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Abstract

This project aims to improve the accuracy of the eye tracking system, which consists of two
cameras and two infrared LED light sources. This highly non-invasive technology, which is the
feature-based video-oculographic eye tracking system, determines the position of the eye by
monitoring the eye features such as the pupil center and glints. The accuracy of estimating
the eye position and orientation is critical in the proton clinic environment, and is to be
required higher than those in commercially available eye-tracking system.

By investigating the inverse problem of the monitoring process and solving the optimization
problems, the positions of the cameras and light sources can be calibrated to improve the
measurement accuracy and the proper gaze angle will be given. The combination of calibration
and gaze estimation gives the optimal solution for the configuration of the eye tracking system.

The goal is to achieve better knowledge of camera calibration and light source calibration and
build a foundation for further improvement of accuracy of the system. A method to solve the
optimization problem which minimizes or maximizes the cost function will be proposed and
the effectiveness of the method will be investigated using numerical simulations (Matlab) and
validated experimentally.

For this purpose, a high-precision camera calibration was evaluated and implemented. Result
of 3D reconstruction of feature points on calibration chessboard has achieved 0.1 mm, while
the method of reconstructing light source didn’t give a good performance.
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“Errors, like straws, upon the surface flow; He who would search for pearls must
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Chapter 1

Introduction

This chapter introduces the background information of this thesis project, which includes a
brief overview of uveal melanoma, the proton therapy and eye tracker. The proton therapy
is widely used in eye cancer treatment due to the technical factors of the proton beam [1].

1-1 Non-invasive eye-tracking for proton treatment of the uveal
melanoma

1-1-1 Eye Cancer

Eye cancer is rare and ocular melanoma is the most common one. 85% of ocular tumor are
uveal melanoma [1]. When the melanoma arises from iris, ciliary body or choroid, it is called
uveal melanoma. The positions of the tumors are usually detected by MRI or CT. Up to 50%
of patients with uveal melanoma will ultimately develop distant metastasis [2].

Typical treatment methods for uveal melanoma can be classified into globe-preserving therapy
or enucleation. Globe-preserving method is the first choice to preserve the eyesight. There
are three kinds of globe-preserving therapy: radiation, surgical and laser therapy [3].

Radiation is currently the most common method to treat with uveal melanoma. Proton
therapy, as one of the external radiation methods, is a kind of radiation with usage of proton
beams.

Compared to x-ray radiation therapy [4], the physical property of proton beam helps to deliver
60% less dose to healthy tissues around the tumor and higher dose to the tumor than x-ray
radiation, which offers higher chance to destroy all tumor tissues and lower chance of side
effects. As shown in Figure 1-1, x-ray therapy may cause damage to healthy tissues around
the tumor and increases the chance of side effects.

But there are also some drawbacks to proton therapy. This treatment method requires highly
specialized and costly equipment, which means high cost and less medical centers that can
offer. Besides, not all cancers can be treated with proton therapy.
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2 Introduction

Figure 1-1: The comparison of dosage distribution between x-ray and proton beam radiation.
X-ray therapy may cause damage to healthy tissues around the tumor and increases the chance
of side effects[5].

1-1-2 Proton Therapy

The benefits of proton therapy outweigh the disadvantages. The proton radiotherapy is con-
sidered as primary treatment for recurrent tumor and prior to surgical resection for uveal
melanoma. Main advantage of proton therapy is that the physical properties of proton beams
enable high-dose delivery with less damage to adjacent normal issues than conventional ra-
diotherapy.

Bragg peak The advantageous physical property of proton beam is the Bragg peak [4]. The
energy of the proton beam reaches the peak at a point and after that it dissipates quickly.
This property enables greatest damage to the tumor points with relative sparing of healthy
tissues. Also because of this property, proton therapy is only sufficient for superficial lesions
such as primary ocular tumors.

Conventional Proton Therapy In the process of proton therapy, the tumor needs to be
aligned on the trajectory of the proton beam because the proton beams are limited to a fixed
(often horizontal) position [1], as shown in Figure 1-3.

The color of the eye will change in case of iris melanoma, which is visible. However in case
of ciliary body and choroid melanoma the tumors are invisible. After examination of tumor
position through MRI or CT [6], the position and orientation of the target eye are required
in high precision.

In conventional proton therapy eye tracking technology, tantalum markers are inserted into
the eye and the number of the tantalum markers ranges from three to five, which will not
be removed after therapy. The markers will be detected by x-rays. For iris melanoma,
markers are not required. For ciliary body and choroid melanoma, markers help to build
a 3D geometrical model of the target eye. The gaze direction is adjusted based on the eye
model to minimize unnecessary damage to healthy ocular structures. Hence, measurement of
position and orientation of the eye is critical for the proton therapy process.
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1-2 Non-invasive Eye Tracker In Proton Clinic Environment 3

Figure 1-2: Bragg Peak. Energy of the proton beam reaches its peak at tumor and dissipates
rapidly after that. The distance is the depth in tissue.

Figure 1-3: The figure shows the image of proton therapy. The tumor should be aligned on
the trajectory of the proton beam since the beam is fixed, which is usually horizontal. The head
should be fixed [4].

The eye tracking technology of inserting tantalum markers into eyeball is highly invasive. To
avoid this painful surgery and improve the flexibility of eye tracking process, non-invasive eye
tracking technology is a good choice provided its accuracy can reach the requirements of the
proton therapy.

1-2 Non-invasive Eye Tracker In Proton Clinic Environment

The measurement device for measuring eye movements is called an eye tracker. Eye tracking
technologies are currently widely used in many fields, such as psychology, VR games etc..
The techniques for monitoring eye movement are in general of two types: one is to measure
the position of the eye relative to the head, and another is to measure the orientation of

Master of Science Thesis Yu Zhang



4 Introduction

the eye or the point of gaze (POG). The former technology requires measurement of the
head position, which makes the eye tracking process more complex. The latter one is based
on the identification of features in the images of eyes. The most widely used eye tracking
methodology is video-oculographic eye tracker.

Based on these two types, there are four main categories of the eye tracking technology [7]:

• Electro-OculoGraphy(EOG) relies on the measurement of the skin’s potential dif-
ferences with electrodes placed around the eye. This technique measures the position
of the eye relative to the head.

• Scleral Contact Lens/Search Coil is a highly intrusive and precise method. This
technology makes use of modern contact lens attached by a mounting stalk. The contact
lens should be large enough to include the cornea and sclera. This also measures the
position of the eye relative to the head.

• Photo-OculoGraphy(POG) or Video-OculoGraphy(VOG) involves the measure-
ment of distinguishable features such as the shape of the pupil and the corneal reflection
of light sources under rotation or translation. Still it’s the measurement of the relative
position of the eye with respect to the head.

• Video-Based Combined Pupil and Corneal Reflection is based on VOG and
provides the measurement of the point of gaze with either fixed head or measurement
of multiple ocular features like corneal reflections and pupil center. The difference
between these two methodologies is the positional difference between the pupil center
and corneal reflections are used, which changes with pure eye rotation but remains
relatively constant with minor head movements. For simplicity here we call all video-
based eye tracking methodologies as video-oculographic eye tracker.

Video-oculographic method is the most common method in eye tracking technologies. It can
be improved even with relative inexpensive cameras and light sources (usually infrared or
near-infrared LED light sources). Due to its convenience and inexpensive hardware setup,
video-based eye trackers are popular in commercial market.

Accuracy and precision are important for eye trackers. Accuracy refers to the closeness of a
measured value to a standard or known value, while precision refers to the closeness of two
or more measurements to each other, which may be not accurate.

As described in previous part, the tumors need to be treated before the metastasis and they
grow into large tumors. The typical size of ocular organics are in millimeters. Thus the
accuracy of the eye trackers are required to be sub-millimeter. The consideration of gaze
angle requires the rotation accuracy of sub-degree since the visual angle is approximately 1
degree.

According to [8], the accuracy can achieve 1-2 degrees with simple web camera using the
image processing algorithms. However, the accuracy of current available eye trackers are still
not enough for medical usage.
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1-3 Motivation of Accuracy Improvement

A prototype of the high-accuracy eye tracker was developed in the Delft Center for Systems
and Control (DCSC) lab. The system consists of two cameras and two near-infrared light
sources. This prototype combined with a suitable software configuration can satisfy a good
accuracy. However, the system still cannot be used on proton clinic environment because it
requires rigid system configuration, which means everything needs to be under control and
cannot be moved. This is not suitable for using in real life environment.

Precise camera calibration and light source calibration help to improve the accuracy of the
non-invasive eye-tracker. Recognition of contours of pupil and glints is not in the scope of
this thesis.

In this literature survey, theories about camera geometry and methods of camera calibration
will be introduced. Different methods of light source calibration will be illustrated. The
literature survey helps to understand the theory and background of the project.

1-4 Objectives and Outline

1-4-1 Objectives

The goal of the project is to form the calibration method for the eye tracker with flexibility
and robustness such that we can get measurements of high accuracy.

1-4-2 Outline

The outline of the rest of the report is as follows:

• Chapter 2: introduction of basic knowledge of the eye model and the video-oculographic
eye tracker system principles.

• Chapter 3: introduction of camera calibration methods and light source calibration.

• Chapter 4: results of experiments.

• Chapter 5: conclusion
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Chapter 2

Theory Overview

2-1 Eye Model

The shapes of the cornea are in common considered as spheres, although they are not perfect.

The geometrical eye model consists of two overlapped spheres as shown in Figure 2-1. In
Figure 2-1 there are several important definitions of eye structures:

• c: The center of cornea curvature.

• p: The pupil center.

• R: The radius of the cornea curvature.

• Kpc: The distance between the center of cornea curvature c and the pupil center p.

• d: The center of eyeball.

• Optic axis: Defined by the center of cornea curvature c and the pupil centerp.

• Visual axis: Defined by the center of cornea curvature c and fovea. Visual axis defines
the gaze direction.

There is a constant angular difference between the optic axis and the visual axis. The visual
axis is usually obtained from the optic axis. Let’s denote the optic axis as s:

s = p− c. (2-1)
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8 Theory Overview

Figure 2-1: The eye model consists of two overlapped spheres. The big sphere represents the
eye ball and the small one represents the cornea. The center of the eyeball is denoted as d and
the center of cornea curvature is denoted as c. The pupil center p is on the intersection between
the intersection of the two spheres and the line defined by the center of cornea curvature and the
center of eyeball. The optic axis is defined by the center of cornea curvature and the pupil center.
The visual axis is defined by the center of cornea curvature and the fovea. The gaze direction is
defined by the visual axis.

2-2 Gaze Estimation

2-2-1 Features In Images Of Eyes

As indicated in Chapter 1, the video-oculographic eye trackers monitor eye movements by
tracking eye features such as the pupil center and corneal reflections of closely placed light
sources. The corneal reflections appeared on the surface of cornea curvature are called Purk-
inje Images, as shown in Figure 2-2.

Figure 2-2: Diagram of light and four Purkinje images. (Credit to Wikipedia)

The four Purkinje images are reflections of illumination from different parts of primary eye
structures. The main difference among these four images is the intensity of their illumination.

Yu Zhang Master of Science Thesis



2-2 Gaze Estimation 9

• The first Purkinje image (P1): the reflection from outer surface of the cornea curvature;

• The second Purkinje image (P2): the reflection from inner surface of the cornea curva-
ture;

• The third Purkinje image (P3): the reflection from outer surface of the lens;

• The fourth Purkinje image (P4): the reflection from inner surface of the lens;

In most cases, the first Purkinje image (P1), known as glints, is visible and used for eye
trackers.

Second We talk about the pupil center. Usually the pupil contour is detected by contour
extraction software and it’s not a perfect circle. Different illumination methods will cause
different effects. In video-oculographic eye trackers, the light sources are usually infrared or
near-infrared such that the user won’t be distracted from the light sources.

Two types of infrared/near-infrared (also known as active light) eye tracking technologies:

• Bright-Pupil Effect: when the illumination ray is coaxial with the optic path of the
system (the cameras, the eye and the light sources), the eye acts as a retro-reflector as
shown in Figure 2-3.

• Dark-Pupil Effect: when the illumination ray is offset from the optical path, clear images
of pupil and glints are visible, as shown in Figure 2-4.

Figure 2-3: Bright-pupil Effect (Credit to
Wikipedia)

Figure 2-4: Dark-Pupil Effect (Credit to
Wikipedia)

Images with glints obtained from dark-pupil effect allows us to identify the eye’s movement.

2-2-2 Geometrical Methodology

The eye tracking system used consists of two cameras and two light sources. In the model
of the system, pinhole camera model is used and light sources are considered as point light
sources [9].

The setup is extended from one camera and one light source system, as shown in Figure 2-5.
Further one camera with multiple light sources and multiple cameras and light sources will
be extended.
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10 Theory Overview

Figure 2-5: This diagram shows the representations of the eye, the cameras and the light sources
and shows one camera and one light source system for simplicity. The index of the cameras are
represented as oj , which are the principle points of the cameras. Positions of light sources are
represented as li [9].

As indicated in Figure 2-5, features and positions of the cameras and lights are assigned with
symbols:

• li: light source i

• oj : camera j

• qij : point of corneal reflection (generated by light source i and the corresponding image
is on camera j)

• rj : point of refraction of pupil center (image taken by camera j)

• uij : image of glint center (corresponding image of glint qij)

• vj : image of pupil center (corresponding image of glint rj)

Mathematical Model As shown in figure 2-5, a ray comes out from the light source li and
reflects at the point qij , which indicates that the ray passes through the nodal point oj of
the camera. The reflected ray intersects with the image plane at point uij . We can get the
following equations from this process:

qij = oj + kq,ij(oj − uij) for some kq,ij , (2-2)
‖qij − c‖ = R. (2-3)

The law of reflection states two conditions:
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2-2 Gaze Estimation 11

• The incident ray, the reflected ray and the normal at the point of reflection are co-planar;

• The angles of incidence and reflection are equal.

These two conditions can be expressed as:

(li − oj)× (qij − oj) · (c− oj) = 0 (2-4)
(li − qij) · (qij − c) · ‖oj − qij‖ = (oj − qij) · (qij − c) · ‖li − qij‖. (2-5)

There’s another ray that comes from the pupil center refracts at point rj on the surface of
the corneal curvature and passes through the nodal point oj of the camera. The refracted
ray intersects with the image plane on the point vj . We can get the following equations from
this process:

rj = oj + kr,j(oj − vj) for some kr,j (2-6)
‖rj − c‖ = R. (2-7)

The law of refraction states two conditions:

• The incident ray, the refracted ray and the normal at the point of refraction are coplanar;

• The angles of incidence and refraction satisfy Snell’s law.

These two conditions can be expressed as:

(rj − oj)× (c− oj) · (p− oj) = 0 (2-8)
n1 · ‖(rj − c)× (p− rj)‖ · ‖oj − rj‖ = n2 · ‖(rj − c)× (oj − rj)‖ · ‖p− rj‖. (2-9)

Finally, the optical axis (s) of the eye is defined by the line that passes both the corneal
curvature (c) and the pupil center (p). The orientation of the optic axis can be described by
the horizontal angle θeye and the vertical angle φeye defined in Figure 2-6. The two angles
can be obtained from the corneal curvature (c) and the pupil center (p) with Eq. (2-10).

snorm = p− c
‖p− c‖ =

 cosφeye sin θeye
sinφeye

− cosφeye cos θeye

 . (2-10)
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12 Theory Overview

Figure 2-6: The angles between the optic axis and the horizontal plane. The X-Z plane in the
figure is parallel to the horizontal plane.

The visual axis is defined by the center of the fovea and the center of the corneal curvature
as shown in Figure 2-5, which gives the point of gaze. Since the horizontal and vertical angle
differences between the optic axis and the visual axis are constants αeye and βeye, which will
only cause constant error, we will consider only the optic axis for simplicity.

One Camera and One Light Source One camera and one light source system is the simplest
system configuration. In this case, all the parameters of the eye, which means the radius of
the corneal curvature R, the distance K between the center of the pupil (p) and the center
of the corneal curvature (c) and the refractive index of the corneal curvature (n1), should
be known. The system of Eq. (2-2)-Eq. (2-10) in this case takes i = 1 and j = 1, which
is equivalent to 13 scalar equations with 14 unknowns. To solve this problem, additional
constraints should be considered and the head should be completely stationary.

One Camera and Multiple Light Sources In this case i = 1 . . . N and j = 1. Substitute
Eq. (2-2) into Eq. (2-4):

(li − o)× (ui − o) · (c− o) = 0. (2-11)
The equation is rewritten into matrix to obtain:

[(l1 − o)× (u1 − o)]T
[(l2 − o)× (u2 − o)]T

...
[(lN − o)× (uN − o)]T

 (c− o) = 0. (2-12)

In this case the number equations are enough to solve the center of the corneal curvature
c. Consequently, the pupil center p can be solved. To reconstruct the optic axis, the eye
parameters R, K, n1 must be known.
As said in previous paragraphs, the system consists of one camera and multiple light sources
is the simplest configuration that allows free head movement. A useful method to solve this
problem is linear regression[10].
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Multiple Cameras and Multiple Light Sources When multiple cameras and multiple light
sources are used, the equations can be written as:

[(l1 − o1)× (u11 − o1)]T
[(l1 − o2)× (u12 − o2)]T

...
[(lN − o1)× (uN1 − o1)]T
[(lN − o2)× (uN2 − o2)]T


︸ ︷︷ ︸

M0

c =


(l1 − o1)× (u11 − o1) · o1
(l1 − o2)× (u12 − o2) · o2

...
(lN − o1)× (uN1 − o1) · o1
(lN − o2)× (uN2 − o2) · o2


︸ ︷︷ ︸

h

. (2-13)

If M0 in Eq. (2-13) has rank of 3, c can be obtained from Eq. (2-13) using the left pseudoinverse
of M0 as

c = (M0MT
0 )−1MT

0 h. (2-14)

If M0 is of full rank, Eq. (2-14) can be simplified as c = M−1
0 h.

The simplest configuration of multiple cameras and multiple light sources consists of two
cameras and two light sources. In this case we have

(o1 − v1)× (c− o1) · (p− c) = 0,
(o2 − v2)× (c− o2) · (p− c) = 0.

(2-15)

As the optic axis is defined in Eq. (2-1), we can see that the optic axis is the intersection line
of the two planes: [(o1− v1)× (c− o1)] and [(o2− v2)× (c− o2)]. Hence, the optic axis and
its direction can be expressed as:

snorm = s
‖s‖ ,

s = [(o1 − v1)× (c− o1)]× [(o2 − v2)× (c− o2)].
(2-16)

If s 6= 0, the solution to Eq. (2-15) is:

p− c = Ksnorm. (2-17)

From above discussions we can see that the reconstruction of the optic axis can be done
without knowledge of eye parameters R, K, n1. Also, the progress to solve the problem is
linear, which saves much time than one camera and multiple light sources model.

Conclusion Above sections introduces the anatomy and features of the eye and the mathe-
matical models of the eye and measuring system, which includes the cameras and light sources.
The composition of one camera and two light sources is the simplest configuration that allows
free head movement. Composition of at least two cameras and two light sources can lead to a
linear system without knowledge of eye parameters such as refraction rates, the radius of the
cornea curvature and the distance between the center of cornea curvature and pupil center
K.
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14 Theory Overview

2-3 Camera Geometry

In computer vision, cameras are approximated by pinhole camera model, which can represent
the process of imaging. The pinhole camera model assumes there is no lens but only a small
pinhole as the principle point of the camera.

The pinhole camera model simplifies the imaging process by ignoring the distortion and the
depth of field. This is a rough model and the closer the camera is to the pinhole camera
model, the more accuracy and precision we can get from the simulation.

The imaging process of the camera model involves four coordinate frames. Next subsec-
tion will introduce the transformation among the four coordinate frames during the imaging
process.

