
 
 

Delft University of Technology

Topology optimization for high-resolution designs
Application in solar cell metallization
Gupta, Deepak

DOI
10.4233/uuid:51dde3f6-2a38-47a0-b719-420ff74ded5d
Publication date
2019
Document Version
Final published version
Citation (APA)
Gupta, D. (2019). Topology optimization for high-resolution designs: Application in solar cell metallization.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:51dde3f6-2a38-47a0-
b719-420ff74ded5d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:51dde3f6-2a38-47a0-b719-420ff74ded5d
https://doi.org/10.4233/uuid:51dde3f6-2a38-47a0-b719-420ff74ded5d
https://doi.org/10.4233/uuid:51dde3f6-2a38-47a0-b719-420ff74ded5d


TOPOLOGY OPTIMIZATION FOR
HIGH-RESOLUTION DESIGNS

APPLICATION IN SOLAR CELL METALLIZATION





TOPOLOGY OPTIMIZATION FOR
HIGH-RESOLUTION DESIGNS

APPLICATION IN SOLAR CELL METALLIZATION

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus Prof. dr. ir. T. H. J. J. van der Hagen,
chair of the Board of Doctorates,

to be defended publicly on
Tuesday 02, April 2019 at 10:00 o’clock

by

Deepak K. GUPTA

Master of Science & Technology
Indian Institute of Technology (Indian School of Mines), Dhanbad, India,

born in Basti, India.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. F. van Keulen, Delft University of Technology, promotor
Dr. ir. M. Langelaar, Delft University of Technology, promotor

Independent members:
Prof. dr. A. H. M. Smets, Delft University of Technology
Prof. Dr.-Ing. habil. M. Ruess, Hochschule Düsseldorf - University of Applied Sciences
Dr. N. Aage, Technical University of Denmark
Dr. O. Amir, Technion - Israel Institute of Technology
Prof. dr. U. Staufer, Delft University of Technology, reserve member

Other members:
Dr. ir. M. Barink, TNO Holst Centre, Eindhoven

This work is part of the Industrial Partnership Program “Computational sciences for en-
ergy research” of the Foundation for Fundamental Research on Matter, which is part of
the Netherlands Organization for Scientific Research (NWO). This research programme
(12CSER090) was co-financed by Shell Global Solutions International B.V.

Keywords: metallization designs, solar cells, topology optimization, freeform,
multiresolution, adaptivity

Printed by: Gildeprint

Cover image: Created with slight modifications applied to a result related to this re-
search.

Copyright © 2019 by D. K. Gupta

ISBN 978-94-6366-152-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


to my late mother,
my father and my beloved wife





SUMMARY

Due to global population growth and industrial development, there is a rising demand
for energy. It is desired that this demand is met in a cleaner and more sustainable way.
Among the various renewable energy sources, solar power is experiencing remarkable
growth throughout the world. To ensure that solar power can be a sustainable solution
for the future energy demands, intensive research is being conducted to make solar cells
more efficient and thereby reduce the cost of solar energy.

Solar cells have metallization patterns on the front side to collect current generated
in the semiconductor layer. The performance of a solar cell significantly depends on
the amount of electrode material used for metallization, and the pattern in which it is
deposited. There exist several optimization approaches to optimize the metallization
distribution on the front surface of solar cells. However, due to the numerical simplifi-
cations associated with these methods, only limited gains in power output are observed.
Moreover, the applicability of these methods is historically restricted to rectangular or
circular domains. There has recently been a drive towards increased freeform photo-
voltaic installations. Given that these shapes can be very arbitrary, the optimal metal-
lization patterns for such geometries can be expected to be complex, and the traditional
methods cannot be used to design them.

The main aim of this thesis is to explore the potential of topology optimization (TO)
to optimize the metallization designs for solar cells with minimal restrictions on elec-
trode and domain shape. Solar cell metallization typically covers only a small area frac-
tion of the cell, and its critical dimensions are much smaller than the cell itself. The
computational cost of conventional TO approaches becomes a limiting factor for such
design problem characteristics. To address this, a second aim of this thesis is to develop
efficient TO formulations. Such methods should be computationally cheap, able to gen-
erate high-resolution designs and the results should be accurate.

The two aims of this thesis are addressed in two parts. Part I focuses on building a
modeling and optimization strategy based on TO for the metallization patterns in solar
cells. The resultant designs obtained using TO are found to resemble the conventionally
used H-patterns in terms of performance, but no significant efficiency improvements are
found. However, for freeform solar cell geometries (e.g. circular, leaf-shaped, christmas
tree-shaped) and for concentrated photovoltaics under nonuniform temperature and
illumination profiles, the optimized designs can improve the solar cell performance by
over 50% and 26%, respectively.

Part II of this thesis aims at efficiently obtaining high-resolution designs in TO. For
this purpose, multiresolution topology optimization (MTO) methods are explored. In
MTO schemes, the finite element mesh and the design domain are decoupled allowing
high resolution design representations at low analysis costs. We show that for a cer-
tain chosen analysis resolution, there is always an upper bound on the number of de-
sign variables that can be used to express the design resolution without leading to non-
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uniqueness. Further, a detailed investigation is performed into the formation and prop-
erties of QR-patterns, which are numerical artefacts comprising artificially stiff regions
that can arise in MTO optimized designs.

Based on our results related to conventional MTO, an efficient novel MTO scheme,
namely dp-adaptive MTO, is proposed which is suited for generating high-resolution de-
signs at reasonable computational costs. Through several numerical examples of 2D
test cases, it is found that d p-adaptive MTO can obtain equally well performing opti-
mized designs at up to 10 times lower computational cost than the conventional MTO.
Although the potential of d p-adaptive MTO for solar cell metallization design has briefly
been discussed, the real benefits still need to be explored and is a direction of future re-
search work related to this subject.

Overall, based on the results presented in this thesis, it can certainly be concluded
that TO can contribute to improving the performance of solar cells. In particular, it is of
interest to use TO for designing metallization patterns in concentrated and freeform so-
lar cells, where significant improvements in performance can be obtained over the con-
ventional patterns. The numerical investigations related to high-resolution TO and par-
ticularly the dp-adaptive MTO scheme provide new directions to generate high-resolution
structures that can deliver increased power output at relatively low computational (and
energy) cost, and are also expected to be of great use for many applications outside the
solar cell field. It is expected that the research output of this thesis contributes towards
making renewable energy affordable and making this world greener.



SAMENVATTING

Door de wereldwijde bevolkingsgroei en industriële ontwikkeling is er een toenemende
vraag naar energie. Het is wenselijk dat deze vraag beantwoord wordt met schonere en
duurzamere oplossingen. Een van de verschillende beschikbare duurzame energiebron-
nen, zonne-energie, maakt wereldwijd een enorme groei door. Om te verzekeren dat
zonne-energie een duurzame oplossing kan vormen voor de toekomstige energievraag,
wordt er intensief onderzocht hoe zonnecellen efficiënter gemaakt kunnen worden, en
zodoende de kosten van zonne-energie te drukken.

Zonnecellen hebben aan de voorzijde een metallisatie patroon om de stroom te ge-
leiden die in de halfgeleiderlaag gegenereerd wordt. De prestaties van een zonnecel han-
gen sterk af van de hoeveelheid elektrodemateriaal dat gebruikt wordt voor deze metal-
lisatie, alsmede van het patroon waarin het wordt aangebracht. Er bestaan verschillende
optimalisatieprocedures om het optimale metallisatiepatroon op het oppervlakte van
een zonnecel te bepalen. Echter, door de numerieke vereenvoudigingen in deze metho-
des, is de toename in geproduceerde energie slechts gering. Daarnaast is de toepasbaar-
heid van deze methodes historisch gezien beperkt gebleven tot rechthoekige of ronde
domeinen. Recent staan echter ook vrij gevormde zonnecellen en zonnepanelen sterk
in de belangstelling. Aangezien deze vormen heel arbitrair kunnen zijn, zijn de optimale
metallisatie patronen voor dergelijke geometrieën naar verwachting zodanig complex
dat bestaande methodes niet gebruikt kunnen worden om deze patronen te ontwerpen.

Het hoofddoel van dit proefschrift is om het potentieel van topologie optimalisatie
(TO) om metallisatie van zonnecellen te optimaliseren te verkennen, met minimale re-
stricties op zowel de vorm van de cel als de electrode. De metallisatie beslaat normaliter
slechts een klein deel van het zonnecel-oppervlak, en de bijbehorende kritieke afmetin-
gen zijn veel kleiner dan die van de cel zelf. Deze karakteristieken van dit ontwerppro-
bleem maken dat bij klassieke TO benaderingen de rekentijd sterk zal oplopen. Om deze
beperking te omzeilen, is een tweede doel van dit onderzoek het ontwikkelen van effici-
ëntere TO methoden. Deze methoden dienen een geringe rekentijd te hebben, moeten
hoge resolutie resultaten kunnen opleveren en moeten daarbij ook numeriek nauwkeu-
rig zijn.

De twee doelen van dit onderzoek zijn in dit proefschrift beschreven in twee delen.
Deel I richt zich op het ontwikkelen van een simulatie- en optimalisatie-strategie ge-
baseerd op TO, voor de metallisatiepatronen van zonnecellen. De hieruit resulterende
ontwerpen voor rechthoekige cellen blijken vergelijkbaar te presteren met het conventi-
oneel gebruikte H-patroon, significante verbeteringen in efficiency zijn niet gevonden.
Echter, voor vrij gevormde cellen (in de vorm van bijv. cirkels, bladeren of een kerst-
boom) en voor geconcentreerde fotovoltaïsche cellen onder niet-uniforme temperatuurs-
en belichtingssituaties, blijkt dat optimalisatie de energieopbrengst van een zonnecel
kan verbeteren met meer dan respectievelijk 50% en 26%.

Deel II van dit proefschrift is gericht op het efficiënt verkrijgen van hoge resolutie TO
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resultaten. Hiervoor worden multi-resolutie topologie optimalisatie (MTO) methodes
verkend. In MTO worden de eindige elementen mesh en het ontwerpdomein van elkaar
losgekoppeld, wat hoge ontwerpresolutie tegen lage simulatiekosten mogelijk maakt.
We tonen aan dat voor een zekere gekozen simulatieresolutie, er altijd een bovengrens is
voor het aantal ontwerpvariabelen dat zinvol gebruikt kan worden om het ontwerp te be-
schrijven, voordat er een niet-unieke beschrijving ontstaat. Verder worden de vorming
en de eigenschappen van QR-patronen in detail onderzocht, dit zijn numerieke artifac-
ten bestaande uit delen met een kunstmatig hoge stijfheid welke kunnen ontstaan in
ontwerpen gegenereerd via MTO.

Op basis van onze bevindingen betreffende conventionele MTO methoden, wordt
een efficiënte nieuwe MTO-benadering voorgesteld genaamd dp-adaptieve MTO. Deze
benadering is in staat om hoge resolutie ontwerpen te genereren tegen een relatief lage
rekentijd. Middels meerdere numerieke voorbeelden van 2D testproblemen blijkt dat
dp-adaptieve MTO gelijkwaardig presterende ontwerpen kan genereren in slechts een
tiende van de rekentijd van conventionele MTO. Hoewel ook het potentieel van dp-adaptieve
MTO voor zonnecel-metallisatie ontwerp kort wordt besproken, moeten de daadwerke-
lijke voordelen in die toepassing nog worden verkend, en vormt dit een richting voor
verder onderzoek.

Gebaseerd op de resultaten gepresenteerd in dit proefschrift, kan zeker worden ge-
concludeerd dat TO kan bijdragen aan de prestatieverbetering van zonnecellen. Het is
met name interessant om TO te gebruiken voor het ontwerp van metallisatie-patronen
van geconcentreerde fotovoltaïsche cellen en vrij gevormde zonnecellen. Het nume-
rieke onderzoek op het gebied van hoge-resolutie TO en in het bijzonder de voorgestelde
dp-adaptieve MTO methode biedt nieuwe benaderingen om tegen geringe rekenkosten
hoge resolutie zonnecel ontwerpen te genereren met verbeterde energieproductie. De
verwachting is dat deze methoden daarbij ook van groot nut kunnen zijn voor andere
toepassingen naast zonnecellen. Verder is de verwachting dat de onderzoeksresultaten
zoals gepresenteerd in dit proefschrift bijdragen aan het betaalbaarder en haalbaarder
maken van hernieuwbare energie en het groener maken van deze wereld.
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2 1. INTRODUCTION

1.1. MOTIVATION

1.1.1. Need FOR CLEAN ENERGY
With the increasing energy demand and the desire to meet this demand in a cleaner and
more sustainable way, renewable energy sources such as wind, sun and water are gaining
more and more importance. Among the various renewable energy sources, solar power
is considered to be of significant potential impact. More than 140 years ago, Professor
Augustine Mouchot stated that the sun could be seen as one of the important sources of
energy for the future [1]:

“The time will arrive when the industry of Europe will cease to find those nat-
ural resources, so necessary for it. Petroleum springs and coal mines are not
inexhaustible but are rapidly diminishing in many places. Will man, then, re-
turn to the power of water and wind? Or will he emigrate where the most pow-
erful source of heat sends its rays to all? History will show what will come.”

- A. Mouchot, 1873

When Charles Fritt created the first working solar cell from selenium, Werner von Siemens
commented [2]:

“In conclusion, I would say that however great the scientific importance of this
discovery may be, its practical value will be no less obvious when we reflect
that the supply of solar energy is both without limit and without cost, and that
it will continue to pour down upon us for countless ages after all the coal de-
posits of the earth have been exhausted and forgotten” - W. von Siemens, 1885

These two quotes clearly highlight the importance of solar energy as well as the future
expectations from it.

Solar power is experiencing remarkable growth throughout the world. It is expected
that the cumulative global solar photovoltaics (PV) market will triple to around 700 GW
in 2020 compared with that in 2015 [3] and anticipations are that by 2050, solar power
will become the largest source of electricity with PV capacity growing upto 4600 GW [4].
Looking at the United States alone, the total electrical power sector capacity in 2015 was
reported to be around 1045 GW [5] with 27 GW of total solar power capacity, and it is
reported that 30% of its all new electricity generation capacity in 2015 came from solar.
In 2017, the PV installations are expected to increase by more than 85 GW [6].

To ensure that solar power can be a sustainable solution for the future energy de-
mands, new and innovative ways are being attempted to increase the overall installa-
tions. Significant research is being conducted to make solar cells more efficient and
thereby reduce the cost per unit of solar energy [7]. At cell level, various ways to im-
prove the cell efficiency include using superior semiconductor material, improving the
metallization design, minimizing shading losses and improving light-trapping capability
of the solar cell. In this thesis, we focus on improving the metallization design in solar
cells.

Solar cells have metallization patterns on the front side to collect current generated
in the semiconductor layer. During metallization, electrode material is deposited on the
front side, which helps to reduce the overall series resistance, and improves the solar cell
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Figure 1.1: Front view of a crystalline silicon solar cell1(left), and the magnified view of its bounded region in
red (right). The magnified view shows the H-pattern, comprising parallel electrode fingers with uniform line
spacing.

performance. In the past, several researchers have looked into developing cost-effective
fabrication techniques to obtain desired metallizations. A few examples of fabrication
techniques are laser sintering [8], selective aerosol ablation [9], metal aerosol jet printing
[10] and screen printing [11]. The performance of a solar cell significantly depends on
the amount of electrode material used for metallization, and the pattern in which it is
deposited. For example, for a rectangular solar cell, traditionally an H-pattern based
metallization design, as shown in Fig. 1.1, is used [12]. Similarly, for a circular cell, a
radial pattern is preferred [13]. The important characteristic of these patterns is that they
provide maximum power output for the respective solar cell geometries. With tailored
metallization designs, the series resistance is reduced, and higher solar cell efficiencies
are obtained. The details on how certain metallization designs lead to increased power
output will be discussed in Chapter 2 of this thesis.

In the past, various ways to optimize the metallization pattern have been explored.
Some of the earliest examples are optimization of the grid line spacing assuming a unidi-
rectional current flow in the collecting grid [15], distributed-diode-based optimization [16],
and simultaneous optimization of the grid lines and the main metallic strip (busbar) [17].
However, due to the numerical simplifications involved, most of the existing approaches
can lead to limited improvement in the solar cell performance and are applicable to only
a few geometrical shapes. For example, the traditional H-pattern shown in Fig. 1.1 con-
sists of only vertical busbars and horizontal metal fingers and is optimized for rectan-
gular solar cells. With the restriction on the geometry of the metal lines, only the finger
thickness and line spacing are optimized. Optimization approaches involving such re-
strictions have reduced flexibility and only limited improvement in performance can be
expected.

To cope with the increasing need for solar power, researchers are also investigating
possibilities of fabricating non-rectangular solar cells (e.g. [18]). The advantage of non-
rectangular shapes is that these cells can be installed on objects of daily use without any
interference with their visual aesthetics. With added freeform photovoltaic installations,
the overall solar power generation can be increased, however, it is important that these

1Image of a modern crystalline silicon solar cell by WhistlingBird [14], available under a Creative Com-
mons Attribution-Noncommercial-Share Alike license.
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solar cells are efficient as well. Unlike the rectangular shapes, the H-pattern cannot be
used as a metallization design for these cells. Also, given that these shapes can be very
arbitrary, the optimal metallization patterns for such geometries can be expected to be
complex, and it is not easy to choose efficient metallization designs intuitively.

There exist several advanced techniques to fabricate very fine electrode lines [11, 19,
20], which can eventually help in printing complex metallization patterns. Thus, realiz-
ing complex metallization patterns is not a problem anymore, however, designing such
patterns is still a challenge. Clearly, in this advanced computing era, we are missing a
recipe that can find designs with minimal restrictions.

1.1.2. Inspiration FROM NATURE

The shapes and designs of various objects found in nature are complicated, difficult to
understand, yet are aesthetically pleasing. Although these patterns might seem random
at first sight, it has been found that they are generally optimized for a certain task or a
variety of tasks. The venation network of leaves is one such beautiful example. Fig. 1.2
shows the venation networks for three different leaves. At first sight, no direct correla-
tion can be deduced among these networks. However, research has shown that these
networks are optimized by nature so as to adapt to the local geographical conditions
such as local precipitation and temperature [21].

There are various physical phenomena that are taken into consideration for design-
ing the optimal venation networks. For example, the carbon assimilation needs to be
maximized through effective water transport rates and an optimized balance between
the photosynthesis and transpiration processes. Other aspects are minimizing sags or
mechanical deformations through optimal mass distribution, maximizing leaf life span
through improved mechanical strength and avoiding biotic and abiotic damage [22].

From this example, it can be seen that the complex shapes in nature are not random,
but instead maximize certain performance aspects. Similar observations have motivated
scientists in the past to use such designs in engineering problems, e.g. improving metal
carbide synthesis [23], and designing microfluidic networks for perfusable tissue con-
structs [24]. There exist several other examples of bioinspired applications, where the
designs existing in nature have been adopted. However, it is important that the designs
are not directly copied from nature, since they are optimized for a certain task. Our goal
should be to understand the physics behind these designs, learn from them, and adopt
their features to our design problem. From the examples listed here, it is certainly clear
that designs that resemble the patterns existing in nature could possibly help in improv-
ing the performance of a structure. To obtain such designs, it is important that the design
freedom is increased, which means reducing the restrictions on the shapes of the design.
Nevertheless, these designs serve as a motivation to investigate whether solar cell per-
formance can be improved with reduced restrictions on metallization design.

Among other possibilities, Topology Optimization stands out as the most promising
approach to exploit increased design freedom. Without any requirement of the initial
concept from the side of the designer, topology optimization (TO) generates well per-
forming designs, taking into account the physics of the problem and without any explicit
restriction on geometry, i.e. shape and topology. In a more mathematical sense, TO is a
computational procedure that optimizes the distribution of a given material in a certain
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Figure 1.2: Venation network of leaves for three different angiosperm species [22].

domain under a set of given constraints, such that the value of a certain performance
functional is maximized [25]. Looking back at the topology of the structures optimized
in nature, for certain problems, it has been observed that the TO resultant designs form
similar dendritic structures and resemble the patterns existing in nature. Whether or not
TO is the exact match to how nature optimizes designs, the patterns obtained using TO
generally perform very well. In the past, the potential of TO has been demonstrated by
researchers for various problems, and an overview can be found in the review paper by
Deaton and Grandhi [26]. Based on this motivation, TO is further used in this thesis.

1.1.3. Challenge OF COMPUTATION
In a TO regime, it is important that the physics of the problem is correctly modeled.
This is generally achieved using the finite element method [27]. For the solar cell met-
allization design problem, the current flow as well as the voltage distribution on the
front surface of the cell need to be accurately modeled. This can be considered a two-
dimensional flow problem and has been modeled in the past using finite element model-
ing (FEM) [28]. For optimizing the metallization pattern, such a model can be employed
and a two-dimensional implementation of TO is needed. Since TO is a well-studied ap-
proach, its advantages and limitations in the context of solar cell metallization design
can be forecasted beforehand. TO in 2D has been used for a wide variety of problems e.g.
structural, thermal, and efficient computer codes in various programming languages are
freely available on the web. The 99-line MATLAB® based implementation of TO is one of
the finest examples, written to optimize structural designs for maximum stiffness [27].

The solar cell metallization design problem is a computationally challenging prob-
lem to solve. Among others, the main challenges are:

• The inherent nonlinearity of the solar cell response due to the behavior of the
semiconductor layer, which requires iterative solution procedures.

• The desired metallization feature size requires very fine meshes with high FEM
costs.

• Metallization typically covers 5-10% of the solar cell surface. For such low material
fractions, solving the optimization problem becomes harder.

Combined, these challenges significantly increase the computational cost and complex-
ity of the TO process. More details related to these challenges follow.
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At every iteration of TO, a system of equations, obtained from FEM discretization,
is solved. In general, this is the most expensive part of a TO methodology in terms of
computational cost. For linear problems, a 2D implementation of TO is not so expensive.
For example, a simple 2D structural compliance minimization solved using a sufficiently
fine mesh on a personal computer takes only a minute or two [29]. However, the solar
cell metallization problem is not so straightforward. The current generated at any point
in the solar cell is nonlinearly related to the voltage drop across it. Due to this, the system
of equations obtained using FEM discretization need to be solved in an iterative manner.
This means that at every iteration step of TO, the FE system needs to be solved several
times, thus, leading to an increase in the required computational time.

Compared to the design domain size, i.e. the front surface of the cell, the size of
the smallest metal feature that can be fabricated is generally several orders lower. For
example, for a crystalline silicon solar cell of 15× 15 cm2 area, the minimum allowed
width of the electrode metal can even be 30 µm. If a structured mesh of quadrilateral
elements with bilinear shape functions is used, a minimum of 25 million FEs will be
needed to model the current flow for such a case. To avoid issues of checkerboards and
mesh-dependence, filtering is employed in TO. This requires refining the mesh further
and the problem size can easily cross 100 million FEs. This level of computation is far
beyond the limits of a personal computer. Thus, advanced TO formulations are needed
which can handle such problems.

For most of the problems studied using TO in the past (e.g. structural, thermal etc.),
the material takes up a considerable fraction of the design domain (> 30%). However, for
the solar cell problem, the material volume fraction is significantly lower, governed by
the compromise between series resistance losses and shading losses. A general obser-
vation is that the total area of the front surface that is covered with the electrode metal
layer is only 4-6% of the total front surface area of the cell. TO problems with such low
volume fractions can be very difficult to solve. It is well known that for low volume frac-
tions, the optimizers used in TO find it hard to efficiently distribute the material. With
such limitations, the convergence of traditional TO process can be affected and it might
be challenging to obtain efficient metallization patterns that can deliver improved power
output.

1.2. RESEARCH OBJECTIVE

The main aim of this thesis is to explore the potential of topology optimization (TO) in
designing efficient metallization patterns for solar cells. However, based on the reason-
ings provided earlier, it is quite evident that to be able to fully use the power of TO for
improving solar cell performance, efficient TO formulations with proper modeling tech-
niques are needed. Such methods should be computationally cheap, able to generate
high-resolution designs and the results should be reliable.

An investigation in the direction of improving the topology optimization methodol-
ogy, so as to obtain efficient high-resolution designs, is implied. However, this research
aspect is applicable to a wide range of other TO application domains and is not neces-
sarily restricted to the solar cells. Thus, in this work, an attempt is made to answer the
following two related research questions:
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1. How can topology optimization be used to optimize the metallization patterns in
solar cells ?

2. How can topology optimization be used to obtain well performing high-resolution
designs for a given problem ?

To the best of our knowledge, the application of TO for designing efficient metalliza-
tion designs for solar cells has so far been unexplored. Thus, the first research question
focuses in this direction. The goal here is to establish a TO framework for the metal-
lization design of solar cells. Due to the enormous flexibility, TO is applicable for cases
where the other existing methods cannot be used, e.g., freeform solar cell geometries.
The application of TO for such scenarios as well is investigated.

In the second part of the research, investigation is done in the direction of obtain-
ing high-resolution designs from TO. A fundamental study is performed on this aspect
and based on the exisiting approaches, the scientific gaps are identified. Among other
possibilities, multiresolution topology optimization (MTO) methods [30, 31] are found
to be of potential use. In MTO schemes, the finite element mesh and the design do-
main are decoupled allowing high resolution design representations for low modeling
costs. In this research, a rigorous study is performed on the theoretical foundation and
numerical stability of these methods. Based on the results of this study, an efficient TO
scheme is proposed which is suited for generating high-resolution designs at reasonable
computational costs.

1.3. OUTLINE
The majority of the chapters of this thesis are based on published or submitted journal
articles and conference papers. Although this has resulted in a certain degree of redun-
dancy, the advantage is that the chapters are self-explanatory and can be read indepen-
dently. Fig. 1.3 illustrates the structure of this thesis which is divided into three parts and
consists of a total of nine chapters. Part I focuses on building a modeling and optimiza-
tion strategy for the metallization patterns in solar cells. Part II looks at the problem of
high-resolution designs in topology optimization from a more general point of view. The
conclusions and recommendations form Part III of this thesis. More details on each part
follow.

1.3.1. PART I: OPTIMIZING SOLAR CELL METALLIZATION DESIGN
Chapter 2 presents a TO formulation for optimizing the metallization designs on the
front surface of the solar cells. This chapter also provides the reader a general introduc-
tion to solar cell architecture and terminology. For simplicity, the shunt resistance and
some components of the series resistance, such as contact resistance, are ignored in the
finite element model and uniform illumination of the cell under one sun intensity is as-
sumed. Together with the metallization pattern, the operating voltage of the busbar is
also optimized. Several solar cell configurations are considered and the role of cell size
as well as the resolution of the finite element mesh are studied.

Chapter 3 extends the application of TO towards simultaneous optimization of the
metallization patterns on the front as well as the rear sides of solar cells. The potential



1

8 1. INTRODUCTION

Chapter 1
Introduction

PART I
Optimizing solar cell
metallization design

Chapter 2
A topology optimiza-
tion based framework

Chapter 3
Integrated front-rear grid opti-
mization in freeform solar cells

Chapter 4
Concentrated solar cell modeling

and metallization optimization

PART II
Efficient high-resolution designs

in topology optimization (TO)

Chapter 5
Combined mesh and

penalization adaptivity

Chapter 6
Bounds for decoupled analysis

and design discretizations

Chapter 7
QR-patterns: Numerical arte-

facts in multiresolution TO

Chapter 8
A dp-adaptive multires-

olution TO approach

PART III

Chapter 9
Conclusions and

Recommendations

Figure 1.3: Visual outline of this thesis. The thesis comprises a total of 9 chapters and is divided into three
parts. Parts I and II focus on the two research questions and can be read independently.
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of TO is also investigated for freeform solar cells and the performance of the resultant
optimized designs are validated against recently published experimental results.

For more accurate modeling and optimization, Chapter 4 presents an improved ver-
sion of the numerical model presented in Chapter 2. The shunt and series resistance
components are included. The inclusion of contact resistance especially makes this
model significantly different from the earlier one. The model is further extended for
concentrated photovoltaics (CPV), and non-uniform illumination and temperature pro-
files are considered. Based on this model, the potential of TO is explored for designing
metallization patterns under non-uniform, concentrated illumination and varying tem-
perature conditions.

1.3.2. PART II: HIGH-RESOLUTION DESIGNS IN TOPOLOGY OPTIMIZATION

The research towards efficiently obtaining high-resolution designs in TO starts with an
investigation of the various existing approaches that could be of potential use and the
scientific gaps that exist. Chapter 5 presents an adaptive TO formulation where the finite
element mesh resolution and penalization terms are adapted during the course of the
optimization. The applicability of this approach is tested on numerical examples of TO.

Chapters 6 and 7 study the multiresolution topology optimization (MTO) approaches
and outline the associated issues based on theoretical and numerical investigations.
Possible solutions to these issues are identified and an adaptive MTO method is pro-
posed in Chapter 8. The applicability of this method is demonstrated on various numer-
ical examples.

1.3.3. PART III: CONCLUSIONS AND RECOMMENDATIONS

Chapter 9 presents the conclusions from this research and recommendations for the fu-
ture.
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2
A TOPOLOGY OPTIMIZATION

FRAMEWORK FOR SOLAR CELL

METALLIZATION DESIGN

This chapter presents a framework to optimize the front electrode patterns for solar cells.
Improving the front electrode design is one of the approaches to improve the performance
of the solar cells. It serves to produce the voltage distribution over the front surface such
that the current flow through the solar cell is maximized. In this chapter, we develop
a TO formulation for designing the front electrode pattern for side-contact and pin-up
modules. Specific challenges include the nonlinearity of the physical problem and the
design-dependent photocurrent loading. The greater design freedom of TO versus tradi-
tional shape optimization generates novel, efficient electrode patterns. In addition, we
study the effect of mesh resolution and solar cell size on the final design. The results sug-
gest that TO can probably be an effective method to generate designs that improve the
performance of solar cells.

This chapter is based on a journal article published in Structural and Multidisciplinary Optimization
journal, 51, 941-955 (2015) [1].
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2.1. INTRODUCTION
With the increasing population and the depletion of easily accessible fossil fuel reserves,
it has become necessary to find alternate and sustainable energy sources. Solar energy
has enormous potential and can be one of the solutions to our search. But, further tech-
nological improvements are needed to reduce the net cost per kilowatt-hour (kWh) of
power extracted from the solar cells.

A typical solar cell consists mainly of an active semiconductor layer sandwiched be-
tween a back electrode and a front metallization pattern (Fig. 2.1). The front and back
metal contacts are used to extract the current generated in the semiconductor layer.
This helps in reducing the power loss due to the low conductivity of the semiconduc-
tor. A considerable amount of research has been conducted in the past to optimize the
solar cell designs but the front electrode pattern has received relatively little attention.
The challenge of distributing the electrode material over the front surface of the solar
cells can be considered as an optimization problem of minimizing the power loss due to
shading caused by the electrode material (by reflecting the incident light) and the power
dissipated due to the resistance generated by the solar cell components.

Flat and Milnes [2] presented an effective use of multi-level grid metallization which
leads to improved performance of the solar cells. Conti [3] proposed a new approach for
designing the front metal grid of photovoltaic solar cells for an arbitrary cell geometry.
Burgers et al. [4] further improved the performance of solar cells by introducing a new
metallization pattern design which consisted of a limited number of holes connecting
the front side metallization to a foil at the rear side using pins. Antonini et al. [5] pro-
posed a tool for comparing the performances of different contact patterns for standard
solar cells. This method helped to some extent in moving from conventional to non-
conventional layouts. Wen et al. [6] performed a detailed analysis of two different top
contact grid structures based on the loss mechanisms associated with solar cells. Al-
though some work has been done on optimizing the front metal pattern, most of these
methods are based on intuitive notions and are restricted to certain predefined geome-
tries such as the ‘H-pattern’. With the advancements in printing technologies, fabrica-
tion of complex patterns is no longer a problem [7]. But the real challenge lies in de-
signing these complex patterns such that they can improve the performance of the solar
cells. Burgers [8] presented a two step approach that could eliminate the restrictions on
topology of the metallization design. However, this approach involved a few heuristic
calculations requiring prior information from the side of the designer.

We explore the application of topology optimization (TO) to generate new and po-
tentially superior layouts by optimizing the front metal pattern for maximum power out-
put. In some recent studies, TO has been used to design efficient light trapping struc-
tures for solar cells [9–11]. But, to the best of our knowledge, it has not been used to
design optimal front electrode patterns for solar cells. The current generated in a small
section of the solar cell depends on its local voltage. The design freedom of TO allows
the designs to approach optimal local voltage distribution over the front surface, which
maximizes the amount of current flowing through the solar cell. TO does not rely on an
initial geometric parametrization given by the designer. Rather, it allows material distri-
bution in any possible manner, thereby producing superior layouts which could never
be achieved by shape optimization [12].
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The current flowing in a solar cell and the voltage across it are nonlinearly related,
resulting in a nonlinear physical model. The occurring nonlinearity due to a nonlin-
ear voltage-dependent current source results in a path-independent nonlinear problem.
Some of the previous path-independent nonlinear problems considered in topology op-
timization are non-linear thermoelastic problems [13], structural problems involving ge-
ometrical nonlinearity (e.g. [14, 15]) and electrothermomechanical problems [16]. Some
of the previous applications of TO which show resemblance to the problem presented in
this chapter are steady-state heat conduction problems [17, 18], involving the solution
of a similar Poisson equation and steady-state flow of incompressible fluid [19, 20], deal-
ing with a pressure Poisson equation. However, the problem considered here involves a
strong nonlinearity. In addition, a particular feature of the solar cell front electrode de-
sign problem is that the shading caused by the electrode material distribution reduces
the performance. Thus, there needs to be no volume constraint in the problem and the
optimum amount of material follows from the balance between shading and resistive
losses. Furthermore, the power produced by a solar cell depends on the voltage drop
across the connected load. Because this voltage drop is design dependent, it is included
as an additional design variable in TO.

This chapter intends to introduce and discuss the TO procedure for solar cell elec-
trode design. A comparative study with existing designs in terms of performance is out-
side the scope of this work. Further, there are fabrication-related constraints which have
not been yet incorporated in the proposed methodology. The results presented in this
chapter cannot be directly considered as producible patterns. Additional constraints
such as black-white pattern, imposing appropriate restrictions on the minimum possi-
ble feature occurring in the pattern, weak sensitivity towards fabrication imperfections
etc. need to be considered for obtaining producible patterns.

The rest of this chapter is organized in the following manner. Section 2.2 describes
the solar cell architecture, role of front electrode and provides a brief description on
modelling of a solar cell using the finite element method. Section 2.3 discusses the TO
formulation and the sensitivity analysis. Results and related discussions are provided in
Section 3.3 with the final conclusions reported in Section 3.4.

2.2. SOLAR CELL ARCHITECTURE AND MODELLING

2.2.1. SOLAR CELL OPERATION

A solar cell is an electric device based on the photovoltaic effect and it converts the en-
ergy of light directly into electricity. Fig. 2.1 shows the configuration of a simple silicon
(Si) solar cell. It consists of a semiconductor layer sandwiched between the front and
back electrodes. The semiconductor layer consists of a p-doped layer and an n-doped
layer joined together to form a p-n junction. The electrode grid transports the gener-
ated current to a larger main electrode, commonly called the busbar. From the busbar,
electrical connections are made to adjacent cells or an external load. Sometimes, a trans-
parent conductive oxide (TCO) layer might be added over the semiconductor layer. TCO
allows most of the sunlight to pass through and helps in the conduction of current [21].
However, it also has some adverse effects, such as, unwanted absorption of a part of solar
spectrum [22]. While the conductivity of TCO is very high as compared to the semicon-
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Figure 2.1: Typical Si solar cell configuration as used in this study.

ductor material, it is still several orders less than the conductivity of electrode material.
In the absence of photoillumination, the current generated in a solar cell is termed

as dark current (ID ) and is given as

ID = I0

(
exp

(
q̃V

kB T

)
−1

)
, (2.1)

where I0 is the reverse bias current, q̃ is the electric charge, V is the voltage, kB denotes
the Boltzmann constant and T is the temperature of the solar cell. For a detailed intro-
duction on current generation across a p-n junction, see [23]. Under photoillumination,
the net current (I ) is given as

I = IL − ID = IL − I0

(
exp

(
q̃V

kB T

)
−1

)
, (2.2)

where (IL) is the photoillumination current. IL is opposite to ID .
In a solar cell model, resistance corresponding to each component of the cell needs

to be taken into account. Fig. 2.2 represents the equivalent circuit of a solar cell. As the
reverse bias current across a p-n junction is negligible as compared to the forward bias
current, it can be represented by a diode. Solar cells have parasitic series and shunt re-
sistances associated with them. Series resistance (RS ) can include the series resistance
within the semiconductor layers, metallic contacts, contact interface of the semicon-
ductor and electrode layers and the external circuit (connecting the solar cell to the load
having resistance RL). Since we model the local current values at every spot of the so-
lar cell surface, the resistance of the metallic contacts and the interconnections are ex-
cluded. The series resistance of the interconnections is included as a part of the load
and the electrode resistance is taken into account while computing the total current at
the busbar. Shunt resistance (RSH ) can be generated due to the presence of a crack in the
semiconductor material. This crack causes for leakage across the p-n junction, thereby
providing an alternate path to the flow of current. In this work, we neglect RS and RSH

and assume the semiconductor material to have no ohmic series resistance and no sig-
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Figure 2.2: Equivalent electrical circuit for a solar cell [23].

nificant defects. In order to understand the effect of RS and RSH on the performance of
the solar cell, the reader is suggested to refer [23].

The total current I generated in a solar cell is the sum of the local current densities
on the whole surface area of the solar cell. To model the local phenomena in the cell,
instead of the total current, we must consider the local current density ( j ). This current
density j depends on the local voltage distribution of the solar cell. From this point, V is
used to represent the local voltage distribution and the relation between j and V is given
by:

j = jL − jD = jL − j0

(
exp

(
qV

kB T

)
−1

)
, (2.3)

where j , jL , jD and j0 are net, photoilluminated, dark and reverse bias current densities,
respectively at a spot of the solar cell. Fig. 2.3 shows the current density-voltage curve for
a solar cell. This curve can be defined for a single spot of the solar cell as well as for the
complete cell. Here, we discuss the j -V curve for a single spot of the solar cell. From the
j -V curve, it can be observed that j and jD increase non-linearly with voltage. Under
open-circuit condition, there is no net flow of current across the p-n junction and the
voltage drop across it is termed as open-circuit voltage (VOC ). The output power at VOC

is zero. Under short-circuit condition, the net current density across the p-n junction
is termed as short-circuit current density ( jSC ). In this condition, the voltage across the
cell is zero and the output power is again zero. From the power density curve, it can be
seen that there exists a point in between where output power is maximum. The current
density and voltage values corresponding to this point are represented by jmp and Vmp ,
respectively. For every unique semiconductor material, a new set of values for jmp and
Vmp might exist. Because of the non-linear relation between current and voltage for a
solar cell, identifying the maximum power point for a given solar cell is an optimization
problem itself. We observe that the performance of the solar cell depends on the local
voltages. Thus, it depends on the connected load and therefore, we use the busbar volt-
age as one of the design variables in the optimization.

2.2.2. ROLE OF FRONT METAL ELECTRODE
The net current generated in a solar cell needs to be extracted and passed into the at-
tached load. Due to the very low conductivity of the semiconductor material, connect-
ing the load directly to the semiconductor through point nodes will lead to a high value
of Rs and, consequently, a considerable amount of power will be dissipated. Fig. 2.4
shows two different solar cells, A and B. Cell A consists of only a metal contact at the left
side and Cell B has a left metal contact and two fingers extending on the surface of the
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Figure 2.3: Current density-voltage characteristics curves for a solar cell. Also shown is the power density as a
function of voltage. Maximum power output is obtained when the cell operates at Vmp .

Figure 2.4: Front surface of solar cells A (non-metallized) and B (metallized with two fingers).

semiconductor. The metal contact on the left side is assumed to be directly connected to
the external load. Considering the point sources of current, P1 and P2, which have same
locations in Cells A and B, the ratio of resistance of path from P1 to P2 in A (RA) to that in
B (RB ) can be written as

RA

RB
= ρs x1

ρs x2 +ρe (x1 +x2)
,

where ρs and ρe are the resistivities of semiconductor and electrode, respectively, such
that ρs >> ρe . Assuming that x1 = 5x2, it is seen that RA ∼ 5RB . The addition of a metal
electrode pattern over the semiconductor surface provides low resistance path for the
flow of current on the front surface. Thus, the amount of power dissipated in the form of
resistive losses is reduced.

From Fig. 2.4, we inferred that the metallization of semiconductor surface reduces
the series resistance of a solar cell. But, covering a part of semiconductor surface by a
metal electrode shades that part of the surface, thereby cutting off a part of the incident
solar energy. Because the current is assumed to be perpendicular to the front surface, the
photoillumination current is reduced only in the shaded regions. Fig. 2.5 shows power
lost in a solar cell as a function of the amount of electrode material used on the front
surface. It describes the qualitative effect of series resistance and shading over the power
lost in a solar cell. The introduction of a metal pattern over the semiconductor surface
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Figure 2.5: Qualitative effect of series resistance and shading on total power lost in a solar cell, in relation to
the amount of front electrode material.

decreases the series resistance and the resistive losses are reduced. At the same time,
shading increases, blocking more of the incident solar energy and reducing the output
power. The red curve shown in Fig. 2.5 denotes the sum total of power losses due to
series resistance and shading. It can be seen that there exists a point on the curve, where
the total power loss achieves a minimum value. This illustrates that, in an electrode
optimization, there is no need to bound the amount of electrode material. The optimum
amount will result as a compromise between resistive and shading losses.

2.2.3. FINITE ELEMENT MODEL

The performance of a solar cell can be analyzed using the finite element method (FEM).
Fig. 2.6 shows the front surface of a solar cell. The presence of a TCO layer on the front
surface helps to reduce the resistive losses. The resistivity of the electrode as well as the
TCO layer is several orders less as compared to that of the semiconductor layer. There-
fore, it is unlikely that there are large side effects along the edges of the electrode and
current generated in the semiconductor layer can be assumed to flow perpendicular to
the front surface [24]. Once arrived there, the current flows along the surface to reach
the electrode. We model this surface using 2D finite elements.

