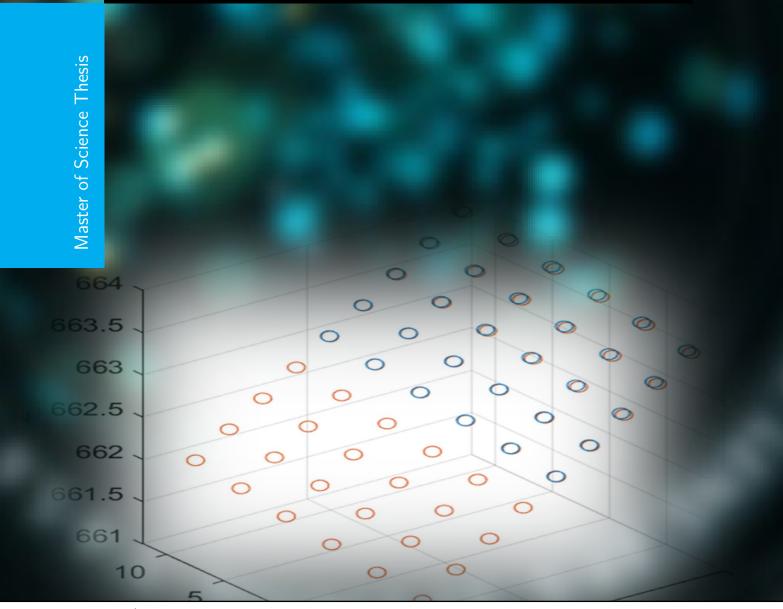
High Accuracy Eye-Tracker For Proton Clinic Environment

Yu Zhang



High Accuracy Eye-Tracker For Proton Clinic Environment

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Embedded Systems at Delft University of Technology

Yu Zhang

October 22, 2019

Abstract

This project aims to improve the accuracy of the eye tracking system, which consists of two cameras and two infrared LED light sources. This highly non-invasive technology, which is the feature-based video-oculographic eye tracking system, determines the position of the eye by monitoring the eye features such as the pupil center and glints. The accuracy of estimating the eye position and orientation is critical in the proton clinic environment, and is to be required higher than those in commercially available eye-tracking system.

By investigating the inverse problem of the monitoring process and solving the optimization problems, the positions of the cameras and light sources can be calibrated to improve the measurement accuracy and the proper gaze angle will be given. The combination of calibration and gaze estimation gives the optimal solution for the configuration of the eye tracking system.

The goal is to achieve better knowledge of camera calibration and light source calibration and build a foundation for further improvement of accuracy of the system. A method to solve the optimization problem which minimizes or maximizes the cost function will be proposed and the effectiveness of the method will be investigated using numerical simulations (Matlab) and validated experimentally.

For this purpose, a high-precision camera calibration was evaluated and implemented. Result of 3D reconstruction of feature points on calibration chessboard has achieved 0.1 mm, while the method of reconstructing light source didn't give a good performance.

Table of Contents

	Ackı	nowledgements	ix
1	Intro	oduction	1
	1-1	Non-invasive eye-tracking for proton treatment of the uveal melanoma	1
		1-1-1 Eye Cancer	1
		1-1-2 Proton Therapy	2
	1-2	Non-invasive Eye Tracker In Proton Clinic Environment	3
	1-3	Motivation of Accuracy Improvement	5
	1-4	Objectives and Outline	5
		1-4-1 Objectives	5
		1-4-2 Outline	5
_			_
2		ory Overview	7
	2-1	Eye Model	7
	2-2	Gaze Estimation	8
		2-2-1 Features In Images Of Eyes	8
		2-2-2 Geometrical Methodology	9
	2-3	Camera Geometry	14
		2-3-1 Projection Geometry	14
		2-3-2 Reprojection Error	15
		2-3-3 Problem of Calibration	16
3	Met	hods	19
,	3-1	Monocular Vision Calibration	19
	3-2	Binocular Vision Calibration	23
	0	3-2-1 Reconstruction In 3D	$\frac{25}{25}$
		3-2-2 Software Flow Diagram	26
	3-3	Light Source Calibration	27
		3-3-1 Simulation of System	27
		3-3-2 Reconstruction of Light Source	28

Table of Contents

4	Resi	ults and Discussion	31
	4-1	Hardware Setup	31
	4-2	Monocular Camera Calibration	31
		4-2-1 Matlab Caltech Calibration Toolbox	31
		4-2-2 Matlab Computer Vision Toolbox	33
		4-2-3 OpenCV Standard Algorithm	34
		4-2-4 Comparison of Toolboxes	35
	4-3	Stereo Camera Calibration	38
		4-3-1 Reconstruction of Light Sources	38
5	Con	nclusion	43
	5-1	Achievements	43
	5-2	Future Work	43
Α	Dec	coupled Single Camera Calibration Method	45
	A-1	Center of Distortion	45
	A-2	Distortion Coefficients and Homography	46
В	Illun	mination Safety	49
C	Mat	tlab Code	51
D	D OpenCV Python Code		
	Bibl	liography	87
	Glos	ssary	89
		List of Acronyms	89
		List of Symbols	89

List of Figures

L-1	The comparison of dosage distribution between x-ray and proton beam radiation.	2
L-2	Bragg Peak	3
L-3	Proton therapy.	3
2-1	The eye model consists of two overlapped spheres.	8
2-2	Diagram of light and four Purkinje images. (Credit to Wikipedia)	8
2-3	Bright-pupil Effect (Credit to Wikipedia)	9
2-4	Dark-Pupil Effect (Credit to Wikipedia)	9
2-5	Representations of the eye, the cameras and the light sources and shows one camera and one light source system for simplicity.	10
2-6	The angles between the optic axis and the horizontal plane. The X-Z plane in the figure is parallel to the horizontal plane.	12
2-7	The transformation among three coordinate systems.	15
2-8	Reprojection error is shown as the absolute difference between image points ${\bf x}$ and ${\bf x}'$	16
3-1	Single Camera Calibration Flowchart	27
3-2	Stereo calibration flowchart	28
3-3	Calibration set-up for both cameras and light sources. Left side is a glass sphere, which is used to create the glints like human eyes. Right side is a chessboard, which can be used to calibrate cameras. The relative position of the sphere and the chessboard and the radius of the sphere are known.	28
3-4	Details of the sphere lens in the board [21].	29
3-5	Reconstruction of light sources by intersection of 3D lines that pass through sphere's center and glints. At least two image frames of the sphere and glints are required to reconstruct light sources. As shown in the figure, the sphere's centers are denoted as C_{s1} , C_{s2} for image 1 and 2 respectively. The glints are denoted as C_{s1} , in which i denotes the index the light sources and i the image frames.	29

vi List of Figures

4-1	The grid reference frame. The origin is the first point that we choose at the beginning of the calibration. The Z axis is perpendicular to the X-Y plane shown in the figure. The point indicated in the figure is an example of feature points.	32
4-2	An example of using Caltech calibration toolbox. The left picture is showing al the examples that we use in the calibration toolbox. The right picture shows the detection of feature points in the image based on the coordinate frame that we chose from previous steps. The origin of the coordinate frame is the first click of feature point in the first image.	33
4-3	Reprojection errors of two cameras using Matlab Caltech Camera Calibration Toolbox [22]. The overall mean reprojection error is 0.4 pixels.	35
4-4	Reprojection errors of two cameras using OpenCV standard method [24]. The overall mean reprojection error is 0.315 pixels	36
4-5	Reprojection errors of two cameras using Matlab Computer Vision Toolbox Calibrator App [25]. The overall mean reprojection error is 0.28 pixels	37
4-6	Reconstruction errors using OpenCV and Matlab. The first row shows the reconstruction errors of the whole image set (left) and the image set after removing ill-conditioned images (right, the same images are removed as in single camera calibration) based on OpenCV. The second row shows the reconstruction errors using Matlab.	39
4-7	Results of two different methods of computing structure parameters while other parts are kept the same. Left figure shows the results of Gai's method [14] and the right one shows the results of Cui's method [13]. As can be seen from the figures, Cui's method gives better performance than Gai's method	39
4-8	Reconstruction results. Points at the edge above show that there is still distortion.	40
4-9	Images for the board with the same pose. The difference between these two images is the illumination. The chessboard in Figure 4-9a helps to compute the extrinsic parameters. Without illumination in Figure 4-9b highlights on the surface of the sphere can be removed and thus helps recognition of real glints	40
4-10	Chosen glints on the surface of the sphere. The right figure shows the glints selected with the red rectangle. Other highlights are not real glints that we need.	41
4-11	Estimation of the positions of light sources in 3D. As indicated in the figure, the blue and red circles represent the results of light source 1 and 2 respectively, in which light source 1 corresponds to the left glint in Figure 4-10 and light source 2 the other.	41
4-12	Distances of the reconstructed light source in the first image pair to all the other	
	reconstructed light source points	41

List of Tables

4-1	Hardware Setup	31
4-2	Reprojection Errors of Cameras Using Different Toolboxes	38

viii List of Tables

Acknowledgements

I would like to thank my supervisor Prof. M. Verhaegen and Dr. Oleg Soloviev. The door to Dr. Oleg Soloviev's office was always open whenever I ran into a trouble spot or had a question about my research or writing. He encouraged and helped me to find out my own thoughts to solve problems.

More than the knowledge of the project that I get, the most important thing is that I learned how to think, how to explore and how to be brave.

Thanks for my friends, who always encouraged me when I got lost.

Finally I'd like to use an opportunity to thank my parents. They support my study and encourage me to grow up.

I'm grateful for everyone that helps me in my life!

Delft, University of Technology October 22, 2019 Yu Zhang

x Acknowledgements

Chapter 1

Introduction

This chapter introduces the background information of this thesis project, which includes a brief overview of uveal melanoma, the proton therapy and eye tracker. The proton therapy is widely used in eye cancer treatment due to the technical factors of the proton beam [1].

1-1 Non-invasive eye-tracking for proton treatment of the uveal melanoma

1-1-1 Eye Cancer

Eye cancer is rare and ocular melanoma is the most common one. 85% of ocular tumor are uveal melanoma [1]. When the melanoma arises from iris, ciliary body or choroid, it is called uveal melanoma. The positions of the tumors are usually detected by MRI or CT. Up to 50% of patients with uveal melanoma will ultimately develop distant metastasis [2].

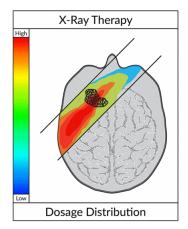
Typical treatment methods for uveal melanoma can be classified into globe-preserving therapy or enucleation. Globe-preserving method is the first choice to preserve the eyesight. There are three kinds of globe-preserving therapy: radiation, surgical and laser therapy [3].

Radiation is currently the most common method to treat with uveal melanoma. Proton therapy, as one of the external radiation methods, is a kind of radiation with usage of proton beams.

Compared to x-ray radiation therapy [4], the physical property of proton beam helps to deliver 60% less dose to healthy tissues around the tumor and higher dose to the tumor than x-ray radiation, which offers higher chance to destroy all tumor tissues and lower chance of side effects. As shown in Figure 1-1, x-ray therapy may cause damage to healthy tissues around the tumor and increases the chance of side effects.

But there are also some drawbacks to proton therapy. This treatment method requires highly specialized and costly equipment, which means high cost and less medical centers that can offer. Besides, not all cancers can be treated with proton therapy.

2 Introduction



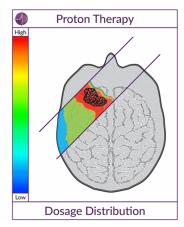


Figure 1-1: The comparison of dosage distribution between x-ray and proton beam radiation. X-ray therapy may cause damage to healthy tissues around the tumor and increases the chance of side effects[5].

1-1-2 Proton Therapy

The benefits of proton therapy outweigh the disadvantages. The proton radiotherapy is considered as primary treatment for recurrent tumor and prior to surgical resection for uveal melanoma. Main advantage of proton therapy is that the physical properties of proton beams enable high-dose delivery with less damage to adjacent normal issues than conventional radiotherapy.

Bragg peak The advantageous physical property of proton beam is the Bragg peak [4]. The energy of the proton beam reaches the peak at a point and after that it dissipates quickly. This property enables greatest damage to the tumor points with relative sparing of healthy tissues. Also because of this property, proton therapy is only sufficient for superficial lesions such as primary ocular tumors.

Conventional Proton Therapy In the process of proton therapy, the tumor needs to be aligned on the trajectory of the proton beam because the proton beams are limited to a fixed (often horizontal) position [1], as shown in Figure 1-3.

The color of the eye will change in case of iris melanoma, which is visible. However in case of ciliary body and choroid melanoma the tumors are invisible. After examination of tumor position through MRI or CT [6], the position and orientation of the target eye are required in high precision.

In conventional proton therapy eye tracking technology, tantalum markers are inserted into the eye and the number of the tantalum markers ranges from three to five, which will not be removed after therapy. The markers will be detected by x-rays. For iris melanoma, markers are not required. For ciliary body and choroid melanoma, markers help to build a 3D geometrical model of the target eye. The gaze direction is adjusted based on the eye model to minimize unnecessary damage to healthy ocular structures. Hence, measurement of position and orientation of the eye is critical for the proton therapy process.

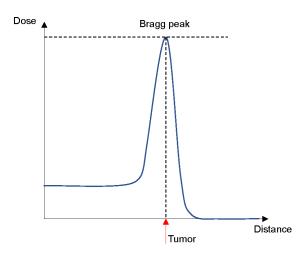


Figure 1-2: Bragg Peak. Energy of the proton beam reaches its peak at tumor and dissipates rapidly after that. The distance is the depth in tissue.

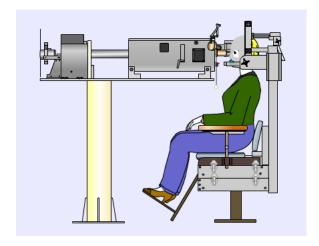


Figure 1-3: The figure shows the image of proton therapy. The tumor should be aligned on the trajectory of the proton beam since the beam is fixed, which is usually horizontal. The head should be fixed [4].

The eye tracking technology of inserting tantalum markers into eyeball is highly invasive. To avoid this painful surgery and improve the flexibility of eye tracking process, non-invasive eye tracking technology is a good choice provided its accuracy can reach the requirements of the proton therapy.

1-2 Non-invasive Eye Tracker In Proton Clinic Environment

The measurement device for measuring eye movements is called an eye tracker. Eye tracking technologies are currently widely used in many fields, such as psychology, VR games etc..

The techniques for monitoring eye movement are in general of two types: one is to measure the position of the eye relative to the head, and another is to measure the orientation of

Introduction

the eye or the point of gaze (POG). The former technology requires measurement of the head position, which makes the eye tracking process more complex. The latter one is based on the identification of features in the images of eyes. The most widely used eye tracking methodology is video-oculographic eye tracker.

Based on these two types, there are four main categories of the eye tracking technology [7]:

- Electro-OculoGraphy(EOG) relies on the measurement of the skin's potential differences with electrodes placed around the eye. This technique measures the position of the eye relative to the head.
- Scleral Contact Lens/Search Coil is a highly intrusive and precise method. This technology makes use of modern contact lens attached by a mounting stalk. The contact lens should be large enough to include the cornea and sclera. This also measures the position of the eye relative to the head.
- Photo-OculoGraphy(POG) or Video-OculoGraphy(VOG) involves the measurement of distinguishable features such as the shape of the pupil and the corneal reflection of light sources under rotation or translation. Still it's the measurement of the relative position of the eye with respect to the head.
- Video-Based Combined Pupil and Corneal Reflection is based on VOG and provides the measurement of the point of gaze with either fixed head or measurement of multiple ocular features like corneal reflections and pupil center. The difference between these two methodologies is the positional difference between the pupil center and corneal reflections are used, which changes with pure eye rotation but remains relatively constant with minor head movements. For simplicity here we call all video-based eye tracking methodologies as video-oculographic eye tracker.

Video-oculographic method is the most common method in eye tracking technologies. It can be improved even with relative inexpensive cameras and light sources (usually infrared or near-infrared LED light sources). Due to its convenience and inexpensive hardware setup, video-based eye trackers are popular in commercial market.

Accuracy and precision are important for eye trackers. Accuracy refers to the closeness of a measured value to a standard or known value, while precision refers to the closeness of two or more measurements to each other, which may be not accurate.

As described in previous part, the tumors need to be treated before the metastasis and they grow into large tumors. The typical size of ocular organics are in millimeters. Thus the accuracy of the eye trackers are required to be sub-millimeter. The consideration of gaze angle requires the rotation accuracy of sub-degree since the visual angle is approximately 1 degree.

According to [8], the accuracy can achieve 1-2 degrees with simple web camera using the image processing algorithms. However, the accuracy of current available eye trackers are still not enough for medical usage.

1-3 Motivation of Accuracy Improvement

A prototype of the high-accuracy eye tracker was developed in the Delft Center for Systems and Control (DCSC) lab. The system consists of two cameras and two near-infrared light sources. This prototype combined with a suitable software configuration can satisfy a good accuracy. However, the system still cannot be used on proton clinic environment because it requires rigid system configuration, which means everything needs to be under control and cannot be moved. This is not suitable for using in real life environment.

Precise camera calibration and light source calibration help to improve the accuracy of the non-invasive eye-tracker. Recognition of contours of pupil and glints is not in the scope of this thesis.

In this literature survey, theories about camera geometry and methods of camera calibration will be introduced. Different methods of light source calibration will be illustrated. The literature survey helps to understand the theory and background of the project.

1-4 Objectives and Outline

1-4-1 Objectives

The goal of the project is to form the calibration method for the eye tracker with flexibility and robustness such that we can get measurements of high accuracy.

1-4-2 Outline

The outline of the rest of the report is as follows:

- Chapter 2: introduction of basic knowledge of the eye model and the video-oculographic eye tracker system principles.
- Chapter 3: introduction of camera calibration methods and light source calibration.
- Chapter 4: results of experiments.
- Chapter 5: conclusion

6 Introduction

Chapter 2

Theory Overview

Eye Model 2-1

The shapes of the cornea are in common considered as spheres, although they are not perfect.

The geometrical eye model consists of two overlapped spheres as shown in Figure 2-1. In Figure 2-1 there are several important definitions of eye structures:

- **c**: The center of cornea curvature.
- **p**: The pupil center.
- R: The radius of the cornea curvature.
- K_{pc} : The distance between the center of cornea curvature **c** and the pupil center **p**.
- **d**: The center of eyeball.
- Optic axis: Defined by the center of cornea curvature **c** and the pupil center**p**.
- \bullet Visual axis: Defined by the center of cornea curvature c and fovea. Visual axis defines the gaze direction.

There is a constant angular difference between the optic axis and the visual axis. The visual axis is usually obtained from the optic axis. Let's denote the optic axis as s:

$$\mathbf{s} = \mathbf{p} - \mathbf{c}.\tag{2-1}$$

8 Theory Overview

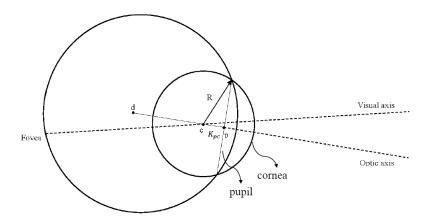


Figure 2-1: The eye model consists of two overlapped spheres. The big sphere represents the eye ball and the small one represents the cornea. The center of the eyeball is denoted as \mathbf{d} and the center of cornea curvature is denoted as \mathbf{c} . The pupil center \mathbf{p} is on the intersection between the intersection of the two spheres and the line defined by the center of cornea curvature and the center of eyeball. The optic axis is defined by the center of cornea curvature and the pupil center. The visual axis is defined by the center of cornea curvature and the fovea. The gaze direction is defined by the visual axis.

2-2 Gaze Estimation

2-2-1 Features In Images Of Eyes

As indicated in Chapter 1, the video-oculographic eye trackers monitor eye movements by tracking eye features such as the pupil center and corneal reflections of closely placed light sources. The corneal reflections appeared on the surface of cornea curvature are called Purkinje Images, as shown in Figure 2-2.

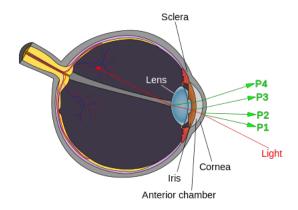


Figure 2-2: Diagram of light and four Purkinje images. (Credit to Wikipedia)

The four Purkinje images are reflections of illumination from different parts of primary eye structures. The main difference among these four images is the intensity of their illumination.

2-2 Gaze Estimation 9

• The first Purkinje image (P1): the reflection from outer surface of the cornea curvature;

- The second Purkinje image (P2): the reflection from inner surface of the cornea curvature:
- The third Purkinje image (P3): the reflection from outer surface of the lens;
- The fourth Purkinje image (P4): the reflection from inner surface of the lens;

In most cases, the first Purkinje image (P1), known as glints, is visible and used for eye trackers.

Second We talk about the pupil center. Usually the pupil contour is detected by contour extraction software and it's not a perfect circle. Different illumination methods will cause different effects. In video-oculographic eye trackers, the light sources are usually infrared or near-infrared such that the user won't be distracted from the light sources.

Two types of infrared/near-infrared (also known as active light) eye tracking technologies:

- Bright-Pupil Effect: when the illumination ray is coaxial with the optic path of the system (the cameras, the eye and the light sources), the eye acts as a retro-reflector as shown in Figure 2-3.
- Dark-Pupil Effect: when the illumination ray is offset from the optical path, clear images of pupil and glints are visible, as shown in Figure 2-4.

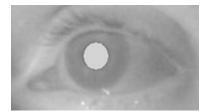


Figure 2-3: Bright-pupil Effect (Credit to Wikipedia)

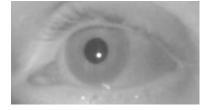


Figure 2-4: Dark-Pupil Effect (Credit to Wikipedia)

Images with glints obtained from dark-pupil effect allows us to identify the eye's movement.

2-2-2 Geometrical Methodology

The eye tracking system used consists of two cameras and two light sources. In the model of the system, pinhole camera model is used and light sources are considered as point light sources [9].

The setup is extended from one camera and one light source system, as shown in Figure 2-5. Further one camera with multiple light sources and multiple cameras and light sources will be extended.

10 Theory Overview

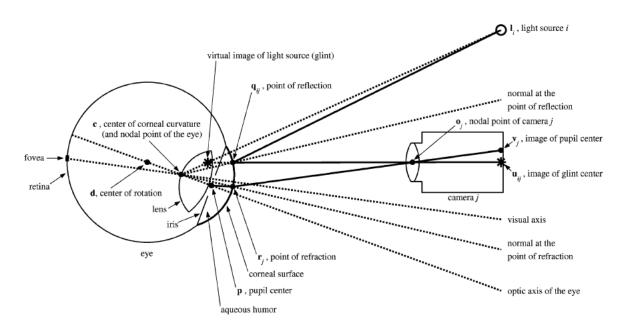


Figure 2-5: This diagram shows the representations of the eye, the cameras and the light sources and shows one camera and one light source system for simplicity. The index of the cameras are represented as \mathbf{o}_j , which are the principle points of the cameras. Positions of light sources are represented as l_i [9].

As indicated in Figure 2-5, features and positions of the cameras and lights are assigned with symbols:

- l_i : light source i
- \mathbf{o}_{i} : camera j
- \mathbf{q}_{ij} : point of corneal reflection (generated by light source i and the corresponding image is on camera j)
- \mathbf{r}_{i} : point of refraction of pupil center (image taken by camera j)
- \mathbf{u}_{ij} : image of glint center (corresponding image of glint \mathbf{q}_{ij})
- \mathbf{v}_i : image of pupil center (corresponding image of glint \mathbf{r}_i)

Mathematical Model As shown in figure 2-5, a ray comes out from the light source \mathbf{l}_i and reflects at the point \mathbf{q}_{ij} , which indicates that the ray passes through the nodal point \mathbf{o}_j of the camera. The reflected ray intersects with the image plane at point \mathbf{u}_{ij} . We can get the following equations from this process:

$$\mathbf{q}_{ij} = \mathbf{o}_j + k_{q,ij}(\mathbf{o}_j - \mathbf{u}_{ij}) \quad \text{for some} \quad k_{q,ij}, \tag{2-2}$$

$$\|\mathbf{q}_{ij} - \mathbf{c}\| = R. \tag{2-3}$$

The law of reflection states two conditions:

2-2 Gaze Estimation 11

- The incident ray, the reflected ray and the normal at the point of reflection are co-planar;
- The angles of incidence and reflection are equal.