2-3-1 Projection Geometry

There are four coordinate systems involved in the imaging process. They are: world coor-
dinate system (WCS), camera coordinate system (CCS), image coordinate system and pixel
coordinate system respectively as shown in Figure 2-7. Camera coordinate system is denoted
with a subscript C (xC , yC , zC) and the world coordinate system is denoted with a subscript
W (XW , YW , ZW ). (x, y) represents the image coordinates system and (u, v) the pixel coor-
dinate system. The distance between the camera coordinate system origin OC and the image
coordinate system origin o is the focal length. Camera parameters are described by intrinsic
and extrinsic matrices. The extrinsic matrix represents the transformation process from world
coordinate system to camera coordinate system, including the rotation and translation matri-
ces. The intrinsic matrix shows the transformation from camera coordinate system to image
coordinate system. The pixel coordinate system can be represented by linear combination of
pixel coordinates up to a scaling factor. Let’s denote the intrinsic matrix and extrinsic matrix
as A and E respectively:

A =

fu γ u0
0 fv v0
0 0 1

 , (2-18)

E =
[
R t

]
, (2-19)

with

• fu, fv: the focal lengths in terms of pixel coordinate system respectively,

• γ: skew coefficient,

• (u0, v0): the offset of projection of camera coordinate system origin to image plane,
which is also the center of distortion [11],

• R =
[
r1 r2 r3 t

]
∈ R3×3 the rotation matrix, indicating the orientation of the

camera frame,

• t ∈ R3 the translation matrix, which is defined as the difference between principle point
of the camera and origin of the reference coordinate frame.
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2-3 Camera Geometry 15

Figure 2-7: The transformation among three coordinate systems. Camera coordinate system:
(xC , yC , zC); World coordinate system: (XW , YW , ZW ); Image coordinates system: (x, y); Pixel
coordinate system: (u, v). The z axis of camera frame is perpendicular to the image plane.
The origin of the image plane is the intersection point of z axis of camera coordinate frame and
the image plane, which is o in the figure. The origin of the pixel coordinate system is usually
defined as the upper left corner of the image in computer vision literature. The pixel point (u, v)
corresponds to the point (X,Y, Z) in world coordinate frame.

Then the transformation from world coordinate system to image coordinate system is:

s · us · v
s

 = AE


X
Y
Z
1

 , (2-20)

with s the scaling factor between image coordinate system and pixel coordinate system.
Adding a 1 at last row of the coordinates is just for calculation of matrices, which becomes
homogeneous coordinates.

2-3-2 Reprojection Error

The reprojection error is an important performance evaluation of camera calibration.

Reprojection error is as shown in Figure 2-8. The reprojection error is expressed as the
difference between image points x and x’. x is the detected image point of feature point MW ,
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which is expressed in world coordinate frame. x’ is the reprojection image point of MW based
on camera parameters that obtained from calibration procedure.

Figure 2-8: Reprojection error is shown as the absolute difference between image points x and
x’. x is the detected image point of feature point MW , which is expressed in world coordinate
frame. x’ is the reprojection image point of MW based on camera parameters that obtained from
calibration procedure.

The optimization problem of minimizing reprojection error is expressed as the sum of squared
distance between observation and estimation of image points.

2-3-3 Problem of Calibration

In the following, denote the observation point on image as m and the 3D object point as M
[12].

Homography is defined as the mapping from object plane to image plane [12]. Homography
for planar object calibration describes the transformation relationship from 3D object plane to
image plane, which contains the information of rotation and translation relationships between
the two planes.

Hence, the transformation from 3D world coordinate system to image coordinate system can
be expressed as:

m = HM, (2-21)

up to a scale factor. Then the estimated projection point, which is the reprojection point, is
obtained by:

m̂ = ĤM̂. (2-22)

Due to the unknown intrinsic and extrinsic parameters of camera and noise, there are errors
between the detected and estimated image points. We can form a least squares problem, that
is minimizing the reprojection error:

min ‖m− m̂‖22, (2-23)

Yu Zhang Master of Science Thesis



2-3 Camera Geometry 17

such that the optimization solution of homography Ĥ and estimated projection image points
m̂ can be obtained. Subsequently intrinsic and extrinsic parameters of cameras can be ex-
tracted from homography.

The calibration for multi-camera system is important and affects the reliability of the mea-
surement system. Multi-camera calibration is usually based on single camera calibration. We
will first talk about single camera calibration.
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Chapter 3

Methods

This chapter introduces the methods for camera calibration and light source calibration.

3-1 Monocular Vision Calibration

Zhang’s [12] calibration method is flexible and widely used in many calibration methods
[13, 14]. Zhang’s calibration method requires a chessboard attached to a flat surface and
multiple images of different depth and orientations of the calibration pattern. The problem
solved by calibration is to obtain the intrinsic and extrinsic parameters of the camera given
one or more images of the calibration pattern.

Homography The transformation from world coordinate system to camera coordinate sys-
tem is described by the rotation matrix R and the translation vector t. With camera intrinsic
matrix A, object points in world coordinate system is transformed into image coordinate sys-
tem:

sm̃ = A
[
R t

]
M̃ = A

[
r1 r2 r3 t

]
M̃, (3-1)

in which s is an arbitrary scale factor, m̃ represents the image point and M̃ the object point,
ri the ith column of the rotation matrix R.

Assume the chessboard is on the plane Z = 0. Denote the homogeneous coordinates of the
image point and the object point as [u, v, 1]T , [X,Y, Z, 1]T respectively.

s

uv
1

 = A
[
r1 r2 r3 t

] 
X
Y
0
1

 (3-2)

= A
[
r1 r2 t

] XY
1

 . (3-3)
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Denote homography as
H = A

[
r1 r2 t

]
(3-4)

and Eq. (3-1) can be expressed by homography:

sm̃ = HM̃. (3-5)

Given one homography there are two basic constraints on intrinsic parameters.According to
Eq. (3-4), we can obtain

H =
[
h1 h2 h3

]
= λA

[
r1 r2 t

]
, (3-6)

with λ an arbitrary scalar. Using the knowledge that r1 and r2 are orthonormal, which means
r1 and r2 are orthogonal and normalized,

rT1 · r2 = 0, (3-7)
rT1 · r1 = rT2 · r2 = 1, (3-8)

we have

hT1 A−TA−1h2 = 0, (3-9)
hT1 A−TA−1h1 = hT2 A−TA−1h2. (3-10)

Closed-form Solution

Zhang [12] introduces the closed-form solution of intrinsic and extrinsic parameters.

Denote

B = A−TA−1 ≡

B11 B12 B13
B21 B22 B23
B31 B32 B33

 (3-11)

=


1
f2
u

− γ
f2
ufv

v0γ−u0fv
f2
ufv

− γ
f2
ufv

γ2

f2
uf

2
v

+ 1
f2
v

−γ(v0γ−u0fv)
f2
uf

2
v

− v0
f2
v

v0γ−u0fv
f2
ufv

−γ(v0γ−u0fv)
f2
uf

2
v

− v0
f2
v

(v0γ−u0fv)2

f2
ufv

+ v2
0
f2
v

+ 1

 . (3-12)

Since B is symmetric, define a 6D vector:

b = [B11, B12, B22, B13, B23, B33]T . (3-13)

Let the ith column of H be hi = [hi1, hi2, hi3]T . Then

hTi Bhj = vTijb, (3-14)

with

vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T . (3-15)
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3-1 Monocular Vision Calibration 21

We can rewrite constraints (3-9) and (3-10) as[
vT12

(v11 − v22)T

]
b = 0. (3-16)

If n images are provided, by stacking n such equations as (3-16) we have

Vb = 0, (3-17)

with V a 2n× 6 matrix.

• n = 1: In this case we can only solve two camera intrinsic parameters fu, fv under the
assumption that the principle point of camera (u0, v0) is known and γ = 0.

• n = 2: Skew γ = 0 constraint is imposed.

• n ≥ 3: In this case a unique solution of b can be obtained up to a scale factor.

The solution of equation (3-17) is well known as the eigenvector of VTV associated with the
smallest eigenvalue.

Once b is estimated, the intrinsic matrix A is solved and the extrinsic matrix can also be
computed:

r1 = λA−1h1,

r2 = λA−1h2,

r3 = r1 × r2,

t = λA−1h3,

with λ = 1
‖A−1h1‖ .

Maximum Likelihood Estimation

The results are refined by maximum likelihood inference. Given n images of a model plane
and m points on the model plane. By minimizing the function:

N∑
i=1

L∑
j=1
‖mij − m̂(A,Ri, ti,Mj)‖2, (3-18)

with m̂(A,Ri, ti,Mj) the estimated projection point in image i of point Mj , the maximum
likelihood estimation can be obtained. The rotation matrix R is parameterized by a vector
r of 3 parameters, which is parallel to the rotation axis and whose magnitude equals to the
rotation angle. R and r are related by the Rodrigues formula.

It’s a nonlinear problem to minimize Eq. (3-18) and can be solved with the Levenberg-
Marquardt algorithm. This process requires an initial guess of intrinsic and extrinsic matrices
as described in closed-form solution [12].
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Radial Distortion

In the imaging process, distortion deviates image points from their original positions and
causes aberration. This is unavoidable and radial distortion dominates the distortion function
[15, 16]. The radial distortion model introduced by Brown [17] is expressed as

ud = u+ u(k1r
2 + k2r

4) (3-19)
vd = v + v(k1r

2 + k2r
4), (3-20)

where (u, v) is the distortion-free normalized image coordinate (which is not observable) and
(ud, vd) the distorted normalized image point (which is observable), k1, k2 first two terms of
radial distortion and r =

√
u2 + v2.

Normalized image points are obtained with known intrinsic parameters of the camera. We
can transform image points from image coordinate system to normalized image coordinate
system:

m̃n = A−1m̃, (3-21)

where normalized image point is denoted as m̃n = [u, v]T , intrinsic matrix as A and image
point m̃ = [x, y]T .

Similarly, distorted image points (xd, yd) can be obtained from ideal image points (x, y):

xd = x+ (x− u0)(k1r
2 + k2r

4) (3-22)
yd = y + (y − v0)(k1r

2 + k2r
4) (3-23)

with (u0, v0) the center of distortion, which is included in intrinsic matrix A.

For each image we have[
(x− u0)r2 (x− u0)r4

(y − v0)r2 (y − v0)r4

] [
k1 k2

]
=
[
xd − x
yd − y

]
(3-24)

When we are given m points in n images, we get 2mn equations stacked in matrix form as
Dk = d, where k = [k1, k2]T . The linear least-squares solution is given by

k = (DTD)−1DTd (3-25)

Complete Maximum Likelihood Estimation

The parameters can be refined with new estimation of projection points m̆(A, k1, k2,Ri, ti,Mj):

n∑
i=1

m∑
j=1
‖mij − m̆(A, k1, k2,Ri, ti,Mj)‖2. (3-26)
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Correct Image Points

To correct the distorted image points, distortion coefficients should be calculated. However,
as indicated in Eq. (3-19) and Eq. (3-20) it’s a forward projection model and cannot to utilized
directly [13]. A new distortion model which helps to obtain distortion-free image points from
distorted ones is introduced [18][19]:[

ui
vi

]
= 1
G

[
udi + udi (a1r

2
i + a2r

4
i ) + 2a3u

d
i v
d
i + a4(r2

i + 2udi
2)

vdi + vdi (a1r
2
i + a2r

4
i ) + a3(r2

i + 2vdi
2) + 2a4u

d
i v
d
i

]
, (3-27)

and
G = (a5r

2
i + a6u

d
i + a7v

d
i + a8)r2

i + 1, (3-28)
with (udi , vdi ) observed image points which are distorted in normalized image plane and ri =√
ud

2 + vd
2.

In the distortion model Eq. (3-27) both radial and tangential distortion are considered. The
coefficients a1, a2 are radial distortion coefficients and a3, a4 for tangential distortion.
The model can be used to correct distorted image points as long as 8 parameters a1, . . . , a8
are known. In order to solve these parameters, N tie-points (ui, vi) and (udi , vdi ) covering the
whole image area are generated, in which points (ui, vi) are ideal and (udi , vdi ) are distorted
image points using distortion coefficients from solutions of optimization problem Eq. (3-26).
Define

ui = [−udi r2
i ,−udi r4

i ,−2udi vdi ,−(r2
i + 2udi ), uir4

i , uiu
d
i r

2
i , uiv

d
i r

2
i , uir

2
i ]T , (3-29)

vi = [−vdi r2
i ,−vdi r4

i ,−(r2
i + 2vdi ),−2udi vdi , vir4

i , viu
d
i r

2
i , viv

d
i r

2
i , vir

2
i ]T , (3-30)

T = [u1,v1, . . . ,ui,vi, . . . ,uN ,vN ]T , (3-31)
p = [a1, a2, a3, a4, a5, a6, a7, a8]T , (3-32)
e = [ud1 − u1, v

d
1 − v1, . . . , u

d
i − ui, vdi − vi, . . . , udN − uN , vdN − vN ]T . (3-33)

Using equations (3-27) and (3-28) the following relation is obtained:

e = Te. (3-34)

Then vector p can be estimated by solving the following equation:

p̂ = (TTT)−1TTe. (3-35)

With parameter vector p, the image points can be corrected with equations (3-27) and (3-28).

3-2 Binocular Vision Calibration

Structure Parameters

Two methods of computing structure parameters, which are rotation and translation ma-
trices that transform right camera coordinate system to left camera coordinate system, are
introduced.
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Method 1

One is introduced by Cui [13]. The initial guess of structure parameters R,T are obtained
from the means of Ri,Ti with{

Ri = Rr,iR−1
l,i

Ti = tr,i −Rr,iR−1
l,i tl,i

=⇒
{

R = 1
N

∑N
i=1 Ri

T = 1
N

∑N
i=1 Ti

, (3-36)

given N images.
Given initial guesses, the structure parameters R,T can be optimized by minimizing the cost
function:

N∑
i=1

L∑
j=1

(‖md
l,i,j −md

l,i,j(Al,Rl,i, tl,i,Dl)‖2 + ‖md
r,i,j −md

r,i,j(Ar,Rl,i, tl,i,Dr,R,T)‖2),

(3-37)

with N images and L feature points in every image. In Eq. (3-37) Rr,i and tr,i can be
estimated by Rl,i, tl,i,R,T: {

Rr = RRl

tr = RrR−1
l tl + T

. (3-38)

Centroid-Based Optimization Method

This method is introduced by Gai in [14].
Denote the rotation matrix as Rl,i, Rr,i and the translation vector as tl,i, tr,i of ith image
for left and right camera coordinate system respectively, in which i ∈ {1, . . . , N} if we have
N images. The transformation is described by the following equation:

mnl,ij = Rl,iMj + tl,i, (3-39)
mnr,ij = Rr,iMj + tr,i, (3-40)

in which i ∈ {1, . . . , N} is the index of N images and j ∈ {1, . . . , L} is the index of L feature
points in every image, mnl,ij ,mnr,ij are image points of left and right images respectively,
Mj the corresponding object point in world coordinate system.
Assume the origin of the stereo camera coordinate system is the principle point of left camera.
Structure parameters, which include rotation matrix R and translation vector T, describe
the transformation from right camera coordinate system to left one as in Eq. (3-41).

mnr,ij = Rmnl,ij + T. (3-41)

Centroid-based optimization method is used to obtain structure parameters. Using observed
image points mnl,ij ,mnr,ij , centers of left and right images are

m̄cl = 1
N

1
L

N∑
i=1

L∑
j=1

mnl,ij , (3-42)

m̄cr = 1
N

1
L

N∑
i=1

L∑
j=1

mnr,ij . (3-43)
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Transform left and right image points to centers-based coordinate systems:

m̃nl,ij = mnl,ij − m̄cl, (3-44)
m̃nr,ij = mnr,ij − m̄cr. (3-45)

Substitute Eq. (3-41) into (3-45), we can obtain

m̃nr,ij = Rmnl,ij + T− 1
N

1
L

N∑
i=1

L∑
j=1

(Rmnl,ij + T) (3-46)

= Rm̃nl,ij . (3-47)

By solving the problem

min
R

f(R) = ‖Rm̃nr − m̃nl‖22, (3-48)

we can get the solution R and subsequently T = m̄cr −Rm̄cl.

3-2-1 Reconstruction In 3D

With observed image points and structure parameters from binocular vision calibration we
can reconstruct object points in 3D by triangulation.

Define transformation matrices from world coordinate system to normalized image coordinate
system:

Pl =
[
I3×3 03×1

]
, (3-49)

Pr =
[
R T

]
. (3-50)

Transformation from world coordinate system to normalized image coordinate system with
Pl,Pr can be described as

m̃nl = PlM̃ (3-51)
m̃nr = PrM̃ (3-52)

Linear Triangulation

Known Eq. (3-51) and Eq. (3-52), we have

m̃nl ×PlM̃ = 0, (3-53)
m̃nr ×PrM̃ = 0, (3-54)

where m̃nl = [ul, vl, 1]T , m̃nr = [ur, vr, 1]T are normalized image points.
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For every image point pair m̃nl,ij ↔ m̃nr,ij and their corresponding object point Mj , Eq. (3-
53) and Eq. (3-54) can be tackled into matrix format:

vl,ijp31 − p21 vl,ijp32 − p22 vl,ijp33 − p23 vl,ijp34 − p24
ul,ijp31 − p21 ul,ijp32 − p22 ul,ijp33 − p23 ul,ijp34 − p24
vr,ijp31 − p21 vr,ijp32 − p22 vr,ijp33 − p23 vr,ijp34 − p24
ur,ijp31 − p21 ur,ijp32 − p22 ur,ijp33 − p23 ur,ijp34 − p24


︸ ︷︷ ︸

Aij

M̃j = 0, (3-55)

in which i ∈ {1, . . . , N}, j ∈ {1, . . . , L},mnl,ij = [ul,ij , vl,ij ]T ,mnr,ij = [ur,ij , vr,ij ]T .
The solution of the linear equation Eq. (3-55) is the object point Mj corresponding to the
image pair m̃nl,ij ↔ m̃nr,ij .

Nonlinear Triangulation

Assume Pl,Pr from Eq. (3-49) and Eq. (3-50) are error free. Then by solving the minimization
problem [20]

min
Mj

d(m̃nl,ij ,PlM̃j)2 + d(m̃nr,ij ,PrM̃j)2 (3-56)

the 3D object point Mj corresponding to image pair m̃nl,ij ↔ m̃nr,ij can be found.

3-2-2 Software Flow Diagram

Given N image frames, we can extract L feature points from every image frame. Denote the
observed distorted image points as {mij}, in which i ∈ {1, . . . , N}, j ∈ {1, . . . , L}. As shown
in Figure 3-1, calibration starts from every camera.
As described in subsection 3-1, with known image points intrinsic and extrinsic parameters,
which are intrinsic matrixA, rotation and translation matrices {Ri}, {ti} for all frames, and
distortion coefficients k1, k2, can be obtained using Zhang’s [12] calibration method. On
these bases distortion coefficients that transform distorted image points to distortion-free
image points are calculated for correction of image points.
Structure parameters, rotation and translation matrices R,T that transform right camera
coordinate system to left one, can be obtained using results from calibration of left and right
camera, as shown in Figure 3-2.

Evaluation of Reconstruction Results

Evaluation of reconstruction results is about the difference between original and estimated
object points. The error criterion can be defined as the average Euclidean distance of original
and estimated object points [13]:

E = 1
N

1
L

N∑
i=1

L∑
j=1

d(Mj ,Mest,ij), (3-57)

which is the evaluation of the precision of calibration and reconstruction results.
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Acquire Images

Extract Feature Points

Obtain Intrinsic & Ex-
trinsic Parameters Using

Zhang’s Calibration Method

Obtain Distortion Coefficients

Correct Image Points

Stereo Vision Calibration

{mij}

A, {Ri}, {ti}, k1, k2

p

{mn,ij}

Figure 3-1: Single Camera Calibration Flowchart. Extract feature points {mij} in every image
frame, in which mij indicates the jth feature point in ith image frame and i ∈ {1, . . . , N}, j ∈
{1, . . . , L} if we have N image frames and L feature points in every frame. As described in
subsection 3-1, with known image points intrinsic and extrinsic parameters, which are intrinsic
matrixA, rotation and translation matrices {Ri}, {ti} for all frames, and distortion coefficients
k1, k2, can be obtained using Zhang’s [12] calibration method. On these bases distortion coef-
ficients that transform distorted image points to distortion-free image points are calculated for
correction of image points.

3-3 Light Source Calibration

3-3-1 Simulation of System

The set-up of calibrating the light sources is shown in Figure 3-3. The combination of the
glass sphere, whose radius is similar to human eye, and the chessboard makes it possible to
calibrate cameras and light sources using the same target.

Denote the positions of two LED light sources as L1,L2. The two LED will generate two
glints when they are close enough to the sphere.Glints are the reflection points of the LED
light sources on the surface of the sphere.
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Left Camera Calibration Right Camera Calibration

Centroid-based Op-
timization Method

Nonlinear Triangulation

Mest,j

mnl,ij mnr,ij

R,T

Figure 3-2: Stereo calibration flowchart. In stereo calibration procedure, results of left and right
cameras are used to calculate the structure parameters that transform right camera coordinate
system to left one. Finally estimation of 3D object points corresponding to image pair mnl,ij ↔
mnr,ij can be obtained.

Figure 3-3: Calibration set-up for both cameras and light sources. Left side is a glass sphere,
which is used to create the glints like human eyes. Right side is a chessboard, which can be used
to calibrate cameras. The relative position of the sphere and the chessboard and the radius of
the sphere are known.

3-3-2 Reconstruction of Light Source

While taking images for camera calibration, sphere and glints are included. If the positions of
two LED light sources are not changed during the imaging process, they can be reconstructed
by finding out the positions of the sphere’s center and glints in 3D coordinate system.