The physics of the conductive layer can be explained using the reformulated version
of Ohm’s law [25], stated as

j =σE, (2.4)

where j, σ and E are the current density, material dependent conductivity and the elec-
tric field in a given area, respectively. For a conservative field, the electric field can be
expressed as the gradient of potential as

E =−∇V , (2.5)

where V denotes the electric potential. Based on Kirchhoff’s circuit law, the charge con-
servation equation can be written as

∇· j =−∂ρ̄
∂t

, (2.6)
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Figure 2.6: Schematic diagram of the front surface of a solar cell.

where ρ̄ is the enclosed charge density. Using Eq. 2.4, 2.5 and 2.6, the Poisson equation
for electrical conductivity can be stated as

σ∇2V = ∂ρ̄

∂t
. (2.7)

This equation is similar to the Poisson equation that describes heat flow problems.
After finite element discretization of Eq. 2.7, the matrix equations for the solar cell

problem can be stated as
GV = I, (2.8)

where G, V and I are the total conductivity matrix, voltage vector and current vector,
respectively. The design area is divided into a finite number of elements. We use quadri-
lateral elements with bilinear shape functions as described in [26]. Eq. 2.2 shows that
there exists a non-linearity between current and voltage of a solar cell. Due to this non-
linearity, Eq. 2.8 cannot be solved directly. Thus, we express Eq. 2.8 in the form of a
residual equation as

R(V) = GV− I(V) = 0, (2.9)

where R is the residual. This equation is solved using Newton method. The iterations are
started with some initial guess for V and it is updated at every step as follows,

Vk+1 = Vk −
[

dR

dVk

]−1

R. (2.10)

In the optimization process, we restart the Newton iterations from the solution of the
preceding design.

2.3. TOPOLOGY OPTIMIZATION FORMULATION

2.3.1. SOLAR CELL CONFIGURATIONS AND PARAMETERS
We use TO to determine the optimal front electrode pattern that achieves maximum
power output for two different configurations (Fig. 2.7). Both these solar cells are rect-
angular in shape. The first configuration is a side-contact model (Fig. 2.7a) where the
left side boundary is kept at voltage Vbus . We assume that this boundary is directly con-
nected to the busbar, which runs on the left side of the cell. The second configuration
is a pin-up module (PUM). In the PUM model presented here (Fig. 2.7b), the centroid is
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(a) side-contact (b) PUM

Figure 2.7: Solar cell geometries considered in this study. The external load connects to the cell via the busbar,
at voltage Vbus .

kept at voltage Vbus . The electrode, starting from the centroid, runs all the way through
the cell towards the rear side [27]. In general, for a PUM solar cell, the panel connections
are done on the rear side of the solar cell. Contrary to the first configuration, this config-
uration does not have a busbar on the left, which accounts for lower shading losses.

In the considered numerical examples, we use the following relation between current
and voltage for a solar cell.

j = 310−0.006(exp(16.4V )). (2.11)

In Eq. 2.11, the units of j and V are A/m2 and volts, respectively. This equation is based
on the measurements done at TNO Eindhoven. These values were obtained for an input
power density of 1000W/m2 of sunlight intensity under standard conditions. The front
surface is considered to be a combination of the TCO layer and metal electrode having
thicknesses of 200nm and 10µm, respectively. The conductivities for the TCO layer and
the metal electrode are 105 S/m and 107 S/m, respectively.

2.3.2. ELEMENT CONDUCTIVITY MATRIX
The element conductivity matrix Ge is constructed from G0 using the modified simpli-
fied isotropic material with penalization (SIMP) interpolation scheme [28, 29]. Thus, Ge

can be stated as
Ge = Ge (ρe ) = (σTCO

s +ρq
e (σm

s −σTCO
s ))G0, (2.12)

where σTCO
s and σm

s are the sheet conductivity values for the TCO layer and metal elec-
trode, respectively. ρe refers to element density describing the volume fraction of ele-
ment e occupied by the metal electrode, q is the SIMP penalization power. G0 for this
problem is the same as used in thermal problems. For square elements, it can be written
as

G0 =


2/3 −1/6 −1/3 −1/6
−1/6 2/3 −1/6 −1/3
−1/3 −1/6 2/3 −1/6
−1/6 −1/3 −1/6 2/3

 . (2.13)

For the electrode design problem presented in this chapter, the value of p used is 3. The
contributions from all the elements are assembled together to form the total conductiv-
ity matrix.
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2.3.3. CALCULATING ELEMENT CURRENT DENSITY
It is assumed that the current in the TCO layer is perpendicular to the surface and the
current density is constant over the element. This constant current density is computed
by averaging over the element using 2×2 Gauss quadrature. The shape function vector
(φ) is expressed as

φ(x, y)ᵀ = [
φ1 φ2 φ3 φ4

]
. (2.14)

The local voltage information u(x, y) corresponding to an element can be computed as
follows

v(x, y) =φ(x, y) ·v, (2.15)

where v is the nodal voltage vector expressed as

vᵀ = [
v1 v2 v3 v4

]
. (2.16)

The current density at each of the Gauss points can be computed using the following
equation

j (x, y) = j∗L + j0
(
exp

(
βφ(x, y) ·v

)−1
)

, (2.17)

where β is equal to q̃
kB T . The element current density is the arithmetic mean of the cur-

rent densities at the 4 nodes. The presence of electrode material over the front surface
blocks a part of the sunlight. This leads to reduction in jL . The term j0 depends only on
the properties of the semiconductor material and does not get affected by shading. The
term j∗L is the corrected current density which incorporates the effect of shading and is
expressed as:

j∗L = jL(1−ρe )r . (2.18)

Here, ρe is the volume fraction of an element occupied by the electrode material and r
is the penalization power. We tested the models for several different values of r and it
was observed that r equal to 3 was a good choice. A lower value of r led to a gray design,
while higher values hindered the convergence process of TO.

2.3.4. OPTIMIZATION PROBLEM
The solar cell power maximization problem can be stated as an unconstrained optimiza-
tion problem. The objective of our problem is to maximize the power output from the
solar cell. We use Kirchoff’s law according to which all the generated current in the do-
main must pass through the busbar which has been given potential Vbus . Thus the power
output Pout from the solar cell can be expressed as:

Pout =Vbus Ae
∑

Je , (2.19)

where Ae is the area of one element in the design domain and Je is the element current
density. The objective function J (s) is given as:

min
s

J (s),

with J (s) =−Pout , (2.20)

where s denotes the set of design variables. To perform the optimization, we use the
MATLAB subroutine of method of moving asymptotes [30] provided by Krister Svanberg.
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2.3.5. SENSITIVITY ANALYSIS
The optimizer requires information regarding sensitivity of the response with respect to
each of the design variables. In order to compute these sensitivities, we use the adjoint
method (see [31] and references therein). In case of the considered path-independent
nonlinear model, adjoint sensitivity analysis of the response J requires only a back-
substitution. The augmented response Ĵ is expressed as

Ĵ (s) =J (V f (s),Vp (s),s)+λᵀR(V f (s),Vp (s),s)

=J +
[
λ f

λp

]ᵀ ([
G f f G f p

Gp f Gpp

][
V f

Vp

]
−

[
I f (V f ,Vp )
Ip (V f ,Vp )

])
, (2.21)

where the subscript notations f and p denote free degrees and prescribed degrees of
freedom, respectively. The design vector s can be expressed as

s = [ρ1,ρ2, ....ρn ,Vbus ],

where ρn is the density of the nth element and Vbus is the busbar voltage of the solar cell.
Eq. 2.21 holds for any value of λ. Thus, we reduce it by putting λp equal to 0 and get

Ĵ =J +λᵀ
f (G f f V f +G f p Vp )−λᵀ

f I f . (2.22)

The derivative of Ĵ with respect to s can be expressed as

dĴ

ds
=∂J
∂s

+λᵀ
f

(
∂G f f

∂s
V f +

∂G f p

∂s
Vp − ∂I f

∂s

)
+(

λᵀ
f G f f +

∂J

∂V f
−λᵀ

f

∂I f

∂V f

)
dV f

ds
+(

λᵀ
f G f p + ∂J

∂Vp
−λᵀ

f

∂I f

∂Vp

)
dVp

ds
. (2.23)

For eliminating
dV f

ds , we define the following adjoint problem:

λᵀ
f G f f +

∂J

∂V f
−λᵀ

f

∂I f

∂V f
= 0,which yields:

λᵀ
f =−

(
G f f −

∂I f

∂V f

)−1
∂J

∂V f
. (2.24)

This equation involves the same tangent operator as used in the Newton iterations of the
nonlinear analysis, so only a back-substitution is required to solve for the adjoint vector.
Thus, we obtain:

dĴ

ds
=∂J
∂s

+λᵀ
f

(
∂G f f

∂s
V f +

∂G f p

∂s
Vp − ∂I f

∂s

)
+(

λᵀ
f G f p + ∂J

∂Vp
−λᵀ

f

∂I f

∂Vp

)
dVp

ds
. (2.25)
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The voltage at the prescribed nodes is independent of the density distribution. Thus, we
have

dVp

dρ
= 0, (2.26)

dVp

dVbus
= 1. (2.27)

The conductivity matrix depends only on the material properties. Thus, from Eq. 2.12,
we have

∂Ge

∂ρe
= qρq−1

e (σm
s −σT CO

s ))G0. (2.28)

Also, we can write
∂Ge

∂Vbus
= 0. (2.29)

2.3.6. FILTERING
To ensure that the optimal design does not have very fine branches and to avoid the
formation of checker-board patterns, we use a density filter [15, 32]. The density filter
modifies the actual densities as follows:

ρ̃e = 1∑
iεNe Hei

∑
iεNe

Heiρi . (2.30)

Here, ρ̃e is the filtered density and Ne is the set of elements i whose center-to-center
distance from element e (∆(e, i )) is smaller than the filter radius rmi n . Hei is a weight
factor defined as:

Hei = max(0,rmi n −∆(e, i )). (2.31)

The sensitivities with respect to the design variables ρ j are obtained from the filtered
densities using the following chain rule:

d f

dρ j
= ∑

eεN j

1∑
iεNe Hei

H j e
d f

d ρ̃e
. (2.32)

2.4. RESULTS AND DISCUSSIONS
To demonstrate the effectiveness of TO for front metallization design, we apply it to sev-
eral different cases for the side-contact model and PUM solar cells. For both the models,
we report 4 instances each and their corresponding Vbus and efficiency (η) values. The
efficiency (η) is calculated as

η= Pout /Ac

pi np
×100%, (2.33)

where Pout and Ac are the output power and area of the solar cell and pi np is the in-
put power density of the sun which is assumed to be 1000Wm−2 under standard con-
ditions. The configurations used in this study are mentioned in Section 2.3.1. The es-
sential boundary condition for these configurations is that the connection points to the
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Figure 2.8: Front electrode patterns for side-contact solar cells with different mesh resolutions at constant
value of rmi n (rmi n =1.5 element widths).
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Figure 2.9: Front electrode patterns for side-contact solar cells with different mesh resolutions using mesh-
independent density filter.

busbar are kept at voltage Vbus . The natural boundary condition is that the current flow
across the other boundaries is zero. For all the cases, we use an initial design where the
whole front surface is covered with the electrode material. We analyze the current den-
sity and voltage distributions on the front surface of the solar cell for the optimal front
designs obtained using TO. Furthermore, the effects of mesh resolution and the solar
cell size on the performance are studied for both the configurations and are reported in
the subsections below. The obtained designs typically resemble branching sparse elec-
trode networks, which have some similarity to designs resulting from thermal/electrical
power dissipation minimization problems (e.g. [17]). However, the problem considered
here is of a different nature due to the nonlinear design-dependent current source and
the absence of a volume constraint. The obtained volume fractions are typically low (5-
10%).For more examples, see [33].

2.4.1. EFFECT OF MESH RESOLUTION
To understand the effect of mesh resolution over the final output design, we analyze the
side-contact and PUM solar cells at 4 different mesh resolutions. The dimensions of the
solar cells are assumed to be 1.5cm × 1.5cm and the number of elements in the design
space corresponding to the 4 cases are 100 × 100, 200 × 200, 300 × 300 and 400 × 400,
respectively. Fig. 2.8 presents the optimized front electrode patterns for the side-contact
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Figure 2.10: Front electrode patterns for PUM solar cells with different mesh resolutions at constant value of
rmi n (rmi n =1.5 element widths).
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Figure 2.11: Front electrode patterns for PUM solar cells with different mesh resolutions using mesh-
independent density filter.
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Figure 2.12: Optimized front electrode patterns for side-contact solar cells of different sizes. The mesh resolu-
tion for all the cases is same and the size of an element in all the cases is 0.015cm × 0.015cm.

solar cells with rmi n equal to 1.5 element widths for all the 4 cases. Fig. 2.8b shows a
design which does not look identical to the designs obtained at other mesh resolutions
and this can possibly be due to the presence of a large number of local optima in the
design domain.

It is observed that with increasing mesh resolution, the performance of the solar cell
improves. This is due to the fact that increasing the number of elements in a fixed de-
sign space provides increased spatial freedom in the determination of the optimum front
electrode design. For high resolution meshes, we observe that the design tends to con-
tain very fine branches which might not be feasible for fabrication. To overcome this
problem, we use mesh-independent filtering approach such that rmi n remains constant
at 0.225mm (Fig. 2.9). It is observed that the finer branches are removed. Contrary to the
expectations that the mesh independent filter should not affect the performance, we ob-
serve that the efficiency of the solar cell slightly decreases for designs with higher mesh
resolutions. Fig. 2.10 and 2.11 show the optimal front designs for the 4 cases for PUM
solar cells for constant filter and mesh-independent filter, respectively. For a constant
value of rmi n (equal to 1.5 element widths), increasing the mesh resolution improves the
solar cell performance but tends to develop very fine unwanted branches. The mesh-
independent filter removes these fine branches. But, similar to the observations for the
side-contact designs, the performance of the solar cell slightly decreases for increased
mesh resolutions (Fig. 2.11). This is because, elimination of the finer branches leads to
increased resistive losses in those sections of the front surface, thereby shifting the final
design from its optimum.

2.4.2. EFFECT OF SOLAR CELL SIZE

For a given set of parameters, changing the solar cell size largely affects its performance.
Fig. 2.12 and 2.13 show 4 solar cells of different sizes for the side-contact and PUM mod-
els, respectively. The dimensions of the 4 solar cells for both the models are 1.5cm ×
1.5cm, 3cm × 3cm, 6cm × 6cm and 9cm × 9cm, respectively. To keep the physical mesh
resolution equal for the 4 cases, the number of elements are taken to be 100 × 100, 200
× 200, 400 × 400 and 600 × 600, respectively. For both the models, it is observed that
the performance of the solar cell reduces with its increasing size. A reason could be that
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Figure 2.13: Optimized front electrode patterns for PUM solar cells of different sizes. The mesh resolution for
all the cases is same and the size of an element in all the cases is 0.015cm × 0.015cm.

the finer topology mesh resolution for the larger cells leads to higher perimeter, thereby
a larger area with gray values at the boundaries. Thus, we do another analysis with con-
stant topology mesh resolution. Fig. 2.14 and 2.15 show the cases of Fig. 2.12 and 2.13,
respectively, but with constant mesh size of 600 × 600 in all the cases. It is observed that
the performance of solar cell still reduces with the increasing size. Also, the front surface
of larger cells is found to use a larger volume fraction of electrode material as compared
to the smaller cells. One of the possible explanations could be that with increasing solar
cell size, the current from the farthest regions to the busbar has to travel a longer dis-
tance, leading to increased resistive losses. If we simply scale the design of smaller cells
to fit on a larger physical domain, the distance of the farthest elements from the elec-
trode increases. This leads to increased resistive losses for the flow of current from these
elements to the busbar and the overall performance of the cell is reduced. To extract
maximum current from these elements, TO tries to increase the thickness of the metal
electrode fingers and develop more sub-branches. This leads to increased shading, but
helps to reduce the resistive losses to some extent.

Though reducing the size of a solar cell improves its performance when considered
separately, it will increase the amount of space being occupied by the busbars when con-
structing a complete solar panel. Thus, for maximum performance of a complete solar
panel, there exists an optimum size for each of the constituting solar cells. Given infor-
mation on the busbar dimensions, the proposed electrode topology optimization can be
used to find the optimal cell size and electrode layout.

2.4.3. VOLTAGE AND CURRENT DENSITY DISTRIBUTION

Fig. 2.16 shows the front electrode design and current density and voltage distributions
for two different solar cell sizes for the side-contact (Fig. 2.16a, b) and PUM (Fig. 2.16c, d)
solar cells. In Section 2.4.2, we discussed that for a larger solar cell, more electrode mate-
rial has to be deposited on the front surface. This leads to increased shading, thereby re-
ducing the solar cell output. From Fig. 2.16, we see that with increased solar cell size, the
voltage contrast on the front surface increases. This causes for reduction in the amount
of current for the elements whose local voltage value is very high as compared to Vmp

(value of Vmp mentioned in Fig. 2.18a). Comparing Fig. 2.16a with Fig. 2.16b and Fig.
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(a) 1.5cm × 1.5cm (b) 3cm × 3cm (c) 6cm × 6cm (d) 9cm × 9cm

Figure 2.14: Optimized front electrode patterns for side-contact solar cells of different sizes. The topology
mesh for all the cases is same and comprises of 600 × 600 elements.

(a) 1.5cm × 1.5cm (b) 3cm × 3cm (c) 6cm × 6cm (d) 9cm × 9cm

Figure 2.15: Optimized front electrode patterns for PUM solar cells of different sizes. The topology mesh for all
the cases is same and comprises of 600 × 600 elements.
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(a) 1.5cm × 1.5cm (b) 9cm × 9cm (c) 1.5cm × 1.5cm (d) 9cm × 9cm

Figure 2.16: Front electrode patterns, out-of-plane current density distributions and voltage distributions for
side-contact (a and b) and PUM (c and d) solar cells obtained using topology optimization.

(a) side-contact solar cell (b) PUM solar cell

Figure 2.17: Area fractions of the front surface corresponding to different values of relative current density.
Relative current density here, is the actual current density value normalized by the maximum current density
value on the front surface.
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Figure 2.18: Voltage vs. Iterations plot and Efficiency vs. Iterations plot for a side-contact solar cell of dimen-
sions 1.5cm×1.5cm and mesh size of 100×100 elements. Because of the evolving electrode design, the average
voltage in the cell (Vav g ) quickly approaches the ideal voltage at which maximum power is produced (Vmp ).
The voltage at the busbar (Vbus ) is adjusted accordingly by the optimizer.

2.16c with Fig. 2.16d, we observe that on an average, the current density is higher for
smaller solar cells as compared to the larger ones. A better interpretation can be de-
duced from the bar graphs shown in Fig. 2.17. It shows the area fraction of the front sur-
face corresponding to different values of relative current density (RCD). RCD is obtained
by normalizing the current density values with the maximum current density value ob-
tained on the front surface. For small cells (1.5 cm×1.5 cm), a large fraction of the front
surface has RCD values greater than 0.8. On the other hand, for larger cells (9cm×9cm),
only a small part of the front surface has high RCD values. Thus, for larger solar cells,
significant part of the photoillumination current density is lost due to the high voltage
contrast on the front surface. A possible way to overcome this problem could be to have
a design with uniform voltage difference between the front and the back surface of the
solar cell. This requires the optimization of the rear surface electrode as well. Thus,
optimizing the front and rear surfaces together could help in achieving a design which
could produce a uniform voltage distribution throughout, thereby improving the solar
cell performance.

The voltage distribution on the front surface of the solar cell affects the output power.
In Section 2.2.1, we discussed that for every p-n junction, there exists a voltage value
(Vmp ) for which the power output is maximum. Fig. 2.18a shows the variation of Vbus ,
Vav g and Vmp with every iteration during the process of TO. Here, Vav g is the average of
the voltages at all the nodes of the front surface of the solar cell. Fig. 2.18 corresponds
to a solar cell of dimensions 1.5 cm × 1.5 cm and the design domain consisting of 100 ×
100 elements.

During initial iterations, the optimizer tends to assign very low values to Vbus . This is
because, initially, due to the lack of sufficient electrode material on the front surface,
there are large voltage contrasts. Another possibility could be to start with an initial
model which has large amount of electrode material on the front surface. However, in
our experience, the optimizer does not favor this design and moves quickly towards zero
electrode material, which could possibly be due to the increased shading imposed by
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(a) H-pattern (b) density distributions

Figure 2.19: H-pattern and the density distribution corresponding to an electrode finger for 3 different cases.

this initial design. Fig. 2.18b shows the efficiency of the solar cell obtained at every itera-
tion. It is observed that the efficiency obtained during first iteration is negative. Because
Vbus is positive, this can only be possible if the total current on the front surface is neg-
ative. This can happen when the voltage values of some nodes are far higher than the
Vmp . Fig. 2.3 shows that for these voltage points, we get high value of negative current
which tends to make the overall current as negative. This leads to negative efficiency
being reported during that iteration. As the electrode design evolves, the voltage in the
cell becomes more evenly distributed and Vav g tends to move closer to Vmp (Fig. 2.18a).
At the same time, Vbus achieves an optimal value. This optimal value of Vbus lies below
Vmp because the finite conductivity of the front electrode will result in increasing volt-
ages away from the busbar. For the case presented here, we get an optimal design after
about 50 iterations as seen from Fig. 2.18b.

2.4.4. PRELIMINARY COMPARISON WITH EXISTING DESIGNS
In this chapter, no detailed comparison is made between our optimized designs and
the conventional H-pattern electrodes. In our opinion, such a comparison would be
premature and inaccurate at this stage. However, we conducted some preliminary com-
parisons and the results indicate that the designs currently obtained using TO are not
superior to contemporary H-pattern designs. Using the same physical model as applied
for the TO studies, we optimized the H-pattern for line position, linewidth and Vbus for
a black-white design (Fig. 2.19a). This resulted in 13.52% efficiency for 1.5 by 1.5 cm
cells. The designs we obtained using TO on finer grids deliver an efficiency of above 13%
(Fig. 2.14, Fig. 2.15) but do not exceed this. The performance of the TO-optimized de-
signs is reduced since the obtained results are not completely black-white designs. The
applied consistent density filter results in intermediate densities in transition regions at
the edges of the electrodes. Because of the double penalization on conductivity and cur-
rent density, the output power of the gray designs is expected to be lower as compared
to the shape-optimized conventional designs.

Thus, before correctly comparing with existing designs, a black-white design needs
to be obtained using the TO methodology. Simply thresholding the gray designs proves
a too crude operation. As a reverse approach, we tested the performance of H-patterns
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perturbed with gray values. Fig. 2.19b shows the cross-sectional view of an electrode
finger (across the dashed red line shown in Fig. 2.19a) for 3 different cases. Case (I) cor-
responds to a black-white design, where the densities of center element and its neigh-
bours are set to 1 and 0, respectively. Note that this design cannot be obtained using
TO with a density filter. Case (II) shows a perturbed design, where the the density of the
neighbouring elements is set to 0.2. Due to the gray values, the performance falls from
13.52% to 12.68%. Case (III) shows a H-pattern post-processed using density-filtering
(rmi n = 1.5). In this case, the drop in efficiency is even higher and is recorded to be
12.58%. Comparing these with the designs obtained using TO, we observe that for per-
turbed H-patterns the efficiencies are significantly lower. This provides an insight that
the gray values associated with the TO optimized designs are playing a significant role in
reducing the cell performance. Our current research therefore involves exploring other
techniques, such as advanced filtering methods, to obtain a well performing black-white
design. Still, the fact that the high resolution designs already approximate optimized H-
pattern cell efficiency, while still containing gray regions, is a promising indication that
higher efficiencies are possible.

Besides already closely matching the efficiency of existing designs for rectangular
cells, it is clear that the presented approach also holds promise for non-rectangular
shapes. Solar cells are expected to become more ubiquitous and designers are likely
to find novel ways to integrate them in future products using non-rectangular shapes. In
[33], we have discussed an example of a disc-shaped solar cell, for example. As no es-
tablished electrode design such as the H-pattern exists for arbitrarily shaped domains,
the presented TO-based design procedure can be used to generate grids for such cells
optimized for efficiency.

2.4.5. SCOPE FOR DIFFERENT TYPES OF SOLAR CELLS

The solar cell parameters used in this chapter correspond to thin film Si solar cells. It
does not imply that TO can be used for designing front electrode patterns for thin-film
solar cells only. Rather, investigating the application of this approach on other solar cell
types is a part of our future research. Our proposed methodology contains certain as-
sumptions and simplifications. As long as these are valid for other solar cells (c-Si cell,
CIGS cell etc.), the methodology can be used for these solar cells as well. The main as-
sumption of our methodology is that we deal with an active semiconductor layer sand-
wiched between the front and back contact electrodes. These electrodes have signifi-
cantly better conductivity than the active layer. Thus, the current in the active layer is
assumed to travel perpendicular to the front surface. This assumption is expected to
hold valid for all solar cells where a metal electrode is used on the front surface to collect
current from the active layer. To the best of our knowledge, most of the solar cells use
electrode material on the front surface. Thus, we expect our approach to be generalized
and applicable to different types of solar cells.

2.5. CONCLUSIONS

One of the possible ways to improve the performance of solar cells is to improve the front
electrode design. In this chapter, we explored the capability of TO to come up with com-
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plex front metallization patterns for solar cells which could not be designed using con-
ventional shape optimization methods. Some of the characteristic properties of solar cell
front electrode design problem are its strong nonlinearity, the design-dependent pho-
tocurrent load and the boundary value being included as one of the design variables in
optimization. The solar cell performance depends on the connected load due to which
the busbar voltage was used as a design variable.

The proposed TO method was tested on side-contact and pin-up module solar cells
and proved capable of generating complex electrode designs. While simple geometries
can serve as electrode designs for square-shaped or rectangular solar cells, they might
not hold good for arbitrarily-shaped solar cells. The design domain of these free-form
solar cells can be discretized using finite elements and TO might help in designing the
corresponding front electrode patterns. TO tends to find the voltage distribution on the
front surface such that the amount of current flowing across the solar cell is maximized.
We have found that intermediate densities at boundaries appear in TO results that de-
crease their efficiency, but nevertheless the optimized designs compare well with ideal-
ized conventional designs.

Furthermore, we studied the effects of the mesh resolution, solar cell size and the
filter length on the performance of the solar cell. For a filter of constant length (in ele-
ments), increasing the mesh resolution gives more freedom for optimal design and the
performance of the solar cell increases. In case of mesh-independent filters, increasing
the mesh resolution does not help in increasing the power output. Increasing the physi-
cal size of the solar cell with constant mesh resolution tends to cover a larger fraction of
the front surface with electrode material, thereby reducing the power output of the solar
cell. Thus, given the busbar dimensions, TO can be used to find the optimum size of the
solar cell for which the power output is maximized.

Our future work involves exploring advanced filtering methods and including sen-
sitivity, fouling, damage and robustness aspects in the TO formulation. This will help
us to obtain a black-white design with low sensitivities to fabrication-related imperfec-
tions and the results will be compared with the existing designs in terms of performance.
Based on the results presented here, we conclude TO could be an effective tool to deter-
mine the optimum front electrode designs for the front surface of solar cells.
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3
INTEGRATED FRONT–REAR-GRID

OPTIMIZATION OF FREE-FORM

SOLAR CELLS

Free-form solar cells expand solar power beyond traditional rectangular geometries. With
possibility of installation on objects of daily use, they allow making better use of available
space and are expected to provide new opportunities to generate solar power in the coming
future. In addition, their customizable shape can add to the aesthetics of the surround-
ings. Evidently, free-form solar cells need to be efficient as well. One way to improve their
performance is to optimize the metallization patterns for these cells. This chapter intro-
duces an optimization strategy to generate metallization designs of a solar cell such that
its performance is maximized. For the purpose of verification, we model an existing trans-
parent free-form solar cell design, including front and rear electrode patterns, to validate
it against previously published experimental results. The front and rear metallizations
of this transparent free-form solar cell are subsequently redesigned using topology opti-
mization. More than 50% improvement in output power is achieved through topology
optimization.

This chapter is based on an article published in IEEE Journal of Photovoltaics, 7, 294-302 (2017) [1].
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3.1. INTRODUCTION
With the growing energy demand and the need for new and clean energy resources, solar
power is experiencing remarkable growth throughout the world. It is expected that the
cumulative global solar photovoltaics (PV) market will triple to around 700 GW in 2020
compared to that in 2015 [2] and a long-term global forecast scenario describes world-
wide solar PV capacity to reach 4600 GW by 2050 [3]. Looking at the United States alone,
the total electrical power sector capacity in 2015 was reported to be around 1045 GW [4]
with 27 GW of total solar power capacity and it is reported that 30% of its all new elec-
tricity generation capacity in 2015 came from solar [5]. In 2016, the PV installations are
expected to increase by around 65 GW.

To ensure that solar power can be a sustainable solution to the growing energy de-
mand for future, innovative ways are being explored to increase the overall PV instal-
lations. In some recent works, free-form solar cells have been designed which can be
installed on objects of daily use [6–8]. These provide new possibilities of generating so-
lar power, however, the generated energy needs to be affordable as well. Significant re-
search is being conducted to make solar cells more efficient and thereby reduce the cost
per unit of solar energy [9] .

Among various other possibilities to enhance efficiency is optimization of solar cell
metallization patterns. The metallization determines the voltage distribution over the
cell, which affects the generated current and power. Significant research has been con-
ducted in the past to improve on this aspect [10–16]. To the best of our knowledge, these
standard methods are restricted to predefined geometries such as the H-pattern and in
general optimize for the grid width and the spacing between the grid lines. The tru-
ely optimal designs might be more complex than the shapes that can be realized from
optimization under such restrictions. With the advancements in printing technologies,
fabricating more complex patterns is no longer a problem [8, 17], however, the real chal-
lenge lies in designing them such that the solar cell performance can be improved. Burg-
ers [18] presented a two step approach that could eliminate the restrictions on topology
of the metallization design. However, this approach involved a few heuristic calculations
requiring prior information from the side of the designer.

In a paper presented at the 40th IEEE Photovoltaic Specialists Conference [19], it was
shown that new and potentially superior layouts can be generated using a topology opti-
mization (TO) approach. TO is a computational paradigm capable of optimizing the dis-
tribution of a certain material in a given domain subjected to certain constraints, such
that the performance of the system is maximized [20]. Compared to conventional shape
and size optimization approaches, TO provides more flexibility and does not even re-
quire an initial design concept. For a general overview of the concepts and applications
of TO, see [20–22] and references therein. In the context of solar cells, TO has also been
used to design efficient light trapping structures [23–25].

The work presented in [19] uses TO to optimize the front metallization patterns for
solar cells. The details related to the mathematical formulation of the problem as well
as the computational aspects of the methodology are discussed in [26]. It is also shown
that the optimized front metal grids obtained using TO are comparable in terms of per-
formance to the H-patterns for standard solar cell shapes.

An important advantage of the TO methodology is demonstrated in [27], where this
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method is used to optimize the front metal grids for free-form, non-rectangular solar
cells. Freeform solar cells are gaining recent attention from an aesthetic point of view
since they can easily blend into the architectural makeup of the surroundings. For recent
research related to unconventional shapes for the solar cell domain, see [6–8, 27, 28]. In
the study reported in [27], front grid patterns for several freeform shapes were optimized
e.g. circular, hexagonal, leaf-shaped, shapes of motorbike fairings, etc. For unconven-
tional shapes, no established efficient grid pattern is known, like the H-pattern for rect-
angular cells. Grid optimization using the TO approach however applies to any domain
shape.

It is important to note here that while TO can design efficient metallization patterns
for freeform solar cells, there are various other challenges associated with these freeform
shapes. Manufacturing non-rectangular solar cell shapes (e.g. circular or semi-circular
geometries) and the corresponding grid layouts has been attempted for the past four
decades [29]. Manufacturing of free-form silicon solar cells is quite difficult due to tech-
nological limitations. Printing and coating techniques utilized in the manufacturing of
organic solar cells open a lot of possibilities in the freedom of forms and shapes. These
create a new market for PV technologies by combining PV functionality and aesthetics.
Therefore, solar cells with artistic shapes attract a lot of attention. However, scaling up
the size and their non-rectangular shapes typically lead to efficiency losses. It points on
the necessity of optimizing the metallization patterns for these cells.

In conventional solar cells, only the front electrode has been considered for opti-
mization, as the rear electrode usually covers the entire backside. Transparent or semi-
transparent solar cells are more aesthetically appealing than the opaque ones. To pre-
serve this transparency, it is important not to cover the whole rear surface with the elec-
trode material. Thus, a limited amount of electrode material can be used on the rear
side and it becomes important to use an appropriate pattern. Important to note here
is that the optimal grid designs for the front and the rear sides depend on each other,
since together they determine the local voltage difference between front and rear side
that determines the local current density. To maximize the performance of a solar cell,
they should be optimized together. Some preliminary results related to this aspect were
reported by us in [30], however that study was restricted to only electrode thickness op-
timization on the rear side.

This chapter presents for the first time an optimization strategy which can be used
to simultaneously optimize the front and rear metallization patterns for solar cells. For
the purpose of this optimization, a solar cell model with front and rear metal designs is
presented. Based on the available experimental data, the model is tuned so as to match
the behavior of the fabricated tree-shaped solar cell example presented in [8]. Further,
this model together with the proposed approach are used to optimize the metallization
designs for this example.

The rest of this chapter is organized in the following manner. Section 3.2 describes
the optimization method and the mathematical model for the integrated front-rear grid
optimization in solar cells. This approach is tested on a solar cell with the shape of a
Christmas tree. The model validation and optimization results are discussed in Section
3.3 and the final conclusions are presented in Section 3.4.
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Figure 3.1: Schematic diagram of a solar cell model with front and rear conductive surfaces. The voltage dif-
ference between the front and rear sides, combined with the illumination level, controls the current density
across any point in the semiconductor layer.

3.2. METHOD

3.2.1. TOPOLOGY OPTIMIZATION
In this chapter, topology optimization (TO) is used to simultaneously optimize the front
and rear metallization patterns for solar cells. As stated above, TO is a computational
approach capable of optimizing the material distribution in a given domain without vi-
olating some given constraints such that the performance of the system is maximized.
In the traditional optimization methods, the electrode pattern is assumed to consist of
straight lines and the design is only optimized for metal line width and line spacing. TO
abandons such restrictions and can achieve more complex and better performing de-
signs which cannot be obtained with the conventional shape optimization techniques.

TO comprises of a series of design updates, each update being based on the sensitiv-
ity responses computed from the design obtained in the previous step. Typically, the de-
sign domain at each step is discretized into a set of finite elements and the performance
of the design is evaluated using finite element analysis. Within every finite element, the
amount of material is allowed to vary from 0 to 1. Here 0 refers to void (no material) and 1
refers to solid (full material). To obtain a manufacturable solution, the intermediate val-
ues are penalized and made unfavorable [31, 32]. The optimization process is stopped
when changes in objective value or design fall below a certain threshold in consecutive
steps.

3.2.2. MATHEMATICAL FORMULATION
In this section, the mathematical aspects of the solar cell metallization design optimiza-
tion problem are discussed. A solar cell model with front and rear electrodes is presented
and then the various aspects of the proposed optimization strategy are discussed. These
are as follows:

SOLAR CELL MODEL

For the purpose of front and rear grid optimization in solar cells, a simplified model is
used. This model is an extended version of the front grid optimization model described
in [26] and is illustrated in Fig. 3.1. In this figure, the semiconductor layer is sandwiched
between the front and rear conductive surfaces. In general, these surfaces might consist
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of thin, transparent, moderately conductive layers with a deposition of highly conductive
metal grid lines. Since the conductivity of the transparent layers as well as the metal grid
is several orders higher than that of the active layer, it is assumed that the current across
the active layer in the thin-film solar cell travels in the transverse direction. On the front
and rear conductive surfaces, current flows along the surface planes.

The out-of-plane current density at any spot of the solar cell can be described using
the following equation:

j = jL − j0(e
q̃∆V
kB T −1), (3.1)

where j , j0 and jL denote net, reverse bias and photoillumination current densities, re-
spectively and q̃ , kB and T refer to the electric charge, Boltzmann constant and local
temperature, respectively. In general, jL does not depend on the voltage difference as
in Eq. 3.1. However, for organic solar cells, Eq. 3.1 does not fit very well [33–35]. While
modeling, this needs to be taken into account and the behavior of the device needs to
be accurately modeled. The illumination can be non-uniform on the solar cell front sur-
face, however, here we consider uniform illumination only. The voltage difference across
the active layer denoted by ∆V is equal to V f −Vr , where V f and Vr denote the voltage
values measured on the front and rear conductive surfaces, respectively. For the front
side, the busbar voltage is denoted by Vb and on the rear side, the point at which the
load is connected is set to 0 volts. The power output can then be stated as

Pout = (Vb −0)
∫
Ω

j d A =Vb

∫
Ω

j d A. (3.2)

Here, d A is a differential area of the solar cell and j is the respective out-of-plane current
density. The efficiency η of the solar cell can then be calculated as

η= Pout /A

pi np
×100%, (3.3)

where Pout and A refer to the solar cell power output and its front surface area and pi np

is the input power density which is assumed to be 100 mWcm−2 under standard condi-
tions.

FINITE ELEMENT MODELLING

The physics of the front as well as the rear conducting layers can be modeled using a
Poisson equation of charge conservation during electrical conductivity, which is as fol-
lows:

σ∇2V = ∂ρ̄

∂t
, (3.4)

where σ, V and ρ̄ refer to the conductivity of the material, the electric potential and the
enclosed charge density, respectively. When discretised using finite element method, the
system of equations for the front and rear sides combined together can be stated as

GV = I, (3.5)

where G is the total conductivity matrix and V and I refer to voltage and current vectors,
respectively. From Eq. 3.1, it can be seen that the current and voltage are non-linearly
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related. Due to this, the system of equations given in Eq. 3.5 cannot be solved directly.
Thus, it is transformed into a set of residual equations and then the system is solved to
minimize the overall residual using the Newton method. Changing Eq. 3.5 to a residual
form, the following can be stated:

R(V) = GV− I(V) = 0, (3.6)

where R is the residual. For the discretized system, quadrilateral finite elements with
bilinear shape functions are used. The total conductivity matrix G is constructed from
the element conductivity matrix Ge using a modified SIMP model [31] as follows:

G0 = (σtcl
s +ρq (σm

s −σtcl
m ))G0, (3.7)

where σtcl
s and σm

s are linear conductivities of the transparent conductive layer and the
metal electrode, respectively and ρ denotes the fraction of the finite element filled with
the electrode material. The term q refers to penalization power and for this problem it is
set to 3. This serves to obtain clearly resolved electrode designs. For more details on this
aspect, see [26].

The various components of Eq. 3.6 are constructed as follows:

R = [R f Rr ]ᵀ, (3.8)

V = [V f Vr ]ᵀ, (3.9)

G =
[

G f 0
0 Gr

]
, (3.10)

where, the subscripts f and r correspond to the front and rear surfaces of the solar cell,
respectively. The global conductivity matrices G f and Gr can be constructed by assem-
bling the contributions from element conducitivity matrices for the front and rear grids,
respectively. For the consistency of the model, it is important that the magnitude of cur-
rent entering the active layer at any spot on the rear side is equal to the current exiting
the active layer from the corresponding spot on the front side. Thus, I is constructed as
follows:

I = [I0 − I0]ᵀ. (3.11)

The model proposed in [26] for the front side metallization assumes that the current
flows from the whole front surface to the connection point (busbar). However, for the
rear side, current needs to flow from the connection point to the whole rear surface. To
take this into account, a minus sign is added to the current vector for the rear side.

OPTIMIZATION

The objective of optimizing the metallization patterns is to maximize the solar cell effi-
ciency. The mathematical formulation of the optimization problem can be stated as

max
ρ,Vb

η

R(V) = GV− I(V) = 0,

1

N

∑
ρr ≤Vr .

(3.12)
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(a) (b)

(c) (d)

Figure 3.2: Christmas tree shaped free-form solar cell, (a) schematic diagram showing the layout of different
printed layers [8] (b) photograph of the solar cell fabricated using inkjet printing [8] (c) modeled front side
metallization design and (d) modeled rear side metallization design.
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Here, ρ is given as ρ = [ρ f ρr ], where ρ f and ρr are the vectors of design variables
for the front side and rear side, respectively and Vr denotes the material volume fraction
for the rear side. Each design variable denotes the volume fraction of the finite element
filled with the electrode material. The inequality constraint in Eq. 3.12 represents the
restriction on the maximum amount of electrode material that can be used on the rear
side of the solar cell. We also let the optimizer find the optimal busbar voltage Vb , by
including it as a design variable in the optimization problem.

For the front side of the solar cell, it is important that an optimum amount of elec-
trode material is chosen. For too less material, the resistive losses will be high due to
the increased contrast in voltage distribution on the front side. If too much material is
used, although the resistive losses are reduced, a significant part of the incident light gets
blocked from entering the active layer leading to increased shading losses. Between the
two cases, there exists an optimum amount of material which reduces the sum of the
two losses and this can be determined by the optimizer. Thus, unlike the rear side, no
restriction needs to be imposed on the maximum allowable amount of front electrode
material. The shading effect is taken into consideration by replacing jL in Eq. 3.1 by j∗L
such that

j∗L = jL(1−ρ)r , (3.13)

where r is a penalization power which is set to 2 in this study, to promote well-defined
0/1 solutions.

The optimization problem stated in Eq. 3.12 is a non-convex optimization problem
with more than 300,000 design variables and is solved using a gradient based technique.
The model generated at each iteration step is updated using method of moving asymp-
totes [36], a gradient based optimizer capable of handling general non-linear program-
ming problems with large number of design variables. For making a design update, the
optimizer needs design sensitivities i.e. gradient information denoting the dependence
of cell efficiency on the design. Due to the high dimensionality of the problem, an ad-
joint formulation is adopted for calculating these sensitivities [26, 37].

3.2.3. APPLICATIONS
In this work, we use TO to optimize the front and rear metallizations for free-form solar
cells. To demonstrate the applicability of TO, a free-form Christmas tree shaped organic
photovoltaic (OPV) cell domain is chosen. One of the reasons to choose this test case is
the fact that a similar OPV has been fabricated in the past and the results are reported in
[8]. Since the goal of the chapter is to present the optimization methodology, the choice
of the test case does not limit the application of the methodology. Also, OPV and the
inkjet printing technology have a big advantage compared to c-Si due to the possibility
of freeforms. These give enormous aesthetical advantage and open possibility for new
applications.

Here, we model the electrical behaviour of this test case as it is in [8] using the pro-
posed front-rear electrode model. The model is tuned based on the available experi-
mental data so that it can match the behavior of the fabricated solar cell example. The
front and rear metallization patterns are then optimized under two different scenarios
assuming that the amount of electrode material that can be used on the rear side is same
(12%) as that in [8]. For the first case, the busbar on the front side is assumed to be the
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Figure 3.3: J-V data measured for a small device (0.04 cm2) and the fitted J-V curve (obtained using a cubic
polynomial) for the OPV solar cell used in this study.

Table 3.1: Performance statistics for the ideal device, the fabricated device [8] and various cases for the tree-
shaped OPV cell modeled using different metallization patterns.