These two conditions can be expressed as:

$$(\mathbf{l}_i - \mathbf{o}_i) \times (\mathbf{q}_{ij} - \mathbf{o}_i) \cdot (\mathbf{c} - \mathbf{o}_i) = 0$$
(2-4)

$$(\mathbf{l}_i - \mathbf{q}_{ij}) \cdot (\mathbf{q}_{ij} - \mathbf{c}) \cdot ||\mathbf{o}_j - \mathbf{q}_{ij}|| = (\mathbf{o}_j - \mathbf{q}_{ij}) \cdot (\mathbf{q}_{ij} - \mathbf{c}) \cdot ||\mathbf{l}_i - \mathbf{q}_{ij}||.$$
(2-5)

There's another ray that comes from the pupil center refracts at point \mathbf{r}_j on the surface of the corneal curvature and passes through the nodal point \mathbf{o}_j of the camera. The refracted ray intersects with the image plane on the point \mathbf{v}_j . We can get the following equations from this process:

$$\mathbf{r}_j = \mathbf{o}_j + k_{r,j}(\mathbf{o}_j - \mathbf{v}_j)$$
 for some $k_{r,j}$ (2-6)

$$\|\mathbf{r}_i - \mathbf{c}\| = R. \tag{2-7}$$

The law of refraction states two conditions:

- The incident ray, the refracted ray and the normal at the point of refraction are coplanar;
- The angles of incidence and refraction satisfy Snell's law.

These two conditions can be expressed as:

$$(\mathbf{r}_{j} - \mathbf{o}_{j}) \times (\mathbf{c} - \mathbf{o}_{j}) \cdot (\mathbf{p} - \mathbf{o}_{j}) = 0$$
(2-8)

$$n_1 \cdot \|(\mathbf{r}_j - \mathbf{c}) \times (\mathbf{p} - \mathbf{r}_j)\| \cdot \|\mathbf{o}_j - \mathbf{r}_j\| = n_2 \cdot \|(\mathbf{r}_j - \mathbf{c}) \times (\mathbf{o}_j - \mathbf{r}_j)\| \cdot \|\mathbf{p} - \mathbf{r}_j\|.$$
(2-9)

Finally, the optical axis (**s**) of the eye is defined by the line that passes both the corneal curvature (**c**) and the pupil center (**p**). The orientation of the optic axis can be described by the horizontal angle θ_{eye} and the vertical angle ϕ_{eye} defined in Figure 2-6. The two angles can be obtained from the corneal curvature (**c**) and the pupil center (**p**) with Eq. (2-10).

$$\mathbf{s}_{norm} = \frac{\mathbf{p} - \mathbf{c}}{\|\mathbf{p} - \mathbf{c}\|} = \begin{bmatrix} \cos \phi_{eye} \sin \theta_{eye} \\ \sin \phi_{eye} \\ -\cos \phi_{eye} \cos \theta_{eye} \end{bmatrix}. \tag{2-10}$$

12 Theory Overview

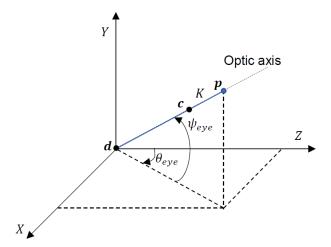


Figure 2-6: The angles between the optic axis and the horizontal plane. The X-Z plane in the figure is parallel to the horizontal plane.

The visual axis is defined by the center of the fovea and the center of the corneal curvature as shown in Figure 2-5, which gives the point of gaze. Since the horizontal and vertical angle differences between the optic axis and the visual axis are constants α_{eye} and β_{eye} , which will only cause constant error, we will consider only the optic axis for simplicity.

One Camera and One Light Source One camera and one light source system is the simplest system configuration. In this case, all the parameters of the eye, which means the radius of the corneal curvature R, the distance K between the center of the pupil (\mathbf{p}) and the center of the corneal curvature (\mathbf{c}) and the refractive index of the corneal curvature (n_1), should be known. The system of Eq. (2-2)-Eq. (2-10) in this case takes i = 1 and j = 1, which is equivalent to 13 scalar equations with 14 unknowns. To solve this problem, additional constraints should be considered and the head should be completely stationary.

One Camera and Multiple Light Sources In this case i=1...N and j=1. Substitute Eq. (2-2) into Eq. (2-4):

$$(\mathbf{l}_i - \mathbf{o}) \times (\mathbf{u}_i - \mathbf{o}) \cdot (\mathbf{c} - \mathbf{o}) = 0. \tag{2-11}$$

The equation is rewritten into matrix to obtain:

$$\begin{bmatrix} [(\mathbf{l}_{1} - \mathbf{o}) \times (\mathbf{u}_{1} - \mathbf{o})]^{T} \\ [(\mathbf{l}_{2} - \mathbf{o}) \times (\mathbf{u}_{2} - \mathbf{o})]^{T} \\ \vdots \\ [(\mathbf{l}_{N} - \mathbf{o}) \times (\mathbf{u}_{N} - \mathbf{o})]^{T} \end{bmatrix} (\mathbf{c} - \mathbf{o}) = 0.$$
(2-12)

In this case the number equations are enough to solve the center of the corneal curvature \mathbf{c} . Consequently, the pupil center \mathbf{p} can be solved. To reconstruct the optic axis, the eye parameters R, K, n_1 must be known.

As said in previous paragraphs, the system consists of one camera and multiple light sources is the simplest configuration that allows free head movement. A useful method to solve this problem is linear regression[10].

2-2 Gaze Estimation 13

Multiple Cameras and Multiple Light Sources When multiple cameras and multiple light sources are used, the equations can be written as:

$$\underbrace{\begin{bmatrix} [(\mathbf{l}_{1} - \mathbf{o}_{1}) \times (\mathbf{u}_{11} - \mathbf{o}_{1})]^{T} \\ [(\mathbf{l}_{1} - \mathbf{o}_{2}) \times (\mathbf{u}_{12} - \mathbf{o}_{2})]^{T} \\ \vdots \\ [(\mathbf{l}_{N} - \mathbf{o}_{1}) \times (\mathbf{u}_{N1} - \mathbf{o}_{1})]^{T} \\ [(\mathbf{l}_{N} - \mathbf{o}_{1}) \times (\mathbf{u}_{N2} - \mathbf{o}_{2})]^{T} \end{bmatrix}}_{\mathbf{M}_{0}} \mathbf{c} = \underbrace{\begin{bmatrix} (\mathbf{l}_{1} - \mathbf{o}_{1}) \times (\mathbf{u}_{11} - \mathbf{o}_{1}) \cdot \mathbf{o}_{1} \\ (\mathbf{l}_{1} - \mathbf{o}_{2}) \times (\mathbf{u}_{12} - \mathbf{o}_{2}) \cdot \mathbf{o}_{2} \\ \vdots \\ (\mathbf{l}_{N} - \mathbf{o}_{1}) \times (\mathbf{u}_{N1} - \mathbf{o}_{1}) \cdot \mathbf{o}_{1} \\ (\mathbf{l}_{N} - \mathbf{o}_{2}) \times (\mathbf{u}_{N2} - \mathbf{o}_{2}) \cdot \mathbf{o}_{2} \end{bmatrix}}_{\mathbf{h}}.$$
(2-13)

If \mathbf{M}_0 in Eq. (2-13) has rank of 3, \mathbf{c} can be obtained from Eq. (2-13) using the left pseudoinverse of \mathbf{M}_0 as

$$\mathbf{c} = (\mathbf{M}_0 \mathbf{M}_0^T)^{-1} \mathbf{M}_0^T \mathbf{h}. \tag{2-14}$$

If \mathbf{M}_0 is of full rank, Eq. (2-14) can be simplified as $\mathbf{c} = \mathbf{M}_0^{-1} \mathbf{h}$.

The simplest configuration of multiple cameras and multiple light sources consists of two cameras and two light sources. In this case we have

$$(\mathbf{o}_1 - \mathbf{v}_1) \times (\mathbf{c} - \mathbf{o}_1) \cdot (\mathbf{p} - \mathbf{c}) = 0,$$

$$(\mathbf{o}_2 - \mathbf{v}_2) \times (\mathbf{c} - \mathbf{o}_2) \cdot (\mathbf{p} - \mathbf{c}) = 0.$$

$$(2-15)$$

As the optic axis is defined in Eq. (2-1), we can see that the optic axis is the intersection line of the two planes: $[(\mathbf{o}_1 - \mathbf{v}_1) \times (\mathbf{c} - \mathbf{o}_1)]$ and $[(\mathbf{o}_2 - \mathbf{v}_2) \times (\mathbf{c} - \mathbf{o}_2)]$. Hence, the optic axis and its direction can be expressed as:

$$\mathbf{s}_{norm} = \frac{\mathbf{s}}{\|\mathbf{s}\|},$$

$$\mathbf{s} = [(\mathbf{o}_1 - \mathbf{v}_1) \times (\mathbf{c} - \mathbf{o}_1)] \times [(\mathbf{o}_2 - \mathbf{v}_2) \times (\mathbf{c} - \mathbf{o}_2)].$$
(2-16)

If $\mathbf{s} \neq 0$, the solution to Eq. (2-15) is:

$$\mathbf{p} - \mathbf{c} = K\mathbf{s}_{norm}.\tag{2-17}$$

From above discussions we can see that the reconstruction of the optic axis can be done without knowledge of eye parameters R, K, n_1 . Also, the progress to solve the problem is linear, which saves much time than one camera and multiple light sources model.

Conclusion Above sections introduces the anatomy and features of the eye and the mathematical models of the eye and measuring system, which includes the cameras and light sources. The composition of one camera and two light sources is the simplest configuration that allows free head movement. Composition of at least two cameras and two light sources can lead to a linear system without knowledge of eye parameters such as refraction rates, the radius of the cornea curvature and the distance between the center of cornea curvature and pupil center K.

14 Theory Overview

2-3 Camera Geometry

In computer vision, cameras are approximated by pinhole camera model, which can represent the process of imaging. The pinhole camera model assumes there is no lens but only a small pinhole as the principle point of the camera.

The pinhole camera model simplifies the imaging process by ignoring the distortion and the depth of field. This is a rough model and the closer the camera is to the pinhole camera model, the more accuracy and precision we can get from the simulation.

The imaging process of the camera model involves four coordinate frames. Next subsection will introduce the transformation among the four coordinate frames during the imaging process.

2-3-1 Projection Geometry

There are four coordinate systems involved in the imaging process. They are: world coordinate system (WCS), camera coordinate system (CCS), image coordinate system and pixel coordinate system respectively as shown in Figure 2-7. Camera coordinate system is denoted with a subscript C (x_C, y_C, z_C) and the world coordinate system is denoted with a subscript W (X_W, Y_W, Z_W). (x, y) represents the image coordinate system and (u, v) the pixel coordinate system. The distance between the camera coordinate system origin O_C and the image coordinate system origin o is the focal length. Camera parameters are described by intrinsic and extrinsic matrices. The extrinsic matrix represents the transformation process from world coordinate system to camera coordinate system, including the rotation and translation matrices. The intrinsic matrix shows the transformation from camera coordinate system to image coordinate system. The pixel coordinate system can be represented by linear combination of pixel coordinates up to a scaling factor. Let's denote the intrinsic matrix and extrinsic matrix as $\bf A$ and $\bf E$ respectively:

$$\mathbf{A} = \begin{bmatrix} f_u & \gamma & u_0 \\ 0 & f_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{2-18}$$

$$\mathbf{E} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}, \tag{2-19}$$

with

- f_u , f_v : the focal lengths in terms of pixel coordinate system respectively,
- γ : skew coefficient,
- (u_0, v_0) : the offset of projection of camera coordinate system origin to image plane, which is also the center of distortion [11],
- $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \in \mathbb{R}^{3\times3}$ the rotation matrix, indicating the orientation of the camera frame,
- $\mathbf{t} \in \mathbb{R}^3$ the translation matrix, which is defined as the difference between principle point of the camera and origin of the reference coordinate frame.

2-3 Camera Geometry 15

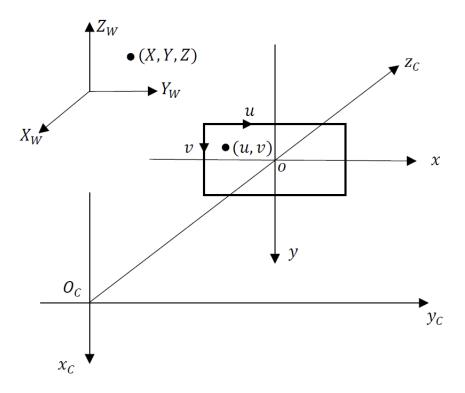


Figure 2-7: The transformation among three coordinate systems. Camera coordinate system: (x_C, y_C, z_C) ; World coordinate system: (X_W, Y_W, Z_W) ; Image coordinates system: (x, y); Pixel coordinate system: (u, v). The z axis of camera frame is perpendicular to the image plane. The origin of the image plane is the intersection point of z axis of camera coordinate frame and the image plane, which is o in the figure. The origin of the pixel coordinate system is usually defined as the upper left corner of the image in computer vision literature. The pixel point (u, v) corresponds to the point (X, Y, Z) in world coordinate frame.

Then the transformation from world coordinate system to image coordinate system is:

$$\begin{bmatrix} s \cdot u \\ s \cdot v \\ s \end{bmatrix} = \mathbf{AE} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \tag{2-20}$$

with s the scaling factor between image coordinate system and pixel coordinate system. Adding a 1 at last row of the coordinates is just for calculation of matrices, which becomes homogeneous coordinates.

2-3-2 Reprojection Error

The reprojection error is an important performance evaluation of camera calibration.

Reprojection error is as shown in Figure 2-8. The reprojection error is expressed as the difference between image points \mathbf{x} and \mathbf{x} '. \mathbf{x} is the detected image point of feature point \mathbf{M}_W ,

16 Theory Overview

which is expressed in world coordinate frame. \mathbf{x}' is the reprojection image point of \mathbf{M}_W based on camera parameters that obtained from calibration procedure.

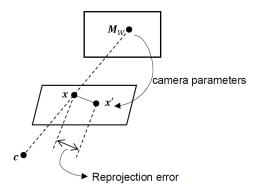


Figure 2-8: Reprojection error is shown as the absolute difference between image points \mathbf{x} and \mathbf{x}' . \mathbf{x} is the detected image point of feature point \mathbf{M}_W , which is expressed in world coordinate frame. \mathbf{x}' is the reprojection image point of \mathbf{M}_W based on camera parameters that obtained from calibration procedure.

The optimization problem of minimizing reprojection error is expressed as the sum of squared distance between observation and estimation of image points.

2-3-3 Problem of Calibration

In the following, denote the observation point on image as \mathbf{m} and the 3D object point as \mathbf{M} [12].

Homography is defined as the mapping from object plane to image plane [12]. Homography for planar object calibration describes the transformation relationship from 3D object plane to image plane, which contains the information of rotation and translation relationships between the two planes.

Hence, the transformation from 3D world coordinate system to image coordinate system can be expressed as:

$$\mathbf{m} = \mathbf{H}\mathbf{M},\tag{2-21}$$

up to a scale factor. Then the estimated projection point, which is the reprojection point, is obtained by:

$$\hat{\mathbf{m}} = \hat{\mathbf{H}}\hat{\mathbf{M}}.\tag{2-22}$$

Due to the unknown intrinsic and extrinsic parameters of camera and noise, there are errors between the detected and estimated image points. We can form a least squares problem, that is minimizing the reprojection error:

$$\min \|\mathbf{m} - \hat{\mathbf{m}}\|_2^2, \tag{2-23}$$

2-3 Camera Geometry 17

such that the optimization solution of homography $\hat{\mathbf{H}}$ and estimated projection image points $\hat{\mathbf{m}}$ can be obtained. Subsequently intrinsic and extrinsic parameters of cameras can be extracted from homography.

The calibration for multi-camera system is important and affects the reliability of the measurement system. Multi-camera calibration is usually based on single camera calibration. We will first talk about single camera calibration.

Theory Overview

Chapter 3

Methods

This chapter introduces the methods for camera calibration and light source calibration.

3-1 Monocular Vision Calibration

Zhang's [12] calibration method is flexible and widely used in many calibration methods [13, 14]. Zhang's calibration method requires a chessboard attached to a flat surface and multiple images of different depth and orientations of the calibration pattern. The problem solved by calibration is to obtain the intrinsic and extrinsic parameters of the camera given one or more images of the calibration pattern.

Homography The transformation from world coordinate system to camera coordinate system is described by the rotation matrix \mathbf{R} and the translation vector \mathbf{t} . With camera intrinsic matrix \mathbf{A} , object points in world coordinate system is transformed into image coordinate system:

$$s\tilde{\mathbf{m}} = \mathbf{A} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \tilde{\mathbf{M}} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \tilde{\mathbf{M}},$$
 (3-1)

in which s is an arbitrary scale factor, $\tilde{\mathbf{m}}$ represents the image point and $\tilde{\mathbf{M}}$ the object point, \mathbf{r}_i the ith column of the rotation matrix \mathbf{R} .

Assume the chessboard is on the plane Z = 0. Denote the homogeneous coordinates of the image point and the object point as $[u, v, 1]^T$, $[X, Y, Z, 1]^T$ respectively.

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$
 (3-2)

$$= \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}. \tag{3-3}$$

20 Methods

Denote homography as

$$\mathbf{H} = \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix} \tag{3-4}$$

and Eq. (3-1) can be expressed by homography:

$$s\tilde{\mathbf{m}} = \mathbf{H}\tilde{\mathbf{M}}.\tag{3-5}$$

Given one homography there are two basic constraints on intrinsic parameters. According to Eq. (3-4), we can obtain

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 \end{bmatrix} = \lambda \mathbf{A} \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{t} \end{bmatrix}, \tag{3-6}$$

with λ an arbitrary scalar. Using the knowledge that \mathbf{r}_1 and \mathbf{r}_2 are orthonormal, which means \mathbf{r}_1 and \mathbf{r}_2 are orthogonal and normalized,

$$\mathbf{r}_1^T \cdot \mathbf{r}_2 = 0, \tag{3-7}$$

$$\mathbf{r}_1^T \cdot \mathbf{r}_1 = \mathbf{r}_2^T \cdot \mathbf{r}_2 = 1,\tag{3-8}$$

we have

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2 = 0, \tag{3-9}$$

$$\mathbf{h}_1^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_1 = \mathbf{h}_2^T \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_2. \tag{3-10}$$

Closed-form Solution

Zhang [12] introduces the closed-form solution of intrinsic and extrinsic parameters.

Denote

$$\mathbf{B} = \mathbf{A}^{-T} \mathbf{A}^{-1} \equiv \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$$
(3-11)

$$\mathbf{B} = \mathbf{A}^{-T} \mathbf{A}^{-1} \equiv \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{f_u^2} & -\frac{\gamma}{f_u^2 f_v} & \frac{v_0 \gamma - u_0 f_v}{f_u^2 f_v} \\ -\frac{\gamma}{f_u^2 f_v} & \frac{\gamma^2}{f_u^2 f_v^2} + \frac{1}{f_v^2} & -\frac{\gamma(v_0 \gamma - u_0 f_v)}{f_u^2 f_v^2} - \frac{v_0}{f_v^2} \\ \frac{v_0 \gamma - u_0 f_v}{f_u^2 f_v} & -\frac{\gamma(v_0 \gamma - u_0 f_v)}{f_u^2 f_v^2} - \frac{v_0}{f_v^2} & \frac{(v_0 \gamma - u_0 f_v)^2}{f_u^2 f_v^2} + \frac{v_0^2}{f_v^2} + 1 \end{bmatrix}.$$

$$(3-12)$$

Since **B** is symmetric, define a 6D vector:

$$\mathbf{b} = [B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}]^T. \tag{3-13}$$

Let the *i*th column of **H** be $\mathbf{h}_i = [h_{i1}, h_{i2}, h_{i3}]^T$. Then

$$\mathbf{h}_{i}^{T}\mathbf{B}\mathbf{h}_{j} = \mathbf{v}_{ij}^{T}\mathbf{b},\tag{3-14}$$

with

$$\mathbf{v}_{ij} = [h_{i1}h_{j1}, h_{i1}h_{j2} + h_{i2}h_{j1}, h_{i2}h_{j2}, h_{i3}h_{j1} + h_{i1}h_{j3}, h_{i3}h_{j2} + h_{i2}h_{j3}, h_{i3}h_{j3}]^{T}.$$
 (3-15)

We can rewrite constraints (3-9) and (3-10) as

$$\begin{bmatrix} \mathbf{v}_{12}^T \\ (\mathbf{v}_{11} - \mathbf{v}_{22})^T \end{bmatrix} \mathbf{b} = 0. \tag{3-16}$$

If n images are provided, by stacking n such equations as (3-16) we have

$$\mathbf{Vb} = 0, \tag{3-17}$$

with **V** a $2n \times 6$ matrix.

- n = 1: In this case we can only solve two camera intrinsic parameters f_u, f_v under the assumption that the principle point of camera (u_0, v_0) is known and $\gamma = 0$.
- n=2: Skew $\gamma=0$ constraint is imposed.
- $n \ge 3$: In this case a unique solution of **b** can be obtained up to a scale factor.

The solution of equation (3-17) is well known as the eigenvector of $\mathbf{V}^T\mathbf{V}$ associated with the smallest eigenvalue.

Once \mathbf{b} is estimated, the intrinsic matrix \mathbf{A} is solved and the extrinsic matrix can also be computed:

$$\mathbf{r}_1 = \lambda \mathbf{A}^{-1} \mathbf{h}_1,$$

$$\mathbf{r}_2 = \lambda \mathbf{A}^{-1} \mathbf{h}_2,$$

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2,$$

$$\mathbf{t} = \lambda \mathbf{A}^{-1} \mathbf{h}_3,$$

with $\lambda = \frac{1}{\|\mathbf{A}^{-1}\mathbf{h}_1\|}$.

Maximum Likelihood Estimation

The results are refined by maximum likelihood inference. Given n images of a model plane and m points on the model plane. By minimizing the function:

$$\sum_{i=1}^{N} \sum_{j=1}^{L} \|\mathbf{m}_{ij} - \hat{\mathbf{m}}(\mathbf{A}, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)\|^2,$$
(3-18)

with $\hat{\mathbf{m}}(\mathbf{A}, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)$ the estimated projection point in image i of point \mathbf{M}_j , the maximum likelihood estimation can be obtained. The rotation matrix \mathbf{R} is parameterized by a vector \mathbf{r} of 3 parameters, which is parallel to the rotation axis and whose magnitude equals to the rotation angle. \mathbf{R} and \mathbf{r} are related by the Rodrigues formula.

It's a nonlinear problem to minimize Eq. (3-18) and can be solved with the Levenberg-Marquardt algorithm. This process requires an initial guess of intrinsic and extrinsic matrices as described in closed-form solution [12].

22 Methods

Radial Distortion

In the imaging process, distortion deviates image points from their original positions and causes aberration. This is unavoidable and radial distortion dominates the distortion function [15, 16]. The radial distortion model introduced by Brown [17] is expressed as

$$u^{d} = u + u(k_{1}r^{2} + k_{2}r^{4}) (3-19)$$

$$v^{d} = v + v(k_{1}r^{2} + k_{2}r^{4}), (3-20)$$

where (u, v) is the distortion-free normalized image coordinate (which is not observable) and (u^d, v^d) the distorted normalized image point (which is observable), k_1, k_2 first two terms of radial distortion and $r = \sqrt{u^2 + v^2}$.

Normalized image points are obtained with known intrinsic parameters of the camera. We can transform image points from image coordinate system to normalized image coordinate system:

$$\tilde{\mathbf{m}}_n = \mathbf{A}^{-1}\tilde{\mathbf{m}},\tag{3-21}$$

where normalized image point is denoted as $\tilde{\mathbf{m}}_n = [u, v]^T$, intrinsic matrix as \mathbf{A} and image point $\tilde{\mathbf{m}} = [x, y]^T$.

Similarly, distorted image points (x^d, y^d) can be obtained from ideal image points (x, y):

$$x^{d} = x + (x - u_0)(k_1 r^2 + k_2 r^4)$$
(3-22)

$$y^{d} = y + (y - v_0)(k_1 r^2 + k_2 r^4)$$
(3-23)

with (u_0, v_0) the center of distortion, which is included in intrinsic matrix **A**.