In the world coordinate system, whose origin is the corner of the chessboard, the position of
the sphere’s center is known given the CAD structure of the lens as shown in Figure 3-4. The
sphere’s center is 1.6 mm higher than the plane Z = 0 of the board. The positions of the
sphere’s center in the plane X − Y of the board is known when it’s made.

Glints can be reconstructed from two camera views based on results from camera calibration.
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Figure 3-4: Details of the sphere lens in the board [21].

As defined in Figure 2-5, the glints, which are the point of reflections, are denoted as qij , in
which i denotes the index of the light sources and j the cameras. Each pair (q11,q12) and
(q21,q22) can reconstruct their corresponding glints, which are denoted as g1,g2.

Figure 3-5: Reconstruction of light sources by intersection of 3D lines that pass through sphere’s
center and glints. At least two image frames of the sphere and glints are required to reconstruct
light sources. As shown in the figure, the sphere’s centers are denoted as Cs1,Cs2 for image 1
and 2 respectively. The glints are denoted as gij , in which i denotes the index the light sources
and j the image frames.

Denote the center of the sphere as Cs. Then in every image frame the 3D line that passes
through the sphere’s center and one glint passes through the light source corresponding to
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the glint as shown in Figure 3-5. At lease two image frames of the sphere and glints are
required to reconstruct light sources. As shown in the figure, the sphere’s centers are denoted
as Cs1,Cs2 for image 1 and 2 respectively. The glints are denoted as gij , in which i denotes
the index the light sources and j the image frames.

Assume the 3D coordinates of the spheres centers Cs1,Cs2 are (xc1, yc1, zc1), (xc2, yc2, zc2) and
the glints g11,g12 are (xg1, yg1, zg1), (xg2, yg2, zg2) respectively. Then the 3D lines that pass
through the sphere’s center and glints can be expressed by Eq. (3-58) and Eq. (3-59):

l1 = (xg1 − xc1, yg1 − yc1, zg1 − zc1), (3-58)
l2 = (xg2 − xc2, yg2 − yc2, zg2 − zc2). (3-59)

The intersection of two lines l1, l2 is

L1 = Cs1 ±
‖
−−−−→Cs1g11 ×

−−−−−→Cs1Cs2‖
‖
−−−−→Cs1g11 ×

−−−−→Cs2g12‖
−−−−→Cs2g12, (3-60)

in which + is used when ‖(−−−−→Cs1g11 ×
−−−−−→Cs1Cs2)× (−−−−→Cs1g11 ×

−−−−→Cs2g12)‖ = 0.
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Chapter 4

Results and Discussion

This chapter introduces how to realize camera calibration and light source reconstruction
using theory from previous chapter.

4-1 Hardware Setup

The cameras and infrared LED light sources are introduced as in Table 4-1.

Table 4-1: Hardware Setup

Hardware × 2 Description

Monochrome Camera (UI-3140CP-M-GL Rev.2) 1280× 1024 resolution with 224 fps(peak)
C-Mount Lens (Fujinon HF50HA-1B) 50mm focal length with 1.5 Megapixels
Infrared LED (SFH 4554) 860nm, Half Angle: 10 degree

4-2 Monocular Camera Calibration

There are multiple camera calibration toolboxes. Three mainly used toolboxes are shown as
follows. Algorithms used in the three toolboxes are based on Zhang’s calibration method [12]
and Heikkila’s four-step method [18].

4-2-1 Matlab Caltech Calibration Toolbox

This toolbox is developed by Bouguet [22]. The output of the toolbox is a list of all parameters
of camera, including intrinsic and extrinsic parameters. Here’s the introduction of intrinsic
parameters:

Master of Science Thesis Yu Zhang



32 Results and Discussion

• Focal length [fu, fv] ∈ R2: with units of pixels

• Principle point coordinates [u0, v0] ∈ R2: in pixels

• Skew coefficient γ: indicates the angle between x and y pixel axes

• Distortions: D ∈ R5

The camera model is based on Zhang’s calibration method and the skew coefficient is set to
be zero: γ = 0, which is the default set of the toolbox. Hence the intrinsic matrix can be
represented as:

A =

fu 0 u0
0 fv v0
0 0 1

 . (4-1)

Another default set is about the distortion coefficients D. Based on Zhang’s calibration
method, the distortion order should not be over 4th order, which means D5 = 0, and the
tangential distortion is discarded, which mean only the last three components of kc are set
zero.

The extrinsic parameters outputs are the lists of rotation and translation matrices for every
image loaded for calibration. In this toolbox, the transformation of two coordinate systems
is from the grid reference frame to camera reference frame.

The calibration procedure starts from extracting corners of grid images. The fist chosen corner
is defined as the origin of the grid reference frame, as shown in Figure 4-1. The uncertainties

Figure 4-1: The grid reference frame. The origin is the first point that we choose at the beginning
of the calibration. The Z axis is perpendicular to the X-Y plane shown in the figure. The point
indicated in the figure is an example of feature points.

of intrinsic and extrinsic parameters are also outputs and represent approximately three times
the standard deviations of the errors of estimation.

Yu Zhang Master of Science Thesis



4-2 Monocular Camera Calibration 33

Figure 4-2: An example of using Caltech calibration toolbox. The left picture is showing al the
examples that we use in the calibration toolbox. The right picture shows the detection of feature
points in the image based on the coordinate frame that we chose from previous steps. The origin
of the coordinate frame is the first click of feature point in the first image.

The calibration function computes the final intrinsic and extrinsic parameters by minimizing
the reprojection error Eq. (3-18) [22]. An example is shown as in Figure 4-2.

Bouguet’s algorithm has some drawbacks. This algorithm is highly dependent on the cali-
bration image set (size and position of the calibration pattern, lighting conditions, camera
quality, noise level and stability, and number of images) and errors occurs in the estimation
of the principle point coordinates [23].

4-2-2 Matlab Computer Vision Toolbox

In this case the chessboard is required not to be square to enable the app to determine the
orientation of the board.

The vectors in the Matlab toolbox and in Bouguet’s [22] model are transpositions:

w
[
x y 1

]
=
[
X Y Z 1

] [R
t

]
A,

A =

fu 0 0
γ fv 0
u0 v0 1

 ,
• (X,Y, Z) world coordinates of a point,

• (x, y) corresponding image point in pixels,

• w arbitrary homogeneous coordinates scale factor,

• R the rotation matrix representing the 3D rotation of camera,

• t the translation of camera relative to the world coordinate system,
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• A the intrinsic matrix (assume skewness γ = 0),

• fu = Fsx, fv = Fsy: with F the focal length of camera and (sx, sy) the number of pixels
per world unit in x and y direction respectively.

The toolbox estimates the intrinsic and extrinsic parameters and distortion coefficients in two
steps:

• With distortion discarded, solve for the intrinsic and extrinsic parameters;

• By solving nonlinear least-squares minimization problem (minimizing the reprojection
error) with Levenberg-Marquardt algorithm and initial estimation of all parameters
from last step, all parameters are refined simultaneously.

4-2-3 OpenCV Standard Algorithm

This method is based on Zhang’s calibration method [12] and Bouguet’s toolbox [22]. Multiple
flags that help adding constraints in calibration process can be utilized. Contributing flags
are introduced as follows [24]:

• CALIB_USE_INTRINSIC_GUESS: Initial guess of intrinsic parameters fx, fy, u0, v0
need to be offered and to be optimized further using Eq. (3-18). Otherwise, the principle
point (u0, v0) are set to the image center as initial guess by default.

• CALIB_FIX_PRINCIPAL_POINT: The principle point (u0, v0) will not change during
optimization. It’s fixed either at the center of the image or a position specified by setting
flag CALIB_USE_INTRINSIC_GUESS, which means Eq. (3-18) can be written as

min
fx,fy ,Ri,ti

N∑
i=1

L∑
j=1
‖mij − m̂(fx, fy,Ri, ti,Mj)‖2 (4-2)

• CALIB_FIX_ASPECT_RATIO: When the flag CALIB_USE_INTRINSIC_GUESS
is set and the initial guess of intrinsic parameters is given, the ratio fx/fy keeps the
same as in the initial guess and fy is considered as a free parameter. Otherwise, only
the ratio is computed and used while the actual values of fx, fy are ignored.

• CALIB_ZERO_TANGENT_DIST: Tangential distortion coefficients are set to zeros
and stay zero.

Flags CALIB_FIX_PRINCIPAL_POINT and CALIB_FIX_ASPECT_RATIO are not used.
The principle point is set to the center of the image by default. However, due to it’s also con-
sidered as the center of distortion, the principle point usually deviates from the center of the
image [11]. If it’s fixed, then the real center of distortion can be miscalculated. For the flag
CALIB_FIX_ASPECT_RATIO, due to existence of distortion the focal length in different
directions can be different and cannot be computed in high accuracy. Hence, the two flags can-
not contribute to satisfying calibration results and only CALIB_USE_INTRINSIC_GUESS
and CALIB_ZERO_TANGENT_DIST are used.
Initial guess of camera parameters can be given by calibration function using only flag
CALIB_ZERO_TANGENT_DIST. Then optimization of parameters can be done by the
second calibration function using flag CALIB_USE_INTRINSIC_GUESS.

Yu Zhang Master of Science Thesis



4-2 Monocular Camera Calibration 35

4-2-4 Comparison of Toolboxes

The evaluation of performances of the three toolboxes is based on reprojection error, which is
introduced in chapter 2. Reprojection errors of two cameras using Caltech calibration toolbox
[22], OpenCV algorithm and Matlab Calibrator app are shown as in Figure 4-3, Figure 4-4
and Figure 4-5 respectively. In every figure, for every camera reprojection errors of using the
whole image set and the image set after suppressing several ill-conditioned images. Overall
mean reprojection errors after removing images are smaller than those using the whole image
set.
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(a) Reprojection errors of camera 1 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.29769, 0.23850
on x and y axes respectively. The mean repro-
jection error for all images is 0.381 pixels.
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(b) Reprojection errors of camera 1 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors
are 0.27734, 0.23871 on x and y axes respec-
tively. The mean reprojection error for all images
is 0.366 pixels.
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(c) Reprojection errors of camera 2 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.32800 0.23423 on
x and y axes respectively. The mean reprojection
error for all images is 0.403 pixels.
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(d) Reprojection errors of camera 2 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors
are 0.30247, 0.22964 on x and y axes respec-
tively. The mean reprojection error for all images
is 0.380 pixels.

Figure 4-3: Reprojection errors of two cameras using Matlab Caltech Camera Calibration Toolbox
[22]. The overall mean reprojection error is 0.4 pixels.
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(a) Reprojection errors of camera 1 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.3290, 0.3495 on x
and y axes respectively. The mean reprojection
error for all images is 0.372 pixels.
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(b) Reprojection errors of camera 2 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors are
0.2103, 0.2245 on x and y axes respectively. The
mean reprojection error for all images is 0.238
pixels.
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(c) Reprojection errors of camera 1 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.29769, 0.23850
on x and y axes respectively. The mean repro-
jection error for all images is 0.395 pixels.
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(d) Reprojection errors of camera 2 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors
are 0.30247, 0.22964 on x and y axes respec-
tively. The mean reprojection error for all images
is 0.254 pixels.

Figure 4-4: Reprojection errors of two cameras using OpenCV standard method [24]. The overall
mean reprojection error is 0.315 pixels.
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(a) Reprojection errors of camera 1 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.3285, 0.3444 on x
and y axes respectively. The mean reprojection
error for all images is 0.328 pixels.
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(b) Reprojection errors of camera 1 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors are
0.3285, 0.3444 on x and y axes respectively. The
mean reprojection error for all images is 0.220
pixels.

Reprojection Errors

0 5 10 15 20 25

image pairs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
e
a

n
 E

rr
o

r 
in

 P
ix

e
ls

Overall Mean Error: 0.344 pixels

(c) Reprojection errors of camera 1 using the
whole image set, which are 26 images. The
mean reprojection errors are 0.2201, 0.2276 on x
and y axes respectively. The mean reprojection
error for all images is 0.344 pixels.
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(d) Reprojection errors of camera 2 after sup-
pressing 8 ill-conditioned images (7-14), which
are 18 images. The mean reprojection errors are
0.2201, 0.2276 on x and y axes respectively. The
mean reprojection error for all images is 0.228
pixels.

Figure 4-5: Reprojection errors of two cameras using Matlab Computer Vision Toolbox Calibrator
App [25]. The overall mean reprojection error is 0.28 pixels.
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Table 4-2: Reprojection Errors of Cameras Using Different Toolboxes.

Reprojection Error (pixels) Camera 1 Camera 2

Caltech Calibration Toolbox first 0.381 0.403
second 0.366 0.380

OpenCV Algorithm first 0.372 0.395
second 0.238 0.254

Matlab Calibrator App first 0.328 0.344
second 0.220 0.228

Comparing reprojection errors of three toolboxes listed in Table 4-2, Matlab Calibrator app
gives the best performance for both cameras and before and after removing ill-conditioned
images.

4-3 Stereo Camera Calibration

Two methods of computing structure parameters are introduced in chapter 3. Reconstruction
errors using these two methods are shown as in Figure 4-6. The first row shows the recon-
struction errors of the whole image set (left) and the image set after removing ill-conditioned
images (right, the same images are removed as in single camera calibration) based on OpenCV.
The second row shows the reconstruction errors using Matlab.
Performances of two different methods computing structure parameters are compared in 4-7.
Left figure shows the results of Gai’s method [14] and the right one shows the results of Cui’s
method [13]. As can be seen from the figures, Cui’s method gives better performance, which
is 0.19mm, than Gai’s method, which is 0.22mm.
As shown in Figure 4-8, this method gives a good performance of reconstruction. Only points
at the edges show that the distortion cannot be removed thoroughly.

4-3-1 Reconstruction of Light Sources

To reconstruct the light sources, the images should contain the the sphere and glints as
shown in Figure 4-9. In Figure 4-9 the images of the calibration board have the same pose,
which means the extrinsic parameters for these two images are the same. The chessboard in
Figure 4-9a helps to compute the extrinsic parameters. Without illumination in Figure 4-9b
highlights on the surface of the sphere can be removed and thus helps recognition of real
glints.
As shown in Figure 4-10, there are multiple highlights in the images and real reflection points
of light sources should be recognized first such that the positions of the light sources can be
computed. In the right figure of Figure 4-10, the selected glints are shown in the red rectangle.

The positions of light sources are computed based on the method mentioned in chapter 3.
Results are shown in Figure 4-11, in which the blue and red circles represent the results of
light source 1 and 2 respectively. Light source 1 corresponds to the left glint in Figure 4-10
and light source 2 the other.
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Figure 4-6: Reconstruction errors using OpenCV and Matlab. The first row shows the recon-
struction errors of the whole image set (left) and the image set after removing ill-conditioned
images (right, the same images are removed as in single camera calibration) based on OpenCV.
The second row shows the reconstruction errors using Matlab.
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Figure 4-7: Results of two different methods of computing structure parameters while other
parts are kept the same. Left figure shows the results of Gai’s method [14] and the right one
shows the results of Cui’s method [13]. As can be seen from the figures, Cui’s method gives
better performance than Gai’s method.
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Figure 4-8: Reconstruction results. Points at the edge above show that there is still distortion.

(a) Image for calibration with illumination. (b) Image for calibration without illumination.

Figure 4-9: Images for the board with the same pose. The difference between these two images
is the illumination. The chessboard in Figure 4-9a helps to compute the extrinsic parameters.
Without illumination in Figure 4-9b highlights on the surface of the sphere can be removed and
thus helps recognition of real glints.

Discussion

As shown in Figure 4-11 the results of light sources positions vary a lot and no accurate and
precise results can be obtained using this method. The distances from the first reconstructed
light source to all the other reconstructed results.

Yu Zhang Master of Science Thesis



4-3 Stereo Camera Calibration 41

Figure 4-10: Chosen glints on the surface of the sphere. The right figure shows the glints
selected with the red rectangle. Other highlights are not real glints that we need.

Figure 4-11: Estimation of the positions of light sources in 3D. As indicated in the figure, the
blue and red circles represent the results of light source 1 and 2 respectively, in which light source
1 corresponds to the left glint in Figure 4-10 and light source 2 the other.

Figure 4-12: Distances of the reconstructed light source in the first image pair to all the other
reconstructed light source points.
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Chapter 5

Conclusion

In this chapter, results achieved are listed and future work are introduced.

5-1 Achievements

The results obtained during the thesis are listed as follows:

• In single camera calibration, three toolboxes were tested and novel distortion correction
method were used.

• In stereo camera calibration, two methods of computing the structure parameters were
tested and compared.

• Reconstruction of object points in 3D are realized with precision of 0.1 mm.

• Primary reconstruction of LED light sources was done but needs to be improved.

5-2 Future Work

To make a high-accuracy eye tracker, more work need to be done:

• Improve the method of reconstructing the positions of LED light sources.

• A way of improving the accuracy rather than precision should be evaluated.
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Appendix A

Decoupled Single Camera Calibration
Method

As introduced in chapter 2, calibration of a camera is to compute the intrinsic and extrinsic
parameters given several image frames. All parameters are optimal solutions of maximum
likelihood estimation.
However, this widely used method can cause errors. First is the iteration can end up with
a local minimum. Second is the bundle adjustment of all parameters including distortion
coefficients may lead to an unstable optimization problem of the procedure of iterations is
not properly designed, which divergence or false solutions would be given [26].
Hence, a flexible method that decouple distortion parameters and camera intrinsic parameters
is introduced to avoid problems mentioned above [27]. This method is introduced for reference.

A-1 Center of Distortion

Usually the center of distortion is defined as the center of the image, which is called principle
point in Zhang’s calibration method [12]. However, it’s not safe due to distortion [11].
Radial distortion is considered as the main distortion model. Eq. (A-1) is used to express
getting the distorted image point x̃d from ideal image point x̃u = [I|0]M̃, in which ẽ denotes
the center of distortion.

x̃d = ẽ + λ(x̃u − ẽ). (A-1)

Transform the image point x̃ and the center of distortion into pixel coordinate system with
camera intrinsic matrix A:

xd = Ax̃d, (A-2)
xu = Ax̃u, (A-3)

e = Aẽ. (A-4)
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46 Decoupled Single Camera Calibration Method

Thus:

xd = e + λ(xu − e). (A-5)

Multiple [e]× on the left of Eq. (A-5) and Eq. (A-6) is obtained with xu = HM, in which M
is the object point on calibration chessboard.

[e]×xd = λ[e]×HM. (A-6)

Finally, multiply Eq. (A-6) on the left by xdT and Eq. (A-7) is obtained:

0 = λxdT ([e]×H)M = λxdTFM, (A-7)

in which F = [e]×H is called as the fundamental matrix for radial distortion and the way of
computing it is similar to usual way from several point correspondences [11].

The last step tp obtain the distortion center e is to extract left epipole of the fundamental
matrix for radial distortion.

A-2 Distortion Coefficients and Homography

Once the center of distortion is obtained, transform the system into another that has its origin
at the center of distortion, which means:

ě =

1 0 −u0
0 1 −v0
0 0 1

 ẽ = Tẽ =

0
0
1

 (A-8)

if we define the original center of distortion as ẽ = [u0, v0, 1]T .

Then the transformed image points, both distorted and not-distorted, can be described as:

x̌d = Txd, (A-9)
x̌u = Txu. (A-10)

With Eq. (A-7), the new fundamental matrix for radial distortion is:

F̌ =

 1 0 0
0 1 0
u0 v0 1

F. (A-11)

Since F = [e]×H and ě = [0, 0, 1]T , we can obtain

F̌ = [ě]×Ȟ =

0 −1 0
1 0 0
0 0 0

 Ȟ. (A-12)
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A-2 Distortion Coefficients and Homography 47

Let F̌ = [f̌T1 ; f̌T2 ; f̌T3 ] and Ȟ = [ȟT1 ; ȟT2 ; ȟT3 ], where the semicolons stack every row f̌Ti of F̌ on
top of each other. Based on Eq. (A-12) first two rows of Ȟ can be expressed by rows of the
fundamental matrix for radial distortion. Given the fundamental matrix for radial distortion
and the corresponding epipole, only the third row of the homography needs to be computed,
which is Ȟ = [f̌T2 ;−f̌T1 ; ȟT3 ].