Parameter Ideal case Fabricated [8] Modeled Case I Case II
Jsc (mAcm−2) 6.14 2.80 2.76 2.92 3.22
Voc (volts) 0.56 0.46 0.47 0.47 0.48
Jmp (mAcm−2) 5.24 1.45 1.67 1.88 2.31
Vmp (volts) 0.38 0.26 0.25 0.3 0.28

same as that in [8] and the electrode distribution is optimized for the rest of the front
domain as well as on the rear side. For the second case, no pre-defined busbar config-
uration is assumed and TO is used to design efficient patterns for both the sides. For
both the cases, the busbar connection points on the front and rear sides are assumed to
be same as that in [8]. In addition, TO is also used to study the effect of amount of rear
electrode material on the performance of the solar cell.

3.3. RESULTS AND DISCUSSIONS
In this section, we report the results for different simulation tests performed on the tree-
shaped solar cell. Before presenting the application of the proposed methodology, we
discuss the details related to this test case.

Fig. 3.2(a) shows the schematic representation of the Christmas tree shaped free-
form solar cell and photograph of the finished layout is shown in Fig. 3.2(b). All the
functional layers, including the electrodes, were inkjet printed [8]. Inkjet printed de-
vices contained the following layer sequence: glass substrate/front Ag fingers/front PE-
DOT:PSS/ZnO/ Photoactive layer/rear PEDOT:PSS/rear Ag fingers. The photoactive layer
used here is Poly(3-hexylthiophene) - (P3HT) with an optical energy bandgap of around
1.7 eV. Ag fingers and busbars (both front and rear) were inkjet printed using a Fujiflm Di-
matix Materials Printer (DMP 2831). Inkjet printing of front PEDOT:PSS, ZnO nanoparti-
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Table 3.2: Model parameters for the Christmas tree

Parameter Value
Device area 6.24 cm2

Front PEDOT conductivity 2×104 Sm−1

Front PEDOT thickness 100 nm
Front metal conductivity 6.3×106 Sm−1

Front metal thickness 300 nm
Rear PEDOT conductivity 5×104 Sm−1

Rear PEDOT thickness 200 nm
Rear metal conductivity 6.3×106 Sm−1

Rear metal thickess 300 nm

cles, the photo-active layer and rear PEDOT:PSS was performed on a LP50 printing plat-
form (Pixdro, OTB) using an industrial printhead (KM512LN, 3.5 cm width, 360 DPI noz-
zle spacing). The specification of materials, ink formulations and inkjet printing process
is described elsewhere [8]. The active area of the cell was 6.24 cm2. Fig. 3.2(c) and (d)
show the metallization designs for the front and read side of the free-form solar cell as
were used in this study to model the electrical behaviour. These designs were obtained
by a best effort based on intuition to maximize performance. Therefore, losses can be
expected due to the non-optimal arrangements and thicknesses of the various electrode
lines.

In this chapter, we optimize the front and rear metallizations for this free-form solar
cell so that its performance can be improved. For modeling purpose, we use experi-
mental J-V data which was measured on a small device (area 0.04 cm2). The j-V curve
obtained by fitting a cubic polynomial in the experimental data is as follows:

j (mAcm−2) =−6.14+4.72V −43V 2 +97.88V 3. (3.14)

The measured data as well as the fitted j-V curve are shown in Fig. 3.3. The proposed
front-rear electrode model uses voltage values between 0.2 and 0.55 volts only. Due to
this reason, only this part of the experimental data is used in Fig. 3.3 to derive the j-V
curve. This j-V curve is then used in the front-rear electrode model for optimization.

Before optimizing the metallization patterns, we tune the model so that the behavior
of the study example can be properly modeled. For the same purpose, the photoillumi-
nation component of current density in Eq. 3.14 is reduced by a certain factor. For a OPV,
photocurrent is observed to be voltage-dependent [33–35] and this behavior is especially
prominent in the reverse regime. Since our model uses the data only for a small range
of positive voltage values, we assume that photocurrent is independent of voltage. Thus,
the magnitude of jL in Eq. 3.14 is 6.14 mAcm−2. This assumption does not affect the
conclusions of this chapter due to the fact that all performance related comparisons of
the optimized designs are done with the modelled version and not directly the fabricated
one for the tree-shaped solar cell.

Table 3.2 lists the parameters used for modeling purpose. These parameters are the
same as that of the previously fabricated solar cell. The PEDOT and electrode material
are used to model the front and rear conductive surfaces. The effective conductivities
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Figure 3.4: I-V and P-V curves for the modeled solar cell with Christmas tree shape.

Table 3.3: Performance statistics for the tree-shaped solar cell model with different metallization patterns.

Model Power density (in mWcm−2) Relative Improvement
Original 0.416 -
Case I 0.564 35%
Case II 0.632 52%

Gmi n and G0 for every finite element stated in Eq. 3.7 are calculated using the informa-
tion stated in Table 3.2 for PEDOT and electrode material, respectively. The electrode
finger width is not allowed to be less than 150 µm. Since the main goal of this chapter
is to present the potential of the proposed optimized strategy, we preferred to keep the
model simple and certain factors have not been taken into account. An example is the
transparency of the solar cell. The small device on which the j-V measurements were
done consisted of an ITO layer. On the other hand, the tree-shaped solar cell discussed
here uses PEDOT layer as the conductive polymer due to which its transparency is sig-
nificantly lower, thereby lowering its jL . Another factor is that the dimensions of the
electrode lines in the fabricated design are generally higher than the modeled ones. This
is because during inkjet printing, the ink spreads and makes shading larger [38]. Also,
additional resistances including the shunt resistance have not been considered here. To
include these effects in the model, jL has been reduced by 35%. This reduction factor
has been chosen ensuring that the I-V and P-V curves obtained from the model for the
study device closely match those of the fabricated version.

As a next step, we use TO to optimize the front and rear metal grids for the chosen
free-form solar cell. The busbar connection points are chosen to be the same as the ones
in [8]. For the first instance of optimization (Case I), a fixed electrode line is defined
along the perimeter of the domain for the front side. The thickness of this line is kept
roughly the same as the one in the original prototype cell (Fig. 3.2(c)). For the rear side,
the amount of electrode material to be used has been set to 12% to match the original
design (Fig. 3.2(d)) and no restriction is imposed on the amount of material to be used on
the front side. Fig. 5.4 shows the resultant front and rear metallization patterns obtained
using TO. The predefined electrodes on the perimeter of the cell already give a relatively
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Front design Rear design Superimposed design

Figure 3.5: Optimized metallization patterns with a pre-defined perimeter electrode for the front side for a
solar cell with Christmas tree shape.

low voltage contrast within the domain. The optimization process has only added a few
small lines on the front side for further improvement and a total of 16% of the front side is
found to be covered with electrode material in the optimized design. The corresponding
I-V and P-V curves are shown in Fig. 3.4. The resultant design improves the solar cell
performance by around 35% compared to the original design. Interestingly, the dendritic
nature of these optimized patterns may be perceived as aesthetically appealing, ‘natural’
features. Other associated parameters such as short-circuit current density joc, open-
circuit voltage Voc and current density and voltage at maximum power point, jmp and
Vmp, respectively are reported in Table 3.1. Compared to the ideal case, significant drops
are observed in jsc and jmp for the tree-shaped solar cell. One of the primary reasons is
the shading caused due to electrode deposition on the front side. Also, since the current
generated in the active layer depends on the voltage value, considerable reduction can
be observed in the total current generated due to the voltage contrast on the front surface
eventually leading to reduction in jsc and jmp of the device.

In another run of TO (Case II), no pre-defined geometry is assumed for electrode
lines on the front and rear sides. Instead, it is left to the optimization process where to
place all of the front electrode material. Fig. 5.6 shows the optimized metallization pat-
terns obtained for this case. For this case, only 7% of the front surface of the optimized
design is covered with the electrode material. The corresponding I-V and P-V curves are
shown in Fig. 3.4 and other related parameters are reported in Table 3.1. With these op-
timized electrode patterns, a significantly higher amount of current can be collected at
the busbar and a relative increase of 52% is observed in the solar cell power output. The
optimal value of Vb for both the cases was around 0.3 volts. Similar to the previous case,
a dendritic network of electrode material is obtained for the rear side. However, a very
different metallization pattern is obtained for the front side with quite a larger amount of
electrode material being added during the optimization process to form the optimized
pattern. The relative improvement in the solar cell performance for this case is signifi-
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Figure 3.6: Fully optimized metallization patterns for a solar cell with Christmas tree shape.

cantly higher compared to Case I. This is because, with no pre-defined geometry here,
the optimization process has more flexibility to distribute the electrode material.

An interesting observation is that the metallization pattern on the front side is not as
densely branched as the rear side. For Case I, assuming a pre-defined geometry leaves
very less amount of electrode material to be distributed on the front surface. For Case II,
the amount of electrode material used on the front side ( 7%) is still quite low compared
to that used on the rear side ( 12%). Due to this and the fact that a minimum feature-
size restriction is imposed, the formation of a dense metallization network is avoided on
the front side. Note that the choice of using 12% electrode material on the rear side was
made to match the original design. It is of interest to study the influence of this choice
on the optimized output power.

Fig. 3.7 shows the output power of different optimized metallization designs for Case
II obtained for various electrode material fractions on the rear side (Vr ). With an increase
in Vr , the overall power output increases. This is because the surface conductivity on
the rear side increases thereby leading to a more uniform voltage distribution as well
as reduced resistive losses. Thus, ideally the whole rear side should be covered with
electrode material to achieve maximum performance. However, from an aesthetic point
of view, these cells need to be (partially) transparent. Thus, a restriction is imposed on
the value of Vr . It is interesting to see in Fig. 3.7 that with Vr set to 12%, the transparent
Case II design, at 0.63 mWcm−2 achieves nearly 82% of the output power density of a
fully covered cell.

From the two cases analyzed above, it can be deduced that the proposed modeling
and optimization strategies work well with the chosen free-form organic solar cell exam-
ple. However, the application of this methodology is not restricted to organic solar cells
only. Through the use of appropriate parameter values, the proposed solar cell model
can be adapted to any kind of solar cells, which allows the optimization methodology to
be applied to those technologies as well. An important assumption in the applied model
is that the current through the active layer runs in transverse direction. This assump-
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Figure 3.7: Solar cell power outputs for different electrode material volume fractions for the rear side of the
cell.

tion is valid for all solar cells where conductivity of front and rear surfaces is significantly
higher than that of the active layer. Since this is true for most of the solar cells, our ap-
proach can be generalized and is applicable to different types of solar cells.

The goal of this chapter is to demonstrate the application of the proposed optimiza-
tion methodology and the presented example very well augments it. The advantages
of using OPVs and the inkjet printing technique for freeform solar cells are already dis-
cussed in [8]. However, to ensure maximum power output from these freeform solar
cells, several additional factors need to be considered. The power output of these cells
can be affected due to the grid thickness as well as shading degradation [39]. The affect
of these parameters has been studied in [40]. In [41], the effect of conductivity on the
performance of thin-film solar cells has been studied. It is also important to understand
the effect of stress distribution on the delamination of these solar cells and the impact
that it would eventually have on their performance. Also, while modeling and optimiza-
tion of the grids, we ignored the effect of temperature. The local current generated in the
active layer also depends on the temperature distribution. Thus, the metallization pat-
tern should ideally be optimized with respect to the temperature as well. In our future
research work, we aim to include these aspects to further improve the accuracy of the
results.

3.4. CONCLUSIONS
In this chapter, a front-rear electrode model is presented which can be used to model the
front and rear metallizations in solar cells. The model has been validated through com-
parisons with previous experimental results. Further, combining topology optimization
with this model can generate front and rear metallization designs which perform sig-
nificantly better than the existing ones. The application on a free-form Christmas tree
shaped solar cell domain demonstrates the fact that this approach is not restricted to
standard solar cell shapes and can be easily applied to free-forms. As it is nontrivial to
design metallization patters for free-form solar cells by hand, significant improvements
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in output power can be achieved: more than 50% for the considered example. It was
also found that although efficiency of a semi-transparent cell was less than that of a full
coverage rear electrode, through optimization the difference was only 18%. We expect
that the proposed methodology can be a significant contribution to the trend towards
transparent, free-form solar cell devices.
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4
CONCENTRATED SOLAR CELL

MODELING AND METALLIZATION

OPTIMIZATION

In the previous chapter, the application of topology optimization (TO) has been demon-
strated on freeform solar cells, and a methodology has been presented to simultaneously
optimize the metallizations on the front and rear sides of a solar cell. In this chapter, the
application of TO is explored for concentrated illumination conditions. In concentrated
photovoltaics (CPVs), lenses and mirrors are used to concentrate illumination over a small
solar cell, thereby increasing the incident light intensity several folds. This leads to non-
uniform illumination and temperature distributions on the front side of the cell, which
reduces performance. A way to limit this reduction is to optimize the metallization de-
sign of the solar cell for the specific non-uniform illumination and temperature profiles.
Most of the existing metallization optimization methods are restricted to the conventional
H-pattern, which limits the achievable improvements. We therefore study the use of TO to
generate optimized electrodes in this setting. For this purpose, the model presented in the
previous chapter is extended with additional resistances, which allows accurate model-
ing of the current density and voltage distributions. Metallization designs obtained by TO
for non-uniform illumination and temperature profiles are found to significantly improve
the power output of concentrating solar cells.

This chapter is based on a journal article published in Solar Energy journal, 159, 868-881 (2018) [1].
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4.1. INTRODUCTION
Concentrated photovoltaic (CPV) systems allow a large amount of solar power gener-
ation at a relatively lower cost, since the required solar cell material is reduced [2]. In
CPV systems, lenses and curved mirrors are used to concentrate sunlight on small, but
highly efficient solar cells [3]. For further improvement in performance, additional el-
ements such as sun trackers and cooling systems are also used. The use of lenses and
mirrors modifies the incident radiation on the solar cells, amplifying it several folds in
some parts of the cell [3]. Thus, a concentrated, non-uniform illumination profile and a
non-uniform temperature distribution are created on the front side of the cell. Due to il-
lumination being higher in some parts of the cell, the photoillumination current density
as well as temperature increase locally, leading to a higher voltage drop and increased
ohmic losses. Mitchell [4] showed that under non-uniform illumination, series resis-
tance can lead to significant reductions in power output.

For a CPV system to be efficient, it is important that each of its elements performs
well individually as well as collectively. One of the ways to improve the efficiency of
CPVs is to improve the design of the metallization patterns of the solar cells. Optimiza-
tion of metallization has been rigorously studied in the past in the context of uniform
illumination and one sun intensity [5–9]. In addition, there exist works on designing ef-
ficient metallization patterns for certain solar cell geometries under higher sun concen-
trations with uniform illumination [10–12]. However, optimizing the metal grids under
non-uniform sun intensity has received relatively little attention. Mellor et. al. [2] op-
timized a conventional H-pattern metallization for a Gaussian illumination profile and
constant temperature, and showed that the solar cell with such metallizations could per-
form better under non-uniform illumination conditions. Domenech-Garret [13] studied
the effect of several illumination and temperature profiles on the performance of solar
cells. In these studies, linear concentrators were considered and non-uniformity was
only assumed along the finger direction [2, 13]. Shifts in the illumination profile due to
tracking misalignment and the non-uniformity in the busbar direction were not consid-
ered. Both studies restricted themselves to H-patterns and spacing between the metal
finger lines was optimized.

The H-pattern is known to be a very efficient metallization geometry for uniformly
illuminated, constant temperature cells. However, for CPV, it is likely that other patterns
are superior given the non-uniform illumination and temperature conditions. While
simplifying the optimization, geometrical restrictions (e.g. assumption of straight metal
fingers oriented parallel to each other, as in H-pattern) reduce the flexibility of the opti-
mization process and only limited improvements in performance can be expected. More
general metallization geometries have been explored for solar cells under uniform illu-
mination as well. Burgers [8] presented a two-step approach to optimize solar cell front
metallizations without any pre-assumptions of topology. In the first step, a smeared ver-
sion of electrode material distribution is optimized in the whole domain. The second
step involves a heuristic procedure to translate the optimized material distribution into
a line pattern. During the translation step, some prior information is needed from the
side of the designer [14]. The applicability of this approach for non-uniform illumina-
tion was briefly discussed. Burgers et al. [15] and Weeber et al. [16] proposed alternatives
using a pin-up module, a configuration where the electrode starts from the center and
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runs all the way through the cell towards the rear side. Since all the panels connections
are done on the rear side, shading is reduced for such configurations which leads to im-
proved performance.

In an earlier study concerned with uniform illumination and one sun intensity [9],
we have presented a topology optimization (TO) formulation that can optimize the met-
allization patterns without any interference from the side of the user. TO does not im-
pose any restriction on the design of the metal grids and is capable of generating met-
allization patterns that cannot be obtained with any of the previously existing methods
[17]. An application where the advantage of TO has been particularly clear is the design
of metallization patterns for freeform solar cells, where the traditional patterns are not
suited and intuition based designs are far from optimal [18, 19]. Under higher illumina-
tion intensity (more than one sun), the photoillumination current density is increased,
which in turn leads to a larger voltage drop on the front side of the cell. Due to increased
non-uniformity of the voltage profile, relatively larger power losses occur and the solar
cell efficiency is reduced. This effect is more prominent under nonuniform illumina-
tion, where it is seen that the efficiency of the solar cells drops dramatically [2, 20, 21].
Thus, it is of interest to optimize the metal grids with minimal restrictions on the de-
sign and tailor them for certain illumination and temperature profiles. With TO, it is not
required to restrict the non-uniformity only in x-direction. In this study, we optimize
the metallization designs for more general illumination and temperature profiles, with
non-uniformity in two dimensions, using topology optimization.

During the optimization, it is important that at every iteration, the current and volt-
age distributions on the front side of the cell are modeled accurately. For this purpose,
the finite element method [22] is a very suited approach, and has been used in the past
[2, 8, 13, 14, 23]. In [2, 13], COMSOL© models have been used for FEM based modeling,
however, only limited mathematical details of the numerical model are discussed. A dis-
cussion of FEM based implementation is provided in [14], where the numerical model
is embedded into a two-step optimization scheme for metallization design. Further, the
TO based approach presented by us in [9, 17] uses a two-dimensional finite element
scheme for modeling the local current densities and voltage distributions. However, this
simplified model did not include the shunt resistance and resistance due to contact of
the emitter with the metal electrode material, and is limited to uniform illumination and
temperature conditions for a single sun intensity. Although the role of contact resistance
can be neglected for good devices, this may not be true in general. More importantly,
the allowable contact resistance is inversely proportional to the current density, due to
which it becomes important for concentrated illumination conditions [24].

To enable accurate modeling and optimization of concentrating solar cells, this chap-
ter presents an advanced two-dimensional finite element model and a topology opti-
mization strategy. The numerical model can be used to accurately model the current
density and voltage distributions on the front surface of the solar cell. Contact and shunt
resistances are included in the model and the effect of contact resistance on the solar cell
performance is studied. The numerical model is generalized for 1-diode and 2-diode
models as well as other empirical I-V relations. Based on this numerical model, a topol-
ogy optimization formulation and the associated adjoint sensitivity analysis are devel-
oped. The proposed topology optimization methodology can optimize the metallization
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Figure 4.1: Equivalent electrical circuit diagram for a solar cell

patterns for solar cells under concentrating, non-uniform illumination and temperature
conditions. While the focus of this chapter is on CPV applications, the presented model
as well as the optimization strategy are equally applicable for uniform illumination con-
ditions. The numerical implementations are kept generic for follow up research and a
MATLAB® implementation of the modeling and optimization procedure is provided1.
Using the proposed method, metallization patterns are optimized for several cases, and
relative performance improvements of up to 26% are observed.

The outline for the rest of the chapter is as follows. Section 4.2 discusses the formu-
lation of the two-layer finite element model. The results obtained from the numerical
model for several tests are presented in Section 4.3. This includes numerical tests re-
lated to validation of the proposed numerical model against the results reported in [2]
(Section 4.3.2), and study of the effect of contact resistance (Section 4.3.3). Section 4.4
presents the optimization strategy and the obtained results for various illumination and
temperature profiles are presented in Section 4.5. Finally, the conclusions related to this
work are stated in Section 8.6.

4.2. MODELING APPROACH
In this section, a detailed numerical model is presented that can efficiently model the
current flow and voltage distributions on the front surface of the solar cell. While the
discussion is restricted to modeling only the front metallization pattern, the rear side
can as well be modeled with slight modifications. To adapt the model for the rear side
metallization design, see [19].

4.2.1. EQUIVALENT CIRCUIT
Fig. 4.1 shows a simple solar cell circuit diagram applicable to both the 1-diode [25] as
well the 2-diode model [26]. Based on this circuit diagram, the characteristic equation
for the solar cell can then be stated as

I = IL − Id1 − Id2 − ISH , (4.1)

where, I , IL , Id1, Id2 and ISH denote the output current, photoillumination current, the
reverse saturation diode currents across diodes 1 and 2 and the shunt current, respec-

1A MATLAB® implementation is available to download from the repository at https://github.com/
dkgupta90/topsol.

https://github.com/dkgupta90/topsol
https://github.com/dkgupta90/topsol
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tively. Let V j denote the junction potential, then Eq. 4.1 can be rewritten as

I = IL − I01

(
e
βV j
n1 −1

)
− I02

(
e
βV j
n2 −1

)
− V j

RSH
. (4.2)

Here, n1 and n2 are the ideality factors for diode 1 and 2, respectively and β= q̃
kB T , where

q̃ , kB and T denote elementary charge, Boltzmann’s constant and absolute temperature
of the cell, respectively. For a 1-diode model, n1 and n2 can be set to 1 and ∞ respectively
and for a 2-diode model to 1 and 2, respectively. The shunt resistance RSH can occur due
to defects in the active layer. Due to this, a certain part of the current, termed as shunt
current ISH can take an alternate path [26]. In case there are no defects in the circuit,
RSH can be set to ∞, and no shunt current is generated.

Next, the junction potential V j is further expressed as

V j =V + I Rs , (4.3)

where V is the voltage across the circuit and Rs denotes the total series resistance. Here,
Rs can consist of contributions from emitter sheet resistance Re , ohmic contacts to the
emitter Rc,e , metal finger resistance R f i , busbar resistance Rb , contributions from the
wafer edges Red g e , resistance of the bulk material referred as base resistance Rbase , and
resistance due to the contact of the metal electrode on the rear side Rc,r . Thus, it can be
stated as

Rs = Re +Rc,e +R f i +Rb +Red g e +Rbase +Rc,r . (4.4)

For the sake of simplicity, the resistive components associated with the rear side as well
as the edges, i.e., Rc,r and Red g e , are ignored. However, the inclusion of resistive com-
ponents associated with the rear side should be evident from the model description and
from the study presented in [19]. With these simplifications, Rs can be restated as

Rs = Re +Rc,e +R f i +Rb +Rbase . (4.5)

The electrical circuit shown in Fig. 4.1 is a lumped model, however, to correctly
model the current and voltage distributions in the emitter and electrode layers, a dis-
tributed diode model is required (e.g. [27]). In this chapter, a distributed model is used,
where the current flow at any point in the active layer is modeled using a diode and the
current flow in the emitter and the electrode layers is modeled using a two-layer finite
element mesh, as discussed in Section 4.2.3. Let the current entering the emitter layer at
any point be denoted by I e , then based on Eqs. 4.2 and 4.3,

I e = IL − I01

(
e
β(V +I e R̃s )

n1 −1

)
− I02

(
e
β(V +I e R̃s )

n2 −1

)
− V + I e R̃s

RSH
. (4.6)

Note that in Eq. 4.6, R̃s only includes the base resistance and any additional resistances
associated with the active layer. The resistances associated with the emitter and elec-
trode layers (Re , Rc,e , R f i and Rb) are excluded, since they are separately modeled using
the finite element mesh.



4

62 4. CPV METALLIZATION OPTIMIZATION

4.2.2. ILLUMINATION AND TEMPERATURE DISTRIBUTION

In this study, solar cells with various illumination and temperature profiles are consid-
ered. Illumination profiles for linear concentrators have been identified to be Gaussian
[20]. While any profile can be used in our numerical model, following the work presented
in [13], we use the Gaussian radiation profiles for this study. The one-dimensional Gaus-
sian profiles used for model validation are same as that used in [2, 13]. However, since
we do not restrict the radiation to vary only along the finger direction, two-dimensional
illumination non-uniformities are modeled as well. To account for a Gaussian radiation
profile, we define the radiation factor as

R(r ) = N0 A0

ζ
e

r−r0
2S2 , (4.7)

where, R(r ) denotes the radiation factor at any point r = (x, y) of the solar cell front
surface domain, and r0 refers to the radiation profile center. Also, N0 denotes the aver-
age number of suns at any point of the solar cell and S controls the width of the Gaus-
sian curve. For the Gaussian radiation profiles used in this study, S = 4rmaxp

πA0
and rmax =√

1+ Ly

Lx
, where Ly and Lx denote the cell lengths in y- and x-directions, respectively.

The term A0 controls the illumination contrast and ζ is a normalizing term defined as

ζ = ∫
Ω e

r−r0
2S2 dΩ, where Ω refers to the solar cell domain. A more complex radiation dis-

tribution is an irregular profile (caused due to misalignments, optical aberrations [21])
which is modeled by adding multiple Gaussian and anti-Gaussian profiles.

Under non-uniform temperature distribution, the terms I01 and I02 in Eq. 4.6 are no
longer constant in the whole solar cell domain. The reverse saturation diode currents
can be expressed as functions of local temperature as [2],

I01 = I001T 3e
−EG0
kB T , (4.8)

I02 = I002T 3e
−EG0
kB T , (4.9)

where, I001, I002 and EG0 (bandgap energy at 0 K) can be assumed to be constant with
respect to temperature.

The temperature profile depends on several factors, e.g. the distribution of incident
illumination, solar cell properties, cooling device, etc., and simulating it for a certain
specific scenario is beyond the scope of this work. The choice of the temperature profile
does not affect the proposed modeling and optimization approach, hence we restrict
ourselves to some of the popularly used temperature profiles. In [13], it is stated that
two of the prominent temperature profiles for concentrators are the Gaussian and anti-
Gaussian distributions. For Gaussian radiation profiles, temperature field in silicon solar
cells can be described using Gaussian distributions [28]. Temperature profiles can also
be considered such that they describe the role of cooling devices. Under such scenarios,
the temperature distribution can be described using an inverse Gaussian distribution
[13]. Similar to radiation profiles, we do not restrict the temperature to vary only along
the finger direction, rather two-dimensional temperature non-uniformities are modeled
as well.
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incident light

current from active layer (Ie )

metallization layer
(Gm ,Vm ,Im)

emitter layer
(Ge ,Ve ,Ie )

Rc ,e

busbar

IL

Figure 4.2: A two-layer finite element model of the front surface of a solar cell. Layer 1 comprises the emitter
material and layer 2 consists of electrode material parts and void parts. Each node of the emitter layer is
connected to the respective node in the metal layer with a resistor (contact resistance Rc,e ).

The Gaussian temperature distribution can be described as

Tg (r ) =∆Te
−(r−r0)2

2S2
T +T0, (4.10)

where, ∆T denotes the amplitude of temperature with respect to the baseline tempera-
ture T0 and ST controls of the width of the temperature curve. The anti-Gaussian profile
can be described as

Tag (r ) =∆T

(
1−e

−(r−r0)2

2S2
T

)
+T0. (4.11)

4.2.3. FINITE ELEMENT MODEL
We model the solar cell using the finite element method (FEM). Fig. 4.2 shows a two-
layer finite element model for the front surface of a solar cell. The lower layer models
the voltage and current distributions for the emitter layer and the upper layer similarly
models these parameters for the metal electrode. The metallization pattern is defined on
the upper layer, and this pattern is optimized using a density-based topology optimiza-
tion approach [29]. For optimization purposes, the metallization is defined using a set of
density design variables ρ comprising the element densities for each finite element. The
term density here quantifies the amount of electrode material inside each finite element
of the metallization layer. For a density value of 1, the finite element is fully filled with
electrode material and for 0, it is empty.

The reason to use a two-layer model is to accurately model the contact resistance Rc,e

between the electrode material and the emitter. In general, losses due to the ohmic con-
tact (contact resistance) depend on the current flow between the metal and the emitter
layer. Thus, rather than the whole area of metal-emitter contact, only those parts need
to be considered where there is a current flow between the two layers. In the proposed
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numerical model, this is achieved with two layers of finite element mesh, where every
node of the emitter layer is connected to the corresponding node of the metal layer with
a resistor of resistance Rc,e . The losses due to local ohmic contact can then take place
only if there is a flow of current through the respective resistor Rc,e .

To model the current and voltage distributions, the following partial differential equa-
tions need to be solved:

σe∇2V e = δρ̃e

δt
, (4.12)

σm∇2V m = δρ̃m

δt
. (4.13)

Here and henceforth, the superscripts e and m refer to the emitter and metal electrode
layers, respectively. The material dependent conductivities are represented by σ and ρ̃

refers to enclosed charge density. Based on finite element discretizations (e.g. [22]), the
systems of equations for the two layers are

Ge Ve − Ie (ρ,Ve )+ Im(Ve ,Vm) = 0, (4.14)

Gm(ρ)Vm − Im(Ve ,Vm) = 0. (4.15)

The conductivity matrices are denoted by G, and V and I refer to the column vectors of
voltage and curent, respectively.

The current Ie , coming from active layer and entering the emitter layer, depends on
the local shading. Here, local shading refers to the amount of sunlight blocked by the
electrode metal in a certain part of the cell, and is dependent on the element density of
the respective finite element in the metallization layer. On the other hand, Im , the ohmic
current flowing from the emitter layer to the metal electrode, does not depend on the
electrode material distribution. This current depends on the contact resistance Rc,e and
can be expressed as

Im = 1

Rc,e
(Ve −Vm). (4.16)

Using Eqs. 4.14, 4.15 and 4.16, the system of equations can be combined into a residual
form as

R =
[

Ge 0
0 Gm

][
Ve

Vm

]
−

[
Ie

0

]
+ 1

Rc

[
I −I

−I I

][
Ve

Vm

]
= 0. (4.17)

Eq. 4.17 can further be written as

R =
[

Ge + 1
Rc

I − 1
Rc

I

− 1
Rc

I Gm + 1
Rc

I

]
︸ ︷︷ ︸

G

[
Ve

Vm

]
︸ ︷︷ ︸

V

−
[

Ie

0

]
︸ ︷︷ ︸

I

= G V− I = 0. (4.18)

The conductivity matrix Ge is constructed from the global assembly of the element
conductivity matrices Ge

el , where
Ge

el =σe
s G0. (4.19)

Here, σe
s denotes the sheet conductivity of the emitter material and G0 denotes the nor-

malized conductivity matrix [17]. The conductivity for layer 2 depends on the electrode
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material distribution and can be described using the Solid Isotropic Material with Penal-
ization (SIMP) model [30] as follows:

Gm
el =σ0

s +ρq (σm
s −σ0

s )G0, (4.20)

where σm
s denotes the sheet conductivity of the constant thickness electrode material

and σ0
s is chosen as 10−12 ·σm

s to represent physically void areas. A non-zero value is
chosen to avoid numerical instabilities. To include the shading effect of the metallization
into the model, IL in Eq. 4.6 is replaced by IL(1−ρ)r . Both q and r exponents are used
to penalize intermediate element densities. This is necessary from a fabrication point of
view, since it helps to obtain 0 (electrode material) or 1 (void) values in the final metal
layer.

The busbar is assumed to be directly connected to the external load and is therefore
set to the cell operating voltage Vb . For optimal performance of the solar cell, the busbar
potential is also considered as an optimization parameter. Next, the nonlinear system
of equations (Eq. 4.17) is solved in an iterative manner using the Newton method. An
initial guess for V is made and at every iteration, it is updated as follows:

Vi+1 = Vi −
(

dRi

dVi

)−1

Ri , (4.21)

where
dRi

dVi
= G− dIi

dVi
, (4.22)

dIi

dVi
=

[ dIe
i

dVe
i

0

0 0

]
. (4.23)

During optimization, the Newton iterations can be started from the solution of V ob-
tained in the previous optimization step. At every Newton iteration, Ie and dIe

dVe need to
be calculated, details of which are given in Appendices 4.A and 4.B, respectively.

4.3. MODELING RESULTS
To validate the proposed numerical model, the numerical solar cell example presented
in [2] is modeled and the results are compared. Further, based on our numerical model,
the effect of contact resistance on the performance of solar cell is studied for uniform
and non-uniform illumination conditions. For model validation as well as for optimiza-
tion, numerical examples of crystalline silicon solar cell are used in this chapter. How-
ever, the proposed approach is general and also applicable to other solar cell types. In
the past, variants of the method have been used for other cell types such as thin films [9],
organic cells [19].

4.3.1. MODEL PARAMETERS
A monocrystalline silicon solar cell of dimensions 4.8 cm × 10.6 cm is considered with
a busbar width of 2 mm and finger width of 35 µm. Additional input parameters used
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Figure 4.3: The cell element used for modeling purposes. Here, Lx and Ly are the cell lengths along x- and
y-directions and n f denotes the number of metal fingers.

Table 4.1: Input parameters for a solar cell under 12 suns illumination (from [2]).

Cell geometry and resistivities
Cell length (Ly ) 10.6 cm
Cell width (Lx ) 4.8 cm
Busbar width 2mm
Finger width 35 µm
Finger sheet resistance 1.05×10−3Ω/sq
Emitter sheet resistance 100Ω/sq
Operation conditions
Temperature 320 K
Mean illumination intensity 12,000 Wm−2

Diode parameters
C1 0.39444 AW−1

C2 -11,739 Am−2K−3

C3 -0.83584 Am−2V−1

Ideality factor n1 1.0603
Eg 1.124 eV
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Figure 4.4: Uniform illumination profile for 12 suns and the out-of-plane current density and voltage distribu-
tions observed in one cell element (1 sun = 1000 Wm−2).

in our numerical model are the same as that in [2] and are stated in Table 4.1. Note that
in [2, 31] as well as several other works related to concentrated illuminations, a different
current-voltage characteristic relationship is used. Here, current density and voltage are
related as follows:

J e =C1G +C2T 3
(
e

−Eg
kB T

)(
e

q̃V
n1kB T −1

)
+C3V , (4.24)

where, J e and G denote current density in the emitter layer and illumination, respec-
tively, and C1, C2 and C3 are coefficients specific to any given cell [31]. The parameters
C1, C2 and C3 listed in Table 4.1 are related to this curve. However, for modeling pur-
pose, this is not a problem and it can be transformed into the traditional IV curve listed
in Eq. 4.6 (see Appendix 4.C).

For traditional solar cells, where an H-pattern is used for metallization, the size of
the modeling domain can be significantly reduced due to the lines of symmetry along
the x- and y-directions. Thus, we model here only one cell element as shown in Fig. 4.3.
For FEM based modeling, the domain of the element is discretized into a structured grid
of square elements with bilinear shape functions. The operating voltage of the cell is
optimized to achieve maximum performance for the chosen metallization design.

4.3.2. MODEL VALIDATIONS
For validation purposes, two different illumination conditions are considered. For the
first test, a uniform illumination of 12 suns is assumed on the front side of the solar cell.
The optimal metallization design for this scenario consists of 184 parallel metal fingers
[2]. The cell element domain is modeled using 4400 × 117 square finite elements. Fig. 4.4
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Figure 4.5: Non-uniform illumination profile with an average illumination of 12 suns and peak illumina-
tion ratio of 10 and the out-of-plane current density and voltage distributions observed in one cell element
(1 sun = 1000 Wm−2).

shows the illumination profile as well as the current and voltage distributions modeled
on the front side of one cell element. The fill factor (FF) and efficiency η values obtained
using the proposed model are 0.79 and 19.25%. These values match with those obtained
in [2], where FF and η are equal to 0.79 and 19.25%, respectively.

In another test, a Gaussian illumination profile with a mean illumination of 12 suns
and peak to mean ratio (PIR) of 10 is used. The metallization geometry is assumed to
still consist of 184 fingers, which is an optimal geometry of electrode fingers under uni-
form illumination. With this metallization, the FF and η values drop to 0.73 and 17.49%,
respectively. For the non-uniform illumination of PIR = 10, the optimized metallization
geometry consists of 287 electrode fingers [2]. For this case, the cell element is modeled
using 4400×84 electrode fingers. With this metallization, it is observed that the efficiency
improves from 17.49% to 18.58% and FF increases from 0.73 to 0.80. The Fig. 4.5 shows
the illumination profile, voltage and current distributions for one cell element.

For uniform as well as non-uniform illumination, it is observed that the FF as well as
η values obtained using the proposed numerical model match well with the results in [2].
Table 4.2 also reports additional parameters associated with the output IV curves. These
values also match well with those stated in [2]. Thus, it is observed that the proposed
model can accurately model the published solar cell cases of uniform and non-uniform
illumination conditions.
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Table 4.2: Number of electrode fingers used and respective output IV characteristics obtained using our model
and those reported by Mellor and co-workers.

Parameter Our results Mellor et al [2]
Uniform illumination with 12 suns
(using 184 metal fingers)
Isc (in A) 20.69 20.79
Voc (in volts) 0.66 0.65
Fill factor 0.79 0.79
Efficiency (in %) 19.25 19.25
Average illumination of 12 suns with PIR = 10
(using 184 metal fingers)
Isc (in A) 20.69 -
Voc (in volts) 0.65 0.64
Fill factor 0.73 0.73
Efficiency (in %) 17.49 17.50
Average illumination of 12 suns with PIR = 10
(using 287 metal fingers)
Isc (in A) 20.02 -
Voc (in volts) 0.65 0.65
Fill factor 0.80 0.80
Efficiency (in %) 18.58 18.60
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Figure 4.6: Effect of resistivity of the ohmic contact between the emitter and electrode, ρc,e , on the efficiency
of a solar cell.
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4.3.3. EFFECT OF CONTACT RESISTANCE
Compared to the effect of other series resistances, generally the effect of contact resis-
tance is very small and can generally be neglected. However, as stated in [24, 32, 33],
this holds for good devices and may not be true in general. The effect of contact resis-
tance is more prominent under concentrated conditions. Thus, in the proposed finite
element model, the ohmic contact between the emitter layer and the metal electrode is
also modeled. Based on the model, here we briefly study the effect of contact resistivity
ρc,e on the performance of a solar cell. Here, contact resistivity is chosen in place of con-
tact resistance, since it is an area independent parameter. To study its effect, the solar
cell example of [2] is studied and the input parameters stated in Table 4.1 are used.

Fig. 4.6 shows efficiency for several values of contact resistivity ρc,e for a uniform as
well as a non-uniform illumination profile under an intensity of 12 suns. For uniform
illumination, it is observed that for a ρc,e value close to 10−8 Ω-m2, the drop in efficiency
is less than 0.04%, which is negligible. This result is in line with [24], where it has been
stated that such a value of ρc,e should be adequate. However, it is important to note
that if the contact resistivity is high, the performance of the cell is significantly affected.
For example, for ρc,e equal to 10−7 Ω-m2, the efficiency drops by 0.23% and for 10−6 Ω-
m2, an efficiency drop of more than 2% is observed. Clearly, it shows that the contact
resistance, if large, can significantly reduce the power output from a solar cell.

Under non-uniform illumination, the role of contact resistance is even more promi-
nent. For a ρc,e value of 10−9 Ω-m2, the drop in efficiency is close to 0.04%. However,
unlike uniform illumination, the efficiency is reduced by more than 0.2% for ρc,e equal
to 10−8 Ω-m2. Thus, under a non-uniform illumination profile, the drop in performance
is larger. For ρc,e equal to 10−7 Ω-m2, an efficiency drop of around 1.5% is observed.
Thus, based on these numerical experiments, it can be seen that contact resistance can
play an important role in determining the performance of a concentrating solar cell.

4.4. OPTIMIZATION APPROACH

4.4.1. OPTIMIZATION PROBLEM
The solar cell power maximization problem is an unconstrained optimization problem.
To formulate the objective function, Kirchoff’s law is used according to which all the
generated current in the domain must pass through the busbar which is set to a potential
Vb . Thus, the power output Pout for the solar cell is expressed as

Pout =Vb

Nel∑
i=1

I m
i =Vb

Nel∑
i=1

I e
i , (4.25)

where I e
i and I m

i denote the currents in the i th finite element of the emitter and electrode
metal layers, respectively, and Nel denotes the number of finite elements in either of the
layers.

Traditionally, most of the optimization algorithms require the problem to be posed
as a minimization problem. Thus, the objective function J (ρ) is

min
J (ρ)

J (ρ),

with J (ρ) =−Pout . (4.26)
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In this study, gradient-based optimization is applied, using the method of moving asymp-
totes [34]. In general, it is observed that smaller electrode lines help to improve the solar
cell performance. The optimization process would prefer to design very fine electrode
features, however, from a fabrication point of view, there is a lower limit on the feature
sizes. To take this into account, the optimization process needs to be constrained to not
design electrode features smaller than certain minimum size. To impose a restriction
on minimum feature size and to avoid any numerical artefacts, we use a density filter
[17, 35]. Filtering averages the element densities in a weighted sense within a radius
rmi n , thereby not allowing electrode features smaller than rmi n to occur. In addition, fil-
tering reduces the contrast in density values between the adjacent neighbors, which in
turn avoids the formation of checkerboard patterns and other numerical artefacts. For
details on density filtering and other alternatives, see [36].

Since the density values are allowed to vary from 0 to 1, it is possible that the con-
verged solution consists of intermediate density values which are not desired from a
fabrication point of view. Due to filtering, this effect is more prominent and interme-
diate density values are seen at the boundaries of the electrode designs. To achieve more
crisp solutions, a continuous approximation to the Heaviside function is embedded in
the optimization process. The slope of the Heaviside approximation is controlled using
a parameter βH , which is initially chosen to be 1 and its value is doubled at every 50 iter-
ations up to a maximum of 1024. For very high values of βH , the approximation matches
the exact Heaviside function very well. Such a continuation scheme has proven to con-
verge to well performing solutions for several TO problems. The details related to the
implementation of continuous Heaviside approximation can be found in [36, 37].

4.4.2. SENSITIVITY ANALYSIS

At every step of the optimization, gradient-based optimization algorithms require infor-
mation regarding the sensitivity of the objective to each of the design variables. To com-
pute the sensitivities, the adjoint method is used [38]. The adjoint sensitivity analysis of
J requires an adjoint formulation where the augmented response Ĵ is stated as

Ĵ (s) =J (s,V(s))+λᵀ(R(s,V(s))), (4.27)

where, s is the set of design variables and can be expressed as s = [ρ1,ρ2, . . . ,Vb]. Using
Eq. 4.18 and choosing λᵀ = [λᵀ

e λᵀ
m], we obtain

Ĵ =J +
[
λe

λm

]ᵀ ([
Ge + 1

Rc
I − 1

Rc
I

− 1
Rc

I Gm + 1
Rc

I

][
Ve

Vm

]
−

[
Ie

0

])
. (4.28)

The sensitivities
dĴ

dρ and
dĴ

dVb
are obtained by taking the derivative of Eq. 4.28 with re-

spect to s, details of which are discussed in Appendix 4.D. The total computational cost
of the sensitivity analysis for all design variables corresponds to the solution time of a
single Newton iteration of the nonlinear solar cell analysis. This efficient approach en-
ables the optimization of detailed metallization topologies.



