-
sumers, 4 and 9 which follow the same pattern as morning
peak consumers and 5 and 6 which follow the same pattern
as day working consumers. The cluster sizes can be found
in table 1 and the individual cluster means can be found in
appendix A. We have similar profiles, thus we continue with
the second phase of our method, two-level K-means.

Finding the optimal K for Two-level K-means
Now we perform the elbow method for two-level K-means.
In figure 4, we see the elbow value to be 6.

Two-level K-means
Using K = 6, we now find 6 unique consumption profiles.
See figure 5. We can classify the profiles, following the nam-
ing introduced in [Jeong et al., 2021]. We show the name and
size of each found profile in table 2.



Figure 3: K-means

Profile Cluster(s) Combined size
Evening peak 0, 2 1577
Home working 1 811
Energy saving 3, 8 773
Morning peak 4, 9 461
Day working 5, 6 1582
Night peak 7 47

Table 1: K-means clusters

Figure 4: Elbow method Two-level K-means

Cluster Profile Size
0 Day Worker 2827
1 Owl 47
2 Morning Peak 151
3 M-pattern 310
4 Evening Peak 1577
5 Energy Saving 339

Table 2: Two-level K-means clusters

Figure 5: Two-level K-means

The Day Worker profile, as can be found in figure 6a,
shows the consumption behavior of the average consumer that
works during the day. The consumer uses energy in the morn-
ing before going to work and in the evening after coming back
home. In the evening energy consumption peaks, most likely
due to lower temperature and more use of electronic devices.

The Owl profile, as shown in figure 6b, shows the con-
sumption behavior of a consumer that consumes energy as an
owl. Just like an owl the consumer uses energy from night to
daybreak.

The Morning Peak profile, as presented in figure 6c, is al-
most the same as the Day Worker profile. It differs from the
Day Worker profile in where the peak is located. Instead of
in the evening, energy consumption peaks in the morning.

The M-pattern profile, as can be seen in figure 6d, shows
the consumption behavior that has is M shaped.

The Evening Peak profile, as shown in figure 6e, shows
consumption behavior of a consumer that works during the
day, but keeps consuming energy during the night longer than
a Day Worker.

The Energy Saving profile, as can be found in figure 6f,
shows consumption behavior of a consumer that consumes
less energy during the afternoon.

4.3 Community Modelling
We sample from the consumption profiles we found to find
the influence of the diversity factor on the cost. We model
different communities for varying diversities. We do this
by modelling a community, as described in 3.1, of 200 pro-
sumers who have the exact same consumption behavior. This
community has a diversity factor of exactly 1. So, to in-
crease the diversity factor slightly, we introduce a different
consumption behavior by replacing one of the 200 prosumers
with another consumption profile. This results in a diversity
factor higher than 1. We do this iteratively until all the pro-
sumers have been replaced, to keep increasing the diversity
factor. For example, we model a community of 200 Day
Workers, with a diversity factor of 1.000. Now, we replace
one of the 200 Day Workers with 1 Owl. This results in a
community of 199 Day Workers and 1 Owl with a diversity



(a) Day Worker (b) Owl (c) Morning Peak

(d) M-pattern (e) Evening Peak (f) Energy Saving

Figure 6: 6 unique consumption profiles

factor of 1.001. However, the change in diversity and the ef-
fect of the diversity factor is very volatile, since it depends
on the exact composition of the community. So, to discover
a general pattern, we repeat this experiment with 6 different
starting communities, representing every found profile.

4.4 Influence of the Diversity Factor on the Cost

Having done the modelling, we can now see how the diversity
factor affects the cost. In figure 7, we can see that a diver-
sity factor of 1.00 has a mean energy cost of around £ 0.091
per kWh and a diversity factor of 1.30 a mean energy cost
of around £ 0.088 per kWh. This reduction in costs is a re-
sult of residual demand being compensated by excess energy
generated by the community. For communities with a low
diversity factor, the effect of a single prosumer that can com-
pensate the residual demand is higher since there are many
periods of time where residual demand can be compensated
by a prosumer with a different consumption profile. How-
ever, for communities with a high diversity factor, most of the
residual demand is already being compensated by other pro-
sumers in the community. In such communities, the added
value of a prosumer with different consumption behavior is
small since it is less likely that the prosumer’s excess energy
and the communities’ residual demands align. Even if such a
prosumer’s excess generation could compensate the residual
demands perfectly, most of the cost benefits due to diversity
are already achieved by other prosumers. This can be seen in
figure 7 at a diversity factor of 1.15. From this value forward
the added financial benefit becomes lower.

Figure 7: Community costs with growing diversity factor



5 Responsible Research
The experiment is performed as described in section 3. Every
performed step can be reproduced following its description.
Furthermore, the research is performed in a thoughtful man-
ner. We have presented work, data and ideas of others with
the appropriate medium of presentation, i.e. citations. All
cited work can be found in the reference list. No data is fab-
ricated or falsified and all relevant observations are reported.
Finally, there is no conflict of interest.

6 Conclusions
In this paper, we investigated the influence of energy con-
sumption behavior diversity on community energy costs. We
discussed using K-means to identify consumption profiles
from the Low Carbon London dataset [Networks, 2015],
which contains energy demands of 5567 households over a
timespan of 2.5 years. The data was filtered on the winter-
weekdays and normalized. We introduced a novel improve-
ment to K-means to address one of the biggest weaknesses of
K-means, i.e. incorrect clustering with unbalanced datasets,
namely Two-level K-means. We found unique consumption
profiles by clustering representatives from the first phase of
Two-level K-means. We used the found consumption pro-
files to model energy communities, according to the model
introduced in [Norbu et al., 2021]. Finally, we analysed the
influence of the diversity factor on the community cost.

Results from the analysis show that an increased diversity
factor can provide financial benefit. This is a result of resid-
ual demand being compensated by excess energy generated.
The added financial benefit depends on the composition of the
community. For a community with a low diversity factor, the
added value of a prosumer with deviating consumption be-
havior is high. For a community with a high diversity factor,
the added value is small since it is less likely the prosumer’s
excess energy and the communities’ residual demands align.
Even if such a prosumer’s excess energy generation could
compensate the residual demands perfectly, almost all of the
cost benefits due to diversity are already achieved by other
prosumers.

In future work, our experiment can be extended with differ-
ent clustering methods to find all the different unique clusters.
Other clustering methods could find more or different unique
clusters. Different energy community models and sampling
methods are other directions which can be promising. An-
other interesting question is what the best community com-
position is based on the most common and unique consump-
tion profiles. Finally, this experiment can be performed on
other datasets, e.g. energy community projects in other envi-
ronments.
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(a) K-means profile 0 (b) K-means profile 1 (c) K-means profile 2

(d) K-means profile 3 (e) K-means profile 4 (f) K-means profile 5

(g) K-means profile 6 (h) K-means profile 7 (i) K-means profile 8

(j) K-means profile 9

Figure 8: 10 representatives
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