For each image we have

$$\begin{bmatrix} (x - u_0)r^2 & (x - u_0)r^4 \\ (y - v_0)r^2 & (y - v_0)r^4 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} x^d - x \\ y^d - y \end{bmatrix}$$
(3-24)

When we are given m points in n images, we get 2mn equations stacked in matrix form as $\mathbf{Dk} = \mathbf{d}$, where $\mathbf{k} = [k_1, k_2]^T$. The linear least-squares solution is given by

$$\mathbf{k} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{d} \tag{3-25}$$

Complete Maximum Likelihood Estimation

The parameters can be refined with new estimation of projection points $\check{\mathbf{m}}(\mathbf{A}, k_1, k_2, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_i)$:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \|\mathbf{m}_{ij} - \check{\mathbf{m}}(\mathbf{A}, k_1, k_2, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)\|^2.$$
 (3-26)

Correct Image Points

To correct the distorted image points, distortion coefficients should be calculated. However, as indicated in Eq. (3-19) and Eq. (3-20) it's a forward projection model and cannot to utilized directly [13]. A new distortion model which helps to obtain distortion-free image points from distorted ones is introduced [18][19]:

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = \frac{1}{G} \begin{bmatrix} u_i^d + u_i^d (a_1 r_i^2 + a_2 r_i^4) + 2a_3 u_i^d v_i^d + a_4 (r_i^2 + 2u_i^{d^2}) \\ v_i^d + v_i^d (a_1 r_i^2 + a_2 r_i^4) + a_3 (r_i^2 + 2v_i^{d^2}) + 2a_4 u_i^d v_i^d \end{bmatrix},$$
(3-27)

and

$$G = (a_5 r_i^2 + a_6 u_i^d + a_7 v_i^d + a_8) r_i^2 + 1, (3-28)$$

with (u_i^d, v_i^d) observed image points which are distorted in normalized image plane and $r_i = \sqrt{u^{d^2} + v^{d^2}}$.

In the distortion model Eq. (3-27) both radial and tangential distortion are considered. The coefficients a_1, a_2 are radial distortion coefficients and a_3, a_4 for tangential distortion.

The model can be used to correct distorted image points as long as 8 parameters a_1, \ldots, a_8 are known. In order to solve these parameters, N tie-points (u_i, v_i) and (u_i^d, v_i^d) covering the whole image area are generated, in which points (u_i, v_i) are ideal and (u_i^d, v_i^d) are distorted image points using distortion coefficients from solutions of optimization problem Eq. (3-26).

Define

$$\mathbf{u}_{i} = \left[-u_{i}^{d} r_{i}^{2}, -u_{i}^{d} r_{i}^{4}, -2u_{i}^{d} v_{i}^{d}, -(r_{i}^{2} + 2u_{i}^{d}), u_{i} r_{i}^{4}, u_{i} u_{i}^{d} r_{i}^{2}, u_{i} v_{i}^{d} r_{i}^{2}, u_{i} r_{i}^{2} \right]^{T},$$
(3-29)

$$\mathbf{v}_{i} = \left[-v_{i}^{d}r_{i}^{2}, -v_{i}^{d}r_{i}^{4}, -(r_{i}^{2} + 2v_{i}^{d}), -2u_{i}^{d}v_{i}^{d}, v_{i}r_{i}^{4}, v_{i}u_{i}^{d}r_{i}^{2}, v_{i}v_{i}^{d}r_{i}^{2}, v_{i}r_{i}^{2} \right]^{T},$$
(3-30)

$$\mathbf{T} = [\mathbf{u}_1, \mathbf{v}_1, \dots, \mathbf{u}_i, \mathbf{v}_i, \dots, \mathbf{u}_N, \mathbf{v}_N]^T, \tag{3-31}$$

$$\mathbf{p} = [a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8]^T, \tag{3-32}$$

$$\mathbf{e} = [u_1^d - u_1, v_1^d - v_1, \dots, u_i^d - u_i, v_i^d - v_i, \dots, u_N^d - u_N, v_N^d - v_N]^T.$$
(3-33)

Using equations (3-27) and (3-28) the following relation is obtained:

$$\mathbf{e} = \mathbf{T}\mathbf{e}.\tag{3-34}$$

Then vector **p** can be estimated by solving the following equation:

$$\hat{\mathbf{p}} = (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T \mathbf{e}. \tag{3-35}$$

With parameter vector \mathbf{p} , the image points can be corrected with equations (3-27) and (3-28).

3-2 Binocular Vision Calibration

Structure Parameters

Two methods of computing structure parameters, which are rotation and translation matrices that transform right camera coordinate system to left camera coordinate system, are introduced.

24 Methods

Method 1

One is introduced by Cui [13]. The initial guess of structure parameters \mathbf{R} , \mathbf{T} are obtained from the means of \mathbf{R}_i , \mathbf{T}_i with

$$\begin{cases}
\mathbf{R}_{i} &= \mathbf{R}_{r,i} \mathbf{R}_{l,i}^{-1} \\
\mathbf{T}_{i} &= \mathbf{t}_{r,i} - \mathbf{R}_{r,i} \mathbf{R}_{l,i}^{-1} \mathbf{t}_{l,i}
\end{cases} \Longrightarrow
\begin{cases}
\mathbf{R} &= \frac{1}{N} \sum_{i=1}^{N} \mathbf{R}_{i} \\
\mathbf{T} &= \frac{1}{N} \sum_{i=1}^{N} \mathbf{T}_{i}
\end{cases},$$
(3-36)

given N images.

Given initial guesses, the structure parameters \mathbf{R} , \mathbf{T} can be optimized by minimizing the cost function:

$$\sum_{i=1}^{N} \sum_{j=1}^{L} (\|\mathbf{m}_{l,i,j}^{d} - \mathbf{m}_{l,i,j}^{d} (\mathbf{A}_{l}, \mathbf{R}_{l,i}, \mathbf{t}_{l,i}, \mathbf{D}_{l})\|^{2} + \|\mathbf{m}_{r,i,j}^{d} - \mathbf{m}_{r,i,j}^{d} (\mathbf{A}_{r}, \mathbf{R}_{l,i}, \mathbf{t}_{l,i}, \mathbf{D}_{r}, \mathbf{R}, \mathbf{T})\|^{2}),$$
(3-37)

with N images and L feature points in every image. In Eq. (3-37) $\mathbf{R}_{r,i}$ and $\mathbf{t}_{r,i}$ can be estimated by $\mathbf{R}_{l,i}, \mathbf{t}_{l,i}, \mathbf{R}, \mathbf{T}$:

$$\begin{cases} \mathbf{R}_r &= \mathbf{R}\mathbf{R}_l \\ \mathbf{t}_r &= \mathbf{R}_r \mathbf{R}_l^{-1} \mathbf{t}_l + \mathbf{T} \end{cases}$$
 (3-38)

Centroid-Based Optimization Method

This method is introduced by Gai in [14].

Denote the rotation matrix as $\mathbf{R}_{l,i}$, $\mathbf{R}_{r,i}$ and the translation vector as $\mathbf{t}_{l,i}$, $\mathbf{t}_{r,i}$ of *i*th image for left and right camera coordinate system respectively, in which $i \in \{1, ..., N\}$ if we have N images. The transformation is described by the following equation:

$$\mathbf{m}_{nl,ij} = \mathbf{R}_{l,i}\mathbf{M}_j + \mathbf{t}_{l,i},\tag{3-39}$$

$$\mathbf{m}_{nr,ij} = \mathbf{R}_{r,i} \mathbf{M}_j + \mathbf{t}_{r,i}, \tag{3-40}$$

in which $i \in \{1, ..., N\}$ is the index of N images and $j \in \{1, ..., L\}$ is the index of L feature points in every image, $\mathbf{m}_{nl,ij}, \mathbf{m}_{nr,ij}$ are image points of left and right images respectively, \mathbf{M}_{j} the corresponding object point in world coordinate system.

Assume the origin of the stereo camera coordinate system is the principle point of left camera. Structure parameters, which include rotation matrix \mathbf{R} and translation vector \mathbf{T} , describe the transformation from right camera coordinate system to left one as in Eq. (3-41).

$$\mathbf{m}_{nr,ij} = \mathbf{R}\mathbf{m}_{nl,ij} + \mathbf{T}.\tag{3-41}$$

Centroid-based optimization method is used to obtain structure parameters. Using observed image points $\mathbf{m}_{nl,ij}$, $\mathbf{m}_{nr,ij}$, centers of left and right images are

$$\bar{\mathbf{m}}_{cl} = \frac{1}{N} \frac{1}{L} \sum_{i=1}^{N} \sum_{j=1}^{L} \mathbf{m}_{nl,ij},$$
(3-42)

$$\bar{\mathbf{m}}_{cr} = \frac{1}{N} \frac{1}{L} \sum_{i=1}^{N} \sum_{j=1}^{L} \mathbf{m}_{nr,ij}.$$
(3-43)

Transform left and right image points to centers-based coordinate systems:

$$\tilde{\mathbf{m}}_{nl,ij} = \mathbf{m}_{nl,ij} - \bar{\mathbf{m}}_{cl}, \tag{3-44}$$

$$\tilde{\mathbf{m}}_{nr,ij} = \mathbf{m}_{nr,ij} - \bar{\mathbf{m}}_{cr}. \tag{3-45}$$

Substitute Eq. (3-41) into (3-45), we can obtain

$$\tilde{\mathbf{m}}_{nr,ij} = \mathbf{R}\mathbf{m}_{nl,ij} + \mathbf{T} - \frac{1}{N} \frac{1}{L} \sum_{i=1}^{N} \sum_{j=1}^{L} (\mathbf{R}\mathbf{m}_{nl,ij} + \mathbf{T})$$
(3-46)

$$= \mathbf{R}\tilde{\mathbf{m}}_{nl,ij}. \tag{3-47}$$

By solving the problem

$$\min_{\mathbf{R}} \quad f(\mathbf{R}) = \|\mathbf{R}\tilde{\mathbf{m}}_{nr} - \tilde{\mathbf{m}}_{nl}\|_{2}^{2}, \tag{3-48}$$

we can get the solution **R** and subsequently $\mathbf{T} = \bar{\mathbf{m}_{cr}} - \mathbf{R}\bar{\mathbf{m}_{cl}}$.

3-2-1 Reconstruction In 3D

With observed image points and structure parameters from binocular vision calibration we can reconstruct object points in 3D by triangulation.

Define transformation matrices from world coordinate system to normalized image coordinate system:

$$\mathbf{P}_l = \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{0}_{3\times1} \end{bmatrix},\tag{3-49}$$

$$\mathbf{P}_r = \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}. \tag{3-50}$$

Transformation from world coordinate system to normalized image coordinate system with $\mathbf{P}_l, \mathbf{P}_r$ can be described as

$$\tilde{\mathbf{m}}_{nl} = \mathbf{P}_l \tilde{\mathbf{M}} \tag{3-51}$$

$$\tilde{\mathbf{m}}_{nr} = \mathbf{P}_r \tilde{\mathbf{M}} \tag{3-52}$$

Linear Triangulation

Known Eq. (3-51) and Eq. (3-52), we have

$$\tilde{\mathbf{m}}_{nl} \times \mathbf{P}_l \tilde{\mathbf{M}} = 0, \tag{3-53}$$

$$\tilde{\mathbf{m}}_{nr} \times \mathbf{P}_r \tilde{\mathbf{M}} = 0, \tag{3-54}$$

where $\tilde{\mathbf{m}}_{nl} = [u_l, v_l, 1]^T, \tilde{\mathbf{m}}_{nr} = [u_r, v_r, 1]^T$ are normalized image points.

26 Methods

For every image point pair $\tilde{\mathbf{m}}_{nl,ij} \leftrightarrow \tilde{\mathbf{m}}_{nr,ij}$ and their corresponding object point \mathbf{M}_j , Eq. (3-53) and Eq. (3-54) can be tackled into matrix format:

$$\underbrace{\begin{bmatrix} v_{l,ij}p_{31} - p_{21} & v_{l,ij}p_{32} - p_{22} & v_{l,ij}p_{33} - p_{23} & v_{l,ij}p_{34} - p_{24} \\ u_{l,ij}p_{31} - p_{21} & u_{l,ij}p_{32} - p_{22} & u_{l,ij}p_{33} - p_{23} & u_{l,ij}p_{34} - p_{24} \\ v_{r,ij}p_{31} - p_{21} & v_{r,ij}p_{32} - p_{22} & v_{r,ij}p_{33} - p_{23} & v_{r,ij}p_{34} - p_{24} \\ u_{r,ij}p_{31} - p_{21} & u_{r,ij}p_{32} - p_{22} & u_{r,ij}p_{33} - p_{23} & u_{r,ij}p_{34} - p_{24} \\ u_{r,ij}p_{31} - p_{21} & u_{r,ij}p_{32} - p_{22} & u_{r,ij}p_{33} - p_{23} & u_{r,ij}p_{34} - p_{24} \end{bmatrix}}_{\mathbf{A}_{ij}} \tilde{\mathbf{M}}_{j} = 0, \tag{3-55}$$

in which $i \in \{1, \dots, N\}, j \in \{1, \dots, L\}, \mathbf{m}_{nl,ij} = [u_{l,ij}, v_{l,ij}]^T, \mathbf{m}_{nr,ij} = [u_{r,ij}, v_{r,ij}]^T.$

The solution of the linear equation Eq. (3-55) is the object point \mathbf{M}_j corresponding to the image pair $\tilde{\mathbf{m}}_{nl,ij} \leftrightarrow \tilde{\mathbf{m}}_{nr,ij}$.

Nonlinear Triangulation

Assume \mathbf{P}_l , \mathbf{P}_r from Eq. (3-49) and Eq. (3-50) are error free. Then by solving the minimization problem [20]

$$\min_{\mathbf{M}_j} d(\tilde{\mathbf{m}}_{nl,ij}, \mathbf{P}_l \tilde{\mathbf{M}}_j)^2 + d(\tilde{\mathbf{m}}_{nr,ij}, \mathbf{P}_r \tilde{\mathbf{M}}_j)^2$$
(3-56)

the 3D object point \mathbf{M}_j corresponding to image pair $\tilde{\mathbf{m}}_{nl,ij}\leftrightarrow \tilde{\mathbf{m}}_{nr,ij}$ can be found.

3-2-2 Software Flow Diagram

Given N image frames, we can extract L feature points from every image frame. Denote the observed distorted image points as $\{\mathbf{m}_{ij}\}$, in which $i \in \{1, ..., N\}, j \in \{1, ..., L\}$. As shown in Figure 3-1, calibration starts from every camera.

As described in subsection 3-1, with known image points intrinsic and extrinsic parameters, which are intrinsic matrix \mathbf{A} , rotation and translation matrices $\{\mathbf{R}_i\}$, $\{\mathbf{t}_i\}$ for all frames, and distortion coefficients k_1, k_2 , can be obtained using Zhang's [12] calibration method. On these bases distortion coefficients that transform distorted image points to distortion-free image points are calculated for correction of image points.

Structure parameters, rotation and translation matrices **R**, **T** that transform right camera coordinate system to left one, can be obtained using results from calibration of left and right camera, as shown in Figure 3-2.

Evaluation of Reconstruction Results

Evaluation of reconstruction results is about the difference between original and estimated object points. The error criterion can be defined as the average Euclidean distance of original and estimated object points [13]:

$$E = \frac{1}{N} \frac{1}{L} \sum_{i=1}^{N} \sum_{j=1}^{L} d(\mathbf{M}_{j}, \mathbf{M}_{est, ij}),$$
(3-57)

which is the evaluation of the precision of calibration and reconstruction results.

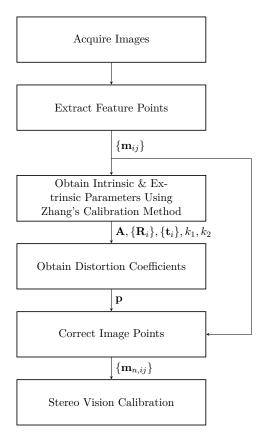


Figure 3-1: Single Camera Calibration Flowchart. Extract feature points $\{\mathbf{m}_{ij}\}$ in every image frame, in which \mathbf{m}_{ij} indicates the jth feature point in ith image frame and $i \in \{1,\ldots,N\}, j \in \{1,\ldots,L\}$ if we have N image frames and L feature points in every frame. As described in subsection 3-1, with known image points intrinsic and extrinsic parameters, which are intrinsic matrix \mathbf{A} , rotation and translation matrices $\{\mathbf{R}_i\}, \{\mathbf{t}_i\}$ for all frames, and distortion coefficients k_1, k_2 , can be obtained using Zhang's [12] calibration method. On these bases distortion coefficients that transform distorted image points to distortion-free image points are calculated for correction of image points.

3-3 Light Source Calibration

3-3-1 Simulation of System

The set-up of calibrating the light sources is shown in Figure 3-3. The combination of the glass sphere, whose radius is similar to human eye, and the chessboard makes it possible to calibrate cameras and light sources using the same target.

Denote the positions of two LED light sources as $\mathbf{L}_1, \mathbf{L}_2$. The two LED will generate two glints when they are close enough to the sphere. Glints are the reflection points of the LED light sources on the surface of the sphere.

28 Methods

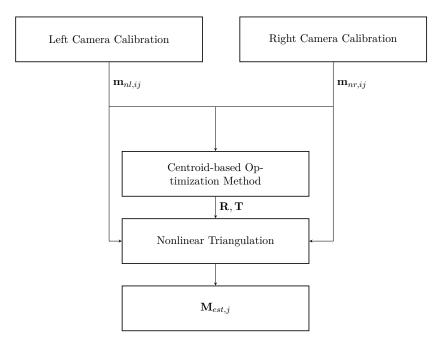


Figure 3-2: Stereo calibration flowchart. In stereo calibration procedure, results of left and right cameras are used to calculate the structure parameters that transform right camera coordinate system to left one. Finally estimation of 3D object points corresponding to image pair $\mathbf{m}_{nl,ij} \leftrightarrow \mathbf{m}_{nr,ij}$ can be obtained.

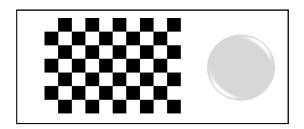


Figure 3-3: Calibration set-up for both cameras and light sources. Left side is a glass sphere, which is used to create the glints like human eyes. Right side is a chessboard, which can be used to calibrate cameras. The relative position of the sphere and the chessboard and the radius of the sphere are known.

3-3-2 Reconstruction of Light Source

While taking images for camera calibration, sphere and glints are included. If the positions of two LED light sources are not changed during the imaging process, they can be reconstructed by finding out the positions of the sphere's center and glints in 3D coordinate system.

In the world coordinate system, whose origin is the corner of the chessboard, the position of the sphere's center is known given the CAD structure of the lens as shown in Figure 3-4. The sphere's center is 1.6 mm higher than the plane Z=0 of the board. The positions of the sphere's center in the plane X-Y of the board is known when it's made.

Glints can be reconstructed from two camera views based on results from camera calibration.

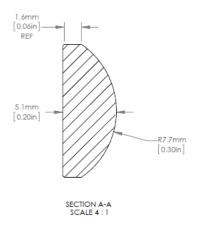


Figure 3-4: Details of the sphere lens in the board [21].

As defined in Figure 2-5, the glints, which are the point of reflections, are denoted as \mathbf{q}_{ij} , in which i denotes the index of the light sources and j the cameras. Each pair $(\mathbf{q}_{11}, \mathbf{q}_{12})$ and $(\mathbf{q}_{21}, \mathbf{q}_{22})$ can reconstruct their corresponding glints, which are denoted as $\mathbf{g}_1, \mathbf{g}_2$.

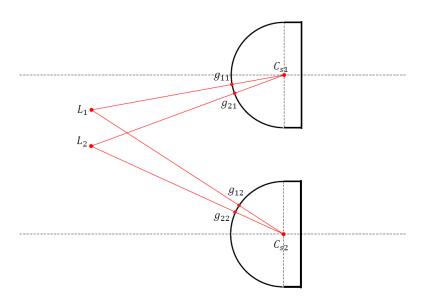


Figure 3-5: Reconstruction of light sources by intersection of 3D lines that pass through sphere's center and glints. At least two image frames of the sphere and glints are required to reconstruct light sources. As shown in the figure, the sphere's centers are denoted as $\mathbf{C}_{s1}, \mathbf{C}_{s2}$ for image 1 and 2 respectively. The glints are denoted as \mathbf{g}_{ij} , in which i denotes the index the light sources and j the image frames.

Denote the center of the sphere as C_s . Then in every image frame the 3D line that passes through the sphere's center and one glint passes through the light source corresponding to

30 Methods

the glint as shown in Figure 3-5. At lease two image frames of the sphere and glints are required to reconstruct light sources. As shown in the figure, the sphere's centers are denoted as C_{s1} , C_{s2} for image 1 and 2 respectively. The glints are denoted as \mathbf{g}_{ij} , in which i denotes the index the light sources and j the image frames.

Assume the 3D coordinates of the spheres centers \mathbf{C}_{s1} , \mathbf{C}_{s2} are (x_{c1}, y_{c1}, z_{c1}) , (x_{c2}, y_{c2}, z_{c2}) and the glints \mathbf{g}_{11} , \mathbf{g}_{12} are (x_{g1}, y_{g1}, z_{g1}) , (x_{g2}, y_{g2}, z_{g2}) respectively. Then the 3D lines that pass through the sphere's center and glints can be expressed by Eq. (3-58) and Eq. (3-59):

$$\mathbf{l}_1 = (x_{q1} - x_{c1}, y_{q1} - y_{c1}, z_{q1} - z_{c1}), \tag{3-58}$$

$$\mathbf{l}_2 = (x_{g2} - x_{c2}, y_{g2} - y_{c2}, z_{g2} - z_{c2}). \tag{3-59}$$

The intersection of two lines l_1, l_2 is

$$\mathbf{L}_{1} = \mathbf{C}_{s1} \pm \frac{\|\overrightarrow{\mathbf{C}_{s1}}\mathbf{g}_{11} \times \overrightarrow{\mathbf{C}_{s1}}\mathbf{C}_{s2}^{\rightarrow}\|}{\|\overrightarrow{\mathbf{C}_{s1}}\mathbf{g}_{11} \times \overrightarrow{\mathbf{C}_{s2}}\mathbf{g}_{12}^{\rightarrow}\|} \overrightarrow{\mathbf{C}_{s2}}\mathbf{g}_{12}^{\rightarrow}, \tag{3-60}$$

in which + is used when $\|(\overrightarrow{\mathbf{C}_{s1}\mathbf{g}_{11}} \times \overrightarrow{\mathbf{C}_{s1}\mathbf{C}_{s2}}) \times (\overrightarrow{\mathbf{C}_{s1}\mathbf{g}_{11}} \times \overrightarrow{\mathbf{C}_{s2}\mathbf{g}_{12}})\| = 0.$

Results and Discussion

This chapter introduces how to realize camera calibration and light source reconstruction using theory from previous chapter.

4-1 Hardware Setup

The cameras and infrared LED light sources are introduced as in Table 4-1.

Table 4-1: Hardware Setup

Hardware \times 2	Description
Monochrome Camera (UI-3140CP-M-GL Rev.2) C-Mount Lens (Fujinon HF50HA-1B) Infrared LED (SFH 4554)	1280×1024 resolution with 224 fps(peak) 50mm focal length with 1.5 Megapixels 860nm, Half Angle: 10 degree

4-2 Monocular Camera Calibration

There are multiple camera calibration toolboxes. Three mainly used toolboxes are shown as follows. Algorithms used in the three toolboxes are based on Zhang's calibration method [12] and Heikkila's four-step method [18].

4-2-1 Matlab Caltech Calibration Toolbox

This toolbox is developed by Bouguet [22]. The output of the toolbox is a list of all parameters of camera, including intrinsic and extrinsic parameters. Here's the introduction of intrinsic parameters:

32 Results and Discussion

- Focal length $[f_u, f_v] \in \mathbb{R}^2$: with units of pixels
- Principle point coordinates $[u_0, v_0] \in \mathbb{R}^2$: in pixels

• Skew coefficient γ : indicates the angle between x and y pixel axes

• Distortions: $\mathbf{D} \in \mathbb{R}^5$

The camera model is based on Zhang's calibration method and the skew coefficient is set to be zero: $\gamma = 0$, which is the default set of the toolbox. Hence the intrinsic matrix can be represented as:

$$\mathbf{A} = \begin{bmatrix} f_u & 0 & u_0 \\ 0 & f_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{4-1}$$

Another default set is about the distortion coefficients \mathbf{D} . Based on Zhang's calibration method, the distortion order should not be over 4th order, which means $\mathbf{D}_5 = 0$, and the tangential distortion is discarded, which mean only the last three components of kc are set zero.

The extrinsic parameters outputs are the lists of rotation and translation matrices for every image loaded for calibration. In this toolbox, the transformation of two coordinate systems is from the grid reference frame to camera reference frame.

The calibration procedure starts from extracting corners of grid images. The fist chosen corner is defined as the origin of the grid reference frame, as shown in Figure 4-1. The uncertainties

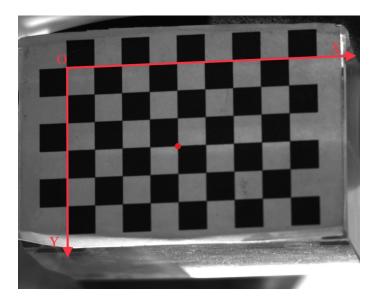
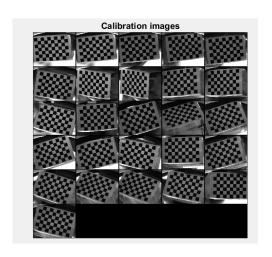


Figure 4-1: The grid reference frame. The origin is the first point that we choose at the beginning of the calibration. The Z axis is perpendicular to the X-Y plane shown in the figure. The point indicated in the figure is an example of feature points.

of intrinsic and extrinsic parameters are also outputs and represent approximately three times the standard deviations of the errors of estimation.