4

72 4. CPV METALLIZATION OPTIMIZATION

20

40

60

80

100

120

140

160

(a) Gaussian profile

20

40

60

80

100

120

140

160

(b) Irregular profile

Figure 4.7: Non-uniform illumination profiles with an average illumination of 12 suns (1 sun = 1000 Wm−2).
For the Gaussian profile, A0 is equal to 15 and for the irregular profile A0 values are 15 and 20 for the two
Gaussian distributions.
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Figure 4.8: Non-uniform temperature profiles with base temperatures equal to 320 K. The temperature ampli-
tude for both cases is set to 40 K deviation from the base temperature.
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4.5. OPTIMIZATION RESULTS
To demonstrate the applicability of the proposed methodology, a number of test cases
are considered. Unlike the traditional H-pattern, where due to regularity of the metal-
lization geometry, one cell element (as shown in Fig. 4.3) can be used for optimization,
no such regularity is known beforehand for a TO problem. Although it is possible to per-
form TO on a domain size of one cell element, this would considerably restrict the de-
sign freedom of the optimization problem, and limit the performance improvement. For
increased flexibility of the optimization problem, considering a larger design domain is
preferable. Thus, rather than choosing just one cell element, half of the entire solar cell is
used to optimize the metallization design. The input parameters used are same as those
stated in Table 4.1. Since typically smaller solar cells are used in CPVs, the physical size
of the chosen cell is 2.42 cm × 1.18 cm, and the minimum electrode width is restricted
to 60 µm. The contact resistivity ρc,e is set to 10−9Ω-m2.

In general, for simple illumination profiles as in [2], well performing H-pattern de-
signs can be easily obtained. We observed that for such illuminations, it is difficult to
obtain better performing designs using TO. However, for more complex illumination
and temperature profiles, the gain in performance is quite significant using TO, due to
which several such non-uniform illumination and temperature profiles are considered
here. Three Gaussian profiles (Fig. 4.7a) with A0 values of 10, 15 and 20, and an irregular
profile comprising two Gaussian distributions of A0 values 15 and 20 (Fig. 4.7b) are con-
sidered for defining the illumination field. The average illumination intensity for all the
cases is equal to that of 12 suns. Note that these are synthetic profiles for the purpose of
illustrating the optimization process. The three temperature profiles used in this work
are a uniform field, a Gaussian distribution (Fig. 4.8a) and an anti-Gaussian (Fig. 4.8b)
distribution. For all the three temperature profiles, the base temperature was set to 320
K and the temperature amplitude for the non-uniform profiles was set to 40 K.

The design domain of the cell is discretized using a structured mesh of 600×585 finite
elements, and the filter radius rmi n is set to 1.5 elements. This results in a minimum
feature size of 60 µm. The mesh resolution is chosen such that the desired feature size
can be accurately represented. In [17], it has been shown that the optimized designs are
not dependent on the choice of mesh, and show only limited variations with change in
mesh resolution. A penalty continuation scheme is used, where the exponents p and r
are both set to 3 initially, and after every 50 iterations of TO, an increment of 0.5 is made
to each of them. For a solar cell problem, generally the amount of electrode material
to be used is decided by the optimizer based on the compromise between shading and
resistive losses [17]. However, in this chapter, numerical cases are considered where the
illumination intensity in some regions of the cell is close to zero. In those parts, the
optimizer prefers to use electrode material for a marginal gain in conductivity, which
can lead to significant parts of the domain being covered with electrode material. To
avoid this uneconomic use of material, a constraint is imposed that not more than 10%
of the solar cell front surface can be covered with the metallization pattern.

To compare the performance of the designs obtained from TO, a reference H-pattern
is used. Parallel electrode fingers of width 60 µm are used and the spacing between
the fingers is optimized for a uniform illumination intensity of 12 suns and a uniform
temperature distribution of 320 K. The efficiency of the reference design under various
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Figure 4.9: Optimized design and the current density and voltage distributions for the front side of a solar cell
under a Gaussian illumination of an average intensity of 12 suns (A0 = 10). A uniform temperature profile is
chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.535
volts and 17.075%, respectively.

illumination and temperature conditions is denoted by η∗ and the efficiency of the opti-
mized design obtained from TO under similar conditions is denoted by η.

4.5.1. ILLUMINATION PROFILES

Figs. 4.9, 4.10 and 4.11 show the optimized designs and the corresponding current den-
sity and voltage distributions for the front side of the solar cell for Gaussian illumination
profiles with A0 equal to 10, 15 and 20, respectively. To reiterate here, A0 controls the
illumination contrast such that for higher values of A0, the contrast is higher and the il-
lumination is localized in a smaller region. A uniform temperature distribution with base
temperature T0 = 320 K is chosen. For A0 = 15 and 20, an intermediate post processing
is involved where undesired electrode material from non-illuminated regions of the do-
main is removed, however, this does not affect the performance of the design. Fig. 4.12
shows the optimized designs before and after processing for A0 = 20. During optimiza-
tion, removing material from the almost non-illuminated parts of the cell does not help
in improving its performance. Hence, some ineffective electrode material is left in dark
areas in the optimized design, as can be seen in Fig. 4.12a. Table 4.3 states the solar cell
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Figure 4.10: Optimized design and the current density and voltage distributions for the front side of a solar cell
under a Gaussian illumination of an average intensity of 12 suns (A0 = 15). A uniform temperature profile is
chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.562
volts and 17.271%, respectively.

Table 4.3: Solar cell efficiencies obtained for various illumination and temperature profiles using a reference
H-pattern design (denoted by η∗) and topology optimized designs (denoted by η). Here, the term A0 is used to
control the light intensity contrast for the illumination profiles, and T0 and ∆Tmax denote the base tempera-
ture and amplitude of change in temperature, respectively for the temperature profiles.

Illumination profile Temperature profile η∗ (in %) η (in %) ∆η= η−η∗
Gaussian (A0 = 10) uniform (T0 = 320 K) 17.458 17.075 -0.383
Gaussian (A0 = 15) uniform (T0 = 320 K) 15.511 17.271 1.760
Gaussian (A0 = 20) uniform (T0 = 320 K) 13.366 16.846 3.480
Irregular (multi-Gaussian with A0
= 15 and 20)

uniform (T0 = 320 K) 16.035 17.463 1.428

Gaussian (A0 = 15) Gaussian (T0 = 320K, ∆Tmax = 40K) 13.425 15.043 1.618

Gaussian (A0 = 15)
anti-Gaussian (T0 = 320K, ∆Tmax =
40K)

14.997 16.271 1.274
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Figure 4.11: Optimized design and the current density and voltage distributions for the front side of a solar cell
under a Gaussian illumination of an average intensity of 12 suns (A0 = 20). A uniform temperature profile is
chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.566
volts and 16.846%, respectively.

(a) Before processing (b) After processing

Figure 4.12: Optimized design obtained using topology optimization (left), and its post-processed version
(right) for the front side of a solar cell under a Gaussian illumination of an average intensity of 12 suns (A0 = 20).
The post-processing removed electrode material that remained in dark regions of the cell.
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efficiencies obtained using the reference design as well as TO based designs for various
illumination and temperature profiles considered in this study. A general observation is
that higher values of A0 result in lower performances of the reference design (denoted
by η∗) as well as the optimized design obtained from TO (denoted by η).

Among the three Gaussian profiles used, it is observed that for A0 = 15 and 20, the
efficiency of the solar cells increases by 1.76% and 3.48%, respectively, for the TO based
design compared to the reference design. These imply relative performance improve-
ments of approximately 11% and 26%, respectively for the two cases. However, for A0

= 10, the TO based design is slightly inferior to the reference design with a reduction of
around 0.38% in efficiency. We believe, it could be a locally optimal solution and with
different set of parameters and starting design, it should be possible to obtain a bet-
ter performing design. In general, given the freedom of design, TO based metallization
should be expected to perform better. The solar cell metallization design problem is a
highly non-convex problem with many locally optimal solutions in the design domain.
At the same time, due to the large number of design variables (e.g. 0.3 million here),
gradient-based optimization methods are used, which can occasionally converge to an
inferior locally optimal solution. For the chosen illumination profiles, symmetric metal-
lization designs are expected. However, we use the Newton method to solve Eq. 4.18, and
due to even small numerical tolerances at any step of the optimization, the symmetry of
the structure can break. For this reason, optimized designs for the solar cell obtained
using TO can exhibit asymmetric features.

For the choice of A0 = 15 and 20 as well as for various other cases considered in this
study, it is observed that there is a voltage drop in the direction away from the busbar (e.g.
Fig. 4.10c, 4.11c). The reason is that there are some regions in the cell domain where the
illumination intensity is close to zero. Due to this, there is no illumination current gen-
erated in those areas, which leads to a net current flow in the reverse direction creating
local sinks in the cell domain and drop in voltage towards these regions. However, the
magnitude of this current is very small compared to the high illumination regions of the
cell, and there is no significant impact on the performance of the cell due to the local
current absorptions.

Next, an irregular illumination profile is used and the performance of the solar cell
is evaluated. The irregular profile is formed by two Gaussian distributions (A0 = 15 and
20), with the centres located in two different parts of the design domain as shown in
Fig. 4.8b. Fig. 4.13 shows the optimized design and the current density and voltage
distributions for the front side of the cell obtained using TO. Compared to the reference
design (η∗ = 16.035%), an increase of 1.43% is observed in the solar cell efficiency when
the TO based design is used (η= 17.463%).

For all the four illumination profiles considered here, it is observed that fine features
are created in regions with very high illumination intensity. This is because addition of
electrode material leads to shading, and in the regions of high illumination intensity,
even the addition of a small amount of electrode material leads to large reductions in
the illumination, which can significantly affect the performance of the solar cell. We
observed that if the restriction on the minimum electrode width is relieved, TO leads to
finer electrode features and further improvement in the performance of the solar cell.
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Figure 4.13: Optimized design and the current density and voltage distributions for the front side of a solar
cell under an irregular illumination of an average intensity of 12 suns. The irregular profile is obtained using
two Gaussian distributions with A0 values of 15 and 20. A uniform temperature profile is chosen with base
temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.563 volts and 17.463%,
respectively.
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Figure 4.14: Optimized design and the current density and voltage distributions for the front side of a solar cell
under a Gaussian illumination of an average intensity of 12 suns (A0 = 15) and a Gaussian temperature profile
with base temperature of 320 K and temperature amplitude equal to 40 K. The optimal busbar potential Vb
and efficiency η values are 0.503 volts and 15.033%, respectively.

4.5.2. TEMPERATURE PROFILES
The non-uniformity in temperature distribution can also affect the performance of a
solar cell. For CPVs, the concentration of sunlight in a small part of the cell leads to
a non-uniform temperature profile. Additionally, the cooling systems can also create a
non-uniform distribution of temperature. In this chapter, we do not simulate the exact
temperature profile for a certain radiation profile and cell properties, as this also requires
accurate modeling of all surrounding systems and their thermal properties, which is be-
yond the scope of this study. Rather, the temperature profile is prescribed (as shown in
Fig. 4.8) and the metallization design is optimized, to study its influence on the opti-
mal design. The resulting metallizations and the current density and voltage distribu-
tions obtained using TO for the Gaussian and anti-Gaussian temperature distributions
are shown in Figs. 4.14 and 4.15, respectively. The efficiency values obtained using these
temperature profiles for the reference design as well as for the designs obtained using
TO are stated in Table 4.3.

For the reference design itself, it is observed that performance of the solar cell under
a non-uniform illumination profile is lower than that of the uniform distribution. The
reason is that the local temperature in some parts of the cell for the non-uniform profiles
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Figure 4.15: Optimized design and the current density and voltage distributions for the front side of a solar cell
under a Gaussian illumination of an average intensity of 12 suns (A0 = 15) and an anti-Gaussian temperature
profile with base temperature of 320 K and temperature amplitude equal to 40 K. The optimal busbar potential
Vb and efficiency η values are 0.532 volts and 16.271%, respectively.

is higher than the base temperature. Due to increased temperatures, the dark currents
are higher in those parts, which leads to an overall reduction in the generated current
density and a reduction in performance.

With TO, the performance of the solar cell is improved for both non-uniform tem-
perature profiles (Table 4.3). Compared to the efficiency values of 13.425% and 14.997%
obtained for the reference design for the Gaussian and anti-Gaussian temperature pro-
files, respectively, those obtained using TO are 15.403% and 16.271%, respectively. It is
observed that the metallization designs obtained for the two cases are different from that
of a uniform temperature distribution (Fig. 4.10). The change in temperature affects the
current density and voltage distributions, which in turn affects the electrode material
distribution on the front surface. Thus, for the non-uniform temperature distributions,
a tailored metallization helps to improve the performance. Similar to the previous cases,
small negative currents are observed in some parts of the cell, leading to absorption and
a drop in voltage away from the busbar.
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4.6. CONCLUSIONS
In this chapter, a finite element method based numerical model and a topology opti-
mization strategy have been presented to optimize solar cell metallization patterns un-
der concentrated illumination conditions. All the relevant resistances including the con-
tact and shunt resistance are included in the model. The proposed model is validated
through comparisons with previously published modeling results for uniform and non-
uniform illumination conditions. Further, from our analysis of solar cells under con-
centrated conditions, it is observed that contact resistance can significantly affect the
performance. Compared to uniform illumination, this effect is more prominent under
concentrated conditions. For example, for the case considered in this chapter, it is ob-
served that for the same value of contact resistance, the reduction in solar cell perfor-
mance under concentrated illumination could be seven times more than that observed
under uniform sunlight of equal average illumination. Clearly, this shows that contact
resistance can be important for CPVs, and it should therefore be included in the model.

Based on the numerical model, a topology optimization strategy is proposed to de-
sign efficient metallization patterns for solar cells under non-uniform illumination and
temperature conditions. The applicability of the proposed optimization approach is
demonstrated on various synthetic illumination and temperature profiles and for most
of the cases, efficient metallization designs are obtained. Using TO, improvement of up
to 26% in power output is observed compared to a traditional H-pattern design, opti-
mized for uniform incident sunlight with equivalent average illumination. It is found
that a non-uniform temperature distribution can also affect the solar cell performance,
and with topology optimization it is possible to design metallization patterns tailored
for such profiles. Based on the improvement in performance observed for various cases
presented in this study, it can be argued that the proposed approach could serve as an
important tool to design solar cell metallizations tailored for concentrated sunlight.

APPENDICES

4.A. COMPUTING Ie

Taking the non-uniform illumination and shading effects into account, I e for any ele-
ment can be calculated as

I e = IL(1−ρ)r R− I01

(
e
β(V e+I e R̃s )

n1 −1

)
− I02

(
e
β(V e+I e R̃s )

n2 −1

)
− V e + I e R̃s

RSH
. (4.29)

This is a transcendental equation and cannot be solved directly. Thus, we solve it nu-
merically using inner Newton iterations. Eq. 4.29 is rewritten as

I e − IL(1−ρ)r R+ I01

(
e
β(V +I R̃s )

n1 −1

)
+ I02

(
e
β(V +I R̃s )

n2 −1

)
+ V e + I e R̃s

RSH
= 0. (4.30)

Using 4.30 with some rearrangements, a function ψ is defined for any element of the
emitter layer as

ψ(I e ) = I e
(
1+ R̃s

RSH

)
+ I01e

β(V e+I e R̃s )
n1 + I02e

β(V +I e R̃s )
n2 −

(
IL(1−ρ)r R+ I01 + I02 − V e

RSH

)
= 0.

(4.31)
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To obtain Ie , ψ(I e ) needs to be assembled for all the finite elements of the domain and
the root of equation ψ(Ie ) = 0 needs to be calculated. This is achieved using Newton
method, where following is the update scheme:

Ie
i+1 = Ie

i −
ψ(Ie )

ψ′(Ie )
, (4.32)

where ψ′(I e ) for any finite element is stated as

ψ′(I e ) =
(
1+ R̃s

RSH

)
+ βR̃s I01

n1
e
β(V e+I e R̃s )

n1 + βR̃s I02

n2
e
β(V e+I e R̃s )

n2 . (4.33)

4.B. COMPUTING dIe

dVe

From Eq. 4.29, it can be seen that the current at any point of the emitter layer depends
only on the local voltage. Thus, dIe

dVe can be obtained by assembling the terms d I e

dV e for the

whole finite element domain. For d I e

dV e , the derivative of Eq. 4.30 with respect to V e is
taken and the following is obtained:

d I e

dV e + βI01

n1

(
1+ R̃s

d I e

dV e

)
e
β(V +I e R̃s )

n1 + βI02

n2

(
1+ R̃s

d I e

dV e

)
e
β(V +I e R̃s )

n2 + 1

RSH
+ R̃s

RSH

d I e

dV e = 0.

(4.34)
Rewriting in terms of d I e

dV e ,

d I e

dV e =−
βI01
n1

eβ(V +I e R̃s )/n1 + βI02
n2

eβ(V +I e R̃s )/n2 + 1
RSH(

1+ βR̃s I01
n1

eβ(V +I e R̃s )/n1 + βR̃s I02
n2

eβ(V +I e R̃s )/n2 + R̃s
RSH

) (4.35)

4.C. IV CURVES FOR CONCENTRATED ILLUMINATIONS
The IV curve stated in Eq. 4.6 can be written for 1-diode model (n2 =∞) and expressed
in terms of current density j e as

j e = jL − j01

(
e
β(V + j e A R̃s )

n1 −1

)
− V /A + j e R̃s

RSH
. (4.36)

where, A denotes the local area, and jL and j01 refer to photoillumination current den-
sity and dark current density in diode 1, respectively. Comparing Eqs. 4.24 and 4.36,
following is obtained:

jL =C1G , (4.37)

j01 =C2T 3
(
e

−Eg
kB T

)
, (4.38)

R̃s = 0, (4.39)

RSH = 1

A C3
. (4.40)
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For clarity, we assume W1 = Ge + 1

Rc
I, W2 = − 1

Rc
I and W3 = Gm + 1

Rc
I and Eq. 4.28 is

rewritten as

Ĵ =J +λᵀ
e (W1Ve +W2Vm − Ie )+

[
λm f

λmp

]ᵀ
(W2Ve +W3Vm), (4.41)

where, the subscripts m f and mp refer to the free degreees and fixed degrees of freedom,
respectively for the metal electrode layer. Eq. 4.41 should hold for all values of λe and
λm . Thus, we can reduce it by putting λmp = 0. Thus, we obtain

Ĵ =J +λᵀ
e (W1Ve +W2Vm − Ie )+λᵀ

m f ([W2 f f W2 f p ]Ve + [W3 f f W3 f p ]Vm), (4.42)

where, W2 =
[

W2 f f W2 f p

W2p f W2pp

]
and W3 =

[
W3 f f W3 f p

W3p f W3pp

]
.

Taking the derivative of Eq. 4.42 with respect to the design variables’ set s,

dĴ

ds
=∂J
∂s

+ ∂J

∂Ve

dVe

ds
+ ∂J

∂Vm

dVm

ds

+λᵀ
e

(
dW1

ds
Ve +W1

dVe

ds
+ dW2

ds
Vm +W2

dVm

ds
− ∂Ie

∂s
− ∂Ie

∂Ve

dVe

ds
− ∂Ie

∂Vm

dVm

ds

)
+λᵀ

m f

([
dW2 f f

ds

dW2 f p

ds

]
Ve + [W2 f f W2 f p ]

dVe

ds
+

[
dW3 f f

ds

dW3 f p

ds

]
Vm

)
+λᵀ

m f

(
[W3 f f W3 f p ]

dVm

ds

)
. (4.43)

Since W1 and W2 are constant matrices, the associated derivative terms with respect to s
can be set to 0. In addition, since J and Ie do not have a direct dependence on Vm , the

terms
∂J

∂Vm and ∂Ie

∂Vm can be set to 0. Taking these into consideration,

dĴ

ds
=∂J
∂s

+ ∂J

∂Ve

dVe

ds
+λᵀ

e

(
W1

dVe

ds
+W2

dVm

ds
− ∂Ie

∂s
− ∂Ie

∂Ve

dVe

ds

)
+λᵀ

m f

(
[W2 f f W2 f p ]

dVe

ds
+

[
dW3 f f

ds

dW3 f p

ds

]
Vm + [W3 f f W3 f p ]

dVm

ds

)
. (4.44)

Rearranging the terms and putting Vm =
[

Vm
f

Vm
p

]
,

dĴ

ds
=∂J
∂s

+λᵀ
e

[
W2 f p

W2pp

] dVm
p

ds
−λᵀ

e
∂Ie

∂s
+λᵀ

m f

[
dW3 f f

ds

dW3 f p

ds

]
Vm +λᵀ

m f W3 f p

dVm
p

ds

+
(
∂J

∂Ve +λᵀ
e W1 −λᵀ

e
∂Ie

∂Ve +λᵀ
m f [W2 f f W2 f p ]

)
dVe

ds

+
(
λ
ᵀ
e

[
W2 f f

W2p f

]
+λᵀ

m f W3 f f

) dVm
f

ds
. (4.45)
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To eliminate dVe

ds and
dVm

f

ds , we define the following adjoint problem:

∂J

∂Ve +λᵀ
e W1 −λᵀ

e
∂Ie

∂Ve +λᵀ
m f [W2 f f W2 f p ] = 0, (4.46)

λᵀ
e

[
W2 f f

W2p f

]
+λᵀ

m f W3 f f = 0, (4.47)

which yields

λ
ᵀ
e =−

(
∂J

∂Ve

)(
W1 − ∂Ie

∂Ve −
[

W2 f f

W2p f

]
W−1

3 f f [W2 f f W2 f p ]

)−1

, (4.48)

λ
ᵀ
m f =

(
∂J

∂Ve

)(
W1 − ∂Ie

∂Ve −
[

W2 f f

W2p f

]
W−1

3 f f [W2 f f W2 f p ]

)−1 [
W2 f f

W2p f

]
W−1

3 f f . (4.49)

Using the values of λe and λm f given in Eqs. 4.48 and 4.49, Eq. 4.45 simplifies to

dĴ

ds
= ∂J

∂s
+λᵀ

e

[
W2 f p

W2pp

] dVm
p

ds
−λᵀ

e
∂Ie

∂s
+λᵀ

m f

[
dW3 f f

ds

dW3 f p

ds

]
Vm +λᵀ

m f W3 f p

dVm
p

ds
.

(4.50)

4.D.1. COMPUTING
dJ̃

dρ
To calculate the sensitivities of the augmented response J̃ with respect to the design
density field ρ, s is replaced by ρ in Eq. 4.50. Since Vm

p does not depend on material

distribution,
dVm

p

dρ = 0. Thus,

dĴ

dρ
= ∂J

∂ρ
−λᵀ

e
∂Ie

∂ρ
+λᵀ

m f

[
dW3 f f

dρ

dW3 f p

ds

]
Vm . (4.51)

From Eq. 4.26,
∂J

∂ρ = ∂
∂ρ

(
Vb

∑Nel
i=1 I e

i

)
= ∂

∂ρ (Vb 1ᵀIe ) = Vb 1ᵀ
(
∂Ie

∂ρ

)
, where ∂Ie

∂ρ can be calcu-

lated as discussed in Appendix 4.E.

4.D.2. COMPUTING
dJ̃

dVb

To calculate the sensitivities of the augmented response J̃ with respect to the busbar
potential Vb , s is replaced by Vb in Eq. 4.50. Also, W3 and Ie do not depend on Vb and
dVm

p

dVb
= 1. Thus,

dĴ

dVb
= ∂J

∂Vb
+λᵀ

e

[
W2 f p

W2pp

]
1+λᵀ

m f W3 f p 1. (4.52)

From Eq. 4.26,
∂J

∂Vb
= ∂

∂Vb

(
Vb

∑Nel
i=1 I e

i

)
=∑Nel

i=1 I e
i .

4.E. COMPUTING ∂Ie

∂ρ
The photoillumination current at any point on the emitter surface is assumed to depend
on the shading only at that point. Thus, ∂Ie

∂ρ can be obtained by assembling the terms
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∂I e

∂ρ for the whole finite element domain. Thus, Taking the derivative of Eq. 4.30 w.r.t ρ,
following is obtained:

∂I e

∂ρ
+ILr (1−ρ)r−1R+ I01βR̃s

n1

∂I e

∂ρ
eβ(V e+I e R̃s )/n1+ I02βR̃s

n2

∂I e

∂ρ
eβ(V e+I e R̃s )/n2+ R̃s

RSH

∂I e

∂ρ
= 0.

(4.53)
Putting together all the terms with d j

dV ,

∂I e

∂ρ

(
1+ I01βR̃s

n1
eβ(V e+I e R̃s )/n1 + I02βR̃s

n2
eβ(V e+I e R̃s )/n2 + R̃s

RSH

)
=−ILr (1−ρ)r−1R. (4.54)

This further simplifies to

∂I e

∂ρ
= −ILr (1−ρ)r−1R

1+ I01βR̃s
n1

eβ(V e+I e R̃s )/n1 + I02βR̃s
n2

eβ(V e+I e R̃s )/n2 + R̃s
RSH

. (4.55)
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5
COMBINED MESH AND

PENALIZATION ADAPTIVITY BASED

TOPOLOGY OPTIMIZATION

In Part II of this thesis, the goal is to develop methodologies for obtaining high-resolution
structural designs using topology optimization (TO). For high-resolution designs, it is im-
portant that the material boundary descriptions are clear and the design is black-white in
nature. A black-white design consists of only solids and voids with no intermediate den-
sity (gray) values. Low computational costs are desired for the overall TO process. For fixed
discretizations, the requirements of high resolution and low cost are conflicting.

This chapter introduces a novel adaptivity scheme for TO that can be used to produce
optimal structures with high resolution and reduced gray areas at relatively low compu-
tational costs. A new mesh refinement indicator is introduced which efficiently selects the
finite elements to be refined/coarsened during the course of the optimization. The filter
radius is also adapted and the proposed method is coupled with penalization continua-
tion to generate well-performing designs. The proposed approach is used to optimize the
design of a cantilever beam for compliance minimization. The results show that the mesh
refinement indicator helps to generate high resolution areas in appropriate locations and
suppresses the intermediate densities at low computational costs. Also, the designs ob-
tained using penalization adaptivity are found to resemble the analytical solution of the
problem.

This chapter is based on an article published in the conference proceedings of AIAA Scitech 2016 event
held in San Diego, California, USA [1].
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5.1. INTRODUCTION
The goal of structural design problems in aircraft and aerospace related disciplines is to
generate designs that can deliver maximum performance for least possible mass. Sizing
and shape optimization are the two traditional techniques that have been widely used
for such problems [2, 3]. However, due to imposed restrictions on the topology, these
methods are not capable of exploiting all possible designs. Topology optimization (TO)
extends shape optimization and no or limited restrictions are imposed on the topology
of the structure to be optimized. TO is a mathematical approach that allows to efficiently
distribute a certain material in a given space, subjected to a set of constraints, such that
the performance of the structure is maximized [4]. For the past two decades, this method
has been applied to a wide variety of fields in academic and industrial disciplines. For
a survey on some current developments in this field, please see the review papers by
Sigmund and Maute [5] and Deaton and Grandhi [6]. TO has also gained the interest of
aeronautics and aerospace engineering communities and an overview of applications of
TO in these fields can be found in the review paper by Zhu et al. [7].

Conventionally, in the density-based TO approach, the domain is discretized into a
finite set of cells, typically corresponding to the finite elements used for analysis. Each
cell is assigned a density value that indicates the volume fraction of the cell filled with the
given material and can vary from 0 (void) to 1 (solid) [4]. Note that this density is different
from the material density which is an intrinsic property of the material used during TO.
These densities are considered as design variables for the optimization purposes.

The designs obtained from TO generally comprise of complex geometries as well as
intermediate density values which were not easy to fabricate in the past. Recent ad-
vancements in the field of additive manufacturing (AM) have helped to overcome these
problems and the complex geometries can now be realized using AM [8]. In some cases,
the intermediate densities may be replaced by customized meso-structures to obtain
black-white designs [9]. However, in this chapter, we focus on applications where fully
solid designs are preferred and it is important that these designs are free from interme-
diate density (gray) values with fine features clearly represented.

Generally, the density is assumed to be constant inside an element. Thus, a relatively
large number of finite elements and design variables are needed for problems which re-
quire a high resolution representation of the density field. The naive approach to obtain
a high resolution density representation would be to globally refine the mesh. However,
starting the optimization with very fine meshes is prohibited in terms of computational
cost. Also, if the mesh is globally refined during the intermediate cycles, there would be
a significant part of the domain where no improvement is achieved in terms of perfor-
mance. Thus, refinement in such regions is of no use and makes the refinement process
computationally inefficient. Therefore, adaptive approaches, which significantly reduce
the required computational costs, are gaining interest.

The term ‘adaptivity’ in general means to modify something in a way such that it
functions better or is better suited for a purpose. In the context of TO, it refers to modify-
ing certain part of the computational implementation of TO such that the cost associated
with achieving certain performance is lowered. An adaptive approach should be capa-
ble of avoiding early convergence to a local minima and should be able to decide a right
balance between the analysis accuracy and the design resolution. There can be several
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different components of TO where adaptivity can be introduced. A few examples are
the finite element discretization (e.g. adaptive mesh refinement (AMR)), the material in-
terpolation (e.g. penalization continuation), or the design representation (e.g. adaptive
filter radius, Heaviside projection continuation). In the AMR approach, the mesh might
be locally refined (h-refinement) or the polynomial order of the shape functions might
be enriched locally (p-refinement) based on an error indicator function [10]. Penaliza-
tion continuation involves slowly increasing the penalty power on the densities which
helps to initially reduce the nonconvexity of the optimization problem and find a solu-
tion close to the optimum [11]. Adapting the filter radius during the course of TO allows
to have a fine representation of the boundaries in the design with reduced intermediate
densities.

Other than the adaptive approaches stated above, there can be several other ways to
reduce the computational resources needed to optimize the topology of a certain struc-
ture. For the sake of completeness, we provide a brief overview of these methods. Wang
et al. [12] presented fast iterative solvers to reduce the computational costs associated
with the finite element analysis step. Amir et al. [13] proposed an approximate reanaly-
sis procedure for continuum structural problems which uses the analysis results of one
step to predict the displacement field over a number of iterations based on some ap-
proximations. Some other approaches that exist in literature comprise of decoupling
the analysis and density meshes. In the study by de Ruiter and van Keulen [14], topol-
ogy definition functions were used to define the density field over the domain. Also,
wavelets have been used in a similar manner to reduce the number of design variables
[15]. Guest and Genut [16] reduced the computational cost of TO by using the Heav-
iside projection scheme to project every density value over a certain number of finite
elements. This helped to reduce the number of design variables required to represent
the density field. With the availability of efficient optimizers such as method of moving
asymptotes (MMA) [17], the computational costs in TO are mainly controlled by the fi-
nite element analysis costs. In some recent work, authors have attempted to decouple
the analysis and design meshes in a way that allows to have several design points inside
a single finite element [18–22]. This allows to have a higher resolution density repre-
sentation at lower finite element analysis costs compared to the conventional approach.
In the present chapter, we restrict our discussion to mesh adaptivity and penalization
continuation based adaptive approaches.

The AMR approaches can bring significant reduction in the overall computational
time as compared to a uniformly fine mesh. These help to increase the resolution of both
the analysis as well as the design domain. The objective of introducing adaptivity in TO is
to improve the resolution of the design as well as reduce the intermediate density areas.
Since the conventional AMR criteria are typically based on the error associated with the
finite element analysis and do not consider the distribution of material, they may not be
the best choices for TO. Maute and Ramm [23] proposed an adaptive technique which in-
volved optimizing the topology of the design, followed by approximating the boundaries
using cubic or Beźier splines. Then shape optimization was performed and the mesh was
accordingly remeshed. This was looped over a series of cycles and the new mesh gen-
erated at the end of each cycle was used for TO in the subsequent cycle. This approach
leads to finer mesh in the material regions. van Keulen and Hinton [24] combined topol-
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ogy design approach with a finite element (FE) error based refinement strategy. In this
approach, the recovery of material is controlled by the stress level in the adjacent ele-
ments and the mesh densities are determined by (a) the standard Zienkiewicz-Zhu error
estimator and (b) the shortest distance to the boundary separating material and void re-
gion. To the best of our knowledge, this is one of the earliest approaches that combines
FE error with a density-based indicator to refine the mesh during the course of TO. Costa
and Alves [25] presented an alternative refinement criterion which involved refining the
region around the solid material phase. Stainko [26] proposed to refine the mesh only
around the boundary regions near the solid-void interface. Bruggi and Verani [27] pro-
posed an AMR strategy based on a goal-oriented error approach which properly guides
the progression of refinement and coarsening actions. It considered the FE error through
a dual-weighted residual technique as well as included a heuristic density-based indica-
tor which used the gradient of the density at the boundaries to choose the elements for
refinement.

While most of the methods stated above help to achieve the adaptivity in mesh re-
finement, the density-based indicators do not provide sufficient control over the choice
of the range of density values to be considered for refinement/coarsening. The available
density-based indicators tend to require a common definition of which density values
should be considered for refinement/coarsening. By a common definition, we mean
that at the start of TO, the user needs to specify a single range of density values which
need to be considered for refinement/coarsening. The elements whose density values
do not fall in this range are unaffected. However, keeping the density ranges same for re-
finement/coarsening at every refinement step might not be an efficient way. This aspect
will be discussed in more detail in Section 5.2.

Other than having an efficient AMR strategy, adapting the penalization power is im-
portant to obtain good solutions in TO. A popular approach is to slowly increase the
penalization power over the TO iterations [11]. This approach is often referred to in
the literature as ‘penalization continuation’. Due to the penalization, the optimization
problems become highly non-convex and therefore, it is theoretically possible to end
up at an inferior local minima. However, if the penalization is gradually increased, the
optimization problem during the initial iterations might still be close to convex which
implies that there are good chances that the final solution might lie close to the global
optimum. Various studies indicate that the degree of non-convexity of TO problems is
related to the amount of penalization [28–30]. Note that at every step where the penaliza-
tion power is incremented during penalization continuation, the optimization problem
is modified and a new optimization problem needs to be solved. In a recent paper by
Rojas-Labanda and Stolpe [31], the penalization power has been included as a design
variable and is slowly increased during the course of optimization with the help of an
additional constraint. This approach is referred to as ‘automatic penalty continuation
(APC)’. The advantage of APC approach is that since the penalty factor is not adjusted
manually, only one optimization problem needs to be solved.

The contribution of this chapter is twofold: firstly, a novel density-based AMR strat-
egy for TO is proposed which allows convenient control over the range of density val-
ues to be considered for refinement/coarsening at every refinement step. Secondly,
this method is coupled with the existing penalization continuation approach. Since ad-
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vanced FE error based refinement indicators are already available, we do not touch on
this aspect in this chapter. Also, since at every refinement step, we solve a new optimiza-
tion problem, we preferred to use the conventional penalization continuation over the
APC method to keep our approach as simple as possible. An AMR strategy cannot reduce
the gray region at the boundaries if the filter radius is kept constant in size. Thus, in the
proposed AMR strategy, the filter size is adapted as well. Section 5.2 discusses the pro-
posed approach in detail. To demonstrate the applicability of our method, it is used to
optimize the topology of a cantilever beam for compliance minimization. The optimiza-
tion problem is solved for two different instances (i) with penalization continuation and
(ii) without penalization continuation and the results are reported in Section 5.3. The
gain in terms of computation is also reported.

5.2. APPROACH

This section provides the detailed formulation of the proposed adaptivity scheme. First,
a novel density-based mesh refinement indicator is presented which allows to efficiently
select the finite elements for refinement/coarsening over a sequence of refinement steps.
Note that a refinement step might be occasionally referred to as a refinement cycle as
well. Next, the formulation for adaptivity in the filter radius is introduced. Finally, the
penalization continuation approach is discussed and it is coupled with our refinement
indicator. Each of these aspects is discussed in detail in the following sub-sections.

5.2.1. MESH REFINEMENT INDICATOR

To discuss the proposed h-refinement criterion for TO, we would like to recall the term
‘gray value’ which will be eventually used at several instances in the chapter. With re-
gard to the conventional approaches, a gray value would simply mean any intermediate
value of density (ρ) between the two bounds ρmi n and ρmax . Generally, these bounds
are taken to be 0 and 1. However, in the proposed approach, gray values correspond to
the density values lying between ρ̌ and ρ̂, where [ρ̌, ρ̂] is a sub-range within [ρmi n ,ρmax ].
This can be better understood from Figure 5.1. The blue region in Figure 5.1 corresponds
to the gray values as per the proposed approach. This region will be referred as the ‘re-
finement zone’ and all the density values lying within this range will be chosen for re-
finement in the subsequent refinement cycle. Clearly, the span of the refinement zone
changes at every refinement cycle. During the initial refinement cycles, a significant part
of the design is expected to be gray and as shown in Figure 5.1, the refinement range con-
sists a small set of gray values. However, the extent of grayness depends on how much
the design has been allowed to converge. For the cases presented here, the designs have
been allowed to converge sufficiently. After several refinement cycles, the design will
be close to a black-white design and even the slightest gray regions need to be consid-
ered for refinement in the next refinement step. This is the reason the refinement range
is allowed to be larger for later refinement cycles. A similar explanation holds true for
the coarsening zones shown in Figure 5.1. A coarsening zone basically corresponds to
a black or a white density region. During the initial refinement cycles, densities close
to 0 and 1 might be categorized under white and black, respectively. However, as the
refinement cycles increase, coarsening ranges should reduce (Figure 5.1).
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Figure 5.1: Bounds for the mesh refinement indicator as a function of the refinement cycle

Consider a density mesh which needs to be adaptively refined/coarsened. Let k de-
note the refinement cycle number, i be the index used to refer the elements of the do-
main and P be a refinement indicator. For the kth refinement cycle, the i th finite ele-
ment will be refined or coarsened if the values of the refinement indicator (Pi ) are 1 and
-1, respectively. An element with value of Pi equal to 0 is neither refined nor coarsened.
The value of Pi can be calculated as follows:

Pi =


1, if rl ≤ ρi ≤ ru

−1, if ρmi n ≤ ρi ≤ cl

−1, if cu ≤ ρi ≤ ρmax

else, 0.

(5.1)

Here, rl and ru are the lower and upper bounds that characterize the refinement zone.
The terms cl and cu here are used to define the two coarsening zones shown in Figure
5.1. The lower and upper bounds of the refinement and coarsening zone are calculated
using the following set of expressions:

rl = ρmi n + (1−α)ρav g e−βk , (5.2)

ru = ρmax − (1−α)ρav g e−βk , (5.3)

cl = ρmi n +αρav g e−βk , (5.4)

cu = ρmax −αρav g e−βk . (5.5)

Here, α and β are tuning parameters. The average density (ρav g ) is defined using the
expression ρav g = (ρmax +ρmi n)/2. For the cases presented here, these values are cho-
sen to be 0.2 and 0.8, respectively. The tuning parameters α and β are independent of
the index of the refinement cycle. However, β is sensitive to the rate at which the design
converges. As stated earlier, our method assumes that the design has sufficiently con-
verged. For different problems as well as different FE mesh resolutions, the amount of
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gray region may vary at this point. For problems where the designs of initial refinement
cycles are significantly gray, lower values of β are recommended. This allows the density
range for refinement to expand slowly over a span of refinement cycles. Similarly, for
rapidly converging designs, a larger value of β should be helpful.

5.2.2. ADAPTIVE FILTER RADIUS

Filters in TO help to prevent the occurrence of checkerboard patterns as well as the fine
features in TO. For details on various filters used in TO, see the review paper by Sigmund
and Petersson [32]. In simple terms, a filter can be considered as a weighted averaging
operator which ensures that the size of a certain feature is not less than a certain limit.
A commonly used filter in TO is the density filter [33]. The density filter transforms the
original density ρi as follows:

ρ̃i = 1∑
j∈Ne Hi j

∑
j∈Ne

Hi jρ j , (5.6)

where Ne is a set of elements j for which the center-to-center distance d( j , i ) to the i th
element is less than the filter radius rmi n . The weight factor Hi j is defined as

Hi j = max(0,rmi n −d( j , i )). (5.7)

In the conventional TO approach, the size of rmi n is fixed and the value of rmi n is de-
cided based on the size of smallest allowable design feature in the domain. For exam-
ple, a value of 1.5 rmi n means that the density of an element will be projected over all
the neighbouring elements whose centroid to centroid distance with this element is less
than or equal to 1.5 times the size of this element. Due to this averaging, the minimum
feature size of the design gets restricted.

Here, we define the size of the filter in terms of the physical length. The reason for
such an approach can be understood from a simple example. Let us consider two square
elements e1 and e2 such that the length of any side of e1 is 2 times that of e2. If r1 and r2

denote the filter lengths for the two elements, an intuitive guess would be that r1 = 2r2.
Using a factor of 2 for such a case would actually be equivalent to using the conventional
filtering approach where the filter length is specified in terms of the element length.
However, as per our experience, this led to unexpected results. In general, we observed
that the size of the filter should be reduced at a slower rate than the size of the element
during refinement. The filter length was adapted using the following heuristic method:

R(i )
mi n = γg (i )rmi n . (5.8)

Here, R(i )
mi n is the adapted filter radius for the i th element and g (i ) denotes the refine-

ment level of the i th element. ‘Refinement level’ of an element is a number that denotes
how many times the original element (level = 0) is refined to reach the current element.
The value of the parameter γ should be chosen between above 0.5 and less than 1. As
stated earlier, for g (i ) = 0.5, this adaptive filter would be equivalent to the conventional
filter. In general, 0.6 proves to be a good choice.
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5.2.3. PENALIZATION CONTINUATION

In the continuum density based TO, a continuous optimization problem is solved and
the value of density is allowed to vary between 0 and 1. This allows us to use the gradient
based optimization techniques and solve the problem at affordable costs. However, the
intermediate density values are unwanted and one of the best ways to get rid of them is to
penalize them [4]. Though this works well, penalization comes with certain drawbacks.
Though the original problem might be convex, the new problem after penalization is
most likely not convex and new local minima may be introduced [28, 29]. When the pe-
nalization is increased, the global minimum might get shifted. However, if the rate of
increase is small and the design is allowed to sufficiently converge, the new global mini-
mum may not be far from the actual one. In order to increase the chance of convergence
to a well-performing (local) optimum, a gradual increase of the penalization during the
optimization process is often effective.