To solve the final row of the homography, Li [28] and Yan [27] used the division model of
radial distortion [29]. Express the undistorted image point x̌u = [x̌u, y̌u]T with distorted
image point x̌d = [x̌d, y̌d]T :

x̌u = x̌d

L(řd, k) , (A-13)

y̌u = y̌d

L(řd, k) , (A-14)

where řd =
√
x̌2
d + y̌2

d and

L(řd, k) = 1 + k1ř
2
d + k2ř

4
d. (A-15)

Substitute these parameters into Eq. (3-5) and we can get

s


x̌d

L(řd,k)
y̌d

L(řd,k)
1

 =

ȟT1
ȟT2
ȟT3

M. (A-16)

Hence, for each point the following equations can be obtained:[
x̌d(ȟT3 M)− (ȟT1 M)(k1ř

2
d + k2ř

4
d)

y̌d(ȟT3 M)− (ȟT2 M)(k1ř
2
d + k2ř

4
d)

]
=
[
ȟT1 M
ȟT2 M

]
, (A-17)

=⇒
[
x̌dMT (−f̌T2 M)[ř2

d ř4
d]

y̌dMT (f̌T1 M)[ř2
d ř4

d]

]ȟ3
k1
k2

 =
[

f̌T2 M
−f̌T1 M

]
. (A-18)

For every image the homography and the distortion coefficients can be computed at the same
time given n corresponding points which satisfy 2n ≥ m + 3 (m is the number of distortion
coefficients to compute).

Another parameter-free method introduced by Hartley [11] ignored the distortion models and
only considered two assumptions:

• The distortion is radially symmetric. Thus the radial distortion of an image point
depends only on its distance from the center of distortion.

• An ordering, or monotonicity condition: the radial distance of points from the radial
center after distortion is a monotonic function of their distance before distortion.
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48 Decoupled Single Camera Calibration Method

Denote the first two rows of the homography as Ĥ and the final row as vT , which make the
homography as Ȟ = [Ĥ; vT ]. Using Eq. (3-5) we can obtain

xu = [ĤM; vTM] = (x̂u, ŷu)
vTM , (A-19)

where x̂u = (x̂u, ŷu)T = ĤM. (A-20)

Thus the effect of vT is to stretch the point by the factor 1
vTM . Consequently the radii of

the distorted and ideal image points are also stretched based on the two assumptions above,
which is

ru = r̂u

vTM , (A-21)

where rd = |xd|, r̂u = |x̂u|, (A-22)

ru = | x̂
vTM | =

r̂u

|vTM| . (A-23)

Given n corresponding points, define the total squared variation of the functions Eq. (A-21)
for every point in the same image:

Vt =
n−1∑
i=1

(rui+1 − rui )2 (A-24)

=
n−1∑
i=1

(
r̂ui+1

vTMi+1
− r̂ui

vTMi

)2
(A-25)

=
n−1∑
i=1

(
r̂ui+1vTMi − r̂ui vTMi+1

vTMi+1vTMi

)2

. (A-26)

By solving the minimization of the function

V = ‖Av‖, (A-27)
subject to ‖v‖ = 1, (A-28)

where A =


r̂u2 MT

1 − r̂u1 MT
2

r̂u3 MT
2 − r̂u2 MT

3
...

r̂unMT
n−1 − r̂un−1MT

n

 (A-29)

for a single image, the final row vT can be computed and thus the homography for this image
is obtained.

Camera intrinsic parameters can be extracted from the homography using Zhang’s method
[12].
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Appendix B

Illumination Safety

From data sheet of the infrared light source SFH 4554, we can get the following parameters:

• Peak wavelength λpeak = 860nm

• The length and width of the active area of the light source L = W = 0.3mm

• Radiant intensity Ie = 550mW/sr

The exposure limits are given with several constraints [?]:

exposure limits for cornea Ee = Ie
d2 ≤ EIR =

{
18000 · t−0.75W/m2

100W/m2 (B-1)

exposure limits for retina α = Z

d
∈ [αmin, αmax] (B-2)

with αmax = 0.1rad, (B-3)

αmin =


0.0017, t ≤ 0.25s
0.0017 ·

√
t

0.25 , t ∈ (0.25, 10)s
0.011, t ≥ 10s

(B-4)

spectral radiance LIR ≈ Ie
R(λ)
Z2 ≤

{ 50000
α·t0.25 , t < 10s
6000
α , t ≥ 10s

(B-5)

with Z = L+W
2 , d the distance between eye and light source, and R(λ) = 10

700−λ
500 .

With known parameters we can first get

Z = L+W

2 = 0.3mm, R(λpeak) = 10
700−850

500 = 0.4786 (B-6)
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50 Illumination Safety

Then for worst case the distance d should satisfy:

Ee = 0.55× 2
d2 ≤ 100⇒ d ≥

√
1.1
100 = 0.1049m (B-7)

6000
Z
d

= 6000d
0.3× 10−3 ≥

1.1× 0.4786
(0.3× 10−3)2 ⇒ d ≥ 1.1× 0.4786

6000× 0.3× 10−3 = 0.2925m (B-8)

that is the distance from eye to the light source should be larger than 0.3m with 2 LED light
sources.
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Appendix C

Matlab Code

1 %% Initialization
2 clear all ; clc ;
3 data ;
4 %%
5 L = featurepoints (3 ) . featureindices ;
6 N = featurepoints (3 ) . imageindices ;
7 Al = featurepoints (1 ) . intrinsic ;
8 Ar = featurepoints (2 ) . intrinsic ;
9 R = featurepoints (3 ) . structure . rotation ;

10 T = featurepoints (3 ) . structure . translation ;
11 kc_left = [ featurepoints (1 ) . distortion (1 ) featurepoints (1 ) . distortion (2 )

] ;
12 kc_right = [ featurepoints (2 ) . distortion (1 ) featurepoints (2 ) . distortion (2 )

] ;
13 % essential and fundamental matrices
14 [ E , F ] = Essential_Fundamental (Al , Ar , R , T ) ;
15 [ el , er ] = Epipole (Al , Ar , R , T ) ;
16 %% Step 1: Correct image points
17 % Get distortion coefficients for every image
18 for i = 1 : N
19 % normalize image points into normalized image plane
20 tmp1 = Al \ [ featurepoints (1 ) . image (i ) . imgcoordinates ; ones (1 , L ) ] ;
21 featurepoints (1 ) . image (i ) . normalized = tmp1 ( 1 : 2 , : ) ;
22 tmp2 = Ar \ [ featurepoints (2 ) . image (i ) . imgcoordinates ; ones (1 , L ) ] ;
23 featurepoints (2 ) . image (i ) . normalized = tmp2 ( 1 : 2 , : ) ;
24 end
25 % Collection of distortion coefficients P
26 P_left = zeros (8 , N ) ;
27 P_right = zeros (8 , N ) ;
28 for i = 1 : N
29 P_left ( : , i ) = Distortion_Coefficients (Al , kc_left ) ;
30 P_right ( : , i ) = Distortion_Coefficients (Ar , kc_right ) ;
31 end
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52 Matlab Code

32 for i = 1 : N
33 % pixel coordinate system
34 featurepoints (1 ) . image (i ) . corrected = Correction_Imagepoints (

featurepoints (1 ) . image (i ) . normalized , P_left ( : , i ) ) ;
35 featurepoints (2 ) . image (i ) . corrected = Correction_Imagepoints (

featurepoints (2 ) . image (i ) . normalized , P_right ( : , i ) ) ;
36 end
37 %% Step 2:Triangulation
38 % linear triangulation --- not working
39 P1 = [ eye (3 ) zeros ( 3 , 1 ) ] ;
40 P2 = [ R T ] ;
41 % for i = 1:N
42 % for j = 1:L
43 % mnl = [featurepoints(1).image(i).corrected(:,j);1];
44 % mnr = [featurepoints(2).image(i).corrected(:,j);1];
45 % mnlx = [0 -mnl(3) mnl(2); mnl(3) 0 -mnl(1); -mnl(2) mnl(1) 0];
46 % mnrx = [0 -mnr(3) mnr(2); mnr(3) 0 -mnr(1); -mnr(2) mnr(1) 0];
47 % mm = [mnlx*P1; mnrx*P2]; [~,~,V] = svd(mm); sol = V(:,end);
48 % featurepoints(4).image(i).est(:,j) = sol(1:3)/sol(4);
49 % end
50 % end
51 % nonlinear triangulation
52 % triangulation
53 for i = 1 : N
54 for j = 1 : L
55 mnl = featurepoints (1 ) . image (i ) . corrected ( : , j ) ;
56 mnr = featurepoints (2 ) . image (i ) . corrected ( : , j ) ;
57 costtotal = @ (x ) CostTriangulation (x , R , T , mnl , mnr ) ;
58 x0 = featurepoints (4 ) . image (i ) . ccs ( : , j ) ;
59 % options.Algorithm = ’levenberg -marquardt ’;
60 % options.MaxFunctionEvaluations = 5000;
61 % x = lsqnonlin(costTri ,x0,[],[],options);
62 x_tri1 = fminunc ( costtotal , x0 ) ;
63 featurepoints (4 ) . image (i ) . est ( : , j ) = x_tri1 ;
64 end
65 end
66 %% Plot
67 % plot of mean error between estimated and observed of every image
68 x1 = 1 : N ; y1 = zeros (1 , N ) ;
69 for i = 1 : N
70 distance = 0 ;
71 for j = 1 : L
72 tmpd2 = norm ( featurepoints (4 ) . image (i ) . ccs ( : , j )−featurepoints (4 ) .

image (i ) . est ( : , j ) ) ;
73 distance = distance + tmpd2 ;
74 end
75 y1 ( : , i ) = distance/L ;
76 end
77 mean3d = sum (y1 ) /N ;
78 disp (’Reconstruction Error: ’ ) ;
79 disp ( mean3d ) ;
80 f1 = figure ( ) ;
81 plot (x1 , y1 ) ;
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82 xlabel (’image index’ ) ;
83 ylabel (’distance error (mm)’ ) ;
84 title (’Euclidean Distance of All Images’ ) ;
85 f2 = figure ( ) ;
86 xe = featurepoints (4 ) . image (1 ) . est ( 1 , : ) ;
87 ye = featurepoints (4 ) . image (1 ) . est ( 2 , : ) ;
88 ze = featurepoints (4 ) . image (1 ) . est ( 3 , : ) ;
89 xc = featurepoints (4 ) . image (1 ) . ccs ( 1 , : ) ;
90 yc = featurepoints (4 ) . image (1 ) . ccs ( 2 , : ) ;
91 zc = featurepoints (4 ) . image (1 ) . ccs ( 3 , : ) ;
92 scatter3 (xe , ye , ze ) ;
93 hold on ;
94 scatter3 (xc , yc , zc ) ;
95 legend (’estimated’ , ’object points in ccs’ ) ;
96 xlabel (’x’ ) ;
97 ylabel (’y’ ) ;
98 zlabel (’z’ ) ;
99 % bar of reconstruction error

100 figure ( ) ;
101 b4 = bar (y1 , ’FaceColor’ , [ 0 . 3 010 0 .7450 0 . 9 3 3 0 ] ) ;
102 xlabel (’image pairs’ ) ;
103 ylabel (’Mean Error in mm’ ) ;
104 title (’Recontruction Errors’ ) ;
105 le4 = sprintf (’Overall Mean Error: %.3f mm’ , mean3d ) ;
106 line4 = yline ( mean3d , ’--b’ ) ;
107 legend (b4 , le4 ) ;
108 % plot relationship between xyz and reconstruction error
109 % f3 = figure();
110 % errx = zeros(1,N*L); erry = zeros(1,N*L); errz = zeros(1,N*L);
111 % xerr = zeros(1,N*L); yerr = zeros(1,N*L); zerr = zeros(1,N*L);
112 % for i = 1:N
113 % errx((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(1,:) -

featurepoints(4).image(i).ccs(1,:);
114 % erry((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(2,:) -

featurepoints(4).image(i).ccs(2,:);
115 % errz((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(3,:) -

featurepoints(4).image(i).ccs(3,:);
116 % xerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(1,:);
117 % yerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(2,:);
118 % zerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(3,:);
119 % end
120 % subplot(1,3,1); scatter(xerr, errx); xlabel(’x’); ylabel(’

reconstruction error along x axis ’);
121 % subplot(1,3,2); scatter(yerr, erry); xlabel(’y’); ylabel(’

reconstruction error along y axis ’);
122 % subplot(1,3,3); scatter(zerr, errz); xlabel(’z’); ylabel(’

reconstruction error along z axis ’);
123 % scatter3(xerr, yerr, zerr);
124 % title(’Reconstruction error along x, y, z axis respectively ’);
125
126 % save figures
127 % if flag == 0
128 % saveas(f1, ’re.png’);
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129 % saveas(f2, ’re3d.png’);
130 % % saveas(f3, ’rexyz.png’);
131 % elseif flag == 1
132 % saveas(f1, ’re_15 -08-19.png’);
133 % saveas(f2, ’re3d_15 -08-19.png’);
134 % % saveas(f3, ’rexyz_15 -08-19.png’);
135 % elseif flag == 2
136 % saveas(f1, ’re_10 -07-19.png’);
137 % saveas(f2, ’re3d_10 -07-19.png’);
138 % % saveas(f3, ’rexyz_10 -07-19.png’);
139 % elseif flag == 3
140 % saveas(f1, ’re_16 -07-19.png’);
141 % saveas(f2, ’re3d_16 -07-19.png’);
142 % % saveas(f3, ’rexyz_16 -07-19.png’);
143 % elseif flag == 4
144 % saveas(f1, ’re_09 -09-19.png’);
145 % saveas(f2, ’re3d_09 -09-19.png’);
146 % end
147
148
149 % Plot of reprojection error vs. depth
150 % depth = zeros(1,N); re = zeros(1,N); ind = 2;
151 % for i = 1:N
152 % depth(i) = featurepoints(4).image(i).ccs(3,ind);
153 % % reprojection error in normalized image plane
154 % tmpr = 4.8e-3*featurepoints(4).image(i).ccs(:,ind);
155 % re(i) = norm(featurepoints(1).image(i).normalized(:,ind)-tmpr);
156 % end
157 % figure();
158 % subplot(2,1,1);
159 % plot(xpt,ypt);
160 % xlabel(’image ’);
161 % ylabel(’distance error ’);
162 % title(’Euclidean Distance of All Images ’);
163 % subplot(2,1,2);
164 % plot(depth ,re,’*’);
165 % xlabel(’depth ’); ylabel(’reprojection error ’);
166 %% Optimization of 3d points
167 % costtotal = @(x)CostTotal(x, featurepoints);
168 % x0 = zeros(1,18+6*N);
169 % x0(1:6) = [Al(1,1); Al(2,2); Al(1,3); Al(2,3); kc_left ’];
170 % for i = 1:N
171 % x0((7+6*(i-1)):(9+6*(i-1))) = rotm2eul(featurepoints(1).image(i).

rotation)’;
172 % x0((10+6*(i-1)):(12+6*(i-1))) = featurepoints(1).image(i).

translation;
173 % end
174 % x0(7+6*N:12+6*N) = [Ar(1,1); Ar(2,2); Ar(1,3); Ar(2,3); kc_right ’];
175 % x0(13+6*N:15+6*N) = rotm2eul(featurepoints(3).structure.rotation);
176 % x0(16+6*N:18+6*N) = featurepoints(3).structure.translation ’;
177 % options = optimoptions(’lsqnonlin ’,’Display ’,’iter ’);
178 % options.Algorithm = ’levenberg -marquardt ’;
179 % options.MaxFunctionEvaluations = 5000;
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180 % x_total = lsqnonlin(costtotal ,x0,[],[],options);
181
182 %% reconstruct with optimized results
183 % Al = [x_total(1) 0 x_total(3); 0 x_total(2) x_total(4); 0 0 1];
184 % Dl = [x_total(5) x_total(6)];
185 % Ar = [x_total(7+6*N) 0 x_total(9+6*N); 0 x_total(8+6*N) x_total(10+6*N)

; 0 0 1];
186 % Dr = [x_total(11+6*N) x_total(12+6*N)];
187 % R = eul2rotm([x_total(13+6*N) x_total(14+6*N) x_total(15+6*N)]);
188 % T = [x_total(16+6*N); x_total(17+6*N); x_total(18+6*N)];
189 % M_wcs = featurepoints(1).image(1).objcoordinates; % 3L
190 % M_ccsl = zeros(3, N*L); M_ccsr = zeros(3, N*L); % objpoints in ccs
191 % M_est = zeros(3, N*L);
192 % pl = zeros(8,N); pr = zeros(8,N); % distortion coefficients
193 % for i = 1:N
194 % rl = x_total((7+6*(i-1)):(9+6*(i-1)));
195 % rl = eul2rotm(rl);
196 % tl = x_total((10+6*(i-1)):(12+6*(i-1)))’;
197 % rr = R*rl;
198 % tr = R*tl + T;
199 % M_ccsl(:,(1+L*(i-1)):L*i) = WCS2CCS(M_wcs , rl, tl);
200 % M_ccsr(:,(1+L*(i-1)):L*i) = WCS2CCS(M_wcs , rr, tr);
201 % pl(:,i) = Distortion_Coefficients(Al, Dl);
202 % pr(:,i) = Distortion_Coefficients(Ar, Dr);
203 % end
204 %
205 % for i = 1:N
206 % % corrected normalized image points
207 % % normalized image points
208 % mnl = Al\[featurepoints(1).image(i).imgcoordinates;ones(1,L)];
209 % mnr = Ar\[featurepoints(2).image(i).imgcoordinates;ones(1,L)];
210 % ml = Correction_Imagepoints(mnl, pl(:,i));
211 % mr = Correction_Imagepoints(mnr, pr(:,i));
212 % for j = 1:L
213 % costTri = @(x)CostTriangulation(x, R, T, ml(:,j), mr(:,j));
214 % x0 = featurepoints(4).image(i).est(:,j);
215 % x_tri2 = fminunc(costTri , x0);
216 % M_est(:,j+L*(i-1)) = x_tri2;
217 % end
218 % end
219 % %%
220 % x3 = 1:N; y3 = zeros(1,N);
221 % for i = 1:N
222 % tmp = M_est(:, 1+L*(i-1):L*i)-M_ccsl(:, 1+L*(i-1):L*i);
223 % y3(:,i) =sum(vecnorm(tmp))/L;
224 % end
225 % mean3d = sum(y3)/N;
226 % disp(’Reconstruction Error: ’);
227 % disp(mean3d);
228 % f3 = figure();
229 % plot(x3,y3);
230 % xlabel(’image index ’);
231 % ylabel(’distance error (mm)’);
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232 % title(’Euclidean Distance of All Images ’);

1 % This combines all calibration results of caltech calibration toolbox
into

2 % a struct featurepoints , which contains:
3 % featurepoints(1): left camera
4 % intrinsic , distortion
5 % featurepoints(1).image:
6 % imgcoordinates: feature points coordinates of every

image
7 % objcoordinates: object points coordinates of wcs
8 % rotation: rotation matrix for every image
9 % translation: translation matrix for every image

10 % spacepoints: corresponding 3d space points for every
11 % image
12 % corrected: corrected image points
13 % normalized: normalized image points in homogeneous
14 % featurepoints(2): right camera
15 % intrinsic , distortion
16 % featurepoints(2).image:
17 % coordinates: feature points coordinates of every

image
18 % rotation: rotation matrix for every image
19 % translation: translation matrix for every image
20 % spacepoints: corresponding 3d space points for every
21 % image
22 % corrected: corrected image points
23 % normalized: normalized image points in homogeneous
24 % featurepoints(3):
25 % imageindices: indices of image for every camera
26 % featureindices: indices of feature points on every
27 % image
28 % width: board width
29 % structure:
30 % rotation: rotation matrix from left camera
31 % frame to right camera
32 % translation: translation matrix from left
33 % camera frame to right camera
34 % featurepoints(4).image(i).ccs: space points in camera coordinate system
35 % .est: estimated space points in ccs
36 % .meanerror: mean error between estimated and
37 % observed space points
38 %% load data
39 flag = 0 ; width = 4 ;
40 fprintf (’0: the only one with board width = 5mm \n1: 15-08-19 \n2:

10-07-19 \n3: 16-07-19\n4: 09-09-19\n’ ) ;
41 prompt = ’Choose an image set: ’ ;
42 x = input ( prompt ) ;
43 if x == 0
44 d = fullfile ( fileparts ( pwd ) , ’opencv’ , ’calibration’ , {’calibLeft.mat

’ ; ’calibRight.mat’}) ;
45 width = 5 ;
46 elseif x == 1
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47 flag = 1 ;
48 d = fullfile ( fileparts ( pwd ) , ’opencv’ , ’calibration’ , {’calibLeft_15

-08-19.mat’ ; ’calibRight_15 -08-19.mat’}) ;
49 elseif x == 2
50 flag = 2 ;
51 d = fullfile ( fileparts ( pwd ) , ’opencv’ , ’calibration’ , {’calibLeft_10

-07-19.mat’ ; ’calibRight_10 -07-19.mat’}) ;
52 elseif x == 3
53 flag = 3 ;
54 d = fullfile ( fileparts ( pwd ) , ’opencv’ , ’calibration’ , {’calibLeft_16