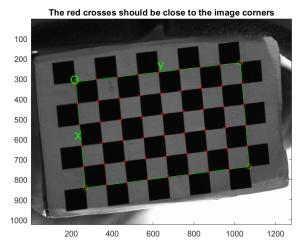


Figure 4-2: An example of using Caltech calibration toolbox. The left picture is showing all the examples that we use in the calibration toolbox. The right picture shows the detection of feature points in the image based on the coordinate frame that we chose from previous steps. The origin of the coordinate frame is the first click of feature point in the first image.

The calibration function computes the final intrinsic and extrinsic parameters by minimizing the reprojection error Eq. (3-18) [22]. An example is shown as in Figure 4-2.

Bouguet's algorithm has some drawbacks. This algorithm is highly dependent on the calibration image set (size and position of the calibration pattern, lighting conditions, camera quality, noise level and stability, and number of images) and errors occurs in the estimation of the principle point coordinates [23].

4-2-2 Matlab Computer Vision Toolbox

In this case the chessboard is required not to be square to enable the app to determine the orientation of the board.

The vectors in the Matlab toolbox and in Bouguet's [22] model are transpositions:

$$w\begin{bmatrix} x & y & 1 \end{bmatrix} = \begin{bmatrix} X & Y & Z & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{t} \end{bmatrix} \mathbf{A},$$
$$\mathbf{A} = \begin{bmatrix} f_u & 0 & 0 \\ \gamma & f_v & 0 \\ u_0 & v_0 & 1 \end{bmatrix},$$

- (X, Y, Z) world coordinates of a point,
- (x, y) corresponding image point in pixels,
- w arbitrary homogeneous coordinates scale factor,
- R the rotation matrix representing the 3D rotation of camera,
- t the translation of camera relative to the world coordinate system,

34 Results and Discussion

- A the intrinsic matrix (assume skewness $\gamma = 0$),
- $f_u = Fs_x$, $f_v = Fs_y$: with F the focal length of camera and (s_x, s_y) the number of pixels per world unit in x and y direction respectively.

The toolbox estimates the intrinsic and extrinsic parameters and distortion coefficients in two steps:

- With distortion discarded, solve for the intrinsic and extrinsic parameters;
- By solving nonlinear least-squares minimization problem (minimizing the reprojection error) with Levenberg-Marquardt algorithm and initial estimation of all parameters from last step, all parameters are refined simultaneously.

4-2-3 OpenCV Standard Algorithm

This method is based on Zhang's calibration method [12] and Bouguet's toolbox [22]. Multiple flags that help adding constraints in calibration process can be utilized. Contributing flags are introduced as follows [24]:

- CALIB_USE_INTRINSIC_GUESS: Initial guess of intrinsic parameters f_x, f_y, u_0, v_0 need to be offered and to be optimized further using Eq. (3-18). Otherwise, the principle point (u_0, v_0) are set to the image center as initial guess by default.
- CALIB_FIX_PRINCIPAL_POINT: The principle point (u_0, v_0) will not change during optimization. It's fixed either at the center of the image or a position specified by setting flag CALIB_USE_INTRINSIC_GUESS, which means Eq. (3-18) can be written as

$$\min_{f_x, f_y, \mathbf{R}_i, \mathbf{t}_i} \sum_{i=1}^{N} \sum_{j=1}^{L} \|\mathbf{m}_{ij} - \hat{\mathbf{m}}(f_x, f_y, \mathbf{R}_i, \mathbf{t}_i, \mathbf{M}_j)\|^2$$
(4-2)

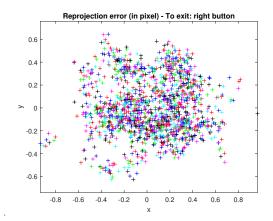
- CALIB_FIX_ASPECT_RATIO: When the flag CALIB_USE_INTRINSIC_GUESS is set and the initial guess of intrinsic parameters is given, the ratio f_x/f_y keeps the same as in the initial guess and f_y is considered as a free parameter. Otherwise, only the ratio is computed and used while the actual values of f_x , f_y are ignored.
- CALIB_ZERO_TANGENT_DIST: Tangential distortion coefficients are set to zeros and stay zero.

Flags CALIB_FIX_PRINCIPAL_POINT and CALIB_FIX_ASPECT_RATIO are not used. The principle point is set to the center of the image by default. However, due to it's also considered as the center of distortion, the principle point usually deviates from the center of the image [11]. If it's fixed, then the real center of distortion can be miscalculated. For the flag CALIB_FIX_ASPECT_RATIO, due to existence of distortion the focal length in different directions can be different and cannot be computed in high accuracy. Hence, the two flags cannot contribute to satisfying calibration results and only CALIB_USE_INTRINSIC_GUESS and CALIB_ZERO_TANGENT_DIST are used.

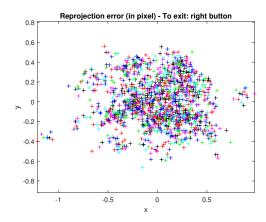
Initial guess of camera parameters can be given by calibration function using only flag CALIB_ZERO_TANGENT_DIST. Then optimization of parameters can be done by the second calibration function using flag CALIB_USE_INTRINSIC_GUESS.

4-2-4 Comparison of Toolboxes

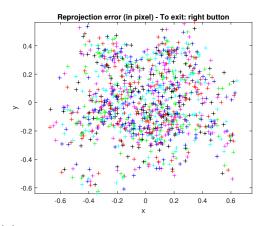
The evaluation of performances of the three toolboxes is based on reprojection error, which is introduced in chapter 2. Reprojection errors of two cameras using Caltech calibration toolbox [22], OpenCV algorithm and Matlab Calibrator app are shown as in Figure 4-3, Figure 4-4 and Figure 4-5 respectively. In every figure, for every camera reprojection errors of using the whole image set and the image set after suppressing several ill-conditioned images. Overall mean reprojection errors after removing images are smaller than those using the whole image set.



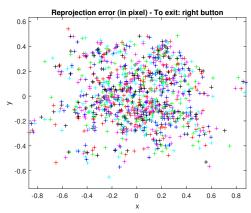
(a) Reprojection errors of camera 1 using the whole image set, which are 26 images. The mean reprojection errors are 0.29769, 0.23850 on x and y axes respectively. The mean reprojection error for all images is 0.381 pixels.



(c) Reprojection errors of camera 2 using the whole image set, which are 26 images. The mean reprojection errors are $0.32800\ 0.23423$ on x and y axes respectively. The mean reprojection error for all images is $0.403\ \text{pixels}$.



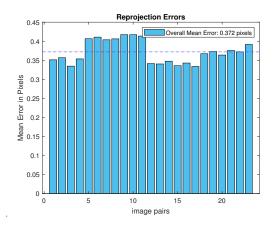
(b) Reprojection errors of camera 1 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.27734, 0.23871 on x and y axes respectively. The mean reprojection error for all images is 0.366 pixels.



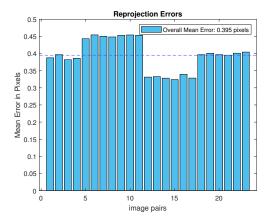
(d) Reprojection errors of camera 2 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.30247, 0.22964 on x and y axes respectively. The mean reprojection error for all images is 0.380 pixels.

Figure 4-3: Reprojection errors of two cameras using Matlab Caltech Camera Calibration Toolbox [22]. The overall mean reprojection error is 0.4 pixels.

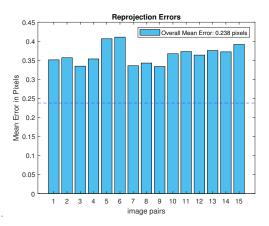
36 Results and Discussion



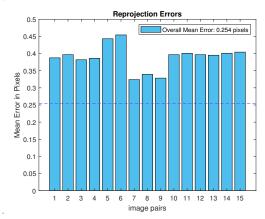
(a) Reprojection errors of camera 1 using the whole image set, which are 26 images. The mean reprojection errors are 0.3290, 0.3495 on x and y axes respectively. The mean reprojection error for all images is 0.372 pixels.



(c) Reprojection errors of camera 1 using the whole image set, which are 26 images. The mean reprojection errors are 0.29769, 0.23850 on x and y axes respectively. The mean reprojection error for all images is 0.395 pixels.

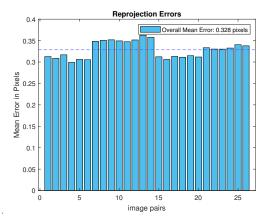


(b) Reprojection errors of camera 2 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.2103, 0.2245 on x and y axes respectively. The mean reprojection error for all images is 0.238 pixels.

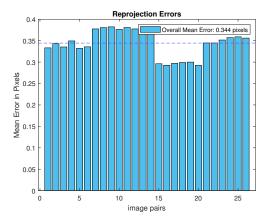


(d) Reprojection errors of camera 2 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.30247, 0.22964 on x and y axes respectively. The mean reprojection error for all images is 0.254 pixels.

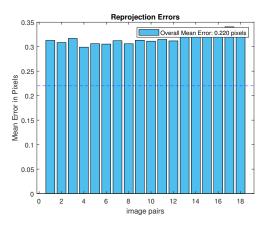
Figure 4-4: Reprojection errors of two cameras using OpenCV standard method [24]. The overall mean reprojection error is 0.315 pixels.



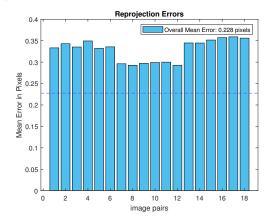
(a) Reprojection errors of camera 1 using the whole image set, which are 26 images. The mean reprojection errors are 0.3285, 0.3444 on x and y axes respectively. The mean reprojection error for all images is 0.328 pixels.



(c) Reprojection errors of camera 1 using the whole image set, which are 26 images. The mean reprojection errors are 0.2201, 0.2276 on x and y axes respectively. The mean reprojection error for all images is 0.344 pixels.



(b) Reprojection errors of camera 1 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.3285, 0.3444 on x and y axes respectively. The mean reprojection error for all images is 0.220 pixels.



(d) Reprojection errors of camera 2 after suppressing 8 ill-conditioned images (7-14), which are 18 images. The mean reprojection errors are 0.2201, 0.2276 on x and y axes respectively. The mean reprojection error for all images is 0.228 pixels.

Figure 4-5: Reprojection errors of two cameras using Matlab Computer Vision Toolbox Calibrator App [25]. The overall mean reprojection error is 0.28 pixels.

38 Results and Discussion

Reprojection Error (pixels)		Camera 1	Camera 2
Caltech Calibration Toolbox	first	0.381	0.403
	second	0.366	0.380
OpenCV Algorithm	first	0.372	0.395
	second	0.238	0.254
Matlab Calibrator App	first	0.328	0.344
	second	0.220	0.228

Table 4-2: Reprojection Errors of Cameras Using Different Toolboxes.

Comparing reprojection errors of three toolboxes listed in Table 4-2, Matlab Calibrator app gives the best performance for both cameras and before and after removing ill-conditioned images.

4-3 Stereo Camera Calibration

Two methods of computing structure parameters are introduced in chapter 3. Reconstruction errors using these two methods are shown as in Figure 4-6. The first row shows the reconstruction errors of the whole image set (left) and the image set after removing ill-conditioned images (right, the same images are removed as in single camera calibration) based on OpenCV. The second row shows the reconstruction errors using Matlab.

Performances of two different methods computing structure parameters are compared in 4-7. Left figure shows the results of Gai's method [14] and the right one shows the results of Cui's method [13]. As can be seen from the figures, Cui's method gives better performance, which is 0.19mm, than Gai's method, which is 0.22mm.

As shown in Figure 4-8, this method gives a good performance of reconstruction. Only points at the edges show that the distortion cannot be removed thoroughly.

4-3-1 Reconstruction of Light Sources

To reconstruct the light sources, the images should contain the the sphere and glints as shown in Figure 4-9. In Figure 4-9 the images of the calibration board have the same pose, which means the extrinsic parameters for these two images are the same. The chessboard in Figure 4-9a helps to compute the extrinsic parameters. Without illumination in Figure 4-9b highlights on the surface of the sphere can be removed and thus helps recognition of real glints.

As shown in Figure 4-10, there are multiple highlights in the images and real reflection points of light sources should be recognized first such that the positions of the light sources can be computed. In the right figure of Figure 4-10, the selected glints are shown in the red rectangle.

The positions of light sources are computed based on the method mentioned in chapter 3. Results are shown in Figure 4-11, in which the blue and red circles represent the results of light source 1 and 2 respectively. Light source 1 corresponds to the left glint in Figure 4-10 and light source 2 the other.

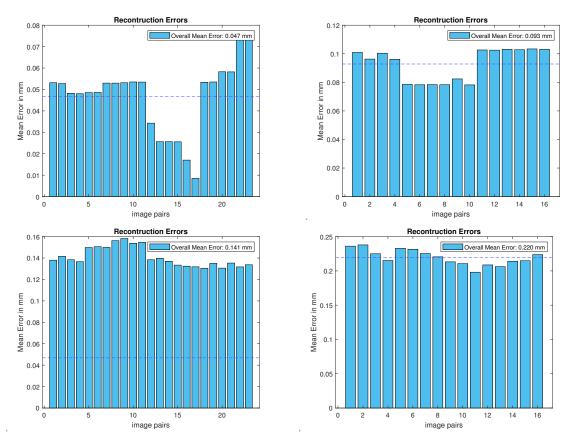


Figure 4-6: Reconstruction errors using OpenCV and Matlab. The first row shows the reconstruction errors of the whole image set (left) and the image set after removing ill-conditioned images (right, the same images are removed as in single camera calibration) based on OpenCV. The second row shows the reconstruction errors using Matlab.

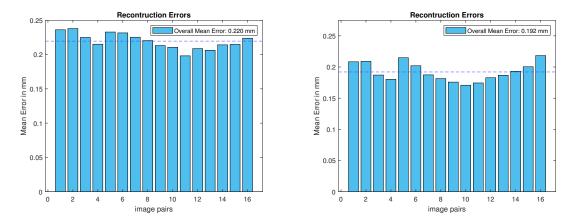


Figure 4-7: Results of two different methods of computing structure parameters while other parts are kept the same. Left figure shows the results of Gai's method [14] and the right one shows the results of Cui's method [13]. As can be seen from the figures, Cui's method gives better performance than Gai's method.

40 Results and Discussion

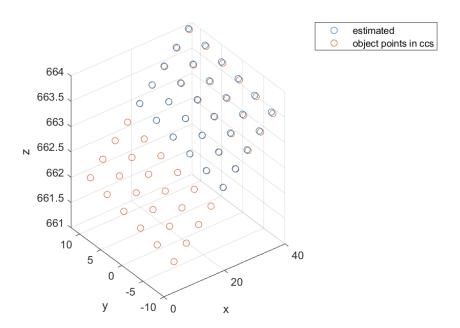
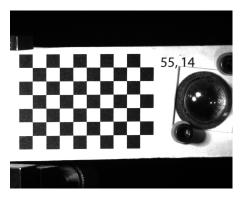
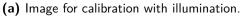


Figure 4-8: Reconstruction results. Points at the edge above show that there is still distortion.





(b) Image for calibration without illumination.

Figure 4-9: Images for the board with the same pose. The difference between these two images is the illumination. The chessboard in Figure 4-9a helps to compute the extrinsic parameters. Without illumination in Figure 4-9b highlights on the surface of the sphere can be removed and thus helps recognition of real glints.

Discussion

As shown in Figure 4-11 the results of light sources positions vary a lot and no accurate and precise results can be obtained using this method. The distances from the first reconstructed light source to all the other reconstructed results.

Figure 4-10: Chosen glints on the surface of the sphere. The right figure shows the glints selected with the red rectangle. Other highlights are not real glints that we need.

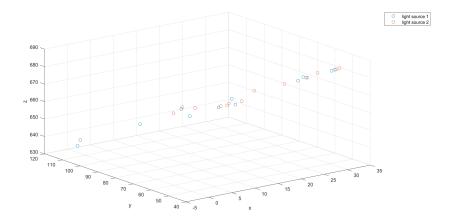


Figure 4-11: Estimation of the positions of light sources in 3D. As indicated in the figure, the blue and red circles represent the results of light source 1 and 2 respectively, in which light source 1 corresponds to the left glint in Figure 4-10 and light source 2 the other.

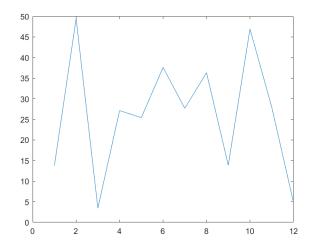


Figure 4-12: Distances of the reconstructed light source in the first image pair to all the other reconstructed light source points.

42 Results and Discussion

Chapter 5

Conclusion

In this chapter, results achieved are listed and future work are introduced.

5-1 Achievements

The results obtained during the thesis are listed as follows:

- In single camera calibration, three toolboxes were tested and novel distortion correction method were used.
- In stereo camera calibration, two methods of computing the structure parameters were tested and compared.
- Reconstruction of object points in 3D are realized with precision of 0.1 mm.
- Primary reconstruction of LED light sources was done but needs to be improved.

5-2 Future Work

To make a high-accuracy eye tracker, more work need to be done:

- Improve the method of reconstructing the positions of LED light sources.
- A way of improving the accuracy rather than precision should be evaluated.

44 Conclusion

Appendix A

Decoupled Single Camera Calibration Method

As introduced in chapter 2, calibration of a camera is to compute the intrinsic and extrinsic parameters given several image frames. All parameters are optimal solutions of maximum likelihood estimation.

However, this widely used method can cause errors. First is the iteration can end up with a local minimum. Second is the bundle adjustment of all parameters including distortion coefficients may lead to an unstable optimization problem of the procedure of iterations is not properly designed, which divergence or false solutions would be given [26].

Hence, a flexible method that decouple distortion parameters and camera intrinsic parameters is introduced to avoid problems mentioned above [27]. This method is introduced for reference.

A-1 Center of Distortion

Usually the center of distortion is defined as the center of the image, which is called principle point in Zhang's calibration method [12]. However, it's not safe due to distortion [11].

Radial distortion is considered as the main distortion model. Eq. (A-1) is used to express getting the distorted image point $\tilde{\mathbf{x}}^d$ from ideal image point $\tilde{\mathbf{x}}^u = [I|0]\widetilde{\mathbf{M}}$, in which $\tilde{\mathbf{e}}$ denotes the center of distortion.

$$\tilde{\mathbf{x}}^d = \tilde{\mathbf{e}} + \lambda (\tilde{\mathbf{x}}^u - \tilde{\mathbf{e}}). \tag{A-1}$$

Transform the image point $\tilde{\mathbf{x}}$ and the center of distortion into pixel coordinate system with camera intrinsic matrix \mathbf{A} :

$$\mathbf{x}^d = \mathbf{A}\tilde{\mathbf{x}}^d,\tag{A-2}$$

$$\mathbf{x}^u = \mathbf{A}\tilde{\mathbf{x}}^u,\tag{A-3}$$

$$\mathbf{e} = \mathbf{A}\tilde{\mathbf{e}}.\tag{A-4}$$

Thus:

$$\mathbf{x}^d = \mathbf{e} + \lambda(\mathbf{x}^u - \mathbf{e}). \tag{A-5}$$

Multiple $[\mathbf{e}]_{\times}$ on the left of Eq. (A-5) and Eq. (A-6) is obtained with $\mathbf{x}^u = \mathbf{H}\mathbf{M}$, in which \mathbf{M} is the object point on calibration chessboard.

$$[\mathbf{e}]_{\times}\mathbf{x}^d = \lambda[\mathbf{e}]_{\times}\mathbf{H}\mathbf{M}.\tag{A-6}$$

Finally, multiply Eq. (A-6) on the left by \mathbf{x}^{d^T} and Eq. (A-7) is obtained:

$$0 = \lambda \mathbf{x}^{d^T}([\mathbf{e}]_{\times} \mathbf{H})\mathbf{M} = \lambda \mathbf{x}^{d^T} \mathbf{F} \mathbf{M}, \tag{A-7}$$

in which $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ is called as the fundamental matrix for radial distortion and the way of computing it is similar to usual way from several point correspondences [11].

The last step tp obtain the distortion center \mathbf{e} is to extract left epipole of the fundamental matrix for radial distortion.

A-2 Distortion Coefficients and Homography

Once the center of distortion is obtained, transform the system into another that has its origin at the center of distortion, which means:

$$\check{\mathbf{e}} = \begin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ 0 & 0 & 1 \end{bmatrix} \tilde{\mathbf{e}} = \mathbf{T}\tilde{\mathbf{e}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(A-8)

if we define the original center of distortion as $\tilde{e} = [u_0, v_0, 1]^T$.

Then the transformed image points, both distorted and not-distorted, can be described as:

$$\check{\mathbf{x}}^d = \mathbf{T}\mathbf{x}^d,\tag{A-9}$$

$$\check{\mathbf{x}}^u = \mathbf{T}\mathbf{x}^u. \tag{A-10}$$

With Eq. (A-7), the new fundamental matrix for radial distortion is:

$$\check{\mathbf{F}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ u_0 & v_0 & 1 \end{bmatrix} \mathbf{F}.$$
(A-11)

Since $\mathbf{F} = [\mathbf{e}]_{\times} \mathbf{H}$ and $\check{\mathbf{e}} = [0, 0, 1]^T$, we can obtain

$$\check{\mathbf{F}} = [\check{\mathbf{e}}]_{\times} \check{\mathbf{H}} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \check{\mathbf{H}}.$$
 (A-12)

Let $\check{\mathbf{F}} = [\check{\mathbf{f}}_1^T; \check{\mathbf{f}}_2^T; \check{\mathbf{f}}_3^T]$ and $\check{\mathbf{H}} = [\check{\mathbf{h}}_1^T; \check{\mathbf{h}}_2^T; \check{\mathbf{h}}_3^T]$, where the semicolons stack every row $\check{\mathbf{f}}_i^T$ of $\check{\mathbf{F}}$ on top of each other. Based on Eq. (A-12) first two rows of $\check{\mathbf{H}}$ can be expressed by rows of the fundamental matrix for radial distortion. Given the fundamental matrix for radial distortion and the corresponding epipole, only the third row of the homography needs to be computed, which is $\check{\mathbf{H}} = [\check{\mathbf{f}}_2^T; -\check{\mathbf{f}}_1^T; \check{\mathbf{h}}_3^T]$.

To solve the final row of the homography, Li [28] and Yan [27] used the division model of radial distortion [29]. Express the undistorted image point $\check{\mathbf{x}}^u = [\check{x}^u, \check{y}^u]^T$ with distorted image point $\check{\mathbf{x}}^d = [\check{x}^d, \check{y}^d]^T$:

$$\check{x}^u = \frac{\check{x}^d}{L(\check{r}_d, k)},\tag{A-13}$$

$$\check{y}^u = \frac{\check{y}^d}{L(\check{r}_d, k)},$$
(A-14)

where $\check{r}_d = \sqrt{\check{x}_d^2 + \check{y}_d^2}$ and

$$L(\check{r}_d, k) = 1 + k_1 \check{r}_d^2 + k_2 \check{r}_d^4. \tag{A-15}$$

Substitute these parameters into Eq. (3-5) and we can get

$$s \begin{bmatrix} \frac{\check{x}^d}{L(\check{r}_d,k)} \\ \frac{\check{y}^d}{L(\check{r}_d,k)} \\ 1 \end{bmatrix} = \begin{bmatrix} \check{\mathbf{h}}_1^T \\ \check{\mathbf{h}}_2^T \\ \check{\mathbf{h}}_3^T \end{bmatrix} \mathbf{M}. \tag{A-16}$$

Hence, for each point the following equations can be obtained:

$$\begin{bmatrix} \check{x}_d(\check{\mathbf{h}}_3^T\mathbf{M}) - (\check{\mathbf{h}}_1^T\mathbf{M})(k_1\check{r}_d^2 + k_2\check{r}_d^4) \\ \check{y}_d(\check{\mathbf{h}}_3^T\mathbf{M}) - (\check{\mathbf{h}}_2^T\mathbf{M})(k_1\check{r}_d^2 + k_2\check{r}_d^4) \end{bmatrix} = \begin{bmatrix} \check{\mathbf{h}}_1^T\mathbf{M} \\ \check{\mathbf{h}}_2^T\mathbf{M} \end{bmatrix},$$
(A-17)

$$\Longrightarrow \begin{bmatrix} \check{x}_d \mathbf{M}^T & (-\check{\mathbf{f}}_2^T \mathbf{M}) [\check{r}_d^2 & \check{r}_d^4] \\ \check{y}_d \mathbf{M}^T & (\check{\mathbf{f}}_1^T \mathbf{M}) [\check{r}_d^2 & \check{r}_d^4] \end{bmatrix} \begin{bmatrix} \check{\mathbf{h}}_3 \\ k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \check{\mathbf{f}}_2^T \mathbf{M} \\ -\check{\mathbf{f}}_1^T \mathbf{M} \end{bmatrix}. \tag{A-18}$$

For every image the homography and the distortion coefficients can be computed at the same time given n corresponding points which satisfy $2n \ge m+3$ (m is the number of distortion coefficients to compute).

