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'Summarx

The surface dilational viscosity n: relates the surface tension under dynamical

conditions odyn to the relative surface expansion rate dégA. The value of ng can

be determined by means of the overflowing cylinder technique. The dynamic
surface tension is determined by the Wilhelmy plate technique. The key problem
is to find the relation between the surface expansion rate and the flow field
developed in the cylinder for a particular surface active liquid.

In this paper calculated surface velocity distributions and surface expansion
rates are compared to experimental results for a pure liquid. Moreover some
experimental results show the large influence of the addition of surfactants on

the surface expansion rate.



1. Introduction

As we all know, surface active agents play an important role in emulsifying- and
foaming properties of liquids. Experience shows that these properties strongly
depend on both the nature and the amount of the applied surfactant(s).

The stability of the created foams and emulsions against coalescence is for the
greater part determined by the stability of the thin liquid films in between
respectively the air bubbles and the emulsion droplets. In turn, the stability
of these thin liquid films largely depends on the interfacial properties of the
liquid.

However, the liquid-air and liquid-liquid interfaces are continuously exposed to
all kinds of disturbances. Especially during preparation, storage and usage of
the dispersions, compression and expansion of the interfaces occur. So,
examination of especially the dynamic interfacial properties of the liquid may
increase our knowledge of the behaviour of dispersions.

This can be illustrated for instance by the behaviour of two dispersions, which
contain a different kind of surfactant in different amounts, but have been
composed in such a way that the equilibrium interfacial tension of the two
dispersions is the same. It is experienced that the dynamic interfacial
properties of the two dispersions, and as a result the overall stability of the

created dispersions, may differ considerably.

One of the ways in which a mechanical disturbance can be applied to a liquid
surface is by means of expansion or compression of that surface. In a so called
dynamic measurement the surface is subjected to a sinusdidal change in surface
area. In an other type of measurement the surface is continuously expanded or
compressed.

Because a thin liquid film can be made unstable especially when it is subjected
to an expansion, the study of the behaviour of an expanding surface can result

in a better understanding of the foaming behaviour of a liquid.

One of the ways to accomplish a pure dilation (without any shear-components) is
with the use of an overflowing cylinder. The physically well defined parameter,
which can be determined with the aid of this method,. is the surface dilational

viscosity ng, which is defined by the following equation:



d (Ogyn = %) -1
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where odyn represents the surface tension during expansion of the surface, ¢
the equilibrium surface tension when the surface is at rest and dlnA/dt the
relative expansion rate of the surface area A.

It has t6 be noted that ng is not a constant and that interfaces do not behave
like Newtonian systems: the experimental value of the surface dilational

viscosity is namely strongly dependent on the value of dlnA/dt.

With the overflowing cylinder technique expanding surfaces can be studied.
Padday [1] and Piccardi and Ferroni [2,3] have already used the overflowing
cylinder technique for dynamic surface tension measurements with various fluids,
while Barber [4] and Joos and de Keyser [5] used an overflowing funnel as a
ﬁethod for measuring surface dilational properties. The key problem in these
studies is how to relate the surface expansion rate to the flow rate through the
funnel or the overflowing cylinder. This problem appears to be a difficult one
and none of these investigations resulted in a more detailed description of the
physical mechanism which explains the operation of the overflowing cylinder
technique.

In practice expanding surfaces can be found during preparatidn of foams,
nucleation of bubbles and during application of thin liquid layers on solid
walls like paints, coatings, printing ink, etc. Knowledge of the dynamic
interfacial properties of these liquids may lead to improvement of products or

production processes.

Because of the observed lack of knowledge the overflowing cylinder technique
will be elucidated in this article. First of all a description of the
experimental set-up will be given, followed by a theoretical anélysis of the
flowfield in the overflowing cylinder. Finally results of measurements on pure

water will be compared with data resulting from the theoretical treatment.



2. Experimental set-~up

Figure 1: the overflowing cylinder technique. (not to scale)

The overflowing cylinder (see figure 1) consists of a metal cylinder (diameter
7.97 cm) through which a liquid is pumped upwards. In order to ensure a laminar
flowfield in the cylinder, the fluid first passes through a conical tube,
having a small slope (1:10), before it reaches the cylinder. Next the liquid is
allowed to flow over the top rim of the vertical cylinder, causing the circular
liquid surface to be expanded continuously in é radial way. We are dealing with
a steady state situation: this means that the surface dilation pattern does not
change in time. However, when of course the flowrate is altered, a new surface

expansion rate will be established.