-07-19.mat’ ; ’calibRight_16 -07-19.mat’}) ;
55 elseif x == 4
56 flag = 4 ;
57 d = fullfile ( fileparts ( pwd ) , ’opencv’ , ’calibration’ , {’calibLeft_09

-09-19.mat’ ; ’calibRight_09 -09-19.mat’}) ;
58 end
59 m1 = load (d{1}) ;
60 m2 = load (d{2}) ;
61 %% combine all image feature points coordinates
62 featurepoints (1 ) . name = ’left’ ;
63 featurepoints (2 ) . name = ’right’ ;
64 featurepoints (1 ) . intrinsic = m1 . cameraMatrix ;
65 featurepoints (2 ) . intrinsic = m2 . cameraMatrix ;
66 featurepoints (1 ) . distortion = m1 . distCoeffs ;
67 featurepoints (2 ) . distortion = m2 . distCoeffs ;
68 featurepoints (3 ) . imageindices = size (m1 . imgpoints , 1 ) ;
69 featurepoints (3 ) . featureindices = size (m1 . imgpoints , 2 ) ;
70 featurepoints (4 ) . width = width ;
71 featurepoints (4 ) . row = 6 ;
72 featurepoints (4 ) . column = 9 ;
73
74 for i = 1 : featurepoints (3 ) . imageindices
75 for j = 1 : featurepoints (3 ) . featureindices
76 % image points
77 featurepoints (1 ) . image (i ) . imgcoordinates ( : , j ) = double ( [ m1 .

imgpoints (i , j , 1 , 1 ) ; m1 . imgpoints (i , j , 1 , 2 ) ] ) ;
78 featurepoints (2 ) . image (i ) . imgcoordinates ( : , j ) = double ( [ m2 .

imgpoints (i , j , 1 , 1 ) ; m2 . imgpoints (i , j , 1 , 2 ) ] ) ;
79 % object points
80 featurepoints (1 ) . image (i ) . objcoordinates ( : , j ) = double (m1 .

objpoints (i , j , : ) ) ;
81 featurepoints (2 ) . image (i ) . objcoordinates ( : , j ) = double (m2 .

objpoints (i , j , : ) ) ;
82 % extrinsic
83 featurepoints (1 ) . image (i ) . rotation = [ m1 . Rm (i , 1 , 1 ) m1 . Rm (i , 1 , 2 )

m1 . Rm (i , 1 , 3 ) ; . . .
84 m1 . Rm (i , 2 , 1 ) m1 . Rm (i , 2 , 2 ) m1 . Rm (i , 2 , 3 ) ; . . .
85 m1 . Rm (i , 3 , 1 ) m1 . Rm (i , 3 , 2 ) m1 . Rm (i , 3 , 3 ) ] ;
86 featurepoints (2 ) . image (i ) . rotation = [ m2 . Rm (i , 1 , 1 ) m2 . Rm (i , 1 , 2 )

m2 . Rm (i , 1 , 3 ) ; . . .
87 m2 . Rm (i , 2 , 1 ) m2 . Rm (i , 2 , 2 ) m2 . Rm (i , 2 , 3 ) ; . . .
88 m2 . Rm (i , 3 , 1 ) m2 . Rm (i , 3 , 2 ) m2 . Rm (i , 3 , 3 ) ] ;
89 featurepoints (1 ) . image (i ) . translation = m1 . T (i , : ) ’ ;
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90 featurepoints (2 ) . image (i ) . translation = m2 . T (i , : ) ’ ;
91 end
92 [ epil , Frl ] = funda_epi ( featurepoints (1 ) ) ;
93 [ epir , Frr ] = funda_epi ( featurepoints (2 ) ) ;
94 featurepoints (1 ) . image (i ) . fundamental = Frl ( : , 3 ∗ i−2:3∗i ) ;
95 featurepoints (2 ) . image (i ) . fundamental = Frr ( : , 3 ∗ i−2:3∗i ) ;
96 featurepoints (1 ) . image (i ) . epipole = epil ( : , i ) ;
97 featurepoints (2 ) . image (i ) . epipole = epir ( : , i ) ;
98 featurepoints (1 ) . image (i ) . homography = zeros ( 3 , 3 ) ;
99 featurepoints (2 ) . image (i ) . homography = zeros ( 3 , 3 ) ;

100 end
101
102 %% construct for space points in camera coordinate system
103 for i = 1 : featurepoints (3 ) . imageindices
104 rl = featurepoints (1 ) . image (i ) . rotation ;
105 tl = featurepoints (1 ) . image (i ) . translation ;
106 rr = featurepoints (2 ) . image (i ) . rotation ;
107 tr = featurepoints (2 ) . image (i ) . translation ;
108 for j = 1 : featurepoints (3 ) . featureindices
109 tmp = [ rl tl ; zeros ( 1 , 3 ) 1 ] ∗ . . .
110 [ featurepoints (1 ) . image (i ) . objcoordinates ( : , j ) ; 1 ] ;
111 tmpr = [ rr tr ; zeros ( 1 , 3 ) 1 ] ∗ . . .
112 [ featurepoints (2 ) . image (i ) . objcoordinates ( : , j ) ; 1 ] ;
113 featurepoints (4 ) . image (i ) . ccs ( : , j ) = tmp ( 1 : 3 ) ;
114 featurepoints (4 ) . image (i ) . ccsr ( : , j ) = tmpr ( 1 : 3 ) ;
115 end
116 featurepoints (4 ) . image (i ) . est = zeros (3 , featurepoints (3 ) .

featureindices ) ;
117 featurepoints (1 ) . image (i ) . corrected = zeros (2 , featurepoints (3 ) .

featureindices ) ;
118 featurepoints (2 ) . image (i ) . corrected = zeros (2 , featurepoints (3 ) .

featureindices ) ;
119 featurepoints (1 ) . image (i ) . normalized = zeros (2 , featurepoints (3 ) .

featureindices ) ;
120 featurepoints (2 ) . image (i ) . normalized = zeros (2 , featurepoints (3 ) .

featureindices ) ;
121 featurepoints (4 ) . image (i ) . meanerror = zeros (1 , featurepoints (3 ) .

featureindices ) ;
122 end
123 % structure parameters
124 [ featurepoints (3 ) . structure . rotation , featurepoints (3 ) . structure .

translation ] = . . .
125 StructureParameters2 ( featurepoints ) ;

1 function p = Distortion_Coefficients (A , D )
2 % This function helps to obtf.intrinsicin the distortion coefficients for
3 % bf.intrinsicck -projection cf.intrinsicse. This method uses mf.

intrinsictching distoted f.intrinsicnd estimf.intrinsicted
4 % fef.intrinsicture points to get the coefficients.
5 % Input:
6 % k1, k2: distortion coefficients from forwf.intrinsicrd projection model
7 % N: number of fef.intrinsicture points
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8 % Du, Dv: scf.intrinsicle ff.intrinsicctors thf.intrinsict chf.
intrinsicnge the metric units to pixels

9 % su: scf.intrinsicle ff.intrinsiccctor
10 % (u0,v0): center of imf.intrinsicge in pixels of N imf.intrinsicges
11 % Outputs:
12 % p = [f.intrinsic1 ,f.intrinsic2 ,f.intrinsic3 ,f.intrinsic4 ,f.intrinsic5 ,f

.intrinsic6 ,f.intrinsic7 ,f.intrinsic8]’: coefficients thf.intrinsict
cf.intrinsicn recover correct

13 % imf.intrinsicge points from distorted ones
14 %
15 % generf.intrinsicte imf.intrinsicge points
16 [ m , md ] = points_generation (A , D ) ; % in pixels
17 u = m ( 1 , : ) ; v = m ( 2 , : ) ;
18 ut = md ( 1 , : ) ; vt = md ( 2 , : ) ;
19 r = sqrt (ut .^2 + vt . ^2 ) ;
20 N = length (m ) ;
21 U = zeros (8 , N ) ;
22 V = zeros (8 , N ) ;
23 T = zeros (8 ,2∗N ) ;
24 e = zeros (2∗N , 1 ) ;
25 for i = 1 : N
26 U ( : , i ) = [−ut (i ) ∗r (i ) ^2 ; −ut (i ) ∗r (i ) ^4 ; −2∗ut (i ) ∗vt (i ) ; −r (i )^2−2∗ut (

i ) ^ 2 ; . . .
27 u (i ) ∗r (i ) ^4 ; u (i ) ∗ut (i ) ∗r (i ) ^2 ; u (i ) ∗vt (i ) ∗r (i ) ^2 ; u (i ) ∗r (i ) ^ 2 ] ;
28 V ( : , i ) = [−vt (i ) ∗r (i ) ^2 ; −vt (i ) ∗r (i ) ^4 ; −r (i )^2−2∗vt (i ) ^2 ; −2∗ut (i ) ∗

vt (i ) ; . . .
29 v (i ) ∗r (i ) ^4 ; v (i ) ∗ut (i ) ∗r (i ) ^2 ; v (i ) ∗vt (i ) ∗r (i ) ^2 ; v (i ) ∗r (i ) ^ 2 ] ;
30 T ( : , 2 ∗ i−1) = U ( : , i ) ;
31 T ( : , 2 ∗ i ) = V ( : , i ) ;
32 e (2∗i−1 ,1) = ut (i )−u (i ) ;
33 e (2∗i , 1 ) = vt (i )−v (i ) ;
34 end
35 T = T ’ ;
36 p = (T ’∗ T ) \T ’∗ e ;
37 end

1 function mt = Correction_Imagepoints (md , p )
2 % Correct image points with coefficients p = [a1,a2,a3,a4,a5,a6,a7,a8]’
3 % Use function: p = Distortion_Coefficients(md,m,N,Du,Dv,su,u0,v0)
4 % Input:
5 % md: distorted normalized image coordinates. 2-by-N array
6 % p: backward distortion coefficients
7 % A: intrinsic matrix of the camera
8 % Output:
9 % m: normalized corrected image points

10 %
11 ud = md ( 1 , : ) ; vd = md ( 2 , : ) ;
12 r = sqrt (ud .^2+vd . ^2 ) ;
13 N = length (md ) ;
14 mt = zeros (2 , N ) ;
15 G = zeros (1 , N ) ;
16 % pixel cooedinate system
17 for i = 1 : N
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18 G (i ) = ( p (5 ) ∗ r (i ) ^2 + p (6 ) ∗ ud (i ) + p (7 ) ∗ vd (i ) + p (8 ) ) ∗ r (i )
^2 + 1 ;

19 mt (1 , i ) = (ud (i ) ∗(1 + p (1 ) ∗r (i ) ^2 + p (2 ) ∗r (i ) ^4) + 2∗p (3 ) ∗ud (i ) ∗vd (i )
. . .

20 + p (4 ) ∗(r (i ) ^2 + 2∗ud (i ) ^2) ) /G (i ) ;
21 mt (2 , i ) = (vd (i ) ∗(1 + p (1 ) ∗r (i )^2+p (2 ) ∗r (i ) ^4)+2∗p (4 ) ∗ud (i ) ∗vd (i ) . . .
22 +p (3 ) ∗(r (i )^2+2∗vd (i ) ^2) ) /G (i ) ;
23 end
24 end

1 function Jt = CostTriangulation (x , R , T , mnl , mnr )
2 % This function is the cost function of triangulation
3 % x: the object point to be triangulated to, which is a 3-1 vector
4 % R,T: structure parameters
5 % mnl, mnr: normalized image points
6 Pose1 = [ eye (3 ) zeros ( 3 , 1 ) ] ;
7 Pose2 = [ R T ] ;
8 M1 = Pose1 ∗ [ x ; 1 ] ;
9 M2 = Pose2 ∗ [ x ; 1 ] ;

10 mnl_est = M1 ( 1 : 2 ) /M1 (3 ) ;
11 mnr_est = M2 ( 1 : 2 ) /M2 (3 ) ;
12 dl = norm ( mnl ( 1 : 2 ) − mnl_est ) ^2 ;
13 dr = norm ( mnr ( 1 : 2 ) − mnr_est ) ^2 ;
14 Jt = dl + dr ;
15 end

1 function [ R , T ] = StructureParameters (f )
2 N = f (3 ) . imageindices ; L = f (3 ) . featureindices ; Rs=0;
3 % centroid -based optimization method
4 tmp1 = 0 ; tmp2 = 0 ;
5 for i = 1 : N
6 for j = 1 : L
7 tmp1 = tmp1 + f (4 ) . image (i ) . ccs ( : , j ) ;
8 tmp2 = tmp2 + f (4 ) . image (i ) . ccsr ( : , j ) ;
9 end

10 end
11 Mcl_median = tmp1/N/L ;
12 Mcr_median = tmp2/N/L ;
13 Mcl = zeros (N , L , 3 ) ; Mcr = zeros (N , L , 3 ) ;
14 for i = 1 : N
15 rl = f (1 ) . image (i ) . rotation ;
16 rr = f (2 ) . image (i ) . rotation ;
17 Rs = Rs + rr/rl ;
18 % ts = ts + tr - rr/rl*tl;
19 for j = 1 : L
20 Mcl (i , j , : ) = f (4 ) . image (i ) . ccs ( : , j ) − Mcl_median ;
21 Mcr (i , j , : ) = f (4 ) . image (i ) . ccsr ( : , j ) − Mcr_median ;
22 end
23 end
24 Rs = Rs/N ;
25 J = @ (x ) double ( CostCenter (x , Mcl , Mcr ) ) ;
26 x0 = Rs ;
27 options . Algorithm = ’levenberg -marquardt’ ;
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28 options . MaxFunctionEvaluations = 5000 ;
29 R = lsqnonlin (J , x0 , [ ] , [ ] , options ) ;
30 T = Mcr_median − R ∗ Mcl_median ;
31 end

1 function [ R , T ] = StructureParameters2 (f )
2 N = f (3 ) . imageindices ;
3 % Get Ri and ti
4 Rs=0;ts=0;
5 for i = 1 : N
6 rl = f (1 ) . image (i ) . rotation ;
7 rr = f (2 ) . image (i ) . rotation ;
8 tl = f (1 ) . image (i ) . translation ;
9 tr = f (2 ) . image (i ) . translation ;

10 Rs = Rs + rr/rl ;
11 ts = ts + tr − rr/rl∗tl ;
12 end
13 Rs = Rs/N ;
14 ts = ts/N ;
15
16 % % Take median of {Ri} and {ti}
17 R_init = Rs/N ;
18 t_init = ts/N ;
19 J = @ (x ) double ( CostReprojection (x , f ) ) ;
20 x0 = [ R_init t_init ] ;
21 options . Algorithm = ’levenberg -marquardt’ ;
22 options . MaxFunctionEvaluations = 5000 ;
23 x = lsqnonlin (J , x0 , [ ] , [ ] , options ) ;
24 R = x ( 1 : 3 , 1 : 3 ) ;
25 T = x ( 1 : 3 , 4 ) ;
26 end

1 % use data from calib09 -09-19.mat (from opencv) to reconstruct positions
of

2 % light sources.
3
4 %% load data
5 mat = load (’calib09 -09-19.mat’ ) ;
6 glintsl1 = double ( mat . glintsL1 ) ;
7 glintsl2 = double ( mat . glintsL2 ) ;
8 glintsr1 = double ( mat . glintsR1 ) ;
9 glintsr2 = double ( mat . glintsR2 ) ;

10 Al = mat . cameraMatrixL ; Ar = mat . cameraMatrixR ;
11 Dl = mat . distCoeffsL ; Dr = mat . distCoeffsR ;
12 R = mat . R ; T = mat . T ;
13 N = size ( glintsl1 , 1) ;
14 %% normalization & dist
15 nglintsl1 = zeros (2 , 14 ) ; nglintsl2 = zeros (2 , 14 ) ;
16 nglintsr1 = zeros (2 , 14 ) ; nglintsr2 = zeros (2 , 14 ) ;
17 for i = 1 : N
18 tmp = Al \ [ glintsl1 (i , : ) 1 ] ’ ; nglintsl1 ( : , i ) = tmp ( 1 : 2 ) ;
19 tmp = Al \ [ glintsl2 (i , : ) 1 ] ’ ; nglintsl2 ( : , i ) = tmp ( 1 : 2 ) ;
20 tmp = Ar \ [ glintsr1 (i , : ) 1 ] ’ ; nglintsr1 ( : , i ) = tmp ( 1 : 2 ) ;
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21 tmp = Ar \ [ glintsr2 (i , : ) 1 ] ’ ; nglintsr2 ( : , i ) = tmp ( 1 : 2 ) ;
22 end
23 P_left = zeros (8 , N ) ;
24 P_right = zeros (8 , N ) ;
25 for i = 1 : N
26 P_left ( : , i ) = Distortion_Coefficients (Al , Dl ) ;
27 P_right ( : , i ) = Distortion_Coefficients (Ar , Dr ) ;
28 end
29 %% correction
30 cglintsl1 = Correction_Imagepoints ( nglintsl1 , P_left ( : , i ) ) ;
31 cglintsl2 = Correction_Imagepoints ( nglintsl2 , P_left ( : , i ) ) ;
32 cglintsr1 = Correction_Imagepoints ( nglintsr1 , P_right ( : , i ) ) ;
33 cglintsr2 = Correction_Imagepoints ( nglintsr2 , P_right ( : , i ) ) ;
34 %% triangulation image of light sources in ccs
35 L1 = zeros (3 , N ) ; L2 = zeros (3 , N ) ;
36 for i = 1 : N
37 costtotal1 = @ (x ) CostTriangulation (x , R , T , cglintsl1 ( : , i ) , cglintsr1

( : , i ) ) ;
38 costtotal2 = @ (x ) CostTriangulation (x , R , T , cglintsl2 ( : , i ) , cglintsr2

( : , i ) ) ;
39 x_tri1 = fminunc ( costtotal1 , [ 0 ; 0 ; 6 0 0 ] ) ;
40 x_tri2 = fminunc ( costtotal2 , [ 0 ; 0 ; 6 0 0 ] ) ;
41 L1 ( : , i ) = x_tri1 ;
42 L2 ( : , i ) = x_tri2 ;
43 end
44 %%
45 m1 = load (’calibLeft_09 -09-19.mat’ ) ; mat2 = load (’calibRight_09 -09-19.mat

’ ) ;
46 center = [ 5 5 ; 14 ; 1 . 8 ] ;
47 center_ccs = zeros (3 , N ) ;
48 for i =1:N
49 rotate = [ m1 . Rm (i , 1 , 1 ) m1 . Rm (i , 1 , 2 ) m1 . Rm (i , 1 , 3 ) ; . . .
50 m1 . Rm (i , 2 , 1 ) m1 . Rm (i , 2 , 2 ) m1 . Rm (i , 2 , 3 ) ; . . .
51 m1 . Rm (i , 3 , 1 ) m1 . Rm (i , 3 , 2 ) m1 . Rm (i , 3 , 3 ) ] ;
52 trans = m1 . T (i , : ) ’ ;
53 center_ccs ( : , i ) = rotate ∗ center + trans ;
54 end
55
56 %% reconstruct light sources
57 light1 = zeros (3 , N−1) ; light2 = zeros (3 , N−1) ;
58 for i = 1 : N−1
59 for j = i+1:N
60 light1 ( : , i ) = lineintersection3d ( center_ccs ( : , i ) , L1 ( : , i ) ,

center_ccs ( : , j ) , L1 ( : , j ) ) ;
61 light2 ( : , i ) = lineintersection3d ( center_ccs ( : , i ) , L2 ( : , i ) ,

center_ccs ( : , j ) , L2 ( : , j ) ) ;
62 end
63 end
64
65 %% error
66 % x = 1:N-2;
67 % error1 = zeros(1,N-2);
68 % for i = 1:N-2
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69 % error1(i) = norm(light1(:,i+1) - light1(:,1));
70 % end
71 % figure();
72 % plot(x, error1);
73
74 %% plot x, y, z distribution
75 x = 1 : N−1;
76 x1 = light1 ( 1 , : ) ; x2 = light2 ( 1 , : ) ;
77 y1 = light1 ( 2 , : ) ; y2 = light2 ( 2 , : ) ;
78 z1 = light1 ( 3 , : ) ; z2 = light2 ( 3 , : ) ;
79 figure ( ) ;
80 scatter3 (x1 , y1 , z1 ) ;
81 hold on ;
82 scatter3 (x2 , y2 , z2 ) ;
83 xlabel (’x’ ) ; ylabel (’y’ ) ; zlabel (’z’ ) ;
84 legend (’light source 1’ , ’light source 2’ ) ;
85 % figure();
86 % scatter(x, x1);
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Appendix D

OpenCV Python Code

1 import os
2 import matplotlib . pyplot as plt
3 import calibrate_new
4 import self
5 import cv2
6
7 #%% build
8 # define path of image sets
9 path_L1 , path_R1 = ’../15-08-19/L/*.bmp’ , ’../15-08-19/R/*.bmp’