In our approach, penalization continuation is coupled with the refinement steps of
the proposed AMR strategy. At every refinement step, parts of the mesh are adapted.
At the same time, the penalty factor is incremented and a new optimization problem is
solved. For the penalization continuation based results reported here, the starting value
of the penalty factor was 1.5 and it was incremented by 0.5 at every refinement step upto
a maximum of 3.

5.3. RESULTS
In this section, we present some results obtained using the proposed adaptivity scheme.
For demonstration purposes, a 2D cantilever example is used throughout this chapter
(Figure 5.2). Using TO, we solve a problem of compliance minimization. The objective
here is to use TO to obtain similar solutions. The basic problem can be expressed in the
discrete form as follows:

min
ρ

C (ρ,u) = fᵀu

s.t. : K(ρ)u = f

V (ρ) =
∫
Ω
ρdV ≤Vs

0 <ρmi n ≤ρ ≤ 1.

(5.9)

Here, the compliance objective function is denoted by C . The variables ρ, f, u, K and Vs

correspond to the density vector, global load vector, displacement vector, global stiffness
matrix and prescribed volume fraction of the material, respectively. Also, the term ρmi n

is obtained from multiplication of all elements of unit vector 1 byρmi n . This problem has
been chosen because it is a well known benchmark in TO, and because an analytically
optimal design has been derived by Rozvany [34]. Figure 5.3 shows the computer-plotted
representation of the analytical solution for such problems [34]. The design domain is
discretized using a structured grid of Q4 elements and the density distribution within an
element is assumed to be uniform. Unless stated otherwise, the filter radius is adapted
(γ = 0.6). For the mesh refinement indicator, the values of α and β are chosen to be 0.8
and 0.2, respectively.

Figure 5.4 shows the adapted mesh and the design at several refinement levels. For



5.3. RESULTS

5

99

2L

L

P

Figure 5.2: A cantilever example

Figure 5.3: Computer-plotted representation of the analytical solution for a cantilever [34].

these results, the penalization is assumed to be constant throughout the TO process.
Before going further, we would like to introduce another term ‘Level’ which is basically
used as an index to refer to the various analysis meshes and designs obtained during the
adaptive refinement approach. The initial mesh is referred as ‘Level 1’ mesh and accord-
ingly the optimized design on this mesh is the ‘Level 1’ design. With every refinement
step/cycle, the level increases by 1. Thus, after 4 refinement steps, the ‘Level 5’ mesh is
obtained.

The initial mesh (Level 1) is chosen to be very coarse and the design is allowed to
converge sufficiently but not fully. For every level, a maximum of 50 iterations are al-
lowed and a coarse tolerance is set on the minimum allowed change in the objective
function between two iterations. Using the design of Level 1 and the mesh of Level 2, it
can be seen that there are non 0-1 areas in the design for which the mesh has not been
refined. With increasing levels, the elements at the boundaries get finer and finer and are
thus associated with smaller filter radii. Due to the adapted filter radius, the gray areas
get suppressed with increasing refinement levels. Thus, we observe that the proposed
adaptive technique is capable of eliminating the gray areas and producing efficient high
reoslution designs.

The applicability of the proposed technique can be judged from the plots shown in
Figure 5.5. Figure 5.5(a) shows the computational time required for TO for different ele-
ment sizes. It can be observed that for a globally fine mesh, a significantly large compu-
tational time is needed and for further refinement it increases rapidly. However, for the
proposed adaptive scheme, even a high resolution design can be obtained at relatively
low computational costs.

From Figure 5.5(b), it can be observed that with a globally fine mesh, a large number
of finite elements are needed to achieve a certain analysis resolution. Analysis resolution
can be interpreted as 1/hmi n , where hmi n is the size of the smallest finite element. The
proposed adaptive refinement scheme is capable of efficiently representing such high
resolutions with less number of degrees of freedom (dofs). Since finite element mod-
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Mesh (Level: 1; Size: 800 elements) Design (Level: 1 ; Objective: 79.74)

Mesh (Level: 2; Size: 1736 elements) Design (Level: 2 ; Objective: 83.15)

Mesh (Level: 3; Size: 5558 elements) Design (Level: 3; Objective: 73.71)

Mesh (Level: 4; Size: 15374 elements) Design (Level: 4; Objective: 70.34)

Mesh (Level: 5: Size: 39983 elements) Design (Level: 5 ; Objective: 68.70)

Figure 5.4: Cantilever example considering the adaptive mesh refinement and filter radius.
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Figure 5.5: (a) Computational time (in seconds) and (b) number of elements needed to achieve a desired design
resolution. The design resolution is characterized by the inverse of the minimum element size (1/hmi n ).

(a) Constant penalization
(Objective: 69.38)

(b) Gradually increasing penalization
(Objective: 68.67)

Figure 5.6: Cantilever examples demonstrating the effect of penalization continuation
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elling is responsible for the major part of the computational costs associated with TO,
reducing the number of elements is beneficial. Based on these, it can be deduced that
the proposed refinement scheme is efficient in terms of time as well as memory require-
ments.

Further, to exclusively study the effect of the penalization, we used the cantilever
example to solve the compliance minimization problem for two cases: with a constant
penalization (Figure 5.6a) and with a penalization continuation (Figure 5.6b). For both
these cases, a fine mesh (320×160) is used. Neither the mesh is adaptively refined, nor
is the filter radius adapted. For the two cases, we observe that the final designs are very
different. Though the design in Figure 5.6b is slightly more gray, it approximates the an-
alytical solutions far better compared to the design obtained with constant penalization
[34]. Thus, the penalization continuation helps to obtain better designs. However, to
be noted here, the filter radii used for the two cases is small. A larger value would have
added gray areas. With smaller radius, we see very fine features which might need to be
avoided from a fabrication point of view.

Next, we combine the mesh adaptivity approach with the penalization continuation
and demonstrate that it helps to obtain better designs. Figure 5.7 shows the design ob-
tained at every refinement level. During the initial stages, the penalization on the density
values is very low. Thus, we see a significant amount of gray region in the design. With
increasing penalization, we see that the gray areas disappear. Since the filter radius is
larger for the larger elements, we do not see very fine features evolving. The final design
for this case is very different from the one obtained in Figure 5.7. This design resembles
very closely to the analytical solution for the chosen problem. Thus, we observe that
the proposed refinement approach is capable of finding well-performing designs which
are close to the optimal solution. In addition, it prevents the occurence of fine design
features and the gray areas in the design. To be noted here, the final designs obtained
with and without penalization continuation do not differ too much in terms of perfor-
mance. This is due to the problem chosen here. For the cantilever problem, there are
several designs which can deliver performance close to the optimal value. However, for
other problems this might not be the case and the design obtained using penalization
continuation should be expected to perform better.

5.4. DISCUSSION AND CONCLUSION
In this chapter, we presented an adaptive technique for TO which is capable of obtaining
well-performing designs close to the optimum. The proposed heuristic technique com-
prises of two parts: a density-based mesh refinement strategy and penalization contin-
uation. To comply with our refinement strategy, the filter is adapted as well. The appli-
cability of the proposed approach is demonstrated on a cantilever example and the ob-
tained results look promising. Note that the refinement indicator is only based on den-
sity values and does not take the FE error into consideration. Several advanced FE error
based indicators already exist in the literature and a future direction of research would
be to efficiently couple such indicators with the proposed one. Other than the density
values, the gradient of density across the boundaries can also be a useful information
for defining the refinement/coarsening regions and this would be another direction to
further look into.
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Mesh (Level: 1; Size: 800 elements) Design (Level: 1 ; Objective: 71.08)

Mesh (Level: 2; Size: 2534 elements) Design (Level: 2 ; Objective: 79.72)

Mesh (Level: 3; Size: 8702 elements) Design (Level: 3; Objective: 72.92)

Mesh (Level: 4; Size: 22652 elements) Design (Level: 4; Objective: 70.20)

Mesh (Level: 5: Size: 57878 elements) Design (Level: 5 ; Objective: 68.08)

Figure 5.7: Cantilever example considering the proposed adaptive topology optimization scheme. It includes
the adaptivity on the mesh and the filter radius and continuation of the penalization.
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The proposed refinement indicator is a heuristic indicator with two tuning param-
eters α and β. While the value of α does not affect the approach the value of β needs
to be chosen with proper caution. The value of β depends on the convergence speed
of the problem as well the extent to which the design has been allowed to converge be-
fore every refinement step. A possibility might be that adding more information from
the design e.g. density gradient might help to get rid of these tuning parameters. For
now, based on the current results it can be concluded that the proposed approach is ca-
pable of improving the resolution of the designs as well as reduce the gray areas at low
computational costs.
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6
BOUNDS FOR DECOUPLED DESIGN

AND ANALYSIS DISCRETIZATIONS IN

TOPOLOGY OPTIMIZATION

In the previous chapter, an h-adaptive variant of the traditional topology optimization
method was presented. In this chapter as well as the later chapters, we consider multi-
resolution topology optimization (MTO) methods. These formulations involve decoupled
design and analysis discretizations, enabling a high-resolution design field at relatively
low analysis costs. In the context of MTO, this chapter studies the relation between the
number of design variables per element and the polynomial order of the shape functions
used in the finite element analysis. We derive that beyond a maximum number of de-
sign variables, certain sets of material distributions cannot be discriminated based on the
corresponding analysis results. This makes the design description inefficient and the solu-
tion of the optimization problem non-unique. To prevent this, we establish bounds for the
maximum number of design variables that can be used to describe the material distribu-
tion without introducing non-uniqueness for a given finite element scheme.

This chapter is based on an article published in International Journal for Numerical Methods in Engi-
neering, 111, 1, 88-100 (2017) [1].
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6.1. INTRODUCTION
Topology optimization (TO) is a numerical procedure that allows obtaining the optimal
distribution of a given material within a domain, subject to certain constraints, such that
the performance of the resulting structure is maximized. Since its introduction three
decades ago [2], this approach has been used to solve a wide variety of problems in vari-
ous academic and industrial fields. For the recent advancements in TO, please see [3–5].
The so-called density-based formulation is the most popular both in academia and in
commercial applications. Conventionally, a single density design variable is associated
with each finite element, typically of low order, in the analysis mesh.

Computational costs limit the application of TO in complex, high-resolution 3D prob-
lems. The largest part of these costs is associated with finite element analysis (FEA) and
the associated sensitivity analysis. By increasing the resolution of the design field rela-
tive to the analysis mesh, attempts have been made to reduce this cost [6–10]. In these
studies, the design field is characterized by the distribution of design variables in the
domain. Based on these design variables, the material density distribution is obtained
for the whole domain using some interpolation scheme. While the design variables are
used for the optimization, the interpolated density values are used for analysis purposes.
For example, consider the ‘Q4/n4/d9’ element shown in Figure 6.1, that corresponds to
a 4-node quadrilateral element containing 9 design points within the element. A de-
sign variable is associated to each design point. The values of these design variables are
used to obtain the density values at 4 integration points where the stiffness matrix con-
tributions are evaluated. Another example, a ‘T3/n6/d3’ element (Figure 6.1), refers to a
3-node triangle with 3 design points and 9 integration points. These elements are based
on the conventions denoted in [6, 7] where similar examples such as Q4/n25/d25 and
Q4/n25/d9 are presented.

Increasing the number of design points within an element surely increases the res-
olution of the material distribution without introducing additional DOFs in the analy-
sis. However, since analysis is an integral part of the TO process, one should make sure
that the difference between the different high resolution designs obtained using such
schemes can be observed in the FEA results. In other words, the question is whether the
additional design freedom can be properly exploited in a particular FEA setting. If not,
different designs may show similar performance, resulting in non-unique optima and
unexpected convergence behaviour. Numerical results related to a similar aspect have
been reported in [11], where it is shown that varying the density resolution beyond a cer-
tain threshold can lead to unacceptable solutions. Moreover, introducing more design
freedom than can be observed from the model only adds to the computational burden.

Note that for the examples mentioned above, design variables are characterized as
points in the element domain. However, these may not necessarily be spatial points
within an element, e.g., for a material density field expressed using polynomials, design
variables can refer to the coefficients of such polynomials (as in Section 6.2). The study
in this chapter is not tailored towards a certain choice of design variables. Rather, the
focus is on the number of design variables used for optimization.

In this chapter, we study the relation between the number of design variables and the
resolution of the analysis mesh used in TO. In this chapter, linear elastostatic problems
are considered and the following aspects are covered:



6.2. A BASIC EXAMPLE

6

109

node design point integration point

Figure 6.1: Q4 element (left) with 9 design points and 4 integration points (Q4/n4/d9) and a T3 element (right)
with 3 design points and 6 integration points (T3/n6/d3).

• We first illustrate using a basic example that the number of useful design variables
is bounded by a certain maximum value (Section 6.2).

• We show mathematically that the permissible number of design variables inside a
finite element is bounded by the rank of the element matrix obtained from the dis-
cretization of the design domain (Section 6.3). The argument is further extended
to the system level as well.

• We present a discussion on the choice of the number of design variables for some
popular finite elements (Section 6.4). A brief discussion is provided in Section 6.5
on the issues related to examples that violate the conditions proposed in the present
chapter.

6.2. A BASIC EXAMPLE
Consider a structural optimization problem involving a simple rod of length l and area
of cross-section A. This rod is fixed at one end and loaded in axial tension by a force
F acting at the other end. It is assumed that the Young’s modulus E can be varied at
any position along the rod. In line with classical density-based topology optimization,
we define E(x) = E0ρ(x), where E0 is a constant and ρ (x) represents the material density
distribution in the domain. Suppose the bar is modeled using a single finite element and
linear shape functions are used to interpolate the displacement field within the element.
When using analytical integration, the stiffness matrix K can be expressed as

K = A

l 2

[
1 −1

−1 1

]∫ l

0
E(x)d x = E0 A

l 2

[
1 −1

−1 1

]∫ l

0
ρ(x)d x︸ ︷︷ ︸
ρav g

. (6.1)

In Eq. 6.1, K depends on the material density distribution only in an average sense. For
all choices of ρ(x) that yield the same average density ρav g , the same stiffness matrix is
obtained. As a result, the response of the structure for all those choices will be identi-
cal. In other words, the modeling of the physics shows independence to certain specific
changes in ρ(x). Next, we may choose a certain discretization to define ρ(x) in terms of a
finite number of design variables. For the simplest representation by a constant function
ρ(x) = ρ̂, a unique relation between K and ρ̂ exists. However, for all higher-order repre-
sentations, infinite combinations of design variable values exist that result in the same
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average density ρav g . This leads to loss of uniqueness of the optimal solution. A similar
situation can arise in more complex, multidimensional topology optimization problems.

For a better understanding of the issue stated above, we analyze the system of linear
equations obtained from the finite element discretization. Using Gaussian quadrature
points xi for integrating K in an isoparametric setting, the discretized system of equa-
tions for the bar can be expressed as

Ku = f =⇒ E0 A

l

[
1 −1

−1 1

] g∑
i=1

wiρ(xi )

[
u1

u2

]
=

[
f1

f2

]
. (6.2)

Here, u and f correspond to nodal degrees of freedom (DOFs) and nodal loads, respec-
tively. Suppose that u corresponding to a certain optimal design is known, then we would
like to establish whether that design is unique.

Let us assume that we integrate the K matrix using a 2-point Gaussian quadrature
scheme. With the given boundary conditions (u1 = 0), the applied force ( f2 = F ) and the
Gaussian weights (w1 = w2 = 0.5), there exists only one linearly independent equation:

E0 A

2l
[ρ(x1)+ρ(x2)]u2 = F, (6.3)

where the two integration points x1 and x2 are
(
1± 1p

3

)
l
2 . Now, assuming that F and u2

are known, ρ(x) is described by polynomials of different order (zeroth order, first order,
etc.), where the coefficients of the polynomial terms are the design variables.

CASE I : ρ(x) = a, i.e., a constant density field. From Eq. 6.3, we obtain

E0 A

2l
(a +a)u2 = F =⇒ a = F l

E0 Au2
. (6.4)

CASE II : ρ(x) = ax +b, i.e., a linearly varying density field. For this case, Eq. 6.3 can be
written as

E0 A

2l
[(ax1 +b)+ (ax2 +b)]u2 = F =⇒ (x1 +x2)a +2b = 2F l

E0 Au2
. (6.5)

The order of the shape functions for both cases leads to a single equation, implying that
not more than one design variable can be uniquely determined if u2 and F are known.
From the example presented above, we see that for CASE I, only 1 design variable is
used and the solution is unique. However, for CASE II, it can be observed from Eq. 6.5
that there can be infinitely many combinations of a and b which can produce the same
displacement at the end of the bar. Thus, for CASE II, the assumed ρ(x) function can-
not be solved uniquely. This still holds when restrictions are imposed on the design
(0 < ρ(x) ≤ 1). Similarly, it can be shown that for an even higher order representation
of ρ(x), the solution will always be non-unique. The reason is that the finite element
discretization is unable to reflect the design changes.

This simple example illustrates that there is an upper bound on the number of de-
sign variables that can be used for a given body discretized using finite elements above
which the design is no longer unique. More design variables can be included, however,
then the effect of certain changes in the design cannot be distinguished. Here, a single
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finite element with linear shape functions was used and the strain-displacement matrix
was constant. In the following section, we generalize this concept of choosing the ap-
propriate number of design variables to the case of shape functions of arbitrary order
and systems of many elements. This will allow us to determine suitable combinations of
design and analysis resolutions for use in topology optimization procedures.

6.3. CONDITION FOR UNIQUENESS OF DENSITY DISTRIBUTION
Optimization of a structural design in general can refer to finding the optimal distribu-
tion of material in a given domain as well as optimizing the material properties them-
selves at every point x in the domain. Assuming that the system is governed by gener-
alized Hooke’s law, σ= Dε. Here, D, σ and ε denote the constitutive matrix and stress
and strain column vectors, respectively. The dependence of all these parameters on the
position x is implied.

For a design representation in two (three) dimensions, the most general choices of
design variables are six (twenty one) entries of the D matrix and their pointwise varia-
tion throughout the domain. However, our discretized system allows only the represen-
tation of a limited number of deformation modes, the combinations of which can repre-
sent all possible deformation states of the system. When choosing the number of design
variables, a unique design representation should be obtained from these deformation
modes. Depending on the type of optimization problem, a certain choice of design vari-
ables is made. For instance, in free material optimization of structures for stiffness max-
imization, the problem is reduced to solving only one design variable per point, namely
the norm or the trace of the elasticity tensor [12]. It is shown analytically in [13] that the
elements of the elasticity tensor can then be fully recovered from the optimal norm and
the related displacements.

Traditionally, in TO one design variable per point is also assumed. However, the ap-
proach is different from the free material optimization discussed above. In TO, certain
restrictions are typically imposed on the material properties throughout the domain and
D is expressed as D = ρ(x)D0, where D0 is assumed to be constant for the whole material
domain and ρ denotes the material density. Thus, at any point in the domain only the
material volume fraction (material density) is allowed to vary. The focus of this chapter is
on TO and thus we tailor the foregoing discussion accordingly. Our objective is to mathe-
matically relate the number of design variables to the number and type of elements used
in the analysis. Further, the aim is to establish a threshold condition on the appropriate
number of design variables that can be associated with any finite element as well as a
system of elements in TO.

Assuming that the design variables represent the coefficients of a polynomial func-
tion, the density field inside an element can be defined as

ρ(x) = s1 + s2x + s3 y + . . .m terms = x̃ᵀs, (6.6)

where, s = [s1, s2, . . . , sm]ᵀ represents the set of design variables and m the number of
design variables used in the optimization problem. To determine the upper bound on
m, here a linear elastostatic problem is considered. For any finite element, equilibrium
can then be expressed as

K(e)u(e) = f(e), (6.7)
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where,

K(e) =
∫
Ωe

Bᵀρ(x)D0BdΩ=
(∫
Ωe

BᵀD0Bx̃ᵀdΩ

)
s. (6.8)

Here, u(e) and f(e) represent the kinematic nodal degrees of freedom and corresponding
energetically conjugate nodal loads, respectively. The polynomial order of K(e) depends
on the choice of the density field. For a certain choice of ρ(x) in Eq. 6.6, the polyno-
mial order of the corresponding K(e) can be determined from Eq. 6.8. Accordingly, an
appropriate number of integration points can be chosen based on standard Gaussian
quadrature.

Assume that K(e) is now numerically integrated using g integration points, then K(e) =∑g
i=1ρ(xi )Ki =∑g

i=1ρ(xi )Bᵀ
i D0Bi wi . It can further be expressed as

K(e) = [
Bᵀ

1 Bᵀ
2 . . . Bᵀ

g
]

(n×cg )


ρ(x1)w1D0

ρ(x2)w2D0

. . .
ρ(xg )wg D0


︸ ︷︷ ︸

Θ1
(cg×cg )


B1

B2
...

Bg


(cg×n)

. (6.9)

Here, n represents the number of DOFs per element and K(e) is thus an n×n matrix. Due
to the presence of rigid body modes, K(e) is not a full-rank matrix. Let the rank of K(e) be
denoted by r . For a linear-elastic material, the stress components can be expressed as
linear combinations of the strain components through the constitutive matrix. Since this
constitutive relation is invertible and the strain energy density should be positive, D0 in
Eq. 6.9 is a full-rank and positive-definite matrix. The dimensions of D0 are assumed to
be c × c, where c is the number of independent stress components in the stress tensor.
Since the rank of D0 is c, Θ1 in Eq. 6.9 is a positive-definite block-diagonal matrix with
rank cg . Given that the rank of K(e) is r , we obtain (proof in Appendix A)

rank
([

Bᵀ
1 Bᵀ

2 . . . Bᵀ
g
])= rank

(
K(e))= r. (6.10)

Based on numerical integration and rearrangement of terms, the system of linear
equations in Eq. 6.7 can be expressed in terms of s as

[
(
∑g

i=1 Ki )u(e) (
∑g

i=1 xi Ki )u(e) (
∑g

i=1 yi Ki )u(e) . . . mth term
]︸ ︷︷ ︸

A(e)

s = f(e). (6.11)

For a choice of u(e) and f(e) such that u(e) does not correspond to a rigid body mode, our
goal is to determine the maximum possible value of m such that s has a unique solution.
From Eq. 6.11, it can be observed that m cannot be greater than the rank of A(e), which
we will determine next:

A(e) = PQ, (6.12)
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where,

P = [
Bᵀ

1 Bᵀ
2 . . . Bᵀ

g
]

(n×cg )


w1D0B1u(e)

w2D0B2u(e)

. . .

wg D0Bg u(e)


︸ ︷︷ ︸

Θ2
(cg×g )

, (6.13)

Q =


1 x1 . . . (mth)1

1 x2
. . .

...
...

...
...

1 xg . . . (mth)g

 . (6.14)

To determine the rank of A(e), the ranks of P and Q should be known.
Since Θ2 is a block-diagonal matrix, rank(Θ2) = g . Using the fact that the rank of the

product of two matrices cannnot exceed the rank of the either factor (proof in [14]), the
upper bound on the rank of P is given by the minimum of the number of deformation
modes r and the number of integration points g , i.e.,

rank(P) ≤ min(r, g ). (6.15)

To gain further insight into the rank of P, it can be written as

P = [
K1u(e) K2u(e) . . . Kg u(e)] (6.16)

For g ≥ r , we now look into the different possibilities where rank(P) < r . Such instances
need to be identified because for any such scenario, the maximum number of design
variables that can be used without encountering non-uniqueness would be less than r .

CASE I : One of the possibilities is if u(e) is such that no deformation is observed at one
of the integration points, i.e., the respective product Bi u(e) is zero. Then, the respective
column of the P matrix will become zero, decreasing its rank by 1. This scenario can even
occur for more than one integration point at the same time. Suppose for certain u(e), two
columns of P matrix are equal to zero. This would imply that rank(P) has to be strictly
less than or equal to g −2. This can lead to a situation where rank(P) becomes less than
r . Such a scenario is restricted to certain choices of u(e) and this problem is alleviated if
an appropriate integration scheme is used. The number of integration points needed to
accurately integrate K(e) is generally higher compared to the number of design variables
that can be used in a finite element. Thus, even if no deformation is observed at one of
the integration points, it can still be observed on at least r other integration points en-
suring that rank(P) = r .

CASE II : Another possiblity where rank(P) < r is when one or more columns of P can
be expressed as linear combinations of other columns and the total number of linearly
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independent columns becomes less than r . This would mean that there exist an α 6= 0
such that

g∑
i=1

αi Ki u(e) = 0. (6.17)

Here, the Ki matrices differ only by their respective B matrices. In general, every element
of B is a polynomial function expressed in terms of the spatial coordinates, thereby it de-
pends on the location of the point within the element at which Ki is evaluated. Thus, in
general, no Ki matrix can be expressed as a linear combination of other such matrices
which are evaluated at other sampling points in the element domain. This implies that
Eq. 6.17 can only be satisfied if u(e) belongs to the nullspace of

∑g
i=1αi Ki . This can hap-

pen only for some specific cases, e.g., when it is a rigid body mode. However, for the vast
majority of cases, it follows that the columns of P are linearly independent.

A case where linear dependence occurs for any deformation is encountered when
linear functions are used to interpolate the state field within the element. Then the B
matrix is constant and does not depend on the spatial variables. Due to this, all columns
of P are equal, reducing its rank to 1. Some examples where this happens are 3-node
triangles (T3) and 4-node tetrahedra (TET4). Thus, for the T3 and TET4 elements, not
more than 1 unique design variable can be used per element. However, for cases where
D0 varies throughout the element (e.g., material which is functionally graded in Poisson
ratio), the respective Ki matrices would differ. This will increase the number of linearly
independent columns in P.

In a generalized sense then, rank(P) = min(r, g ). Based on Eqs. 6.12 and the fact that
rank(A(e)) ≤ min(rank(P ), rank(Q)), we obtain that m 6> r . Thus, m in Eq. 6.14 is substi-
tuted by r . Next, the structure of the Q matrix is studied and based on the discussion
provided in Appendix B,

rank(A(e)) = r ∀ g ≥ r. (6.18)

In general, if r design variables are used, then the number of integration points re-
quired in a Gaussian quadrature scheme to accurately integrate K(e) is greater than or
equal to r . The condition g ≥ r does not need to be explicitly imposed and can be ig-
nored. This implies that for a finite element with r deformation modes, a maximum of
r design variables should be used to represent the density field inside the element and
going beyond this limit will lead to non-uniqueness.

Note that unlike the nodal state variables which are defined at the nodal points, de-
sign variables here characterize the density distribution within the element and do not
possess any direct relationship with the immediate neighboring elements. Thus, even
for a group of elements, the number of design variables allowed inside every element of
the system cannot be greater than the rank of that element’s coefficient matrix. Based on
this, the following element-level upper bound can be stated:

“For any finite element, the number of design variables used to define the
element’s internal material distribution that can be uniquely optimized by
means of finite element analysis, cannot be greater than the rank of the ele-
ment coefficient matrix. ”

The condition derived here needs to be satisfied for every element. In addition to this,
a similar is proposed at the system level as well. A system of elements can itself be con-
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sidered as a superelement with a larger number of DOFs. For such an element, a system
level condition can be derived using a similar approach. At the system level, the follow-
ing rule can be formulated:

“For any structure discretized using finite elements, the total number of de-
sign variables used to define the material distribution in the whole domain
that can be optimized to a unique solution based on the results of finite ele-
ment analysis, cannot be greater than the rank of the global coefficient matrix
obtained from the discretization of the structure.”

Important to note here is that the DOFs at the vertices as well as on the faces (edges
for 2D) of the element are shared with those of the adjacent elements. Due to this, the
system level bound on average will be stricter compared to the element level bound. This
aspect is further discussed in the next section using a simple example.

6.4. CHOICE OF THE NUMBER OF DESIGN VARIABLES
The allowed number of design points is element-dependent (Section 6.3). Table 6.1
shows the upper bound on the number of design points for various finite elements. In
general, the upper bound m can be stated as

m = del − rel , (6.19)

where del and rel are the total DOFs and the number of rigid body modes for the element,
respectively. For example, for a Q4 element in 2D with 2 DOFs per node, m = 2 ·4−3 = 5.
However, as pointed out in Table 6.1, for elements such as T3 and TET4, only one design
variable should be used per element (as in Section 6.3). This is because these elements
use linear shape functions which result into constant strain-displacement matrices for
isotropic materials.

Other than the element-level bound, the number of design density points should be
lower than the bound at system level as well. For example, let us assume a rectangular
grid of N×N Q4 elements. In an average sense, the number of density points per element
(m̃) for this system needs to satisfy the following criterion:

m̃ ≤ (N +1)2d − rs y s

N 2 , (6.20)

where d is the DOFs per node and rs y s is the number of zero energy modes for the sys-
tem. For example, for a rectangular mesh of 3× 3 Q4 elements with 2 DOFs per node,
m̃ is approximately equal to 3, which means m̃ is less than m. For large values of N ,
however, the maximum value of m̃ is approximately equal to d . Thus, in an average
sense, there should not be more design points per element than the DOFs per node. We
observe that the system level bound here imposes a stricter limit over the possible de-
sign resolution than the element level criterion. Note that Eq. 6.20 is valid only for 2D
rectangular meshes with certain choice of elements. For other mesh geometries and ele-
ment types, this bound needs to be reformulated accordingly. Besides the number of
DOFs, the choice of the number of design variables also depends on the number of in-
tegration points. In other words, while choosing a high order material distribution, one
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Table 6.1: Maximum number of design points for some commonly used finite elements.

Element DOFs per node No. of design points
3-node triangle (T3) 2 1
6-node triangle (T6) 2 9
4-node quadrilateral (Q4) 2 5
8-node quadrilateral (Q8) 2 13
9-node quadrilateral (Q9) 2 15
4-node tetrahedron (TET4) 3 1
10-node tetrahedron (TET10) 3 24
8-node hexahedron (H8) 3 18
20-node hexahedron (H20) 3 54

should make sure that the stiffness matrix K(e) can be accurately integrated. For exam-
ple, for a Q4 element, conventionally, a 2×2 Gauss quadrature rule is used to integrate
K(e). This scheme can integrate exactly up to a cubic polynomial in two variables. For
an elementwise constant material density, the polynomial order of the integrand in Eq.
6.8 is 2. Thus, the 2× 2 scheme is sufficient to exactly integrate it. From Table 6.1, it
can be seen that for a Q4 element, up to 5 design variables can be used. With 5 design
variables, a second order polynomial-based material distribution can be represented in
two dimensions. With such a distribution, the order of the integrand in Eq. 6.8 will be 4
and for such a case, a minimum of 3×3 quadrature points is needed. Similarly, it can be
shown for a Q9 element, at least a 4×4 integration scheme is needed. A similar approach
can be followed to determine the appropriate integration schemes for other elements as
well. When the number of integration points g is chosen too low, not only is the solution
likely to be inaccurate, but also the number of unique design variables can be affected
(as determined by Eq. 6.15).

6.5. DISCUSSION AND CONCLUSION
The main drive behind using a large number of density points is to obtain a better rep-
resentation of the material distribution while keeping the computational cost as low as
possible. Let us take the case of the Q4/n25/d25 element [6]. Any deformed state ob-
tained using 25 design variables for this element can also be obtained using just 5 design
variables. Similarly, for a T6 element, 9 design variables are sufficient to describe all de-
formation states (Table 6.1). An interesting inference is that for elements with constant
strain-displacement matrix (e.g. T3, TET4), elementwise constant density needs to be
assumed. For more design variables, a high-dimensional nullspace is introduced which
may hinder the convergence of topology optimization. Also, the desire to add more de-
sign density points will lead to building the stiffness matrix contributions at significantly
more number of points (Table 6.1), which will eventually lead to an unnecessary increase
in the computational costs. Significant burden on sensitivity analysis will also be noticed
for such cases.

The discussions throughout the chapter have been tailored towards structural topol-
ogy optimization problems. However, the condition stated in Section 6.3 holds for other
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topology optimization problems as well, e.g., thermal, electrical, thermomechanical, etc.
The argument in Section 6.3 is based on the fact that the design domain is discretized us-
ing finite elements. Thus, it would still be valid except that the size of the element as well
as the system coefficient matrices may differ based on the number of DOFs per node for
the chosen problem. In addition, for problems involving other physics than structural
mechanics, deformation modes and rigid body modes may not be the suited terms. For
such problems, the proposed condition can be interpreted in terms of the ranks of the
element and system coefficient matrices.

In some recent studies [6–9], high resolution designs are obtained for cases where
the design resolution is allowed to be very high compared to the analysis resolution. The
reason for the apparent quality of these designs can be attributed to the use of smooth-
ing operations such as projection filters [6, 7], Shephard interpolation schemes [8, 9],
etc. Though smoothing can suppress the non-uniqueness to some extent, the possibil-
ity of non-uniqueness still exists. While the proposed condition needs to be satisfied at
element level as well as system level, a possiblity exists to increase the density resolu-
tion inside the element. One could choose to use higher order shape functions which
introduce extra DOFs providing more flexibility for the state field representation [15, 16].
However, this only shifts the upper bound on the order of density representation and
going beyond this new threshold will bring back the issues of non-uniqueness.

To conclude, the number of design variables for a TO problem depends on the ap-
plied finite element and should not be chosen arbitrarily. Rather, a choice of the number
of design points should be made in a way such that it satisfies the proposed element
level as well as the system level conditions. As shown in this chapter, going beyond the
proposed threshold is neither computationally more efficient, nor does it contribute to
any improvement in the performance of the structure.

6.A. APPENDIX A
Theorem: Given that B is a p × q matrix and D is a p ×p positive definite matrix of full
rank p,

rank(BᵀDB) = rank(B).

Proof : Based on the rank-nullity theorem, following can be stated:

rank(B)+nullity(B) = q = rank(BᵀDB)+nullity(BᵀDB). (6.21)

Let x denote any vector in the nullspace of B. Then,

Bx = 0 =⇒ BᵀDBx = 0 =⇒ x ∈ nul(BᵀDB) =⇒ nul(B) ⊆ nul(BᵀDB). (6.22)

Similarly, let y denote any vector in the nullspace of BᵀDB. Then,

BᵀDBy = 0 =⇒ yᵀBᵀDBy = 0 =⇒ (By)ᵀDBy = 0

=⇒ By = 0 =⇒ y ∈ nul(B) =⇒ nul(BᵀDB) ⊆ nul(B). (6.23)

From Eq. 6.22 and 6.23,

nul(B) = nul(BᵀDB) =⇒ nullity(B) = nullity(BᵀDB). (6.24)
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Substituting Eq. 6.24 in 6.21, following is obtained:

rank(BᵀDB) = rank(B). (6.25)

6.B. APPENDIX B
Let N be a set of all vectors that lie in the nullspace of P andψ= [ψ1 ψ2 . . .ψg ]ᵀ denote
a vector such that

Pψ= 0 ∀ ψ ∈N . (6.26)

Next, let γ= [γ1 γ2 . . .γr ]ᵀ be a vector in the nullspace of A(e). Then

A(e)γ= 0 =⇒ PQγ= 0. (6.27)

Comparing Eqs. 6.26 and 6.27,

Qγ=ψ ∀ ψ ∈N , (6.28)

where,

Q =


1 x1 . . . (r th)1

1 x2 . . .
...

...
...

. . .
...

1 xg . . . (r th)g

 . (6.29)

As per the matrix structure, Q is an alternant matrix similar to a Vandermonde matrix
[17] expressed in two variables. If x and y are independent variables and no two points
coincide, the rows and columns of this matrix are linearly independent and rank(Q) =
min(r, g ). Based on this, we have the following cases:

• For g < r : The vector γ has more than one solution which implies that in Eq. 6.27,
there exists a nullspace of A(e) and the design set s cannot be solved uniquely.

• For g = r : rank(P) = g which means that the vector set N =;. Thus, A(e) does not
have a nullspace and rank(A(e)) = r .

• For g > r : Eq. 6.28 is an overdetermined but inconsistent system of linear equa-
tions, thusγ has no solution. This again implies that A(e) does not have a nullspace
and rank(A(e)) = r .
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7
QR-PATTERNS: NUMERICAL

ARTEFACTS IN MULTIRESOLUTION

TOPOLOGY OPTIMIZATION

Recent multiresolution topology optimization (MTO) approaches involve dividing finite
elements into several density cells (voxels), thereby allowing a finer design description
compared to a traditional FE-mesh-based design field. However, such formulations can
generate discontinuous intra-element material distributions resembling QR-patterns. The
stiffness of these disconnected features is highly overestimated due to limitations of the
polynomial FE shape functions. While this modeling deficiency has been observed be-
fore, to be able to use MTO at its full potential, it is important that the occurrence of QR-
patterns is understood.

This chapter investigates the formation and properties of these QR-patterns, which pro-
vides the groundwork for the definition of effective countermeasures. We study in detail
the fact that the continuous shape functions used in MTO are incapable of modeling the
discontinuous displacement fields needed to describe the separation of disconnected ma-
terial patches within elements. Stiffness overestimation reduces with p-refinement, but
this also increases the computational cost. We also study the influence of design filtering
on the formation of QR-patterns and present a low-cost method to determine a minimum
filter radius to avoid these artefacts.

This chapter is based on an article published in Structural Optimization and Multidisciplinary Optimiza-
tion journal, 58, 4, 1335-1350 (2018) [1].
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7.1. INTRODUCTION
In the traditional density-based topology optimization (TO) approaches, an element-
wise constant density distribution is assumed. Some authors have explored decoupled
design and analysis discretizations with the aim of reducing the number of design vari-
ables used to describe the material distribution in the domain (e.g. [2, 3]).

Since the computational cost associated with TO is mainly controlled by the finite el-
ement analysis (FEA), Nguyen et al. [4] proposed to use the strategy of decoupled design
and analysis discretizations to obtain high-resolution designs at low analysis costs. A
coarse analysis mesh is used and each finite element is divided into several density cells
(voxels), which allows a finer density representation. This approach also allows to have
material boundaries which are not necessarily aligned with the finite elements. Since
different density resolutions are permitted for the same analysis mesh, Nguyen et al. [4]
referred to the approach as multiresolution topology optimization (MTO). Since then,
various variants have been proposed (e.g. [5–8]), and these have been used on several
TO problems, e.g. for 3D TO in interactive hand-held devices [9], and designing thermo-
electric generators [10], phononic materials [11], patient-specific 3D printed craniofacial
implants [12], etc. In this chapter, we use the term MTO to refer to all those approaches
which involve decoupling of the analysis and design discretizations with the goal of re-
ducing the modeling related computational costs.

The MTO-based optimized designs are visually appealing, but it is also important
to determine whether the coarse analysis used in MTO approaches is capable of accu-
rately modeling the high resolution material distributions. The methods proposed by
[4, 5] used linear shape functions (p = 1) to interpolate the displacement field within the
analysis elements. Here and henceforth, p denotes the polynomial order of the shape
functions used for analysis. Filtering (density projection) is used in these methods to
impose a restriction on minimum feature size and avoid checkerboard patterns. With
large filter radii rmin, designs which were visually appealing and comprised of smooth
(but gray) boundaries were obtained. However, it is important to note that the use of
large filter radii restricts the design field from expressing a high order material distribu-
tion. As a downside, fine structural features and crisp boundaries cannot appear in the
solution. Methods such as Heaviside projection [13] can help to improve the crispness of
the design [14]. However, the added computational cost associated with such schemes
is not preferable for MTO, and it would be of great interest if smaller filter sizes can be
used.

Wang et al. [7] adaptively reduced the filter-size in their MTO approach. However,
some of the optimized structures reported in that study consisted of artificially stiff re-
gions, resembling the QR-patterns. Based on numerical experiments, Groen et al. [14]
hypothesized that these numerical artefacts observed in MTO schemes are caused due
to inappropriate modeling scheme choices. Our investigation results (presented later in
this chapter) are aligned with the observations of Groen et al. [14], and we show that
these QR-patterns are indeed formed due to the limitations of the modeling scheme
used.

Besides the formation of QR-patterns, MTO approaches can suffer from nonunique-
ness in the solution of the design field [15]. For a high resolution design representation,
it is important that the difference in optimized designs is also reflected in the analysis
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Figure 7.1: Design obtained in MTO compliance minimization of a cantilever beam subjected to a distributed
load. The domain is discretized using 20×10 finite elements with shape functions of polynomial degree 3 and
4×4 design voxels per element. A composite integration scheme with 4th order Gauss quadrature rule is used
in each voxel.

results. If not, different designs may show similar performance resulting in non-unique
optima and instability issues [15, 16]. In [15], a rigorous study of this issue in the context
of MTO is provided and mathematical bounds are presented to prevent non-uniqueness.

Parvizian et al. [6] proposed a finite-cell method (FCM) based MTO approach. In
FCM, higher-order shape functions and numerical integration schemes are used and a
high-resolution design field is permitted. The design field is used to describe the mate-
rial distribution in the domain. Studies related to FCM-based modeling have shown that
shape functions of low polynomial order are incapable of accurately modeling material
discontinuities [17, 18]. A computationally effective solution to overcome such limita-
tions is the local enrichment strategy in FCM. Joulaian and Düster [18] presented the hp-
d local enrichment strategy, which could very accurately model the solution field at the
material discontinuities with the addition of only a few degrees of freedom. It has been
shown that the hp-d version of the FCM can model the material discontinuities for non-
matching discretizations [19, 20]. Contrary to the extended finite element scheme [21]
where new degrees of freedom need to be introduced in all finite elements requiring
enrichment, their approach used an overlay mesh with higher-order enrichments to im-
prove the solution of the base mesh. Nevertheless, the extended finite element method
as well as enrichment-based FCM require knowledge of the location of material discon-
tinuities in the domain. However, this is not generally available in TO, where the design
changes at every iteration, and the boundary descriptions are not known beforehand.

For TO, the simplest solution is to use shape functions of higher polynomial order.
With the use of high polynomial degree shape functions (e.g. p = 10) in TO, the QR-
patterns as well as the non-uniqueness related issues can be avoided to a certain extent
and physically reasonable structures can be obtained [6, 14, 15]. However, with configu-
rations using very high p values, the computational advantage over traditional TO could
be lost. Based on numerical experiments, Groen et al. [14] inferred that by density fil-
tering [22], even relatively low values of p could be used. However, this solution comes
with the same disadvantages as discussed previously for low-order MTO. Application of
a minimal filter radius is often preferred, and values have been suggested based on full-
scale numerical tests by previous studies [8, 14].