In order to obtain the value of the surface dilational viscosity ng, the dynamic
surface tension odyn and the relative expansion rate dlnA/dt have to be
measured.

The dynamic surface tension can easily be measured by the Wilhelmy plate
technique. The most obvious way to do this is in the centre of the surface. The
measurement of the expansion rate of the surface, however, is much more
complicated. From the symmetry of the cylinder and under the condition that the
free surface is almost flat in the neighbourhood of the axis of symmetry it
follows that the relative expansion rate depends on the radial velocity of the

surface vr(r):
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This can be seen in the following way: consider a small surface area A, see
figure 2, which is defined by the radius r, the radius r + Ar and the angle «a

~(in radians), as given by:

A= g—n {n(r + Ar)? - nr2} (2.2)
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Figure 2: definition of the surface area A.

Retaining only first order terms the velocity of the surface at r‘+ Ar can be

expressed as:

A

vr(r + Ar) = vr(r) + 3;2 .Ar | (2.3)

By means of equations (2.2) and (2.3) it follows that:
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In the limiting case for Ar going to zero, Ar will be neglectibly small compared
to r and consequently equation (2.4) will turn into equation (2.1). By means of

this equation the relative surface expansion rate can be calculated if vr(r) is
known.



3. The flowfield of an overflowing cylinder

3.1. A qualitative description

A semi-infinite cylindrical tube with a circular cross-secfion is positioned
vertically in a gravitational field under atmospheric pressure po at room
temperature To‘ The axis of the cylinder coincides with the direction of the
acceleration of gravity (see fig. 3) and the cylinder is cut perpendicular to

its axis.

Po.Po.To lg

Figure 3: Geometry.

A Newtonian fluid having a density Po is pumped upwards through the cylinder at
a relatively low but constant rate. Hence the fluid rises slightly above the rim
of the cylinder, flows over the edge and falls as a thin film downwards along
the outside of the cylinder.

For this configuration the form of the fluid-air interface and the velocity
field in the fluid that will be reached in the steady state will be analyzed and

calculated in their dependence on the boundary conditions at the free surface.

3.2. Formulation of the problem

In order to describe the flowfield in the overflowing cylinder quantitatively a

cylindrical polar coordinate system is introduced. The axis of the coordinate



system coincides with the axis of the cylinder and the origin of the coordinate

system is chosen at a distance H below the rim of the cylinder (see figure 4).

L/‘

rim of the cylinder

Figure 4.

The incompressible viscous flow in the cylinder is governed by the conservation
equations: the conservation of mass and the three equations for the conservation
of linear momentum: The Navier-Stokes equations. Since the geometry is axially

symmetrical and the flow is stationary the Navier-Stokes equations reduce to:
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In these equations the symbol V2 indicates the Laplace operator

Vz=.a_z__+.];_a_+.a_z' (3.2)
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v, and w are the velocity components in the r and z direction respectively, p is
the fluid density, v is the kinematic viscosity, p is the pressure and g is the

acceleration due to gravity.

The equations (3.1) describe the flow in a crossplane through the axis of the
cylinder. Because of the symmetry of the flowfield only half of the velocity
field has to be considered. (c.f. figure 5).
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Figure 5.

If a proper set of boundary conditions is specified for the equations (3.1) a
numerical solution for the velocity field and the pressure distribution can be

obtained on a finite domain.

In the solution procedure a choice is made for an explicit time dependent
strategy. In this strategy the flow is switched on at time t=0 by imposing a
velocity profile at the 'entrance' of the cylinder (z=0) and after some time
convergence to steady state flow is obtained. This implies that in the left hand

side of the equations for the conservation of linear momentum (3.1) the terms

v
;EE and %% which were deleted in (3.1) are added again yielding the time

dependent Navier-Stokes equations
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One of the advantages of this strategy is that difficulties with boundary
conditions on the velocity profile of the falling film on the outside of the
cylinder are avoided. Introduction of a continuity condition at the point where
the film leaves the calculation domain is sufficient.

In addition to these initial conditions the following boundary conditions are
imposed.