Another parameter-free method introduced by Hartley [11] ignored the distortion models and only considered two assumptions:

- The distortion is radially symmetric. Thus the radial distortion of an image point depends only on its distance from the center of distortion.
- An ordering, or monotonicity condition: the radial distance of points from the radial center after distortion is a monotonic function of their distance before distortion.

Denote the first two rows of the homography as \hat{H} and the final row as \mathbf{v}^T , which make the homography as $\check{\mathbf{H}} = [\hat{H}; \mathbf{v}^T]$. Using Eq. (3-5) we can obtain

$$\mathbf{x}^{u} = [\hat{H}\mathbf{M}; \mathbf{v}^{T}\mathbf{M}] = \frac{(\hat{x}^{u}, \hat{y}^{u})}{\mathbf{v}^{T}\mathbf{M}},$$
(A-19)

where
$$\hat{\mathbf{x}}^u = (\hat{x}^u, \hat{y}^u)^T = \hat{H}\mathbf{M}.$$
 (A-20)

Thus the effect of \mathbf{v}^T is to stretch the point by the factor $\frac{1}{\mathbf{v}^T\mathbf{M}}$. Consequently the radii of the distorted and ideal image points are also stretched based on the two assumptions above, which is

$$r^u = \frac{\hat{r}^u}{\mathbf{v}^T \mathbf{M}},\tag{A-21}$$

where
$$r^d = |\mathbf{x}^d|, \hat{r}^u = |\hat{\mathbf{x}}^u|,$$
 (A-22)

$$r^{u} = \left| \frac{\hat{\mathbf{x}}}{\mathbf{v}^{T} \mathbf{M}} \right| = \frac{\hat{r}^{u}}{|\mathbf{v}^{T} \mathbf{M}|}.$$
 (A-23)

Given n corresponding points, define the total squared variation of the functions Eq. (A-21) for every point in the same image:

$$V_t = \sum_{i=1}^{n-1} (r_{i+1}^u - r_i^u)^2$$
 (A-24)

$$= \sum_{i=1}^{n-1} \left(\frac{\hat{r}_{i+1}^u}{\mathbf{v}^T \mathbf{M}_{i+1}} - \frac{\hat{r}_i^u}{\mathbf{v}^T \mathbf{M}_i} \right)^2$$
(A-25)

$$= \sum_{i=1}^{n-1} \left(\frac{\hat{r}_{i+1}^{u} \mathbf{v}^{T} \mathbf{M}_{i} - \hat{r}_{i}^{u} \mathbf{v}^{T} \mathbf{M}_{i+1}}{\mathbf{v}^{T} \mathbf{M}_{i+1} \mathbf{v}^{T} \mathbf{M}_{i}} \right)^{2}.$$
 (A-26)

By solving the minimization of the function

$$V = ||A\mathbf{v}||,\tag{A-27}$$

subject to
$$\|\mathbf{v}\| = 1$$
, (A-28)

where
$$A = \begin{bmatrix} \hat{r}_2^u \mathbf{M}_1^T - \hat{r}_1^u \mathbf{M}_2^T \\ \hat{r}_3^u \mathbf{M}_2^T - \hat{r}_2^u \mathbf{M}_3^T \\ \vdots \\ \hat{r}_n^u \mathbf{M}_{n-1}^T - \hat{r}_{n-1}^u \mathbf{M}_n^T \end{bmatrix}$$
 (A-29)

for a single image, the final row \mathbf{v}^T can be computed and thus the homography for this image is obtained.

Camera intrinsic parameters can be extracted from the homography using Zhang's method [12].

Appendix B

Illumination Safety

From data sheet of the infrared light source SFH 4554, we can get the following parameters:

- Peak wavelength $\lambda_{peak} = 860nm$
- The length and width of the active area of the light source L=W=0.3mm
- Radiant intensity $I_e = 550 mW/sr$

The exposure limits are given with several constraints [?]:

exposure limits for cornea
$$E_e = \frac{I_e}{d^2} \le E_{IR} = \begin{cases} 18000 \cdot t^{-0.75} W/m^2 \\ 100W/m^2 \end{cases}$$
 (B-1)

exposure limits for retina
$$\alpha = \frac{Z}{d} \in [\alpha_{min}, \alpha_{max}]$$
 (B-2)

with
$$\alpha_{max} = 0.1 rad$$
, (B-3)

$$\alpha_{min} = \begin{cases} 0.0017, & t \le 0.25s \\ 0.0017 \cdot \sqrt{\frac{t}{0.25}}, & t \in (0.25, 10)s \\ 0.011, & t \ge 10s \end{cases}$$
 (B-4)

Yu Zhang

spectral radiance
$$L_{IR} \approx I_e \frac{R(\lambda)}{Z^2} \le \begin{cases} \frac{50000}{\alpha \cdot t^{0.25}}, & t < 10s \\ \frac{6000}{\alpha}, & t \ge 10s \end{cases}$$
 (B-5)

with $Z = \frac{L+W}{2}, d$ the distance between eye and light source, and $R(\lambda) = 10^{\frac{700-\lambda}{500}}$.

With known parameters we can first get

$$Z = \frac{L+W}{2} = 0.3mm, \quad R(\lambda_{peak}) = 10^{\frac{700-850}{500}} = 0.4786$$
 (B-6)

Master of Science Thesis

50 Illumination Safety

Then for worst case the distance d should satisfy:

$$E_e = \frac{0.55 \times 2}{d^2} \le 100 \Rightarrow d \ge \sqrt{\frac{1.1}{100}} = 0.1049m$$
 (B-7)

$$E_e = \frac{0.55 \times 2}{d^2} \le 100 \Rightarrow d \ge \sqrt{\frac{1.1}{100}} = 0.1049m$$
 (B-7)
$$\frac{6000}{\frac{Z}{d}} = \frac{6000d}{0.3 \times 10^{-3}} \ge \frac{1.1 \times 0.4786}{(0.3 \times 10^{-3})^2} \Rightarrow d \ge \frac{1.1 \times 0.4786}{6000 \times 0.3 \times 10^{-3}} = 0.2925m$$
 (B-8)

that is the distance from eye to the light source should be larger than 0.3m with 2 LED light

Appendix C

Matlab Code

```
1 %% Initialization
2 clear all; clc;
3 data;
5 L = featurepoints(3).featureindices;
6 N = featurepoints(3).imageindices;
7 Al = featurepoints(1).intrinsic;
8 Ar = featurepoints(2).intrinsic;
9 R = featurepoints(3).structure.rotation;
10 T = featurepoints(3).structure.translation;
11 kc_left = [featurepoints(1).distortion(1) featurepoints(1).distortion(2)]
   kc\_right = [featurepoints(2).distortion(1) featurepoints(2).distortion(2)]
       ];
13 % essential and fundamental matrices
  [E,F] = Essential_Fundamental(Al,Ar,R,T);
   [el,er] = Epipole(Al, Ar, R, T);
16 %% Step 1: Correct image points
   % Get distortion coefficients for every image
   for i = 1:N
       % normalize image points into normalized image plane
19
       tmp1 = Al \setminus [featurepoints(1).image(i).imgcoordinates; ones(1,L)];
       featurepoints(1).image(i).normalized = tmp1(1:2, :);
21
       \texttt{tmp2} = \texttt{Ar} \setminus [\texttt{featurepoints}(2). \texttt{image}(i). \texttt{imgcoordinates}; \texttt{ones}(1, L)];
22
       featurepoints(2).image(i).normalized = tmp2(1:2, :);
24 end
25 % Collection of distortion coefficients P
26 P_left = zeros(8,N);
27 P_{right} = zeros(8,N);
  for i = 1:N
       P_left(:,i) = Distortion_Coefficients(Al, kc_left);
30
       P_right(:,i) = Distortion_Coefficients(Ar, kc_right);
31
   end
```

52 Matlab Code

```
for i = 1:N
       % pixel coordinate system
33
       featurepoints(1).image(i).corrected = Correction_Imagepoints(
           featurepoints(1).image(i).normalized,P_left(:,i));
       featurepoints(2).image(i).corrected = Correction_Imagepoints(
35
           featurepoints(2).image(i).normalized,P_right(:,i));
36
  end
37 %% Step 2:Triangulation
38 % linear triangulation --- not working
39 P1 = [eye(3) zeros(3,1)];
40 \text{ P2} = [R T];
41 \% \text{ for } i = 1:N
         for j = 1:L
42 %
43 %
             mnl = [featurepoints(1).image(i).corrected(:,j);1];
44 %
             mnr = [featurepoints(2).image(i).corrected(:,j);1];
             mnlx = [0 - mnl(3) mnl(2); mnl(3) 0 - mnl(1); -mnl(2) mnl(1) 0];
45 %
             mnrx = [0 - mnr(3) mnr(2); mnr(3) 0 - mnr(1); -mnr(2) mnr(1) 0];
46 %
             mm = [mnlx*P1; mnrx*P2]; [~,~,V] = svd(mm); sol = V(:,end);
48 %
             featurepoints (4).image(i).est(:,j) = sol(1:3)/sol(4);
49 %
         end
   % end
  % nonlinear triangulation
52 % triangulation
53 for i = 1:N
       for j = 1:L
           mnl = featurepoints(1).image(i).corrected(:,j);
55
           mnr = featurepoints(2).image(i).corrected(:,j);
56
           costtotal = Q(x) CostTriangulation(x, R, T, mnl, mnr);
           x0 = featurepoints(4).image(i).ccs(:,j);
58
             options.Algorithm = 'levenberg-marquardt';
59 %
             options.MaxFunctionEvaluations = 5000;
60 %
             x = lsqnonlin(costTri,x0,[],[],options);
61
62
           x_tri1 = fminunc(costtotal, x0);
           featurepoints(4).image(i).est(:,j) = x_tri1;
63
64
       end
   end
   %% Plot
  % plot of mean error between estimated and observed of every image
  x1 = 1:N; y1 = zeros(1,N);
  for i = 1:N
70
       distance = 0;
71
       for j = 1:L
           tmpd2 = norm(featurepoints(4).image(i).ccs(:,j)-featurepoints(4).
72
               image(i).est(:,j));
73
           distance = distance + tmpd2;
       end
74
       y1(:,i) = distance/L;
75
76 end
77 mean3d = sum(y1)/N;
78 disp('Reconstruction Error: ');
79 disp(mean3d);
80 f1 = figure();
81 plot(x1,y1);
```

```
82 xlabel('image index');
83 ylabel('distance error (mm)');
84 title('Euclidean Distance of All Images');
85 f2 = figure();
86 xe = featurepoints(4).image(1).est(1,:);
87 ye = featurepoints(4).image(1).est(2,:);
88 ze = featurepoints (4).image (1).est (3,:);
89 xc = featurepoints(4).image(1).ccs(1,:);
90 yc = featurepoints(4).image(1).ccs(2,:);
91 zc = featurepoints(4).image(1).ccs(3,:);
92 scatter3(xe,ye,ze);
93 hold on;
94 scatter3(xc,yc,zc);
95 legend('estimated', 'object points in ccs');
96 xlabel('x');
97 ylabel('y');
98 zlabel('z');
99 % bar of reconstruction error
100 figure();
101 b4 = bar(y1, 'FaceColor', [0.3010 \ 0.7450 \ 0.9330]);
102 xlabel('image pairs');
103 ylabel('Mean Error in mm');
104 title('Recontruction Errors');
105 le4 = sprintf('Overall Mean Error: %.3f mm', mean3d);
106 line4 = yline(mean3d, '--b');
107 legend(b4, le4);
108 % plot relationship between xyz and reconstruction error
109 % f3 = figure();
110 % errx = zeros(1,N*L); erry = zeros(1,N*L); errz = zeros(1,N*L);
111 % xerr = zeros(1,N*L); yerr = zeros(1,N*L); zerr = zeros(1,N*L);
112 % for i = 1:N
113 %
          errx((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(1,:) -
       featurepoints(4).image(i).ccs(1,:);
          erry((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(2,:) -
114 %
       featurepoints(4).image(i).ccs(2,:);
115 %
          errz((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).est(3,:) -
       featurepoints(4).image(i).ccs(3,:);
          xerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(1,:);
116 %
117 %
          yerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(2,:);
          zerr((1+L*(i-1)):(L*i)) = featurepoints(4).image(i).ccs(3,:);
118 %
119 % end
120 % subplot(1,3,1); scatter(xerr, errx); xlabel('x'); ylabel('
       reconstruction error along x axis');
   % subplot(1,3,2); scatter(yerr, erry); xlabel('y'); ylabel('
121
       reconstruction error along y axis');
   % subplot(1,3,3); scatter(zerr, errz); xlabel('z'); ylabel('
122
       reconstruction error along z axis');
   % scatter3(xerr, yerr, zerr);
124
   % title('Reconstruction error along x, y, z axis respectively');
125
   % save figures
126
127 % if flag == 0
128 %
          saveas(f1, 're.png');
```

54 Matlab Code

```
129 %
        saveas(f2, 're3d.png');
130 % %
        saveas(f3, 'rexyz.png');
131 % elseif flag == 1
         saveas(f1, 're 15-08-19.png');
         saveas(f2, 're3d_15-08-19.png');
133 %
134 % %
            saveas(f3, 'rexyz_15-08-19.png');
135 % elseif flag == 2
         saveas(f1, 're_10-07-19.png');
137 %
         saveas(f2, 're3d_10-07-19.png');
138 % %
          saveas(f3, 'rexyz_10-07-19.png');
139 % elseif flag == 3
140 %
         saveas(f1, 're_16-07-19.png');
         saveas(f2, 're3d_16-07-19.png');
141 %
142 % %
          saveas(f3, 'rexyz 16-07-19.png');
143 % elseif flag == 4
        saveas(f1, 're_09-09-19.png');
144 %
          saveas(f2, 're3d_09-09-19.png');
145 %
146 % end
147
148
149 % Plot of reprojection error vs. depth
150 % depth = zeros(1,N); re = zeros(1,N); ind = 2;
151 % for i = 1:N
152 %
         depth(i) = featurepoints(4).image(i).ccs(3,ind);
          reprojection error in normalized image plane
         tmpr = 4.8e-3*featurepoints(4).image(i).ccs(:,ind);
155 %
         re(i) = norm(featurepoints(1).image(i).normalized(:,ind)-tmpr);
156 % end
157 % figure();
158 % subplot(2,1,1);
159 % plot(xpt,ypt);
160 % xlabel('image');
161 % ylabel('distance error');
162 % title('Euclidean Distance of All Images');
163 % subplot(2,1,2);
164 % plot(depth,re,'*');
165 % xlabel('depth'); ylabel('reprojection error');
166 %% Optimization of 3d points
167 % costtotal = @(x)CostTotal(x, featurepoints);
168 \% x0 = zeros(1,18+6*N);
169 \% x0(1:6) = [Al(1,1); Al(2,2); Al(1,3); Al(2,3); kc_left'];
170 \% \text{ for i} = 1:N
          x0((7+6*(i-1)):(9+6*(i-1))) = rotm2eul(featurepoints(1).image(i).
171 %
       rotation)';
172 %
          x0((10+6*(i-1)):(12+6*(i-1))) = featurepoints(1).image(i).
       translation;
173 % end
174 \% x0(7+6*N:12+6*N) = [Ar(1,1); Ar(2,2); Ar(1,3); Ar(2,3); kc_right'];
175 % x0(13+6*N:15+6*N) = rotm2eul(featurepoints(3).structure.rotation);
   \% x0(16+6*N:18+6*N) = featurepoints(3).structure.translation';
   % options = optimoptions('lsqnonlin', 'Display', 'iter');
178 % options.Algorithm = 'levenberg-marquardt';
179 % options.MaxFunctionEvaluations = 5000;
```

```
% x_total = lsqnonlin(costtotal,x0,[],[],options);
180
181
182 %% reconstruct with optimized results
183 % Al = [x_total(1) \ 0 \ x_total(3); \ 0 \ x_total(2) \ x_total(4); \ 0 \ 0 \ 1];
184 % Dl = [x_total(5) x_total(6)];
   % Ar = [x_total(7+6*N) \ 0 \ x_total(9+6*N); \ 0 \ x_total(8+6*N) \ x_total(10+6*N)
       ; 0 0 1];
186 % Dr = [x_{total}(11+6*N) x_{total}(12+6*N)];
187 % R = eul2rotm([x_{total}(13+6*N) x_{total}(14+6*N) x_{total}(15+6*N)]);
188 % T = [x_total(16+6*N); x_total(17+6*N); x_total(18+6*N)];
189 % M_wcs = featurepoints(1).image(1).objcoordinates; % 3L
190 % M_{ccsl} = zeros(3, N*L); M_{ccsr} = zeros(3, N*L); % objpoints in ccs
191 % M_est = zeros(3, N*L);
192 % pl = zeros(8,N); pr = zeros(8,N); % distortion coefficients
193 % for i = 1:N
         rl = x_{total}((7+6*(i-1)):(9+6*(i-1)));
194 %
195 %
         rl = eul2rotm(rl);
         tl = x total((10+6*(i-1)):(12+6*(i-1)));
196 %
197 %
         rr = R*rl;
          tr = R*tl + T;
198 %
199
          M_{ccsl}(:,(1+L*(i-1)):L*i) = WCS2CCS(M_{wcs}, rl, tl);
          M_{ccsr}(:,(1+L*(i-1)):L*i) = WCS2CCS(M_{wcs}, rr, tr);
200 %
201 %
          pl(:,i) = Distortion_Coefficients(Al, Dl);
202 %
          pr(:,i) = Distortion_Coefficients(Ar, Dr);
203 % end
204 %
205 % for i = 1:N
          % corrected normalized image points
206 %
207 %
          % normalized image points
          mnl = Al\[featurepoints(1).image(i).imgcoordinates;ones(1,L)];
208 %
          mnr = Ar\[featurepoints(2).image(i).imgcoordinates;ones(1,L)];
209 %
210 %
          ml = Correction_Imagepoints(mnl, pl(:,i));
          mr = Correction_Imagepoints(mnr, pr(:,i));
211 %
212 %
          for j = 1:L
213 %
              costTri = @(x)CostTriangulation(x, R, T, ml(:,j), mr(:,j));
214 %
              x0 = featurepoints(4).image(i).est(:,j);
              x_tri2 = fminunc(costTri, x0);
215 %
216 %
              M_{est}(:,j+L*(i-1)) = x_{tri2};
217 %
          end
218 % end
219 % %%
220 \% x3 = 1:N; y3 = zeros(1,N);
   % for i = 1:N
221
          tmp = M_est(:, 1+L*(i-1):L*i)-M_ccsl(:, 1+L*(i-1):L*i);
          y3(:,i) =sum(vecnorm(tmp))/L;
223 %
224 % end
225 % mean3d = sum(y3)/N;
226 % disp('Reconstruction Error: ');
227 % disp(mean3d);
228 % f3 = figure();
229 % plot(x3,y3);
230 % xlabel('image index');
231 % ylabel('distance error (mm)');
```

56 Matlab Code

```
232 % title('Euclidean Distance of All Images');
 1 % This combines all calibration results of caltech calibration toolbox
  % a struct featurepoints, which contains:
   % featurepoints(1): left camera
                        intrinsic, distortion
   % featurepoints(1).image:
 5
  %
                        imgcoordinates: feature points coordinates of every
 6
       image
   %
                        obj coordinates: object points coordinates of wcs
 7
                        rotation: rotation matrix for every image
 8 %
                        translation: translation matrix for every image
 9 %
10 %
                        spacepoints: corresponding 3d space points for every
11 %
                                     image
12 %
                        corrected: corrected image points
                        normalized: normalized image points in homogeneous
13 %
14 % featurepoints(2): right camera
                        intrinsic, distortion
   % featurepoints(2).image:
16
17
                        coordinates: feature points coordinates of every
       image
18 %
                        rotation: rotation matrix for every image
19 %
                        translation: translation matrix for every image
20 %
                        spacepoints: corresponding 3d space points for every
21 %
                                     image
22 %
                        corrected: corrected image points
                        normalized: normalized image points in homogeneous
23 %
24 % featurepoints(3):
                        imageindices: indices of image for every camera
25 %
26 %
                        featureindices: indices of feature points on every
27 %
                                        image
                        width: board width
28 %
29 %
                        structure:
30 %
                                  rotation: rotation matrix from left camera
   %
                                             frame to right camera
31
32
   %
                                  translation: translation matrix from left
                                                camera frame to right camera
33 %
34 % featurepoints (4).image(i).ccs: space points in camera coordinate system
                               .est: estimated space points in ccs
                               .meanerror: mean error between estimated and
36 %
37 %
                                            observed space points
38 %% load data
39 flag = 0; width = 4;
40 fprintf('0: the only one with board width = 5mm \ln 1: 15-08-19 \ln 2:
       10-07-19 \ n3: 16-07-19 \ n4: 09-09-19 \ );
41 prompt = 'Choose an image set: ';
42 x = input(prompt);
43 if x == 0
        d = fullfile(fileparts(pwd), 'opencv', 'calibration', {'calibLeft.mat
44
           '; 'calibRight.mat'});
        width = 5;
45
46 elseif x == 1
```

```
47
       flag = 1;
       d = fullfile(fileparts(pwd), 'opencv', 'calibration', {'calibLeft_15
48
           -08-19.mat'; 'calibRight_15-08-19.mat'});
49
   elseif x == 2
       flag = 2;
50
       d = fullfile(fileparts(pwd), 'opencv', 'calibration', {'calibLeft_10
51
           -07-19.mat'; 'calibRight 10-07-19.mat');
   elseif x == 3
52
       flag = 3;
53
       d = fullfile(fileparts(pwd), 'opencv', 'calibration', {'calibLeft_16
54
           -07-19.mat'; 'calibRight_16-07-19.mat'});
   \verb"elseif" x == 4
55
       flag = 4;
56
       d = fullfile(fileparts(pwd), 'opencv', 'calibration', {'calibLeft_09
57
           -09-19.mat'; 'calibRight 09-09-19.mat'});
  end
58
59 m1 = load(d\{1\});
60 \text{ m2} = load(d\{2\});
61 %% combine all image feature points coordinates
62 featurepoints(1).name = 'left';
  featurepoints(2).name = 'right';
64 featurepoints (1).intrinsic = m1.cameraMatrix;
65 featurepoints (2) .intrinsic = m2.cameraMatrix;
66 featurepoints(1).distortion = m1.distCoeffs;
67 featurepoints(2).distortion = m2.distCoeffs;
68 featurepoints(3).imageindices = size(m1.imgpoints,1);
69 featurepoints (3). featureindices = size (m1.imgpoints, 2);
70 featurepoints (4) . width = width;
  featurepoints (4) . row = 6;
   featurepoints(4).column = 9;
73
   for i = 1: feature points (3). image indices
74
       for j = 1: feature points (3). feature indices
75
76
           % image points
           featurepoints(1).image(i).imgcoordinates(:,j) = double([m1.
77
               imgpoints(i,j,1,1); m1.imgpoints(i,j,1,2));
           featurepoints(2).image(i).imgcoordinates(:,j) = double([m2.
78
               imgpoints(i,j,1,1); m2.imgpoints(i,j,1,2));
           % object points
79
           featurepoints(1).image(i).objcoordinates(:,j) = double(m1.
80
               objpoints(i,j,:));
           featurepoints(2).image(i).objcoordinates(:,j) = double(m2.
81
               objpoints(i,j,:));
           % extrinsic
82
           featurepoints(1).image(i).rotation = [m1.Rm(i,1,1) m1.Rm(i,1,2)]
83
               m1.Rm(i,1,3);...
                m1.Rm(i,2,1) m1.Rm(i,2,2) m1.Rm(i,2,3);...
                m1.Rm(i,3,1) m1.Rm(i,3,2) m1.Rm(i,3,3);
85
           featurepoints(2).image(i).rotation = [m2.Rm(i,1,1) m2.Rm(i,1,2)]
86
               m2.Rm(i,1,3);...
                m2.Rm(i,2,1) m2.Rm(i,2,2) m2.Rm(i,2,3);...
87
                m2.Rm(i,3,1) m2.Rm(i,3,2) m2.Rm(i,3,3);
88
           featurepoints(1).image(i).translation = m1.T(i,:) ';
89
```

58 Matlab Code

```
featurepoints(2).image(i).translation = m2.T(i,:) ';
90
91
        end
        [epil, Frl] = funda epi(featurepoints(1));
92
        [epir, Frr] = funda_epi(featurepoints(2));
93
        featurepoints (1).image(i).fundamental = Frl(:,3*i-2:3*i);
94
        featurepoints (2). image(i). fundamental = Frr(:, 3*i-2:3*i);
95
        featurepoints(1).image(i).epipole = epil(:,i);
96
        featurepoints(2).image(i).epipole = epir(:,i);
97
        featurepoints (1).image (i).homography = zeros (3,3);
98
        featurepoints(2).image(i).homography = zeros(3,3);
99
100
    end
101
   %% construct for space points in camera coordinate system
102
    for i = 1: featurepoints (3). image indices
103
        rl = featurepoints(1).image(i).rotation;
104
        tl = featurepoints(1).image(i).translation;
105
106
        rr = featurepoints(2).image(i).rotation;
        tr = featurepoints(2).image(i).translation;
107
        for j = 1: featurepoints (3). feature indices
108
            tmp = [rl tl; zeros(1,3) 1]*...
109
                [featurepoints(1).image(i).objcoordinates(:,j);1];
110
            tmpr = [rr tr; zeros(1,3) 1]*...
111
                [featurepoints(2).image(i).objcoordinates(:,j);1];
112
113
            featurepoints (4) . image (i) . ccs (:,j) = tmp(1:3);
            featurepoints(4).image(i).ccsr(:,j) = tmpr(1:3);
114
        end
115
        featurepoints(4).image(i).est
                                               = zeros(3, featurepoints(3)).
116
           featureindices);
        featurepoints(1).image(i).corrected = zeros(2, featurepoints(3).
117
           featureindices);
        featurepoints(2).image(i).corrected = zeros(2, featurepoints(3).
118
           featureindices);
        featurepoints(1).image(i).normalized = zeros(2, featurepoints(3).
119
           featureindices);
        featurepoints(2).image(i).normalized = zeros(2, featurepoints(3).
120
           featureindices);
        featurepoints(4).image(i).meanerror = zeros(1, featurepoints(3).
121
           featureindices);
122
   % structure parameters
    [featurepoints(3).structure.rotation, featurepoints(3).structure.
124
       translation = \dots
        StructureParameters2(featurepoints);
125
   function p = Distortion_Coefficients(A, D)
 1
 2 % This function helps to obtf.intrinsicin the distortion coefficients for
   % bf.intrinsicck-projection cf.intrinsicse. This method uses mf.
       intrinsictching distoted f.intrinsicnd estimf.intrinsicted
 4 % fef.intrinsicture points to get the coefficients.
   % Input:
   % k1, k2: distortion coefficients from forwf.intrinsicrd projection model
 7 % N: number of fef.intrinsicture points
```

```
% Du, Dv: scf.intrinsicle ff.intrinsicctors thf.intrinsict chf.
                   intrinsicnge the metric units to pixels
      % su: scf.intrinsicle ff.intrinsiccctor
10 % (u0,v0): center of imf.intrinsicge in pixels of N imf.intrinsicges
11 % Outputs:
12 % p = [f.intrinsic1,f.intrinsic2,f.intrinsic3,f.intrinsic4,f.intrinsic5,f
                    .intrinsic6,f.intrinsic7,f.intrinsic8]': coefficients thf.intrinsict
                   cf.intrinsicn recover correct
13 % imf.intrinsicge points from distorted ones
14 %
15 % generf.intrinsicte imf.intrinsicge points
[m,md] = points\_generation(A, D); % in pixels
17 u = m(1,:); v = m(2,:);
18 ut = md(1,:); vt = md(2,:);
19 r = sqrt(ut.^2 + vt.^2);
20 N = length(m);
21 U = zeros(8,N);
V = zeros(8,N);
23 T = zeros(8, 2*N);
       e = zeros(2*N,1);
24
        for i = 1:N
26
                     \mathtt{U}(:,\mathtt{i}) = [-\mathtt{ut}(\mathtt{i}) * \mathtt{r}(\mathtt{i})^2 : -\mathtt{ut}(\mathtt{i}) * \mathtt{r}(\mathtt{i})^4 : -2 * \mathtt{ut}(\mathtt{i}) * \mathtt{vt}(\mathtt{i}) : -\mathtt{r}(\mathtt{i})^2 -2 * \mathtt{ut}(\mathtt{i}) * \mathtt{vt}(\mathtt{i}) : -\mathtt{r}(\mathtt{i})^2 -2 * \mathtt{ut}(\mathtt{i}) * \mathtt{vt}(\mathtt{i}) : -\mathtt{vt}(\mathtt{i})^2 -2 * \mathtt{ut}(\mathtt{i})^2 
                               i)^2;...
                                 u(i)*r(i)^4; u(i)*ut(i)*r(i)^2; u(i)*vt(i)*r(i)^2; u(i)*r(i)^2];
27
                     V(:,i) = [-vt(i)*r(i)^2; -vt(i)*r(i)^4; -r(i)^2-2*vt(i)^2; -2*ut(i)*
28
                               vt(i);...
                                 v(i)*r(i)^4; v(i)*ut(i)*r(i)^2; v(i)*vt(i)*r(i)^2; v(i)*r(i)^2];
29
                     T(:,2*i-1) = U(:,i);
30
                     T(:,2*i) = V(:,i);
                     e(2*i-1,1) = ut(i)-u(i);
32
                     e(2*i,1) = vt(i)-v(i);
33
       end
34
35 T = T';
36 p = (T'*T) \setminus T'*e;
37 end
       function mt = Correction_Imagepoints(md,p)
 1
 2 % Correct image points with coefficients p = [a1, a2, a3, a4, a5, a6, a7, a8]
  3 % Use function: p = Distortion_Coefficients(md,m,N,Du,Dv,su,u0,v0)
  4 % Input:
 5 %
                    md: distorted normalized image coordinates. 2-by-N array
 6
                     p: backward distortion coefficients
  7
                     A: intrinsic matrix of the camera
        % Output:
 8
 9 %
                    m: normalized corrected image points
10 %
11 ud = md(1,:); vd = md(2,:);
12 r = sqrt(ud.^2+vd.^2);
13 N = length(md);
14 mt = zeros(2,N);
15 G = zeros(1,N);
16 % pixel cooedinate system
17 for i = 1:N
```

60 Matlab Code

```
G(i) = (p(5) * r(i)^2 + p(6) * ud(i) + p(7) * vd(i) + p(8)) * r(i)
18
            ^2 + 1;
       mt(1,i) = (ud(i)*(1 + p(1)*r(i)^2 + p(2)*r(i)^4) + 2*p(3)*ud(i)*vd(i)
19
            + p(4)*(r(i)^2 + 2*ud(i)^2))/G(i);
20
       mt(2,i) = (vd(i)*(1 + p(1)*r(i)^2+p(2)*r(i)^4)+2*p(4)*ud(i)*vd(i)...
21
           +p(3)*(r(i)^2+2*vd(i)^2)/G(i);
23
   end
24 end
1 function Jt = CostTriangulation(x, R, T, mnl, mnr)
2\, % This function is the cost function of triangulation
3\ \%\ x: the object point to be triangulated to, which is a 3-1 vector
   % R,T: structure parameters
5 % mnl, mnr: normalized image points
6 Pose1 = [eye(3) zeros(3,1)];
7 \text{ Pose2} = [R T];
8 \text{ M1} = \text{Pose1} * [x; 1];
9 \text{ M2} = \text{Pose2} * [x; 1];
10 mnl_est = M1(1:2)/M1(3);
11 mnr_est = M2(1:2)/M2(3);
12 dl = norm(mnl(1:2) - mnl_est)^2;
13 dr = norm(mnr(1:2) - mnr_est)^2;
14 Jt = dl + dr;
15 end
1 function [R,T] = StructureParameters(f)
2 N = f(3).imageindices; L = f(3).featureindices; Rs = 0;
3 % centroid-based optimization method
4 \text{ tmp1} = 0; \text{ tmp2} = 0;
5 \text{ for } i = 1:N
       for j = 1:L
7
            tmp1 = tmp1 + f(4).image(i).ccs(:,j);
            tmp2 = tmp2 + f(4).image(i).ccsr(:,j);
8
9
       end
   end
10
11 Mcl_median = tmp1/N/L;
12 Mcr_median = tmp2/N/L;
13 Mcl = zeros(N,L,3); Mcr = zeros(N,L,3);
   for i = 1:N
       {\tt rl} = {\tt f(1).image(i).rotation};
15
       rr = f(2).image(i).rotation;
16
       Rs = Rs + rr/rl;
17
         ts = ts + tr - rr/rl*tl;
18
   %
19
       for j = 1:L
            Mcl(i,j,:) = f(4).image(i).ccs(:,j) - Mcl_median;
20
            Mcr(i,j,:) = f(4).image(i).ccsr(:,j) - Mcr_median;
21
22
       end
23 end
  Rs = Rs/N;
  J = Q(x) double(CostCenter(x,Mcl, Mcr));
26 \text{ xO} = \text{Rs};
27 options.Algorithm = 'levenberg-marquardt';
```

```
28 options. MaxFunctionEvaluations = 5000;
29 R = lsqnonlin(J,x0,[],[],options);
30 T = Mcr_median - R * Mcl_median;
31 end
1 function [R,T] = StructureParameters2(f)
2 N = f(3).imageindices;
3 % Get Ri and ti
4 Rs=0; ts=0;
5 for i = 1:N
         rl = f(1).image(i).rotation;
         rr = f(2).image(i).rotation;
7
          tl = f(1).image(i).translation;
8
9
         tr = f(2).image(i).translation;
         Rs = Rs + rr/rl;
10
          ts = ts + tr - rr/rl*tl;
11
12 end
13 Rs = Rs/N;
14 ts = ts/N;
16 % % Take median of {Ri} and {ti}
17 R_{init} = Rs/N;
18 t_{init} = ts/N;
19 J = Q(x) double(CostReprojection(x,f));
20 \times 0 = [R \text{ init t init}];
21 options.Algorithm = 'levenberg-marquardt';
options.MaxFunctionEvaluations = 5000;
23 x = lsqnonlin(J,x0,[],[],options);
24 R = x(1:3,1:3);
25 T = x(1:3,4);
26 end
   % use data from calib09-09-19.mat (from opency) to reconstruct positions
2 % light sources.
4 %% load data
5 mat = load('calib09-09-19.mat');
6 glintsl1 = double(mat.glintsL1);
7 glintsl2 = double(mat.glintsL2);
8 glintsr1 = double(mat.glintsR1);
9 glintsr2 = double(mat.glintsR2);
10 Al = mat.cameraMatrixL; Ar = mat.cameraMatrixR;
11 Dl = mat.distCoeffsL; Dr = mat.distCoeffsR;
12 R = mat.R; T = mat.T;
13 N = size(glintsl1, 1);
14 %% normalization & dist
\texttt{15} \quad \texttt{nglintsl1} \, = \, \texttt{zeros} \, (2 \, , 14) \, ; \quad \texttt{nglintsl2} \, = \, \texttt{zeros} \, (2 \, , 14) \, ;
   nglintsr1 = zeros(2,14); nglintsr2 = zeros(2,14);
    for i = 1:N
17
          \mathtt{tmp} \, = \, \mathtt{Al} \, \setminus \, \left[\, \mathtt{glintsl1} \left(\, \mathtt{i} \, , \, \, :\, \right) \, \, \, 1\, \right] \, '; \, \, \mathtt{nglintsl1} \left(\, \mathtt{:} \, , \, \mathtt{i} \, \right) \, = \, \mathtt{tmp} \left(\, 1 \! :\! 2\, \right) \, ;
18
          \mathtt{tmp} \, = \, \mathtt{Al} \, \setminus \, \left[\, \mathtt{glintsl2} \left(\, \mathtt{i} \, , \, \, :\, \right) \, \, \, 1\, \right] \, '; \, \, \mathtt{nglintsl2} \left(\, \mathtt{:} \, , \, \mathtt{i} \, \right) \, = \, \mathtt{tmp} \left(\, 1 \! :\! 2\, \right) \, ;
19
20
          tmp = Ar \setminus [glintsr1(i, :) 1]'; nglintsr1(:,i) = tmp(1:2);
```

62 Matlab Code

```
tmp = Ar \setminus [glintsr2(i, :) 1]'; nglintsr2(:,i) = tmp(1:2);
21
22 end
23 P_{left} = zeros(8,N);
24 P right = zeros(8,N);
25 for i = 1:N
       P_left(:,i) = Distortion_Coefficients(Al, Dl);
26
       P_right(:,i) = Distortion_Coefficients(Ar, Dr);
27
28
29 %% correction
30 cglintsl1 = Correction_Imagepoints(nglintsl1,P_left(:,i));
31 cglints12 = Correction_Imagepoints(nglints12,P_left(:,i));
32 cglintsr1 = Correction_Imagepoints(nglintsr1,P_right(:,i));
33 cglintsr2 = Correction_Imagepoints(nglintsr2,P_right(:,i));
34 %% triangulation image of light sources in ccs
35 L1 = zeros(3, N); L2 = zeros(3, N);
  for i = 1:N
       costtotal1 = @(x)CostTriangulation(x, R, T, cglintsl1(:,i), cglintsr1
37
       costtotal2 = @(x)CostTriangulation(x, R, T, cglintsl2(:,i), cglintsr2
38
           (:,i));
       x_{tri1} = fminunc(costtotal1, [0;0;600]);
       x_{tri2} = fminunc(costtotal2, [0;0;600]);
40
       L1(:,i) = x_tri1;
41
42
       L2(:,i) = x_tini2;
43
  end
44 %%
   m1 = load('calibLeft_09-09-19.mat'); mat2 = load('calibRight_09-09-19.mat
45
46
   center = [55; 14; 1.8];
47
   \mathtt{center\_ccs} \, = \, \mathtt{zeros} \, (\, 3 \, , \mathtt{N} \, ) \, ;
  for i = 1:N
       rotate = [m1.Rm(i,1,1) m1.Rm(i,1,2) m1.Rm(i,1,3);...
                m1.Rm(i,2,1) m1.Rm(i,2,2) m1.Rm(i,2,3);...
50
                m1.Rm(i,3,1) m1.Rm(i,3,2) m1.Rm(i,3,3);
51
       trans = m1.T(i,:) ';
52
       center_ccs(:,i) = rotate * center + trans;
54
   end
55
  %% reconstruct light sources
   light1 = zeros(3, N-1); light2 = zeros(3, N-1);
  for i = 1:N-1
58
       for j = i+1:N
59
            light1(:,i) = lineintersection3d(center_ccs(:,i), L1(:,i),
60
               center_ccs(:,j), L1(:,j));
            light2(:,i) = lineintersection3d(center_ccs(:,i), L2(:,i),
61
               center_ccs(:,j), L2(:,j));
       end
62
63
  end
64
65 %% error
   % x = 1:N-2;
67 % error1 = zeros(1,N-2);
68 % for i = 1:N-2
```

```
error1(i) = norm(light1(:,i+1) - light1(:,1));
69 %
70 % end
71 % figure();
74 %% plot x, y, z distribution
75 x = 1:N-1;
76 x1 = light1(1,:); x2 = light2(1,:);
77 y1 = light1(2,:); y2 = light2(2,:);
78 z1 = light1(3,:); z2 = light2(3,:);
79 figure();
80 scatter3(x1, y1, z1);
81 hold on;
82 scatter3(x2, y2, z2);
83 xlabel('x'); ylabel('y'); zlabel('z');
84 legend('light source 1', 'light source 2');
85 % figure();
86 % scatter(x, x1);
```

64 Matlab Code

Appendix D

OpenCV Python Code

```
1 import os
2 import matplotlib.pyplot as plt
3 import calibrate_new
4 import self
  import cv2
5
6
7 #%% build
8 # define path of image sets
9 path_L1, path_R1 = '../15-08-19/L/*.bmp', '../15-08-19/R/*.bmp'
path_L, path_R = '../image/L/*.jpg', '../image/R/*.jpg'
   path_L2, path_R2 = '.../10-07-19/L/*.bmp', '.../10-07-19/R/*.bmp'
12 path_L3, path_R3 = '.../16-07-19/L/*.bmp', '.../16-07-19/R/*.bmp'  
13 path_L4, path_R4 = '.../02-09-19-2/L/*.bmp', '.../02-09-19-2/R/*.bmp'
  path_L5, path_R5 = '../09-09-19/L_withlight/*.bmp', '../09-09-19/
       R_withlight/*.bmp'
15
   filepath_L = os.path.join(os.getcwd(), path_L)
   filepath_R = os.path.join(os.getcwd(), path_R)
17
18
19
   while True:
20
        print '1: 15-08-19 \n2: 10-07-19\n3: 16-07-19\n4: 02-09-19-2\n5:
           09-09-19 n'
        flag = raw_input("Choose an image set (0 - 5):\n")
21
        if flag == "0": # remember to change board witdth as 5 in self.py
22
23
            break
        elif flag == "1": # 1,2,3 board width = 4mm in self.py
24
            filepath_L = os.path.join(os.getcwd(), path_L1)
25
            filepath_R = os.path.join(os.getcwd(), path_R1)
26
            break
27
        elif flag == "2":
28
            filepath_L = os.path.join(os.getcwd(), path_L2)
29
            filepath_R = os.path.join(os.getcwd(), path_R2)
30
            break
31
```

```
elif flag == "3":
32
           filepath_L = os.path.join(os.getcwd(), path_L3)
33
           filepath_R = os.path.join(os.getcwd(), path_R3)
35
       elif flag == "4":
36
           filepath_L = os.path.join(os.getcwd(), path_L4)
37
           filepath_R = os.path.join(os.getcwd(), path_R4)
38
39
           break
       elif flag == "5":
40
           filepath_L = os.path.join(os.getcwd(), path_L5)
41
           filepath_R = os.path.join(os.getcwd(), path_R5)
42
           break
43
44
       else:
           print 'Please input 1,2, 3, 4 or 5.'
           continue
46
47
  #%% single camera calibration and stereo calibration
48
   [index, imgpointsL, objpointsL, imgpointsR, objpointsR] = calibrate_new.
      points(filepath_L, filepath_R)
   cameraMatrixL, distCoeffsL, rvecsL, tvecsL, cameraMatrixR, distCoeffsR,
      rvecsR, tvecsR = \
51
                        calibrate_new.singlecalibrate(imgpointsL, objpointsL,
                            imgpointsR, objpointsR, flag)
52
53 # rl, rr = [], []
54 # for i in xrange(len(rvecsL)):
         tmp1, _ = cv2.Rodrigues(rvecsL[i])
         tmp2, _ = cv2.Rodrigues(rvecsR[i])
56 #
57 #
         rl.append(tmp1)
         rr.append(tmp2)
58 #
  # calibrate_new.save(1, imgpointsL, objpointsL, cameraMatrixL,
      distCoeffsL, rl, tvecsL, imgpointsR, objpointsR, cameraMatrixR,
      distCoeffsR, rr, tvecsR)
60
61
   cameraMatrixL, distCoeffsL, cameraMatrixR, distCoeffsR, R, T, E, F = \setminus
       calibrate_new.stereocalibrate(imgpointsL, objpointsL, cameraMatrixL,
           distCoeffsL, rvecsL, tvecsL, imgpointsR,
64
                                      objpointsR, cameraMatrixR, distCoeffsR,
                                           rvecsR, tvecsR)
65
66 #%% reconstruction and error
  er, recons_error, objccs, objest = calibrate_new.reconstruct(objpointsL,
      imgpointsL, cameraMatrixL, distCoeffsL, rvecsL,
                                                                 tvecsL,
68
                                                                     objpointsR
                                                                     imgpointsR
                                                                     cameraMatrixR
                                                                     distCoeffsR
```

```
69
                                                             rvecsR,
                                                                tvecsR, R,
                                                                 F)
70
71 #%% reconstruction error in world coordinate system
72 objwcs = self.CCS2WCS(objest, rvecsL, tvecsL)
73 er, recons_error = self.reconstructionerror_totalmean(objwcs, objpointsL)
74 # er, recons_error, objccs, objest =calibrate.reconstruct(objpointsL,
      imgpointsL, cameraMatrixL, distCoeffsL, rvecsL, tvecsL, imgpointsR,
      cameraMatrixR, distCoeffsR, rvecsR, tvecsR, R, T, F)
75 print 'Reconstruction Error: ', recons_error, 'mm'
76 print er
77 # calibrate_new.plot3d(objccs, objest)
78 # calibrate_new.ploterror(er)
79 # plt.show()
1 import numpy as np
2 import glob
3 import scipy.io as sio
4 import cv2
5 import self
6 import matplotlib.pyplot as plt
7 from scipy.optimize import minimize
8 from mpl_toolkits.mplot3d import Axes3D
10
11 N, L = 0, 0
def points(filepath_L, filepath_R):
       images1, images2 = glob.glob(filepath_L), glob.glob(filepath_R)
15
       # obatin object points and image points ( inside image sets are paths
16
           of images)
       objpointsL, imgpointsL, im1 = self.cornerdetection(images1)
17
       objpointsR, imgpointsR, im2 = self.cornerdetection(images2)
18
19
      # find common elements of two image sets
20
       index = []
21
22
      for x in im1:
          for y in im2:
23
              if x == y:
24
                  index.append(x)
25
26
       imgL = [images1[ind] for ind in index]
27
28
       imgR = [images2[ind] for ind in index]
29
       objpointsL, imgpointsL, = self.cornerdetection(imgL)
30
       \tt objpointsR\,,\ imgpointsR\,,\ \_=\ self.cornerdetection(imgR)
31
32
33
       global N, L
      \mathbb{N}, L = len(objpointsL), len(objpointsL[0])
34
35
36
       return index, imgpointsL, objpointsL, imgpointsR,
                                                        objpointsR
```

```
37
38
  # save data into mat file
   def save(flag,imgpointsL, objpointsL, cameraMatrixL, distCoeffsL, rl,
      tvecsL, imgpointsR, objpointsR, cameraMatrixR, distCoeffsR, rr, tvecsR
       if flag == 0:
41
       # image
42
           sio.savemat('calibLeft', {'cameraMatrix': cameraMatrixL,\
43
            'distCoeffs': distCoeffsL, 'T': tvecsL,\
44
            'Rm': rl, 'imgpoints': imgpointsL, 'objpoints': objpointsL},
45
                appendmat=True)
46
           sio.savemat('calibRight', {'cameraMatrix': cameraMatrixR,\
47
             'distCoeffs': distCoeffsR, 'T': tvecsR, 'Rm': rr, \
48
             'imgpoints': imgpointsR, 'objpoints': objpointsR}, appendmat=
49
                 True)
50
           print 'Saved.\n'
51
52
       # image set 15-08-19
       if flag == 1:
54
           sio.savemat('calibLeft_15-08-19', {'cameraMatrix': cameraMatrixL
55
            'distCoeffs': distCoeffsL, 'T': tvecsL,\
56
            'Rm': rl, 'imgpoints': imgpointsL, 'objpoints': objpointsL},
57
                appendmat=True)
           sio.savemat('calibRight_15-08-19', {'cameraMatrix': cameraMatrixR
59
             'distCoeffs': distCoeffsR, 'T': tvecsR, 'Rm': rr, \
60
             'imgpoints': imgpointsR, 'objpoints': objpointsR}, appendmat=
61
                 True)
62
           print 'Saved to 15-08-19.\n'
63
65
       # image set 10-07-19
66
67
       elif flag == 2:
           sio.savemat('calibLeft_10-07-19', {'cameraMatrix': cameraMatrixL
68
            'distCoeffs': distCoeffsL, 'T': tvecsL,\
69
70
            'Rm': rl, 'imgpoints': imgpointsL, 'objpoints': objpointsL},
                appendmat=True)
71
           sio.savemat('calibRight_10-07-19', {'cameraMatrix': cameraMatrixR
72
             'distCoeffs': distCoeffsR, 'T': tvecsR, 'Rm': rr, \
73
              'imgpoints': imgpointsR, 'objpoints': objpointsR}, appendmat=
74
                 True)
75
           print 'Saved to 10-07-19.\n'
76
77
```

```
# image set 16-07-19
78
        elif flag == 3:
79
            sio.savemat('calibLeft_16-07-19', {'cameraMatrix': cameraMatrixL
80
             'distCoeffs': distCoeffsL, 'T': tvecsL,\
81
             'Rm': rl, 'imgpoints': imgpointsL, 'objpoints': objpointsL},
82
                 appendmat=True)
83
            sio.savemat('calibRight_16-07-19', {'cameraMatrix': cameraMatrixR
84
              'distCoeffs': distCoeffsR, 'T': tvecsR, 'Rm': rr, \
85
              'imgpoints': imgpointsR, 'objpoints': objpointsR}, appendmat=
86
                  True)
87
            print 'Saved to 16-07-19.\n'
88
89
        elif flag == 4:
90
            sio.savemat('calibLeft 02-09-19-2', {'cameraMatrix':
91
                cameraMatrixL,\
             'distCoeffs': distCoeffsL, 'T': tvecsL,\
92
93
             'Rm': rl, 'imgpoints': imgpointsL, 'objpoints': objpointsL},
                 appendmat=True)
94
            sio.savemat('calibRight_16-07-19', {'cameraMatrix': cameraMatrixR
95
              'distCoeffs': distCoeffsR, 'T': tvecsR, 'Rm': rr, \
96
              'impoints': impointsR, 'objpoints': objpointsR}, appendmat=
97
                  True)
98
            print 'Saved to 02-09-19-2.\n'
99
100
        elif flag == 5:
101
            sio.savemat('calibLeft_09-09-19', {'cameraMatrix': cameraMatrixL,
102
                 'distCoeffs': distCoeffsL, 'T': tvecsL,
                                                 'Rm': rl, 'imgpoints':
103
                                                     imgpointsL, 'objpoints':
                                                     objpointsL}, appendmat=True
104
            sio.savemat('calibRight_09-09-19', {'cameraMatrix': cameraMatrixR
105
                , 'distCoeffs': distCoeffsR, 'T': tvecsR,
                                                  'Rm': rr, 'imgpoints':
106
                                                      imgpointsR, 'objpoints':
                                                      objpointsR } , appendmat=
                                                      True)
107
108
            print 'Saved to 09-09-19.\n'
109
110
    def singlecalibrate(imgpointsL, objpointsL, imgpointsR, objpointsR, flag
111
       ):
112
        # get caalibration results of two image sets
113
```

```
cameraMatrixL, distCoeffsL, rvecsL, tvecsL, errorL1, errorL2 = self.
114
                                calibration(objpointsL, imgpointsL)
                      cameraMatrixR, distCoeffsR, rvecsR, tvecsR, errorR1, errorR2 = self.
115
                                calibration(objpointsR, imgpointsR)
116
                      # reprojection error
117
                      # rel_perview, re_l = self.re(objpointsL, imgpointsL, cameraMatrixL,
                                distCoeffsL, rvecsL, tvecsL)
                      # rer_perview, re_r = self.re(objpointsR, imgpointsR, cameraMatrixR,
119
                                distCoeffsR, rvecsR, tvecsR)
120
                      # transform rotation vectors to rotation matrix
121
                      rl, rr = [], []
122
                      for i in xrange(len(rvecsL)):
123
124
                                  tmp1, _ = cv2.Rodrigues(rvecsL[i])
                                  tmp2, _ = cv2.Rodrigues(rvecsR[i])
125
126
                                  rl.append(tmp1)
                                  rr.append(tmp2)
127
128
                      save(flag, imgpointsL, objpointsL, cameraMatrixL, distCoeffsL, rl,
129
                                tvecsL, imgpointsR, objpointsR, cameraMatrixR, distCoeffsR, rr,
                                tvecsR)
130
131
                      return cameraMatrixL, distCoeffsL, rvecsL, tvecsL, cameraMatrixR,
                                distCoeffsR, rvecsR, tvecsR
132
133
          def stereocalibrate(imgpointsL, objpointsL, cameraMatrixL, distCoeffsL,
134
                    rvecsL, tvecsL, imgpointsR, objpointsR, cameraMatrixR, distCoeffsR,
                    rvecsR, tvecsR):
                      # N, L = len(imgpointsL), len(imgpointsL[0])
135
                      _,cameraMatrixL, distCoeffsL, cameraMatrixR, distCoeffsR, R, T, E, F,
136
                                   _{-} = \
                                  cv2.stereoCalibrateExtended(objpointsL, imgpointsL, imgpointsR,
137
                                           cameraMatrixL, distCoeffsL,\
                                  cameraMatrixR, distCoeffsR, self.imgSize, R=None, T = None, flags
                                           =cv2.CALIB_USE_INTRINSIC_GUESS)
139
140
                      return cameraMatrixL, distCoeffsL, cameraMatrixR, distCoeffsR, R, T,
                               E, F
141
           # S. Gai
142
           # function for optimized rotation R
143
          def fri(R, Mcl, Mcr):
144
                      fri = 0.0
145
                      for i in xrange(N):
146
                                  for j in xrange(L):
147
                                             {\tt tmp1} \, = \, {\tt R} \, \big[ \, 0 \, \big] \, * \, {\tt Mcl} \, \big[ \, {\tt i} \, \big] \, \big[ \, {\tt j} \, \big] \, \big[ \, 0 \, \big] \, \, + \, \, {\tt R} \, \big[ \, 1 \, \big] \, * \, {\tt Mcl} \, \big[ \, {\tt i} \, \big] \, \big[ \, {\tt j} \, \big] \, \big[ \, 1 \, \big] \, \, + \, \, \, {\tt R} \, \big[ \, 2 \, \big] \, * \, {\tt Mcl} \, \big[ \, {\tt i} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big[ \, {\tt j} \, \big] \, \big[ \, {\tt j} \, \big
148
                                             tmp2 = R[3]*Mcl[i][j][0] + R[4]*Mcl[i][j][1] + R[5]*Mcl[i][j]
149
                                             tmp3 = R[6]*Mcl[i][j][0] + R[7]*Mcl[i][j][1] + R[8]*Mcl[i][j]
150
                                                       [2]
```

```
\mathtt{tmp} = \mathtt{np.linalg.norm} \left( \left[ \, \mathtt{tmp1-Mcr} \left[ \, \mathtt{i} \, \right] \left[ \, \mathtt{j} \, \right] \left[ \, 0 \, \right] \,, \right. \right. \\ \left. \mathsf{tmp2-Mcr} \left[ \, \mathtt{i} \, \right] \left[ \, \mathtt{j} \, \right] \left[ \, 1 \, \right] \,, \\
151
                       tmp3-Mcr[i][j][2]]) * (2 ** (0.5))
                   fri += tmp **2
152
153
         return fri
154
155
    def structureParams(objpointsL, rvecsL, tvecsL, objpointsR, rvecsR,
156
        tvecsR, R):
         # get median of all objpoints in camera coordinate system
157
         Mcl, Mcr = self.WCS2CCS(objpointsL, rvecsL, tvecsL), self.WCS2CCS(
158
             objpointsR, rvecsR, tvecsR)
         tmpl , tmpr = np.zeros(3), np.zeros(3)
159
         for i in xrange(N):
160
161
              for j in xrange(L):
                   tmpl += Mcl[i][j]
162
                   tmpr += Mcr[i][j]
163
         Mcl_bar = tmpl / N / L
164
         Mcr bar = tmpr / N / L
165
         for i in xrange(N):
166
              for j in xrange(L):
167
                   Mcl[i][j] = Mcl[i][j] - Mcl_bar
168
169
                   Mcr[i][j] = Mcr[i][j] - Mcr_bar
         R0 = np.reshape(R, (1,9))
170
171
         res = minimize(fri, RO, args=(Mcl, Mcr))
172
         structure\_rotation = np.array([[x[0], x[1], x[2]], [x[3], x[4], x[4]])
173
              [5], [x[6], x[7], x[8]])
         structure_translate = Mcr_bar - np.dot(structure_rotation, Mcl_bar)
174
175
         return structure_rotation, structure_translate
176
177
    # nonlinear triangulation for every frame
    def nontri(objest, nimgl, nimgr, array1, array2):
179
         tmp01 = np.dot(array1, np.append(objest, [1]))
180
         tmp02 = np.dot(array2, np.append(objest, [1]))
181
         {\tt tmp1} \, = \, {\tt nimg1} \, - \, {\tt tmp01} \, [\, : \, 2 \, ] \, / \, {\tt tmp01} \, [\, 2 \,
         tmp2 = nimgr - tmp02[:2]/tmp02[2]
183
         cost = np.linalg.norm(tmp1) ** 2 + np.linalg.norm(tmp2) ** 2
184
185
         return cost
186
    # using different distortion coefficients, structure parameters and
187
        triangulation
    def reconstruct(objpointsL, imgpointsL, cameraMatrixL, distCoeffsL,
188
        rvecsL, tvecsL, objpointsR, imgpointsR, cameraMatrixR, distCoeffsR,
        rvecsR, tvecsR, Ri, F):
         R, T = structureParams(objpointsL, rvecsL, tvecsL, objpointsR, rvecsR
189
             , tvecsR, Ri)
         # undistort
190
         # R1, R2 = cv2.stereoRectify(cameraMatrixL, distCoeffsL,
191
             cameraMatrixR, distCoeffsR, self.imgSize, R, T, flags=cv2.
             CALIB_ZERO_DISPARITY) [:2]
         # imgUndistortL, imgUndistortR = [], []
192
         # for i in xrange(N):
193
```

```
imgUndistortL.append(cv2.undistortPoints(imgpointsL[i],
194
            cameraMatrixL, distCoeffsL, R1, cameraMatrixL))
               imgUndistortR.append(cv2.undistortPoints(imgpointsR[i],
195
            cameraMatrixR, distCoeffsR, R2, cameraMatrixR))
196
        objccs = self.WCS2CCS(objpointsL, rvecsL, tvecsL)
197
        # triangulate
198
        # opencv standard method
199
        array1 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])
200
        array2 = np.concatenate((R, T[:, None]), axis=1)
201
        # P1 = np.dot(cameraMatrixL, array1)
202
        # P2 = np.dot(cameraMatrixR, array2)
203
204
205
        objest = []
206
        # for i in xrange(N):
               tmp = cv2.triangulatePoints(P1, P2, imgUndistortL[i],
207
            imgUndistortR[i])
               # tmp = cv2.triangulatePoints(P1, P2, nimgl[i], nimgr[i])
208
209
               objest.append((tmp[:3]/tmp[3]).T.tolist())
210
        # nonlinear triangulation
211
        # nimgl, nimgr = self.normalization(imgpointsL, cameraMatrixL), self.
            normalization(imgpointsR, cameraMatrixR)
        pl, pr = self.distcoeffs(cameraMatrixL, distCoeffsL), self.distcoeffs
213
            (cameraMatrixR, distCoeffsR)
        nimgl, nimgr = self.undistort(cameraMatrixL, pl, imgpointsL), self.
214
            undistort(cameraMatrixR, pr, imgpointsR)
        for i in xrange(N):
215
216
             tmp = []
             for j in xrange(L):
217
                 res = minimize(nontri, objccs[i][j], args=(nimgl[i][j], nimgr
218
                     [i][j], array1, array2))
                 tmp.append(res.x.reshape(3))
219
             objest.append(tmp)
220
221
222
        # 3d error
223
        er, recons_error = self.reconstructionerror_totalmean(objccs, objest)
224
225
        return er, recons_error, objccs, objest
226
227
228
    229
    def plot3d(objccs, objest):
230
        \mathtt{x1}\,,\ \mathtt{y1}\,,\ \mathtt{z1}\,,\ \mathtt{x2}\,,\ \mathtt{y2}\,,\ \mathtt{z2}\,=\,\left[\,\right]\,,\,\,\left[\,\right]\,,\,\,\left[\,\right]\,,\,\,\left[\,\right]\,,\,\,\left[\,\right]\,,\,\,\left[\,\right]
231
        for j in xrange(L):
232
             x1.append(objccs[0][j][0])
233
             y1.append(objccs[0][j][1])
234
             z1.append(objccs[0][j][2])
235
             x2.append(objest[0][j][0])
236
             y2.append(objest[0][j][1])
237
238
             z2.append(objest[0][j][2])
239
```

```
240
        fig = plt.figure()
         ax = fig.add_subplot(111, projection='3d')
241
242
243
        ax.scatter(x1, y1, z1, c='r', marker='o', label='object points')
        ax.scatter(x2, y2, z2, c='b', marker='^', label='estimated objpoints'
244
        plt.gca().legend(('object points','estimated objpoints'))
245
        # plt.title('Estimated Object Points and WCS2CCS')
246
        ax.set_xlabel('X Label')
247
         ax.set_ylabel('Y Label')
248
         ax.set_zlabel('Z Label')
249
250
251
252
    def ploterror(er):
253
        plt.figure()
        plt.plot(list(range(N)) + np.ones(N), er)
254
255
        plt.title('Reconstruction Error')
        plt.xlabel('image index')
256
        plt.ylabel('3d error (mm)')
257
258
259
260
    def plotxyz(objccs, objest, a):
        x, y, z = [], [],
261
262
        errx, erry, errz = [], []
        for i in xrange(N):
263
             for j in xrange(L):
264
                  errx.append(objccs[i][j][0] - objest[i][j][0])
265
                  \mathtt{erry.append(objccs[i][j][1] - objest[i][j][1])}
266
267
                  \mathtt{errz.append}(\mathtt{objccs}[\mathtt{i}][\mathtt{j}][\mathtt{2}] - \mathtt{objest}[\mathtt{i}][\mathtt{j}][\mathtt{2}])
                  x.append(objccs[i][j][0])
268
                  y.append(objccs[i][j][1])
269
270
                  z.append(objccs[i][j][2])
271
        plt.figure()
272
         if a = 'x':
273
274
             plt.scatter(x, errx)
         elif a == 'y':
275
276
             plt.scatter(y, erry)
277
         elif a = 'z':
             plt.scatter(z, errz)
278
279
280
        plt.show()
281
282
283
    # plot light source
    def plotlight(lightsource_pos):
284
        fig = plt.figure()
285
286
        x, y, z = [], [],
287
         for i in xrange(len(lightsource_pos)):
288
             x.append(lightsource_pos[i][0])
289
             y.append(lightsource_pos[i][1])
290
             z.append(lightsource_pos[i][2])
291
```

```
292
        ax = fig.add_subplot(111, projection='3d')
293
294
        ax.scatter(x, y, z, c='r', marker='x', label='light source positions'
295
           )
        plt.gca().legend(('object points', 'estimated objpoints'))
296
        ax.set_xlabel('X Label')
297
        ax.set_ylabel('Y Label')
298
        ax.set_zlabel('Z Label')
299
        plt.savefig('light.png')
300
301
        plt.show()
 1 import numpy as np
 2 import math
 3 import cv2
 4 import statistics
 6 # define constants
 7 \text{ imgSize} = (1280, 1024)
 8 # number of rows and columns of the chessboard
 9 \quad n_row = 6
n_{col} = 9
11 # width of squares on the chessboard (mm)
12 \quad \mathtt{board\_w} = 4
13 # number of points per image/board
n_points = n_row * n_col
15 # pixel size
   pixel_size = 4.8e-3
17
18 # termination criteria
19 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
21 # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ..., (6,5,0)
22 objp = np.zeros((n_points, 3), np.float32)
   objp[:, :2] = np.mgrid[0:n_row, 0:n_col].T.reshape(-1,2)
   objp *= board_w
25
26
27
   def cornerdetection(images):
        # Arrays to store object points and image points from all the images.
28
        objpoints = [] # 3d point in real world space
29
        imgpoints = [] # 2d points in image plane.
30
        index = []
31
        count = 0
32
        for fname in images:
33
            img = cv2.flip(cv2.imread(fname, 0), 1)
34
            ret , corners = cv2.findChessboardCorners(img, (n_row, n_col),
                None)
36
            if ret == True:
37
                objpoints.append(objp)
                corners2 = cv2.cornerSubPix(img, corners, (11, 11), (-1, -1),
38
                     criteria)
                imgpoints.append(corners2)
39
```

```
index.append(count)
40
                # Draw and display the corners
41
                # cv2.drawChessboardCorners(img, (n_row, n_col), corners2,
42
                # cv2.imshow('img',img)
43
                # cv2.waitKey(500)
44
            count += 1
45
46
       # cv2.destroyAllWindows()
47
48
       return objpoints, imgpoints, index
49
50
   # standard opencv method
51
52
   def undistortimage(images, cameraMatrix, distcoeffs):
       imgpoints = []
53
       for fname in images:
54
           img = cv2.flip(cv2.imread(fname, 0), 1)
55
           dst = cv2.undistort(img, cameraMatrix, distcoeffs)
56
           ret, corners = cv2.findChessboardCorners(dst, (n_row, n_col),
57
               None)
            if ret == True:
                corners2 = cv2.cornerSubPix(dst, corners, (11, 11), (-1, -1),
59
                    criteria)
60
                imgpoints.append(corners2)
       return imppoints
62
63
64
65
   def calibration(objpoints, imgpoints):
       # first optimization with fixed principle point
66
       # then use intrinsic guess to do second calibration
67
68
       flag1 = cv2.CALIB_FIX_PRINCIPAL_POINT
69
       flag2 = cv2.CALIB_USE_INTRINSIC_GUESS
70
       flag3 = cv2.CALIB_ZERO_TANGENT_DIST
71
       # _, cameraMatrix, distCoeffs, rvecs, tvecs = \
73
              cv2.calibrateCamera(objpoints, imgpoints, imgSize, None, None,
74
           flags=flag1)
75
       # retval, cameraMatrix, distCoeffs, rvecs, tvecs = \
76
              cv2.calibrateCamera(objpoints, imgpoints, imgSize, cameraMatrix
77
           , distCoeffs, flags=flag2)
78
       _, cameraMatrix, distCoeffs, rvecs, tvecs, _, _, error1 = \
79
           cv2.calibrateCameraExtended(objpoints, imgpoints, imgSize, None,
80
               None , flags=flag3)
81
       _, cameraMatrix, distCoeffs, rvecs, tvecs, _, _, error2 = \setminus
82
            cv2.calibrateCameraExtended(objpoints, imgpoints, imgSize,
83
               cameraMatrix, distCoeffs, flags=flag2)
84
       return cameraMatrix, distCoeffs, rvecs, tvecs, error1, error2
85
```

```
86
87
    def square(my_list):
88
        return [i ** 2 for i in my list]
89
90
91
    def squareroot(my list):
92
        return [math.sqrt(i) for i in my_list]
93
94
95
    def reprojection(objpoints, imgpoints, cameraMatrix, distCoeffs, rvecs,
96
        tvecs):
        imgpointsre = []
97
98
        tmp = []
        for i in xrange(len(objpoints)):
99
             \verb|imgpoints2|, \ \_ = \verb|cv2.projectPoints| (\verb|objpoints|[i]|, \ \verb|rvecs|[i]|, \ \verb|tvecs|[i]|
100
                 , cameraMatrix, distCoeffs)
             tmp.append(imgpoints2)
101
102
        for j in xrange(len(imgpoints)):
             imgpointsre.append(tmp[j])
103
104
        return imgpointsre
105
    # projection error
106
    def reprojectionerror(objpoints, imgpoints, cameraMatrix, distCoeffs,
        rvecs, tvecs):
        re x = []
108
        re_y = []
109
        for i in xrange(len(objpoints)):
110
             imgpoints2, _{\_} = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i])
111
                 ], cameraMatrix, distCoeffs)
             for j in xrange(len(imgpoints2)):
112
                 err_x = squareroot(square(imgpoints[i][j][:,0]-imgpoints2[j
113
                     ][:,0])
                 err_y = squareroot(square(imgpoints[i][j][:,1] - imgpoints2[j
114
                     ][:,1]))
                 re_x.append(err_x)
115
116
                 re_y.append(err_y)
117
118
        mean\_error\_x = 0
        mean\_error\_y = 0
119
        for i in re_x:
120
             mean_error_x += sum(i)
121
122
123
        for i in re_y:
124
             mean_error_y += sum(i)
125
        mean_error_x = mean_error_x/len(re_x)
126
127
        mean_error_y = mean_error_y/len(re_y)
        total = math.sqrt((math.pow(mean_error_x,2) + math.pow(mean_error_y
128
            ,2)))
129
130
        return re_x, re_y, mean_error_x, mean_error_y, total
131
```

```
# detect corner around reprojected points first, then calculate the
       reprojection error
    def reprojectionerror2(img, imgpoints1):
        imgpoints2 = []
134
        n frame = 0
135
        for fname in img:
136
            im = cv2.imread(fname, 0)
137
            corners = cv2.cornerSubPix(im, imgpoints1[n_frame], (11, 11),
138
                (-1, -1), criteria)
            imgpoints2.append(corners)
139
            n frame += 1
140
        re_x = []
141
        re_y = []
142
        for i in xrange(len(imgpoints2)):
            for j in xrange(len(imgpoints2[0])):
144
                 err_x = squareroot(square(imgpoints1[i][j][:, 0] - imgpoints2
145
                    [i][j][:, 0]))
                 err_y = squareroot(square(imgpoints1[i][j][:, 1] - imgpoints2
146
                    [i][j][:, 1]))
                 re_x.append(err_x)
147
148
                 re_y.append(err_y)
149
        mean_error_x = 0
        mean\_error\_y = 0
150
151
        for i in re_x:
            mean error x += sum(i)
152
153
        for i in re_y:
154
            mean_error_y += sum(i)
155
156
        mean_error_x = mean_error_x / len(re_x)
157
        mean_error_y = mean_error_y / len(re_y)
158
        total = math.sqrt((math.pow(mean_error_x, 2) + math.pow(mean_error_y,
159
             2)))
160
        return re_x, re_y, mean_error_x, mean_error_y, total
161
162
163
    # reprojection error for both left and right camera
164
    def re(objpoints, imgpoints, cameraMatrix, distCoeffs, rvecs, tvecs):
165
        re_x, re_y, meanX, meanY, total =\
166
            reprojectionerror(objpoints, imgpoints, cameraMatrix, distCoeffs,
167
                 rvecs, tvecs)
168
        re = []
169
        for i in xrange(len(re_x)):
170
            tmp = math.sqrt(np.square(re_x[i]) + np.square(re_y[i]))
            re.append(tmp)
171
        re_perview = []
172
        L = len(objpoints[0])
173
174
        for j in xrange(len(objpoints)):
            tmp0 = re[L*j:L*(j+1)]
175
            tmp = sum(tmp0)/L
176
            re_perview.append(tmp)
177
        return re_perview, np.sum(re)/len(re)
178
```

```
179
    # multiply sub-lists of two lists (list2 with single column)
180
    def mul_lists(list1, list2):
182
        ans = []
        # if #columns of list1 equals #rows of list2
183
         if len(list1[0]) = len(list2):
184
             # element-wise multiplication of rows of list1 and columns of
                 list2
             # store sum of multiplied list into ans
186
             for i in xrange(len(list1)):
187
                  tmp = [list1[i][j]*list2[j] for j in range(len(list2))]
188
                  ans.append(sum(tmp))
189
190
         return ans
191
192
    # generate normally distributed image points without distortion
193
    def pointsgeneration(cameraMatrix):
         imgtest = np.zeros((2000, 2), np.float32)
195
196
         imgtest = np.mgrid[-3:47, -1:39].T.reshape(-1,2)
        \mathtt{fu}\,,\ \mathtt{fv}\,=\,\mathtt{cameraMatrix}\,[\,0\,]\,[\,0\,]\,\,,\ \mathtt{cameraMatrix}\,[\,1\,]\,[\,1\,]
197
        u0, v0 = cameraMatrix[0][2], cameraMatrix[1][2]
198
199
        x, y = [], []
        for i in xrange(len(imgtest)):
200
201
             imgtest[i][0] = imgtest[i][0]*28.5
             imgtest[i][1] = imgtest[i][1]*27.5
202
203
             x.append((imgtest[i][0]-u0)/fu)
             y.append((imgtest[i][1]-v0)/fv)
204
205
         return imgtest, x, y
206
207
    # distortion coefficients of forward model
208
    def distortimgpoints(distCoeffs, x, y):
210
        xd, yd = [], []
        k1, k2 = distCoeffs[0][0], distCoeffs[0][1]
211
         \verb|imgtest_distorted| = \verb|np.zeros|((2000, 2), \verb|np.float32|)
212
         for i in xrange(len(x)):
213
             r = np.sqrt(x[i]**2 + y[i]**2)
214
             tmp1 = (1 + k1*r**2 + k2*r**4) * x[i]
215
216
             tmp2 = (1 + k1*r**2 + k2*r**4) * y[i]
             imgtest_distorted[i][0] = tmp1
217
             imgtest_distorted[i][1] = tmp2
218
219
             xd.append(tmp1)
220
             yd.append(tmp2)
221
         return imgtest_distorted, xd, yd
222
223
    # get distortion coefficients
224
    def distcoeffs(cameraMatrix, distCoeffs):
226
         imgtest, x, y = pointsgeneration(cameraMatrix)
         imgtest_distorted, xd, yd = distortimgpoints(distCoeffs, x, y)
227
        {\tt T} \;,\;\; {\tt e} \;=\; [\;] \;,\;\; [\;]
        for i in xrange(len(xd)):
229
             rd = np.sqrt(xd[i]**2+yd[i]**2)
230
```

```
\texttt{tmpu} = [-xd[i]*rd**2, -xd[i]*rd**4, -2*xd[i]*yd[i], -rd**2-2*xd[i]*rd**4, -2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i]*rd**2-2*xd[i
231
                                    ]**2, x[i]*rd**4, x[i]*xd[i]*rd**2, x[i]*yd[i]*rd**2, x[i]*rd**2
                            tmpv = [-yd[i]*rd**2, -yd[i]*rd**4, -rd**2-2*yd[i]**2, -2*xd[i]*
232
                                    yd[i],
                                                     y[i]*rd**4, y[i]*xd[i]*rd**2, y[i]*yd[i]*rd**2, y[i]*
                                    rd**2]
                            T.append(tmpu)
233
                            T.append(tmpv)
234
                            e.append(xd[i]-x[i])
235
                            e.append(yd[i]-y[i])
236
                  p \, = \, \texttt{np.dot} \, (\, \texttt{np.linalg.pinv} \, (\, \texttt{np.array} \, (\, \texttt{T}\,) \,) \,\, , \,\, \, \texttt{np.array} \, (\, \texttt{e}\,) \, . \, \texttt{T} \,)
237
                  return p
238
239
240
241
        # undistort image points with coefficients from previous function (
                normalized image points)
        # input: distorted/observed image points, and distortion coefficients p
242
        # output: undistorted normalized image points
         def undistort(cameraMatrix, p, imgpoints):
244
                  imgundistort = []
245
                  fu, fv = cameraMatrix[0][0], cameraMatrix[1][1]
246
                  \verb"u0", \verb"v0" = \verb"cameraMatrix" [0][2]", \verb"cameraMatrix" [1][2]"
247
                  for i in xrange(len(imgpoints)):
248
249
                            tmp = []
                            for j in xrange(len(imgpoints[0])):
250
                                     \mathtt{xi} \, = \, (\,\mathtt{imgpoints}\,[\,\mathtt{i}\,]\,[\,\mathtt{j}\,]\,[\,0\,]\,[\,0\,] \, - \, \mathtt{u0}\,) \ / \ \mathtt{fu}
251
                                     yi = (imgpoints[i][j][0][1] - v0) / fv
252
253
                                     r = np.sqrt(xi**2+yi**2)
254
                                     G = 1 + (p[4]*r*r + p[5]*xi + p[6]*yi + p[7]) * r * r
                                     tmp1 = (xi*(1 + p[0]*r*r + p[1]*r**4) + 2*p[2]*xi*yi + p[3]*(
255
                                             r*r+2*xi*xi)) / G
                                     tmp2 = (yi*(1+p[0]*r*r+p[1]*r**4) + p[2]*(r*r+2*yi*yi) + 2*p
256
                                             [3]*xi*yi) / G
                                     tmp3 = [tmp1, tmp2]
257
                                     tmp3 = np.reshape(tmp3,(1,2))
258
                                     tmp.append(tmp3)
259
260
                            imgundistort.append(tmp)
                  return imgundistort
261
262
263
         # transformation from WCS to CCS
264
         def WCS2CCS(objpoints, rvecs, tvecs):
265
                  objpoints_ccs = []
266
267
                  for i in xrange(len(objpoints)):
268
                            rotate, _ = cv2.Rodrigues(rvecs[i])
269
                            tmp = []
                            for j in xrange(len(objpoints[0])):
270
                                     tmp1 = (np.dot(rotate, objpoints[i][j]) + tvecs[i].T).T.
271
                                             tolist()
                                     # tmp1 = (mul_lists(rotate.T, objpoints[i][j]) + tvecs[i].T).
272
                                             T.tolist()
273
                                     tmp2 = np.reshape(tmp1, 3)
274
                                     tmp.append(tmp2)
```

```
\verb|objpoints_ccs.append| (\verb|tmp|)
275
        return objpoints_ccs
276
277
278
    # normalization
279
    def normalization(imgpoints, cameraMatrix):
280
        Ainv = np.linalg.inv(cameraMatrix)
281
        imgpoints_normalized = []
282
        # imghomo = []
283
        for i in xrange(len(imgpoints)):
284
285
             tmp, tmp2 = [], []
             for j in xrange(len(imgpoints[0])):
286
                 ip = np.append(imgpoints[i][j],
287
                 ipn = np.dot(Ainv, np.array(ip))
                 t = np.reshape(ipn[:2], (1,2))
289
                 tmp.append(t)
290
291
                 tmp2.append(np.reshape(ipn, (1,3)))
             imgpoints_normalized.append(tmp)
292
293
             # imghomo.append(tmp2)
        return np.array(imgpoints_normalized)#, np.array(imghomo)
294
295
296
    # mean 3d reconstruction error of all images
297
298
    def reconstructionerror_totalmean(objpoints1, objpoints2):
        error perimage = []
299
        for i in xrange(len(objpoints1)):
300
            total = 0
301
             for j in xrange(len(objpoints1[0])):
302
303
                 tmp = (objpoints1[i][j][0] - objpoints2[i][j][0]) **2 + 
                        (objpoints1[i][j][1] - objpoints2[i][j][1]) **2 + 
304
                        (objpoints1[i][j][2] - objpoints2[i][j][2]) **2
305
                 total += np.sqrt(tmp)/len(objpoints1[0])
306
307
             error_perimage.append(total)
        return error_perimage , np.sum(error_perimage)/len(objpoints1)
308
309
310
    # transformation from WCS to CCS
311
    def CCS2WCS(objpoints_ccs, rvecs, tvecs):
312
313
        objpoints_wcs = []
        for i in xrange(len(objpoints_ccs)):
314
            rotate, _{-} = cv2.Rodrigues(rvecs[i])
315
             tmp = []
316
             for j in xrange(len(objpoints_ccs[0])):
317
                 tmp0 = objpoints_ccs[i][j] - tvecs[i].T
318
                 tmp1 = np.dot(np.linalg.inv(rotate), tmp0.T)
319
                 tmp2 = np.reshape(tmp1, 3)
320
                 tmp.append(tmp2)
321
322
             objpoints_wcs.append(tmp)
323
        return objpoints_wcs
   # calibrate cameras and click to choose the glints
 1
   # after this, turn to matlab testlight.m
 3 #%% import modules
```

```
4 import os
5 import glob
6 import numpy as np
7 import cv2 as cv
8 import scipy.io as sio
9 import calibrate_new
10 import self
  import light
11
12
13 #%% create file path
path_left_withlight = '.../09-09-19/L_withlight/*.bmp'
15 path_left_without
                        = '../09-09-19/L_without/*.bmp'
   path_right_withlight = '../09-09-19/R_withlight/*.bmp'
                        = '.../09-09-19/R_without/*.bmp'
   path right without
19 filepath_left_withlight = os.path.join(os.getcwd(), path_left_withlight)
20 filepath_left_without
                          = os.path.join(os.getcwd(), path_left_without)
  filepath_right_withlight = os.path.join(os.getcwd(), path_right_withlight
                           = os.path.join(os.getcwd(), path_right_without)
   filepath_right_without
22
  #%% do calibration
   [index, imgpointsL, objpointsL, imgpointsR, objpointsR] = \
       calibrate_new.points(filepath_left_withlight,
           filepath_right_withlight)
27
   cameraMatrixL, distCoeffsL, rvecsL, tvecsL, cameraMatrixR, distCoeffsR,
28
      rvecsR, tvecsR = \setminus
29
                        calibrate_new.singlecalibrate(imgpointsL, objpointsL,
                            imgpointsR, objpointsR, 5)
30
   cameraMatrixL, distCoeffsL, cameraMatrixR, distCoeffsR, R, T, E, F = \setminus
       \verb|calibrate_new.stereocalibrate| (\verb|imgpointsL|, objpointsL|, cameraMatrixL|,
33
           distCoeffsL, rvecsL, tvecsL,
                                       imgpointsR, objpointsR, cameraMatrixR,
34
                                          distCoeffsR, rvecsR, tvecsR)
35
   er, recons_error, objccs, objest = calibrate_new.reconstruct(objpointsL,
      imgpointsL, cameraMatrixL, distCoeffsL, rvecsL,
                                                                 tvecsL,
37
                                                                     objpointsR
                                                                     imgpointsR
                                                                     cameraMatrixR
                                                                     distCoeffsR
                                                                 rvecsR,
38
                                                                     tvecsR, R,
                                                                      F)
  print recons_error
```

```
40
41 N = len(index)
42 #%% transform sphere's center to image plane
43 # center = [55, 14, 1.8] # position of the sphere's center on board
44 # imgpoints_center_left, imgpoints_center_right = [], []
  # N = len(objpointsL)
45
  # for i in xrange(N):
46
         rotate_left, _ = cv.Rodrigues(rvecsL[i])
47
  #
         rotate_right, _ = cv.Rodrigues(rvecsR[i])
48 #
        tmp1 = np.dot(rotate_left, center) + tvecsL[i].T
49 #
         tmp2 = np.dot(rotate_right, center) + tvecsR[i].T
50 #
         tmp_left = np.dot(cameraMatrixL, tmp1.T.tolist())
51 #
         tmp_right = np.dot(cameraMatrixR, tmp2.T.tolist())
52 #
         imgpoints center left.append(tmp left[:2]/tmp left[2])
54 #
         imgpoints_center_right.append(tmp_right[:2]/tmp_right[2])
55
56 #%% transform sphere's center from world coordinate system to camera
      coordinate system
57 center = np.array([55, 14, 1.8], dtype=np.float32)
  center_wcs = []
   for i in xrange(N):
       center_wcs.append([center])
60
61
62
  center_ccs = self.WCS2CCS(center_wcs, rvecsL, tvecsL)
64 #%% manually detect glints and save image points
   images_glints_left , images_glints_right = glob.glob(filepath_left_without
      ), glob.glob(filepath_right_without)
66
   lglint , rglint = light.Glint() , light.Glint()
67
  light.glintscoordinates(images_glints_left, lglint)
  light.glintscoordinates(images_glints_right, rglint)
70
71 #%% separate two glints
72 lg1, lg2, rg1, rg2 = [], [], []
  for i in xrange(len(lglint.points)/2):
74
       lg1.append(lglint.points[2*i])
       lg2.append(lglint.points[2*i+1])
75
76
  for i in xrange (len(rglint.points)/2):
77
       rg1.append(rglint.points[2*i])
       rg2.append(rglint.points[2*i+1])
78
79
80
   sio.savemat('calib09-09-19', {'cameraMatrixL': cameraMatrixL, '
      distCoeffsL': distCoeffsL, 'TL': tvecsL, 'RL': rvecsL,
                                  'glintsL1': lg1, 'glintsL2': lg2, '
82
                                     cameraMatrixR': cameraMatrixR,
                                  'distCoeffsR': distCoeffsR, 'TR': tvecsR, '
83
                                     RR': rvecsR, 'glintsR1': rg1, 'glintsR2'
                                     : rg2,
                                  'R': R, 'T': T}, appendmat=True)
84
85
  #%% reconstruct light sources
```

```
87 + lg1 = np.reshape(lg1, (14, 1, 1, 2))
88 + 1g2 = np.reshape(1g2, (14, 1, 1, 2))
89 + rg1 = np.reshape(rg1, (14, 1, 1, 2))
90 \text{ # rg2} = \text{np.reshape(rg2, (14, 1, 1, 2))}
91 #
  # lightpos1 = light.reconstruct(lg1, cameraMatrixL, distCoeffsL, rg1,
92
      cameraMatrixR, distCoeffsR, R, T)
93 # lightpos2 = light.reconstruct(lg2, cameraMatrixL, distCoeffsL, rg2,
      cameraMatrixR, distCoeffsR, R, T)
1 import cv2 as cv
2 import numpy as np
3 import self
4 from scipy.optimize import minimize
5 from scipy.linalg import null_space
6 import calibrate_new
8 winSize = 6
9 # read image and find contours, return image coordinates of max intensity
       of first contour
  # for one image every time
   def glint(images):
       glintspos, glintscontours = [], []
12
13
       for fname in images:
           img = cv.flip(cv.imread(fname), 1)
           gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
15
           ret, thresh = cv.threshold(gray, 127, 255, 0)
16
           contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.
               CHAIN_APPROX_SIMPLE)
           cnt = contours[0]
18
           minVal, maxVal, minLoc, maxLoc = cv.minMaxLoc(cv.contourArea(cnt)
19
           glintspos.append(maxLoc)
20
           glintscontours.append(cnt)
21
       \# cv.drawContours(img, contours, -1, (0, 0, 255), 2)
22
23
       # cv.imshow("detected", img)
24
       # cv.waitKey(0)
25
       return glintscontours, glintspos
26
27
  # glints coordinates
28
   def glints_coord(glintscontours, glintspos):
29
       coord = []
30
       for i in xrange(len(glintspos)):
31
           ind1, ind2 = glintspos[i][0], glintspos[i][1]
32
           coord.append(glintscontours[i][ind1][ind2])
33
       return coord
35
36
37
   # center of sphere
   def center_sphere(images, glint_contours, glint_pos):
38
39
       center = []
       for fname in images:
40
```

```
# img = cv.flip(cv.imread(fname), 1)
41
            img = cv.imread(fname, flags=cv.IMREAD_GRAYSCALE)
42
            im = img.copy()
43
            # gray = cv.cvtColor(im, cv.COLOR BGR2GRAY)
44
           canny = cv.Canny(im, 50, 200)
45
            circles = cv.HoughCircles(canny, cv.HOUGH_GRADIENT, 2, 900,
46
               param1=80, param2=60, minRadius=100, maxRadius=170)
            if circles is not None:
47
                for c in circles:
48
                    for x, y, r in c:
49
                        i1, i2 = glint_pos[0][0], glint_pos[0][1]
50
                        if abs(x - glint_contours[i1][i2][0][0]) < 400:
51
                             cv.circle(im, (x, y), 2, (255, 0, 0), 2)
52
53
                             cv.circle(im, (x, y), r, (255, 0, 0), 2)
                             center.append([x, y])
54
                # cv.imshow("Circles", im)
55
                # cv.waitKey(0)
56
57
       return center
58
59
   def undistort(cameraMatrix, p, imgpoints):
60
       imgundistort = []
61
       fu, fv = cameraMatrix[0][0], cameraMatrix[1][1]
62
       u0, v0 = cameraMatrix[0][2], cameraMatrix[1][2]
63
       for i in xrange(len(imgpoints)):
64
           xi = (imgpoints[i][0][0] - u0) / fu
65
           yi = (imgpoints[i][0][1] - v0) / fv
66
           r = np.sqrt(xi ** 2 + yi ** 2)
67
68
           G = 1 + (p[4]*r*r + p[5]*xi + p[6]*yi + p[7]) * r * r
            tmp1 = (xi*(1 + p[0]*r*r + p[1]*r**4) + 2*p[2]*xi*yi + p[3]*(r*r)
69
               +2*xi*xi)) / G
            tmp2 = (yi*(1+p[0]*r*r+p[1]*r**4) + p[2]*(r*r+2*yi*yi) + 2*p[3]*
70
               xi*yi) / G
            tmp3 = [tmp1, tmp2]
71
            tmp3 = np.reshape(tmp3, (1, 2))
72
73
            imgundistort.append(tmp3)
74
       return imgundistort
75
76
   def WCS2CCS(objpoints, rotate, tvecs):
77
       tmp1 = (np.dot(rotate, objpoints) + tvecs.T).T.tolist()
78
       objpoints_ccs = np.reshape(tmp1, 3)
79
80
       return objpoints_ccs
81
82
   #%% mouse callback
83
   def adaptive_threshold(img):
       maxValue = 0
85
86
       for i in xrange(len(img)):
            if max(img[i]) > maxValue:
87
                maxValue = max(img[i])
88
       threshold = maxValue - 150
89
       return threshold
90
```

```
91
92
    # find centers of glints by searching area around where the mouse click
    def searchArea(img, x, y):
94
        threshold = adaptive_threshold(img)
95
        area, index_areaX, index_areaY = [], [], []
96
        ubx, uby = x + winSize, y + winSize
97
        {\tt lbx}\,,\ {\tt lby}\,=\,{\tt x}\,-\,{\tt winSize}\,,\ {\tt y}\,-\,{\tt winSize}
98
        if ubx > len(img[0]):
99
             ubx = len(img[0])
100
        if uby > len(img):
101
             uby = len(img)
102
103
104
        for i in range(lbx, ubx):
             for j in range(lby, uby):
105
                  if img[j][i] > threshold:
106
                      area.append(img[j][i])
107
                      index_areaX.append(i)
108
109
                      index_areaY.append(j)
        if len(area):
110
111
             xc = np.median(index_areaX)
112
             yc = np.median(index_areaY)
             xc = int(round(xc))
113
114
             yc = int(round(yc))
             # if xc not in index areaX:
115
                   xc = min(index_areaX, key=lambda x_area: abs(x_area - xc))
116
             # if yc not in index_areaX:
117
                    yc = min(index_areaY, key=lambda y_area: abs(y_area - yc))
118
119
        return xc, yc
120
121
    class Glint:
122
123
        def __init__(self):
             self.points = []
124
125
        def find_center(self, event, x, y, flags, param):
126
             if event == cv.EVENT_LBUTTONDBLCLK:
127
                 xc, yc = searchArea(param, x, y)
128
129
                  self.points.append([xc, yc])
                  cv.drawMarker(param, (xc, yc), (0, 255, 0), markerSize=4,
130
                     thickness=2)
131
132
    def click(img, glints):
133
        cv.namedWindow('image')
134
        cv.setMouseCallback('image', glints.find_center, param=img)
135
136
137
        while 1:
             {\tt cv.imshow('image', img)}
138
             if cv.waitKey(20) & 0xFF == 27:
139
140
        cv.destroyAllWindows()
141
142
```

```
143
     # save glints coordinates for multiple images
144
     def glintscoordinates(images, glints):
          for fname in images:
                img = cv.imread(fname, flags=cv.IMREAD_GRAYSCALE)
147
                click(img, glints)
148
149
150
     # reconstruction of light source
151
     def reconstruct(imgpointsL, cameraMatrixL, distCoeffsL, imgpointsR,
         cameraMatrixR, distCoeffsR, R, T):
          lightest = []
153
           # linear triangulation
154
          pl, pr = self.distcoeffs(cameraMatrixL, distCoeffsL), self.distcoeffs
155
               (cameraMatrixR, distCoeffsR)
          nimgl , nimgr = self.undistort(cameraMatrixL , pl , imgpointsL) , self.
156
               undistort(cameraMatrixR, pr, imgpointsR)
157
           for i in xrange(len(imgpointsL)):
158
                {\tt uil} \;,\;\; {\tt vil} \;=\; {\tt nimgl[i][0][0][0]} \;,\;\; {\tt nimgl[i][0][0][1]}
159
                uir, vir = nimgr[i][0][0][0], nimgr[i][0][0][1]
160
                \mathtt{Ai} = \mathtt{np.array} \left( \left[ \left[ 0 \;,\; -1,\; \mathtt{vil} \;,\; 0 \right] \right. \right.
162
                                    [\,0\,\,,\,\,\,-1,\,\,\,	ext{uil}\,\,,\,\,\,\,0\,]\,\,,
                                    [\, {\tt vir} * {\tt R} \, [\, 2\, ] \, [\, 0\, ] \,\, - \,\, {\tt R} \, [\, 1\, ] \, [\, 0\, ] \,\, , \  \, {\tt vir} * {\tt R} \, [\, 2\, ] \, [\, 1\, ] \,\, - \,\, {\tt R} \, [\, 1\, ] \, [\, 1\, ] \,\, , \  \, {\tt vir} *
163
                                        R[2][2] - R[1][2], vir*T[2] - T[1],
                                    [uir*R[2][0] - R[1][0], uir*R[2][1] - R[1][1], uir*R[2][1]
164
                                        R[2][2] - R[1][2], uir*T[2] - T[1]]
                sol = null_space(Ai)
165
                print sol
166
167
                Xi = sol[:3]/sol[3]
                lightest.append(Xi)
168
169
170
          return lightest
```

Bibliography

- [1] W. Levin, H. Kooy, J. Loeffler, and T. DeLaney, "Proton Beam Therapy," *British Journal of Cancer*, vol. 93, pp. 849–854, 2005 Oct 17.
- [2] C. G. Spagnolo, Francesco and P. Queirolo, "Uveal Melanoma," Cancer Treatment Reviews, vol. 38, no. 5, pp. 549–553.
- [3] K. K. B. M. BA Krantz, N Dave and R. Carvajal, "Uveal Melanoma: Epidemiology, Etiology, and Treatment of Primary Disease," *Clinical Ophthalmology*, pp. 279–289, 2017 Jan 31.
- [4] "Proton beam irradiation." https://www.itumor.org/proton-beam-irradiation. html.
- [5] "Proton therapy treatment." https://www.protominternational.com/proton-therapy/proton-therapy-treatment/.
- [6] A. Fassi, M. Riboldi, C. F. Forlani, and G. Baroni, "Optical eye tracking system for noninvasive and automatic monitoring of eye position and movements in radiotherapy treatments of ocular tumors," *Appl. Opt.*, vol. 51, pp. 2441–2450, May 2012.
- [7] A. T. Duchowski, "Eye tracking methodology," *Theory and practice*, vol. 328, p. 614, 2007.
- [8] K. Harezlak, P. Kasprowski, and M. Stasch, "Towards accurate eye tracker calibration—methods and procedures," *Procedia Computer Science*, vol. 35, pp. 1073–1081, 2014.
- [9] E. D. Guestrin and M. Eizenman, "General theory of remote gaze estimation using the pupil center and corneal reflections," *IEEE Transactions on Biomedical Engineering*, vol. 53, pp. 1124–1133, June 2006.
- [10] FedericoNesti, "Eye tracking for proton clinic environment," 2018.
- [11] R. Hartley and S. B. Kang, "Parameter-free radial distortion correction with center of distortion estimation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, no. 8, pp. 1309–1321, 2007.

88 Bibliography

[12] Z. Zhang, "A flexible new technique for camera calibration," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, pp. 1330–1334, Nov 2000.

- [13] Y. Cui, F. Zhou, Y. Wang, L. Liu, and H. Gao, "Precise calibration of binocular vision system used for vision measurement," *Opt. Express*, vol. 22, pp. 9134–9149, Apr 2014.
- [14] S. Gai, F. Da, and X. Dai, "A novel dual-camera calibration method for 3d optical measurement," *Optics and Lasers in Engineering*, vol. 104, pp. 126–134, 2018.
- [15] R. Tsai, "A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses," *IEEE Journal on Robotics and Automation*, vol. 3, no. 4, pp. 323–344, 1987.
- [16] G.-Q. Wei and S. De Ma, "Implicit and explicit camera calibration: Theory and experiments," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 16, no. 5, pp. 469–480, 1994.
- [17] D. C. Brown, "Decentering distortion of lenses," *Photogrammetric Engineering and Remote Sensing*, 1966.
- [18] S. O. Heikkila Janne, "A four-step camera calibration procedure with implicit image correction," NMR in Biomedicine, pp. 41–47, 1995.
- [19] J. Heikkila, "Geometric camera calibration using circular control points," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, pp. 1066–1077, Oct 2000.
- [20] R. I. Hartley and P. Sturm, "Triangulation," Computer vision and image understanding, vol. 68, no. 2, pp. 146–157, 1997.
- [21] "Thorlabs lens la1540-780."
- [22] "Caltech camera calibration toolbox for matlab."
- [23] S. Nedevschi, T. Marita, M. Vaida, R. Danescu, D. Frentiu, F. Oniga, C. Pocol, and D. Moga, "Camera calibration method for stereo measurements," *Journal of Control Engineering and Applied Informatics (CEAI)*, vol. 4, no. 2, pp. 21–28, 2002.
- [24] "Opency documentation: Camera calibration and 3d reconstruction."
- [25] "Matlab single camera calibrator app."
- [26] J. Weng, P. Cohen, and M. Herniou, "Camera calibration with distortion models and accuracy evaluation," *IEEE Transactions on Pattern Analysis & Machine Intelligence*, no. 10, pp. 965–980, 1992.
- [27] K. Yan, H. Tian, E. Liu, R. Zhao, Y. Hong, and D. Zuo, "A decoupled calibration method for camera intrinsic parameters and distortion coefficients," 2016.
- [28] H. Li and R. Hartley, "A non-iterative method for correcting lens distortion from nine point correspondences," *OMNIVIS 2005*, vol. 2, p. 7, 2005.
- [29] A. W. Fitzgibbon, "Simultaneous linear estimation of multiple view geometry and lens distortion," in *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001*, vol. 1, pp. I–I, IEEE, 2001.

Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

90 Glossary