As per our investigations, the filter radii choices for various MTO configurations, as
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Figure 7.2: MTO element with 4
analysis nodes and 9 design vox-
els using a composite numeri-
cal integration scheme of 2×2
Gauss quadrature rule for every
design voxel.

described in [8], seem to result in reasonably correct designs. However, it is of consid-
erable interest to explore the full potential of MTO, which motivates us to investigate
whether filter radii smaller than those proposed in [8] can also be used. As mentioned
earlier, a limiting factor is the occurrence of QR-patterns, which leads us to study the
QR-patterns in a more detailed manner. The minimum cost MTO configuration that
can achieve a certain desired design resolution and is capable of avoiding these arte-
facts would be the one where the full capability of MTO is efficiently utilized. In general,
the QR-patterns have been observed in several previous studies, however, a systematic
study focused on the formation of QR-patterns as well as measures to suppress them is
still missing.

The aim of this chapter is to study the QR-patterns, and explain their formation in
an MTO context. This can subsequently help to define suitable countermeasures. For
this, we investigate whether for a given design resolution, there exists a certain mini-
mum value of p for which the formation of QR-patterns can be avoided. The capability
of the continuous shape functions in modeling the discontinuous displacement fields,
that should arise at disconnected material patches within elements, is assessed. Also, an
understanding of the applicability and limitations of filtering in MTO is presented.

The structure of the remainder of this chapter is as follows. First, the MTO concept
is explained and a numerical MTO example is presented for which the QR-patterns are
prominent (Section 7.2). Next, through several elementary test cases, an understanding
of these artefacts is presented (Section 7.3). Parameter studies on the influence of both
polynomial degree and filter radius, on various test geometries and loadcases, are per-
formed and an explanation on the formation of QR-patterns is presented in Sections 7.3
and 7.4. Discussions related to MTO and conclusions are presented in Section 8.5 and
Section 8.6, respectively.

7.2. ARTIFICIALLY STIFF FEATURES IN MTO
7.2.1. MTO CONCEPT

In MTO approaches, the design and analysis discretizations are decoupled, such that a
finer density field can be expressed on a coarse analysis mesh [4, 6, 8]. Fig. 7.2 shows an
MTO element that uses 4 analysis nodes and 9 design voxels. In this example, bilinear
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Figure 7.3: Magnified view of 3 finite elements from the optimized cantilever design shown in Fig. 7.1. These
elements have been chosen arbitrarily from among finite elements with disconnected material features in the
non-void regions of the domain.

shape functions are used for the interpolation of the displacement field within the ele-
ment. Unlike traditional TO, where only one design voxel would be used, here the finite
element is divided into 9 voxels. A density variable is associated with every design voxel
and the density is assumed to be constant inside the voxel. Similar to traditional TO, this
density represents the volume fraction of the voxel filled with certain material and can
vary from 0 to 1.

Based on the density distribution inside the element, the corresponding element
stiffness matrix Ke is constructed as

Ke =
nv∑

i=1

(
ρ

q
i

ng∑
j=1

Ki j wi j

)
, (7.1)

where Ki j and wi j are the stiffness matrix contribution evaluated at the j th integration
point and the associated Gaussian weight, respectively of the i th design voxel and ρi is
its density value. The parameters nv and ng refer to the number of voxels and Gauss
integration points, respectively and q is the penalization power used for material inter-
polation [23]. The order of the integration rule is chosen in a way that the voxel stiffness
matrix can be accurately integrated. For the example shown in Fig. 7.2, nv is set to 9, and
a 2×2 Gaussian quadrature rule (ng = 4) is used for numerical integration inside every
design voxel.

7.2.2. OCCURRENCE OF QR-PATTERNS
QR-patterns are artificially stiff regions in the design which can lead to erroneous com-
pliance values for the structure. For example, the compliance accuracy J /J ∗ for the
design shown in Fig. 7.1 is 3.6× 10−7. Here J is the calculated compliance value and
J ∗ is the compliance obtained on a finer reference mesh. Such a low value of J /J ∗
implies that the compliance of the structure has been tremendously underestimated by
the employed modeling scheme. During the optimization process, this modeling flaw
has been exploited by the formation of the QR-pattern, with characteristic disconnected
material patches.

The design shown in Fig. 7.1 has been optimized for minimum compliance subjected
to a distributed load and the domain is discretized using 20×10 finite elements with 4×4
design voxels per element. Shape functions of polynomial degree 3 are used and 4th or-
der Gaussian quadrature rule is used for numerical integration in each voxel. The order
of the design field is chosen to satisfy the element- as well as system-level bounds stated
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in [15]. No filtering is employed here, a value of 3 is used for the penalization power q
and a volume constraint of 30% is used. The reference mesh consists of 80×40 elements
with elementwise constant density field and polynomial degree p = 3.

Fig. 7.3 shows magnified versions of 3 elements from the optimized design shown
in Fig. 7.1. All the 3 elements consist of disconnected or almost disconnected material
parts along the horizontal as well as vertical directions. Such disconnected features can
be seen in various regions of the design (Fig. 7.1). Note that unlike the infamous checker-
board patterns observed in traditional TO, these artefacts occur within the elements. In
the presence of such disconnected features, the design appears far from optimal. How-
ever, since the QR-patterns obtained using MTO approaches are artificially stiff, erro-
neous compliance is reported by the used model and a low value of the error indicator
J /J ∗ is obtained.

From the example presented above, it is clear that there are certain limitations of
MTO, and to be able to fully harness the capabilities of this method, the limitations need
to be known. The erroneous patterns may not always be so apparent as in this example.
This can lead to deceptive results, where erroneous objective values are obtained and the
structure may incorrectly be interpreted as a well performing one. As has been shown in
[14] and [8], filtering may help to reduce this error. In both these studies, minimum filter
sizes have been recommended for various shape function orders and design resolutions,
and the authors have shown that acceptable designs are obtained. It is observed that the
filter sizes proposed by [8] are more conservative than those mentioned in [14].

As stated earlier, it is of interest to see whether even smaller filter sizes can be used
which can produce well performing artefact-free-designs. The first step in this direction
would be to gain a better understanding of the QR-patterns, and identify the possible
reason for their formation. Thus, through several small-scale studies, first we investigate
the origin of QR-patterns more closely in the next section.

7.3. ORIGIN OF QR-PATTERNS

7.3.1. STUDY OF ELEMENTARY CASES

For a better insight in QR-patterns, we examine elementary cases where the material dis-
tribution inside a single element is optimized for minimum compliance. Fig. 7.4 shows
three plane stress test cases consisting of one square finite element of unit size subjected
to axial, biaxial and shear loading. A volume constraint of 30% is chosen for all the cases.
Each finite element is divided into 8×8 voxels, Lagrange polynomials based shape func-
tions of p = 6 are used and no filtering is applied. A 5th order Gaussian quadrature rule
is used for numerical integration of the voxel stiffness matrices. Here and throughout
this chapter, unless otherwise mentioned, the Young’s moduli of the material and the
void are chosen to be 1 and 10−9 Nm−2, respectively, and the Poisson ratio is set to 0.3.
A modified SIMP formulation [23] with penalization power q = 3 is used for material
interpolation for intermediate density values. As an initial design for optimization pur-
poses, we used a uniform density distribution with slight perturbation in the density of
the voxel at the top-rightmost corner. The perturbation was needed because a uniform
density distribution leads to equal sensitivities for all the design variables which was not
suited for optimization.



7.3. ORIGIN OF QR-PATTERNS

7

127

F

Case I, Axial load

F

F

Case II, Biaxial load

F

F

Case III, Shear Load

Figure 7.4: Numerical test cases with different loading conditions (F = 1Nm−1). For modeling, the design
domain for each case is discretized using a single finite element with shape functions of polynomial order 6,
and 8×8 design voxels are used.

The optimized designs as well as the deformed shapes for the three cases are shown
in Fig. 7.5. For all the three cases, the compliance accuracy J /J ∗ values are extremely
low, which means that the chosen model strongly underestimates the compliance of the
optimized designs. Here, the reference compliance J ∗ is calculated on an elementwise
constant density based mesh with 8×8 finite elements with shape functions of polyno-
mial order 3. Similar to Fig. 7.3, it can be seen that all the optimized designs consist of
QR-patterns and possess material parts which are completely disconnected. There are
structural features subjected to the distributed load that can freely float along the vertical
or horizontal directions, which implies that with accurate modeling, large displacements
should be anticipated. This in turn should lead to high compliance objective values for
all the cases.

However, the low values of J /J ∗ imply that these designs are erroneously inter-
preted as stiff ones. In fact, their stiffness is overestimated by a factor of 108. The artificial
stiffness is evident from the deformed shapes of these structures for the corresponding
exerted loads (Fig. 7.5). We see that the freely floating solid features also get deformed,
which means that considerable load is transferred through the voids. Also, contrary to
the fact that the voids should be significantly deformed due to their negligible stiffness,
we see that the deformations in the void areas are quite comparable to those of the solid
parts. This means that as per the employed modeling scheme, the voids possess certain
artificial stiffness, making them less compliant.

From these test cases, it is evident that the reason for the formation of these QR-
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patterns is linked to the limitations of the finite element model used here. From our nu-
merical experiments with various shape functions, we observed that by using higher val-
ues of p, these artificially stiff regions could be reduced. These observations are aligned
with the previous studies related to FCM-based modeling, where it has been shown that
the material discontinuities cannot be accurately mapped using low-order elements in
an FCM setting [17, 18]. One approach to reduce the modeling error is to use higher-
order elements, however, such an approach is not advantageous in terms of the added
computational cost. Joulaian and Düster [18] and Kollmannsberger et al. [19] used an
hp-d variant of FCM, where local enrichments are introduced through an overlay mesh
to improve the modeling accuracy in heterogeneous parts of the domain.

In the context of TO, artefacts arising due to the limitations of low order shape func-
tions in an MTO setting have been reported in [6], [14] and [8]. In line with these studies,
the link between the polynomial functions and the QR-patterns are studied in the fol-
lowing sections. Shape functions of higher polynomial degree can better represent the
displacement solution. Thus, in Section 7.3.3, we investigate whether the QR-patterns
arise due to misrepresentation of the displacement field. Also, we explore whether there
exist certain polynomial orders of the shape functions for which these QR-patterns can
be eliminated at a reasonable computational cost.

7.3.2. GAP MODELING WITH POLYNOMIAL SHAPE FUNCTIONS

To investigate the role of polynomial order of the shape functions in the formation of QR-
patterns, we employ a simple elementary test where thin strips of void are modeled. The
choice of this test is motivated from the patterns seen in Fig. 7.5, where the void appears
to bear load. For problems only related to modeling, the loads are applied on the solid
parts of the domain, thus the void does not need to be modeled correctly. However, in
the context of TO, it is possible that during the course of optimization, thin strips of void
arise in the domain. For such scenarios, either the applied load needs to become zero,
or the chosen shape function should be able to correctly model the gap.

For the test problem problem chosen here (Fig. 7.6), the load is fixed, and the mod-
eling accuracy is investigated. A single square finite element of unit dimensions is con-
strained from three sides and loaded in tension by a uniform distributed load. The ele-
ment is filled with two material phases, i.e. solid and void. The domain is divided into
10×10 design voxels and a composite integration scheme (as stated in Eq. 7.1) is used
to integrate the element stiffness matrix. The order of the integration scheme is chosen
based on the polynomial order of the shape functions used to model the displacement
solution.

Several values of p are used and the compliance J of the structure is calculated.
Since we seek the values of p for which the QR-patterns can be eliminated in general,
it is important that the chosen p works for various feature resolutions. To take this into
account, the height of the void layer (hv ) is varied. To assess the correctness of J , the
analytical solution J0 is also calculated. The ratio J /J0 indicates the compliance ac-
curacy, with an ideal value of 1.

Fig. 7.7 shows J /J0 for different values of p and hv . A general observation is that
the for low p values, e.g. 2 or 3, accuracy is poor for all feature sizes. This means that the
shape functions of lower polynomial order are not able to represent the displacement
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(a) Case I, J /J∗ = 1.5×10−8

(b) Case II, J /J∗ = 7.6×10−9

(c) Case III, J /J∗ = 8.5×10−9

Figure 7.5: Optimized designs (left) and respective deformed shapes (right, scaled for visualization) under
various loading conditions obtained for a single finite element obtained using an MTO scheme with p = 6 and
8×8 voxels.

F

hv

E1 (solid)

E2 (void)

Figure 7.6: An axially loaded finite element (F = 1Nm−1) filled with solid and void parts.
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Figure 7.7: Compliance accuracy (J /J0) versus the shape function order (p) for different void-feature resolu-
tions obtained using a single finite element (as shown in Fig. 7.6) comprising 10×10 density voxels. Here, J is
the compliance obtained using the MTO setting, and J0 denotes the analytical solution.

solution arising from such discontinuous material fields. With increasing p, the accuracy
of the model improves, however, the feature resolution hv plays a significant role here.
For a large gap of hv = 0.9, a shape function order of 4 proves sufficient to model the
large compliance of the structure. However, for smaller gaps, increasingly high values of
p are needed to properly represent the displacement field and prevent artificial stiffness.
The case with hv = 0.1 is still not adequately modeled with p = 12. This observation is
investigated further in the next section.

In general, it is observed that the feature-size plays an important role in choosing the
correct value of p. Thus, for full-scale multiresolution topology optimization problems,
very high-order polynomials are needed to ensure that even the finest features are mod-
eled correctly. However, the use of very high order polynomials comes at significantly
increased computational costs, which limits the efficiency of such an MTO setting.

7.3.3. DISPLACEMENT SOLUTION ACCURACY

In Section 7.3.2, it has been shown that higher p values can help to eliminate the QR-
patterns. As stated earlier, the reason is that with higher-order polynomials, the dis-
placement solution for a discontinuous material distribution can be more accurately
represented. To study this in more detail, we use a simple 1D example where a bar is
axially loaded at one end and fixed at the other (Fig. 7.8a). The bar consists of solid and
void material phases in equal proportions (hv = 0.5). Fig. 7.8b shows the calculated dis-
placement solutions along the length of the bar for the two phases calculated for several
values of p. As a reference to measure the correctness of the solution, the exact piecewise
linear displacement solution has been calculated analytically and is shown in Fig. 7.8b
(on log scale).

The first observation is that even shape functions of polynomial order 10 are inca-
pable of accurately representing the displacement field. The continuous polynomials
cannot represent a nonsmooth displacement field arising for the chosen material dis-
tribution. For lower values of p, the displacements in the void part of the domain are
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(b) Displacement fields in the solid (left) and void (right) parts. Note that the right-hand graph
uses a log scale because of the large displacement differences.

Figure 7.8: Displacement fields obtained for shape functions of various polynomial orders and the analyti-
cal solution for a 1D bar example. The Young’s moduli of the solid and the void are denoted by E1 and E2,
respectively, and hv denotes the width of the void.
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Figure 7.9: Displacement field u(y) (on a log scale) in the void region for the 1D bar example shown in Fig. 7.8a.
The log scale has been used due to large differences in the displacements for different values of p.

severely underestimated. Similar to the results shown in Fig. 7.7, the design tends to
be artificially stiff. With increasing p values, a better representation of the displacement
field can be obtained in the void part, however, large oscillations are generated in the
solid part. Although this is incorrect, the deviation from the exact solution in the solid
phase is negligible compared to that in the void part. Thus, although the displacement
solution in the solid part does not match well with the exact solution, the nodal displace-
ment predicted by higher order polynomials matches well.

Another important thing to note is that although the error in the displacement so-
lution at the top end of the bar reduces significantly with high-order polynomials, the
mismatch in the rest of the domain is quite high. The displacement field can become
negative in the solid region, and resulting stresses and strains will be highly incorrect.
For certain problems, e.g. compliance minimization with nodal loads, using high-order
polynomials would be fine in an MTO setting. However, for other objective functionals,
involving also response quantities within the elements, e.g. stress minimization, even
the solution obtained with high values of p could lead to incorrect results.

In Section 7.3.2, it was found that the required shape function order depends on the
feature resolution. Larger voids allow lower polynomial order of the shape functions
for accurate analysis. Fig. 7.9 provides a better insight into this aspect. In this figure,
the displacement fields calculated in the void areas are provided for void widths (hv )
equal to 0.1 and 0.9 and shape functions of polynomial orders 4 and 12 are used. These
parameters are chosen based on the observations in Fig. 7.7 that for hv = 0.9, p = 4 is
sufficient, while for hv = 0.1, even p = 12 may not be accurate. We see that for hv = 0.9,
the displacement curve with even p = 4 reaches close to the analytical solution and with
p = 12, it improves further. However, for hv = 0.1, even with p = 12, the displacements
are poorly predicted compared to the analytical solution. This is due to the limitation
of polynomial shape functions in representing the drastic change in displacement close
to the material discontinuity. The polynomial shape functions increase gradually over
an interval of y to represent such a jump. This behavior is more prominent for lower
order shape functions. Thus, for hv = 0.9, the displacement at the end of the bar is sig-
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(a) p = 6, q = 1.0
J /J∗ = 0.9996

(b) p = 6, q = 1.1,
J /J∗ = 7.36×10−7

(c) p = 6, q = 2.0,
J /J∗ = 5.18×10−7

(d) p = 1, q = 1.0,
J /J∗ = 0.019

Figure 7.10: Optimized designs for a cantilever beam subjected to a distributed load obtained using various
penalization powers q in the modified SIMP formulation. The domain consists of 20×10 finite elements with
8×8 voxels per element.

nificantly higher than that for hv = 0.1. Consequently, for larger gaps, even lower order
polynomials are acceptable. Based on this, controlling feature sizes presents a mech-
anism to prevent configurations that yield analysis inaccuracy. This aspect is explored
further in Section 7.4.

7.3.4. ROLE OF PENALIZATION AND DESIGN-UNIQUENESS

The numerical tests presented in this chapter thus far demonstrated the role of shape
functions in the formation of QR-patterns. Due to the weakness of the analysis model,
the optimizer prefers to exploit designs consisting of artificially stiff-regions. However, it
has been observed that shape function order is not the only factor driving the formation
of QR-patterns. Penalization of intermediate density values, as introduced convention-
ally by, e.g., the SIMP approach, turns out to promote the formation of QR-patterns. In
addition to the artificial stiffness caused by the continuous shape functions, penaliza-
tion gives the black-white QR-patterns an additional advantage over more continuous
intermediate density material distributions.

This hypothesis has been numerically validated on the cantilever beam design prob-
lem presented in Fig. 7.1. Fig. 7.10a, 7.10b and 7.10c show 3 optimized designs obtained
using penalization powers q = 1, 1.1 and 2.0, respectively in the modified SIMP formu-
lation and the corresponding compliance accuracies are reported. A finite element do-
main of 20×10 elements is used with 8×8 voxels in each element and shape functions
of polynomial degree 6 are used. For q = 1, the intermediate densities are not penalized
due to which the optimized design consists of gray areas throughout the domain and is
free from QR-patterns. From the value of J /J ∗, it can be inferred that the model is very
accurate. However, for q = 1.1 or 2.0, the smooth design is unfavorable and the optimizer
creates more solid-void design. Designs largely consisting of QR-patterns are obtained,
with even void voxels on the upper edge where the distributed load is applied. Clearly
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these parts would be very compliant in reality. However, the chosen MTO scheme cannot
model the response properly and extremely low compliance accuracy is obtained.

An interesting result is obtained with shape functions of polynomial degree 1. For
this case, even with no penalization, the design consists of QR-patterns and low compli-
ance accuracy is obtained (Fig. 7.10d). Similar to the checkerboard patterns, it is possible
that these patterns always perform better than the ones with intermediate densities [24],
due to which they appear in the final design. A remedy to remove them would be to em-
ploy filtering that bans these patterns from the design space. Alternatively, it is possible
that the optimizer converges to this solution due to the non-uniqueness of the design
field [15]. Thus, it is important that the shape function orders are chosen in a way that
the uniqueness bounds proposed in [15] are satisfied.

7.4. FILTERING IN MTO
7.4.1. ROLE OF FILTERING

Existing MTO approaches use filtering of voxel densities, which prevents the formation
of QR-patterns. Filtering was originally employed in traditional TO to avoid the forma-
tion of checkerboard patterns and impose a minimum feature size. Some of the fre-
quently used filtering methods are sensitivity filtering [25], density filtering [22], density
filtering with projection [13], etc.

Density filters can be understood as regularization functions that smoothen the den-
sity field by taking weighted contributions from the neighboring density values located
within a certain radius. Thus, in a filtered density field, the density gradients are re-
duced. In traditional TO, where the density is constant inside every element, the use
of filters prohibits large contrasts in densities between two adjacent elements. Since
checkerboard patterns feature large density contrasts between adjacent elements, they
are eliminated by the use of filters.

Unlike checkerboard patterns, QR-patterns obtained in MTO are intra-element arte-
facts. In traditional TO, a filter radius slightly larger than the minimal element size is
sufficient to eliminate the checkerboard patterns. In line with this observation, in MTO
approaches, the smallest effective filter size should be slightly larger than the size of a
density voxel. However, QR-patterns in MTO require stronger regularization of the den-
sity field, hence the smallest filter size to eliminate QR-patterns needs to be considerably
larger than the voxel width. Although QR patterns differ on these aspects from checker-
board patterns, Nguyen et al. [8] and Groen et al. [14] have shown that with the use of
filters, acceptable designs could be obtained.

7.4.2. EFFECT OF FILTERING AND LIMITATIONS

Here, we investigate using an elementary example the extent to which the use of filters
can help to suppress the QR-patterns in MTO. As stated earlier, filters reduce the den-
sity contrast between the adjacent elements, which consequently reduces the extent of
non-smoothness of the displacement solution. In this section, we study the role of den-
sity filters by varying the filter radius rmin and observing the effect on the accuracy of
the calculated compliance solution. The tensile test problem shown in Fig. 7.6 is used
and the domain is assumed to consist of solid and void parts in equal proportions prior
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Figure 7.11: Compliance accuracy J /J∗ versus the shape function order p for various filter radii rmin (in
terms of voxel-length) obtained using a single finite element comprising 8× 8 design voxels. The unfiltered
density field consists of solid and void parts in equal proportions.

to filtering. The original density field is smoothened using density filters to obtain the
filtered design. The domain is discretized using one finite element consisting of 8× 8
design voxels.

Fig. 7.11 shows compliance accuracy J /J ∗ for various filter radii, as a function of
polynomial degree p. The filter radius rmin is expressed in terms of voxel length. The ref-
erence compliance J ∗ is calculated on a domain of 8×8 finite elements of elementwise
constant density and shape functions of polynomial order 3 are used. For the case with-
out filter, the design is free from intermediate density values, and a solid-void boundary
is modeled. From Fig. 7.11, it is seen that for such a configuration, polynomial degree
of 8 or higher will be needed to model the displacement field. For shape functions of
low polynomial degree p, the non-smooth displacement field at the solid-void bound-
ary cannot be accurately modeled and poor compliance accuracy is obtained.

For high values of p, the displacement field can be better approximated and the com-
pliance accuracy improves. At the same time, increasing the filter radius smoothens the
density field, due to which the displacement solution becomes smoother and it should
be possible to approximate it with shape functions of lower polynomial order (p). How-
ever, from Fig. 7.11 we observe that under the influence of density filtering, contrary to
expectation, higher values of p are needed. For rmin equal to 2.4 voxels, a value of 10
or higher is required for p. Moreover, it is seen that even p = 12 is not sufficient if the
design is filtered using rmin equal to 3.6 voxels. This happens because although under
the influence of filtering, the displacement solution becomes smoother, the size of the
gap reduces as well (Fig. 7.12b). As seen in Section 7.3.2, smaller void regions cannot be
modeled with low values of p. Thus, for the case presented here, filtering does not have
the desired effect, rather it raises the need for higher-order polynomials and is counter-
productive in terms of required computational costs.

However, for rmin values of 5.0 and 7.0 voxels, low values of p are already sufficient
and the error is significantly reduced. This is because with such filter sizes, there is no
void part left in the filtered design and the element becomes stiffer. For a better under-
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(a) unfiltered (b) rmin = 3.6 (c) rmin = 7.0

Figure 7.12: Unfiltered density field and its filtered versions obtained using density filters with rmin equal to
3.6 and 7.0 voxels. The domain consists of 1 finite element with 8×8 voxels.

(a) rmin = 3.6 (b) rmin = 7.0

Figure 7.13: Optimized designs obtained for Case I shown in Fig. 7.4 using the density distributions shown in
Figs. 7.12b and 7.12c.
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Figure 7.14: Normalized convergence plots of compliance objective values obtained for the axial load case
shown in Fig. 7.4 using a homogeneous density field (red) and the density field shown in Fig. 7.12a (blue). For
both the cases, rmin is set to 3.6 voxels and material volume fraction is limited to 0.5. The domain is discretized
using one finite element with p = 6 and comprises 8×8 density voxels.
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standing, consider Fig. 7.13 where the unfiltered design and its two filtered versions are
shown which are obtained using density filtering with rmin equal to 3.6 and 7.0 voxels.
Since the density is constant in the horizontal direction, each row of voxels can be con-
sidered as an elastic layer of certain stiffness. The design, along the vertical direction,
can be interpreted as multiple elastic layers connected in series, with different Young’s
moduli reflected by the respective density values. The equivalent stiffness of the whole
structure along the vertical direction is controlled mainly by the weakest layer.

For rmin equal to 3.6 voxels, there exists a void of size 1.0 voxel in the filtered design
(Fig. 7.12b) due to which the design is highly compliant. For such a scenario, a nons-
mooth displacement solution arises which cannot be correctly modeled by low values
of p. However, with rmin set to 7.0 voxels (Fig. 7.12c) or even 5.0 voxels, no void region
exists. This means the equivalent stiffness of the element is higher and the extent of
nonsmoothness in the displacement solution is significantly lower.

This example shows that for cases where void features exist in the filtered design and
play an important role in an element’s response, increasing the filter radius can increase
the analysis error. Once the filter radius is large enough to remove such void regions from
the filtered field, the opposite is observed and the required value of p decreases signif-
icantly. Thus, even in the presence of filters, it is possible that the displacement field
cannot be modeled correctly in an MTO setting. In an optimization process, whether or
not an optimizer will exploit these configurations is hard to predict and problem depen-
dent. However, the possibility cannot be ruled out. Additionally, since the filters impose
a minimum feature restriction, the desired high resolution of the design is also reduced.

From these observations it can be argued whether density filters are really the so-
lution to eliminate QR-patterns. As a matter of fact, the choice of correct filter radius
depends on the material distribution in the unfiltered design as well as the loading con-
dition and chosen shape function order. As per our present understanding, the optimal
filter radius can only be determined by computationally expensive trial and error. Fortu-
nately, for various linear structural problems, use of filters has helped to design reason-
ably optimal MTO designs [14]. In the next section, we study one of these problems and
present a numerical approach towards efficiently finding a suitable filter radius.

7.4.3. CHOOSING THE FILTER RADIUS

From the tests presented in the preceding section, it is clear that the choice of filter radius
rmin can significantly affect the accuracy of the optimized solution. However, a general
theory to determine the minimum filter radius that gives reasonably correct solutions
is not yet available. Here, we examine the possibility of finding an appropriate value of
rmin based on numerical experiments conducted for the 3 test cases shown in Fig. 7.4.
These 3 cases represent elementary loading conditions that may occur at element level
in a full-scale topology optimization mesh. Since the optimization problems for the 3
test cases are computationally very cheap compared to the actual design problem, these
tests can be run a priori to choose rmin for a given set of associated parameters.

The choice of an optimal filter size depends on the fact that small filter radii lead to
inaccurate modeling and QR-patterns, while large filter size leads to undesirable loss of
resolution and crispness. For several values of rmin, the error indicator J /J ∗ is exam-
ined on a domain of 8× 8 voxels with shape functions of polynomial degree 6 and the
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Figure 7.15: Compliance accuracy J /J∗ for various filter radii rmin obtained for the three test cases presented
in Fig. 7.4. For all the cases, a single finite element is used with shape functions of polynomial order 6 and 8×8
design voxels.

(a) Case I, axial (b) Case II, biaxial (c) Case III, shear

Figure 7.16: Optimized designs for the three elementary test cases shown in Fig. 7.6 obtained using a filter
radius of 2.6 voxels. The domain consists of 1 finite element with 8×8 voxels and shape functions of polynomial
degree 6.
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(a) rmin = 2.6,J /J∗ = 0.98 (b) rmin = 1.4,J /J∗ = 0.59

Figure 7.17: Optimized designs for cantilever beam subjected to distributed load (as in Fig. 7.1) for two different
filter radii. The domain is discretized using 20×10 finite elements with shape functions of polynomial degree
6 and 8×8 design voxels per element.

results are shown in Fig. 7.15. To calculate the reference solution J ∗, an analysis mesh
of 8×8 finite elements is used and the polynomial order of the shape functions is set to
3.

An interesting observation here is that for all values of rmin, the compliance accuracy
is higher for axial loading compared to the biaxial and shear loading conditions. One
of the possible reasons is that for the axial load, there is only one direction along which
the material discontinuities affect the accuracy of the model. For choosing optimal rmin,
we assume that a compliance accuracy of close to 90% or even higher is acceptable and
from Fig. 7.15, it is seen that this holds true for rmin equal to 2.6 voxels for all the 3 cases.
Fig. 7.16 shows the optimized designs for the 3 cases obtained using rmin = 2.6 voxels.
Due to the use of large filters, designs are significantly gray, however, it is clearly evident
that they are free from QR-patterns.

Table 7.1: Choice of filter radius (in terms of element size h) for various choices of polynomial degree of the
shape functions p and number of design voxels along the x- or y-direction (denoted by d), to obtain compliance
accuracies J /J∗ of around 90% or higher for the three element test cases shown in Fig. 7.4. Here, × denotes
that one element discretization is not sufficient, and the dark empty cells denote combinations of p and d that
violate the uniqueness bounds proposed in [15].

p
d

2 3 4 5 6 7 8 9 10

1 ×
2 × 0.8
3 × 0.6 0.7 0.7
4 × × 0.5 0.45 0.45
5 × × 0.45 0.45 0.4 0.4 0.4
6 × × 0.4 0.4 0.35 0.35 0.35 0.3
7 × × 0.4 0.4 0.35 0.35 0.3 0.3 0.3
8 × × 0.35 0.35 0.3 0.3 0.3 0.25 0.25
9 × × 0.35 0.35 0.3 0.3 0.25 0.2 0.2

10 × × 0.35 0.35 0.3 0.3 0.25 0.2 0.2

Next, the value of 2.6 is used for rmin during the optimization of material distribution
for the problem shown in Fig. 7.1. The domain is discretized using 20×10 finite elements,
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Table 7.2: Choice of filter radius (in terms of element size h) for various choices of polynomial degree of the
shape functions p and number of design voxels along the x- or y-direction (denoted by d), to obtain compliance
accuracies J /J∗ of around 90% or higher for the three element test cases shown in Fig. 7.4. The domain has
been discretized using a patch of 2× 2 finite elements. For the values marked using *, 3× 3 finite elements
have been used. The dark empty cells denote combinations of p and d that violate the uniqueness bounds
proposed in [15].

p
d

2 3 4 5 6 7 8 9 10

1 0.8*
2 0.8* 0.75
3 0.75* 0.7 0.65 0.7
4 0.65* 0.5 0.45 0.45 0.45
5 0.65 0.45 0.45 0.45 0.4 0.4 0.4
6 0.65 0.45 0.45 0.4 0.35 0.35 0.35 0.3
7 0.65 0.4 0.4 0.35 0.35 0.35 0.3 0.3 0.3
8 0.6 0.4 0.35 0.3 0.3 0.3 0.3 0.25 0.25
9 0.6 0.35 0.35 0.3 0.3 0.3 0.25 0.2 0.2

10 0.6 0.35 0.35 0.3 0.3 0.3 0.25 0.2 0.2

each comprising 8×8 voxels and shape functions of polynomial order 6. Fig. 7.17a shows
the optimized design obtained for rmin = 2.6 voxels. With this filter radius, the compli-
ance accuracy of the design is 0.98, which means the model meets the chosen accuracy
level and the design is free from artificially stiff regions. Here also, the reference com-
pliance J ∗ is calculated on an elementwise constant density mesh of 160×80 finite el-
ements with p = 3. For comparison, Fig. 7.17b shows the optimized cantilever design
obtained with rmin = 1.4 voxels. QR-patterns are very prominent in this design and the
compliance accuracy of the design is low. For both the designs, intermediate density ar-
eas are seen in some parts of the domain, which could not be resolved using the MTO
scheme.

Thus, we find that the rmin value obtained from Fig. 7.15 works well for this problem.
We observe that the compliance accuracy for the cantilever problem is higher compared
to the 3 test cases from which the optimal value of rmin was derived. In terms of close-
ness, the compliance accuracy values for this design are closest to that of Case I, i.e. axial
loading. This is indeed as expected since for a single load case compliance minimization,
the optimized design tends to form members loaded in tension/compression.

It is important to note that this choice of rmin = 2.6 voxels cannot be generalized.
There are several parameters that can affect the appropriate choice of filter radius, e.g.,
polynomial degree of shape functions, number of voxels, material volume fraction, load-
ing conditions, etc. Among these, we study the effect of various shape functions and
number of voxels on the optimal filter radius obtained using the 3 element test cases
(Fig. 7.4). For ease of comparison, the filter radius for the further study will be defined
in terms of element length (h). For example, for a square finite element comprising 5×5
voxels, a filter radius of 2 voxels will be referred as 0.4h. In addition, the number of voxels
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Table 7.3: Choice of filter radius (in terms of element size h) for various choices of polynomial degree of the
shape functions p and number of design voxels along the x- or y-direction (denoted by d), to obtain compliance
accuracies J /J∗ of around 90% or higher for the three element test cases shown in Fig. 7.4. For the cells
marked with *, one element discretization was insufficient, hence for these cases, a 2× 2× 2 patch of finite
elements was used. The dark empty cells denote combinations of p and d that violate the uniqueness bounds
proposed in [15].

p
d

2 3 4 5 6 7

1 0.75*
2 0.75* 0.6* 0.6
3 0.75* 0.5 0.5 0.5
4 0.6* 0.4 0.35 0.4 0.35 0.35
5 0.6* 0.4 0.35 0.35 0.3 0.3
6 0.55 0.4 0.35 0.3 0.3 0.25

along the x- or y-direction will be denoted by d .

Table 7.1 shows the optimal filter radii found for various choices of p and d when
compliance accuracy of around 90% or higher is assumed to be acceptable. The value
90% is chosen based on the fact that with the resultant filter radii, compliance accura-
cies of 98% or higher were obtained for several full-scale TO problems of compliance
minimization. Clearly with the same method, filter radii limits can be found for other
target accuracies. For this study, filter radii of 0.05h to 1.0h are tested at an interval of
0.05h. The dark gray region refers to the infeasible combinations of p and d as per the
uniqueness bounds proposed in [15]. The symbol × denotes that a discretization using
only one finite element is not sufficient for the respective combinations of p and d , as far
as QR-patterns are concerned. When the design is optimized without filtering for single
element test cases comprising 2×2 voxels and 3×3 voxels, very inaccurate solutions are
obtained. Clearly, for a very low design resolution, the single element test cases do not
seem to work. This happens because with a very low design resolution, the optimiza-
tion problem is quite restricted. Starting from a uniform distribution, it is observed that
designs hardly change during the course of optimization. The unfiltered design itself is
well connected and no filtering is needed.

Table 7.2 presents the optimal filter radii for various choices of p and d obtained on
a mesh of 2×2 finite elements. Only values related to the tensile case are reported, since
for the one element tests, this case was found to be controlling the choice of minimum
filter radii. With an increase in the number of elements, the design freedom is increased,
and optimal filter radii values can be obtained for low values of d as well.

A general observation is that for obtaining very fine features, the filter radius needs
to be very small. From Table 7.1, it is observed that for a filter radius of 0.2h, very high
values of p and d are needed. Lowering p leads to the need for a larger filter radius.
Lower values of d restrict the design resolution and also require a large filter radius. It
is observed that these values of filter radius are slightly higher compared to the results
reported in [14], and the reason could be that the element test cases used in this study
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are more restrictive. Comparing the values of Table 7.1 and 7.2, we observe that with a
finer discretization, the optimal filter radii values decrease slightly for low values of p and
d . However, for higher values, the minimum required filter radii to achieve the desired
solution accuracy are equal.

To investigate how this method of determining an optimal filter radius extends to
3D, a preliminary study has been performed using only the tensile test. Similar to Case
I shown in Fig. 7.4, a 3D cube of unit dimensions is considered and the top surface is
subjected to a distributed load of 1 Nm−3. Apart from vertical displacements, motion
is restricted along the other two spatial dimensions for the vertical surfaces of the cube,
and the bottom surface is entirely fixed. The optimal filter radii for different values of p
and d for this case are shown in Table 7.3. The observations are similar to those obtained
in Tables 7.1 and 7.2. An interesting observation is that for 3D cases, the required filter
radii are slightly lower than those obtained for 2D cases.

A general observation in Tables 7.1, 7.2 and 7.3 is that the required filter radius to
guarantee reasonably accurate results only decreases slowly with p. For example, from
Table 7.1, we see that with d = 4 and elements with cubic shape functions (p = 3), a
filter radius of 0.7h is required, resulting in a feature size of 2rmin = 1.4h. To decrease
this feature size by a factor 2 (i.e. allow rmin = 0.35h), polynomial shape functions of
order 6 or higher are needed with d = 6. It is questionable whether this is advantageous
in terms of computational cost compared to realizing a similar feature size reduction
in conventional TO, which would give a similar increase in DOFs but a sparser stiffness
matrix contribution. This finding indicates that in the present MTO scheme, increased
level of detail is associated with a considerable increase in computational cost, due to
which the advantage of MTO could be lost over the traditional TO approach.

7.5. DISCUSSION
In this chapter, the disconnected material distributions observed in MTO formulations,
denoted as QR-patterns, are investigated using several numerical experiments. From the
presented results, it can be inferred that these patterns cannot be correctly modeled by
the employed modeling scheme. They form as artefacts in compliance minimization as
their stiffness is strongly overestimated. In general, the use of large numbers of design
voxels allows the representation of high resolution designs which in turn leads to mate-
rial features that require shape functions of very high polynomial degree to be correctly
modeled.

Density filtering has been used to eliminate the QR-patterns and has been successful
for various instances, however, as shown in this work, the use of density filters can have
a negative impact and can raise the polynomial order of the shape functions desired
for accurate modeling, thereby leading to even higher computational costs. Filtering
imposes a restriction on the minimum feature size. The native design resolution given
by the voxel size is lost, and without additional measures, blurred design boundaries are
formed.

The single-element tests presented in Section 7.4.2 show that void strips give strongly
overestimated stiffness. However, these do not always appear during optimization, and
seem to be fully suppressed when a sufficiently large filter radius is used. One of the rea-
sons that these thin strips of void are not formed could be that the optimization process
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converges to different local optima, and these thin strips are not easily encountered.
Moreover, the QR-patterns observed in unfiltered designs consist of quickly spatially-
varying material patterns, and filtering removes such design patterns from the solution
space. Although the thin strips of void can still be formed, the gradual density transition
zone caused by density filtering make them less favorable in term of absolute stiffness
compared to the connected designs. Nevertheless, the relative stiffness overestimation is
still observed. When filtering is combined with Heaviside projection, the artefacts reap-
pear [14]. This issue can be overcome for most of the cases using the modified Heavi-
side projection method [26], however, this approach cannot be guaranteed to work and
should be used with caution [14].

Although with suitable filtering, the thin strips of void are not observed in the de-
signs optimized for minimal compliance, it cannot be guaranteed that such issues will
not be encountered for other more complex TO problems. In this study, as well as most
other studies, the application of MTO has focused on compliance minimization prob-
lems. Groen et al. [14] also studied the application of MTO in a compliant mechanism
optimization. Currently an incomplete understanding exists of the applicability of MTO
to different optimization problems, and further research is required to support the gen-
eralization of MTO approaches. Of interest are for example problems involving eigenfre-
quencies or stress constraints, where it is yet unknown what interaction the multireso-
lution modeling will have with the optimization process. As a protective measure, such
scenarios should be avoided in general. In this chapter, the MTO approach has been
studied from a more conservative point of view. The extreme limitations of MTO are
explored, so that the highest permissible design resolution can be achieved without en-
countering any artefacts.

There are additional aspects that need to be investigated further so as to assess the
full capability of the MTO concept. A measure of benefit-versus-cost for increasing the
polynomial order of the shape functions can be defined to determine whether the use
of high p values for certain MTO configurations is beneficial or not. Groen et al. [14]
have presented an empirical measure based on several numerical experiments. It would
be of interest to explore further in this direction on a wider variety of MTO problems,
and also look into theoretical aspects of the problem to establish more rigorous mea-
sure criteria. Another possible solution to look into could be to investigate the role of
adaptive p-refinement in MTO. Locally increasing the value of p can reduce the artefacts
while limiting the additional computational burden. For such methods, well defined re-
finement indicators are needed which can easily locate the regions at risk of developing
QR-patterns.

In this chapter, we have studied in detail the fact that the QR-patterns in MTO origi-
nate from the known incapability of the polynomial shape functions in modeling the dis-
placement field that accompanies a discontinuous material distribution. Methods such
as XFEM, GFEM, etc. are well-established techniques that use enrichment functions to
accurately model such nonsmooth or discontinuous displacement fields [21, 27]. XFEM
has successfully been used in the context of TO (e.g., [28]). However, the significantly
high complexity of this approach restricts its attractiveness, and how to combine XFEM
with MTO is an open research question. It may nevertheless present a way to rigorously
prevent QR-patterns without sacrificing design resolution.
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7.6. CONCLUSIONS
In this chapter, numerical artefacts arising in multiresolution topology optimization (MTO),
denoted as QR-patterns, have been thoroughly studied and an explanation on their for-
mation has been presented. Through several numerical tests, we observed that elements
with discontinuous internal material distributions can show artificially low compliance
when shape functions of insufficient polynomial degree are used. This deficiency of the
finite element model has been observed before in higher-order multiresolution meth-
ods. It can be exploited during optimization, leading to unrealistic QR-patterns. While
shape functions of very high polynomial degree can eliminate these artefacts, it is ob-
served that the computational advantage of MTO over traditional TO could be lost due
to the additional DOFs introduced. Further, the role of density filtering in MTO is inves-
tigated. It is shown that although filtering can reduce the QR-patterns for certain cases, it
may not always be the solution to eliminate these artefacts and can sometimes be coun-
terproductive.

Based on the investigations presented in this work, it can be questioned whether the
methods based on decoupled design and analysis, in their current state, are suited for
TO. Dedicated studies into particular problem types and other responses are needed to
gain a fuller understanding on whether the filtering presents a universal remedy. It is
expected that our findings will serve as the groundwork to define effective countermea-
sures to eliminate QR-patterns and help to achieve the goal of obtaining high resolution
designs at low computational cost.
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8
DESIGN AND ANALYSIS ADAPTIVITY

IN MTO

Multiresolution topology optimization (MTO) methods involve decoupling of the design
and analysis discretizations, such that a high-resolution design can be obtained at rela-
tively low analysis costs. Recent studies have shown that the MTO method can be approx-
imately 3 and 30 times faster than the traditional topology optimization method for 2D
and 3D problems, respectively.