On the inside and outside of the so0lid wall obviously a no slip condition

applies so

R

Red }JzsH (3.4)

r
v_ = w=0 for
r r

where 6 is the thickness of the wall. _
In the axis of symmetry a free slip condition is imposed, hence both the
velocity normal to the axis of symmetry V. and the normal derivative of the

velocity tangential to the axis of symmetry %% are zero.

(v,)

n
o

} forr =0 (3.5)
(3%) =0

What remains are the boundary conditions to be applied at the free surface.

Because of the axial symmetry the unknown position of the free surface may be

described by
z=f(r) ' (3.6)

where the function f(r) has to be found as a result of the calculations. On the

outside of the surface the pressure is equal to the atmospheric pressure P,
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The ultimate goal is to calculate the velocity profile in z and r direction for

a Newtonian liquid taking into account the effect of a surface tension gradient

operating at the free surface of the liquid. In order to build up the procedure

of the calculations for this complex configuration first three simpler systems

will be considered.

a) in which no surface tension is taken into account

b) in which a constant surface tension is taken into account (so no surface

tension gradient)

and c) in which a constant surface tension gradient is taken into account.

It must be noted here that even the condition c) is a simplification of a

practical situation because it is to be expected that the surface tension

gradient will depend on r.

ad a) The simplest form is the free slip condition and a pressure of the liquid

ad b)

equal to the atmospheric pressure implying

pP=p
} for z=f(r) (3.7)
=0

avt

an

where n is the direction normal to the free surface and vt is the velocity
of the surface tangential to the surface. This means that the effect of

surface tension is not taken into account.

If a constant surface tension is incorporated a more complex form of
boundary condition is imposed. In that case the combination of free slip
and capillary pressure is applied.

Hence
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} for z=f(r) (7)

e
an

where o is the actual value of the surface tension and R, respectively R,
are the principal radii of curvature. For an axially symmetrical

configuration these radii shown in figure 6 are given by

1 _4 _ £
R, dr 3
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Figure 6.

ad ¢) The most complex form of boundary condition occurs if surface tension
gradients are taken into account. In that case a tangential shéar stress
is present in the free surface. The tangential shear stress at the surface
is balanced by the viscous shear stress in the fluid, yielding the

following set of boundary conditions (see figure 7)
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In (9) o again is the local surface tension, %g is the tangential derivative of

the surface tension and p is the dynamic viscosity coefficient of the liquid.

3.3. Numerical solution technique and results.

In the solutions presented in this paper only free surface boundary conditions
of type a) and b) have been taken into account. Calculations with boundary
conditions of type c) are in preparation and results will be presented in a

separate paper.

The unsteady Navier-Stokes equations are solved by an explicit Eulerian finite

difference scheme on an orthogonal non-uniform Cartesian grid (see figure 8).
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The Newtonian fluid considered is pure water. A£ the start the cylinder is
filled to the rim with fluid and at time t=0 the flow is switched on. The
displacement of the free surface is tracked and the velocity field is
calculated. After some time the flow converges to a steady state.

This type of calculation has been performed for several mass fluxes with and
without surface tension. A switch option to switch on or off surface tension
during calculation has been build into the solution routine.

The results presented are the rising height of the interface above the rim of
the cylinder calculated at the axis of symmetry and plotted as a function of the
mass flow rate through the cylinder with surface tension switched on and with
surface tension switched off (figure 9). It is noticed that the rising height is
strongly dependent on the value of the surface tension. For moderate flow rates
of a pure liquid good agreement exists between the calculated results and the
experiments. For low flow rates experimental as well as calculated results show
some instabilities (indicated by the dashed line in figure 9). These
instabilities are probably caused by the falling film on the outside of the

cylinder. '

Further for a typical mass flow rate the velocity distribution in the fluid
is presented with surface tension switched on (figure 10). From figure 10 it is

noticed that in the neighbourhood of the rim of the cylinder the maximum radial



-1h-

velocity is occuring below the free surface. This implies that the free surface
is accelerated via viscous forces by the bulk fluid.
With respect to the velocity distribution in the surface comparisons are made

with experiments (see next section).
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4. Experiments

In order to obtain the value of the surface dilational viscosity ng the

quantities odyn and dégA have to be known (compare equation 1.1). The dynamic

surface tension can easily be measured by means of the Wilhelmy plate technique

and the value of dézA can be determined by measuring the radial velocity at the

surface vr(r) as a function of the distance r from the centre of the surface

according to equation (2.1).