10 path_L , path_R = ’../image/L/*.jpg’ , ’../image/R/*.jpg’
11 path_L2 , path_R2 = ’../10-07-19/L/*.bmp’ , ’../10-07-19/R/*.bmp’
12 path_L3 , path_R3 = ’../16-07-19/L/*.bmp’ , ’../16-07-19/R/*.bmp’
13 path_L4 , path_R4 = ’../02-09-19-2/L/*.bmp’ , ’../02-09-19-2/R/*.bmp’
14 path_L5 , path_R5 = ’../09-09-19/L_withlight/*.bmp’ , ’../09-09-19/

R_withlight/*.bmp’
15
16 filepath_L = os . path . join (os . getcwd ( ) , path_L )
17 filepath_R = os . path . join (os . getcwd ( ) , path_R )
18
19 while True :
20 print ’1: 15-08-19 \n2: 10-07-19\n3: 16-07-19\n4: 02-09-19-2\n5:

09-09-19\n’
21 flag = raw_input ("Choose an image set (0 - 5):\n" )
22 if flag == "0" : # remember to change board witdth as 5 in self.py
23 break
24 elif flag == "1" : # 1,2,3 board width = 4mm in self.py
25 filepath_L = os . path . join (os . getcwd ( ) , path_L1 )
26 filepath_R = os . path . join (os . getcwd ( ) , path_R1 )
27 break
28 elif flag == "2" :
29 filepath_L = os . path . join (os . getcwd ( ) , path_L2 )
30 filepath_R = os . path . join (os . getcwd ( ) , path_R2 )
31 break
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32 elif flag == "3" :
33 filepath_L = os . path . join (os . getcwd ( ) , path_L3 )
34 filepath_R = os . path . join (os . getcwd ( ) , path_R3 )
35 break
36 elif flag == "4" :
37 filepath_L = os . path . join (os . getcwd ( ) , path_L4 )
38 filepath_R = os . path . join (os . getcwd ( ) , path_R4 )
39 break
40 elif flag == "5" :
41 filepath_L = os . path . join (os . getcwd ( ) , path_L5 )
42 filepath_R = os . path . join (os . getcwd ( ) , path_R5 )
43 break
44 else :
45 print ’Please input 1,2, 3, 4 or 5.’
46 continue
47
48 #%% single camera calibration and stereo calibration
49 [ index , imgpointsL , objpointsL , imgpointsR , objpointsR ] = calibrate_new .

points ( filepath_L , filepath_R )
50 cameraMatrixL , distCoeffsL , rvecsL , tvecsL , cameraMatrixR , distCoeffsR ,

rvecsR , tvecsR = \
51 calibrate_new . singlecalibrate ( imgpointsL , objpointsL ,

imgpointsR , objpointsR , flag )
52
53 # rl, rr = [], []
54 # for i in xrange(len(rvecsL)):
55 # tmp1, _ = cv2.Rodrigues(rvecsL[i])
56 # tmp2, _ = cv2.Rodrigues(rvecsR[i])
57 # rl.append(tmp1)
58 # rr.append(tmp2)
59 # calibrate_new.save(1, imgpointsL , objpointsL , cameraMatrixL ,

distCoeffsL , rl, tvecsL , imgpointsR , objpointsR , cameraMatrixR ,
distCoeffsR , rr, tvecsR)

60
61
62 cameraMatrixL , distCoeffsL , cameraMatrixR , distCoeffsR , R , T , E , F = \
63 calibrate_new . stereocalibrate ( imgpointsL , objpointsL , cameraMatrixL ,

distCoeffsL , rvecsL , tvecsL , imgpointsR ,
64 objpointsR , cameraMatrixR , distCoeffsR ,

rvecsR , tvecsR )
65
66 #%% reconstruction and error
67 er , recons_error , objccs , objest = calibrate_new . reconstruct ( objpointsL ,

imgpointsL , cameraMatrixL , distCoeffsL , rvecsL ,
68 tvecsL ,

objpointsR
,
imgpointsR
,
cameraMatrixR
,
distCoeffsR
,
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69 rvecsR ,
tvecsR , R ,

F )
70
71 #%% reconstruction error in world coordinate system
72 objwcs = self . CCS2WCS ( objest , rvecsL , tvecsL )
73 er , recons_error = self . reconstructionerror_totalmean ( objwcs , objpointsL )
74 # er, recons_error , objccs , objest =calibrate.reconstruct(objpointsL ,

imgpointsL , cameraMatrixL , distCoeffsL , rvecsL , tvecsL , imgpointsR ,
cameraMatrixR , distCoeffsR , rvecsR , tvecsR , R, T, F)

75 print ’Reconstruction Error: ’ , recons_error , ’mm’
76 print er
77 # calibrate_new.plot3d(objccs , objest)
78 # calibrate_new.ploterror(er)
79 # plt.show()

1 import numpy as np
2 import glob
3 import scipy . io as sio
4 import cv2
5 import self
6 import matplotlib . pyplot as plt
7 from scipy . optimize import minimize
8 from mpl_toolkits . mplot3d import Axes3D
9

10
11 N , L = 0 , 0
12 #############################################################
13 #################single camera calibration###################
14 def points ( filepath_L , filepath_R ) :
15 images1 , images2 = glob . glob ( filepath_L ) , glob . glob ( filepath_R )
16 # obatin object points and image points ( inside image sets are paths

of images)
17 objpointsL , imgpointsL , im1 = self . cornerdetection ( images1 )
18 objpointsR , imgpointsR , im2 = self . cornerdetection ( images2 )
19
20 # find common elements of two image sets
21 index = [ ]
22 for x in im1 :
23 for y in im2 :
24 if x == y :
25 index . append (x )
26
27 imgL = [ images1 [ ind ] for ind in index ]
28 imgR = [ images2 [ ind ] for ind in index ]
29
30 objpointsL , imgpointsL , _ = self . cornerdetection ( imgL )
31 objpointsR , imgpointsR , _ = self . cornerdetection ( imgR )
32
33 global N , L
34 N , L = len ( objpointsL ) , len ( objpointsL [ 0 ] )
35
36 return index , imgpointsL , objpointsL , imgpointsR , objpointsR
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37
38
39 # save data into mat file
40 def save (flag , imgpointsL , objpointsL , cameraMatrixL , distCoeffsL , rl ,

tvecsL , imgpointsR , objpointsR , cameraMatrixR , distCoeffsR , rr , tvecsR
) :

41 if flag == 0 :
42 # image
43 sio . savemat (’calibLeft’ , {’cameraMatrix’ : cameraMatrixL , \
44 ’distCoeffs’ : distCoeffsL , ’T’ : tvecsL , \
45 ’Rm’ : rl , ’imgpoints’ : imgpointsL , ’objpoints’ : objpointsL } ,

appendmat=True )
46
47 sio . savemat (’calibRight’ , {’cameraMatrix’ : cameraMatrixR , \
48 ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR , ’Rm’ : rr , \
49 ’imgpoints’ : imgpointsR , ’objpoints’ : objpointsR } , appendmat=

True )
50
51 print ’Saved.\n’
52
53 # image set 15-08-19
54 if flag == 1 :
55 sio . savemat (’calibLeft_15 -08-19’ , {’cameraMatrix’ : cameraMatrixL

, \
56 ’distCoeffs’ : distCoeffsL , ’T’ : tvecsL , \
57 ’Rm’ : rl , ’imgpoints’ : imgpointsL , ’objpoints’ : objpointsL } ,

appendmat=True )
58
59 sio . savemat (’calibRight_15 -08-19’ , {’cameraMatrix’ : cameraMatrixR

, \
60 ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR , ’Rm’ : rr , \
61 ’imgpoints’ : imgpointsR , ’objpoints’ : objpointsR } , appendmat=

True )
62
63 print ’Saved to 15-08-19.\n’
64
65
66 # image set 10-07-19
67 elif flag == 2 :
68 sio . savemat (’calibLeft_10 -07-19’ , {’cameraMatrix’ : cameraMatrixL

, \
69 ’distCoeffs’ : distCoeffsL , ’T’ : tvecsL , \
70 ’Rm’ : rl , ’imgpoints’ : imgpointsL , ’objpoints’ : objpointsL } ,

appendmat=True )
71
72 sio . savemat (’calibRight_10 -07-19’ , {’cameraMatrix’ : cameraMatrixR

, \
73 ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR , ’Rm’ : rr , \
74 ’imgpoints’ : imgpointsR , ’objpoints’ : objpointsR } , appendmat=

True )
75
76 print ’Saved to 10-07-19.\n’
77
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78 # image set 16-07-19
79 elif flag == 3 :
80 sio . savemat (’calibLeft_16 -07-19’ , {’cameraMatrix’ : cameraMatrixL

, \
81 ’distCoeffs’ : distCoeffsL , ’T’ : tvecsL , \
82 ’Rm’ : rl , ’imgpoints’ : imgpointsL , ’objpoints’ : objpointsL } ,

appendmat=True )
83
84 sio . savemat (’calibRight_16 -07-19’ , {’cameraMatrix’ : cameraMatrixR

, \
85 ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR , ’Rm’ : rr , \
86 ’imgpoints’ : imgpointsR , ’objpoints’ : objpointsR } , appendmat=

True )
87
88 print ’Saved to 16-07-19.\n’
89
90 elif flag == 4 :
91 sio . savemat (’calibLeft_02 -09-19-2’ , {’cameraMatrix’ :

cameraMatrixL , \
92 ’distCoeffs’ : distCoeffsL , ’T’ : tvecsL , \
93 ’Rm’ : rl , ’imgpoints’ : imgpointsL , ’objpoints’ : objpointsL } ,

appendmat=True )
94
95 sio . savemat (’calibRight_16 -07-19’ , {’cameraMatrix’ : cameraMatrixR

, \
96 ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR , ’Rm’ : rr , \
97 ’imgpoints’ : imgpointsR , ’objpoints’ : objpointsR } , appendmat=

True )
98
99 print ’Saved to 02-09-19-2.\n’

100
101 elif flag == 5 :
102 sio . savemat (’calibLeft_09 -09-19’ , {’cameraMatrix’ : cameraMatrixL ,

’distCoeffs’ : distCoeffsL , ’T’ : tvecsL ,
103 ’Rm’ : rl , ’imgpoints’ :

imgpointsL , ’objpoints’ :
objpointsL } , appendmat=True
)

104
105 sio . savemat (’calibRight_09 -09-19’ , {’cameraMatrix’ : cameraMatrixR

, ’distCoeffs’ : distCoeffsR , ’T’ : tvecsR ,
106 ’Rm’ : rr , ’imgpoints’ :

imgpointsR , ’objpoints’ :
objpointsR } , appendmat=
True )

107
108 print ’Saved to 09-09-19.\n’
109
110
111 def singlecalibrate ( imgpointsL , objpointsL , imgpointsR , objpointsR , flag

) :
112
113 # get caalibration results of two image sets
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114 cameraMatrixL , distCoeffsL , rvecsL , tvecsL , errorL1 , errorL2 = self .
calibration ( objpointsL , imgpointsL )

115 cameraMatrixR , distCoeffsR , rvecsR , tvecsR , errorR1 , errorR2 = self .
calibration ( objpointsR , imgpointsR )

116
117 # reprojection error
118 # rel_perview , re_l = self.re(objpointsL , imgpointsL , cameraMatrixL ,

distCoeffsL , rvecsL , tvecsL)
119 # rer_perview , re_r = self.re(objpointsR , imgpointsR , cameraMatrixR ,

distCoeffsR , rvecsR , tvecsR)
120
121 # transform rotation vectors to rotation matrix
122 rl , rr = [ ] , [ ]
123 for i in xrange ( len ( rvecsL ) ) :
124 tmp1 , _ = cv2 . Rodrigues ( rvecsL [ i ] )
125 tmp2 , _ = cv2 . Rodrigues ( rvecsR [ i ] )
126 rl . append ( tmp1 )
127 rr . append ( tmp2 )
128
129 save (flag , imgpointsL , objpointsL , cameraMatrixL , distCoeffsL , rl ,

tvecsL , imgpointsR , objpointsR , cameraMatrixR , distCoeffsR , rr ,
tvecsR )

130
131 return cameraMatrixL , distCoeffsL , rvecsL , tvecsL , cameraMatrixR ,

distCoeffsR , rvecsR , tvecsR
132
133
134 def stereocalibrate ( imgpointsL , objpointsL , cameraMatrixL , distCoeffsL ,

rvecsL , tvecsL , imgpointsR , objpointsR , cameraMatrixR , distCoeffsR ,
rvecsR , tvecsR ) :

135 # N, L = len(imgpointsL), len(imgpointsL[0])
136 _ , cameraMatrixL , distCoeffsL , cameraMatrixR , distCoeffsR , R , T , E , F ,

_ = \
137 cv2 . stereoCalibrateExtended ( objpointsL , imgpointsL , imgpointsR ,

cameraMatrixL , distCoeffsL , \
138 cameraMatrixR , distCoeffsR , self . imgSize , R=None , T = None , flags

=cv2 . CALIB_USE_INTRINSIC_GUESS )
139
140 return cameraMatrixL , distCoeffsL , cameraMatrixR , distCoeffsR , R , T ,

E , F
141
142 # S. Gai
143 # function for optimized rotation R
144 def fri (R , Mcl , Mcr ) :
145 fri = 0.0
146 for i in xrange (N ) :
147 for j in xrange (L ) :
148 tmp1 = R [ 0 ] ∗ Mcl [ i ] [ j ] [ 0 ] + R [ 1 ] ∗ Mcl [ i ] [ j ] [ 1 ] + R [ 2 ] ∗ Mcl [ i ] [ j

] [ 2 ]
149 tmp2 = R [ 3 ] ∗ Mcl [ i ] [ j ] [ 0 ] + R [ 4 ] ∗ Mcl [ i ] [ j ] [ 1 ] + R [ 5 ] ∗ Mcl [ i ] [ j

] [ 2 ]
150 tmp3 = R [ 6 ] ∗ Mcl [ i ] [ j ] [ 0 ] + R [ 7 ] ∗ Mcl [ i ] [ j ] [ 1 ] + R [ 8 ] ∗ Mcl [ i ] [ j

] [ 2 ]
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151 tmp = np . linalg . norm ( [ tmp1−Mcr [ i ] [ j ] [ 0 ] , tmp2−Mcr [ i ] [ j ] [ 1 ] ,
tmp3−Mcr [ i ] [ j ] [ 2 ] ] ) ∗ (2 ∗∗ ( 0 . 5 ) )

152 fri += tmp ∗∗2
153 return fri
154
155
156 def structureParams ( objpointsL , rvecsL , tvecsL , objpointsR , rvecsR ,

tvecsR , R ) :
157 # get median of all objpoints in camera coordinate system
158 Mcl , Mcr = self . WCS2CCS ( objpointsL , rvecsL , tvecsL ) , self . WCS2CCS (

objpointsR , rvecsR , tvecsR )
159 tmpl , tmpr = np . zeros (3 ) , np . zeros (3 )
160 for i in xrange (N ) :
161 for j in xrange (L ) :
162 tmpl += Mcl [ i ] [ j ]
163 tmpr += Mcr [ i ] [ j ]
164 Mcl_bar = tmpl / N / L
165 Mcr_bar = tmpr / N / L
166 for i in xrange (N ) :
167 for j in xrange (L ) :
168 Mcl [ i ] [ j ] = Mcl [ i ] [ j ] − Mcl_bar
169 Mcr [ i ] [ j ] = Mcr [ i ] [ j ] − Mcr_bar
170 R0 = np . reshape (R , ( 1 , 9 ) )
171 res = minimize (fri , R0 , args=(Mcl , Mcr ) )
172 x = res . x
173 structure_rotation = np . array ( [ [ x [ 0 ] , x [ 1 ] , x [ 2 ] ] , [ x [ 3 ] , x [ 4 ] , x

[ 5 ] ] , [ x [ 6 ] , x [ 7 ] , x [ 8 ] ] ] )
174 structure_translate = Mcr_bar − np . dot ( structure_rotation , Mcl_bar )
175 return structure_rotation , structure_translate
176
177
178 # nonlinear triangulation for every frame
179 def nontri ( objest , nimgl , nimgr , array1 , array2 ) :
180 tmp01 = np . dot ( array1 , np . append ( objest , [ 1 ] ) )
181 tmp02 = np . dot ( array2 , np . append ( objest , [ 1 ] ) )
182 tmp1 = nimgl − tmp01 [ : 2 ] / tmp01 [ 2 ]
183 tmp2 = nimgr − tmp02 [ : 2 ] / tmp02 [ 2 ]
184 cost = np . linalg . norm ( tmp1 ) ∗∗ 2 + np . linalg . norm ( tmp2 ) ∗∗ 2
185 return cost
186
187 # using different distortion coefficients , structure parameters and

triangulation
188 def reconstruct ( objpointsL , imgpointsL , cameraMatrixL , distCoeffsL ,

rvecsL , tvecsL , objpointsR , imgpointsR , cameraMatrixR , distCoeffsR ,
rvecsR , tvecsR , Ri , F ) :

189 R , T = structureParams ( objpointsL , rvecsL , tvecsL , objpointsR , rvecsR
, tvecsR , Ri )

190 # undistort
191 # R1, R2 = cv2.stereoRectify(cameraMatrixL , distCoeffsL ,

cameraMatrixR , distCoeffsR , self.imgSize , R, T, flags=cv2.
CALIB_ZERO_DISPARITY)[:2]

192 # imgUndistortL , imgUndistortR = [], []
193 # for i in xrange(N):
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194 # imgUndistortL.append(cv2.undistortPoints(imgpointsL[i],
cameraMatrixL , distCoeffsL , R1, cameraMatrixL))

195 # imgUndistortR.append(cv2.undistortPoints(imgpointsR[i],
cameraMatrixR , distCoeffsR , R2, cameraMatrixR))

196
197 objccs = self . WCS2CCS ( objpointsL , rvecsL , tvecsL )
198 # triangulate
199 # opencv standard method
200 array1 = np . array ( [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] ] )
201 array2 = np . concatenate ( ( R , T [ : , None ] ) , axis=1)
202 # P1 = np.dot(cameraMatrixL , array1)
203 # P2 = np.dot(cameraMatrixR , array2)
204 #
205 objest = [ ]
206 # for i in xrange(N):
207 # tmp = cv2.triangulatePoints(P1, P2, imgUndistortL[i],

imgUndistortR[i])
208 # # tmp = cv2.triangulatePoints(P1, P2, nimgl[i], nimgr[i])
209 # objest.append((tmp[:3]/tmp[3]).T.tolist())
210
211 # nonlinear triangulation
212 # nimgl , nimgr = self.normalization(imgpointsL , cameraMatrixL), self.

normalization(imgpointsR , cameraMatrixR)
213 pl , pr = self . distcoeffs ( cameraMatrixL , distCoeffsL ) , self . distcoeffs

( cameraMatrixR , distCoeffsR )
214 nimgl , nimgr = self . undistort ( cameraMatrixL , pl , imgpointsL ) , self .

undistort ( cameraMatrixR , pr , imgpointsR )
215 for i in xrange (N ) :
216 tmp = [ ]
217 for j in xrange (L ) :
218 res = minimize ( nontri , objccs [ i ] [ j ] , args=(nimgl [ i ] [ j ] , nimgr

[ i ] [ j ] , array1 , array2 ) )
219 tmp . append ( res . x . reshape (3 ) )
220 objest . append ( tmp )
221
222
223 # 3d error
224 er , recons_error = self . reconstructionerror_totalmean ( objccs , objest )
225
226 return er , recons_error , objccs , objest
227
228
229 # ##################################plot################################
230 def plot3d ( objccs , objest ) :
231 x1 , y1 , z1 , x2 , y2 , z2 = [ ] , [ ] , [ ] , [ ] , [ ] , [ ]
232 for j in xrange (L ) :
233 x1 . append ( objccs [ 0 ] [ j ] [ 0 ] )
234 y1 . append ( objccs [ 0 ] [ j ] [ 1 ] )
235 z1 . append ( objccs [ 0 ] [ j ] [ 2 ] )
236 x2 . append ( objest [ 0 ] [ j ] [ 0 ] )
237 y2 . append ( objest [ 0 ] [ j ] [ 1 ] )
238 z2 . append ( objest [ 0 ] [ j ] [ 2 ] )
239
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240 fig = plt . figure ( )
241 ax = fig . add_subplot (111 , projection=’3d’ )
242
243 ax . scatter (x1 , y1 , z1 , c=’r’ , marker=’o’ , label=’object points’ )
244 ax . scatter (x2 , y2 , z2 , c=’b’ , marker=’^’ , label=’estimated objpoints’