To further exploit the potential of decoupling analysis and design, we propose a d p-adaptive
MTO method, which involves locally increasing/decreasing the shape function orders (p)
and design resolution (d). The adaptive refinement/coarsening is performed using a com-
posite refinement indicator which includes criteria based on analysis error, presence of in-
termediate densities as well as the occurrence of design artefacts referred to as QR-patterns.
While standard MTO must rely on filtering to suppress QR-patterns, the proposed adap-
tive method ensures efficiently that these artefacts are suppressed in the final design, with-
out sacrificing the design resolution. The applicability of the d p-adaptive MTO method
is demonstrated on several 2D mechanical design problems. For all the cases, significant
speed-ups in computational time are obtained. In particular for design problems involv-
ing low material volume fractions, speed-ups of up to a factor of 10 can be obtained over
the conventional MTO method.

8.1. INTRODUCTION
Topology optimization (TO) can be described as an approach that optimally distributes
material in a specified domain under a set of constraints, such that the performance
function of the structure achieves a maximum [2]. In the past two decades, TO has
widely been used in various academic and industrial disciplines. For a survey on the

This chapter is based on an article submitted for consideration in International Journal for Numerical
Methods in Engineering [1].
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latest developments in TO as well as its recent applications, see the review papers by
Sigmund and Maute [3], van Dijk et al. [4], and Deaton and Grandhi [5].

Typically, in popular density-based TO, the domain is discretized into a finite set of
elements and a density value is associated with every finite element [2]. The density of
an element indicates the volume fraction of that element filled with a certain amount
of material, and can vary from 0 (void) to 1 (solid). These density values are optimized
during the course of optimization. Since in traditional approaches, density is assumed
to be constant inside an element, a large number of finite elements as well as associated
design variables are needed to obtain a well defined design with the desired structural
features and boundary resolution, especially for three-dimensional (3D) problems [6].
The computational costs associated with TO are mainly determined by the used finite
element analysis (FEA) and associated sensitivity analysis, which limits the number of
elements and consequently the design resolution.

With the growing popularity of TO, a clear need exists for improved methods that
can deliver high quality results at the lowest computational cost. Various approaches
have been proposed in the past to reduce the computational costs associated with solv-
ing large-scale TO problems [7–13]. These focused mainly on improving the efficiency
of solving the FEA systems of equations. Another possibility that has been explored in
the existing literature is to modify the way the FEA system is defined in the first place
through the use of adaptive FEA formulations. Popular adaptive FEA approaches are
h-refinement and p-refinement [14]. However, the standard formulations for these meth-
ods use FEA based error criteria for adaptation of the mesh. These by themselves are not
well suited for TO, as they do not take the need for refinement based on design consid-
erations into account [15]. In the final designs obtained from TO, it is desirable that the
material distribution is clearly defined. Thus, the refinement criterion used in TO should
depend on the material distribution as well.

Maute and Ramm [16] proposed an adaptive mesh refinement (AMR) approach which
involved optimizing the topology of the design followed by approximating the bound-
aries using cubic or Beźier splines. After every cycle of TO, shape optimization was per-
formed followed by remeshing of the solid domain. The whole process was repeated over
a series of cycles and the new mesh generated at the end of each cycle was used as the
domain for the TO problem of the next cycle. van Keulen and Hinton [17] for the first
time combined the TO with an FEA error based refinement strategy. The recovery of ma-
terial, in their approach, was controlled by the stress level in the adjacent elements and
mesh densities were determined using (a) the standard Zienkiewicz-Zhu error estimator
and (b) the shortest distance to the material-void boundary. Both these approaches in-
volved remeshing the whole domain at the end of each cycle, which was computationally
expensive.

Costa and Alves [18] presented an AMR strategy which involved refining only the
solid material region. For TO problems, intermediate densities are found to be preva-
lent near the boundaries. On the assumption that refinement of these regions can re-
duce the intermediate densities, Stainko [19] proposed to refine the region only around
the material-void boundary. Bruggi and Verani [15] progressed in the direction of the
work proposed by [17], and proposed a goal-based AMR strategy that properly guides the
progression of refinement and coarsening in TO. For refinement or coarsening, a dual-
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weighted residual based FEA indicator as well as a heuristic density-gradient based indi-
cator were used. While most of these methods helped to achieve the required h-adaptivity
in TO, the fixed choice of density values for refinement at every cycle of TO led to exces-
sive numbers of elements getting refined, thereby leading to undesired increase in com-
putational costs. Gupta et al. [20] proposed a heuristic scheme to control the refinement
or coarsening bounds at every cycle of TO. The proposed scheme was combined with
h-refinement and very clear material descriptions with low gray regions were obtained.
Other adaptive formulations involving h-refinement or a similar approach include adap-
tive refinement of polygonal elements [21, 22], combining a continuous density field
representation with adaptive mesh refinement [23] and efficient TO based on adaptive
quadtree structures [24].

Another possible way to reduce FEA costs is the adaptive p-refinement, as stated ear-
lier, where the mesh topology remains the same. Additionally, for smooth problems, the
accuracy of p-refinement is dramatically higher than that of h-refinement for the same
computational costs [14]. Increasing the polynomial order of the shape functions gives
an exponential rate of convergence. Other advantages of p-refinement are its robust-
ness against locking effects and high aspect ratios [25]. However, due to the fact that
the conventional TO approaches assume an elementwise-constant density distribution,
using higher-order shape functions inside a finite element is not an efficient approach.
Although it reduces the FEA error to some extent, it cannot improve the material defini-
tion within the element.

The recently proposed Finite Cell Method (FCM) offers new perspectives to over-
come this limitation [26]. FCM is an FE-based modeling approach where the analysis
mesh is decoupled from the material distribution domain and higher order shape func-
tions are used [25]. This approach can handle a material-void boundary within an ele-
ment through the use of appropriate integration schemes. Recently, a similar approach
was proposed by Nguyen et al. [27] for TO, termed as multiresolution topology optimiza-
tion (MTO), where the analysis and design meshes are decoupled. Here, design mesh
denotes the distribution of the design points which are used to generate the material
distribution. The density values associated with these points serve as optimization pa-
rameters for TO. In MTO, a coarse analysis mesh was used and inside every finite ele-
ment, a large number of design points were positioned. This allowed a high resolution
density distribution inside every finite element, unlike an elementwise-constant density
distribution as in standard TO approaches. In spite of using low order shape functions
and coarse elements, the method is still capable of generating high resolution structures,
albeit with reduced analysis accuracy. To increase this accuracy, recently a p-version of
MTO has been proposed, where the potential of higher order polynomial shape func-
tions has been investigated in the context of MTO [28]. Other approaches based on a
similar concept were further presented in [29, 30]. Note that in [27] and other research
papers thereafter, the term ‘multi-resolution’ refers to allowing the possibility for multi-
ple different design resolutions for the same choice of analysis resolution. In line with
these works, we also refer to our formulation as an MTO approach.

It is important to note that although the design and analysis meshes can be decou-
pled, the iterative updates of the design variables in TO are based on the analysis results.
In a recent study, we showed that for a given finite element mesh and polynomial order
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of FE shape functions, there exists an upper bound on the number of design variables
that can be used in TO [31]. A density resolution beyond this threshold cannot be fully
captured by the FEA and can lead to issues such as nonuniqueness. For certain cases,
it can also lead to poorly performing designs. Thus, when using large numbers of de-
sign points inside an element, both for analysis accuracy as well as well-posedness of
the TO problem, higher order shape functions and corresponding numerical integration
schemes need to be chosen.

Parvizian et al. [26] proposed a TO strategy based on FCM where a coarse analy-
sis mesh with high order shape functions as well as a high order numerical integration
scheme is used. Although expected to give more reliable results, FCM-based TO may not
necessarily satisfy the bounds proposed in [31], which implies it might still be prone to
numerical issues. Groen et al. [32] presented results related to rigorous numerical in-
vestigations of FCM-based TO. Their observations show close resemblance with those
in [31]. Also, the authors showed that using FCM-based TO, remarkable speed-ups of
more than 3- and 60-folds for 2D and 3D problems, respectively, could be obtained over
the traditional TO approach. However, for certain configurations of FCM-based TO, it
is possible that the design consists of ‘QR-patterns’, comprising disconnected or loosely
connected material parts which cannot be correctly modeled by the employed modeling
scheme [33]. Use of density filtering with a sufficient filter radius was found to suppress
the QR-pattern artifacts [28, 31, 32], but has the undesired consequence of reducing the
design resolution. Applying p-refinement was also found to reduce the issue, but rapidly
raises the computational cost.

Hereafter, we use the term MTO to refer to all the TO approaches (including FCM-
based TO) where the design and analysis discretizations are decoupled. The goal of
MTO approaches is to obtain high resolution, high quality designs at low analysis costs.
Possible ways to increase resolution versus cost could include using a finely discretized
density mesh, reducing the filter size, using shape functions of low polynomial order to
describe the state field, etc. However, each of these approaches has certain limitations
which can adversely affect the analysis accuracy. Using too many density cells and low
polynomial order shape functions can lead to nonuniqueness in the design field and re-
sult in numerical instability [31]. Reducing the filter size can lead to the formation of
QR-patterns, which are numerical artefacts and can affect the model accuracy [32, 33].
Using higher order shape functions can circumvent these problems, however, the anal-
ysis related costs are significantly increased. Due to this, the advantage of MTO over
the traditional TO approach could be lost. In an MTO setting, this requires considering
adaptivity both of the analysis and the design, which thus far has not been explored.

In this chapter, we present an adaptive MTO approach that enables a better bal-
ance between resolution and computational costs. Local adaptation is applied to both
the analysis and the design description, which allows computational effort to be con-
centrated in regions of interest. Moreover, the adaptivity allows rigorous prevention of
QR-pattern artefacts. We coin the term ‘d p-adaptivity’, an adaptive multiresolution TO
scheme where both the design resolution d and FE polynomial order p can be locally
adapted based on certain refinement/coarsening criteria. Here, the symbol ‘d ’ should
not be confused with the one in hp-d adaptivity, where it refers to domain decompo-
sition and mesh overlaying [34]. It is assumed that computational costs are the limit-
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design domain background domain Q2 finite element
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Figure 8.1: Schematic representation of a Q2/d8 MTO element comprising 3 linked overlapping domains.
These domains represent a design domain with 8 design points (left) and a Q2 finite element (right), with a
background distribution of 3×3 density cells (middle). Here, P1 and P2 denote the projections from the design
to background domain and from background domain to the finite element, respectively. The design points are
distributed in the domain using a variant of the k-means clustering approach (Appendix 8.A).

ing factor, and that the manufacturing-imposed length scale is at or below the smallest
lengthscale that can be reached by the adaptive TO process. Our approach can obtain
high resolution representations of the material field at significantly lower computational
costs compared to non-adaptive MTO approaches. At the same time, by jointly adapting
design and FE discretization, we ensure that the bounds proposed in [31] are satisfied
and instability issues are avoided. For refinement/coarsening after every TO cycle, anal-
ysis error, correctness of the design as well as the error associated with QR-patterns are
used. For this purpose, we also propose a novel indicator. Various numerical tests are
conducted to analyze the capabilities of the method as well as its robustness. The scope
of this chapter is restricted to linear elastostatic problems and the material is assumed
to be isotropic, however, the method is expected to be applicable to a wider range of
problems.

In the following section, theory of multiresolution TO is presented followed by dis-
cussions related to choice of design distribution, polynomial orders and numerical inte-
gration schemes. Section 8.3 subsequently presents the theory and formulation for the
proposed d p-adaptivity approach. The applicability of this method is presented on a set
of numerical examples (Section 8.4), and discussion and related conclusions are stated
in Section 8.5 and 8.6, respectively.

8.2. MULTIRESOLUTION TOPOLOGY OPTIMIZATION

8.2.1. DOMAIN AND VARIABLE DEFINITIONS
In this chapter, we propose an adaptive MTO formulation based on selective refinement
and coarsening of the design as well as analysis domains. First a conceptual description
is provided, whereas the mathematical formulation follows in Section 8.2.2. The pro-
posed approach uses three meshes: design mesh, background mesh (comprising den-
sity cells) and analysis mesh. The analysis mesh is used to determine the solution of the
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analysis node center of density cell
design point
design point and center of density cell

Figure 8.2: Schematic representation of projection P1 illustrating the projection of density values from the
design points in the design mesh to the centers of density cells of the background domain. Four projection
regions are indicated in gray. Note that these projections are localized and operate on the design points and the
density cell-centers of the same element. Here, the four MTO elements from top-left to bottom-right consist of
4, 9, 3 and 7 design points, respectively. The densities at the centers of the gray projection domains (denoted
by ) shown in each MTO element are computed from contributions of all design points (denoted by ) of the
same MTO element within its projection domain.

analysis node center of density cell
integration point

Figure 8.3: Schematic representation of projection P2 which projects density values from the background mesh
to the integration points of the analysis cell. The problem domain is discretized using 2× 2 MTO elements
composed of Q1 finite elements and 3×3 density cells per element. For numerical integration, a 4×4 Gaussian
quadrature rule is used. The density at the integration point at the center of the gray projection domain (de-
noted by ×) is computed from contributions of all background density cell center points (denoted by ) within
its projection domain.
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physics at hand (e.g. displacement field) and the design mesh represents the distribu-
tion of design points in the domain. For simplicity, we use a structured mesh setting, as
often used in topology optimization. In an adaptive setting, the analysis resolution and
distribution of design points in the domain can be non-uniform. The background mesh
is added to provide a convenient link between the analysis and design meshes. More
details related to the role of the background mesh follow later in this section.

For practical implementation, we introduce the notion of MTO elements. An MTO
element comprises a finite element, a set of design points and an overlapping back-
ground element comprising a regular grid of density cells. They all occupy the same
spatial domain, and this ordered arrangement is chosen to simplify implementation in
an existing FE framework. For example, Fig. 8.1 shows the schematic representation of a
Q2/d8 MTO element using a Q2 (bilinear quadrilateral) finite element and consisting of
8 design points distributed non-uniformly in the domain. The overlapping background
element comprises 3×3 density cells. A density design variable is associated with each
design point. During optimization, these density variables are updated at every iteration
based on the response functions and the corresponding design sensitivities.

To generate suitably uniform distributions of design points within an element for any
number of design variables, a variant of the k-means clustering method is used [35, 36].
This approach divides the design domain into k segments (clusters) with roughly equal
areas. The design points are assumed to be located at the centroids of these clusters.
For self-containment, the details of the method are discussed in Appendix 8.A. We use
this approach to obtain an approximately uniform distribution of any given number of
design points in the MTO element domain. The achievable resolution limit of the de-
sign depends on the spacing between the design points. For a given number of design
points and without a priori knowledge of the optimal design, a uniform distribution al-
lows the best possible resolution. Note here that the proposed adaptive MTO approach
is independent of the choice of methodology for the distribution of design points, and
any other method to distribute points in a domain can be applied, including a set of
predefined patterns.

The aligned background mesh consists of a uniform grid of equally-sized density
cells in the whole domain, such that a certain number of these cells overlap with ev-
ery finite element. For these density cells, the respective finite element is referred as the
parent analysis cell. For example, in Fig. 8.1, 3×3 density cells overlap with the parent Q2
finite element (analysis cell). The density is defined at the centroid of every density cell
and is assumed to be constant inside it. This density is obtained from the design mesh
through a localized projection operation.

The density inside any density cell of the background mesh is calculated using pro-
jection P1 (as shown in Fig. 8.1, defined in detail in Section 8.2.2), and only those design
points are used which lie within the same MTO element. The role of the localized projec-
tion is to define density values in all the density cells of the respective MTO element. The
projection is restricted to the considered MTO element for two reasons: (i) to minimize
the associated loss in design resolution of MTO elements adjacent to other MTO ele-
ments with fewer design points and (ii) to enable element-level implementation. While
choosing the local projection radius P1, it needs to be ensured that the density inside
each density cell can be defined. The mathematical details related to choosing this pro-
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jection radius are provided in Section 8.2.2. An example is presented in Fig. 8.2, which
shows a domain of 2×2 MTO elements, each comprising a Q1 finite element and 3×3
density cells. As can be seen, the distribution of design points can be non-uniform. The
four MTO elements from top-left to bottom-right consist of 4, 9, 3, and 7 design points,
respectively. In the bottom-right MTO element shown in Fig. 8.2, a partial projection
circle can be seen, which is due to the fact that the projection is restricted to within
this MTO element. Mathematical details related to projection P2 are provided in Section
8.2.2.

The stiffness matrix for every MTO element is obtained by numerical integration us-
ing a Gaussian quadrature scheme. For this purpose, the stiffness matrix contribution
at the integration point needs to be known, which in turn requires knowing the density
value at that point. This density value, referred further as ‘projected density’, is obtained
through a projection on the background mesh, denoted by P2 (Fig. 8.1). Fig. 8.3 illus-
trates how these density values are computed. It shows a mesh of 2×2 MTO elements,
comprising Q1 finite elements and the corresponding background domain with 3 × 3
density cells per element. Here, ‘Q1’ refers to quadrilateral finite elements with shape
functions of polynomial order 1. Similar to the approach described in [27, 28, 32], the
projected densities are computed using a distance-weighted projection of design densi-
ties found in the neighborhood of a certain radius R over the background mesh. In this
work, density filtering is used for the projection [37].

The use of the background mesh facilitates d-adaptivity, i.e. the use of different num-
bers of design points in adjacent elements. In the absence of the background mesh, the
non-uniform design field when directly projected on the analysis mesh, can lead to ir-
regular boundary features which are not desired. The design variables are not directly
linked to the density cells of the background mesh, because it would not allow an adap-
tive formulation anymore. Moreover, such a formulation would significantly increase the
number of design variables and would lead to nonuniqueness related issues [31]. The
background mesh provides the flexibility of having a reference discretization indepen-
dent of the number of design variables. Moreover, it simplifies the numerical integration
required for the stiffness matrix.

8.2.2. MATHEMATICAL FORMULATION
In this chapter, the applicability of a d p-adaptive MTO approach is demonstrated on
mechanical problems of two different types: minimum compliance and compliant mech-
anism.

For the chosen problems, the problem statement for TO can be expressed as

min
ρ

J (u,ρ) = zᵀu,

s.t. Ku = f,

V (ρ) ≤V0, (8.1)

0 ≤ρ ≤ 1,

where, J (·) denotes the objective functional, and K, u and f denote the global stiffness
matrix, displacement vector and load vector, respectively. The vector z is chosen based
on the type of problem and will be discussed in Section 8.4.1. The volume constraint
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restricts the total volume fraction of the given material to be less than certain predefined
volume V0.

Next, the details related to various steps associated with the proposed multiresolu-
tion modeling approach are described. The matrix K in Eq. 8.1 is obtained from the
global assembly of the element stiffness matrices Ke , which can be expressed as

Ke =
∫
Ωe

BᵀDBdΩ=
Ng∑
i=1

Bᵀ
i Di Bi wi , (8.2)

where B and D denote the strain-displacement matrix and constitutive matrix, respec-
tively, and Ng is the number of integration points. More details related to the choice of
numerical integration are discussed in Appendix 8.B. The subscript i refers to the i th in-
tegration point and wi denotes the respective integration weight. The construction of
the D matrix depends on the choice of the material interpolation model as well as the
material itself. In this work, solid isotropic material interpolation (SIMP) model [2] is
used such that

Di =
(
Emin + ρ̃q

i (E0 −Emin)
)

D0, (8.3)

where E0 is the Young’s modulus of the solid material and Emin is a very small value (typ-
ically 10−9E0) used to avoid singularity of the system stiffness matrix. Also, ρ̃i denotes
the density calculated at the i th integration point, q is the penalization power and D0

denotes constitutive matrix normalized by the Young’s modulus.
The densities at the integration points are calculated by projecting density values

from the density cells in the background mesh (Fig 8.3). For this purpose, we employ a
linear projection approach for P2 based on the density filtering method which is widely
used in TO [37]. Mathematically, it can be stated as

ρ̃i = 1∑nρ̂
j=1 Hi j

nρ̂∑
j=1

Hi j ρ̂ j , (8.4)

where ρ̂ refers to density values for the cells contained in the background mesh with
their centers lying within a distance R from the corresponding integration point (Fig.
8.3), and their number is denoted by nρ̂ . Here, terms Hi j reduce linearly with distance
from the integration point, i.e.,

Hi j = R −dist(i , j ), (8.5)

where dist(·) denotes the Euclidean distance operator.
As stated in Section 8.2.1, the background mesh densities are calculated using the P2

projection from the design mesh to the background mesh. For the pth MTO element, the
density of the q th density cell is given as

ρ̂
(p)
q = 1∑nρ

s=1 hqs

nρ∑
s=1

hqsρs , (8.6)

where, ρs refers to the density value associated with the sth design point in the design
domain contained within the pth MTO element, and lying within a distance rp from the
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Figure 8.4: (a) Example of a cantilever beam subjected to a point load, and (b) the optimized design obtained
using MTO for compliance minimization using 8×4 Q10/d225 elements and R = 0.13h. Here, Q10/d225 refers
to a quadrilateral finite element with shape functions of polynomial order 10 and 225 design points.

centroid of its q th density cell. The number of such design points is denoted by nρ , and
rp is the radius of the projection for the pth element (Fig. 8.2). Here, hqs is defined as

hqs = rp −dist(q, s). (8.7)

As stated earlier, the projection radius rp needs to be chosen such that it is as small as
possible, however, large enough to define densities for all the density cells that corre-
spond to the respective element. Here, we define it as

rp = 1.04(di m)0.5 Lp

dd 1/di me , (8.8)

where di m denotes problem dimension, and Lp is the edge-length of the pth MTO el-
ement. The operator d·e denotes ceiling function which rounds the contained floating-

point number to the nearest greater integer value. The term
Lp

dd 1/di me refers to edge-length

of the density cells. Next, to obtain a projection length slightly larger than the diagonal,
we multiply by 1.04(di m)0.5. Note that Eq. 8.8 has been obtained empirically through
observations based on various design distributions obtained using the k-means cluster-
ing approach. For other approaches of choosing the locations of design points, where for
any value of d , the distance between the design points can be provided mathematically,
it is possible that even lower values of rp work. Lower values of rp can help to further
reduce the loss in design resolution caused due to the choice of localized projection P1,
and this could be a potential direction for future research.

Fig. 8.4a shows an example of a cantilever beam subjected to a point load, which we
will use to illustrate the MTO concept. The domain is discretized using 8×4 finite ele-
ments. For each MTO element, 225 design points, distributed in a square grid of 15×15,
are used to represent the design field. The polynomial order of the shape functions is
chosen to be 10. The choice of shape functions is made in a way that the element-level
uniqueness bounds defined in [31] are not violated. As per the uniqueness bound, the
number of design points influencing any finite element cannot be greater than the num-
ber of deformation modes of that element, With p equal to 10, the number of deforma-
tion modes is 239, which is greater than 225. With p and d equal to 10 and 225, respec-
tively, the MTO elements are referred as Q10/d225 type elements. For this example, the
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projection radius R is set to 0.13 times the element-length, which is equivalent to the size
of 2 density cells.

Fig. 8.4b shows the optimized design obtained using the outlined MTO configura-
tion. Clearly, the employed MTO approach allows the definition of higher resolution
material features on relatively coarser MTO elements. However, in Fig. 8.4b, there are
parts of the domain where even lower-order elements and lower design resolution are
sufficient. For example, there are totally void MTO elements, where even linear shape
functions with only one design point can be used. Clearly, the computational time of the
MTO approach can be reduced by exploiting this fact in an efficient way, and in the next
section, we propose an approach to do this.

8.3. dp-ADAPTIVITY

8.3.1. GENERAL DESCRIPTION OF THE METHOD
We present here a d p-adaptive version of the MTO method which is capable of enhanc-
ing further the ratio between the design resolution and analysis cost compared to non-
adaptive MTO. The proposed MTO method efficiently distributes the design variables
and locally adapts (increases/decreases) the polynomial order of the shape functions.
A three-part refinement criterion is defined to select the cells to be refined/coarsened.
Note that although the term ‘refinement’ is more commonly used throughout this chap-
ter, we implicitly refer to coarsening (reducing the values of p and d) as well. Here, ‘re-
fined’ cells are those where additional design points are inserted, or the polynomial or-
der of the shape functions is increased, or both. Similarly, ‘coarsened’ cells are the ones
where the design resolution (number of design points) is reduced, or the analysis reso-
lution (shape function order) is reduced, or both. With an adaptive formulation, fewer
design variables as well as analysis nodes are used, which provides a computational ad-
vantage over the conventional MTO method.

At the start of d p-adaptive MTO, a cycle of TO is performed, using a certain initial
uniform design- and FE-discretization. A ‘TO cycle’ refers to the entire process from
starting with an initial design and optimizing it over a number of iterations (or up to
a certain stopping threshold) to reaching an improved design. During a TO cycle, the
shape function order and design points of all elements remain fixed. In the optimized
design, refinement and coarsening zones are subsequently identified based on an inte-
grated criterion comprising an analysis error-based indicator, a density-based indicator,
and a QR-based indicator. Here, QR-error refers to the error due to the incapability of the
chosen shape function in modeling the displacement field arising from a high-resolution
density representation allowed within that element [33]. More details related to these in-
dicators are discussed in Section 8.3.2.

All steps from analyzing the design for refinement to updating the d and p values
for the whole domain, constitute one cycle of d p-adaptivity. The general structure of a
d p-adaptive MTO cycle is as follows:

1. Perform optimization of an MTO problem with fixed p and d values.

2. Adapt p values based on analysis error indicator.

3. Adapt p and d values based on density-based criterion.
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(a) Optimized design

3

2

1

(b) shape function orders

Figure 8.5: Optimized design (left), and the distribution of shape function orders (right) obtained from adaptive
refinement controlled by only analysis-based refinement indicator for a cantilever subjected to point load,
as shown in Fig. 8.4a. The optimized design clearly shows typical artefacts (QR-patterns) of disconnected
structural features. The initial mesh comprises 40 × 20 Q2 finite elements with 16 design points and 4 × 4
density cells per element. Based on the ranking of analysis-based refinement indicator values, top 10% and
bottom 5% of the MTO elements have been chosen for refinement and coarsening, respectively.

4. Update p values to reduce QR-errors in every element.

With the new d p-adapted mesh, the next cycle of TO is performed. Section 8.3.3 below
describes each of the above steps in detail.

8.3.2. REFINEMENT CRITERIA
In this section, the details related to the three indicators used in our refinement criterion
are provided. As stated earlier, although the term ‘refinement’ is frequently used, we
implicitly refer to ‘coarsening’ as well in our adaptive approach. Note that although here
certain choices have been made for the refinement indicators, the d p-adaptive scheme
in itself is not dependent on the choice of refinement indicator, and can be coupled with
other appropriate indicators as well.

ANALYSIS-BASED REFINEMENT INDICATOR

For the purpose of analyzing the modeling related error, the Kelly error estimator has
been used [38]. This error indicator analyzes the jump in the gradient of the solution u
across any face (edge in 2D) of adjacent elements. The error for any element is calculated
in a relative sense by integrating the error in the gradient jump across all faces of the
respective element. Based on the relative error estimate, only a certain fraction of the
MTO elements is selected for updating the orders of the polynomials (p). This error
estimator can also be understood as a gradient recovery estimator, for details on this
aspect, see [39].

There are two reasons to choose the Kelly error estimator instead of more sophisti-
cated recent approaches, e.g., goal-oriented error estimators [15, 40]. The analysis error
comprises primarily of two components: element residual and edge residual [40]. Ele-
ment residual refers to the error in approximating the gradient field within the element,
and edge residual denotes the jumps in gradient across the element edges. The element
residual is being taken into account through the QR-error analysis. Thus, the analysis
indicator needs to only look at the edge residual term. Moreover, our approach requires
only a relative error estimate and not the exact error itself. The use of Kelly error estima-
tor suffices both these requirements. Also, this error estimator is simple to implement
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and the associated computational costs are negligible.
For the purpose of ranking the elements for p-adaptivity based on the Kelly error

estimator, the analysis residual error vector Γa needs to be defined. For the i th MTO
element, Γa

i can be computed as:

Γa
i = ∑

F∈∂i
cF

∫
∂iF

[
∂u

∂n

]2

ds, (8.9)

where, F refers to a face (edge in 2D) of the element and operator [·] denotes the jump
in the argument across face F . Also, ∂i denotes the set of all faces of the element. The
constant term cF is set to hF

2pF
, where hF is the element diagonal and pF denotes the

maximum among the polynomial degrees of the adjacent elements [41]. The residual
errors Γa are ranked, and the top 10% and bottom 5% of the elements are selected for
increasing and decreasing the p values, respectively.

For illustration purposes, we perform a partial adaptive MTO run on the problem
shown in Fig. 8.4a. Fig. 8.5a shows the optimized cantilever beam design obtained for
this problem after one TO cycle. The design has been obtained on a mesh of 40×20 Q2
finite elements with 4×4 design points per element. The optimized design clearly shows
typical artefacts (QR-patterns) of disconnected structural features. Fig. 8.5b shows the
distribution of polynomial shape function orders obtained from p-adaptivity controlled
by only the analysis-based refinement indicator. It is observed that coarsening (reduc-
tion in p) has mainly occurred in the void cells which are far from material-void bound-
aries. This is because the jumps in displacement gradients across the edges for these
elements are zero. For refinement (increase in p), the elements at the boundary have
been preferred.

DENSITY-BASED REFINEMENT INDICATOR

The density-based refinement indicator aims at adaptively choosing MTO elements for
refinement or coarsening in way that over a number of cycles, the intermediate densi-
ties are reduced, and a crisp and high-resolution boundary representation is obtained.
For this purpose, the refinement indicator proposed in [20] is adapted for our problem
and discussed here. This indicator chooses a certain element for refinement/coarsening
based on the density value inside that element. For every cycle of adaptivity, refine-
ment (coarsening) density intervals are defined and associated elements are flagged. We
adopt this indicator to regulate the number of design points in each MTO element, based
on spatial design information specified by the density values of the voxels of the back-
ground mesh. The way this indicator affects the number of design variables is discussed
in Section 8.3.3, here we focus on the definition of the indicator itself.

Fig. 8.6 shows the refinement (rl ≤ ρ ≤ ru) and coarsening (ρ < cl or ρ > cu) intervals
as a function of adaptive cycle. Unlike the other refinement indicators, here the refine-
ment (coarsening) bounds are chosen not to remain constant. Rather, following [20],
the range of density values to be chosen for every adaptive cycle increases. Based on the
chosen stopping criterion used for every cycle of TO, it is possible that significant parts of
the designs obtained during initial cycles consist of intermediate density values. In such
scenarios, selecting all gray (intermediate density) elements for refinement can lead to
excessive refinement during the initial cycles, which in turn leads to undesired increase
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Figure 8.6: Bounds for the design refinement indicator as a function of the adaptive cycle [20].
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Figure 8.7: Distribution of polynomial orders of the shape functions (left) and the design field (right), showing
the number of design points per MTO element, obtained from adaptive refinement (cycle 1) controlled by only
density-based refinement indicator for a cantilever subjected to point load, as shown in Fig. 8.4a. The initial
mesh comprises 40× 20 Q2 finite elements with 16 design points and 4× 4 density cells per element. The
optimized design used for adaptive refinement is shown is shown in Fig. 8.5.

in computational burden. Due to the adaptive nature of the refinement indicator pro-
posed in [20], such problems can be avoided.

To start, the density-based refinement indicator Γd
k for the kth MTO element is set to

0. To update Γd
k , we iterate over all the density cells of the kth MTO element and consider

the sum of individual refinement or coarsening contributions of these cells. Let nd ,k

denote the number of density cells contained within the background mesh associated
with the kth MTO element. Then Γd

k is updated as follows:

• Iterate over j from 1 to nd ,k :

1. Let the density of the j th voxel be denoted by ρk j .
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2. if rl ≤ ρk j ≤ ρav g ,

set Γd
k = Γd

k + 1
nd ,k

(ρk j − rl ).

3. if rav g < ρk j ≤ ρu ,

set Γd
k = Γd

k + 1
nd ,k

(ru −ρk j ).

4. if ρk j ≤ cl ,

set Γd
k = Γd

k − 1
nd ,k

(cl −ρk j ).

5. if ρk j ≥ cu ,

set Γd
k = Γd

k − 1
nd ,k

(ρk j − cu).

Here, the average density ρav g is defined using the expression ρav g = (ρmax +ρmi n)/2.
The variables rl , ru , cl and cu are the bounds used to characterize the refinement and
coarsening zones as shown in Fig. 8.6, and are defined as follows:

rl = ρmi n + (1−α)ρav g e−β(k̃−1), (8.10)

ru = ρmax − (1−α)ρav g e−β(k̃−1), (8.11)

cl = ρmi n +αρav g e−β(k̃−1), (8.12)

cu = ρmax −αρav g e−β(k̃−1). (8.13)

Here, k̃ denotes the adaptive cycle index, andα andβ are tuning parameters chosen here
to be 0.2 and 0.8, respectively.

The tuning parameters α and β are independent of the index of the adaptive cycle.
However, β is sensitive to the rate at which the design converges. As stated earlier, our
method assumes that the design has sufficiently converged at the end of every TO cy-
cle. For different problems as well as different mesh resolutions, the amount of gray
region may vary at this point. For problems where the designs of initial cycles of the d p-
adaptive MTO process are significantly gray, lower values of β are recommended. This
allows the density range for refinement to expand slowly over a span of cycles. Similarly,
for rapidly converging designs, a larger value of β is more efficient. Automated adjust-
ment of these parameters could be considered, however, it has not been used in this
study.

Fig. 8.7 shows the shape function field and the design field obtained for the opti-
mized cantilever beam design shown in Fig. 8.4a. The shape function field (Fig. 8.7a)
denotes the polynomial order of the shape functions used in every finite element. The
design field (Fig. 8.7b) denotes the number of design points used in every analysis ele-
ment. These distributions have been obtained based on adaptive refinement and coars-
ening controlled by only the density-based refinement indicator. From Fig. 8.7, it is seen
that the material-void boundaries where the intermediate densities are prominent, have
primarily been refined. Coarsening occurs in void parts of the domain.

QR-ERROR INDICATOR

In an MTO scheme, it is possible that the employed shape functions cannot accurately
model the displacement field arising due to the allowed high order density representa-
tions. As stated earlier, this error arising in an MTO setting due to inappropriate mod-
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eling is referred to as QR-error. A closed-form condition to predict this QR-error is cur-
rently not known. Groen et al. [32] proposed a method to estimate the average error for
the whole domain by determining a reference solution using a refined uniform mesh,
and evaluating the obtained MTO solution against it. In the context of d p-adaptivity, QR-
errors must be quantified at element level. We have proposed a method in [33], where an
approximation to the QR-error can be obtained for any element through a comparison
with a reference solution obtained by local p-refinement. In this work, we use this cost-
effective local QR-error indicator proposed in [33]. Once a sufficiently converged design
has been obtained from a TO cycle, the QR-error is determined by evaluating the effect
of local p-refinement, as follows.

Let K(p)
k , u(p)

k and f(p)
k denote the element stiffness matrix, displacement solution and

internal load vector for the kth MTO element. Here, p denotes the polynomial degree of

the shape functions used in this element. Let u(p+1)
k denote the displacement solution

obtained for the kth element using shape functions of polynomial order p +1. Note that

u(p+1)
k will be obtained by solving the element-level system K(p+1)

k u(p+1)
k = f(p+1)

k . Here,

nodal load f(p+1)
k is formed by integrating the product of the interpolated original load

field f(p)
k and the refined shape functions.

To obtain a unique solution for u(p+1)
k , sufficient boundary conditions need to be

imposed. Thus, degrees of freedom (DOFs) equal to the number of rigid body modes (3

for 2D) need to be fixed. For this purpose, the displacement solution at 3 DOFs of u(p+1)
k

is copied directly from u(p)
k for the DOFs which overlap, and the solution at the rest of

the DOFs is obtained through solving the finite element system. Once u(p+1)
k has been

obtained, the QR-error εQR
k can be computed as

ε
QR
k = 1−

J
(p)
k

J
(p+1)
k

, (8.14)

where J
p
k refers to element-level strain energy for the kth finite element using shape

functions of order p. Thus, J (p+1) = 1
2 u(p+1)

k K(p+1)ᵀ
k u(p+1)

k and J (p) = 1
2 u(p)

k K(p)ᵀ
k u(p)

k
have been used. This strain-energy-based criterion (Eq. 8.14) has been found to work
well for the cases shown in this chapter.

Fig. 8.8a and 8.8b show an optimized design obtained after first cycle of MTO run,
and the corresponding error distribution obtained using the QR-error indicator for the
problem shown in Fig. 8.4a. Since the element-level test for QR-error is very conserva-
tive, it predicts higher error values compared to the actual full-scale TO problem [33].
Thus, to avoid undesired excessive increase in the values of p, we restrict the increment
of p by only 1 per adaptive cycle based on the QR-error test. Also, to avoid excessive
spatial refinement per adaptive cycle, only the cells with error value larger than 0.9 are
adaptively refined. The elements flagged for refinement are shown in Fig. 8.8c. It is ob-
served that the regions where the QR-patterns exist, have been flagged for refinement.
Moreover, elements at the material boundaries, which are partially void or solid, also
show high value of QR-error and are flagged.
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(a) Optimized design
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Figure 8.8: (a) Optimized design obtained after first cycle of d p-adaptive MTO run for a cantilever subjected to
point load (Fig. 8.4a), (b) corresponding QR-error distribution plot obtained during the first adaptive cycle, and
(c) domain showing the elements flagged for refinement using the QR-indicator. To avoid excessive refinement,
only cells with error value larger than 0.9 have been flagged for refinement. The initial mesh comprises 40×20
Q2 finite elements with 16 design points and 4×4 density cells per element.

An interesting observation in Fig. 8.8b is that the elements which are completely
void or solid also show QR-error values in the range 0.3-0.5. Although significant, the
QR-error values in this range are relatively smaller than other parts of the domain and
these elements do not get flagged for refinement. The reason for substantial QR-error
values in these regions is the use of low order shape functions. For low values of p, the
displacement solution for even a uniform density field may not be accurately modeled.
When solving element-level FE problems with low shape function orders p and p +1, it
is observed that the modeling accuracy significantly improves when p is increased. Due
to this, nonzero large values of εQ

k are recorded in solid and void parts as well.

8.3.3. d p-ADAPTIVITY ALGORITHM
The different steps of d p-adaptivity have briefly been introduced in Section 8.3.1. After
treating the three indicators involved, here we discuss each of these steps in more de-
tails. Once a TO cycle has been completed, the optimized design is analyzed using the
composite refinement criterion, and the following steps are carried out.

1. Once a cycle of TO run is completed, get the optimized design for d p-adaptivity.

2. Perform p-adaptivity based on analysis error criterion.

(a) UpdateΓa = {Γa
1 ,Γa

2 , . . . ,Γa
nel

} values for the whole analysis mesh (discussed in

Section 8.3.2), where Γa
i is the analysis error indicator value for the i th MTO

element.

(b) Sort Γa in ascending order such that a corresponding ordered set Γ̃a is ob-
tained.

(c) Set the refine/coarsen flag of the kth elementΘk to -1 for the first αd
c fraction

of the MTO elements in Γ̃a , and Θk = 1, for the last αa
r fraction of the ele-

ments. Here, −1 and 1 denote that the cell has been flagged for coarsening
(decrease in p value) and refinement (increase in p value), respectively. For
no refinement/coarsening,Θk is set to 0.

(d) Increase/decrease p-values based on flagΘ.

3. Refine/coarsen p and d values based on density-based refinement criterion.
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(a) UpdateΓd = {Γd
1 ,Γd

2 , . . . ,Γd
nel

} values for the whole domain (discussed in Section 8.3.2),

where Γd
i is the density-based refinement indicator value for the i th MTO el-

ement.

(b) Sort Γd in ascending order such that a corresponding ordered set Γ̃d is ob-
tained.

(c) Update p-values by iterating over k from 1 to nel :

i. For the first αd
c fraction of the elements in Γ̃d , do:

A. if pk = 1, setΘk =−2. This helps to identify that the current element
has been checked for coarsening. Since pk cannot be lower than 1,
no coarsening is performed.

B. if pk > 1 andΘk = 0, set pk = pk −1.

ii. For the last αd
r fraction of the elements in Γ̃d , do:

A. if Θk = 0 or Θk =−1, set pk = pk +1. This means that if the element
has been coarsened or left untreated based on the analysis indicator
above, then refine it.

(d) Reduce the difference of p-values between adjacent elements to a maximum
of 2 at this point. This is achieved by iterating through the whole domain
(pmax−pmin−2) times, where pmax and pmin are the maximum and minimum
values of p in the domain. At every check, the correction is done by raising
the lower value of p.

(e) Update the design-field (d values) by iterating over k from 1 to nel :

i. ifΘk =−2, set dk = 1. This situation occurs when pk = 1, and the density-
based indicator flags the cell for further coarsening.

ii. if Θk 6= −2, set dk equal to the element-level upper bound for the kth

element (based on [31]). Thus, dk = DOFs− rb , where rb denotes the
number of rigid body modes for that element.

(f) Update the background mesh

i. Find maximum number of design variables per MTO element (max(del )).

ii. Find first perfect square (cube in 3D) number ( ¯̄d) greater than max(del ).

iii. Set the number of density cells per MTO element equal to ¯̄d .

iv. Update projection radius r for every MTO element (Eq. 8.7).

4. Update p values to reduce the QR-error in every MTO element.

(a) Iterate over k from 1 to nel , do:

i. Calculate the QR-error for the kth cell (discussed in Section 8.3.2).

ii. Update pk = pk +1 for the kth element, if QR-error is greater than a cer-
tain error tolerance αQR.

The d p-adaptive MTO cycle is complete once the domain has been adaptively refined
based on the three indicators. With the new d p-refined mesh, the next cycle of TO is
performed.
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Figure 8.9: Problem domains and boundary conditions for a cantilever beam subjected to distributed load
(left) and a force inverter (right). Here, L = 1 m, F = 0.5N

L , ki n = 1 Nm−1, kout = 0.001 Nm−1 and fi n = 1 N.

8.4. NUMERICAL TESTS

8.4.1. DEFINITION OF TEST PROBLEMS

To demonstrate the applicability and effectiveness of d p-adaptivity, two test problems
of minimum compliance and one compliant mechanism problem are considered [32].
In this chapter, only 2D problems are studied, whereas an extension to a 3D setting is a
part of future work. Young’s modulus E0 is set to 1 Nm−2, ν = 0.3, and the SIMP penal-
ization factor q is set to 3. The domain in each case is discretized using an initial mesh
of 40×20 MTO elements, comprising quadrilateral finite elements with shape functions
of polynomial order 2 and 4×4 design points per element. The radius R is set to 0.3h,
where h is the edge-length of any MTO element in the mesh. As a stopping criterion for
all the test cases used in this chapter, the optimization process for the k̃th cycle is ter-
minated when the change in objective value between two consecutive iterations is less

than ∆J1 ×γ(k̃−1). Here, ∆J1 denotes the minimum required change in objective value
between two consecutive iterations of the first MTO cycle, below which the optimization
process terminates. For the subsequent cycles, the minimum required change in objec-
tive value is reduced by a factor of γ at every MTO cycle. The adaptive stopping criterion
used here allows to control the extent of design convergence per cycle. For the numerical
examples used in this chapter, ∆J1 and γ are set to 0.04 and 0.6, respectively, and these
values have been found to work well. Based on this, the first (k̃ = 1) and second (k̃ = 2)
optimization cycles are terminated if the minimum changes in objective value are less
than 0.04 and 0.024, respectively.

To validate the accuracy of the MTO modeling of the design, we use the method pro-
posed in [32], where the obtained design is compared with a reference solution. For
the reference solution, we discretize the domain using a high-resolution traditional TO
mesh with elementwise constant densities. In this chapter, the reference mesh com-
prises 320 × 160 finite elements and the polynomial order p of the involved shape func-
tions is set to 3. With this mesh configuration, the resolution of the reference domain is
equal to the highest density resolution that has been used in the MTO problem.

For the first test problem, compliance needs to be minimized for a Michell beam
cantilever subjected to a point load F (Fig. 8.4a). For this case, F = 1 N and L = 1 m.
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Three variants of this problem are used with maximum allowed material volume frac-
tions set to 0.45, 0.2 and 0.1, to study the capability of the method in low volume fraction
problems on coarse meshes. For the other problems used in this chapter, only one vol-
ume constraint of 0.45 is considered. The second test problem is that of compliance
minimization for a cantilever beam subjected to a distributed load (Fig. 8.9a), and it
is ensured that the load is consistently distributed over the various cycles of adaptivity.
Here, F = 0.5N

L and L = 1 m. The distributed load tends to generate a lot of fine struc-
tures locally, and the resultant design was earlier found to be prone to QR artefacts [32],
which makes it an interesting problem. For both these problems, the objective func-
tional of Eq. 8.1 with z = f. The third case is a compliant mechanism problem where a
force inverter needs to be designed, such that for a point load fi n at one end, the dis-
placement uout at the other end is maximized (Fig. 8.9b). Here, spring stiffnesses ki n

and kout are set to 1 Nm−1 and 0.001 Nm−1, respectively. For the force inverter, z in
Eq. 8.1 is a vector of zeros with 1 contained at the DOF where uout needs to be maxi-
mized. Thus, z = [0 . . .0 1 0. . .0]ᵀ. The flexure hinges that are formed in this compliant
mechanism problem will have sub-element resolution, and this aspect makes also this
problem an interesting test for our method.

8.4.2. RESULTS
Here, we discuss the results obtained for the three test problems using a d p-adaptive
MTO scheme. To provide an understanding of the computational advantage of the pro-
posed method, a comparison of CPU times is performed for the designs obtained using
the proposed method as well as those obtained using the conventional MTO scheme
discussed in [32]. Groen et al. [32] have shown that by using the MTO approach, the
computational time can already be reduced by factors of up to 2.9 and 32 for 2D and
3D problems, respectively, compared to the traditional TO approach. In this chapter, we
demonstrate the potential of d p-adaptive MTO schemes for 2D problems, and for this
purpose, we will compare its performance with the non-adaptive MTO scheme, imple-
mented in the same framework and evaluated on the same computing hardware.

COMPLIANCE MINIMIZATION FOR POINT LOAD

Fig 8.10 shows two optimized cantilever designs obtained for the problem shown in Fig.
8.4a. The first design (Fig. 8.10a) has been obtained using the traditional non-adaptive
MTO scheme, and the other (Fig. 8.10b) by our d p-adaptive approach. For the two cases,
the maximum allowed material volume fraction V0 is set to 0.45. Visually, the designs
differ only slightly. Table 8.1 provides the details on various parameters related to MTO
cases for the two optimized designs. The first remarkable observation regarding the d p-
adaptive MTO result is the reduced computational cost. Adding the d p-adaptive frame-
work to the existing MTO allows a reduction in computational cost by a factor of 4.5.
This reduction in cost is mainly due to the reduced number of design variables Nd and
free DOFs used in the d p-adaptive MTO case. While the uniformly refined mesh used
in MTO comprises 51200 design points and 40400 free DOFs, only 22935 design points
and 17262 free DOFs are used in the final (4th) cycle of the d p-adaptive MTO run, i.e. a
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(a) MTO (J0 = 72.39J) (b) d p-adaptive MTO (J = 70.92J)

Figure 8.10: Optimized cantilever designs for the point load case shown in Fig. 8.4a, obtained using (a) a uni-
form MTO mesh and (b) d p-adaptive MTO approach. The maximum permissible material volume fraction is
set to 0.45. A 4.5-fold speed-up as well as a superior objective value are obtained using d p-adaptivity. Addi-
tional information related to this test case is listed in Table 8.1.

Table 8.1: Numerical findings of several d p-adaptive MTO cases. For all the cases, the domain has been dis-
cretized using 40×20 MTO elements, and the initial polynomial order of the shape funtions is set to 2 for every
element. Each MTO element initially consists of 16 design points and the projection radius R is set to 0.3h,
where h denotes element size. The maximum permissible values for shape function order pmax and number
of designs points dmax are set to 5 and 64, respectively. For the reference solution, a globally uniform mesh
comprising 320×160 finite elements with p = 3 is used. Below, V0 denotes maximum allowed volume fraction
of material, J and J0 are the objective values for d p-adaptive MTO run and the non-adaptive MTO run, and
J∗ denotes the reference solution. The Nd and DOFs denote number of design points and free degrees of
freedom employed in the last cycle of d p-adaptive MTO run.

Problem Definition V0 Speed-up J /J0 J /J∗ Nd DOFs

Minimum compliance
point load

0.45 4.5 0.98 0.98 22935 17262
0.20 8.3 0.93 0.98 20056 15096
0.10 10.0 1.03 0.96 19590 15186

distributed load 0.45 4.6 0.98 1.0 22636 16932

Compliant mechanism - 0.45 6.2 1.01† 1.0 23375 17516
†This case refers to a maximization problem, where a value higher than 1 denotes that the
d p-adaptive MTO approach performed better over the non-adaptive MTO scheme.
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Table 8.2: Parameters related to d p-adaptive MTO run for the point load cantilever design problem shown in
Fig. 8.4a. The material volume fraction V0 has been set to 0.45 for this case.

Cycle DOFs Nd Iterations J /J ∗

1 6560 12800 67 0.86
2 7204 10646 34 0.97
3 12818 16256 17 0.98
4 17262 22935 18 0.98

reduction by over 50%. The free DOFs and number of design variables used in the earlier
cycles are even lower (Table 8.2).

Another reason that accounts for the speed-up is the reduced number of iterations
required in the final cycle of the d p-adaptive method under the same stopping crite-
rion as used for the non-adaptive MTO method. The convergence of the TO process is
significantly affected by the choice of the initial design [42]. In our approach, each pre-
ceding cycle, after refinement/coarsening, provides a high quality initial design for the
next one. Since the design converges significantly in the first 3 cycles itself using less
refined meshes, only 18 iterations are needed in the final cycle, while the non-adaptive
MTO scheme uses a total of 56 iterations. Table 8.2 provides the details related to the
d p-adaptive MTO run for this case. It is observed that Cycles 1 and 2 use a higher num-
ber of iterations. However, since the number of design variables and free DOFs are lower
during these cycles, the associated computational cost is not very high.

In terms of performance, the cantilever design obtained from the d p-adaptive ap-
proach slightly outperforms the design obtained using non-adaptive MTO. The obtained
performance ratio J /J0 is equal to 0.98, where J and J0 denote the compliance ob-
jective values obtained using the proposed method and non-adaptive MTO, respectively.
From Table 8.2, it is observed that the global solution accuracy J /J ∗ = 0.98, where J

and J ∗ refer to the objective values reported using adaptive MTO and that evaluated
using the reference mesh, respectively. Since solution accuracy is close to 1, it is implied
that the final optimized design is correct and free from artefacts. Moreover, we see that
with every cycle of refinement, the global solution accuracy has improved. Thus, the
d p-adaptive MTO method allows to obtain designs with a desired analysis accuracy.

Fig. 8.11 shows the distributions of shape function order and design points as well
as the optimized designs for 4 cycles of the d p-adaptive MTO run of this case. It can
be seen that refinement mainly occurs near the edges of the structure, and coarsening
occurs as desired in solid and void parts. The optimized design in Cycle 1 consists of dis-
connected features, which are primarily the QR-patterns arising from the limitations of
low order polynomial shape functions in those parts of the design [33]. Over the next cy-
cles, p-refinement occurs in those regions and the QR-patterns are eliminated. Since the
design points are distributed in the domain using k-means clustering without symmetry
constraints, the distribution of design points itself can be asymmetrical, which in Cycle
2 leads to an asymmetrical design. An example of such asymmetry can be observed in
the optimized design of Cycle 2, which gradually disappears over the next cycle.

In general, TO problems involving lower volume fractions of material are more diffi-
cult in terms of convergence. Moreover, for problems involving low volume fractions of
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Figure 8.11: Optimized designs (right), and the respective shape function orders (middle) and design field (left)
obtained for 4 cycles of d p-adaptive MTO run for a cantilever beam subjected to point load (Fig. 8.4a). The
initial mesh is uniform and each element has shape functions of polynomial order 2 and 16 design points per
element. The maximum allowed shape function order and number of design points are restricted to 5 and 64
per element, respectively.

material, a significant part of the domain comprises voids, and in turn does not require
a fine mesh resolution. Clearly, for such scenarios, d p-adaptivity could be potentially
beneficial. To investigate this, we study two additional cases of the point load cantilever
beam involving lower values of V0.

Fig. 8.12 shows the optimized designs for V0 = 0.20 using conventional MTO (Fig.
8.12a) and d p-adaptive method (Fig. 8.12b), respectively. For V0 = 0.20, the compu-
tational time advantage has increased to a factor of 8.3. Also, it is seen that the design
obtained using the non-adaptive MTO method differs significantly from the result of d p-
adaptivity. Moreover, in terms of performance, the design obtained using d p-adaptivity
is relatively less compliant. The ratio J /J0 is equal to 0.93. The compliance accuracy of
the design obtained using the proposed method is found to be 0.98.

As another test case for lower volume fractions, the point load cantilever problem is
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(a) MTO (J0 = 175.72J) (b) d p-adaptive MTO (J = 163.39J)

Figure 8.12: Optimized cantilever designs for the point load case shown in Fig. 8.4a, obtained using a uniform
MTO mesh (left) and d p-adaptive MTO approach (right). The maximum permissible material volume fraction
is set to 0.20. A speed-up of 8.3 times is obtained using d p-adaptivity. Additional information related to this
test case is listed in Table 8.1.

(a) MTO (J0 = 410.39J) (b) d p-adaptive MTO (J = 423.23J)

Figure 8.13: Optimized cantilever designs for the point load case shown in Fig. 8.4a, obtained using a uniform
MTO mesh (left) and d p-adaptive MTO approach (right). The maximum permissible material volume fraction
is set to 0.10. A 10-fold speed-up is obtained using d p-adaptivity. Additional information related to this test
case is listed in Table 8.1.
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Figure 8.14: Optimized designs (right) and the respective shape function orders (middle) and design field (left)
obtained for 4 cycles of d p-adaptive MTO run for a cantilever beam subjected to point load (Fig. 8.4a). The
initial mesh is uniform and each element has shape functions of polynomial order 2 and 16 design points per
element. The maximum allowed shape function order and number of design points are restricted to 5 and 64
per element, respectively.

examined with V0 = 0.10. Fig. 8.13 shows the optimized designs for this volume fraction
obtained using the conventional MTO method and d p-adaptive MTO, respectively. It
is observed that for this volume fraction, the relative reduction in computational cost is
even higher. Compared to the conventional MTO, a speed-up of 10 times is observed.
The increase in speed-up is mainly due to the reduced number of free DOFs and design
points, and the lower number of iterations required for convergence compared to the
non-adaptive MTO. For this case, it is observed that J /J0 is 1.03, which implies that the
design obtained using d p-adaptivity is slightly inferior to that obtained using the non-
adaptive version. The analysis accuracy is also slightly lower than in the previous cases,
with J /J ∗ = 0.96.

An understanding on the convergence of the d p-adaptive MTO process for V0 = 0.10
can be obtained from Fig. 8.14. In the first cycle, the design distribution and shape
function orders are uniform for the whole mesh. Similar to the case of V0 = 0.45, it is
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(a) MTO (J0 = 12.97J ) (b) d p-adaptive MTO (J = 12.66J )

Figure 8.15: Optimized cantilever designs for the distributed-load case shown in Fig.8.9a, obtained using a
uniform MTO mesh (left) and d p-adaptive MTO approach (right). A 4.6-fold speed-up is obtained using d p-
adaptivity.

observed that QR-patterns are formed here as well, which are removed by refinement in
later cycles. Compared to Fig. 8.11, it is observed that only a small part of the domain
gets refined. Because of the low volume fraction of material used, a significant part of
the domain comprises mainly of void regions, which do not require refinement. For the
non-adaptive as well as the d p-adaptive versions of MTO, it is observed that the con-
vergence of the optimization problem slows down significantly when very low material
volume fractions are used. For example, for the same error tolerance, the number of it-
erations required in the final cycle of d p-adaptive method for V0 = 0.45 and 0.10 are 18
and 82, respectively. Our observations on the effect of material volume fraction on the
convergence of TO process align with the results reported in [43], where similar results
have been obtained over a set of numerical experiments.

COMPLIANCE MINIMIZATION FOR DISTRIBUTED LOAD

For the cantilever beam subjected to a distributed load (Fig. 8.9a), V0 is set to 0.45. Fig.
8.15 shows the optimized designs obtained using a uniform MTO mesh (Fig. 8.15a) and
the d p-adaptive approach (Fig. 8.15b). The information on the two runs is listed in
Table 8.1. As in the case of the point load cantilever, the designs obtained using the
non-adaptive and adaptive variants of MTO are very similar. In terms of performance, a
speed-up of 4.6 times is observed, and the accuracy of the obtained solution is close to
1. The obtained J /J0 value is 0.98, which implies that the d p-adaptive MTO found a
slightly stiffer design.

For both the designs, there exists a small region near the top right boundary which
comprises intermediate densities and is not improved even with refinement. With d p-
adaptive MTO, this region is more prominent. Among the possible reasons, one explana-
tion could be that the distributed load applied on the upper boundary of the domain re-
quires support material in those parts. In the absence of material near the upper bound-
ary, the load point can get disconnected, which leads to a high overall compliance value
for the structure. We observe that the optimizer is not inclined towards adding much
solid material in these parts of the domain. Due to this, gray regions are formed, repre-
senting fine structural features beyond the design resolution. These intermediate densi-
ties can be suppressed by the use of methods such as modified Heaviside projection as
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(a) d p-adaptive MTO (q =3, 4, 5 and 6) (b) d p-adaptive MTO (q =3, 5, 7 and 9)

Figure 8.16: Optimized cantilever designs for the distributed-load case shown in Fig.8.9a, obtained using d p-
adaptive MTO approach. For both the cases, adaptive penalization has been used. For the 4 cycles of the
d p-adaptive MTO run, the values of q used have been reported in the sub-captions.

has been demonstrated in [32], or simply by adding a solid non-design region at the top
surface.

Using a stronger penalization on the intermediate densities at the later cycles of MTO
has also been found to help in reducing the gray areas. Fig. 8.16 shows two optimized
designs for this cantilever problem obtained using adaptive penalization schemes. For
the first case (Fig. 8.16a), the initial value of q is 3 and it is increased by 1 at every cy-
cle. For the second case (Fig. 8.16b), the increment is by 2 at every cycle. It is observed
that with stronger penalization on the intermediate densities, the gray regions are sig-
nificantly reduced.

To obtain an understanding on how the design evolves over 4 cycles of d p-adaptive
refinement, see Fig. 8.17. Due to the low order of the shape function used in Cycle 1,
QR-patterns are observed here. Similar to the previous cases, adaptive refinement in
the affected regions helps to remove these artefacts. For Cycle 4, only 16 iterations are
needed when using the d p-adaptive method, while the conventional MTO method uses
54 iterations in total. Also, the number of design points and DOFs used in the last cycle of
the d p-adaptive MTO are lower than in the conventional MTO method. Together, these
two factors make the d p-adaptive MTO method 4.6 times faster in this case.

FORCE INVERTER COMPLIANT MECHANISM

To demonstrate the applicability of d p-adaptivity on topology optimization of compli-
ant mechanisms, it is applied to the force inverter problem shown in Fig. 8.9b. The al-
lowed volume fraction V0 is set to 0.45 and the goal of the problem is to distribute the ma-
terial in a way that the displacement uout is maximized. Fig. 8.18 shows the optimized
designs obtained using conventional MTO (Fig. 8.18a) and the d p-adaptive method (Fig.
8.18b). As in the previous cases, the two designs are very similar. Details related to the
MTO runs are reported in Table 8.1. It is observed that the objective ratio J /J0 is 1.01.
Since this is a maximization problem, a value of J /J0 higher than 1 denotes that the
design obtained using d p-adaptive MTO performs better. J /J ∗ is equal to 1.0, which
means that the solution is as accurate as the reference solution.

Fig. 8.19 shows the distribution of design points and shape function orders, as well
as the optimized designs for each cycle of d p-adaptivity. Similar to the other cases dis-
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Figure 8.17: Optimized designs (right), and the respective shape function orders (middle) and design field (left)
obtained for 4 cycles of d p-adaptive MTO run for a cantilever beam subjected to distributed load (Fig. 8.9a).
The domain has been discretized using 40× 20 quadrilateral finite elements (r = 0.3h). The initial mesh is
uniform and each element comprises shape functions of polynomial order 2 and 16 design points per ele-
ment. The maximum allowed shape function order and number of design points are restricted to 5 and 64 per
element, respectively.

(a) MTO (J0 = 2.224m) (b) d p-adaptive MTO (J = 2.258m)

Figure 8.18: Optimized cantilever designs for the force inverter problem shown in Fig.8.9b, obtained using a
uniform MTO mesh (left) and d p-adaptive MTO approach (right). A speed-up of 6.2 folds is obtained using
d p-adaptivity.
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cussed in this chapter, QR-patterns are observed in the results of the first cycle. Nev-
ertheless, the overall material distribution after Cycle 1 already corresponds to the final
solution. The QR-patterns eventually disappear in the subsequent cycles due to adaptive
refinement of the domain. Refinement primarily occurs in regions where intermediate
densities are prominent, and coarsening mainly occurs in the void and solid parts of the
domain.
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Figure 8.19: Optimized designs (right), and the respective shape function orders (middle) and design field (left)
obtained for 4 cycles of a d p-adaptive MTO run for the force inverter problem shown in Fig. 8.9b. The initial
mesh is uniform and each element comprises shape functions of polynomial order 2 and 16 design points per
element. The maximum allowed order of the shape functions and number of design points are restricted to 5
and 64 per element, respectively.

8.5. DISCUSSIONS
The primary goal of using an MTO scheme is to obtain a high-resolution design at a rel-
atively low computational cost. MTO decouples the design and analysis meshes in way
that even for the choice of a coarse analysis mesh, a high-resolution density field can be
obtained. The potential of MTO has already been demonstrated in [28, 32]. However,
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(a) Optimized design for a linear heat
conduction problem

(b) Optimized metallization design for the
front surface of a solar cell [44]

Figure 8.20: Optimized designs obtained using the traditional TO approach on a mesh of 400×400 finite ele-
ments, with R set to 1.5 elements. The two cases refer to (a) linear heat conduction problem with V0 set to 0.3,
and (b) nonlinear electrical conduction problem [44].

there are a few aspects of MTO (e.g. computational cost, QR-patterns) where scope of
improvement existed. The d p-adaptive approach presented in this chapter addresses
these aspects and further enhances the capability of the MTO method.

This chapter has mainly been focused on presenting the rationale and detailed for-
mulation of the method. To demonstrate the applicability of d p-adaptive MTO, 2D me-
chanical test problems have been considered in this study. Intended future work in-
cludes exploring the application of the proposed method on problems involving other
physics as well as in 3D settings. In [32], it has been shown that MTO can bring a speed-
up of up to 32 folds over the traditional TO scheme. The improvement in 3D is signif-
icantly higher than that observed in 2D. As d p-adaptive MTO reduces the DOFs com-
pared to the conventional MTO method, it is certainly expected to pay off even more in
3D. To really understand the value of the d p-adaptive approach for 3D problems, this
hypothesis needs to be tested, and this is a part of our future work.

A preliminary investigation related to the application of d p-adaptive MTO on lin-
ear conduction (thermal/electrical) problems with loads distributed throughout the do-
main, revealed that this approach could bring only limited improvements in speed (less
than twofolds) for this problem class. The primary reason is that for this type of prob-
lems, the optimized design comprises fine features, dendritic in nature, which spread all
across the domain. For example, Fig. 8.20a shows an optimized design obtained for a lin-
ear thermal conduction problem using the traditional TO approach. A mesh of 400×400
elements was used and R was set to 1.5 times the length of the element. The material vol-
ume fraction was set to 0.3. Details related to the definition of the problem can be found
in [45]. It is seen that the optimized design has very few extended void areas, and most
of the domain consists of fine material branches. Due to this, the majority of the domain
gets refined at every adaptive cycle, which eventually reduces the relative advantage of
d p-adaptive MTO method over its non-adaptive variant.
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Fig. 8.20b shows an optimized solar cell front metallization design obtained using
the traditional TO approach on a mesh of 400×400 finite elements and R set to 1.5 times
the element edge length [44]. This design has been obtained by solving a nonlinear elec-
trical conduction problem, and only 4-5% of the domain is filled with material. For this
case, it is seen that significant parts of the domain consists of void regions, which can
be easily modeled with low values of d and p. Clearly, for such cases, the d p-adaptive
approach can be used to significantly reduce the associated computational costs. From
the two examples of conduction problems discussed here, it is clear that d p-adaptivity
could certainly have a potential value for problems where designs feature extended void
regions.

To demonstrate the concept of d p-adaptivity, a composite indicator has been for-
mulated in this chapter. This indicator consists of an analysis error indicator, a density-
based indicator and a QR-indicator. Although certain choices have been made for these
indicators, the presented methodology itself is independent of these choices. Either of
these indicators can be replaced with other alternatives that exist in the literature. For
example, the Kelly estimator used as an analysis indicator in this work can be replaced
with other analysis-based refinement indicators, e.g., goal-oriented error indicator [46].
Such choices can provide a better control over the absolute error, accordingly helping to
make a better choice of mesh resolution and solution accuracy. However, it is important
that the tuning parameters associated with the chosen indicators are properly set so that
issues related to excessive refinement are avoided. An addition to consider is a limit on,
e.g., the increase in DOFs and/or design variables at a given adaptive cycle.

For the analysis indicator discussed in this chapter, the top 10% and bottom 5% of
the elements corresponding to Γa are chosen for refinement and coarsening, respec-
tively. There is no particular motivation to choose these cut-offs. For problems where
the design domain has prominent regions with large jump across the element edges, it is
recommended to allow more cells to be refined, so as to reduce the error in fewer cycles.
For the density-based indicator, both αd

r and αd
c are set to 1.0 for the current study. This

ensures that all the elements with Γd > 0 are refined and all elements with Γd < 0 are
coarsened. The reason to set these parameters to 1.0 is that the stopping criterion cho-
sen in this chapter allows the design to converge sufficiently at every MTO cycle. Due to
this, the intermediate densities are reduced. However, if fewer iterations are permitted
per MTO cycle, it is advisable to set αd

r and αd
c to values less than 1, in order to avoid

excessive refinement and coarsening. The tuning of all these meta-parameters forms
an optimization problem in itself, and as adaptive design approaches become more so-
phisticated, setting such parameters can become highly nontrivial and time-consuming.
For the present study, no extensive parameter tuning was performed, yet already signifi-
cant performance gains are observed. We see opportunities for future research in further
adaptive and intelligent tuning strategies of meta-parameters during the adaptive opti-
mization itself, to take this burden away from the user.

For the MTO method, d p-adaptivity serves as an add-on where the design distribu-
tion and shape function orders are adapted at every cycle of refinement based on a pre-
defined criterion. However, there are additional aspects of MTO which can be adapted
to gain further improvements in accuracy and associated computational cost. Among
others, appropriately adapting the filter radius R could lead to further improvements.
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In the context of adaptive h-refinement, the impact of adaptive filter radius has been
explored in [20]. For MTO, this aspect has briefly been discussed in [29]. However, the
advantage of using an adaptive filter radius in an MTO setting remains an open question
and needs to be explored. Also, based on our numerical tests, here we chose to use an
adaptive stopping criterion, such that the cutoff value for minimum change in objective
value between successive iterations is relaxed by a factor of 0.6 at every adaptive cycle.
However, further investigations are needed to decide how this aspect can be adapted in
the most efficient way.

Additional directions associated with d p-adaptivity exist that could be investigated
for further improvement of the methodology. For example, currently the number of de-
sign variables is set to the maximum allowed value based on the element-level upper
bound described in [31]. However, it is still an open question whether this is the most
appropriate way to refine the design field. Moreover, for the problems presented in this
chapter, we observed that for the chosen setting, violating the system-level bounds (also
derived in [31]) did not have any detrimental impacts. Hence, we decided to not incor-
porate the system-level bounds in the method. However, for more complex problems,
where the objective is very sensitive to small design changes, the system-level bounds
might have to be enforced.

To wrap up the discussions, there are several research aspects that can be explored in
the context of adaptive MTO. This work lays the foundation for an adaptive MTO scheme
that is mathematical reliable as well as computationally efficient. It is hoped that with
further research along the directions outlined above, the proposed approach can be im-
proved further.

8.6. CONCLUSIONS
Multiresolution topology optimization (MTO) methods decouple the analysis and de-
sign discretizations, such that high resolution design representations are permitted on
relatively coarse analysis meshes. In this chapter, the first adaptive variant of the MTO
scheme, namely d p-adaptive MTO, has been presented. Through several 2D numerical
examples, it has been demonstrated that the proposed method can obtain highly opti-
mized designs at significantly lower computational cost than in conventional MTO, and
high analysis accuracy. Moreover, undesired features such as intermediate densities and
QR-patterns can be significantly reduced in the resulting designs, and a desired analy-
sis accuracy can be enforced. A particularly interesting application of this d p-adaptive
MTO method is for TO problems involving low material volume fractions. The speed-up
over conventional MTO was found to increase with decreasing material volume frac-
tion. It has been shown that for test cases with a 10% maximum relative volume, 10-
fold speed-up can be obtained over the conventional MTO scheme in 2D, when the d p-
adaptive MTO method is used. For 3D problems, even higher speed-ups are expected.

Clearly, the proposed adaptive approach improves on the conventional MTO method
by tackling some of the issues associated with it. For future work, we aim at exploring the
application of d p-adaptive approach for problems involving different physics and three-
dimensional problems. However, based on the results presented in this study, it can
already be argued that the proposed approach could serve as an important methodology
to obtain high resolution designs at an attractive computational cost.
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(a) initial design field (b) optimized design field

Figure 8.21: Distribution of 40 design points in a Q-type finite element obtained using k-means clustering.

8.A. k-MEANS CLUSTERING
k-means clustering is a cluster analysis technique popularly used in data mining [35]. It
aims to partition ψ observations into k clusters such that the observations in each clus-
ter tend to be close to each other. Note that although the problem is computationally
difficult, there are various heuristic techniques that can quickly obtain a locally optimal
solution.

This technique can be used to choose locations of design points within a finite ele-
ment (FE) and one of the primary advantages of this method is that it is easily applicable
to various finite elements differing in geometry. Synonymous to the observations re-
quired in k-means clustering, a large number of uniformly distributed random points ψ
are chosen within the FE using Mersenne twister pseudorandom number generator [47].
Given that k design points’ locations need be to chosen in the FE, we choose ψ= 1000k.
Next, an initial set of k points is chosen in the FE using k-means++ cluster center initial-
ization algorithm [36]. These points serve as the initial k means for the ψ observations.

Let m(1)
1 ,m(2)

1 , . . . ,m(k)
1 denote the initial locations of k design points, then the follow-

ing two steps are iteratively performed to optimize these locations:

1. Assignment step: Each observation xp is assigned to exactly one out of k clus-
ters based on the shortest Euclidean distance. Thus, during the t th iteration, xp is
assigned to the i th cluster, if

||xp −m(t )
i ||2 ≤ ||xp −m(t )

j ||2 ∀ 1 ≤ j ≤ k. (8.15)

2. Update step: The new centroids of each of the k clusters then become the new
locations of the design points. The centroids are calculated as follows:

m(t+1)
i = 1

ci

ci∑
p=1

xp . (8.16)

The two steps are repeated until locally optimal cluster-means are obtained. Note that
for every number of design points, these distributions are generated once, and stored for
use during optimization.
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Fig. 8.21 shows the initial and optimized distributions of 40 design points in a Q-type
FE. The optimized design distribution has been obtained using the k-means clustering
algorithm. Clearly, in the optimized design field, the design points are more uniformly
distributed and away from the boundaries of the element.

8.B. NUMERICAL INTEGRATION SCHEME
The element stiffness matrix Ke needs to be accurately integrated for every finite ele-
ment. For the traditional TO using Q1 elements with elementwise constant densities,
a 2× 2 Gauss quadrature rule is sufficient. However, for more complex density fields
and higher order shape functions, more advanced ways of integration are needed to ob-
tain correct Ke . One of the possibilities is to use higher order integration schemes. A
drawback of this approach is that a solid-void boundary may not be correctly modeled.
However, the associated error is very small, and with higher order integration schemes,
numerically correct designs are obtained using MTO.

The density inside every voxel in the background mesh is constant. Thus, a compos-
ite integration scheme can also be used, where the voxel-contributions to the stiffness
matrix are evaluated first, and these are then summed together to obtain the element
stiffness matrix [32]. Since density is assumed to be constant inside each voxel, the
choice of integration scheme depends on the polynomial order of the shape functions
only. The advantage of this scheme is that the solid-void boundaries are aligned with the
edges of the voxels, due to which the stiffness matrix can be accurately integrated.

The composite integration, in general, is superior over the traditional integration
scheme which is based on higher order Gauss quadrature rule. However, since in TO
the design changes during the course of optimization, significant amount of informa-
tion related to the stiffness matrices needs to be precomputed to use it in an adaptive
MTO formulation. To avoid this excessive storage issue and to reduce the additional
computational costs related to assembling the stiffness matrix at each iteration of MTO,
we prefer to use the traditional Gauss quadrature rule with higher number of integration
points.

Table 8.3: Choice of integration scheme for different combinations of design fields and polynomial shape func-
tions for Q-type finite elements. Here, d and p denote the number of design points and polynomial order of
the shape functions, respectively, nsup refers to the number of support points, and P (d) and P (K) denote the
maximum possible polynomial order of the design field and stiffness matrix, respectively.

d P (d) p nsup P (K) Gauss quadrature rule
1 0 1 4 2 2×2
4 2 1 4 4 3×3
9 3 2 9 7 4×4

16 5 3 16 11 6×6
25 6 3 16 12 7×7
36 7 4 25 15 8×8
49 9 5 36 19 10×10
64 10 5 36 20 11×11

Table 8.3 lists the minimum Gauss quadrature rule needed to accurately integrate the
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element stiffness matrix for several different density fields and polynomial shape func-
tions. Here, only quadrilateral finite elements are considered. Based on the number of
design points, a polynomial design field is constructed, and based on the shape func-
tions, the order of element stiffness matrix is determined.
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9
CONCLUSIONS AND

RECOMMENDATIONS

This chapter provides overall conclusions of the research presented in the preceding
chapters in Parts I and II. Several recommendations including directions for future re-
search are discussed regarding the optimization-based design of highly-efficient solar
cells as well as the optimization of high resolution structural designs in general.

9.1. CONCLUSIONS
The conclusions presented in this chapter have been organized into two parts based on
the two related research questions that were formulated at the beginning of this thesis.
These two parts are (1) optimizing metallization patterns in solar cells, and (2) designing
high-resolution efficient structural designs using topology optimization (TO). Further,
overall conclusions of this research work are stated at the end of this section.

9.1.1. OPTIMIZING METALLIZATION PATTERNS IN SOLAR CELLS
In this thesis, one of the two research questions was how TO could be used to optimize
the metallization patterns in solar cells. This question has been answered in Chapters
2, 3 and 4, where TO frameworks have been presented for various types of solar cells
and different conditions. In Chapter 2, rectangular solar cells of thin c-Si type have been
modeled, and a uniform illumination condition with a single light intensity has been
considered. In Chapter 3, the application of TO has been demonstrated on freeform solar
cells, and the metallization pattern has been simultaneously optimized on the front and
rear sides. Chapter 4 extends the application of TO to concentrating solar cells under
nonuniform illumination and temperature conditions.

Based on the various cases considered in this thesis, it can be concluded that TO def-
initely is capable of obtaining well performing designs. Designs obtained by TO perform
better or at least equal to the traditionally used counterparts. TO has a particular benefit
in situations where the geometry of the solar cell and/or the load patterns are irregular.

187
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Moreover, TO has also been found to work well with irregular temperature profiles and
nonuniform illumination conditions. This has been shown through the application of
TO on freeform geometries and concentrating solar cells, where remarkable improve-
ments of more than 50% and 26%, respectively, are obtained in the power output. For
rectangular solar cells, it has been found that the conventional H-pattern performs very
well, and it is very difficult to achieve a similar performance or converge to its geometry
using TO.

Apart from the improvement in solar cell performance obtained using TO, the metal-
lization design problem would be of interest to the TO community from an optimization
point of view. The material volume fraction for this problem is generally close to 4-6%,
and identifying this exact number is also a part of the optimization problem. Due to the
very low material fraction, this problem is very prone to local minima and has a slow
convergence. Also, there is a high degree of nonlinearity in the physics of the problem.
These features make this optimization problem unique and of interest from a mathe-
matical perspective.

9.1.2. DESIGN OF HIGH-RESOLUTION STRUCTURES USING TO
The solar cell metallization requires designing high-resolution fine features. With the
traditional TO, where the domain is uniformly discretized using finite elements with el-
ementwise constant densities, high resolution implies high computational costs. Thus,
part of this research thesis was also directed towards developing TO variants to efficiently
obtain high-resolution structural designs. Since these results could be of interest to the
community outside photovoltaics as well, the discussion and results in this part of the
thesis were kept general and common TO test problems (e.g. cantilever design, force
inverter) were used to investigate the concepts.

In Chapter 5, an adaptive h-refinement scheme was presented. The adaptive refine-
ment approach presented in this work helps to avoid excessive refinement at early stages
of design evolution, and reduces the associated computational cost to a certain extent.
Also, from the experiments involving filter radius adaptation as well as adaptive penal-
ization of densities, it can be concluded that these aspects play an important role in
controlling the cost and convergence of TO. Thus, these aspects need to be taken into
account to efficiently obtain high-resolution designs.

Among the various possibilities, the multiresolution topology optimization (MTO)
approach was chosen for further study due to its potential to express high-resolution de-
sign representations at relatively low analysis costs. It was found that for a certain choice
of analysis resolution in MTO, there is always an upper limit on the design resolution that
can be uniquely bound. The theoretical investigations and numerical results presented
in Chapter 6 support this claim. Thus to avoid any issues related to nonuniqueness (e.g.
undesired convergence) it is advisable to keep the design resolution always below the
threshold described in Chapter 6.

Further, QR-patterns, numerical artefacts arising in MTO formulations, were studied
in detail. Based on the results presented in Chapter 7, it can be concluded that QR-
patterns can lead to misleading results, and it is important that the MTO results are free
from these artefacts. Solutions such as increasing the polynomial order of the shape
functions, increasing the filter radius, etc. have been found to be of help for several in-
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stances. However, we have shown that these remedies can also fail and cannot always be
relied upon to obtain high-resolution designs at low computational cost.

In Chapter 8, an adaptive variant of MTO, namely d p-adaptive MTO, has been pro-
posed, that builds on the insights gained in the previous chapters. This approach pos-
sesses the properties of the traditional MTO approach. Moreover, it ensures that the
design bounds proposed in Chapter 6 are not violated, and the design is free from QR-
patterns. Due to the adaptive nature, d p-adaptive MTO can obtain a speed-up of upto
10 times over the non-adaptive MTO scheme. As known from a recent work by Groen
et al. [1], the non-adaptive version of MTO has proved to be more than 3 times faster
than the traditional TO approach for 2D problems. Thus, in a relative sense, it can be
argued our method can produce comparable results 30 times faster than the traditional
method for 2D problems. The potential of d p-adaptive MTO for 3D problems needs to
be still investigated.

9.1.3. OVERALL CONCLUSIONS

Based on various numerical examples and comparison with experimental results, it can
be concluded that TO has enormous potential in improving the performance of solar
cells. In particular, it is of interest to use TO for designing metallization patterns in
freeform solar cells as well as concentrating solar cells under nonuniform illumination,
where significant improvements in performance can be obtained over the conventional
patterns. With the presented modeling and optimization methodology for solar cells, the
cost per unit of solar power can be reduced further. Also, an important conclusion is that
the traditional H-pattern is already a quite efficient metallization design for rectangular
solar cells. In general, the research output of this thesis is expected to be another step
towards making renewable energy affordable and making this world greener.

Furthermore, the decoupled analysis and design based TO methods that have been
presented in this thesis significantly increase the usable TO design resolution at a given
computational cost. This shows promise not only for solar cell design, but for the wide
array of applications of TO in general. The numerical investigations related to high-
resolution TO and the d p-adaptive MTO scheme show hope of designing high-resolution
structures that can deliver increased power output.

9.2. RECOMMENDATIONS
In Part I and II of this thesis, the research questions that were posed at the beginning
have been answered. However, during the course of research, several new research di-
rections have been identified. While some of these aspects have been investigated in
this thesis, there are several questions that require follow-up research to be answered. In
this section, we present recommendations for future work along ten important research
directions.

1. Although the thesis ends with the development of an adaptive MTO approach
which can generate high resolution designs at relatively low computational costs,
its applicability for solar cell metallization design is unexplored due to time restric-
tions. Since the majority of the solar cell front surface comprises void areas, it is
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expected that d p-adaptive MTO could lead to a substantial reduction in compu-
tational costs.

2. Significant effort was put in obtaining metallization patterns for rectangular so-
lar cells which could be superior over the traditional H-patterns. However, from
numerous numerical experiments, it was observed that the dendritic designs ob-
tained using TO were not able to outperform it. As per a recent study [2], although
most of the TO approaches converge to tree-like designs, these tree-like structures
are not optimal for thermal volume-to-point problems, and the true optima for
such cases comprise lamellar, needle-like structures. Based on several numerical
tests, we also concluded that the H-pattern is already close to an optimal design,
however, it would be interesting to reach similar conclusions through analytical
methods. Results related to this aspect could possibly provide novel insights for
other design problems (e.g. electrical conduction problems or thermal manage-
ment problems), where similar dendritic designs obtained using TO are currently
accepted as quite superior and well performing designs.

3. There are several parameters that affect the convergence of the TO process, and
it is of interest to understand their impact on the final design. The metallization
designs obtained using TO are found to be very sensitive to the choice of initial de-
signs. Thus, choosing the right starting point for the design process is something
that needs further investigation. Recently, van Schoubroeck et al. [3] explored the
effect of initial designs in TO, and it would be a nice direction to perform a similar
study focused on solar cell metallization design.

4. For the solar cell metallization, the choice of boundary conditions can also affect
the overall performance of the solar cell. While the busbar voltage Vb has been
included as a design variable in the optimization process, the choice of busbar
location and the number of busbar points has been mostly intuitive or driven by
the conventional metallization patterns. However, the choices made in this thesis
may not necessarily be optimal, and optimizing these parameters could also help
in further improving the solar cell performance.

5. For freeform geometries, 2D solar cell surfaces have been assumed in this study.
However, in reality, the freeform solar cells can also comprise curved surfaces span-
ning in 3D, and the application of TO on such cases needs to be explored. Fur-
ther, freeform geometries can generally be very large in size, and manufacturing
large solar cells is not viable. Thus, a suitable direction would be to split the large
freeform domain into several smaller solar cells. In such scenarios, the metalliza-
tion design needs to be optimized on a solar panel level to ensure that the power
output is maximized. The applicability of TO on a panel level has not been touched
upon in this study and would be an interesting research question.

6. From the manufacturing point of view, the aspects of sensitivity, fouling and ro-
bustness need to be included in the TO formulation for solar cell metallization
design. Also, further experimental validations are required to confirm that the de-
signs obtained from TO perform well. An additional factor to consider is the op-
timization of metallization designs for multiple illumination intensities. Over the
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period of a day, the illumination intensity changes. Thus, the metallization de-
signs can be optimized in a way that the total power output for the whole day is
maximized.

7. In Part II of the thesis, significant research has been dedicated towards develop-
ing efficient methods to obtain high resolution designs using TO. However, these
studies have been restricted to 2D cases and global objectives. To further explore
the potential of the adaptive h-refinement based TO and the d p-adaptive MTO
method proposed in this study, 3D numerical examples need to be studied.

8. The refinement indicators used in this work for adaptive refinement of the mesh
comprise several tuning parameters which need to be properly chosen to obtain
desired results. To avoid manual tuning of these parameters, an approach would
be to include them as meta-variables in the optimization process. Alternatively, it
should be possible to get rid of some of these parameters by extracting additional
information from the optimization process. This could potentially increase the
robustness of this method.

9. In Chapter 6, we have proposed upper bounds on the number of design variables
that can be chosen for a certain choice of analysis resolution. Also, in Chapter 7,
QR-patterns and their impact have been studied. These studies have been tailored
to structural problems, and in particular linear elastostatic problems. Future work
could include investigation on problems involving harmonic excitations, eigen-
value problems, etc.

10. Advanced modeling techniques such as XFEM/GFEM use enrichment functions to
accurately model nonsmooth and discontinuous displacement fields [4, 5]. XFEM
has also been used in the context of TO [6]. However, the significantly high com-
plexity of this method restricts its attractiveness and how to combine XFEM with
MTO is still an open research question. Moreover, it would be of interest to explore
if the d p-adaptive scheme can be combined with such extended finite element
methods.
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