Before a measurement is carried out, the overflowing cylinder has to be adjusted
in such a way that the cylinder is in a perfect vertical position. This ensures
a purely radial symmetric velocity profile having a zero radial velocity of the
surface at the centre of the circular meniscus. The dynamic surface tension odyn
and the radial velocity of the surface vr(r) are a function of the flowrate. The
flow through the cylinder can easily be adjusted and determined by means of a
needle valve and a flowmeter. It has to be taken care of that the flowrate is
adjusted in such a way that the outside wall of the cylinder is completely
wetted by the falling film. '

At present we are dealing with water and in that case the dynamic surface
tension equals the equilibrium surface tension of pure water, independently of
the flowrate. The radial velocity of the surface vr(r), is of course a function
of the flowrate. The magnitude of vr(r) is established by determining the
velocity of small particles floating on the expanding surface. Here polyethylene
particles with a diameter of 100 um and a density of 900 kg.m—3 are used.
Experimentally it is found that these particles do not influence the equilibrium
surface tension of water. At the start of an experiment the polyethylene
particles are sprinkled on the surface of the overflowing liquid as uniformly as
possible. Shortly after that a photo of the expanding surface is taken, using
two flashes with a fixed time interval. Both the time interval and the
exposuretime are chosen in such a way that the photo shows two sharp images of

each particle. Figure 11 is an example of a photo obtained in this way.




Figure 11: example of a photo of polyethylene particles
floating on the expanding surface, taken by using

two successive flashes.

The radial velocity of the surface vr(r) is obtained from the distance between
the position of a particle in the two images r, - r; and the time lapse between

the two flashes At according to:

r, - 5,
vr(r) =~ (4.1)
This velocity belongs to a radial distance r for which as an approximation the

mean distance is taken

r=—pf5— (4.2)

The resulting curves, like for example figure 12, present Vo as a function of r
at a certain flowrate. For reasons of comparison the numerically calculated

distribution is also plotted in this figure.
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Figure 12: the velocity of the water surface as a function of
1 . .

the radius at a flowrate of 7.6 cm® .s

Ultimately we are interested in the dynamic surface behaviour of a surfactant
solution. Therefore it is interesting to notice that already the addition of a
small amount of a surface active agent raises the velocity of the agueous
surface considerably (see figure 13). This phenomenon will be discussed in a

forthcoming paper.

By means of equation (2.1) it follows from the figures 11 and 13 that the value

of the relative surface expansion rate dinA in an area near the centre of the

dt
-1 =1
circular meniscus equals 0.29 s for water and equals 3.37 s for Teepol. But

since the dynamic surface tension of pure water equals the equilibrium surface

. . . . . d . .
tension, the surface dilational viscosity ng ig zero in the case of pure water.
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Figure 13: the velocity of the surface as a funétion of the radius at a flowrate
of 7.6 cm.s” for
a) water and
b) 1 volume per cent dilution of a commercially available

concentrated Teepol solution in water.

The height of the meniscus above the rim of the overf‘lowirig cylinder, h dyn has
been measured in the centre of the circular meniscus by means of a micrometer.
First the position of the rim of the cylinder is established by positioning a
rod of known thickness over the top rim of the cylinder.and next the position of
the liquid surface is measured by screwing down the micrometer until its cone
touches the liquid surface. The value of hdyn in the centre of the circular
meniscus is obtained from the difference between those two measured distances.
The value of h dyn of pure water as & function of the flowrate has been shown in
figure 9. Th_ere too the measured values were compared with the results of a

numerical calculation and good agreement was found.
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5. Conclusions

It has been shown in this paper that for the parameters of a pure fluid
flowing through_the overflowing cylinder a better than qualitative agreement
exists between calculations and measurements.

It has been noticed from the calculated results that for a pure fiuid in
particular in the neighbourhood of the rim of the cylinder the pbulk fluid is
driving the surface layer. If a small amount of surfactant is added surface
tension gradients are introduced resulting in a large change in magnitude of the
surface velocity. This suggests that in that case the maximum radial velocity

indeed occurs at the free surface and the free surface is driving the bulk.
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