)
245 plt . gca ( ) . legend ( ( ’object points’ ,’estimated objpoints’ ) )
246 # plt.title(’Estimated Object Points and WCS2CCS ’)
247 ax . set_xlabel (’X Label’ )
248 ax . set_ylabel (’Y Label’ )
249 ax . set_zlabel (’Z Label’ )
250
251
252 def ploterror (er ) :
253 plt . figure ( )
254 plt . plot ( list ( range (N ) ) + np . ones (N ) , er )
255 plt . title (’Reconstruction Error’ )
256 plt . xlabel (’image index’ )
257 plt . ylabel (’3d error (mm)’ )
258
259
260 def plotxyz ( objccs , objest , a ) :
261 x , y , z = [ ] , [ ] , [ ]
262 errx , erry , errz = [ ] , [ ] , [ ]
263 for i in xrange (N ) :
264 for j in xrange (L ) :
265 errx . append ( objccs [ i ] [ j ] [ 0 ] − objest [ i ] [ j ] [ 0 ] )
266 erry . append ( objccs [ i ] [ j ] [ 1 ] − objest [ i ] [ j ] [ 1 ] )
267 errz . append ( objccs [ i ] [ j ] [ 2 ] − objest [ i ] [ j ] [ 2 ] )
268 x . append ( objccs [ i ] [ j ] [ 0 ] )
269 y . append ( objccs [ i ] [ j ] [ 1 ] )
270 z . append ( objccs [ i ] [ j ] [ 2 ] )
271
272 plt . figure ( )
273 if a == ’x’ :
274 plt . scatter (x , errx )
275 elif a == ’y’ :
276 plt . scatter (y , erry )
277 elif a == ’z’ :
278 plt . scatter (z , errz )
279
280 plt . show ( )
281
282
283 # plot light source
284 def plotlight ( lightsource_pos ) :
285 fig = plt . figure ( )
286
287 x , y , z = [ ] , [ ] , [ ]
288 for i in xrange ( len ( lightsource_pos ) ) :
289 x . append ( lightsource_pos [ i ] [ 0 ] )
290 y . append ( lightsource_pos [ i ] [ 1 ] )
291 z . append ( lightsource_pos [ i ] [ 2 ] )
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292
293 ax = fig . add_subplot (111 , projection=’3d’ )
294
295 ax . scatter (x , y , z , c=’r’ , marker=’x’ , label=’light source positions’

)
296 plt . gca ( ) . legend ( ( ’object points’ , ’estimated objpoints’ ) )
297 ax . set_xlabel (’X Label’ )
298 ax . set_ylabel (’Y Label’ )
299 ax . set_zlabel (’Z Label’ )
300 plt . savefig (’light.png’ )
301 plt . show ( )

1 import numpy as np
2 import math
3 import cv2
4 import statistics
5
6 # define constants
7 imgSize = (1280 , 1024)
8 # number of rows and columns of the chessboard
9 n_row = 6

10 n_col = 9
11 # width of squares on the chessboard (mm)
12 board_w = 4
13 # number of points per image/board
14 n_points = n_row ∗ n_col
15 # pixel size
16 pixel_size = 4.8e−3
17
18 # termination criteria
19 criteria = ( cv2 . TERM_CRITERIA_EPS + cv2 . TERM_CRITERIA_MAX_ITER , 30 , 1e−6)
20
21 # prepare object points , like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
22 objp = np . zeros ( ( n_points , 3) , np . float32 )
23 objp [ : , : 2 ] = np . mgrid [ 0 : n_row , 0 : n_col ] . T . reshape (−1 ,2)
24 objp ∗= board_w
25
26
27 def cornerdetection ( images ) :
28 # Arrays to store object points and image points from all the images.
29 objpoints = [ ] # 3d point in real world space
30 imgpoints = [ ] # 2d points in image plane.
31 index = [ ]
32 count = 0
33 for fname in images :
34 img = cv2 . flip ( cv2 . imread ( fname , 0) , 1)
35 ret , corners = cv2 . findChessboardCorners (img , ( n_row , n_col ) ,

None )
36 if ret == True :
37 objpoints . append ( objp )
38 corners2 = cv2 . cornerSubPix (img , corners , (11 , 11) , (−1 , −1) ,

criteria )
39 imgpoints . append ( corners2 )
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40 index . append ( count )
41 # Draw and display the corners
42 # cv2.drawChessboardCorners(img, (n_row , n_col), corners2 ,

ret)
43 # cv2.imshow(’img’,img)
44 # cv2.waitKey(500)
45 count += 1
46
47 # cv2.destroyAllWindows()
48
49 return objpoints , imgpoints , index
50
51 # standard opencv method
52 def undistortimage ( images , cameraMatrix , distcoeffs ) :
53 imgpoints = [ ]
54 for fname in images :
55 img = cv2 . flip ( cv2 . imread ( fname , 0) , 1 )
56 dst = cv2 . undistort (img , cameraMatrix , distcoeffs )
57 ret , corners = cv2 . findChessboardCorners (dst , ( n_row , n_col ) ,

None )
58 if ret == True :
59 corners2 = cv2 . cornerSubPix (dst , corners , (11 , 11) , (−1 , −1) ,

criteria )
60 imgpoints . append ( corners2 )
61 return imgpoints
62
63
64
65 def calibration ( objpoints , imgpoints ) :
66 # first optimization with fixed principle point
67 # then use intrinsic guess to do second calibration
68
69 flag1 = cv2 . CALIB_FIX_PRINCIPAL_POINT
70 flag2 = cv2 . CALIB_USE_INTRINSIC_GUESS
71 flag3 = cv2 . CALIB_ZERO_TANGENT_DIST
72
73 # _, cameraMatrix , distCoeffs , rvecs , tvecs = \
74 # cv2.calibrateCamera(objpoints , imgpoints , imgSize , None, None,

flags=flag1)
75
76 # retval , cameraMatrix , distCoeffs , rvecs , tvecs = \
77 # cv2.calibrateCamera(objpoints , imgpoints , imgSize , cameraMatrix

, distCoeffs , flags=flag2)
78
79 _ , cameraMatrix , distCoeffs , rvecs , tvecs , _ , _ , error1 = \
80 cv2 . calibrateCameraExtended ( objpoints , imgpoints , imgSize , None ,

None , flags=flag3 )
81
82 _ , cameraMatrix , distCoeffs , rvecs , tvecs , _ , _ , error2 = \
83 cv2 . calibrateCameraExtended ( objpoints , imgpoints , imgSize ,

cameraMatrix , distCoeffs , flags=flag2 )
84
85 return cameraMatrix , distCoeffs , rvecs , tvecs , error1 , error2
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86
87
88 def square ( my_list ) :
89 return [ i ∗∗ 2 for i in my_list ]
90
91
92 def squareroot ( my_list ) :
93 return [ math . sqrt (i ) for i in my_list ]
94
95
96 def reprojection ( objpoints , imgpoints , cameraMatrix , distCoeffs , rvecs ,

tvecs ) :
97 imgpointsre = [ ]
98 tmp = [ ]
99 for i in xrange ( len ( objpoints ) ) :

100 imgpoints2 , _ = cv2 . projectPoints ( objpoints [ i ] , rvecs [ i ] , tvecs [ i
] , cameraMatrix , distCoeffs )

101 tmp . append ( imgpoints2 )
102 for j in xrange ( len ( imgpoints ) ) :
103 imgpointsre . append ( tmp [ j ] )
104 return imgpointsre
105
106 # projection error
107 def reprojectionerror ( objpoints , imgpoints , cameraMatrix , distCoeffs ,

rvecs , tvecs ) :
108 re_x = [ ]
109 re_y = [ ]
110 for i in xrange ( len ( objpoints ) ) :
111 imgpoints2 , _ = cv2 . projectPoints ( objpoints [ i ] , rvecs [ i ] , tvecs [ i

] , cameraMatrix , distCoeffs )
112 for j in xrange ( len ( imgpoints2 ) ) :
113 err_x = squareroot ( square ( imgpoints [ i ] [ j ] [ : , 0 ] − imgpoints2 [ j

] [ : , 0 ] ) )
114 err_y = squareroot ( square ( imgpoints [ i ] [ j ] [ : , 1 ] − imgpoints2 [ j

] [ : , 1 ] ) )
115 re_x . append ( err_x )
116 re_y . append ( err_y )
117
118 mean_error_x = 0
119 mean_error_y = 0
120 for i in re_x :
121 mean_error_x += sum (i )
122
123 for i in re_y :
124 mean_error_y += sum (i )
125
126 mean_error_x = mean_error_x/len ( re_x )
127 mean_error_y = mean_error_y/len ( re_y )
128 total = math . sqrt ( ( math . pow ( mean_error_x , 2 ) + math . pow ( mean_error_y

, 2 ) ) )
129
130 return re_x , re_y , mean_error_x , mean_error_y , total
131
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132 # detect corner around reprojected points first , then calculate the
reprojection error

133 def reprojectionerror2 (img , imgpoints1 ) :
134 imgpoints2 = [ ]
135 n_frame = 0
136 for fname in img :
137 im = cv2 . imread ( fname , 0)
138 corners = cv2 . cornerSubPix (im , imgpoints1 [ n_frame ] , (11 , 11) ,

(−1 , −1) , criteria )
139 imgpoints2 . append ( corners )
140 n_frame += 1
141 re_x = [ ]
142 re_y = [ ]
143 for i in xrange ( len ( imgpoints2 ) ) :
144 for j in xrange ( len ( imgpoints2 [ 0 ] ) ) :
145 err_x = squareroot ( square ( imgpoints1 [ i ] [ j ] [ : , 0 ] − imgpoints2

[ i ] [ j ] [ : , 0 ] ) )
146 err_y = squareroot ( square ( imgpoints1 [ i ] [ j ] [ : , 1 ] − imgpoints2

[ i ] [ j ] [ : , 1 ] ) )
147 re_x . append ( err_x )
148 re_y . append ( err_y )
149 mean_error_x = 0
150 mean_error_y = 0
151 for i in re_x :
152 mean_error_x += sum (i )
153
154 for i in re_y :
155 mean_error_y += sum (i )
156
157 mean_error_x = mean_error_x / len ( re_x )
158 mean_error_y = mean_error_y / len ( re_y )
159 total = math . sqrt ( ( math . pow ( mean_error_x , 2) + math . pow ( mean_error_y ,

2) ) )
160
161 return re_x , re_y , mean_error_x , mean_error_y , total
162
163
164 # reprojection error for both left and right camera
165 def re ( objpoints , imgpoints , cameraMatrix , distCoeffs , rvecs , tvecs ) :
166 re_x , re_y , meanX , meanY , total =\
167 reprojectionerror ( objpoints , imgpoints , cameraMatrix , distCoeffs ,

rvecs , tvecs )
168 re = [ ]
169 for i in xrange ( len ( re_x ) ) :
170 tmp = math . sqrt (np . square ( re_x [ i ] ) + np . square ( re_y [ i ] ) )
171 re . append ( tmp )
172 re_perview = [ ]
173 L = len ( objpoints [ 0 ] )
174 for j in xrange ( len ( objpoints ) ) :
175 tmp0 = re [ L∗j : L∗(j+1) ]
176 tmp = sum ( tmp0 ) /L
177 re_perview . append ( tmp )
178 return re_perview , np . sum (re ) /len (re )
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179
180 # multiply sub-lists of two lists (list2 with single column)
181 def mul_lists ( list1 , list2 ) :
182 ans = [ ]
183 # if #columns of list1 equals #rows of list2
184 if len ( list1 [ 0 ] )==len ( list2 ) :
185 # element -wise multiplication of rows of list1 and columns of

list2
186 # store sum of multiplied list into ans
187 for i in xrange ( len ( list1 ) ) :
188 tmp = [ list1 [ i ] [ j ]∗ list2 [ j ] for j in range ( len ( list2 ) ) ]
189 ans . append ( sum ( tmp ) )
190 return ans
191
192
193 # generate normally distributed image points without distortion
194 def pointsgeneration ( cameraMatrix ) :
195 imgtest = np . zeros ( (2000 , 2) , np . float32 )
196 imgtest = np . mgrid [−3:47 , −1 :39 ] . T . reshape (−1 ,2)
197 fu , fv = cameraMatrix [ 0 ] [ 0 ] , cameraMatrix [ 1 ] [ 1 ]
198 u0 , v0 = cameraMatrix [ 0 ] [ 2 ] , cameraMatrix [ 1 ] [ 2 ]
199 x , y = [ ] , [ ]
200 for i in xrange ( len ( imgtest ) ) :
201 imgtest [ i ] [ 0 ] = imgtest [ i ] [ 0 ] ∗ 2 8 . 5
202 imgtest [ i ] [ 1 ] = imgtest [ i ] [ 1 ] ∗ 2 7 . 5
203 x . append ( ( imgtest [ i ] [ 0 ] − u0 ) /fu )
204 y . append ( ( imgtest [ i ] [ 1 ] − v0 ) /fv )
205 return imgtest , x , y
206
207
208 # distortion coefficients of forward model
209 def distortimgpoints ( distCoeffs , x , y ) :
210 xd , yd = [ ] , [ ]
211 k1 , k2 = distCoeffs [ 0 ] [ 0 ] , distCoeffs [ 0 ] [ 1 ]
212 imgtest_distorted = np . zeros ( (2000 , 2) , np . float32 )
213 for i in xrange ( len (x ) ) :
214 r = np . sqrt (x [ i ]∗∗2 + y [ i ]∗∗2 )
215 tmp1 = (1 + k1∗r∗∗2 + k2∗r∗∗4) ∗ x [ i ]
216 tmp2 = (1 + k1∗r∗∗2 + k2∗r∗∗4) ∗ y [ i ]
217 imgtest_distorted [ i ] [ 0 ] = tmp1
218 imgtest_distorted [ i ] [ 1 ] = tmp2
219 xd . append ( tmp1 )
220 yd . append ( tmp2 )
221 return imgtest_distorted , xd , yd
222
223
224 # get distortion coefficients
225 def distcoeffs ( cameraMatrix , distCoeffs ) :
226 imgtest , x , y = pointsgeneration ( cameraMatrix )
227 imgtest_distorted , xd , yd = distortimgpoints ( distCoeffs , x , y )
228 T , e = [ ] , [ ]
229 for i in xrange ( len (xd ) ) :
230 rd = np . sqrt (xd [ i ]∗∗2+yd [ i ]∗∗2 )
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231 tmpu = [−xd [ i ]∗ rd ∗∗2 , −xd [ i ]∗ rd ∗∗4 , −2∗xd [ i ]∗ yd [ i ] , −rd∗∗2−2∗xd [ i
]∗∗2 , x [ i ]∗ rd ∗∗4 , x [ i ]∗ xd [ i ]∗ rd ∗∗2 , x [ i ]∗ yd [ i ]∗ rd ∗∗2 , x [ i ]∗ rd
∗∗2 ]

232 tmpv = [−yd [ i ]∗ rd ∗∗2 , −yd [ i ]∗ rd ∗∗4 , −rd∗∗2−2∗yd [ i ]∗∗2 , −2∗xd [ i ]∗
yd [ i ] , y [ i ]∗ rd ∗∗4 , y [ i ]∗ xd [ i ]∗ rd ∗∗2 , y [ i ]∗ yd [ i ]∗ rd ∗∗2 , y [ i ]∗
rd ∗∗2 ]

233 T . append ( tmpu )
234 T . append ( tmpv )
235 e . append (xd [ i]−x [ i ] )
236 e . append (yd [ i]−y [ i ] )
237 p = np . dot (np . linalg . pinv (np . array (T ) ) , np . array (e ) . T )
238 return p
239
240
241 # undistort image points with coefficients from previous function (

normalized image points)
242 # input: distorted/observed image points , and distortion coefficients p
243 # output: undistorted normalized image points
244 def undistort ( cameraMatrix , p , imgpoints ) :
245 imgundistort = [ ]
246 fu , fv = cameraMatrix [ 0 ] [ 0 ] , cameraMatrix [ 1 ] [ 1 ]
247 u0 , v0 = cameraMatrix [ 0 ] [ 2 ] , cameraMatrix [ 1 ] [ 2 ]
248 for i in xrange ( len ( imgpoints ) ) :
249 tmp = [ ]
250 for j in xrange ( len ( imgpoints [ 0 ] ) ) :
251 xi = ( imgpoints [ i ] [ j ] [ 0 ] [ 0 ] − u0 ) / fu
252 yi = ( imgpoints [ i ] [ j ] [ 0 ] [ 1 ] − v0 ) / fv
253 r = np . sqrt (xi∗∗2+yi ∗∗2)
254 G = 1 + (p [ 4 ] ∗ r∗r + p [ 5 ] ∗ xi + p [ 6 ] ∗ yi + p [ 7 ] ) ∗ r ∗ r
255 tmp1 = (xi ∗(1 + p [ 0 ] ∗ r∗r + p [ 1 ] ∗ r∗∗4) + 2∗p [ 2 ] ∗ xi∗yi + p [ 3 ] ∗ (

r∗r+2∗xi∗xi ) ) / G
256 tmp2 = (yi∗(1+p [ 0 ] ∗ r∗r+p [ 1 ] ∗ r∗∗4) + p [ 2 ] ∗ ( r∗r+2∗yi∗yi ) + 2∗p

[ 3 ] ∗ xi∗yi ) / G
257 tmp3 = [ tmp1 , tmp2 ]
258 tmp3 = np . reshape (tmp3 , ( 1 , 2 ) )
259 tmp . append ( tmp3 )
260 imgundistort . append ( tmp )
261 return imgundistort
262
263
264 # transformation from WCS to CCS
265 def WCS2CCS ( objpoints , rvecs , tvecs ) :
266 objpoints_ccs = [ ]
267 for i in xrange ( len ( objpoints ) ) :
268 rotate , _ = cv2 . Rodrigues ( rvecs [ i ] )
269 tmp = [ ]
270 for j in xrange ( len ( objpoints [ 0 ] ) ) :
271 tmp1 = (np . dot ( rotate , objpoints [ i ] [ j ] ) + tvecs [ i ] . T ) . T .

tolist ( )
272 # tmp1 = (mul_lists(rotate.T, objpoints[i][j]) + tvecs[i].T).

T.tolist()
273 tmp2 = np . reshape (tmp1 , 3)
274 tmp . append ( tmp2 )
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275 objpoints_ccs . append ( tmp )
276 return objpoints_ccs
277
278
279 # normalization
280 def normalization ( imgpoints , cameraMatrix ) :
281 Ainv = np . linalg . inv ( cameraMatrix )
282 imgpoints_normalized = [ ]
283 # imghomo = []
284 for i in xrange ( len ( imgpoints ) ) :
285 tmp , tmp2 = [ ] , [ ]
286 for j in xrange ( len ( imgpoints [ 0 ] ) ) :
287 ip = np . append ( imgpoints [ i ] [ j ] , [ 1 ] )
288 ipn = np . dot (Ainv , np . array (ip ) )
289 t = np . reshape ( ipn [ : 2 ] , ( 1 , 2 ) )
290 tmp . append (t )
291 tmp2 . append (np . reshape (ipn , ( 1 , 3 ) ) )
292 imgpoints_normalized . append ( tmp )
293 # imghomo.append(tmp2)
294 return np . array ( imgpoints_normalized )#, np.array(imghomo)
295
296
297 # mean 3d reconstruction error of all images
298 def reconstructionerror_totalmean ( objpoints1 , objpoints2 ) :
299 error_perimage = [ ]
300 for i in xrange ( len ( objpoints1 ) ) :
301 total = 0
302 for j in xrange ( len ( objpoints1 [ 0 ] ) ) :
303 tmp = ( objpoints1 [ i ] [ j ] [ 0 ] − objpoints2 [ i ] [ j ] [ 0 ] ) ∗∗2 + \
304 ( objpoints1 [ i ] [ j ] [ 1 ] − objpoints2 [ i ] [ j ] [ 1 ] ) ∗∗2 + \
305 ( objpoints1 [ i ] [ j ] [ 2 ] − objpoints2 [ i ] [ j ] [ 2 ] ) ∗∗2
306 total += np . sqrt ( tmp ) /len ( objpoints1 [ 0 ] )
307 error_perimage . append ( total )
308 return error_perimage , np . sum ( error_perimage ) /len ( objpoints1 )
309
310
311 # transformation from WCS to CCS
312 def CCS2WCS ( objpoints_ccs , rvecs , tvecs ) :
313 objpoints_wcs = [ ]
314 for i in xrange ( len ( objpoints_ccs ) ) :
315 rotate , _ = cv2 . Rodrigues ( rvecs [ i ] )
316 tmp = [ ]
317 for j in xrange ( len ( objpoints_ccs [ 0 ] ) ) :
318 tmp0 = objpoints_ccs [ i ] [ j ] − tvecs [ i ] . T
319 tmp1 = np . dot (np . linalg . inv ( rotate ) , tmp0 . T )
320 tmp2 = np . reshape (tmp1 , 3)
321 tmp . append ( tmp2 )
322 objpoints_wcs . append ( tmp )
323 return objpoints_wcs

1 # calibrate cameras and click to choose the glints
2 # after this, turn to matlab testlight.m
3 #%% import modules
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4 import os
5 import glob
6 import numpy as np
7 import cv2 as cv
8 import scipy . io as sio
9 import calibrate_new

10 import self
11 import light
12
13 #%% create file path
14 path_left_withlight = ’../09-09-19/L_withlight/*.bmp’
15 path_left_without = ’../09-09-19/L_without/*.bmp’
16 path_right_withlight = ’../09-09-19/R_withlight/*.bmp’
17 path_right_without = ’../09-09-19/R_without/*.bmp’
18
19 filepath_left_withlight = os . path . join (os . getcwd ( ) , path_left_withlight )
20 filepath_left_without = os . path . join (os . getcwd ( ) , path_left_without )
21 filepath_right_withlight = os . path . join (os . getcwd ( ) , path_right_withlight

)
22 filepath_right_without = os . path . join (os . getcwd ( ) , path_right_without )
23
24 #%% do calibration
25 [ index , imgpointsL , objpointsL , imgpointsR , objpointsR ] = \
26 calibrate_new . points ( filepath_left_withlight ,

filepath_right_withlight )
27
28 cameraMatrixL , distCoeffsL , rvecsL , tvecsL , cameraMatrixR , distCoeffsR ,

rvecsR , tvecsR = \
29 calibrate_new . singlecalibrate ( imgpointsL , objpointsL ,

imgpointsR , objpointsR , 5)
30
31
32 cameraMatrixL , distCoeffsL , cameraMatrixR , distCoeffsR , R , T , E , F = \
33 calibrate_new . stereocalibrate ( imgpointsL , objpointsL , cameraMatrixL ,

distCoeffsL , rvecsL , tvecsL ,
34 imgpointsR , objpointsR , cameraMatrixR ,

distCoeffsR , rvecsR , tvecsR )
35
36 er , recons_error , objccs , objest = calibrate_new . reconstruct ( objpointsL ,

imgpointsL , cameraMatrixL , distCoeffsL , rvecsL ,
37 tvecsL ,

objpointsR
,
imgpointsR
,
cameraMatrixR
,
distCoeffsR
,

38 rvecsR ,
tvecsR , R ,

F )
39 print recons_error
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40
41 N = len ( index )
42 #%% transform sphere’s center to image plane
43 # center = [55, 14, 1.8] # position of the sphere’s center on board
44 # imgpoints_center_left , imgpoints_center_right = [], []
45 # N = len(objpointsL)
46 # for i in xrange(N):
47 # rotate_left , _ = cv.Rodrigues(rvecsL[i])
48 # rotate_right , _ = cv.Rodrigues(rvecsR[i])
49 # tmp1 = np.dot(rotate_left , center) + tvecsL[i].T
50 # tmp2 = np.dot(rotate_right , center) + tvecsR[i].T
51 # tmp_left = np.dot(cameraMatrixL , tmp1.T.tolist())
52 # tmp_right = np.dot(cameraMatrixR , tmp2.T.tolist())
53 # imgpoints_center_left.append(tmp_left[:2]/tmp_left[2])
54 # imgpoints_center_right.append(tmp_right[:2]/tmp_right[2])
55
56 #%% transform sphere’s center from world coordinate system to camera

coordinate system
57 center = np . array ( [ 5 5 , 14 , 1 . 8 ] , dtype=np . float32 )
58 center_wcs = [ ]
59 for i in xrange (N ) :
60 center_wcs . append ( [ center ] )
61
62 center_ccs = self . WCS2CCS ( center_wcs , rvecsL , tvecsL )
63
64 #%% manually detect glints and save image points
65 images_glints_left , images_glints_right = glob . glob ( filepath_left_without

) , glob . glob ( filepath_right_without )
66 lglint , rglint = light . Glint ( ) , light . Glint ( )
67
68 light . glintscoordinates ( images_glints_left , lglint )
69 light . glintscoordinates ( images_glints_right , rglint )
70
71 #%% separate two glints
72 lg1 , lg2 , rg1 , rg2 = [ ] , [ ] , [ ] , [ ]
73 for i in xrange ( len ( lglint . points ) /2) :
74 lg1 . append ( lglint . points [ 2∗ i ] )
75 lg2 . append ( lglint . points [ 2∗ i+1])
76 for i in xrange ( len ( rglint . points ) /2) :
77 rg1 . append ( rglint . points [ 2∗ i ] )
78 rg2 . append ( rglint . points [ 2∗ i+1])
79
80 #%%
81 sio . savemat (’calib09 -09-19’ , {’cameraMatrixL’ : cameraMatrixL , ’

distCoeffsL’ : distCoeffsL , ’TL’ : tvecsL , ’RL’ : rvecsL ,
82 ’glintsL1’ : lg1 , ’glintsL2’ : lg2 , ’

cameraMatrixR’ : cameraMatrixR ,
83 ’distCoeffsR’ : distCoeffsR , ’TR’ : tvecsR , ’

RR’ : rvecsR , ’glintsR1’ : rg1 , ’glintsR2’
: rg2 ,

84 ’R’ : R , ’T’ : T} , appendmat=True )
85
86 #%% reconstruct light sources
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87 # lg1 = np.reshape(lg1, (14, 1, 1, 2))
88 # lg2 = np.reshape(lg2, (14, 1, 1, 2))
89 # rg1 = np.reshape(rg1, (14, 1, 1, 2))
90 # rg2 = np.reshape(rg2, (14, 1, 1, 2))
91 #
92 # lightpos1 = light.reconstruct(lg1, cameraMatrixL , distCoeffsL , rg1,

cameraMatrixR , distCoeffsR , R, T)
93 # lightpos2 = light.reconstruct(lg2, cameraMatrixL , distCoeffsL , rg2,

cameraMatrixR , distCoeffsR , R, T)

1 import cv2 as cv
2 import numpy as np
3 import self
4 from scipy . optimize import minimize
5 from scipy . linalg import null_space
6 import calibrate_new
7
8 winSize = 6
9 # read image and find contours , return image coordinates of max intensity

of first contour
10 # for one image every time
11 def glint ( images ) :
12 glintspos , glintscontours = [ ] , [ ]
13 for fname in images :
14 img = cv . flip (cv . imread ( fname ) , 1)
15 gray = cv . cvtColor (img , cv . COLOR_BGR2GRAY )
16 ret , thresh = cv . threshold (gray , 127 , 255 , 0)
17 contours , hierarchy = cv . findContours ( thresh , cv . RETR_TREE , cv .

CHAIN_APPROX_SIMPLE )
18 cnt = contours [ 0 ]
19 minVal , maxVal , minLoc , maxLoc = cv . minMaxLoc (cv . contourArea ( cnt )

)
20 glintspos . append ( maxLoc )
21 glintscontours . append ( cnt )
22 # cv.drawContours(img, contours , -1, (0, 0, 255), 2)
23 # cv.imshow("detected", img)
24 # cv.waitKey(0)
25 return glintscontours , glintspos
26
27
28 # glints coordinates
29 def glints_coord ( glintscontours , glintspos ) :
30 coord = [ ]
31 for i in xrange ( len ( glintspos ) ) :
32 ind1 , ind2 = glintspos [ i ] [ 0 ] , glintspos [ i ] [ 1 ]
33 coord . append ( glintscontours [ i ] [ ind1 ] [ ind2 ] )
34 return coord
35
36
37 # center of sphere
38 def center_sphere ( images , glint_contours , glint_pos ) :
39 center = [ ]
40 for fname in images :
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41 # img = cv.flip(cv.imread(fname), 1)
42 img = cv . imread ( fname , flags=cv . IMREAD_GRAYSCALE )
43 im = img . copy ( )
44 # gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
45 canny = cv . Canny (im , 50 , 200)
46 circles = cv . HoughCircles ( canny , cv . HOUGH_GRADIENT , 2 , 900 ,

param1=80, param2=60, minRadius=100 , maxRadius=170)
47 if circles is not None :
48 for c in circles :
49 for x , y , r in c :
50 i1 , i2 = glint_pos [ 0 ] [ 0 ] , glint_pos [ 0 ] [ 1 ]
51 if abs (x − glint_contours [ i1 ] [ i2 ] [ 0 ] [ 0 ] ) < 400 :
52 cv . circle (im , (x , y ) , 2 , (255 , 0 , 0) , 2)
53 cv . circle (im , (x , y ) , r , (255 , 0 , 0) , 2)
54 center . append ( [ x , y ] )
55 # cv.imshow("Circles", im)
56 # cv.waitKey(0)
57 return center
58
59
60 def undistort ( cameraMatrix , p , imgpoints ) :
61 imgundistort = [ ]
62 fu , fv = cameraMatrix [ 0 ] [ 0 ] , cameraMatrix [ 1 ] [ 1 ]
63 u0 , v0 = cameraMatrix [ 0 ] [ 2 ] , cameraMatrix [ 1 ] [ 2 ]
64 for i in xrange ( len ( imgpoints ) ) :
65 xi = ( imgpoints [ i ] [ 0 ] [ 0 ] − u0 ) / fu
66 yi = ( imgpoints [ i ] [ 0 ] [ 1 ] − v0 ) / fv
67 r = np . sqrt (xi ∗∗ 2 + yi ∗∗ 2)
68 G = 1 + (p [ 4 ] ∗ r∗r + p [ 5 ] ∗ xi + p [ 6 ] ∗ yi + p [ 7 ] ) ∗ r ∗ r
69 tmp1 = (xi ∗(1 + p [ 0 ] ∗ r∗r + p [ 1 ] ∗ r∗∗4) + 2∗p [ 2 ] ∗ xi∗yi + p [ 3 ] ∗ ( r∗r

+2∗xi∗xi ) ) / G
70 tmp2 = (yi∗(1+p [ 0 ] ∗ r∗r+p [ 1 ] ∗ r∗∗4) + p [ 2 ] ∗ ( r∗r+2∗yi∗yi ) + 2∗p [ 3 ] ∗

xi∗yi ) / G
71 tmp3 = [ tmp1 , tmp2 ]
72 tmp3 = np . reshape (tmp3 , ( 1 , 2) )
73 imgundistort . append ( tmp3 )
74 return imgundistort
75
76
77 def WCS2CCS ( objpoints , rotate , tvecs ) :
78 tmp1 = (np . dot ( rotate , objpoints ) + tvecs . T ) . T . tolist ( )
79 objpoints_ccs = np . reshape (tmp1 , 3)
80 return objpoints_ccs
81
82
83 #%% mouse callback
84 def adaptive_threshold ( img ) :
85 maxValue = 0
86 for i in xrange ( len ( img ) ) :
87 if max ( img [ i ] ) > maxValue :
88 maxValue = max ( img [ i ] )
89 threshold = maxValue − 150
90 return threshold
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91
92
93 # find centers of glints by searching area around where the mouse click
94 def searchArea (img , x , y ) :
95 threshold = adaptive_threshold ( img )
96 area , index_areaX , index_areaY = [ ] , [ ] , [ ]
97 ubx , uby = x + winSize , y + winSize
98 lbx , lby = x − winSize , y − winSize
99 if ubx > len ( img [ 0 ] ) :

100 ubx = len ( img [ 0 ] )
101 if uby > len ( img ) :
102 uby = len ( img )
103
104 for i in range (lbx , ubx ) :
105 for j in range (lby , uby ) :
106 if img [ j ] [ i ] > threshold :
107 area . append ( img [ j ] [ i ] )
108 index_areaX . append (i )
109 index_areaY . append (j )
110 if len ( area ) :
111 xc = np . median ( index_areaX )
112 yc = np . median ( index_areaY )
113 xc = int ( round (xc ) )
114 yc = int ( round (yc ) )
115 # if xc not in index_areaX:
116 # xc = min(index_areaX , key=lambda x_area: abs(x_area - xc))
117 # if yc not in index_areaX:
118 # yc = min(index_areaY , key=lambda y_area: abs(y_area - yc))
119 return xc , yc
120
121
122 class Glint :
123 def __init__ ( self ) :
124 self . points = [ ]
125
126 def find_center (self , event , x , y , flags , param ) :
127 if event == cv . EVENT_LBUTTONDBLCLK :
128 xc , yc = searchArea ( param , x , y )
129 self . points . append ( [ xc , yc ] )
130 cv . drawMarker ( param , (xc , yc ) , (0 , 255 , 0) , markerSize=4,

thickness=2)
131
132
133 def click (img , glints ) :
134 cv . namedWindow (’image’ )
135 cv . setMouseCallback (’image’ , glints . find_center , param=img )
136
137 while 1 :
138 cv . imshow (’image’ , img )
139 if cv . waitKey (20) & 0xFF == 27 :
140 break
141 cv . destroyAllWindows ( )
142
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143
144 # save glints coordinates for multiple images
145 def glintscoordinates ( images , glints ) :
146 for fname in images :
147 img = cv . imread ( fname , flags=cv . IMREAD_GRAYSCALE )
148 click (img , glints )
149
150
151 # reconstruction of light source
152 def reconstruct ( imgpointsL , cameraMatrixL , distCoeffsL , imgpointsR ,

cameraMatrixR , distCoeffsR , R , T ) :
153 lightest = [ ]
154 # linear triangulation
155 pl , pr = self . distcoeffs ( cameraMatrixL , distCoeffsL ) , self . distcoeffs

( cameraMatrixR , distCoeffsR )
156 nimgl , nimgr = self . undistort ( cameraMatrixL , pl , imgpointsL ) , self .

undistort ( cameraMatrixR , pr , imgpointsR )
157
158 for i in xrange ( len ( imgpointsL ) ) :
159 uil , vil = nimgl [ i ] [ 0 ] [ 0 ] [ 0 ] , nimgl [ i ] [ 0 ] [ 0 ] [ 1 ]
160 uir , vir = nimgr [ i ] [ 0 ] [ 0 ] [ 0 ] , nimgr [ i ] [ 0 ] [ 0 ] [ 1 ]
161 Ai = np . array ( [ [ 0 , −1, vil , 0 ] ,
162 [ 0 , −1, uil , 0 ] ,
163 [ vir∗R [ 2 ] [ 0 ] − R [ 1 ] [ 0 ] , vir∗R [ 2 ] [ 1 ] − R [ 1 ] [ 1 ] , vir∗

R [ 2 ] [ 2 ] − R [ 1 ] [ 2 ] , vir∗T [ 2 ] − T [ 1 ] ] ,
164 [ uir∗R [ 2 ] [ 0 ] − R [ 1 ] [ 0 ] , uir∗R [ 2 ] [ 1 ] − R [ 1 ] [ 1 ] , uir∗

R [ 2 ] [ 2 ] − R [ 1 ] [ 2 ] , uir∗T [ 2 ] − T [ 1 ] ] ] )
165 sol = null_space (Ai )
166 print sol
167 Xi = sol [ : 3 ] / sol [ 3 ]
168 lightest . append (Xi )
169
170 return lightest

Yu Zhang Master of Science Thesis



Bibliography

[1] W. Levin, H. Kooy, J. Loeffler, and T. DeLaney, “Proton Beam Therapy,” British Journal
of Cancer, vol. 93, pp. 849–854, 2005 Oct 17.

[2] C. G. Spagnolo, Francesco and P. Queirolo, “Uveal Melanoma,” Cancer Treatment Re-
views, vol. 38, no. 5, pp. 549–553.

[3] K. K. B. M. BA Krantz, N Dave and R. Carvajal, “Uveal Melanoma: Epidemiology,
Etiology, and Treatment of Primary Disease,” Clinical Ophthalmology, pp. 279–289, 2017
Jan 31.

[4] “Proton beam irradiation.” https://www.itumor.org/proton-beam-irradiation.
html.

[5] “Proton therapy treatment.” https://www.protominternational.com/
proton-therapy/proton-therapy-treatment/.

[6] A. Fassi, M. Riboldi, C. F. Forlani, and G. Baroni, “Optical eye tracking system for
noninvasive and automatic monitoring of eye position and movements in radiotherapy
treatments of ocular tumors,” Appl. Opt., vol. 51, pp. 2441–2450, May 2012.

[7] A. T. Duchowski, “Eye tracking methodology,” Theory and practice, vol. 328, p. 614,
2007.

[8] K. Harezlak, P. Kasprowski, and M. Stasch, “Towards accurate eye tracker calibration–
methods and procedures,” Procedia Computer Science, vol. 35, pp. 1073–1081, 2014.

[9] E. D. Guestrin and M. Eizenman, “General theory of remote gaze estimation using the
pupil center and corneal reflections,” IEEE Transactions on Biomedical Engineering,
vol. 53, pp. 1124–1133, June 2006.

[10] FedericoNesti, “Eye tracking for proton clinic environment,” 2018.

[11] R. Hartley and S. B. Kang, “Parameter-free radial distortion correction with center of
distortion estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 8, pp. 1309–1321, 2007.

Master of Science Thesis Yu Zhang

https://www.itumor.org/proton-beam-irradiation.html
https://www.itumor.org/proton-beam-irradiation.html
https://www.protominternational.com/proton-therapy/proton-therapy-treatment/
https://www.protominternational.com/proton-therapy/proton-therapy-treatment/


88 Bibliography

[12] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, pp. 1330–1334, Nov 2000.

[13] Y. Cui, F. Zhou, Y. Wang, L. Liu, and H. Gao, “Precise calibration of binocular vision
system used for vision measurement,” Opt. Express, vol. 22, pp. 9134–9149, Apr 2014.

[14] S. Gai, F. Da, and X. Dai, “A novel dual-camera calibration method for 3d optical
measurement,” Optics and Lasers in Engineering, vol. 104, pp. 126–134, 2018.

[15] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vision
metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on Robotics and
Automation, vol. 3, no. 4, pp. 323–344, 1987.

[16] G.-Q. Wei and S. De Ma, “Implicit and explicit camera calibration: Theory and experi-
ments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 5,
pp. 469–480, 1994.

[17] D. C. Brown, “Decentering distortion of lenses,” Photogrammetric Engineering and Re-
mote Sensing, 1966.

[18] S. O. Heikkila Janne, “A four-step camera calibration procedure with implicit image
correction,” NMR in Biomedicine, pp. 41–47, 1995.

[19] J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1066–1077, Oct 2000.

[20] R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image understanding,
vol. 68, no. 2, pp. 146–157, 1997.

[21] “Thorlabs lens la1540-780.”

[22] “Caltech camera calibration toolbox for matlab.”

[23] S. Nedevschi, T. Marita, M. Vaida, R. Danescu, D. Frentiu, F. Oniga, C. Pocol, and
D. Moga, “Camera calibration method for stereo measurements,” Journal of Control
Engineering and Applied Informatics (CEAI), vol. 4, no. 2, pp. 21–28, 2002.

[24] “Opencv documentation: Camera calibration and 3d reconstruction.”

[25] “Matlab single camera calibrator app.”

[26] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and
accuracy evaluation,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 10, pp. 965–980, 1992.

[27] K. Yan, H. Tian, E. Liu, R. Zhao, Y. Hong, and D. Zuo, “A decoupled calibration method
for camera intrinsic parameters and distortion coefficients,” 2016.

[28] H. Li and R. Hartley, “A non-iterative method for correcting lens distortion from nine
point correspondences,” OMNIVIS 2005, vol. 2, p. 7, 2005.

[29] A. W. Fitzgibbon, “Simultaneous linear estimation of multiple view geometry and lens
distortion,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I, IEEE, 2001.

Yu Zhang Master of Science Thesis



Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

Master of Science Thesis Yu Zhang



90 Glossary

Yu Zhang Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Non-invasive eye-tracking for proton treatment of the uveal melanoma 
	Eye Cancer
	Proton Therapy

	Non-invasive Eye Tracker In Proton Clinic Environment
	Motivation of Accuracy Improvement
	Objectives and Outline
	Objectives
	Outline

	Theory Overview
	Eye Model
	Gaze Estimation
	Features In Images Of Eyes
	Geometrical Methodology

	Camera Geometry
	Projection Geometry
	Reprojection Error
	Problem of Calibration


	Methods
	Monocular Vision Calibration
	Binocular Vision Calibration
	Reconstruction In 3D
	Software Flow Diagram

	Light Source Calibration
	Simulation of System
	Reconstruction of Light Source



	Results and Discussion
	Hardware Setup
	Monocular Camera Calibration
	Matlab Caltech Calibration Toolbox
	Matlab Computer Vision Toolbox
	OpenCV Standard Algorithm
	Comparison of Toolboxes

	Stereo Camera Calibration
	Reconstruction of Light Sources


	Conclusion
	Achievements
	Future Work

	Appendices
	Decoupled Single Camera Calibration Method
	Center of Distortion
	Distortion Coefficients and Homography
	Illumination Safety
	Matlab Code
	OpenCV Python Code
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols










