
DRAM Fault Analysis and Test
Generation

DRAM Fault Analysis and Test
Generation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 27 juni 2005 om 15.30 uur

door

Zaid AL-ARS

elektrotechnisch ingenieur
geboren te Bagdad, Irak

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr.ir. A.J. van de Goor

Samenstelling promotiecommissie:

Rector Magnificus, chair Delft University of Technology, Delft, The Netherlands
Prof.dr.ir. A.J. van de Goor Delft University of Technology, Delft, The Netherlands
Prof.dr.ing. E.J. Aas Norwegian Univ. of Sci. and Tech., Trondheim, Norway
Prof.dr. C.I. Beenakker Delft University of Technology, Delft, The Netherlands
Prof.dr. H. Corporaal Tech. Univ. of Eindhoven, Eindhoven, The Netherlands
Dr. S. Mijalkovic Delft University of Technology, Delft, The Netherlands
Dr. G. Müller Infineon Technologies, Munich, Germany
Prof.dr. L. Nanver Delft University of Technology, Delft, The Netherlands
Prof.dr. J.R. Long Delft University of Technology, Delft, The Netherlands

This work has been supported by Infineon Technologies, Munich, Germany, with a
grant to the Delft University of Technology.

Graphical cover illustration by ATOC Designs (http://www.atocdesigns.com/)

ISBN-13: 978-90-9019612-1
ISBN-10: 90-9019612-9
NUR 959

Copyright c© 2005 Zaid Al-Ars
All rights reserved. No part of this publication, either text or image may be used
for any purpose other than personal use. Reproduction, modification, storage in
a retrieval system or retransmission, in any form or by any means, electronic,
mechanical, or otherwise, for reasons other than personal use, is strictly prohibited
without prior written permission from the author.

To my father for teaching me how to have a dream,
and to my mother for showing me how to make it a reality.

DRAM Fault Analysis and Test
Generation

Abstract

The dynamic random access memory (DRAM) is the most widely used type of
memory in the market today, due to its important application as the main memory
of the personal computer (PC). These memories are elaborately tested by their
manufacturers to ensure a high quality product for the consumer. However, this
testing process is responsible for a large portion of the cost of these memories,
standing now at 40% and gradually rising with each new generation. Companies
usually develop the required memory tests in an ad hoc manner, relying heavily
on an expensive combination of experience and statistics to construct the best test
approach, the price of which is ultimately paid by the end consumer.

In this thesis, we propose a new alternative approach to the development of
industrial memory testing that is more systematic and less expensive than the
currently prevalent test approaches. The new approach is based on the introduction
of a number of fault analysis algorithms that enable the application of electrical
Spice simulations to develop effective memory tests in a short amount of time.
The new approach makes it possible to enhance memory tests in many different
manufacturing stages, starting from the initial test application stage where silicon
is manufactured, through the memory ramp-up stage where products are shipped
to the customer, and ending with the test adaptation stage, based on memory
failures in the field. The new test development approach has been implemented
and evaluated at Infineon Technologies, a leading DRAM manufacturer, to develop
tests for their DRAM products.

This thesis describes the details of the proposed test development algorithms,
along with the way they are practically implemented for DRAM devices. Two
different aspects necessary for DRAM tests are identified: test patterns and test
stresses, then methods to generate and optimize both of them are proposed. In
addition, the thesis discusses the results of applying the proposed approach to a
large number of DRAM defects, modeled from known DRAM failures on the layout
level. Finally, the thesis ends with an elaborate case study to generate and optimize
tests for a specific DRAM problem for which the new test development approach
has proven its effectiveness.

Fout Analyseren en Test Genereren
in DRAMs

Samenvatting (Abstract in Dutch)

Het dynamic random access memory (DRAM) is heden het meest gebruikte
type geheugen, wegens zijn belangrijke toepassing als het werkgeheugen van de
personal computer (PC). Geheugen chips worden door geheugen fabrikanten uit-
voerig getest om de hoge kwaliteit van hun producten te garanderen. Dit testproces
is verantwoordelijk voor een groot gedeelte van de kosten van een geheugen, die nu
rond 40% is, en geleidelijk met elke nieuwe geheugen generatie toeneemt. In het
algemeen ontwikkelen bedrijven de vereiste geheugentests op een ad hoc manier,
gebaseerd op een dure combinatie van ervaring en statistieken, om de beste tests
te construeren. De prijs daarvan wordt uiteindelijk door de consument betaald.

In dit proefschrift, stellen wij een nieuwe en alternatieve benadering van indus-
trieel test ontwikkeling voor, die systematischer en goedkoper is dan de huidige
testmethoden. De nieuwe benadering is gebaseerd op de introductie van een aantal
algoritmen om geheugenfouten door middel van elektronische Spice simulaties te
analyseren. Dit maakt het mogelijk efficiënte geheugentests op korte termijn te
ontwikkelen en om de tests in vele verschillende productiestadia te verbeteren. De
nieuwe testontwikkeling methoden zijn bij Infineon Technologies, een belangrijke
DRAM fabrikant, uitgevoerd en gevalueerd om tests voor hun DRAM producten
te ontwikkelen.

Het proefschrift beschrijft de details van de voorgestelde testontwikkeling al-
goritmen, samen met de manier waarop zij praktisch voor DRAMs worden uitge-
voerd. Twee belangrijke DRAM testaspecten worden gëıdentificeerd (testpatronen,
en teststress), en methoden om beide testaspecten te produceren en te optimali-
seren worden voorgesteld. Bovendien bespreekt het proefschrift de toepassings
resultaten van de voorgestelde testmethoden op een groot aantal bekende DRAM
defecten, die belangrijk zijn op het layout-niveau. Tot slot eindigt het profschrift
met een gedetailleerde casestudy, om tests voor een specifiek DRAM probleem te
produceren en te optimaliseren. Hierin wordt het nut van de nieuwe benadering
van testontwikkeling bewezen.

Preface

From the bulky drum memory used in the early computer systems, through the
relatively expensive core memory, to the semiconductor memory used extensively
in most of today’s integrated circuits (ICs), memory has played a vital, albeit quiet
role in the history of computing. However, this important role is gradually becom-
ing ever clearer, due to the exponentially increasing amount of memory used in
ICs today, and because a constantly growing percentage of these ICs is being ded-
icated to implement memory devices. According to the International Technology
Roadmap for Semiconductors (ITRS), a leading authority in the field of semicon-
ductors, memory occupied 20% of the area of an IC in 1999, 52% in 2002, and is
forecast to occupy up to 90% of the area by the year 2011. Due to this consid-
erable usage of memory in many ICs, improvements in the design and fabrication
process of memory devices have a considerable impact on the overall IC charac-
teristics. Therefore, reducing the energy consumption, increasing the reliability
or, most importantly, reducing the price of memories has a similar impact on the
overall systems that contain them.

Furthermore, a large portion of the price of a memory today is incurred by the
high costs of memory testing, which has to satisfy very high quality constraints
ranging from 50 failing parts per million (ppm) for computer systems to less than
10 ppm for mission-critical applications (such as those in the automotive industry).
Memory testing is expensive because of the high cost of the test equipment (a pro-
duction memory tester costs more than $500, 000), a cost that has to be distributed
over all of the produced chips, good and bad. As an example, a well-designed test
of a typical 64 Mb DRAM comprises 39% of its total cost. The test cost of a 256
Mb DRAM is estimated to be more than 50% of the total cost, making the field
of memory testing a rather significant and influential part of the whole memory
production process.

Despite the huge current and future growth potential of the filed of memory
testing, not much research has been dedicated to this important aspect of the IC
industry. This lack of research is mainly due to the fact that memory testing is a
relatively new and developing field, and to the unorthodox mathematical techniques
it employs for fault modeling and test generation. Moreover, only a limited number
of research projects exist in this field in the form of a collaboration between the
industry and the academic world, due to the company-confidential nature of the
memory test information.

xi

xii | PREFACE

A word on the project

The work in this thesis describes the results of a joint research project titled “Fault
Analysis of DRAMs Using Defect Injection and Simulation” between Infineon Tech-
nologies, Munich, Germany, and the Delft University of Technology, Delft, The
Netherlands, to analyze the faulty behavior of DRAMs produced by Infineon. It
represents an example of a small number of projects between the memory indus-
try and academia, meant to study the faulty behavior of memory devices and to
suggest new, theoretically justified memory tests. The current project is a con-
tinuation of a previous joint project between Siemens Semiconductors (presently
Infineon Technologies) and the Delft University of Technology, which supplied the
material for the masters thesis “Analysis of the Space of Functional Fault Models
and Its Application to Embedded DRAMs”, by Zaid Al-Ars.

When we started out working on the project, the objective was to come up with
a set of memory tests able to effectively detect the faults commonly encountered
in DRAM chips. But soon it became clear that designing such a set of tests is
not possible, because of the changing nature of the faulty behavior that takes
place with every new technology or new design that comes into the market. As a
result, the objective of the project rapidly shifted from generating a set of generic
tests for all DRAMs to devising new test approaches and test methods that enable
systematic and cost-effective generation and optimization of memory tests on a
memory-specific basis.

As a result, the project includes research aspects that have not been investigated
before by the memory testing research community. One example of the new aspects
treated in this project is the theoretical analysis of memory test stresses as an
integral part of the test process. This has commonly been considered a practical
issue in memory test development, and has not been understood nor justified from
a theoretical point of view.

Due to the extensive industrial input to the project, many practical aspects
have been incorporated into the research, while the theoretical roots of the project
ensured the rigorous nature of the performed analysis. In such an environment,
where different aspects of theory and practice need to be taken into consideration,
it is rather difficult to fulfill the requirements of both. However, we hope that
in this research project we were able to strike a good tradeoff between the two,
without compromising any important aspects on either side.

A word on the thesis

The information included in this thesis is fully self-contained and does not assume
any prior knowledge of specific aspects of memory devices on the part of the reader.
A reader with minimum understanding of memories should be able to read through
the whole thesis with ease, and gradually build up the information necessary to
understand the described concepts.

The thesis is organized as follows. Chapter 1 gives a general introduction to the

PREFACE | xiii

history and status of memory technology. It also provides an introduction to the
main concepts and challenges of memory testing. Chapter 2 describes the external
behavior and the internal architecture of modern DRAM devices in some detail.
Chapter 3 builds on the information in Chapter 2 to give a detailed description of
the buildup and behavior of internal electrical circuits, in addition to the possible
layout implementations of DRAMs. Chapter 4 presents the theoretical bases used
to model the faulty behavior of DRAMs. Chapter 5 presents the new simulation-
based fault analysis methods, used to generate the memory test patterns and to
optimize the needed memory test stresses. Chapter 6 discusses the concepts of
coupling and crosstalk between internal memory lines, and the way these influence
the faulty behavior of the memory. In Chapter 7, the faulty behavior of a large
number of memory defects is evaluated, based on an electrical level simulation of
the behavior. Chapter 8 shows how to use the theoretical analysis of DRAM faults
performed in Chapter 4 to derive the required DRAM tests. Chapter 9 discusses
an elaborate case study performed on a specific well-known DRAM defect, clearly
showing the full test generation and optimization potential of the simulation-based
fault analysis methods. Finally, Chapter 10 summarizes the thesis and ends with
the conclusions and recommendations.

This thesis has a web site on the Internet at http://ce.et.tudelft.nl/˜pazaid/
books/phd.html. This site contains the latest information regarding this thesis,
updated errata and links to related work. The site also gives information about
the performed fault analysis work that has been left out from this thesis. In ad-
dition, links are given to the raw fault analysis data generated in the course of
the simulation-based analysis described in the thesis. Any questions, comments,
suggestions or typos can be submitted using the e-mail link on the site, and will
be greatly appreciated.

This thesis has been typeset using the LATEX2ε package on a Linux machine.
Most of the figures have been constructed using Xfig, the freeware vector graphics
tool included with most Linux distributions. Simulations have been performed
using Titan, the Siemens/Infineon in-house Spice-based circuit simulator, while
figures of simulation output and figures of function plots have been produced using
gnuplot, the freeware function plotting utility. The graphical cover illustration was
designed by the media design company ATOC Designs (http://www.atocdesigns.
com).

Acknowledgments

This thesis work has lasted for a period of more than four years, and in that period
it received the kind support and encouragement of countless individuals, without
whom this thesis would not have been realized. First and foremost, I wish to thank
Prof. Ad van de Goor, my professor, from the Delft University of Technology, for
his active involvement and continued support that helped shape many parts of the
project. This thesis was only made possible with his guidance, meticulous reviews,
and brilliant advice. My gratitude also goes to Detlev Richter, my manager at the

xiv | PREFACE

product engineering group in Infineon Technologies, for his vision of merging the
two worlds of theory and practice, and for the confidence he had in our work. I
would further like to thank Jens Braun, my supervisor at Infineon for his valuable
comments and for the countless hours he dedicated to discuss every step of the
project. At its onset, the project was also supported by Michael Kund and Bernd
Gauch from Infineon, who merit my gratitude as well.

Special thanks go to Georg Müller and Carsten Ohlhoff from Infineon for ensur-
ing continued support to the project after the departure of Detlev Richter and Jens
Braun. I wish to give my personal gratitude to Martin Herzog from the Technical
University of Munich for creating some of the fault analysis programs and automa-
tion scripts used in this thesis, and for applying them to the defective memory
models. The thesis also benefited greatly from the input and suggestions to im-
prove the quality of the work contributed by Jörg Vollrath and Martin Versen from
Infineon.

I also wish to thank the members of the product engineering department, my
department at Infineon, for keeping up a great working atmosphere and making my
stay among them cheerful and fun. From those, I would especially like to mention
Martin Meier, Henno Harder and Christian Jaekel. Many thanks also go to the
computer-aided design department, particularly Stefan Scholl, for their round-the-
clock support of our work. Gratitude is also due to the members of the design
department, most notably Eckehard Plaettner for setting up the memory design
environment, and Udo Weber for performing kerf measurements of special wafer
structures needed for defect modeling.

I would also like to thank Mirjam Nieman, the editor of technical English at
the Delft University of Technology, for her review and commentary on the thesis.
I further want to thank the members of the Laboratory of Computer Engineering
in the Delft University of Technology, my group, for their moral support and help
to finalize this thesis, many of whom I consider personal friends and colleagues.
Special mention is due to Prof. Stamatis Vassiliadis for his support of the project,
to Said Hamdioui for his continuous encouragement, to Bert Meijs for keeping up
an excellent and flexible working environment, and finally to Lidwina Tromp, our
group assistant, for her help and understanding during the long periods I spent
away from the university.

And last but not least, my many thanks go to my family, and my parents in
particular, for their love, unlimited support and patience along the years.

Contents

Abstract vii

Samenvatting (Abstract in Dutch) ix

Preface xi

1 Introduction 1
1.1 Semiconductor memories . 2

1.1.1 Definition and physical form 2
1.1.2 Types of semiconductor memories 3

1.2 Memory testing . 8
1.2.1 Definition of memory testing 8
1.2.2 Manufacturing test flow . 10
1.2.3 Frontend and backend testing 11

1.3 Contribution of the project . 16
1.3.1 Framework of the contribution 16
1.3.2 Details of the contribution 20

1.4 Outline of the thesis . 21
Summary . 23

2 DRAM behavior and architecture 25
2.1 Modeling of DRAMs . 26
2.2 Behavioral DRAM model . 27

2.2.1 DRAM block diagram . 28
2.2.2 DRAM operations and timing diagrams 30

2.3 Functional DRAM model . 34
2.3.1 Functional block diagram 34
2.3.2 Cell array organization . 36
2.3.3 Internal DRAM behavior . 39

Summary . 42

3 DRAM design and implementation 43
3.1 Basics of MOS transistors . 43

3.1.1 Physical transistor structure 44

xv

xvi | CONTENTS

3.1.2 MOS transistor behavior . 45
3.1.3 Transistor as a switch . 48

3.2 Electrical DRAM model . 49
3.2.1 Electrical memory circuits 49
3.2.2 Memory cell . 50
3.2.3 Sense amplifier . 54
3.2.4 Other DRAM circuits . 57

3.3 DRAM layout model . 60
3.3.1 DRAM trench capacitor . 61
3.3.2 DRAM stacked capacitor . 62
3.3.3 Cell array layout . 63

Summary . 65

4 Modeling faulty memory behavior 67
4.1 Definition of fault models . 67

4.1.1 Representing operation sequences 68
4.1.2 Fault primitives and fault models 69

4.2 Generic space of faults . 69
4.2.1 Classification of fault primitives 69
4.2.2 Static fault models . 71
4.2.3 Complexity of fault primitives 76
4.2.4 Fault primitive detection and march tests 77

4.3 DRAM-specific faults . 78
4.3.1 Voltage dependent faults . 79
4.3.2 Time dependent faults . 82
4.3.3 Space of DRAM faults . 86

4.4 Industrial test practices . 89
4.4.1 Stress combinations . 89
4.4.2 Device-specific fault primitives 91
4.4.3 Examples of new notation 94

Summary . 96

5 Fault analysis approximation methods 97
5.1 Conventional analysis . 97

5.1.1 Complexity of simulation . 98
5.1.2 Example of conventional analysis 99
5.1.3 Fault analysis time . 101

5.2 Approximate simulation . 101
5.2.1 Example of 1D analysis . 102
5.2.2 Fault analysis time . 106

5.3 Two dimensional analysis . 107
5.4 DRAM-specific simulation . 111

5.4.1 Approximation with DRAM commands 112
5.4.2 Stress optimization methodology 113

CONTENTS | xvii

Summary . 116

6 Effects of bit line coupling 117
6.1 Concept of BL coupling . 117

6.1.1 Modeling BL coupling . 118
6.1.2 Effects of coupling . 120

6.2 Simulation of BL coupling . 122
6.2.1 Fault analysis method . 122
6.2.2 Simulation results . 124

6.3 Impact of BL twisting . 126
6.3.1 Theoretical evaluation of twisting 126
6.3.2 Simulation and analysis results 128

Summary . 132

7 Application of the approximation method 133
7.1 Memory simulation model . 134

7.1.1 Simulated DRAM circuits 134
7.1.2 Model reduction techniques 135

7.2 Classification of defects . 138
7.2.1 Relations between injected defects 139
7.2.2 Definition of defects . 140

7.3 Application of 1D analysis . 146
7.4 Application of 2D analysis . 153
Summary . 160

8 Space of DRAM tests 161
8.1 Taxonomy of DRAM faults . 161

8.1.1 Theoretical fault space . 161
8.1.2 Realistic fault space . 165

8.2 DRAM-specific tests . 166
8.2.1 Detecting hard faults . 167
8.2.2 Detecting transient faults 171
8.2.3 Detecting soft faults . 176

8.3 Customizing march tests . 181
8.3.1 Memory design considerations 181
8.3.2 Memory layout implications 188

Summary . 191

9 Case study: the strap problem 193
9.1 Definition of strap problem . 194

9.1.1 The defect . 194
9.1.2 Simulation model . 195
9.1.3 Process variations . 196

9.2 Analysis methodology . 198

xviii | CONTENTS

9.2.1 Simulated sequences . 199
9.2.2 Background 00 . 200
9.2.3 Backgrounds 10, 11 and 01 203

9.3 Results and tests . 205
9.3.1 Summary of results . 205
9.3.2 Test generation . 207

9.4 Optimizing test stresses . 210
9.4.1 Optimizing tcyc . 211
9.4.2 Optimizing temperature . 215

Summary . 219

10 Conclusions and recommendations 221
10.1 Conclusions . 221
10.2 Contributions . 226
10.3 Recommendations . 228
Summary . 230

A List of symbols 231

B List of abbreviations 235

Bibliography 239

Index 247

List of publications 255

Curriculum vitae 259

Statements 261

Stellingen (Statements in Dutch) 263

Contents of this chapter

1.1 Semiconductor memories

1.2 Memory testing

1.3 Contribution of the project

1.4 Outline of the thesis 1
Introduction

Since the conception of the first electronic systems, memory components have al-
ways fulfilled the vital task of storing and retrieving system and user-specific data.
Depending on the available technology and design requirements, memories have
taken many different forms, ranging from the slow and bulky punch card storage
prevalent in the early days of the computer industry to the fast and highly inte-
grated semiconductor memories commonly found in today’s leading-edge computer
systems.

The fast development of memory devices and the strong market competition
have increased the standards of these produced devices. The increased demand
on reliability has, in turn, stressed the importance of failure analysis and memory
testing techniques. More and more effort is being dedicated to the study of the
faulty behavior of memory devices than ever before. This thesis describes one
such study, made as a joint project between Infineon Technologies and the Delft
University of Technology to study the faulty behavior of a number of memory
designs, by utilizing electrical (or Spice) simulation models prepared during the
design process to evaluate the faulty behavior of the memory.

This chapter gives an introduction to the topic of memory devices, the way
they are tested, and to the Ph.D. project described in this thesis. Section 1.1 starts
with an overview of semiconductor memory devices, presenting the different types
of these devices along with the advantages and the disadvantages of each. Then,
Section 1.2 discusses the test strategies used to test memories in the different stages
of their production. Section 1.3 presents the contributions of this Ph.D. project to
scientific knowledge and to industrial practices. Finally, an overview of the different
chapters of this thesis is given in Section 1.4.

1

2 | Chapter 1. Introduction

1.1 Semiconductor memories

In their relatively short 30-year history, semiconductor memories have come from
being an unknown and somewhat unproven technology to one of the most im-
portant memory technologies around. They provide an optimum combination of
performance, price and density that gives them a central position in the computer
industry. This section gives an overview of semiconductor memories, their different
types and characteristics.

1.1.1 Definition and physical form

In very simple terms, a memory is a device used to store and retrieve information.
Figure 1.1(a) shows a generic block diagram of a memory with the most basic
input/output (I/O) interface possible, consisting of four inputs and one output. The
address input identifies the memory cell of interest, on which memory operations
are to be performed. The read input line signals a read operation performed to
forward the data in the addressed cell to the data-out line. The write input line
signals a write operation performed to store the data present on the data-in line
into the addressed cell. Note that address input is represented in the figure as a
wide arrow, which represents a so-called address bus, where a number of address
lines are collected together into one single arrow. The terms “memory”, “memory
component”, “memory device”, and “memory part” all have the same meaning and
are usually used interchangeably in the literature.

unit
Read
Write

Data in

Data outMemory

 Address

(a) Block diagram (b) TSOP package (c) TBGA package

Figure 1.1. (a) Memory block diagram, (b) Infineon DRAM chip in TSOP, and (c) in TBGA
package (source: Infineon Technologies).

One of the most well-known memory components in the industry is the dy-
namic random access memory (DRAM), primarily used as the main memory
in personal computers (PCs), workstations and mainframes. The amount of DRAM
found in a PC has a significant impact on its overall performance, and is considered
an important parameter in PC specifications. DRAMs are usually produced in the
form of an integrated circuit (IC) chip, which might be packaged in many different
ways, depending on the specific application and the performance of the DRAM.
Figure 1.1(b) shows an example of an Infineon memory packaged in a TSOP (thin
small outline package), which is characterized by small size and low cost. This is a
very common DRAM package suitable for memories of almost any size and density.
It has an elongated rectangular shape with pins located on two sides of the package.

1.1. Semiconductor memories | 3

Figure 1.1(c) shows a 512 Mb (mega bit) DDR2 (double data rate 2) Infineon
DRAM chip, packaged in a special high performance TBGA (tape ball grid array)
package. It has a square shape with pins arranged in the form of a ball grid,
located on the bottom surface of the chip. TBGA is a more expensive package to
manufacture and to incorporate into a system, but it enables better performance
and higher clock rates than TSOP by reducing internal die-to-pin path lengths and
pin impedance. It also enables a much higher pin count, since it uses the whole
bottom surface area of the package instead of only two sides of it.

PC consumers are much more familiar with a DRAM module (also called DRAM
card or DRAM stick) than with a single DRAM chip. A module basically consists
of a printed circuit board (PCB) where a number of DRAM chips are connected
together and made ready to be plugged into the system bus of the PC. Figure 1.2
gives an example of a 512 MB (mega byte) DDR2 Infineon DRAM module, where
8 TSOP 512 Mb chips of the type shown in Figure 1.1(b) are placed side by side
and connected together on the PCB. There are two main types of DRAM mod-
ules: single in-line memory modules (SIMMs), and dual in-line memory modules
(DIMMs), both of which have the same form shown in Figure 1.2. The main dif-
ference between the two lies in the fact that the data bus on a DIMM is twice as
wide as that on a SIMM. The data bus width for a SIMM can range from 32 bits
in small PCs up to 200 bits in a workstation, while twice this bus width applies for
a DIMM [Prince99].

Figure 1.2. Infineon 512 MB DRAM module with chips in TSOP packages (source: Infineon
Technologies).

1.1.2 Types of semiconductor memories

Figure 1.3 shows a common classification of the most important types of semicon-
ductor memories, where two main classes are identified: random access memo-
ries (RAMs), and read-only memories (ROMs). The name RAM stands for
a memory device in which cells may be accessed at random to perform a read or
a write operation. Depending on the internal architecture and the actual memory
cell structure, RAMs may be further divided into:

• dynamic RAMs (DRAMs), and

4 | Chapter 1. Introduction

• static RAMs (SRAMs).

The name ROM, on the other hand, stands for a memory that can only be written
a limited number of times but can be read indefinitely. The most important types
of ROM are:

• programmable ROM (PROM),

• erasable PROM (EPROM),

• electrically erasable PROM (EEPROM), and

• flash memory.

As the manufacturing processes of ROMs improve, and device performance and
number of possible write operations increase, the sharp boundary between RAM
and ROM is gradually eroding [Waser03]. In the following, we will provide a general
description of these architectures along with their advantages and disadvantages.

Semiconductor memories

ROMRAM

PROM EPROM EEPROM FlashSRAMDRAM

Figure 1.3. Classification of semiconductor memories.

RAM devices

A simple block diagram of a RAM is given in Figure 1.4(a). Three main inputs are
shown: a read/write (R/W) switch to signal the type of operation performed, an
address input which identifies the cell to be accessed, and a data input line that
supplies the data to be written in case of a write operation. A RAM also has a
data output line to be used on a read operation to forward data from the addressed
cell to the outside world. In principle, both DRAMs and SRAMs share this same
general interface, but the specific implementation is different and mainly depends
on the targeted application of the memory.

The electrical structure of an SRAM cell is shown in Figure 1.5(a). The cell is
constructed using six transistors, four of which are of one transistor type (NMOS)
while the other two are of another type (PMOS). The word line (WL) in the figure

1.1. Semiconductor memories | 5

R/W

(b)

Address
Read

Write
Data in

ROM

Special
ports

Data out

(a)

RAM

Address

Data in

Data out

Figure 1.4. Block diagrams of (a) RAMs and (b) ROMs.

performs the address selection function for the cell. The true bit line (BT) and
complement bit line (BC) serve both as the data input line and the data output line
for the cell at the same time. The selection between performing a read or a write
operation is fulfilled by other memory parts external to the cell. The operation of
the cell in the figure is based on the fact that SRAM cells are bistable electrical
elements (i.e., circuits that have two stable states). Each state is used to represent
a given logical level. Once a cell is forced into one of the two states, it will stay
in it as long as the memory is connected to the power supply; the name “static
RAM” refers to this property.

Vdd

(a)

WL WL

(b)

BT BC

BL
WL

Figure 1.5. Electrical structure of (a) SRAM and (b) DRAM core cells.

The electrical structure of a DRAM cell is shown in Figure 1.5(b). The cell is
constructed using one transistor and one capacitor. The WL performs the address
selection, while the bit lines (BLs) are used as both the data input and data output
lines. The selection between read and write operations is performed by other parts
of the memory. As seen in the figure, DRAMs are constructed of simple capacitive
elements that store electrical charges to represent a given logical level. Inherently,
DRAM cells suffer from gradual charge loss, as a result of a phenomenon known
as transistor leakage currents, which cause a cell to lose its charge gradually. In
order to help cells keep their state, it is necessary for DRAMs to rewrite, or refresh,

6 | Chapter 1. Introduction

the already stored data bits from time to time before the cells lose their charge
completely. The name “dynamic RAM” refers to the fact that the data stored in
the DRAM cell may change spontaneously after a given period of time.

Both DRAMs and SRAMs are called volatile memories because they can only
keep their data content if they stay connected to the power supply. A closer look
at the two RAM structures reveals that SRAMs store their data actively by pulling
their nodes to high or low voltage levels, while DRAMs store their data in capacitive
elements that take time to charge up and discharge. Therefore, SRAMs have a much
higher performance than DRAMs, and this is the reason they are used as the first
level memory (or cache memory) directly supporting the central processing unit
(CPU) in a microprocessor. Among other things, the main advantage that DRAMs
have over SRAMs is in their density. Figure 1.5 clearly shows that DRAM cells
are simple, compact elements that achieve much higher chip densities than their
SRAM counterparts, which also makes them much cheaper. This cost difference is
so important that it outweighs all other aspects in most applications [Al-Ars99].

ROM devices

The other architectural variation of semiconductor memories is the ROM, which is
shown in Figure 1.4(b). ROMs are preprogrammed memory devices that perma-
nently store information needed by the microprocessor for basic operation, informa-
tion such as routines to interact with discs, keyboards and the display [Prince91].
The figure indicates that the write and data input lines are applied by special
means, in accordance with the read-only functionality of ROMs. The most basic
type of ROM, called masked ROM or simply ROM, can only be written once at
the time of manufacturing, after which stored data cannot be changed. ROMs are
non-volatile and, therefore, keep their stored data even when power is turned off.

PROM One variant of the ROM is the programmable ROM, or PROM, which
is delivered unprogrammed to the consumer, who is then able to program it by
writing an application-specific set of data only once. The stored information cannot
be erased afterwards, a property that puts a limitation on the reusability of the
PROM if the application for which the memory is used changes.

EPROM To tackle the limited reusability problem of PROMs, the erasable PROM
(EPROM) was introduced. Once programmed, the EPROM acts like a normal
ROM. However, if the need arises, the user is capable of erasing the contents of
the EPROM and can reprogram it again. The disadvantage of the EPROM is that
it cannot be reprogrammed while residing in the system; it must be removed from
the system and erased with ultraviolet (UV) light first, and then reprogrammed
using special equipment. Other disadvantages of the EPROM include a lower
performance than ROMs, sensitivity to light, and expensive packaging with small
quartz windows.

1.1. Semiconductor memories | 7

EEPROM The disadvantages of the EPROM have led to the introduction of the
electrically erasable programmable ROM (EEPROM). The EEPROM can be elec-
trically reprogrammed in the system, which eliminates the need of removing it,
erasing it with UV light and reprogramming it using special equipment. EEP-
ROMs have cheap packaging and are not sensitive to light. The main disadvantage
here is the greater cell complexity as compared to the EPROM, and consequently
the higher price. EEPROMs are only economically justified when non-volatility
and in-system re-programmability are required.

Flash memory One variant of the EEPROM is the so-called flash memory, which
combines the best features of the memory devices described thus far. Flash mem-
ories have high density, low cost, are non-volatile, fast (to read, but not to write),
and electrically reprogrammable. These advantages are clearly overwhelming and,
as a result, the market share of flash memory has increased dramatically in the
past few years, especially in embedded systems and for mobile applications. From
a software point of view, flash and EEPROM technologies are very similar. The
major difference between them is that flash devices can only be erased in chunks,
one sector at a time, and not on a byte-by-byte basis. Typical erasable sector sizes
are in the range of 256 bytes to 16 KB. Despite this disadvantage, the flash memory
combines an unbeatable set of advantages and is, therefore, becoming much more
popular than the EEPROM. Flash is rapidly displacing other ROM devices as well,
and in an increasing range of applications.

To summarize the discussion above, Table 1.1 lists the features of each type of
semiconductor memory, and tries to quantify some aspects of memory operation. It
is clear from the table that each memory type has its own strengths and weaknesses,
which means that no one type can replace all others, but that each memory suits
its own specific application [IBM02, Infineon04, Itoh01].

Table 1.1. Summary of the characteristics of the different memory architectures.

Criterion SRAM DRAM ROM EPROM EEPROM Flash

Relative cell size 4–6 1.5 1 1.5 3–4 1.5

Volatility yes yes no no no no

Data retention ∞ 64 ms ∞ 10 years 10 years 10 years

In-system re-programmability yes yes no no yes yes

In-system read speed 2.5 ns 55 ns 90 ns 90 ns 200 ns 60 ns

In-system write speed 2.5 ns 55 ns — — 2.5 s 6.4 µs

Number of writes ∞ ∞ 1 100 104–105 104–105

8 | Chapter 1. Introduction

1.2 Memory testing

The exponential increase in the integration density of memory components and
the associated increase in the complexity of memory faulty behavior have made
fault analysis and memory testing a significantly important, yet a difficult task to
perform. This section serves as a global introduction to the topic of memory testing
and the way it is usually performed in the industry.

1.2.1 Definition of memory testing

Memory testing means different things to different people. There are three major
parties involved in the supply chain of memory devices, and each needs to test the
memory in a different way:

• the memory chip manufacturer,

• the system integrator, and

• the end user.

Figure 1.6 graphically represents these three parties involved in the supply chain
and the way they interact. A memory chip manufacturer is the party involved in
defining the specifications of memory devices and subsequently designing and man-
ufacturing raw memory devices of the form shown in Figure 1.1(b) and (c). The
system integrator is the party that buys memory devices from a memory manu-
facturer and implements them into a system intended to solve a specific customer
need, such as PCs, workstations or networking equipment. The end user is the
party that acquires the equipment provided by the system integrator in order to
deploy it for solving a specific problem.

Customer
returns

Memory
manufacturer

Customer
returns

Equipment
End
user

Memories
System

integrator

Figure 1.6. Supply chain of memory devices.

The big burden of extensive testing and qualification of memory devices rests
squarely on the shoulders of the memory chip manufacturer, the first party in
the memory supply chain. The system integrator may perform simple tests on
purchased memory devices to screen out defective parts before incorporating them
into bigger systems. But this practice is gradually disappearing, as many companies
expect the devices to be delivered just in time for use, and with very high quality
levels. System integrators are expected, however, to test their systems extensively
before delivery to the end user. During this testing process, if memory devices are

1.2. Memory testing | 9

systematically found to cause equipment failure, these defective memories are sent
back to the manufacturer in the form of customer returns. The manufacturer is
then expected to investigate these returns and to try to screen them out before they
are sold to the system integrator. Finally, the end user is not expected to perform
any specific testing on acquired systems other than setting them up for regular
operation. Here too, the end user sends back defective systems to the integrator in
the form of customer returns for reparation or replacement.

The fact that memory testing should mainly, and almost exclusively, be per-
formed by memory manufacturers is due to the exponential increase in the cost of
detecting a defective component after it gets incorporated into increasingly more
complex systems, from chip to module to system. A well-known industrial rule of
thumb (sometimes referred to as the “rule of tens”) on the relative cost of system
testing states that at each successive stage in production, it cost ten times as much
to identify and repair a defective component than it would have cost at a previous
production stage [Jha03]. Figure 1.7 gives a graphical representation of this rule.

Coststage(i+1) = 10 · Coststage(i) (1.1)

Memory

10

100

1000 cost of testing
Relative

component
Memory
module

Production
stage

System

Figure 1.7. Relative cost of component testing at each stage in production.

This rule means that memory manufacturers have to elaborately test their mem-
ory chips in order to ensure the very high quality requirements expected from ICs
in general and from memories in particular. Currently, manufacturers of high qual-
ity memories, such as those in the automotive industry, should supply chips with
failure rates as low as 10 ppm (parts per million) to their customers [Majhi05].

Since memory testing is mainly performed by memory manufacturers, this thesis
is only concerned with manufacturing tests, as it is the field where the biggest
investment in testing is incurred, and where the highest possibility of payback on
research is expected.

10 | Chapter 1. Introduction

1.2.2 Manufacturing test flow

A test flow is a description of the stages needed to test a specific device, along
with the activities needed to set up and adapt these stages so that the device can
be tested successfully. Different memory components require different test flows
that fit the specific needs of each component. Despite the differences, all memories
have lots of similarities and share the same general test flow structure.

Figure 1.8 shows a simplified block diagram of a typical manufacturing test flow
performed by a memory manufacturer [compare with Figure 1.6]. The figure also
shows a three-stage representation of the design flow, starting with the specification
of a new memory technology, followed by the design process and culminating with
the actual chip manufacturing process [Nakamae03, Antonin91]. The design flow
is included here for completeness, and to underscore the important interaction
between the design and test flow. Within the test flow, the actual testing process
takes place in only two blocks in the figure

• frontend (or wafer level) testing, and

• backend (or component level) testing,

drawn as two large rectangles. Frontend testing is performed before chip packaging
so that only functional chips get to the packaging process, in order to reduce the
costs of packaging. Backend testing ensures that packaged chips function properly
before delivery to the customer. More details about the activities in these two test
stages are given in the next section.

Specification

Test adaptation

Packaging

Yield analysis

Failure analysis

Tests from
old technology

Design

Manufacture

Customer
returns

testing
Frontend (wafer)

testing
Backend (component)

Test generation

Design flow
Memories

Test flow

Figure 1.8. Block diagram of a manufacturing test flow for a memory manufacturer.

Figure 1.8 shows that in order to set up and maintain a proper testing process,
three main activities need to be carried out (identified as three shaded blocks in
the figure):

• test generation,

• yield analysis, and

• failure analysis.

1.2. Memory testing | 11

Test generation For every new memory technology, an initial set of tests is
needed to test the first manufactured components. This initial set is generated by
adapting an existing set of tests used for the previous memory technology, so that
the tests would fit the specifications of the new memory technology. Generating
this initial set is the first step in setting up the memory testing process, and it
starts even before the design is complete and before first silicon (a term used in
the industry for the first wafers produced for the new technology) is manufactured.

Yield analysis Yield (Y) is defined as the fraction of functional memories relative
to the total number of produced memories by a manufacturing process.

Y =
number of functional memories

total number of memories
(1.2)

A successful manufacturing process is expected to result in high yield values. How-
ever, the actual manufacturing yield depends heavily on the quality of the testing
process. A very stringent test process results in eliminating a large number of
chips and allows only memories with the highest quality to pass to the customer,
while a less restrictive test process allows a large number of high and low quality
components to pass to the customer. Depending on the required memory qual-
ity and the effectiveness of the manufacturing process, a target yield is identified
and tests should be modified to match it. For example, memories produced for
mission-critical applications (such as life-support systems) demand very stringent
test requirements, for which a lower yield (and a corresponding increase in price)
is tolerated.

Failure analysis The ultimate arbitrator of a product’s success is customer satis-
faction. As long as the customer buys produced components and does not complain
about equipment failures as a result of purchased memories, then the total man-
ufacturing and testing process is considered to be functioning properly. But once
the customer expresses dissatisfaction, and customer returns start coming back to
the memory manufacturer, then failure analysis must be performed immediately on
these customer returns to identify the defect causing the failure. Subsequently, the
test process must be modified as soon as possible to prevent this type of defective
devices from being shipped to the customer.

The next section discusses in more detail the actual manufacturing test process,
which is performed within the frontend and backend stages of the test flow.

1.2.3 Frontend and backend testing

The frontend and backend test stages are the cornerstones of any memory test
process. They are the test flow stages where the tests are actually performed on
the memory, and the correctness of the memory behavior is inspected [Falter00].

12 | Chapter 1. Introduction

Although the frontend and backend test stages are part of the test flow of most
memory devices, the exact sequence of test steps (also called test insertions) that
take place in each of these two stages vary significantly depending of the specific
type of memory being tested. Still, the test process needed for DRAMs and SRAMs
have a number of shared characteristics, and can be divided into four main test
insertions [see Figure 1.9]:

• prefuse testing,

• postfuse testing,

• burn-in testing, and

• package testing.

In the following, these four test insertions are discussed, after which some of the
differences in the test process of DRAMs and SRAMs are identified.

Prefuse
testing testing

Postfuse
testing

Burn−in
testing

PackagePackagingFusing

Frontend testing Backend testing

Figure 1.9. Typical test process of DRAM and SRAM devices.

Prefuse testing This is the first test insertion of frontend testing in the memory
test process, with the main objective of identifying the failing cells and repairing
them using redundant memory elements. In addition, the tests used here should
be able to indicate the type of failure mechanism at play in case a failure does take
place. This information is important as feedback to the manufacturing facility (fab)
to modify the fabrication process, and to eliminate the failure in order to increase
yield. One important characteristic of prefuse testing is that it is performed on-
wafer, using tiny needles (or probes) that are unable to conduct large amounts
of current, thereby limiting the speed at which tests are performed in this test
insertion. In other words, the high-speed operation of the memory cannot be
inspected by prefuse tests. Such speed tests can only be performed after memory
packaging, in the package testing stage, the final test insertion in the test flow [see
package testing below].

Postfuse testing This is the second test insertion of frontend testing in the
memory test process, with the main objective of checking that redundancy fusing
and repair has been done in a proper way. Tests performed in this stage are rather
simple and short sequences of write and read operations (so-called scan tests) used
to check the basic functionality of repaired memory elements.

1.2. Memory testing | 13

Burn-in testing This is the first test insertion of backend testing in the memory
test process, and it takes place after wafer dicing and chip packaging. Burn-in
is a well-known method to check the reliability of manufactured components by
applying highly stressful operational conditions, called test stresses (such as high
voltages, possibly combined with high temperature), which accelerate the aging
process of the memory [vdGoor98]. Two different types of tests are done in this
stage: those used merely to accelerate the aging process itself, and others used to
check for proper functionality under test stresses. Tests performed to stimulate the
aging process are simple scan tests or hammer tests (also called disturb tests, where
a specific operation is repeated a multiple number of times on the same cell). The
pass/fail information provided by these tests are generally neglected since they are
not meant to test the actual functionality of the memory operation. The second
type of tests is meant to ensure proper memory operation at high stresses. Most
notably here are the data retention tests, which inspect the ability of memory cells
to keep their data.

Package testing This is the second test insertion of backend testing and the last
test insertion in the memory test process, with the main objective of validating the
operation of the memory according to the specifications. In this test insertion, a set
of memory tests is performed at high as well as at low temperature to ensure proper
component functionality. Some tests performed in prefuse testing are repeated here,
with a slightly lower level of stress on the memory compared to that applied during
prefuse testing (using a so-called stress guard band). If such a test results in a
relatively high fail count during package testing, then the corresponding prefuse
test is not effective enough, and should be stressed further to identify failing cells
during prefuse testing and to try to repair them during fusing.

The test process description above identifies the three necessary components of
DRAM and SRAM tests, and the three different requirements a modern memory
test should satisfy [see Figure 1.10].

• Test components

1. Operation sequence: a test should specify a memory operation sequence
of writes and reads to be performed in a specific order on memory cells.

2. Data pattern (or data background): a test should also specify a pattern
of 0s and 1s to be written into and read from accessed memory cells.

3. Stresses: a memory test should include a specification of different oper-
ational conditions or stresses (such as timing, temperature and voltage)
that the test is supposed to be performed at. This component is impor-
tant to test for proper functionality within the parameter range defined
by the specifications. Stresses are also important (sometimes necessary)
to increase the coverage of a test without increasing its length.

14 | Chapter 1. Introduction

• Test requirements

1. Fault detection: a test that fulfills this requirement should result in a
fail when applied on a memory that contains the fault. This is a basic
requirement of any memory test designed to test for a specific type of
faulty behavior.

2. Fault localization: a test that fulfills this requirement should be able
to identify the specific memory cell (or group of cells) where the fault
takes place. This requirement is associated with the need to identify
and repair failing cells by fusing in order to increase yield.

3. Fault diagnosis: a test that fulfills this requirement should be able to
indicate the physical root cause behind the observed faulty behavior.
This requirement is associated with the need to give instant feedback to
the fabrication process regarding possible fabrication causes of observed
faults.

Figure 1.10 gives a summary of the components that DRAM and SRAM tests
should have and the requirements these tests should satisfy. The three white blocks
in the figure (data background, fault detection and fault localization) indicate those
items that DRAM and SRAM tests have in common, while the three shaded blocks
(operation sequence, stresses and fault diagnosis) indicate those items where DRAM
and SRAM tests are different. In the following, the differences are discussed and
the reasons for these differences are given [see summary in Table 1.2].

Memory
test

Operation
sequence

Data

Stresses

Faul
detection

Fault
localization

Fault
diagnosis

Test
components

Test
requirements

background

Figure 1.10. Components and requirements a memory test should satisfy.

Differences in the operation sequence SRAMs and DRAMs commonly suffer
from different types of memory faults. The reason for this difference is the digital
nature of SRAM cells (stored data are either logic 0 or logic 1) and the analog
nature of DRAM cells (stored data can take any value within a range of voltages
between 0 and 1). This aspect of DRAM operation is discussed in more detail
in Chapter 4. The most common types of memory faults observed in SRAMs are
the so-called static faults, where a fault is sensitized by performing at most one

1.2. Memory testing | 15

operation on the memory [Hamdioui00]. Therefore, the vast majority of SRAM
tests are designed to target these static faults. Since the number of static faults
is limited to 12 [see Chapter 4], each of which requires at most one operation for
fault sensitization, this means that SRAM tests are rather short, limited in number,
which in turn makes it feasible to perform a single test that is theoretically proven
to detect all 12 static faults. In contrast, a relatively large portion of DRAM
faults are the so-called dynamic faults, which are faults sensitized by performing
two or more memory operations on the memory [see Chapter 7]. As a result, a
large portion of DRAM tests are designed to target these dynamic faults. Since
there is an unlimited number of dynamic faults, each of which requires a potentially
large number of sensitizing operations, DRAM tests are rather complex and time
consuming. Therefore, it is not possible to exhaustively analyze dynamic faults
and derive general corresponding tests. The only way to derive DRAM tests is by
analyzing the behavior of each DRAM design separately and deriving device-specific
tests for each design.

Differences in stresses Almost all memory tests designed for any type of mem-
ory include some kind of stress specification to perform the test at. For SRAM
devices, stresses are most commonly used to inspect for proper functionality of
the memory within the parameter range defined by the specifications. As a re-
sult, the specifications give a very good indication of the types of stresses and the
values to be used for each stress in SRAM tests, even before the chips are manu-
factured. Small stress modifications are subsequently needed to ensure a specific
quality level of the tests, which is not too relaxed nor too stressful. For DRAMs, on
the other hand, stresses are needed not only to ensure proper functionality within
the specifications, but also to identify the strength of the stored cell voltage and
the amount of leakage current in the cell. DRAM cells suffer from leakage currents
which gradually degrade any stored cell voltage, and eventually result in the total
loss of stored values after a specific amount of time. To test for the ability of the
cell to keep its voltage for a long enough amount of time, stresses are used to limit
the maximum stored voltage level and to increase the amount of leakage current,
so that the tests can identify failing cells in a short amount of time. Unlike SRAM
stresses, DRAM stresses have no clear a priori indicators for the types and values
to be used in the test. Therefore, an educated guess is attempted at first and,
depending on yield feedback, these values are modified iteratively in a slow and
costly process until acceptable final values are obtained. This thesis proposes an
alternative, more cost-effective approach to optimize stresses, where it is possible to
use Spice simulation to get a fairly good initial prediction for the required stresses.
The issue of the importance of stresses for DRAMs is discussed in more detail in
Chapter 4, while the Spice-based optimization method is discussed in Chapter 5.

Differences in fault diagnosis A faulty fabrication process that systematically
results in defective chips is very costly, and therefore feedback from the test process

16 | Chapter 1. Introduction

with regard to potential problems in the fabrication process is of prime importance.
Therefore, it is common for many memory tests to have some kind of diagnostic ca-
pability. Tests designed with diagnostic capabilities are complex, since they should
efficiently detect faults caused by a specific failure mechanism, while having mini-
mal coverage of faults caused by other, unrelated failure mechanisms. As a result,
the more complex and versatile the total faulty behavior of the memory is, the
more complex each diagnostic test for a specific failure mechanism becomes, since
a test must also avoid detecting faults resulting from other failure mechanisms.
Usually, DRAMs lead the semiconductor industry by using the latest cutting-edge
fabrication processes with the newest developments, where newly introduced fail-
ure mechanisms should be identified and dealt with. In addition, DRAMs need
special, unconventional on-chip structures (such as trench or stack capacitors) that
are difficult to manufacture and result in special, unconventional types of faults.
SRAMs, on the other hand, are usually manufactured using an established manu-
facturing process, where the most common failure mechanisms are already known,
and they mainly require conventional on-chip structures (transistors), similar to
those commonly used for logic devices. As a consequence, DRAM test develop-
ment is a gradual and slow process, where tests should be developed based on a
close observation of the fabrication process, and where each test has a special re-
lation to the fabrication process, to other tests in the test flow, and to the specific
memory design being tested. This is a far cry from the world of SRAMs, where
devices can be designed as macros and sold in the form of intellectual property (IP)
structures, without having to care about the specifics of the fabrication process to
be used.

1.3 Contribution of the project

The research performed in the course of this project has contributed in a num-
ber of ways to the development of a new methodology in DRAM testing on an
industrial scale [Al-Ars05]. We start this section by identifying the global indus-
trial framework of the contribution, followed by a detailed discussion of each of its
aspects.

1.3.1 Framework of the contribution

The high cost and complexity of the test process of DRAM devices calls for intro-
ducing new innovative ways to tackle the test development problem. As discussed
in Section 1.2 and shown in Figure 1.11, the tests performed in the frontend and
backend stages of the test flow are traditionally generated in two steps: 1. based on
information from the specification stage of the design flow and, 2. based on feed-
back information from test application after the manufacture stage of the design
flow. These two stages, shown shaded in Figure 1.11, are described next.

1. Specification stage—Every test flow for a new memory technology starts

1.3. Contribution of the project | 17

Table 1.2. Differences in the attributes of memory tests used for DRAMs and SRAMs.

Attribute Difference Cause Consequences

Operation
sequence

DRAMs: long
(possibly infinite)
sequences
SRAMs: short
sequences (one
operation)

DRAMs: analog cell
operation
SRAMs: mostly
digital cell operation

DRAMs:

custom-made tests for
each design
SRAMs: theoretically
derived tests for all
designs

Stresses DRAMs: necessary to
test functionality
within specifications,
and to identify strength
of voltage level and
amount of leakage
current
SRAMs: mainly
needed to test
functionality within
specifications

DRAMs: gradual
degradation of stored
voltage level due to
inherent leakage current
SRAMs: stored
voltage level is fixed
and leakage current is
compensated for

DRAMs: needed types
and values of stresses
are identified using a
time-consuming
iterative process
SRAMs: needed types
and values of stresses
are close to
specifications and are
easier to identify

Fault
diagnosis

DRAMs: necessary for
immediate feedback to
fabrication process
SRAMs: not needed
for a robust fabrication
process, minimal
feedback will suffice

DRAMs: new,
unknown technology
usually used and
difficult structures
fabricated
SRAMs: existing,
tested technology
usually used and typical
transistors fabricated

DRAMs: more
complex tests with
detection, localization
and diagnosis abilities
SRAMs: less complex
tests with mainly
detection and
localization abilities

with an analysis of the specifications of the new memory and an analysis of
the tests used for the previous memory technology [see the block “Tests from
old technology” in Figure 1.11]. The specifications are used to generate a new
set of tests by adapting the old tests to comply with specifications of the new
memory [see the block “Test generation”].

2. Manufacture stage—After manufacturing the chips, the specifications-based
tests generated by the previous step are applied to the memory in the front-
end and backend stages of the test flow. For every new memory technology,
the yield analysis stage [see block “Yield analysis”] identifies new, previously
unknown, failure mechanisms for which additional (or modified) tests are
needed. Furthermore, it is commonplace to have subtle fails that can only be
identified after chips fail with the customer, who sends them back to the man-
ufacturer as customer returns, where they get analyzed in the failure analysis
stage of the test flow [see block “Failure analysis”]. The feedback from the
yield analysis and the failure analysis stages is used to adapt the tests in the
test adaptation stage [see block “Test adaptation”], so that a set of tests can

18 | Chapter 1. Introduction

testing
Frontend (wafer) Backend (component)

testing

Packaging

Yield analysis

Design Failure analysis

Test generation

returns
Customer

���
���

���
���

Design flow

Specification

Manufacture

Test adaptationSimulation−based

Tests from
old technology

Test flow

Memories

Figure 1.11. Manufacturing test flow, where the contribution of this thesis is shaded.

be attained that is more capable of detecting the previously unknown types
of faulty behavior.

Therefore, a test set is developed in two steps: first using information from the
specification stage and then adapting it based on information from the manufac-
ture stage of the design flow. Each one of these two steps in test generation has
advantages and disadvantages in terms of quality and cost, as shown in Figure 1.12.

tests tests
Simulation−based

Cost of test generation

Quality and accuracy of test generation

tests
Specifications−based Manufacturing−based

Figure 1.12. Cost-quality tradeoff of test generation.

Specifications-based test development Tests generated based on the specifi-
cations of the memory have a relatively low cost since they can be derived analyt-
ically by adapting already known tests of previous memory designs. This style of
test generation assumes that the faulty behavior of the memory does not change
with changes in memory design and technology. This assumption might be valid
for generic types of failure mechanisms, but for every new memory technology there
are always some types of failure mechanisms that are specific to the memory under
analysis. Therefore, specifications-based test generation, though relatively cheap, is
not memory-specific enough to derive accurate tests for the memory under analysis.

Manufacturing-based test development Tests generated based on feedback
from the manufacturing process are very accurate in describing the faulty behavior

1.3. Contribution of the project | 19

of the memory under analysis, since the tests are generated by statistically ana-
lyzing feedback data from the manufacturing facility (fab) as tests are performed
on real memory chips. This style of test generation assumes that there is a large
volume of failing memory parts to enable a meaningful statistical analysis such
that reliable tests can be derived. This assumption requires a rather expensive
and time-consuming test adaptation loop of test application, yield analysis and test
adaptation until a stable and a reliable set of tests can be generated. In Figure 1.11,
two test adaptation loops are shown: 1. Frontend → Yield analysis → Test adap-
tation, and 2. Backend → Yield analysis → Test adaptation. If such expensive test
adaptation loops are not properly implemented, the memory manufacturer runs the
risk of delivering defective parts to the customer, which will most probably be sent
back to the manufacturer in the form of defective customer returns, a situation that
is bound to reduce customer satisfaction levels with the product. In conclusion,
manufacture-based testing, though accurate and memory specific, has a high price
tag associated with it, making it an expensive alternative for test generation.

Thesis contribution: simulation-based test development This thesis pro-
poses a simulation-based test generation approach, which strikes a tradeoff between
specifications and manufacturing-based test generation, and provides an alterna-
tive that is both moderately cheap as well as device specific. As shown in the
shaded “Simulation-based” block of Figure 1.11, simulation-based test generation
uses information from the design stage of the design flow, where an electrical Spice
model of the memory is generated to evaluate the expected memory behavior. The
Spice model of the memory represents its internal design and behavior, in addition
to an electrical description of the fabrication process to be used to manufacture
the memory. This provides a fairly accurate representation of the specific behavior
of the memory under analysis. At the same time, simulations can be directly re-
lated to a specific failure mechanism and, therefore, they can greatly accelerate the
expensive and time-consuming feedback loop needed by manufacturing-based test
generation. Furthermore, simulation-based test generation provides the following
added advantages:

• It increases our understanding of the internal faulty behavior of the memory.

• It supports test adaptation activities after yield analysis of fab tests.

• It supports failure analysis activities for customer returns.

• It enables early identification of design bugs before tape out, which is the
design stage where the design data is stored on tape and transported to the
fab.

20 | Chapter 1. Introduction

1.3.2 Details of the contribution

In order to materialize the vision of simulation-based test development for DRAMs,
a number of theoretical (scientific) as well as practical (industrial) hurdles have
been tackled and solved in this thesis. It is worth noting here that this vision has
been exclusively and completely carried out within the framework of this project,
since there is no previously published work on employing electrical simulation for
DRAM test development. First, the scientific contributions are listed, followed by
the industrial contributions.

Scientific contributions

• The definition of a general space of memory faults in combination with a tax-
onomy that describes any possible faulty behavior exhibited by the memory
[Al-Ars99, Al-Ars00, Al-Ars01a, Al-Ars03a, vdGoor00]. This general space is
treated in Chapter 4.

• The identification of the specific fault classes needed to describe the faulty
behavior of DRAMs, such that the rather complex general space of mem-
ory faults is reduced to a smaller, manageable size [Al-Ars01b, Al-Ars02a,
Al-Ars04a]. These DRAM-specific fault classes are treated in Chapter 4.

• The inclusion of stresses (voltage, timing and temperature) as a theoretically
fundamental part of memory testing, and devising a language to model it
[Al-Ars01c, Al-Ars01d].

• The analysis of interactions between different memory faults in a way that
may limit the ability of memory tests to detect them [Al-Ars04c, Hamdioui03b,
Hamdioui04b].

• The theoretical derivation of a number of memory tests to effectively test
special types of faulty behavior [Hamdioui02, Hamdioui03a, Hamdioui04c,
vdGoor04a, vdGoor04b].

Industrial contributions

• Solving the problem of the long simulation time needed to simulate the faulty
behavior of the memory by introducing the concept of a reduced memory
model [Al-Ars01e]. This issue is treated in Chapter 7.

• Introducing simulation-based fault analysis methods to properly interpret
the faulty behavior in the simulation results and to correctly map them into
memory faults [Al-Ars02b, Al-Ars02c, Al-Ars03d, Al-Ars05]. This issue is
treated in Chapter 5.

1.4. Outline of the thesis | 21

• Proposing a simulation-based stress optimization method to use circuit sim-
ulation to identify the most optimal stresses for a given defect [Al-Ars03c,
Al-Ars03b].

• Dealing with simulation model inaccuracy and the issue of variations in
the manufacturing process to ensure a high-quality fault analysis approach
[Al-Ars02d, Al-Ars02e, Al-Ars03e].

• Evaluating the influence of parasitic capacitances in the simulation model,
and analyzing the effect of bit line coupling on the simulated faulty behavior
for a given defect [Al-Ars04b, Al-Ars04c].

1.4 Outline of the thesis

This thesis is organized in 10 chapters of continuous material that gradually builds
on the information presented as the thesis progresses. Unless one has previous
knowledge of the presented topics, progression from chapter to chapter is important
to gain the necessary understanding of the whole thesis.

Chapter 1 introduces the field of semiconductor memory devices, where a short
description is given of a number of different types of semiconductor memories. The
issue of manufacturing test development is discussed with some detail, in order to
identify the position of this project in the big picture of industrial test development.

Chapter 2 gives a detailed discussion of the external behavior of DRAMs, repre-
sented by timing diagrams, as well as a description of the internal functional units
a typical DRAM contains.

Chapter 3 builds the needed fundamental knowledge in transistor operation
and Spice simulation to understand the heavily simulation-based fault analysis
described in the thesis. This chapter also simulates the functionality of important
DRAM circuits, and gives an idea of the way DRAMs are manufactured on silicon.

Chapter 4 defines the theoretical basis of fault modeling, and the concepts of
fault primitives and functional fault models. In addition, new fault models are
introduced that take timing into consideration (which is of particular importance
to DRAMs).

Chapter 5 presents the approximate simulation-based fault analysis methods,
called the one dimensional (1D) and two dimensional (2D) analysis, able to evaluate
the faulty behavior of defective memory devices having one or two floating (i.e.,
disconnected) nodes.

Chapter 6 discusses the concepts of coupling and crosstalk between internal
memory lines, and the way these influence the faulty behavior of the memory. The
chapter also identifies the effects of line twisting in eliminating internal crosstalk
and in modifying the resulting faulty behavior.

Chapter 7 evaluates the results of a simulation-based analysis of a number of
DRAM defects causing one and two floating nodes. The simulation analysis used

22 | Chapter 1. Introduction

in this chapter is based on the approximate simulation methods presented in the
previous chapter.

Chapter 8 uses the theoretical analysis of DRAM faults performed in Chapter 4
to derive the full space of DRAM tests. These tests can be used to detect all the
different types of DRAM-specific faults proposed in this thesis.

The thesis culminates in Chapter 9, which discusses an industrial case study
performed on a specific defect called the “open strap.” The study shows how
simulation-based fault analysis can be used in an industrial environment to solve
real engineering problems starting from defect modeling, through test generation,
and finally ending with stress optimization.

The thesis ends with Chapter 10, in which the conclusions and contributions
of the thesis are listed, followed by a number of recommendations intended to
strengthen the vision of the simulation-based fault analysis in the industry.

1.4. Outline of the thesis | 23

Summary

This chapter served as a simple introduction to the concepts associated
with semiconductor memories and memory testing in general. The main
topics discussed are as follows:

• Definition of a memory, its interface, and physical form. A num-
ber of different semiconductor memory devices have been discussed
along with the most commonly used memory of all, the DRAM. The
advantages and disadvantages of each memory were presented, and
compared with those of other memories.

• Identification of the three basic types of memory testing: testing by
the manufacturer, testing by the system integrator, and testing by
the end user. It has been shown that the task of exhaustive test
application and defective memory elimination rests squarely on the
shoulders of the memory chip manufacturer.

• Detailed discussion of the different phases of the industrial test flow,
starting from the identification of new tests for a new memory tech-
nology to the final adaptation of the tests used to detect subtle
memory-specific fails.

• Description of the major differences between the DRAM and SRAM
testing process. The differences are classified into three categories:
those related to the operation sequence, those related to the stresses,
and those related to the fault diagnosis abilities.

• Discussion of the contribution of the project and the way it fits into
the big scheme of industrial memory test generation. The contribu-
tion represents a new simulation-based approach to industrial test
generation and adaptation, which strikes a tradeoff between the in-
expensive and inaccurate specifications-based test generation and the
rather expensive and accurate manufacturing-based test generation.

Contents of this chapter

2.1 Modeling of DRAMs

2.2 Behavioral DRAM model

2.3 Functional DRAM model 2
DRAM behavior and architecture

The first DRAM was manufactured in 1970 by the then newly formed Intel com-
pany, and sold as a product named the 1103 (1 Kbit PMOS dynamic RAM IC),
which by 1972 became the best selling semiconductor memory chip in the world,
defeating the magnetic core memory. Since then, the structure of DRAMs has
changed gradually to meet the ever increasing performance demands of the micro-
processor. The DRAM is today’s optimum memory for inexpensive, high density
applications, and it is expected to maintain this position well into the foreseeable
future. This chapter discusses in some detail the external behavior of a DRAM,
represented by timing diagrams, as well as its internal structure, represented by
the functional units it contains.

The chapter employs a hierarchical modeling approach to describe DRAMs in
a top-down system fashion, starting from an external behavioral model down to
the physical buildup of the DRAM components. Section 2.1 begins the chapter by
defining the modeling approach used to represent the different modeling levels of
the memory. Section 2.2 is concerned with the behavioral memory model, which
treats the memory as a single black box, and defines its input/output character-
istics using the concept of timing diagrams. Section 2.3 presents the functional
model of the memory, which defines the memory as a collection of interconnected
black boxes, each with its own set of behavioral specifications. It describes the
functionality of different memory blocks and identifies the way external memory
operations are performed internally. The section also defines the concept of internal
DRAM commands and the way they relate to the external behavior.

25

26 | Chapter 2. DRAM behavior and architecture

2.1 Modeling of DRAMs

This chapter describes the behavior and the buildup of DRAMs using a layered
modeling approach commonly used to describe modern, overly complex VLSI IC
systems. The different levels of this modeling approach are shown in Figure 2.1.
The lowest level shown, referred to as the layout model and represented by the
largest block in the figure, is the one most closely related to the actual physical
system. As we move from the layout model (lowest) toward the behavioral model
(highest) in the figure, the models become less representative of the physical system
and more related to the way the system behaves, or in other words, less physical
and more abstract. Therefore, each modeling level in the figure is called a level
of abstraction. In the figure, a model represented by a larger block has a lower
level of abstraction than a model represented by a smaller block. A higher level of
abstraction contains more explicit information about the way a system is expected
to function and less about its buildup. It is possible to have a model that contains
components from different levels of abstraction, an approach referred to as mixed-
level modeling . With mixed-level modeling, one may focus on low-level details only
in the area of interest in the system, while maintaining high-level models for the
rest of the system. In the following, the modeling levels shown in Figure 2.1 are
explained in more detail [vdGoor98].

Increasing level of abstraction

model
Layout
model

Electrical
model

Logical
model

Functional
model

Behavioral

Figure 2.1. Different modeling levels usually used to represent ICs.

The behavioral model This is the highest modeling level in the figure and it is
based on the specifications of the system. At this level, there is practically no infor-
mation given about the internal structure of the system or possible implementations
of the performed functions. The only information given is the relation between in-
put and output signals while treating the system as a black box. A model at this
level usually makes use of timing diagrams to convey information about the system
behavior. In this chapter, the behavioral DRAM model is presented in Section 2.2.

The functional model This model distinguishes functions the system needs to
fulfill in order to operate properly. At this level, the system is divided into several

2.2. Behavioral DRAM model | 27

interacting subsystems each with a specific function. Each subsystem is basically
a black box called a functional block with its own behavioral model. The collective
operation of the functional blocks result in the proper operation of the system as
a whole. In this chapter, the functional DRAM model is given in Section 2.3.

The logical model This model is based on the logic gate representation of the
system. At this level, simple boolean relations are used to establish the desired
system functionality. It is not very common to model memories exclusively using
logic gates, although logic gates are often present in models of a higher or lower
level of abstraction to serve special purposes. Therefore, no exclusive DRAM logical
model is given in this chapter.

The electrical model This model is based on the basic electrical components
that make up the system. In semiconductor memories, the components are mostly
transistors, resistors and capacitors. At this level, we are not only concerned with
the logical interpretation of an electrical signal but also the actual electrical value
of it (its voltage level, for example). Since this thesis is primarily concerned with
the electrical level simulation of DRAM circuits, this memory model is treated in
depth in Section 3.2.

The layout model This is the lowest modeling level shown in the figure and the
one with the most details about system structure. It is directly related to the actual
physical implementation of the system. At this level, all aspects of the system are
taken into consideration, even the geometrical configuration plays a role, such as
the length and thickness of signal lines. For this reason, this model is also called
the geometrical model . Section 3.3 discusses the layout representation of DRAM
cells.

Taking a closer look at the behavioral and the functional models reveals that there
is a strong correspondence between the two. In fact, the behavioral model can be
treated as a special case of the functional model, with the condition that only one
function is presented, namely the function of the system as a whole. Therefore,
some authors prefer to classify both modeling schemes as special cases of a more
general model called the structural model [Abramovici90]. The structural model
describes a system as a number of interconnected functional blocks. According to
this definition, a behavioral model is a structural model with only one function,
while a functional model is a structural model with more than one interconnected
function.

2.2 Behavioral DRAM model

The behavioral DRAM model [see Figure 2.1] is an abstract description of the
external behavior of the memory, where attention is only given to the relations be-

28 | Chapter 2. DRAM behavior and architecture

tween input and output signals of the system, coupled with their associated timing.
At this level of abstraction, nothing is supposed to be known about the internal
structure or specific implementation of the system. The behavioral model contains
the least amount of information any memory datasheet (i.e., the documentation
given with the memory) must provide to describe the operation of the memory.
Usually, datasheets use timing diagrams for this purpose, along with the minimum
or maximum timing requirements for every system action.

2.2.1 DRAM block diagram

Figure 2.2 gives a general block diagram of a DRAM, where the input and output
lines are shown [compare with Figure 1.1]. The shown memory has a clock signal as
input, which means that memory operations are synchronized with the functionality
of the system using a single system clock. These types of memories are referred
to as synchronous DRAMs (or SDRAMs), which make up the vast majority of
DRAMs manufactured today.

To access a given memory cell, the DRAM has a number of address lines,
collected together in the figure and represented as a single wide arrow called the
address bus. The memory also has a R/W signal to identify the type of operation
being performed. Furthermore, the memory has a data bus to exchange data,
which means that data transfer is not necessarily accomplished by exchanging a
single bit of information, but multiple cells may be connected in parallel and given a
single address to increase the data transfer rate of the memory. The data transferred
on the data bus or, in other words, the block of data the memory is able to exchange,
is called the memory data word or simply word . If the data bus has only one line,
then the data word is called a bit and is abbreviated as “b”, while if the data bus
has 8 lines, the data word is called a byte and is abbreviated as “B”.

CAS

R/W
RAS

Clock

 Command
DRAM

Data bus

Address bus

Figure 2.2. Block diagram of a DRAM.

The double-sided arrow of the data bus in the figure indicates that data-in and
data-out signals share the same signal lines using a strategy called multiplexing.
Multiplexing is a technique commonly used in DRAMs to halve the number of pins
needed externally, thereby reducing the package cost. There are two main types
of multiplexing commonly used in DRAMs: data bus multiplexing and address bus
multiplexing.

Data bus multiplexing is used in most DRAMs nowadays due to the high number
of external lines needed in modern high capacity memories. Data bus multiplexing

2.2. Behavioral DRAM model | 29

results in a performance penalty, though, since a read operation on the memory
should wait for the data to propagate to the output before a succeeding write
operation can be performed.

Another, though more subtle, form of multiplexing usually found in DRAMs is
address bus multiplexing. The address bus is time multiplexed , which means that
the address should be split into two parts, called the row address and the column
address, and set up one after the other on the address pins. To control this process,
two input signals are used: the row address strobe (RAS), to indicate that the row
address is ready on the address lines, and the column address strobe (CAS), to
indicate that the column address is ready. These two signals are externally provided
by the user as control signals. The reason for the names row and column addresses
will be clear later on in this chapter. Since the three input signals R/W, RAS
and CAS provide the control for the memory, they are often considered together
to make up a new input bus called the command bus.

Figure 2.3(a) shows a generic pin configuration of a DRAM package having a clock
input (Clock), 6 address lines (A0 ... A5), 4 data lines (D0 ... D3), a R/W input,
RAS and CAS control signals, and the power supply pins Vdd and GND. The
memory has a multiplexed address bus (since RAS and CAS signal are present),
which means that the address has a maximum width of 6 × 2 = 12, resulting in
as many as 212 = 4096 different addresses. And since the memory has a word
length of 4 bits, the size of the memory is 212 × 4 = 16 Kb. Figure 2.3(b) shows an
example package of a 512 Mb DDR DRAM from Infineon, which has a total of 66
pins, 13 of which are address pins (213×2 = 64 M address) each accessing one byte
(226 × 8 = 512 Mb).

P-TSOPII-66-1

CAS

RAS R/W

GND

Vdd A4A5

3 2 1

A1A2A3

45

D0D1

678

A0

16151413

D2

1211

D3

109

Clock

(a) (b)

Figure 2.3. (a) Pin configuration, and (b) a packaging example (source: Infineon Technologies).

One way to quantify the performance of a memory is to calculate its data
transfer rate, also called data rate or bandwidth (BW), which is defined as the
maximum number of bytes the memory can transfer across its data bus per second
during a full memory operation.

BW =
number of bytes transferred

operation time
(2.1)

According to this relation, a higher memory performance could be attained
either by decreasing the operation time (resulting in a faster memory with a higher

30 | Chapter 2. DRAM behavior and architecture

clock frequency) or by increasing the width of the data bus (resulting in more
bytes transferred per operation). Faster memories have a reduced data access time,
which results in a higher memory bandwidth and improved performance. Wider
bus memories allow more bytes to be transferred in a given amount of time which
also increases the performance. The higher bandwidth requirement is driving the
move toward higher speeds and wider data buses in new memory designs.

2.2.2 DRAM operations and timing diagrams

Timing diagrams are waveform representations of the signals on the input and
output lines of the memory while performing a specific memory operation. These
diagrams identify the timing interdependencies between different memory signals
and define the timing conditions required for proper operation. In the following, the
timing diagrams for read and write operations are shown and discussed in detail.
One general timing parameter shown in all timing diagrams is the clock cycle time
or the clock period (tCK) which gives the specs for the clock signal. The specs for
this timing parameter and others can be found in Table 2.1, as discussed later in
this section.

Read operations

Read operations are commonly referred to as r0 and r1, where the 0 and 1 are the
values expected on the output by the read operation. Figure 2.4 shows a typical
timing diagram of a read operation performed on a 512 Mb, 400 MHz Infineon
DDR DRAM chip, using a rather relaxed cycle time of tCK = 10 ns [Infineon04].
The commands on top of the figure (No operation, Activate, etc.) are the internal
DRAM commands during each clock cycle of memory operation, as discussed in
Section 2.3. The figure shows that a read operation starts by setting up the first
half of the address (the row address) on the address bus a minimum time period
of tIS (input setup time) before the rising edge of the clock signal, in order for the
address to stabilize on the inputs. The address should be held on the inputs for tIH
(input hold time) after the clock so that the address can be read properly. The user
informs the memory that the address is present on the inputs by pulling the RAS
down, in combination with pulling the R/W up. After providing (or strobing) the
row address, a minimum period of tRCD (row-column delay time) should pass before
the column address can be provided to the memory, which is initiated by pulling
the CAS down. At the same rising edge of the clock, the read command needs
to be provided by pulling the R/W up to declare the current operation as a read
operation. The data stored in the addressed cell appears on the data bus a period
of CL (CAS latency) after setting up the address and issuing the read command
to the memory. In the case shown in the figure for example, CL has the value of
3 × tCK . To declare the end of the read operation, RAS must be pulled down, in
combination with pulling R/W down (as opposed to pulling it up at the beginning
of a read). From start to finish, the length of the read operation is governed by

2.2. Behavioral DRAM model | 31

the parameter tRAS (row address strobe time) which defines the maximum and
minimum time between two RAS pulses of a single memory operation. After the
end of the read operation, a minimum time period of tRP (row precharge time)
should pass before a new operation may start. In total, a read operation should
last at least a period of tRC (row cycle time) before a subsequent operation is issued.

���
���

���
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

t
CK

t
IH

t
ISIH

t
IS

t

No operation

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����������������������������t
RCD

RAS
t

CAS

RAS

R/ W

Clock

Data

 Command

Addr.

"1"

"0"

"1"

"0"

"1"

"0"

"1"

"0"

"0"

"1"

"1"

"0"���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������������������������������
�����������������������������������

���
���

�� ��

��

Row address Column address

No operation Activate No operation Read No operation Precharge No operation

t
RP

t
RC

CL

Valid data

Figure 2.4. Timing diagram of a read on a 512 Mb, 400 MHz DRAM, using tCK = 10 ns.

Write operations

Write operations are commonly referred to as w0 and w1, where the 0 and 1 are the
values to be written by the write operation into the cell. Figure 2.5 shows a typical
timing diagram of a write operation. The figure shows that setting up the row and
column address for the write operation is identical to that for the read operation,
and has the same timing parameters. As the column address is provided to the
memory, the R/W signal should be pulled down to declare the current operation
as a write operation. One clock cycle later, the write data should be provided on
the data bus and left to stabilize for tDS (data setup time) before the rising edge
of the clock, and for tDH (data hold time) afterwards. A minimum period of tWR

(write recovery time) should pass before ending the write operation (by pulling
RAS down) to give the memory enough time for writing the required voltage into
the cell. tWR, commonly referred to as the write back window, is an important
time parameter in testing which is used to stress the ability of a memory to write a
specific voltage into the cell. This parameter is extensively investigated as a stress
condition in Chapter 9 to test for the elevated strap resistance problem.

32 | Chapter 2. DRAM behavior and architecture

���
���

���
���

t
CK

t
IH

t
ISIH

t
IS

t

Precharge No operation

DH
t

DS
t

t
RAS

t
RCD

t
WR

t
RC

����������
CAS

RAS

R/ W

Clock

Data

 Command

Addr.

"1"

"0"

"1"

"0"

"1"

"0"

"1"

"0"

"0"

"1"

"1"

"0"��
��

 � � � � � � � � � � � � � � � � � �
!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�""�""�""�""�""�"
#�##�##�##�##�##�#

$$$
$$$
%%%
%%%

&&&
&&&
'''
'''

Row address Column address

No operation Activate No operation No operationWrite No operation

Valid data

t
RP

Figure 2.5. Timing diagram of a write on a 512 Mb, 400 MHz DRAM, using tCK = 10 ns.

Timing parameters

Each DRAM has its own set of timing parameters for read and write operations,
depending on the specific memory design and behavior. Table 2.1 gives an overview
of the read and write timing parameters (given in ns) of a 512 Mb DDR SDRAM
chip (running with CL = 3 × tCK , @ 400 MHz) manufactured by Infineon[04].
The parameters listed here correspond to those used in the read and write timing
diagrams above. Each parameter is given a short explanation and is provided with
minimum and maximum bounds. In the list, one of the most important parameters
for SDRAMs is tCK (clock cycle time) since it gives the bus frequency at which the
memory operates, which (in combination with CL) indicates the time needed till
data can be retrieved from the memory. SDRAMs are usually characterized by
the minimum bound of this parameter, such that a memory with tCK ,min = 5 ns is
said to be a -5 SDRAM. This number is also referred to sometimes as the speed
sorting (or sorting) of the memory, which indicates the speed the memory is able
to achieve for a given technology. It is interesting to note that tCK has an upper
bound in the specs, which means that the memory frequency may not go below a
given lower bound. This is only true for DDR SDRAMs (not for regular SDRAMs)
since they employ an internal delay-locked loop (DLL) circuit to align the rising
and falling edges of data signals with respect to the clock. Optimum operation of a
DLL requires a clock signal that operates within a given max-min frequency range.

The timing parameters listed in Table 2.1 are not independent from each other,
but should satisfy some timing relationships among each other. For example, the
input and data, setup and hold times of the memory should be less than half the
minimum time of the clock cycle, since it should be possible to setup a different

2.2. Behavioral DRAM model | 33

Table 2.1. Timing parameters of a 512 Mb DDR DRAM chip from Infineon (given in ns).

Parameter Description Min. Max.

tCK Clock cycle time 5 12

tDH Data hold time 0.4 —

tDS Data setup time 0.4 —

tIH Input hold time 0.6 —

tIS Input setup time 0.6 —

tRAS Row address strobe time 40 70, 000

tRC Row cycle time 55 —

tRCD Row-column delay time 15 —

tRP Row precharge time 15 —

tWR Write recovery time 15 —

input to the memory at each clock cycle.

tIS , tIH , tDS , tDH ≤ 1

2
tCK ,min (2.2)

The following examples show that the period of any timing parameter must be
larger than the period of the timing parameters it covers.

tRAS ≥ tRCD + tWR [see Figure 2.4] (2.3)

tRC ≥ tRAS + tRP [see Figure 2.4] (2.4)

tRC ≥ tRCD + tWR + tRP [see Figure 2.5] (2.5)

Other operations

Besides the read and write operations, DRAMs nowadays have a variety of op-
erational modes that enable them to provide more functional flexibility or higher
performance for a given technology.

One such operation is the refresh operation, where all cells are rewritten using
the same values they contain. This prevents losing the data contained in memory
cells due to naturally occurring leakage currents. The refresh operation is issued
to the memory by providing a special sequence of values on the command bus that
the DRAM interprets as a request to refresh.

The fast page mode is another mode of operation meant to increase the per-
formance of DRAMs. This mode of operation starts by issuing a row address to
the memory, which opens a full row of memory cells (also called a memory page).
Any cell from this page can subsequently be read or written by providing only the
column address of the specific cell to be accessed. Figure 2.6 shows the timing dia-
gram of two write operations performed in the fast page mode, the first of which is

34 | Chapter 2. DRAM behavior and architecture

performed on a cell with column address “Col. add. 1”, followed by another write
performed on a different cell with column address “Col. add. 2”. This mode of
operation can dramatically increase the bandwidth of the memory by reducing the
access time, since only column address part need to be provided on the inputs.
A deeper treatment of these and other modes of operation can be found in the
literature [Prince99].

(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�((�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(
)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�))�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�))�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�))�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�))�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)

*�**�**�**�**�*
+�++�++�++�++�+

t
CK

t
IS

t
IH

t
IH

t
IS

Write Write

t
WR

DS
t

DH
t

DH
t

DS
t

,�,�,-�-�-
CAS

.�.�./�/�/
RAS

0�01�1
R/ W

Clock

Data

 Command

Addr.

"1"

"0"

"1"

"0"

"1"

"0"

"1"

"0"

"0"

"1"

"1"

"0"2�2�2�2�22�2�2�2�22�2�2�2�22�2�2�2�22�2�2�2�2
3�3�3�3�33�3�3�3�33�3�3�3�33�3�3�3�33�3�3�3�3

4�4�4�4�4�44�4�4�4�4�44�4�4�4�4�44�4�4�4�4�44�4�4�4�4�4
5�5�5�5�5�55�5�5�5�5�55�5�5�5�5�55�5�5�5�5�55�5�5�5�5�5

6�66�66�66�66�6
7�77�77�77�77�7

8�8�8�8�8�8�89�9�9�9�9�9�9

:�:�:�:�:�:�:�:�:�:�:�:�:�:�:;�;�;�;�;�;�;�;�;�;�;�;�;�;�;

<�<�<�<�<�<=�=�=�=�=�= >�>�>�>?�?�?�?@�@�@�@A�A�A�A B�B�B�BC�C�C�CD�D�D�DE�E�E�E

F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG�G�G�G�G�G�G�G�G�G�G�G�G�G�G
H�H�H�HI�I�I�IJ�J�J�JK�K�K�K

LLL
LL

MMM
MM
NNN
NN O�O�O�OP�P�P�PQ�Q�Q�QR�R�R�R

Row address

No operation Activate No operation

t
RCD

IH
t

IS
t

Valid data 1 Valid data 2

PrechargeNo operation No operation

Col. add. 1 Col. add. 2

Figure 2.6. Timing diagram corresponding to a DRAM fast page mode of operation.

2.3 Functional DRAM model

A memory can be subdivided into a number of interacting functional units, each
with its own function, that contribute together to achieve the desired external
memory behavior. This section investigates these different memory functions and
presents a functional DRAM model that describes them, together with the way they
interact. At this level of abstraction, we are dealing with the internal structure of
the memory, that represents the DRAM as a collection of interconnected functional
blocks, each performing its own distinct function.

2.3.1 Functional block diagram

Figure 2.7 shows a simplified functional block diagram for DRAMs. The figure
distinguishes several functional blocks needed for the DRAM to operate properly,
such as the memory cell array, the control logic, and the address decoders. These
blocks are discussed below in more detail.

2.3. Functional DRAM model | 35

buffer
Column address

R/ W
RAS
CAS

BLs

buffer
cell

array

Refresh counter

Row address
Memory

decoder
Row

Functional DRAM model

WLs

 Address

Clock

 Command

Column decoder

CSs

Access devices

BLs

Sense amplifiers

Data

Control logic

Data−out buffer

Data−in buffer

cell
arraylines

Bit lines

Word
Memory

Figure 2.7. Simplified functional block diagram of a DRAM.

Memory cell array The memory cell array block is the most significant part of
the DRAM since it occupies up to 60% of the chip area. This block contains the
memory cells arranged next to each other in the form of an array, with rows and
columns, such that the memory chip may have a rectangular shape. For example, a
1 Mb memory with 1 M cells can practically be organized as an array with 512 rows
and 2048 columns, 1024 rows and 1024 columns, or 2048 rows and 512 columns of
cells. The external DRAM behavior partly reflects this internal organization by
requiring to split the address into the row address (used to select one row of cells)
and the column address (used to select a column). Due to the relatively large size
of the cell array, it has become the focus of attention for fault analysis and test
generation activities.

Control logic The memory uses the control logic (also called the timing genera-
tor) to activate and deactivate the desired functional blocks at the right moments.
The control logic takes the clock and the command bus (R/W, RAS and CAS) as
its inputs and uses them to generate internal control signals for almost all other
functional blocks in the memory. As an example, the row and column address
buffers are used to hold the row and column addresses, respectively. The control
logic instructs the buffers to sample the addresses when they appear on the inputs,
based on the values present on the RAS and CAS lines.

Address decoders In order to address a cell in the memory cell array, row and
column addresses need to be decoded. This takes place in the row and column
decoders, respectively. The inputs of the address decoders are cell addresses, while

36 | Chapter 2. DRAM behavior and architecture

the outputs are called word lines (WLs) in the case of the row decoder, and column
select (CS) lines in the case of the column decoder. Each row and column in the
memory has a specific line that selects it, and the combination of selecting a row
and a column results in selecting a single word in the array.

Other functional blocks The data-in buffers and address buffers are used to
latch input data and addresses at the input, while the data-out buffer stores read
output data and keeps it for the user on the data bus. The sense amplifier is the
part of the memory used to identify the data stored within the memory cells in
the cell array. This block is needed because data bits within the cells are stored
with low energies and in weak leaky capacitors, such that data in the memory cells
need to be amplified before they can drive other circuits in the memory. The access
devices are used as an interface between the data buffers and the sense amplifiers.
Depending on the column address, only a limited number of columns is connected
to the data buffers, and depending on the performed operation, either the write or
the read buffer is connected to the sense amplifiers. The last functional block shown
in the figure is the refresh counter , which is responsible for counting through the
addresses of the memory so that data stored in all memory cells can be refreshed.
The control logic is the part responsible of regulating the functionality of all these
functional blocks.

2.3.2 Cell array organization

The memory cell array is the place where memory cells are organized next to each
other in the form of an array. In the following, cell array organization is described
in terms of cell placement (which refers to the way the cells are placed next to
each other) and cell connection (which refers to the way cells are connected to one
another).

Cell placement

Each memory cell is able to store one bit of data. If we assume that the number of
bits in each data word in the memory is B, and that the number of data words is
W , then the total number of bits (and consequently memory cells) in the memory
is equal to W ×B. During a read or a write operation, all bits within a single word
are accessed simultaneously by the WL. Consequently, a natural organization of
the cell array would be to stack all words on top of one another and connecting
each word to its own WL, as shown in Figure 2.8(a).

Such an organization would result in an unrealistically elongated cell array that
is W bits long and B bits wide. A more reasonable way to organize the cell array
would be to give it a roughly square shape, by making the length and width of
the cell array roughly equal, a technique referred to as array folding . This is done
by dividing the single stack of words into P equal parts and placing them side
by side, such that all adjacent bits in all P words are accessed by a single WL

2.3. Functional DRAM model | 37

B=8

R=128

(b) Multiple columns(a) Stacked data words

 W=2048

B=8
P=16

Figure 2.8. Cell array organization using (a) stacked data words, and (b) multiple columns.

simultaneously [see Figure 2.8(b)]. Subsequently, only one word of the P accessed
words is selected using a multiplexer. This reduces the length of the cell array from
W bits down to R bits (the number of cell array rows in each part), and increases
the width of the cell array from B bits up to C, where C is the number of cell
array columns needed to store all bits of a word. These cell array parameters
discussed above are related to each other by the following relationships.

C = B × P (2.6)

R =
W

P
(2.7)

B and W are already given, but we may choose the value of P arbitrarily in
such a way to get the desired form factor for the cell array. The form factor can be
defined as the width of the array divided by its length, or more precisely R

C
. For an

exactly square cell array with a form factor of 1, the following relationships should
be satisfied.

P =
√

W/B (2.8)

R = C (2.9)

=
√

W × B (2.10)

Figure 2.8 shows an example of array partitioning, where a 2 K × 8 array is

partitioned into an array with 16 parts (P =
√

211/23 = 24) and with 128 rows

and columns (R = C =
√

211 × 23 = 27). This simple example represents a special
case, where it is possible to generate an exactly square partitioned array, but when
this is not possible, a different form factor other than but close to 1 is chosen.

38 | Chapter 2. DRAM behavior and architecture

Cell connection

Each cell in the cell array is connected to a word line (WL) and to a bit line (BL),
as shown in Figure 2.9(a). The WL carries the signal that controls access to the
cell, while the BL carries the write data into the cell during a write operation, and
the read data out of the cell during a read operation. Figure 2.9(b) shows how
multiple cells are connected to each other in the cell array, and to different parts
of the memory around the array.

WL

BL

Memory
cell

(a) Single cell

0

1

R−2

R−1

WL

WL

WL

WL

BCC−1C−1BTBCC−2BTC−2BC1BT1BC0BT0

(b) Multiple cells

Cell

Cell

Cell

Cell

Sense amp.

Address
decoder

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Sense amp. Sense amp.

Cell

Cell

Cell

Cell

Sense amp.

Figure 2.9. The way (a) a single cell, and (b) multiple cells are connected in the cell array.

Every WL in the cell array defines a single cell array row, which means that
when a single cell in a given row is accessed, all other cells in that row are accessed
too. The WLs originate from the row address decoder, which selects a given WL,
depending on the specific row address provided on the input. In contrast to array
rows, cell array columns are defined by a BL pair, one of which is called the true
bit line (BT) while the other is called the complement bit line (BC). The true BL
is connected to half of the cells of a cell array column, while the complement BL
is connected to the other half of the cells. Both BT and BC are connected to the
sense amplifier, which is used to sense the voltage level in the accessed cell. This BL
organization is called bit line folding, which distinguishes these folded bit lines
from open bit lines, where all cells in a column are connected to the sense amplifier
through a single BL. The names true and complement refer to the complementary
logical interpretation of voltage levels present in the cells on these BLs. In other
words, a voltage high (H) in a cell on BT is interpreted by the sense amplifier as
logic 1, while the same voltage H in a cell on BC is interpreted as logic 0. In a
similar way, a voltage low (L) in a cell on BT is interpreted by the sense amplifier as
logic 0, while the same voltage L in a cell on BC is interpreted as logic 1. This kind
of complementary interpretation of the voltages stored in different cells is referred

2.3. Functional DRAM model | 39

to as data scrambling , while the actual voltage levels stored in the cell are referred
to as physical data, as opposed to the term logical data used for the way stored
voltages are interpreted.

2.3.3 Internal DRAM behavior

As discussed in Section 2.2, DRAMs today have a number of different operations
(besides simple reads and writes) that aim primarily at increasing the performance
by reducing the time needed to access stored information (which is the case with the
fast page mode), or aim at efficiently automating necessary DRAM functionality
(which is the case with the refresh operation). These external operations, and many
others, are implemented internally using only five primitive DRAM commands.
These commands are represented in Figure 2.10 and are described next:

1. Act: This is the activate command . When this command is issued, a word
line (WL) in the cell array is selected, which accesses a row of memory cells.
Furthermore, an internal read operation is performed by moving the data
from the row of memory cells to the sense amplifiers.

2. Rd: This is the read command . When this command is issued, the data in
one of the sense amplifiers is moved to the data buffers and on to the data
bus. This resembles an external read operation.

3. Wr: This is the write command . When this command is issued, the data in
the data buffers is moved to both the sense amplifiers and the cell array as
well. This resembles an external as well as an internal write operation.

4. Pre: This is the precharge command . When this command is issued, any
selected WL is deselected and internal voltages are precharged to their pre-
defined voltages.

5. Nop: This is the no operation command , which does not change the state
of the memory, but simply extends the time span of any previously issued
command. Interestingly, this means that the impact of the Nop command on
the memory depends on the type of the previously issued command, and not
on the Nop command itself.

It is important to note that these commands are not independent from one
another, but need to be issued in a specific predefined manner for the memory
to function properly. This is unlike memory operations such as writes and reads,
which can be performed at any instant irrespective of the operations performed
before or after the current operation. In principle, any command should be issued
according to the following sequence

Act Cd1 ... Cdi ... Cdn Pre Nop ... Nop, Cdi ∈ {Wr0, Wr1, Rd0, Rd1, Nop} (2.11)

40 | Chapter 2. DRAM behavior and architecture

Sense
amps.

Memory cell
array

RdAct

Wr Wr

Data
bus

Data
buffers

Figure 2.10. Internal behavior of a DRAM.

Usually, a number of Nop commands should be present in between other Cdi com-
mands issued between Act and Pre, as well as after the Pre command. The number
of Nops that should be used depends on the timing parameters given in the spec-
ifications of the memory (such as those given in Table 2.1), such that the timing
requirements are fulfilled. According to the timing diagram in Figure 2.4, for ex-
ample, Act is followed by one Nop and Rd is followed by one Nop as well, before
subsequent commands are issued.

Each of the DRAM commands is issued internally by decoding the signals pro-
vided by the user on the command bus. Table 2.2 gives the encoding used on the
command bus in the form of a functional truth table with inputs R/W, RAS and
CAS.

Table 2.2. Encoding of primitive DRAM commands in the command bus.

Command Symbol RAS CAS R/W

Activate Act 0 1 1

Read Rd 1 0 1

Write Wr 1 0 0

Precharge Pre 0 1 0

No operation Nop 1 1 1

Using the above five primitive commands, any DRAM operation can be de-
scribed, as shown in the following examples.

Write operation The write operation is traditionally denoted as wdc, where d is
the data to be written into cell c. Using the five primitive commands, the write
operation is performed as Actcr

Nop ... Nop Wrdcc
Nop ... Nop Pre, where cr is

the row address of c and cc is the column address of c [see Figure 2.5].

2.3. Functional DRAM model | 41

Read operation The read operation is traditionally denoted as rdc, where d is
the expected data to be read from cell c. Using the five primitive operations, the
read operation is performed as Actcr

Nop ... Nop Rddcc
Nop ... Nop Pre [see

Figure 2.4].

Refresh operation The refresh operation is used to restore data into the memory
cells to prevent losing stored data by leakage. This operation cannot be represented
using the traditional r and w operations. Using the five primitives, the refresh
operation is performed as Actcr

Nop ... Nop Pre for all rows cr in the memory.

Read modify write operation This operation performs a Rd followed by a Wr
command on the same cell, without the need to provide a new address or precharge
the memory in between. This operation cannot be represented using the traditional
operations. Using the five primitives, this operation is performed as Actcr

Nop ...
Nop Rdxcc

Wrycc
Nop ... Nop Pre.

Fast page mode In this mode, Rd and Wr commands are performed on any
cell on a given activated WL (page) before precharging. This mode of operation
can greatly increase the performance of the memory. Using the five primitive
commands, the fast page mode is performed as Actcr

Cd1cc1
... Cdnccn

Pre, where
C is either Rd, Wr or Nop [see Figure 2.6].

42 | Chapter 2. DRAM behavior and architecture

Summary

This chapter discussed the most important aspects of DRAM behavior and
architecture. The discussion primarily focused on the synchronous DRAM,
as it is the most widely sold type of DRAM in the memory market today.
The main issues presented in this chapter are the following.

• Definition of a top-down modeling approach typically used to design
and analyze complex electronic systems. This approach consists of
five layers, starting with the behavioral model on top, followed by
the functional model, then the logical model, the electrical model,
and finally the layout model at the bottom.

• Discussion of the external behavior of the DRAM and the way it is
defined using timing diagrams in memory datasheets. For a memory,
the external behavior is characterized by the different types of possi-
ble memory operations. This chapter detailed the behavior of three
DRAM operations: write, read and fast page mode of operation.

• Introduction of the functional model of the DRAM, where the inter-
nal blocks of the memory are presented and discussed. This model
distinguishes a number of different functional blocks, starting with
the memory cell array, the control logic, the address decoder, the
sense amplifiers, the data buffers, and the refresh counter.

• Description of the cell array organization. Two different aspects are
discussed here, cell placement and cell connection. Cell placement
is related to the way memory cells are collected together and placed
next to each other within the cell array. Cell connection is related to
the way cells are electrically connected to each other by bit lines and
word lines within the cell array.

• Definition of internal DRAM commands that are more general and
more flexible than simple external memory operations. There are
five different DRAM commands: activate (Act), write (Wr), read
(Rd), precharge (Pre) and no operation (Nop). DRAM commands
can be combined together (under certain conditions) to construct all
possible memory operations.

Contents of this chapter

3.1 Basics of MOS transistors

3.2 Electrical DRAM model

3.3 DRAM layout model 3
DRAM design and implementation

At the electrical level, DRAMs today are constructed using semiconductor compo-
nents to achieve the high device integration possible using cutting-edge semicon-
ductor fabrication processes. The most important building blocks used in semicon-
ductor memory design are transistors, resistors and capacitors. These components
are heavily integrated on silicon and used to construct a large variety of electrical
circuits, each of which with its own specific functional contribution to the memory.
In this chapter, we take a closer look at some of these circuits and discuss important
aspects of their behavior. The chapter also presents important information about
Spice simulation, needed to understand the simulation-based analysis in the thesis.

Section 3.1 discusses the details of transistor operation, and presents the math-
ematical relationships needed to analytically evaluate its behavior. Section 3.2
analyzes the electrical design and behavior of the most important DRAM circuits.
Then, Section 3.3 presents the layout organization of the memory, and the different
silicon implementation possibilities of DRAM cells.

3.1 Basics of MOS transistors

Metal oxide semiconductor (MOS) transistors are most predominantly used in elec-
trical circuits to implement the functionality of a simple electronic switch that is
turned on or off according to the voltage on a special control signal. Despite this
seemingly simple application, MOS transistors have a rather complex behavior
that requires special attention to characterize during fabrication, to ensure that its
behavior is in line with the expected one.

43

44 | Chapter 3. DRAM design and implementation

3.1.1 Physical transistor structure

There are two types of MOS transistors, N-channel which use negatively charged
carriers to transport current through its channel, and P-channel which use posi-
tively charged carriers for transport. Figure 3.1 shows a schematic cross section of
an N-channel MOS (NMOS) transistor, which consists of a positively doped (p)
substrate and two identical, strongly doped negative (n) regions. This is the oppo-
site to a P-channel MOS (PMOS) transistor (not shown), which has a negatively
doped substrate and two identical strongly doped positive regions. The two nega-
tively doped regions of an NMOS are connected to the drain (D) and the source (S)
terminals of the transistor, while the positively doped substrate is connected to the
body or bulk (B) terminal of the transistor. The voltage on the B terminal controls
the voltage of the electrical channel between the drain and source. Since the drain
and the source of the transistor are identical, they are also interchangeable, and
can only be distinguished by comparing the voltage levels on each terminal. In an
NMOS transistor, the terminal with the higher voltage is called the drain, while
the terminal with the lower voltage is called the source.

ox

B
width (W)

Channel length (L)

Channel

DrainSource

Oxide

D

G

S

Substrate (p)

t

(n) (n)

Figure 3.1. Schematic cross section of an NMOS transistor.

Conduction between the drain and source terminals of the transistor is con-
trolled by the voltage on the gate (G), which is usually constructed using poly-
silicon (poly-Si) and is isolated from the channel by a thin layer of silicon dioxide
(SiO2). A number of different aspects of the transistor construction can be used
to control its behavior, the most important of which are the length (L) and width
(W) of the channel, used to control channel conductivity, and the oxide thickness
(tOX), used to control the threshold voltage (VT) of the transistor.

Figure 3.2 shows the symbols usually used to represent NMOS and PMOS
transistors in electrical schematics, where the different terminals of the transistor
and the direction of the drain current (ID) are indicated. It is often the case that
the body terminal (B) is dropped from the schematic symbol.

3.1. Basics of MOS transistors | 45

B

B
ID ID

S

D
+

−

(a)

S

D

+

−

(b)

G G

Figure 3.2. Electrical schematics symbols of (a) NMOS and (b) PMOS transistors.

3.1.2 MOS transistor behavior

In order to characterize the operation of the transistor, we need to identify a math-
ematical current-voltage relationship of the form

ID = f(VD, VS, VG, VB) (3.1)

that describes the impact of the voltage on each terminal of the transistor on the
drain current flowing through it. Depending on the different terminal voltages and
the threshold voltage (VT), a transistor operates in three different operation regions,
each with its own current-voltage relationship. In these relationships, differential
voltages relative to the source voltage (VS) are more commonly used than absolute
terminal voltages. More specifically, the relationships use VDS = VD − VS, VGS =
VG − VS, VBS = VB − VS, in addition to VS. The threshold voltage is calculated as
follows [Weste94]:

VT = VT0 + γ
(

√

2φF + |VBS| −
√

2φF

)

(3.2)

where VT0 is the threshold voltage at VBS = 0 V. VT0 is positive for NMOS tran-
sistors and negative for PMOS transistors. Equation 3.2 states that the threshold
voltage is made up of a basic fundamental component (VT0) and an added value
that is controlled by VBS . The contribution of VBS to VT depends on the body-effect
coefficient (γ) and on the Fermi potential (φF).

The VT equation and other equations in this section represent the simple Level 1
Spice MOS transistor model (based on the ideal Shockley equations) [Weste94].
Simulations in this thesis, however, are predominantly performed using the Spice
Level 8 transistor model (also referred to as the Berkeley BSIM3v3 model), the
industry standard and the result of years of analysis and updates [Cheng96]. Ta-
ble 3.1 lists values of the BSIM3v3 model parameters equivalent to those found
in the Level 1 equations discussed in this section. These values are extracted
by wafer-level measurements performed at MOSIS to describe a 0.18 µm manu-
facturing process from TSMC (Taiwan Semiconductor Manufacturing Company)
[MOSIS].

46 | Chapter 3. DRAM design and implementation

Table 3.1. MOS transistor parameters for 0.18 µm technology of TSMC [MOSIS].

Symbol BSIM equiv. NMOS value PMOS value Unit Description

Level LEVEL 8 8 — Spice transistor model

tOX TOX 4.1 · 10−9 4.1 · 10−9 m Oxide thickness

γ K1 0.589 0.583 V1/2 Body-effect coefficient

µ0 UO 263 113 cm2/V·s Surface mobility at Tnom

VT0 VTH0 0.369 −0.394 V Zero-bias threshold voltage

Tnom TNOM 27 27 ◦C Nominal temperature

Depending on VT , VGS and VDS , a transistor can function in one of the following
three regions of operation: cutoff region, linear region and saturation region. In the
linear and saturation region, the transistor conducts current and, therefore, both
regions can collectively be referred to as the conduction region. Figure 3.3(a) shows
the Spice simulation results of the ID-VDS characteristics of a transistor, with an
increasing VGS parameter (VGS = 0, 1, 1.5 and 2 V). The Vdsat curve in the figure
indicates the drain saturation voltage that separates the linear region from the
saturation region.

0

50

100

150

200

250

 0 0.5 1 1.5 2

Id
 [µ

A
]

Vds [V]

Linear
region

Saturation region

Vdsat
Vgs=0.0
Vgs=1.0
Vgs=1.5
Vgs=2.0

(a) ID-VDS characteristics

0

50

100

150

200

250

0.0 Vt 1.0 1.5 2.0 2.5

Id
 [µ

A
]

Vgs [V]

Cutoff
region

Conduction region

Vds=0.0
Vds=0.5
Vds=1.0

(b) ID-VGS charateristics

Figure 3.3. Characteristics of a 0.18 µm NMOS transistor where ID is plotted versus (a) VDS ,
and versus (b) VGS .

Figure 3.3(b) shows the Spice simulation results of the ID-VGS characteristics
of a transistor, with an increasing VDS parameter (VDS = 0, 0.5 and 1 V). The
vertical line at VGS = VT separates the cutoff region from the conduction region of
the transistor.

The cutoff region

The conditions for the NMOS and PMOS transistors to be in the in the cutoff
region are as follows.

3.1. Basics of MOS transistors | 47

NMOS: VGS < VT

PMOS: VGS > VT

When the transistor operates in the cutoff region, there is no current flowing
through it, no matter what the drain to source voltage might be [see Figure 3.3(b)].
Therefore, the current relation in this region is simple.

ID = 0 (3.3)

The linear region

The conditions NMOS and PMOS transistors need to satisfy to be in the linear
region are as follows.

NMOS: VGS ≥ VT and VDS < VGS − VT

PMOS: VGS ≤ VT and VDS > VGS − VT

Under these conditions, current starts to flow in the transistor, such that an
increase in VDS or in VGS results in a corresponding increase in the drain current.
The increase in ID is quadratic with VDS and linear with VGS . This can be seen
from the following current-voltage relationship in the linear region [Weste94].

ID = β

2
[2(VGS − VT)VDS − V 2

DS] (3.4)

where β is called the transconductance parameter , which has different values for
NMOS and PMOS transistors. β can be calculated as follows.

βN = µN

εOX

tOX

W

L
βP = µP

εOX

tOX

W

L
(3.5)

The constants µN and µP are called the electron and hole surface mobility , re-
spectively. The value of the surface mobility increases with decreasing temperature,
which means that ID increases with decreasing temperature. εOX is the gate oxide
permittivity , while tOX is the gate oxide thickness.

The saturation region

The transistor operates in the saturation region if VDS becomes high enough to
reach the pinch-off point , where the drain current gets saturated. For NMOS and
PMOS transistors, these conditions are as follows.

NMOS: VGS ≥ VT and VDS ≥ VGS − VT

PMOS: VGS ≤ VT and VDS ≤ VGS − VT

Under these conditions, the drain current barely increases with increasing drain
voltage, but saturates and stays almost constant. This behavior is expressed in the
following relationship [Weste94].

48 | Chapter 3. DRAM design and implementation

ID = β

2
(VGS − VT)2 (1 + λVDS) (3.6)

This equation has two factors, one of them is a function of VGS and the other
is a function of VDS . The dependence on VDS is controlled by λ, the channel length
modulation parameter , which has a relatively small value.

3.1.3 Transistor as a switch

As mentioned in the beginning of this section, MOS transistors are mainly used
as switches in electrical circuits. Figure 3.4 shows the application of NMOS and
PMOS transistors as switches (or pass transistors) to a load capacitor C, that rep-
resents the capacitive circuit load this switch is connected to. The shown transistor-
capacitance configurations are very important for DRAMs, since they represent the
way individual DRAM cells are modeled electrically. In the following, the charge
up and discharge behavior of the circuit configurations of Figure 3.4 are discussed.

V
G

VcC

Vin
V

G

VcC
V

G

(a) NMOS (b) PMOS (c) CMOS

Vc

 Vdd − V
Vdd

T

V T

Charge up Discharge Charge up Discharge

t

V
G

VcC

Vin

Vin

t

Charge up Discharge

t

Vin = Vdd Vin = GND Vin = Vdd Vin = GND Vin = GNDVin = Vdd

Figure 3.4. Switch implementation using (a) an NMOS transistor, (b) a PMOS transistor, and
(c) a CMOS transmission gate.

NMOS pass transistor Assume that the capacitance in Figure 3.4(a) starts out
fully discharged (Vc = 0 V) and with gate voltage VG set to GND, thereby setting
the transistor in the cutoff region (ID = 0). If the voltage on the input and then the
gate voltage are pulled high (Vin = VG = Vdd), the pass transistor starts to conduct
and starts to charge Vc up toward Vdd . As Vc approaches Vdd − VT , the NMOS
transistor starts to turn off since VGS = VG − Vc approaches VT , which results in
setting the transistor into the cutoff region. The pass transistor cannot transfer a
voltage higher than Vin − VT from the input to the load capacitance, which means
that an NMOS transistor degrades a logic high as it passes from one of its terminals
to the other. The discharge sequence of the transistor starts by setting Vin = 0 V,
upon which the transistor starts to discharge Vc toward GND. As Vc approaches

3.2. Electrical DRAM model | 49

GND, the NMOS transistor starts to turn off since VDS approaches 0 V. The pass
transistor, therefore, successfully discharges Vc to GND, which indicates that an
NMOS does not degrade a logic low as it passes from one of its terminals to the
other.

PMOS pass transistor Assume that the capacitance in Figure 3.4(b) starts out
fully discharged (Vc = 0 V) and with gate voltage VG set to Vdd , thereby setting
the transistor in the cutoff region (ID = 0 when VGS > VT in Equation 3.3).
If the Vin is pulled to Vdd , and then VG is pulled to GND, the pass transistor
starts to conduct and starts to charge Vc up toward Vdd . As Vc approaches Vdd ,
the PMOS transistor starts to turn off since VDS approaches 0 V, which means
that the transistor succeeds in transferring the full Vdd from the input to Vc. The
discharge sequence of the transistor starts by setting Vin = 0 V, upon which the
transistor starts to discharge Vc toward GND. As Vc approaches GND+|VT |, the
PMOS transistor starts to turn off since VGS = VG − Vc approaches VT , which sets
the transistor into the cutoff region. The pass transistor cannot transfer a voltage
lower than VT from the input to the load capacitance, which means that an PMOS
transistor degrades a logic low as it passes from one of its terminals to the other.

CMOS transmission gate A transmission gate is constructed using complemen-
tary MOS (CMOS) technology, where both NMOS and PMOS devices are imple-
mented together in one circuit [see Figure 3.4(c)]. The sources and drains of both
transistors of the transmission gate are connected together, and the gates of the
NMOS and PMOS transistors are connected to VG and VG = Vdd −VG, respectively.
The transmission gate is able to transport both the full voltage high and voltage
low from one terminal to the other, since if one type of transistor stops conducting
drain current at a given voltage, the other transistor continues until the full voltage
level is achieved.

3.2 Electrical DRAM model

The electrical model of a memory consists of the electrical schematics of its circuits,
which generally consists of transistors, resistors and capacitors. Each functional
block in the functional model of the memory has its own specific implementation
at the electrical level, which may vary in its complexity from the rather simple
(such as the memory cell) to the rather complex (such as the control circuits). In
this section, only a part of the electrical model of the memory is shown, only that
part that is later used in the simulation and analysis of the memory behavior.

3.2.1 Electrical memory circuits

Each bus in the memory, be it the data, the address or the control bus, has its own
signal path, which is, to a large extent, electrically independent from other memory

50 | Chapter 3. DRAM design and implementation

signal paths. A signal path of a given bus consists of the memory circuits that
receive the signals of the bus as inputs and then develop and shape the response
of the memory according to those inputs. There are three signal paths in each
memory, the data path, the address path and the control path, each of which is
associated with a corresponding signal bus on the external interface of the memory
[see Figure 2.2].

In this thesis, we are mainly concerned with simulating and analyzing the faulty
behavior of the data path of the memory, rather than the address or the control
paths. On the one hand, defects on the data path pose a more complex problem
for test generation than those on the address path, for which a more theoretical
evaluation of the behavior is sufficient [vdGoor04a]. On the other hand, analyz-
ing the data path gives a general insight into the faulty behavior of the DRAM
(due to the standard structure of the data path), as opposed to the more device-
specific results gained from analyzing the control path (since it has a device specific
implementation in each memory).

Figure 3.5 shows a block diagram of the data path of a DRAM [compare with
Figure 2.7]. The figure shows a block for memory cells that is connected to the sense
amplifier block through the true and complement bit lines (BT and BC), which then
terminate at the access devices block. The BT and BC are also connected to the
precharge and equalize block that ensures a proper voltage is set on the BLs at the
beginning of each memory operation, as discussed later in this section. If a write
operation is performed on the memory, the access devices connect BT and BC to
the true and complement write data lines (WDT and WDC), which are driven by
the data-in buffer. On the other hand, if a read operation is performed on the
memory, the access devices connect BT and BC to the true and complement read
data lines (RDT and RDC), which drive the data-out buffer. In the following, the
electrical circuits that make up each block in the figure are discussed in detail.

Data out

Data in

cell array
Memory

Precharge
& equalize

Memory
cells

Sense
BT

BC BC

BT

amplifier

WDT

WDC

RDT

RDC

devices
Accessdata−in

data−out
buffer

buffer

Figure 3.5. Block diagram of the data path of a DRAM.

3.2.2 Memory cell

The DRAM memory cell can be constructed in a number of different ways, the
simplest and most widely used one of them is the so-called one transistor DRAM

3.2. Electrical DRAM model | 51

cell (1T cell), which consists of a single pass transistor that controls access to a
single, relatively large cell capacitor [see Figure 3.6(a)]. The pass transistor is
controlled by a WL and connects the cell capacitor to a BL. This structure is very
similar to the structure of a switch discussed in Section 3.1.3, where it has been
shown that a single transistor (be it NMOS or PMOS) is not able to transport the
full voltage level of both logic values from one input to the other. The transmission
gate was proposed as a solution to this problem, making use of both NMOS and
PMOS transistors. This solution is rather expensive for a memory cell, since it
significantly increases the silicon area used by the cell, especially when noting that
the memory cells in a DRAM occupy about 60% of the memory chip.

VcCc

WLBL

(a) 1T cell schematic

Name Value Description

Cc 40 fF Cell capacitance

Vboost 3.5 V WL boost voltage

Vdd 2.5 V Voltage of logic high

(b) Value examples

Figure 3.6. Model of the 1T DRAM cell giving (a) the schematics, and (b) value examples.

A different solution is commonly used to solve this problem by applying a boost
voltage (Vboost) to the WL, where the WL voltage (VWL) is increased above Vdd for
an NMOS or below GND for a PMOS to ensure a full voltage transfer into the cell.
In order to achieve this, the boost voltage needs to satisfy the following conditions.

NMOS : Vboost ≥ Vdd + VT (3.7)

PMOS : Vboost ≤ VT (3.8)

Usually, a voltage well beyond these limits is used, in order to accommodate for
manufacturing process variations and increase the robustness of the memory cells.
The downside of a high boost voltage, however, is the need to use pass transistors
with larger tOX to prevent gate oxide breakdown. One positive outcome of such a
increased gate oxide thickness is the reduction of the sub-threshold leakage currents
into the cell, which contributes to increasing the data retention time of the memory.
Figure 3.6(b) lists examples of the values used for the 1T DRAM cell schematic
[Vollrath00, Vollrath97].

Cell charge up

If we assume an NMOS pass transistor, a fully discharged cell capacitor (Vc = 0
V), a high voltage on the BL (VBL = Vdd), and a boost voltage on the word line
(VWL = Vboost = Vdd +VT), then the pass transistor would be in the linear region and
starts to charge Vc up. From the ID equation in the linear region (Equation 3.4),
and using the electrical schematic of the cell in Figure 3.6(a), the cell capacitor
charge up equation is:

52 | Chapter 3. DRAM design and implementation

ID = Cc

dVc

dt

=
β

2

[

2(VGS − VT)VDS − V 2
DS

]

=
β

2

[

2(Vdd + VT − Vc − VT)(Vdd − Vc) − (Vdd − Vc)
2
]

=
β

2
(Vdd − Vc)

2

Cc

dVc

dt
=

β

2
(Vdd − Vc)

2 (3.9)

Using the initial condition Vc(0) = 0 V, the solution of this differential equation
with respect to Vc(t) is as follows:

Vc(t) =
A t

A t + 1
Vdd , where A =

β Vdd

2 Cc

(3.10)

Figure 3.7(a) shows a simulation of the charge up sequence of the 1T memory
cell, compared with a plot of the analytical charge up Equation 3.10 derived above
(with A = 1.38109 s−1). Both curves have the same general shape, increasing fast
as the charge up process starts, and then asymptotically approaching (but never
actually reaching) Vdd . The differences between the two curves can be attributed to
the differences between the Level 1 NMOS model used in the analytical derivation
performed above, and the complex behavior of the simulated BSIM3v3 transistor.
The latter is the model that should be used, because it is more representative of
the behavior on silicon.

0.0

0.5

1.0

1.5

2.0

Vdd

3.0

2 4 6 8 10

V
c

[V
]

t [ns]

Analytical
Simulated

(a) Charge up behavior

0.0

0.5

1.0

1.5

2.0

Vdd

3.0

2 4 6 8 10

V
c

[V
]

t [ns]

Analytical
Simulated

(b) Discharge behavior

Figure 3.7. Simulated vs analytical 1T DRAM cell curves of (a) the charge up, and (b) discharge
behavior.

3.2. Electrical DRAM model | 53

Cell discharge

If we assume an NMOS pass transistor, a fully charged cell capacitor (Vc = Vdd),
a low voltage on the BL (VBL = 0 V), and a boost voltage on the word line
(VWL = Vboost = Vdd +VT), then the pass transistor would be in the linear region and
starts to discharge Vc. From the ID equation in the linear region (Equation 3.4),
and using the electrical schematic of the cell in Figure 3.6(a), the cell capacitor
discharge equation is:

ID = −Cc

dVc

dt

=
β

2

[

2(VGS − VT)VDS − V 2
DS

]

= β
[

(Vdd + VT − VT)Vc −
1

2
V 2

c

]

= β(Vdd − 1

2
Vc) Vc

−Cc

dVc

dt
= β(Vdd − 1

2
Vc) Vc (3.11)

Using the initial condition Vc(0) = Vdd , the solution of this differential equation
with respect to Vc(t) is as follows:

Vc(t) =
2 Vdd

1 + e2At
, where A =

β Vdd

2 Cc

(3.12)

A plot of Equation 3.12 with Vc(0) = 0 V is shown in Figure 3.7(b), along with
a Spice simulation of the discharge process. The discharge operation starts with
Vc = Vdd and exponentially approaches GND, but never attains it. A comparison
between the Equation 3.10 and 3.12 reveals that the charge up process is propor-
tional to 1/t, while the discharge process is proportional to the much faster e−t.
This is true with the NMOS transistor used as the pass transistor in the cell, but
the opposite would be true if we use a PMOS for the pass transistor of the cell.

Write back window

One important design decision is to choose the minimum time given for the memory
cell to reach its desired voltage when a write 0 (discharge process) or a write 1
(charge up process) takes place. For an NMOS pass transistor, the write 1 operation
is slower than the write 0, which means that the charge up process is the one to
decide the minimum write period. The opposite situation takes place for a PMOS
pass transistor. This minimum time is referred to as the write back window , which is
reflected in the external specifications of the memory by the timing parameter tWR

[see Table 2.1]. Since Vc never actually reaches Vdd or GND during the charge up

54 | Chapter 3. DRAM design and implementation

and discharge processes, the designers must choose an acceptable fraction 0 < p < 1
of the full voltage level as a target, and identify the minimum time period needed
to attain it. If an NMOS is used as the pass transistor, then the slow charge up
process is the one to decide tWR,min , which is the time needed for Vc to reach a target
level of p × Vdd . Using Equation 3.10, the following condition must be satisfied:

tWR,min >
p

A(1 − p)
, where A =

β Vdd

2 Cc

(3.13)

3.2.3 Sense amplifier

The sense amplifier (SA) is the part of the memory that “senses” the small charges
corresponding to the stored logic levels in the memory cell, and then “amplifies”
them before they are forwarded to the output. Although there are many types of
SAs, each with its own principle of operation, most of them operate according to
the same concept: a positive voltage differential is amplified by the sense amplifier
to a full voltage high, while a negative voltage differential is amplified to a full
voltage low.

Ideal SA Vout

Reference

Sense

Input (Vin)

(Vref)

(a) Ideal SA

Sense

Vdd

Sense

BC

BT

F

T

(b) CMOS SA

Figure 3.8. Circuit representation of (a) an ideal SA, and (b) a cross-coupled CMOS SA.

Sense amplifier structure

Based on the functional requirements of the SA, one can define a so-called ideal
sense amplifier as shown in Figure 3.8(a), where only two different parameters
(the input voltage, Vin , and the reference voltage, Vref) on the input define the
resulting voltage on the output (Vout) according to the following relation:

Vout =

{

Vdd : Vin > Vref

GND : Vin < Vref

(3.14)

The “Sense” signal in the figure gives the timing, indicating the instant the SA
should be activated and sensing should take place.

The most common electrical circuit used to achieve the functionality of an ideal
SA in memories is the cross-coupled CMOS sense amplifier shown in Figure 3.8(b).

3.2. Electrical DRAM model | 55

It consists of two NMOS transistors connected on one side to a pull-down voltage
path to GND, and two PMOS transistors connected on one side to a pull-up voltage
path to Vdd . The nodes T (true) and F (false) connect one side of an NMOS to
one side of a PMOS, and constitute both the input and the output of the sense
amplifier. At the same time, the T and F nodes control the gates of the NMOS
and PMOS on the other side of the SA. The sense amplifier is called a bistable
element, which means that it has two stable states, one with T being high and F
being low, while the other with T being low and F being high. The T node of the
SA is connected to the true BL (BT) on one side, while the F node of the SA is
connected to the complementary BL (BC). The power pull-down path to GND is
controlled by the “Sense” signal, while the power pull-up path to Vdd is controlled
by the complementary signal “Sense”.

Sense amplifier operation

The SA operates in two main stages, the first of which is voltage development stage,
and the second of which is the sense and amplification stage [Kang96]. The voltage
development stage starts with the T and F nodes being precharged to the same
mid-point voltage (Vdd/2), during which the “Sense” signal is kept low, thereby
deactivating the SA by disconnecting it from the power supply. Then, a voltage
differential ∆V develops across the T and F nodes of the SA, as a result of a
memory cell being accessed. The amount of ∆V developed by the end of this stage
is commonly referred to as the signal margin of the SA. The second stage (the
sense and amplification stage) starts with pulling the “Sense” signal up, thereby
activating the SA by connecting it to the power supply. The SA, then, senses the
node that has the higher voltage and pulls it up all the way to Vdd , while pulling
the voltage on the other node to GND.

The voltage development stage of SA operation lasts for a specific amount of
time ∆t1 usually called the signal development time, which should be long
enough for a sufficiently large signal margin ∆V to develop. The sense and am-
plification stage of SA operation lasts for ∆t2, which should allow enough time for
the SA to charge the bit lines to a proper voltage level. Example values for ∆t1

and ∆t2 are 5 ns and 10 ns, respectively, for a 64 Mb DRAM manufactured in a
0.19 µm technology [Vollrath02]. The sum of these two timing parameters indicates
the total length of time the SA should be given to sense the data from a memory
cell and to restore it back into the cell. This takes place after the activate (Act)
command is issued to the memory and before the write (Wr) or read (Rd) com-
mands are issued. Therefore, the internal timing parameters ∆t1 and ∆t2 dictate
the minimum amount of row-column delay time needed, as reflected by the external
timing parameter tRCD [see Table 2.1].

tRCD ,min > ∆t1 + ∆t2 (3.15)

Figure 3.9(a) shows a simulation output of the operation of the sense amplifier

56 | Chapter 3. DRAM design and implementation

for a positive differential voltage ∆V between the T and F nodes. The voltage
development stage in the figure starts at 0 ns and ends at 4 ns, which is when a
fully developed ∆V is present across the inputs of the SA. At 4 ns, the sense and
amplify stage starts and the voltage differential is amplified, pulling T to a full Vdd

and F to GND.

3.0

Vdd

2.0

1.5

1.0

0.5

0.0
282420161284

V
 [V

]

t [ns]

T
F

(a) Simulation of SA operation

Cause of Vmin Value

Transistor param. 27 mV

BL capacitances 10 mV

Coupling noise 9 mV

Total ∆Vmin 46 mV

Typical ∆V 200–300 mV

(b) Minimum signal margin

Figure 3.9. (a) Simulation of sense amplifier operation, and (b) minimum signal margin for
proper sensing.

Sense amplifier sensitivity

The ideal SA is perfectly balanced around its reference voltage. This is not the case
for a real cross-coupled SA, which has a number of different sources of imbalance
that cause a biased sensing of a 0 or a 1 on the output. The SA imbalance is a
result of variations in the fabrication process of the memory, which makes different
SAs behave differently. Causes of sense amplifier imbalance include [Sarpeshkar91]:

1. transconductance (β) of the sense amplifier transistors

2. gate-source parasitic capacitance of transistors

3. threshold voltage (VT) of transistors

4. bit line capacitance

These deviations mean that, in order to ensure proper sensing for all SAs on a
chip, a minimum differential voltage ∆Vmin across the inputs of the SA is needed.
The exact amount of ∆Vmin depends on the design of the memory and the fabri-
cation technology. Examples of such values are listed in Figure 3.9(b), based on
measurements performed on a 16 Mb DRAM memory manufactured by Siemens
[Geib92]. The table states that the imbalance in the transistor parameters requires
a minimum voltage of 27 mV for proper sensing, the imbalance in the BL capaci-
tances requires a minimum voltage of 10 mV, while the imbalance caused by BL-BL
and BL-WL coupling noise requires a minimum voltage of 9 mV for proper sensing.

The typical amount of signal margin available for DRAM SAs during sensing is
reported to be between 200 mV and 300 mV [Vollrath97]. This amount of signal

3.2. Electrical DRAM model | 57

margin depends on the cell capacitance (Cc), the bit line capacitance (Cb), the
voltage to be sensed within the cell (Vc), and the voltage present on the bit line
(Vdd/2).

∆V =
Cc

Cc + Cb

(Vc − Vdd/2) (3.16)

3.2.4 Other DRAM circuits

This section presents the electrical schematics, and discusses the operation of the
rest of the DRAM circuits present in the data path in Figure 3.5. Three different
circuits are discussed here: the precharge circuits, the access devices and the data
buffer.

Precharge circuits

The operation of DRAM devices makes extensive use of the idea of precharging,
which stands for setting the signal lines in the memory to a given predefined voltage
before accessing them. Precharge circuits are very simple electrical constructs that
connect the lines to be precharged to a known voltage level. Figure 3.10 shows one
implementation of the precharge circuits that perform precharging to Vdd/2.

Precharge

Vdd/2

BT BC

(a) Precharge circuits

0.0

0.5

1.0

1.5

2.0

Vdd

3.0

2 4 6 8 10

V
 [V

]

t [ns]

BT
BC

(b) Simulation results

Figure 3.10. (a) Schematic of the precharge circuits and (b) the voltage signals during precharg-
ing.

Figure 3.10(a) shows a three transistor implementation of the precharge circuits,
two connecting each BL to the voltage supply, with the third transistor connecting
the two BLs together at precharge. This third transistor is called the balance or
equalization transistor, which ensures that both BLs are set to the exact same volt-
age level during precharging. All three transistors are controlled by the Precharge
signal, which determines when the precharge action is to take place. The Precharge
signal is only pulled high (activating the precharge circuits) during the precharge
command (Pre) of the DRAM, while it remains low (deactivated) for all other
DRAM commands.

58 | Chapter 3. DRAM design and implementation

Figure 3.10(b) shows the voltage signals on BT and BC when the precharge
circuits are activated. The simulation starts with VBT = Vdd , VBC = 0 V, and with
the Precharge signal pulled high. As a result, both BT and BC are pulled gradually
toward each other, and eventually they reach the Vdd/2 level after about 2 ns from
the beginning of precharging.

Access devices

Access devices are simple pass transistors used to ensure that the correct BL pair
is connected to the outside world during read and write operations. According
to Figure 3.5, the access devices are located between the sense amplifier on one
side, and the data buffers on the other. Figure 3.11 shows a detailed view of the
access devices, where two sets of devices are identified: the column gating and the
read/write gating.

Column gating

Read

Write
WDT

WDC

RDT

RDC

Read/write gating

DT

DC

CS BCBT

Figure 3.11. Schematic of the access devices.

The column gating decides which BL pair should be connected to the data lines
(DLs) that carry read and write information to the BLs. The access transistors in
the column gating are controlled by the column select lines (CSs) which, in turn,
are controlled by the column decoder. When a given column address is selected,
the corresponding CS is pulled high which connects BT to the true data line (DT)
and BC to the complement data line (DC).

The read/write gating decides whether the DLs on the other side get connected
to the read data lines (RDT and RDC) or to the write data lines (WDT and WDC),
depending on the type of performed memory operation. During a read operation,
the Read signal is pulled up and the Write signal is pulled down, which connects
DT to RDT and DC to RDC. On a write operation, the Write signal is pulled up
and the Read signal is pulled down, which connects the DT to WDT and DC to
WDC.

3.2. Electrical DRAM model | 59

Data buffer

The data buffer is the gate of the memory to the outside world, where input data
is latched and made ready for the rest of the memory to use, and where output
data is held steady for external circuits to read. One simplified implementation of
the data buffer is shown in Figure 3.12, which represents the schematics of both
the data-in buffer as well as the data-out buffer shown in Figure 3.5. In case of
the data-in buffer, the lines connected to the buffer should be the data-in line, the
WDT and the WDC, while in the case of the data-out buffer, the lines connected
to the buffer become the data-out buffer, the RDT and the RDC.

The buffer consists of a simple clocked latch circuit . The design of the latch is
very similar to that of the cross-coupled sense amplifier discussed in Section 3.2.3.
The latch is a bistable element that, once set, keeps its data as long as it remains
connected to the power supply. The activation and deactivation of the latch is
controlled by the Latch signal, which is pulled low (activated) when the data become
available to the latch (for example, at the rising edge of a clock cycle during a write
operation).

Access

Latch

Vdd

RDT or WDT

RDC or WDC

F

Latch
Access

Data in
or

Data out

T

Figure 3.12. Schematic of the I/O data buffer.

The external Data-in or Data-out pin is connected to the T (true) node of the
latch through a transmission gate that ensures transferring a full voltage level to
and from the buffer. The transmission gate is controlled by the Access signal which
regulates the access between the memory and the external data pin. During a write
operation, the Access signal is activated for a short time (t1) before the Latch signal
is activated, which ensures that the input signal has enough time to set the correct
voltage at the buffer. The Access signal should also remain active for a short time
(t2) after the Latch is activated to ensure proper latching. These two time periods
dictate the value of a couple of external timing parameters, the data setup time
(tDS) and the data hold time (tDH) as follows [see Table 2.1].

tDS > t1 (3.17)

tDH > t2 (3.18)

60 | Chapter 3. DRAM design and implementation

3.3 DRAM layout model

The layout model (or geometrical model) is the most detailed description level of IC
devices, where the physical structure of the circuits is given as it is manufactured on
silicon. Layout design starts by the preparation of a floor plan of the memory chip,
where the placement of the different circuits of the chip is decided. Figure 3.13(a)
shows the floor plan of a typical multi-megabit DRAM chip, while Figure 3.13(b)
shows the chip layout after manufacturing. One important characteristic of the
floor plan of a multi-megabit DRAM is the cross-shaped layout area in the center
of the chip, which is used for the I/O pads and the peripheral memory circuits.
This structure is important for modern high-speed memories since it reduces the
maximum length of the path external control signals have to travel to reach internal
memory circuits [Itoh01]. The cross-shaped region makes it necessary to split the
cell array into 4 different memory banks, each with its own column and row address
decoders and sense amplifiers.

Memory cell array
(bank 2)

Memory cell array
(bank 0)

Memory cell array
(bank 3)

Memory cell array
(bank 1)

I/O pads & external pinsI/O pads & external pins

Pe
ri

ph
er

al
 c

ir
cu

itsSense amplifiers Sense amplifiers

Sense amplifiers Sense amplifiers

Column address decoder Column address decoder

Column address decoderColumn address decoder

R
ow

 d
ec

od
er

R
ow

 d
ec

od
er

R
ow

 d
ec

od
er

R
ow

 d
ec

od
er

(a) Floor plan (b) Memory chip

Figure 3.13. Typical layout of multi-megabit DRAM. (a) Floor plan, and (b) Infineon memory
chip (source: Infineon Technologies).

Detailed DRAM layout models of specific circuits are rarely reported in the liter-
ature due to the proprietary nature of this information, and the high complexity of
the information itself. In this section, we restrict our discussion to the layout of the
1T DRAM cell, where the following two alternatives are the most commonly used
cell implementations for multi-megabit DRAMs: the trench capacitor cell, and the
stacked capacitor cell. These cell implementations use on-wafer, three dimensional
capacitance structures, meant to increase the surface area of the capacitor plates
vertically, instead of expanding horizontally and using expensive silicon area in the
process. Needless to say, these three dimensional structures are difficult to manu-
facture, and require special optimization of the manufacturing process. They are,
however, the best cost-effective solution so far to ensure the high cell capacitance
needed for memory operation, as feature size miniaturization continues.

3.3. DRAM layout model | 61

3.3.1 DRAM trench capacitor

The trench capacitor, championed by IBM and Infineon, started to feature in
DRAM circuits at the 4 Mb generation and beyond, to keep a large enough surface
area of the cell capacitor plates, by placing them on the sides of a narrow trench
etched vertically into silicon. An added advantage to the trench capacitor is the
greatly reduced defect levels per unit area, when compared to the defect levels com-
mon in previous capacitor technologies [Adler95]. Figure 3.14(a) shows a silicon
cross-section where a number of trench capacitors are visible. Figure 3.14(b) shows
a sketch of a 1T trench capacitor memory cell, where the gate of the pass transistor
is controlled by the WL, while the source/drain nodes of the transistor are con-
nected to the BL and to the trench capacitor. The trench capacitor itself consists
of a top plate (made of a conductive polysilicon material that fills the trench), a
thin insulator layer that lines the side walls of the trench (made of a silicon dioxide
material), and a bottom plate (made of a negatively doped buried semiconductor
diffusion layer).

(a) Trench capacitor

WL
BL Trench cap

WL

Vc

BL Trench cap

Burried strap

nn p

(b) Electrical equivalent

Figure 3.14. (a) Cross-section of a trench capacitor, and (b) the electrical modeling of the layout
(source: Infineon Technologies).

The trench capacitor is connected to the pass transistor using a buried strap
connection, which acts as a bridge through the thin oxide insulator that separates
the two plates of the trench capacitor. This buried strap is an essential part of
the trench capacitor, that is generated using a special DRAM-oriented process
demanding special care to be successful. One way to quantify the quality of the
trench capacitor manufacturing process is using the aspect ratio of the trench
which is calculated as follows.

aspect ratio =
trench depth

trench diameter
(3.19)

Using current day technology, it is possible to construct so-called deep trench
capacitors, which have an impressive aspect ratio of 50-60. The diameter of these

62 | Chapter 3. DRAM design and implementation

trenches is referred to as the critical dimension (or CD) of the trench, which grad-
ually scales down as the minimum feature size decreases. For a 110 nm fabrication
technology, the trench CD has a value of about 145 nm, and has a depth of about
8µm = 55 × 145 nm (aspect ratio × trench diameter). The CD of such a trench is
small enough to fit within the small space of the memory cell, but large enough to
ensure the high cell capacitance needed for proper memory operation [Rudolph04].
These deep trenches are manufactured using a challenging process that employs a
high-energy ion etch, followed by a polishing etch to achieve an entirely flat silicon
surface. This flat surface makes DRAMs that use trench capacitors compatible
with a logic manufacturing process that attempts to include an on-chip embedded
DRAM (eDRAM) module.

The trench capacitor provides an effective solution to the limited surface area
problem, but it is in constant industrial competition with another equally effective
solution, the so-called stacked capacitor, described next.

3.3.2 DRAM stacked capacitor

The stacked capacitor was born out of need for a capacitor with a large capac-
itance and a simple manufacturing process at the same time. Instead of using
the area under the silicon surface, as it is the case with the trench capacitor, the
stacked capacitor uses the space above the wafer surface. Figure 3.15(a) shows
a cross-section of silicon where a number of stacked capacitors are clearly visible.
Figure 3.15(b) shows a simple sketch of the layout of a 1T DRAM cell that uses the
stacked capacitor, and the way this cell is modeled electrically. The bottom capaci-
tor plate is built using a cylindrical polysilicon electrode connected to a self-aligned
BL contact, and separated from the top polysilicon plate by an insulator.

(a) Stacked capacitor

BL
WL

WL

Vc

BL

Stacked cap

STSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTSSTSTSTSTS

UTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTUUTUTUTU

n p n

(b) Electrical equivalent

Figure 3.15. (a) Cross-section of a stacked capacitor, and (b) the electrical modeling of the
layout (source: Infineon Technologies).

In a similar way to the trench capacitor, the aspect ratio concept of the cell

3.3. DRAM layout model | 63

capacitor can be applied to the stacked capacitor in the following way:

aspect ratio =
stacked capacitor height

capacitor diameter
(3.20)

In the case of the stack capacitor, it is not desirable to have a very high aspect
ratio, since the increased height of the capacitor means an increased difference
in height between the memory cell array and the surrounding peripheral circuits,
making it difficult to construct straight metal wiring on top.

In general, the capacitance of the DRAM cell capacitor can be calculated as
follows:

Cc = εoεd

Ap

dp

(3.21)

where Ap is the overlap area of the two capacitor plates, dp is the distance between
the two plates, εo is the permittivity of free space, and εd is the permittivity of the
dielectric isolating material between the plates. Therefore, instead of increasing the
aspect ratio, the capacitance of the stacked capacitor can be increased by choosing
a dielectric material with a higher εd. A number of different dielectric materials
with high εd are being considered for future stacked capacitor technology. Since
higher εd dielectrics are difficult to deposit into the rather thin enclaves of the
trench capacitor, without having voids created in them, these materials are not as
suitable for trench capacitors as they are for stacked capacitors [Cataldo98].

3.3.3 Cell array layout

This section describes the wafer-level organization of the memory cell array, and
shows the placement of memory cells on wafer. The wafer-level organization is
rather important for memory devices in general, and DRAMs in particular, espe-
cially in the cell array region, because of the repetitive nature of the cell array. An
organization that succeeds in reducing the average area of the cell even slightly may
lead to a significant reduction on the overall area of the cell array, which translates
to a reduction in price.

Figure 3.16(a) shows a scanning electron microscope (SEM) image of a typical
layout organization in the cell array region of a current-day, multi-megabit DRAM.
The figure clearly shows the repetitive nature of the cells in the memory cell array
region of the memory. Figure 3.16(b) shows a sketch of the cell array region, where
the memory cells are outlined along with the word lines and bit lines connected to
them. This figure shows two important aspects of the layout-level organization of
the memory cell array: cell neighborhood and cell address scrambling.

Cell neighborhood The set of memory cells separated from a given cell by some
minimum distance on the layout are called the neighborhood of that cell. The
closest neighborhood of a memory cell is rather significant from a manufacturing

64 | Chapter 3. DRAM design and implementation

(a) SEM image

WL2

WL3

WL1

WL0

BT0 BC0 BT1 BC1 BT2 BC2 BT3

Neighbors

Cell

C1

C3

C4

C2

(b) Sketch

Figure 3.16. Layout-level organization of the memory cell array shown in (a) an SEM image,
and (b) a layout sketch (source: Infineon Technologies).

point of view, since cells should be kept at a minimum distance from one another to
prevent them from interacting with each other. This minimum distance is usually
pushed to its last possible limit to achieve the smallest possible cell area. Therefore,
the closest neighborhood is also important from a testing point of view, to ensure
that different cells are properly isolated, and that no leakage is present between
them. In the organization shown in Figure 3.16(b), any given cell has three closest
neighboring cells, one connected to the same bit line at a vertical distance from the
cell, and two connected to the two adjacent bit lines at a diagonal distance from
the cell. As the state-of-the-art fabrication technology changes, and new techniques
are introduced to increase the packing density, the cell array organization changes
leading to different types of closest cell neighborhoods. As a result, the way a
memory is properly tested depends of the specific layout of the memory.

Cell address scrambling The organization of the cell array is optimized to
achieve the least possible cell area, and pack as many cells as possible on the surface
of the memory chip. In many cases, this requirement makes it necessary to use an
internal sequence of cells (called the physical cell address) that is different from the
external one, as described by regular cell addresses (also referred to as the logical
cell address). Internal address resequencing is usually referred to as cell address
scrambling. For many memory tests, the sequence of cells accessed by the test
plays a significant role in the effectiveness of the test. Therefore, these tests require
using the actual physical cell sequence, rather than the one indicated externally by
the logical address sequence of the cells. A memory test that employs the actual
physical addressing sequence of the memory is said to use an address descrambler.
In Figure 3.16(b), for example, the physical address order of the cells on BL pair
0 is as follows: C1, C2, C3, C4, etc. The logical cell addresses, on the other hand,
are shown in Figure 2.9 and have the following sequence: C1, C2, C4, C3, etc. As
it is the case for the cell neighborhood, the specific cell address scrambling used for
a given memory depends on the design and fabrication technology of the memory.

3.3. DRAM layout model | 65

Summary

This chapter discussed the internal structure and implementation of
DRAM chips at both the electrical and the layout levels. The electri-
cal description focused on the data path circuits since they are the most
important parts used later in this thesis. The main issues presented in this
chapter are the following.

• Introduction to the basics of MOS transistor operation, the funda-
mental building blocks for memory devices. The behavior has been
discussed using the ideal Shockley equations, since they describe the
most important aspects of transistor operation.

• Description of the concept of memory signal paths. This concept is
important for the electrical analysis of the memory structure, since
different paths are, to a large extent, electrically independent from
each other. Out of the three presented signal paths (the data path,
the address path and the control path), the data path was discussed
in detail.

• Detailed analysis of the electrical circuits of the data path. Five
circuits have been analyzed: the memory cell, the sense amplifier, the
precharge circuits, the access devices, and the data buffer. Simulation
output results have been given for some circuits to show how they
behave electrically.

• Discussion of the floor plan of the DRAM, which shows the location
of different memory circuits on chip. The floor plan has the charac-
teristic cross-shaped layout area, commonly found in multi-megabit
DRAMs.

• Presenting two alternatives of the layout level implementation of
memory cells (the trench capacitor cell and the stacked capacitor
cell), along with the advantages and disadvantages of both.

Contents of this chapter

4.1 Definition of fault models

4.2 Generic space of faults

4.3 DRAM-specific faults

4.4 Industrial test practices 4
Modeling faulty memory behavior

Fault modeling is an important part of memory fault analysis, since it serves as the
link between the ever more complex layout level faulty behavior and the seemingly
simple structure of memory tests. Proper fault modeling implies simplicity, to
keep the fault analysis problem manageable, and comprehensiveness, to be able to
represent any type of faulty behavior that might take place. This chapter discusses
a memory fault modeling language that is both simple and comprehensive, able to
describe any faulty behavior taking place in DRAM devices today.

Section 4.1 starts with a discussion of the concepts of fault modeling and ends
with a formal definition of fault models. Section 4.2 describes the generic space
of possible faults that may take place in any RAM. It then enumerates a number
of important classes of these faults. Section 4.3 develops the space of DRAM-
specific fault models, by extending the generic fault space described in Section 4.2 to
accommodate for the behavior of DRAMs. Section 4.4 discusses the most important
practical aspects of industrial memory testing.

4.1 Definition of fault models

By performing a number of memory operations, and observing the behavior of any
component functionally modeled in the memory, functional fault models (FFMs)
can be informally understood as the deviation of the observed memory behavior
from the functionally specified one, under a given sequence of performed mem-
ory operations. Therefore, two basic ingredients are needed to define any FFM:
(1) a sequence of performed memory operations, and (2) a list of corresponding
deviations in the observed behavior from the expected one.

67

68 | Chapter 4. Modeling faulty memory behavior

4.1.1 Representing operation sequences

Any sequence of performed operations on the memory is called an operation se-
quence. An operation sequence that results in a difference between the observed
and the expected memory behavior is called a sensitizing operation sequence
(S). For example, the operation sequence for an up transition fault (TF1) in a cell
is S = 0w1, which requires the cell to be initialized to 0, followed by an attempt
to write a 1 into the cell. The observed memory behavior that deviates from the
expected one is called a faulty behavior or simply a fault . For TF1, the faulty
behavior is the inability of the write 1 operation to replace the 0 stored in the cell
by a 1.

In order to describe any faulty behavior in the memory, it is important to be
able to describe any possible operation sequence performed on the memory. A
sensitizing operation sequence must list the initial data in the accessed cells and
the operations performed on them in order to sensitize the fault. The initial data
represents the data in the memory cells prior to the start of a test; this may
be random (due to power-on, for example) or deterministic (due to a previously
applied test). The operations, on other hand, represent operations performed to
sensitize the faulty behavior; these can either be writes w or reads r. Therefore,
any operation sequence, expected to result in a faulty behavior, can be represented
by the following notation:

dc1 ... dci
... dcm

Odc1 ... Odcj
... Odcn

(4.1)

where cx: cell address used,
O: type of operation on c, O ∈ {w, r},
d: data present in c, d ∈ {0, 1},
m: number of initializations, and
n: number of operations.

The initial data is described for m cells (denoted as ci), while the operations
are applied to n cells (denoted as cj). Note that the value of d in a read operation
of the form rdcj

represents the expected value of the read operation. This value
may be different from the actual read value detected on the output in case of a
faulty memory. As an example of the notation, if an operation sequence is denoted
by 0cw1cr1c then the sequence starts by accessing cell c (which contains a 0) and
writing a 1 into it, then reading the written 1.

Sometimes, a fault is sensitized because a cell spontaneously loses its stored
state, without the need to perform any operation on the memory. Hence, simply
setting the cell into a known initial state is enough to sensitize the fault. This
situation can also be described using the operation sequence notation above by
limiting S to the initial data and eliminating any performed operation. For exam-
ple, observing the state of cell c which contains a 0 without accessing it can be
denoted by 0c.

4.2. Generic space of faults | 69

4.1.2 Fault primitives and fault models

The second ingredient needed to specify a fault model is a list of deviations in
the observed behavior from the expected one. The only functional parameters
considered relevant to the faulty behavior are the stored logic value in the cell
and the output value of a read operation. Therefore, any difference between the
observed and expected memory behavior can be denoted by the following notation
<S/F/R>, referred to as a fault primitive (FP) [vdGoor00]. S describes the
operation sequence that sensitizes the fault; F describes the value of the faulty
cell, F ∈ {0, 1}; and R describes the logic output level of a read operation, R ∈ {0,
1, −}. R has a value of 0 or 1 when the fault is sensitized by a read operation,
while the “−” is used when a write operation sensitizes the fault. For example, in
the FP <0c w1c/0/−>, which is a TF1, S = 0cw1c means that cell c is assumed to
have the initial value 0, after which a 1 is written into c. The fault effect F = 0
indicates that after performing a w1 to c, as indicated by S, c remains in state 0.
The output of the read operation, R = −, indicates that S does not end with a read
operation. Since only one cell c is involved in the faulty behavior, the notation for
the FP <0c w1c/0/−> can be simplified to <0w1/0/−>c, and when the fault can
take place in any cell in the memory, FP can be further simplified to <0w1/0/−>
by eliminating c.

The notion of FPs makes it possible to give a precise definition of an FFM as
understood for memory devices. This definition is presented next.

A functional fault model (FFM) is a non-empty set of fault
primitives (FPs).

For example, the FFM called transition fault (TF) consists of a set of FPs
that contains the up transition FP (<0w1/0/−>) and the down transition FP
(<1w0/1/−>). In other words, TF = {<0w1/0/−>, <1w0/1/−>}.

4.2 Generic space of faults

As FPs are the building blocks of functional faulty behavior, an analysis of them
helps to understand the underlying principles of memory faults, and to appreciate
their complexity. Since all components present in the definition of FPs (S, F and
R) can be enumerated, the space of FPs can also be enumerated. In the following,
a classification of FPs is given first, followed by a discussion of the most important
FPs (static single-cell and static two-cell FPs) along with their properties.

4.2.1 Classification of fault primitives

FPs can be classified into different classes, depending on S, as shown in Figure 4.1.
Let #C be the total number of different memory cells initialized (ci) and accessed
(cj) in S, and let #O be the number of operations (w or r) performed in S. For

70 | Chapter 4. Modeling faulty memory behavior

example, if S = 0c1 0c2 w1c2 then #C = 2 since two cells (c1 and c2) are present in
S, while #O = 1 since only one operation is performed (w1 to c2).

Fault primitives

#C

#C=1

Coupling
fault primitive

#C>1

2−coupling
fault primitive

3−coupling
fault primitive

#C=2 #C=3

fault primitive
Single−cell

#O

#O>1

#O=2 #O=3

Static
fault primitive

Dynamic
fault primitive

dynamic dynamic
2−operation 3−operation

#O=<1

Figure 4.1. Taxonomy of fault primitives.

Depending on #C, FPs can be divided into the following classes:

• If #C = 1, then the FP sensitized by the corresponding S is called a single-
cell FP .

• If #C > 1, then the FP sensitized by the corresponding S is called a coupling
FP . If #C = 2 then it is described as a two-coupling FP or a two-cell FP . If
#C = 3 then it is described as a 3-coupling FP , etc.

In case an FP is a coupling FP (#C > 1), then one of the cells in the S should
be considered as a victim (v) while the other cells are considered as aggressors
(a). In any FP, the described faulty behavior is related to the victim, while the
aggressors are considered to contribute to the fault.

Depending on #O, FPs can be divided into the following classes:

• If #O ≤ 1, then the FP sensitized by the corresponding S is called a static
FP .

• If #O > 1, then the FP sensitized by the corresponding S is called a dynamic
FP . If #O = 2 then it is described as a 2-operation dynamic FP . If #O = 3
then it is described as a 3-operation dynamic FP, etc.

Clearly, a hierarchy in S results in a hierarchy in FPs. Figures 4.2(a) and (b)
represent the two different types of hierarchies in FPs defined according to #C
and #O, respectively. As shown in the figure, two-coupling FPs are higher in
the hierarchy than single-cell FPs, and the larger the number of coupled cells the

4.2. Generic space of faults | 71

higher the hierarchical level a fault primitive has. In the same way, a dynamic FP
is higher in the hierarchy than a static FP, and the larger the number of operations
of a dynamic FP the higher it becomes in the hierarchy. A higher hierarchical level
involves more cells and/or more operations, hence has a higher test cost.

(b)(a)

Static

etc.

3-operation dynamic

2-operation dynamic2-coupling

3-coupling

etc.

Single-cell

Figure 4.2. Hierarchical organization of FP classes defined according to (a) #C and (b) #O.

4.2.2 Static fault models

Static fault models consist of static FPs, sensitized by at most a single memory
operation. In other words, these are faults that describe an incorrect behavior of
either the data stored in a cell, or a single memory operation performed on it. In
order to describe static fault models, it is not necessary to use the general notation
for the sensitizing operation sequence presented above, but the following notation
is sufficient: dc1 ... dci

... dcm
Odc, where at most one operation (O) is performed on

cell c. In the following, the two most important classes of static faults are described,
single-cell static faults and two-cell static faults.

Single-cell static faults

As mentioned earlier, a particular fault primitive is denoted by <S/F/R>. S
describes the value or operation that sensitizes the fault, and for single-cell static
fault primitives S ∈ {0, 1, 0w0, 0w1, 1w0, 1w1, 0r0, 1r1}. F describes the logic
value stored in the faulty cell; F ∈ {0, 1}. R describes the logic output value of
a read operation, in case a read is the operation that sensitizes the fault; R ∈ {0,
1, −}. A “−” in the notation means that the output data is not applicable to the
associated sensitizing operation. For example, if S = 0w1, which defines a write
operation, no data is expected at the memory output, and therefore R is replaced
by a “−”.

Now that the possible values for S, F and R are defined for single-cell static
FPs, it is possible to list them all using this notation. Table 4.1 lists all possible

72 | Chapter 4. Modeling faulty memory behavior

combinations of the values, in the <S/F/R> notation, that result in FPs. The
remaining combinations of the S, F and R values do not represent a faulty behavior.
For example, <0w0/0/−> corresponds to a correct w0 operation after which the
cell contains a 0 as expected. The column “Fault model” of Table 4.1 states the
fault model name defined by the corresponding fault primitive. The table lists the
following fault models.

Table 4.1. List of single-cell, static FPs in the <S/F/R> notation.

S F R <S/F/R> Fault model

1 0 1 − <0/1/−> State-0 fault (SF0)

2 1 0 − <1/0/−> State-1 fault (SF1)

3 0w0 1 − <0w0/1/−> Write-0 destructive fault (WDF0)

4 0w1 0 − <0w1/0/−> Up transition fault (TF1)

5 1w0 1 − <1w0/1/−> Down transition fault (TF0)

6 1w1 0 − <1w1/0/−> Write-1 destructive fault (WDF1)

7 0r0 0 1 <0r0/0/1> Incorrect read-0 fault (IRF0)

8 0r0 1 0 <0r0/1/0> Deceptive read-0 destructive fault (DRDF0)

9 0r0 1 1 <0r0/1/1> Read-0 destructive fault (RDF0)

10 1r1 0 0 <1r1/0/0> Read-1 destructive fault (RDF1)

11 1r1 0 1 <1r1/0/1> Deceptive read-1 destructive fault (DRDF1)

12 1r1 1 0 <1r1/1/0> Incorrect read-1 fault (IRF1)

1. State fault (SFx)—A cell is said to have a state fault if the logic value of
the cell changes before it is accessed (read or written), even if no operation is
performed on it1. This fault is special in the sense that no operation is needed
to sensitize it and, therefore, it only depends on the initial stored value in the
cell. There are two types of state faults:

• State-0 fault (SF0) = {<0/1/−>}, with FP #1

• State-1 fault (SF1) = {<1/0/−>}, with FP #2

S, in the fault primitive notation, denotes the initial value of the cell, which
is either 0 or 1. Initializing the cell is sufficient to sensitize the fault, since
the cell immediately flips to the opposite logic value. F is represented by the
opposite value to the initialization. The value of R is “−”, which denotes
that there is no expected output.

1It should be emphasized here that the state fault should be understood in the static sense.
That is, the cell should flip in the short time period after initialization and before accessing the
cell.

4.2. Generic space of faults | 73

2. Transition fault (TFx)—A cell is said to have a transition fault if it fails
to undergo a transition (0 → 1 or 1 → 0) when it is written. This fault is
sensitized by a write operation and depends on both the initial stored logic
level and the type of the write operation. There are two types of transition
faults:

• Up transition fault (TF1) = {<0w1/0/−>}, with FP #4

• Down transition fault (TF0) = {<1w0/1/−>}, with FP #5

S, in the fault notation, denotes a write operation that tries to change the
value of the cell. The failure to change the value of the cell constitutes the
fault. Therefore, F is represented by the initial stored logic value, while the
value of R is “−”, which denotes that there is no expected output.

3. Read destructive fault (RDFx)—A cell is said to have a read destructive
fault if a read operation performed on the cell changes the data in the cell
and returns an incorrect value on the output. There are two types of read
destructive faults:

• Read-0 destructive fault (RDF0) = {<0r0/1/1>}, with FP #9

• Read-1 destructive fault (RDF1) = {<1r1/0/0>}, with FP #10

S, in the fault notation, denotes either a read 0 or a read 1 operation, which
is the operation that sensitizes the fault. F is represented by the faulty value
that r sets into the cell, while R denotes the faulty read value on the output.

4. Write destructive fault (WDFx)—A cell is said to have a write destructive
fault if a non-transition write operation (0w0 or 1w1) causes a transition in
the cell. There are two types of write destructive faults:

• Write-0 destructive fault (WDF0) = {<0w0/1/−>}, with FP #3

• Write-1 destructive fault (WDF1) = {<1w1/0/−>}, with FP #6

This fault is similar to the transition fault, where a write operation fails
to function properly. S, in the fault notation, stands for a failing write
operation, F is represented by a faulty transition, while the value of R is “−”
which means that there is no expected output.

5. Incorrect read fault (IRFx)—A cell is said to have an incorrect read fault
if a read operation performed on the cell returns the incorrect logic value,
while keeping the correct stored value in the cell. There are two types of
incorrect read faults:

• Incorrect read-0 fault (IRF0) = {<0r0/0/1>}, with FP #7

• Incorrect read-1 fault (IRF1) = {<1r1/1/0>}, with FP #12

74 | Chapter 4. Modeling faulty memory behavior

S, in the fault notation, denotes either a read 0 or a read 1 operation, which is
the operation that sensitizes the fault. F represents the correct stored value
in the cell, while R represents the faulty memory output.

6. Deceptive read destructive fault (DRDFx)—A cell is said to have a de-
ceptive read destructive fault if a read operation performed on the cell returns
the correct logic value, while changing the contents of the cell [Adams96].
There are two types of deceptive read disturb faults:

• Deceptive r0 destructive fault (DRDF0) = {<0r0/1/0>}, with FP #8

• Deceptive r1 destructive fault (DRDF1) = {<1r1/0/1>}, with FP #11

S, in the fault notation, is denoted by either a read 0 or a read 1 operation,
which is the operation that sensitizes the fault. F represents an incorrect
stored value in the cell, while R represents the correct memory output.

From the above list, two observations can be made about the capability of this
notation to describe different sorts of single cell static faulty behavior.

• A write operation is capable of sensitizing 4 FPs.

• A read operation is capable of sensitizing 6 FPs.

In total, if precisely one operation is performed, then 10 FPs can be sensitized.

Two-cell static faults

In order to describe two-cell static fault models, it is not necessary for S to be
represented by the general notation of the sensitizing operation sequence shown
in Expression 4.1, since two-cell faults can be described by a simplified notation.
Since the FPs are static, at most one operation should be performed. Moreover, two
different cells need to be considered in order to sensitize a two-cell fault. Therefore,
a two-cell static FP can be represented as follows <S/F/R> = <Sa; Sv/F/R>a,v.
Table 4.2 enumerates all possible two-cell static FPs this notation can distinguish.
Only the combinations that describe a fault in the memory are listed, since the
remaining combinations of the S, F and R values do not represent any faulty
behavior. The table indicates the presence of 36 FPs, a lot more than the number
of single-cell FPs. The table lists the following faults.

1. State coupling fault (CFst)—Two cells are said to have a state coupling
fault if the victim is forced into a given logic state only if the aggressor
is in a given state, without performing any operation on the victim. This
fault is special in the sense that no operation is needed to sensitize it and,
therefore, it only depends on the initial stored values in the cells. There
are four state coupling FPs: CFst0;0 = {<0; 0/1/−>} with FP #1, CFst0;1

= {<0; 1/0/−>} with FP #2, CFst1;0 = {<1; 0/1/−>} with FP #3 and
CFst1;1 = {<1; 1/0/−>} with FP #4.

4.2. Generic space of faults | 75

Table 4.2. Combinations of <S/F/R> values that result in two-cell static fault primitives.

Sa Sv F R <Sa; Sv/F/R> # Sa Sv F R <Sa; Sv/F/R>

1 0 0 1 − <0; 0/1/−> 2 0 1 0 − <0; 1/0/−>

3 1 0 1 − <1; 0/1/−> 4 1 1 0 − <1; 1/0/−>

5 0w0 0 1 − <0w0; 0/1/−> 6 0w0 1 0 − <0w0; 1/0/−>

7 0w1 0 1 − <0w1; 0/1/−> 8 0w1 1 0 − <0w1; 1/0/−>

9 1w0 0 1 − <1w0; 0/1/−> 10 1w0 1 0 − <1w0; 1/0/−>

11 1w1 0 1 − <1w1; 0/1/−> 12 1w1 1 0 − <1w1; 1/0/−>

13 0r0 0 1 − <0r0; 0/1/−> 14 0r0 1 0 − <0r0; 1/0/−>

15 1r1 0 1 − <1r1; 0/1/−> 16 1r1 1 0 − <1r1; 1/0/−>

17 0 0w0 1 − <0; 0w0/1/−> 18 1 0w0 1 − <1; 0w0/1/−>

19 0 0w1 0 − <0; 0w1/0/−> 20 1 0w1 0 − <1; 0w1/0/−>

21 0 1w0 1 − <0; 1w0/1/−> 22 1 1w0 1 − <1; 1w0/1/−>

23 0 1w1 0 − <0; 1w1/0/−> 24 1 1w1 0 − <1; 1w1/0/−>

25 0 0r0 0 1 <0; 0r0/0/1> 26 1 0r0 0 1 <1; 0r0/0/1>

27 0 0r0 1 0 <0; 0r0/1/0> 28 1 0r0 1 0 <1; 0r0/1/0>

29 0 0r0 1 1 <0; 0r0/1/1> 30 1 0r0 1 1 <1; 0r0/1/1>

31 0 1r1 0 0 <0; 1r1/0/0> 32 1 1r1 0 0 <1; 1r1/0/0>

33 0 1r1 0 1 <0; 1r1/0/1> 34 1 1r1 0 1 <1; 1r1/0/1>

35 0 1r1 1 0 <0; 1r1/1/0> 36 1 1r1 1 0 <1; 1r1/1/0>

2. Disturb coupling fault (CFds)—Two cells are said to have a disturb cou-
pling fault if an operation (write or read) performed on the aggressor forces
the victim into a given logic state. Here, any operation performed on the
aggressor is accepted as a sensitizing operation for the fault, be it a read,
a transition write or a non-transition write operation. There are 12 dis-
turb coupling FPs: CFds0w0;0 = {<0w0; 0/1/−>} with FP #5, CFds0w0;1 =
{<0w0; 1/0/−>} with FP #6, CFds1w1;0 = {<1w1; 0/1/−>} with FP #11,
CFds1w1;1 = {<1w1; 1/0/−>} with FP #12, CFds0w1;0 = {<0w1; 0/1/−>}
with FP #7, CFds0w1;1 = {<0w1; 1/0/−>} with FP #8, CFds1w0;0 = {<1w0;
0/1/−>} with FP #9, CFds1w0;1 = {<1w0; 1/0/−>} with FP #10, CFds0r0;0

= {<0r0; 0/1/−>} with FP #13, CFds0r0;1 = {<0r0; 1/0/−>} with FP #14,
CFds1r1;0 = {<1r1; 0/1/−>} with FP #15 and CFds1r1;1 = {<1r1; 1/0/−>}
with FP #16.

3. Transition coupling fault (CFtr)—Two cells are said to have a transition
coupling fault if the state of the aggressor results in the failure of a transition
write operation performed on the victim. This fault is sensitized by a write
operation on the victim, while the aggressor is in a given state. There are four
transition coupling FPs: CFtr0;0 = {<0; 0w1/0/−>} with FP #19, CFtr0;1

= {<0; 1w0/1/−>} with FP #21, CFtr1;0 = {<1; 0w1/0/−>} with FP #20
and CFtr1;1 = {< 1; 1w0/1/− >} with FP #22.

76 | Chapter 4. Modeling faulty memory behavior

4. Write destructive coupling fault (CFwd)—A cell is said to have a write
destructive coupling fault if a non-transition write operation performed on
the victim results in a transition, while the aggressor is in a given logic state.
There are four write destructive coupling FPs: CFwd0;0 = {<0; 0w0/1/−>}
with FP #17, CFwd0;1 = {<0; 1w1/0/−>} with FP #23, CFwd1;0 = {<1;
0w0/1/−>} with FP #18 and CFwd1;1 = {<1; 1w1/0/−>} with FP #24.

5. Read destructive coupling fault (CFrd)—Two cells are said to have a
read destructive coupling fault if a read operation performed on the victim
destroys the data stored in the victim, while a given state is present in the
aggressor. There are four read destructive coupling FPs: CFrd0;0 = {<0;
0r0/1/1>} with FP #29, CFrd0;1 = {<0; 1r1/0/0>} with FP #31, CFrd1;0

= {<1; 0r0/1/1>} with FP #30 and CFrd1;1 = {<1; 1r1/0/0>} with FP
#32.

6. Incorrect read coupling fault (CFir)—Two cells are said to have an
incorrect read coupling fault if a read operation performed on the victim
returns the incorrect logic value, while the aggressor is in a given state. There
are four incorrect read coupling FPs: CFir0;0 = {<0; 0r0/0/1>}with FP #25,
CFir0;1 = {<0; 1r1/1/0>} with FP #35, CFir1;0 = {<1; 0r0/0/1>} with FP
#26 and CFir1;1 = {<1; 1r1/1/0>} with FP #36.

7. Deceptive read destructive coupling fault (CFdr)—A cell is said to
have a deceptive read destructive coupling fault if a read operation performed
on the victim returns the correct logic value and changes the contents of the
victim, while the aggressor is in a given logic state. There are four deceptive
read destructive coupling FPs: CFdr0;0 = {<0; 0r0/1/0>} with FP #27,
CFdr0;1 = {<0; 1r1/0/1>} with FP #33, CFdr1;0 = {<1; 0r0/1/0>} with
FP #28 and CFdr1;1 = {<1; 1r1/0/1>} with FP #34.

4.2.3 Complexity of fault primitives

As operations are added to S, in order to investigate the dynamic faulty behavior
of the memory, the possible number of different Ss, and the associated number of
dynamic FPs, increases rapidly. For a single-cell FP, S typically starts with an
initialization of either 0 or 1, followed by one of three possible memory operations
w0, w1 or r for each increment in #O. As a result, the possible number of different
Ss can be calculated by [Al-Ars99]:

#S = 2 · 3#O (4.2)

When no operation is performed (#O = 0) the number of possible FPs is 2, and
when one or more operations are performed, S is able to sensitize 10 different FPs
for each increment in #O [see Table 4.1], as summarized in the following relation:

4.2. Generic space of faults | 77

#single-cell FPs =

{

2 : #O = 0

10 · 3(#O−1) : #O ≥ 1
(4.3)

These equations indicate an exponential relationship between #S and #O on
the one hand, and between #FP and #O on the other. Therefore, a straight-
forward attempt to investigate the dynamic faulty behavior of the memory, by
directly applying all possible Ss, is limited by practical analysis time and avail-
able computing power. Using the analysis approach presented in Chapter 5, the
total infinite space of dynamic faulty behavior can be approximated within a short
amount of analysis time.

4.2.4 Fault primitive detection and march tests

In order to inspect memory devices for possible faulty behavior, memory testing is
performed on all produced memory components. Many types of memory tests are
being used today, each with its own advantages and disadvantages. March tests
are among the most popular memory tests, due to their low complexity and high
fault coverage.

Definition of march tests

The idea of march tests is to construct a number of operation sequences and to
perform each sequence on all memory cells, one after the other, before performing
the following sequence in the test. Therefore, a march test can be defined as
a sequence of march elements, where a march element is a sequence of memory
operations performed sequentially on all memory cells. In a march element, the way
one proceeds from one cell to the next is specified by the address order , which can
be increasing (denoted by ⇑) or decreasing (denoted by ⇓). The ⇓ address order
has to be the exact opposite of the ⇑ address order. For some march elements,
the address order can be chosen arbitrarily as increasing or decreasing, which is
denoted by the m symbol. In a march element, it is possible to perform a write 0
operation (w0), write 1 (w1), read 0 (r0) and read 1 (r1) operation. The 0 and
1 after read operations represent the expected values of the read on the output.
An example of a march element is ⇑(r0, w1), where all memory cells are accessed
in an increasing address order while performing r0 then w1 on each cell, before
continuing to the next cell.

By arranging a number of march elements one after the other, a march test is
constructed. An example of a march test is {m(w0);⇑(r0, w1);⇓(r1, w0)}, which is
the well known march test called MATS+ [vdGoor98]. It consists of three march
elements denoted as M0, M1 and M2. The test begins with writing 0 into all
memory cells in an increasing or decreasing order, then on each cell a read 0 and
a write 1 operation is performed in an increasing order, and finally on each cell a
read 1 and a write 0 operation is performed in a decreasing order.

78 | Chapter 4. Modeling faulty memory behavior

Generation of march tests

The analytical approach to memory testing begins with an analysis of the faulty
behavior of the memory, which is then described by a number of FPs, that give
an exact description of the way the faulty behavior is sensitized. These FPs are
used to identify so-called detection conditions, which describe an incomplete set
of march elements specifying the minimum requirements a march test has to fulfill
in order to detect the faulty behavior. Detection conditions can easily be used to
generate the necessary memory tests to detect the observed faulty behavior.

As an example, assume that the fault analysis of a given memory indicates that
the memory suffers from an up transition fault TF1 = {<0w1/0/−>}. The FP
gives a precise description of the way the observed fault can be sensitized. In order
to detect this fault, a march test needs to fulfill the detection condition m(..., w0,
...) m(..., w1, ...); m(..., r1, ...), which states that the test has to initialize all cells
to 0, then perform an up transition write operation on each cell, and finally it has
to read the written 1 from all cells.

It is possible to generate many different march tests that satisfy this detection
condition. Here are some examples:

• {m(w0, w1, r1)}

• {m(w0);m(w1, r1)}

• {m(w0);m(w1);m(r1)}

• {⇑(w0, w1, r1)}

• {⇑(w0);⇓(w1, r1)}

• etc.

Multiple detection conditions needed to detect a number of different FPs in the
faulty behavior can also be used to generate a single march test to fully test the
memory for possible faulty behavior.

4.3 DRAM-specific faults

As discussed in the previous section, the space of memory faults is infinitely large,
which makes it impossible to inspect a given memory for all possible faults. In-
stead, every memory is inspected for a limited number of relevant memory-specific
faults that represent a part of the full space of faults. This section introduces a
classification of the space of memory faults specific to DRAMs, along with a dis-
cussion of each class. The classification takes time into consideration, an aspect
that is not modeled in the generic fault space above.

Any memory fault can be represented by the FP notation <S/F/R>, where S
stands for the sensitizing operation sequence that results in sensitizing the fault. In

4.3. DRAM-specific faults | 79

DRAMs, however, S can be divided into two parts: the initialization part (I) and
the sensitization or fault activation part (A). I represents the initial data present
in the cells, along with the operations performed to ensure that all relevant cells are
set to known predefined states. A is the sequence of operations needed to sensitize
(or activate) the fault. Therefore, a DRAM fault primitive is denoted by FP =
<S/F/R> = <IA/F/R>. In terms of time, the operations performed in I are
supposed to take place before the operations performed in A. Using this idea, it
is possible to identify the part of S that represents I, and the part that represents
A, for the single-cell and two-cell static faults defined in Section 4.2, as follows [see
Expression 4.1]:

• If #O = 0, or in other words, if state faults or state coupling faults are taking
place, then there is no sensitization part, and S = I.

• If #O = 1, and S has only one operation, then A consists of this operation
(A = Oc1), while I consists of the initializations of S (I = dc1 for single-cell
faults and I = dc1dc2 for two-cell faults).

The classification of DRAM-specific faults is based on the concepts of the initial-
ization and the sensitization parts of S, as described in Table 4.3. As the operations
in S are being performed, DRAM faults may take place in four different stages:
during I, between I and A, during A, and after A. DRAM faults have two main
causes:

• improperly set voltages resulting in voltage dependent faults, and

• leakage currents resulting in time dependent faults.

Faults caused by improper voltages stem from the inability of a memory operation
in a defective memory to set the full voltage levels expected at different nodes of the
memory, resulting in two different fault modes: 1. improper voltages present within
the memory cell, and 2. improper voltages on the nodes of the peripheral circuits.
Improper voltages within the cell cause partial faults, while improper voltages in
periphery cause dirty faults.

Leakage currents, on the other hand, cause time dependent faults to take place,
and depending on the direction of the leakage with respect to the performed op-
eration, either soft faults or transient faults take place due to a supporting or an
opposing leakage current, respectively. In the following, these DRAM-specific faults
are discussed in more detail.

4.3.1 Voltage dependent faults

In a DRAM, operations are supposed to properly set the voltage levels on different
nodes (cells or bit lines, for example) in the memory by charging or discharging
the capacitors, corresponding to that node, to a predefined high or low voltage
level. In general, however, a voltage across a capacitor may take any value from a

80 | Chapter 4. Modeling faulty memory behavior

Table 4.3. Classification of DRAM-specific faults.

Cause of Mode of Resulting fault model

problem problem During I Between I & A During A After A

Within Partial — Partial —

Improper cell faults faults

voltages In — Dirty — Dirty

(voltage periphery faults faults

dependent) In cells & Partial Dirty Partial Dirty

periphery faults faults faults faults

Leakage Supports Transient

currents operation faults

(time Opposes Soft

dependent) operation faults

continuous range of real voltages. Therefore, operations performed on a defective
memory may set improper voltage levels on different memory nodes, and therefore
require a special sequence of operations to ensure setting them properly. Improper
voltages may cause two types of DRAM faults: partial faults and dirty faults.

Partial faults

Definition—These are faults that can only be sensitized when a specific memory
operation is successively repeated a number of times, either to properly initialize the
faulty cell, or to properly sensitize the fault in the cell [Al-Ars02a]. The definition
indicates that there are two different sorts of partial faults: 1. partial faults during
initialization I, and 2. partial faults during sensitization A.
Root-cause—Partial faults result from the fact that DRAM cells represent data
as analog voltages in a storage capacitor that is supposed to be fully charged or
discharged after a single write operation has been performed on a defect-free cell.
Figure 4.3(a) shows an example of an open (Rop) in the cell, causing a partial fault
in I. Rop prevents fully initializing the cell to the required voltage with only one
operation, which means that full initialization requires repeating the operation a
number of times. Figure 4.3(b) shows an example of a bridge (Rbr) between two
cells, causing a partial fault in A. When a cell is written, Rbr forces the other cell
to be written as well, and for sufficiently large values of Rbr , multiple operations
are needed to sensitize the partial fault in A.
Fault modeling—This is achieved by performing a special sequence of operations
in I or in A. Partial faults assume that in order to ensure a proper voltage in a given
cell, an operation Ox should be performed an h (or hammer) number of times, to
ensure sensitizing the fault. Therefore, partial faults require that any Ox operation

4.3. DRAM-specific faults | 81

To precharge
circuits

WL WL
BL

(b) Partial in A

Rbr

BL

Rop

WL
RopBL

WL

(a) Partial in I (c) Dirty faults

drivers
To write

and SAs

Figure 4.3. Defects causing (a) partial faults in I , (b) in A, and (c) causing dirty faults.

be substituted by Oxh. For example, if a single-cell fault of the form <xOy/F/R>
becomes partial in A, it should be modeled as <xOyh/F/R>, which means that
repeating the sensitizing operation of A on the cell multiple times causes a fault.

Dirty faults

Definition—These faults assume that after proper initialization or sensitization,
the state of the memory (voltages on the BLs, the WLs, or in data buffers) is
corrupted, such that subsequent detection is prevented. In order to ensure that the
sensitized fault is detectable, additional operations must be performed to correct
the corrupted state of the memory [Al-Ars01c].

Root-cause—These faults result from the fact that writes and reads are com-
plex operations, requiring a properly set environment in the memory to function
correctly. A number of memory defects may result in disrupting this balanced en-
vironment. Figure 4.3(c) shows an example of an open defect (Rop) on the BL that
causes dirty faults. This defect disconnects memory cells from the write drivers,
thereby limiting the ability of the memory to properly write the cells. At the same
time, this defect disconnects the precharge devices from part of the BL, which
prevents properly precharging the BL. As a result, a w0 operation that fails to
write 0 in the cell may end up preconditioning the BL to properly sense a 0 in a
subsequent read operation, thereby preventing the detection of the faulty w0 and
causing a dirty fault [Al-Ars02a].

Fault modeling—This is achieved by the introduction of completing operations
to the FP, which need to be performed after the initialization (I) or after the sensi-
tization (A) part of S. Assuming that Io represents the original initialization part
of S, and that C represents the completing operation sequence, then the completed
initialization is represented by I = Io[C]. In the same way, the completed sensiti-
zation part of S is represented by A = Ao[C], where Ao is the original sensitization
part of S. There are two different defects known to cause dirty faults in DRAMs,
one is an open on the BL, which results in improperly set BL voltages, and the
other is an open in the sense amplifier, which results in improperly set data buffers

82 | Chapter 4. Modeling faulty memory behavior

[Al-Ars02a]. Both defects cause dirty faults that can be detected using a write com-
pleting operation with data opposite to the data in the victim, performed to a cell
different from the victim but positioned on the same BL. This gives the following
FP: <xOvy[way]/y/−>a,v∈BL.

4.3.2 Time dependent faults

Time dependent faulty behavior in DRAMs (sometimes in other memories as well)
cannot be described using the generic fault space discussed in Section 4.2. This
section presents an extended FP notation that is able to take time dependent faults
into consideration. This is done using a special classification of faults, based on
leakage currents, which divides faults into: hard faults, soft faults and transient
faults. The section starts with a basic description of DRAM functionality, followed
by a classification of FPs according to their time dependency [Al-Ars04a].

Basic DRAM functionality

As shown in Figure 4.4, a DRAM cell consists of an access transistor controlled
by the WL, which connects the BL to a cell capacitor. A DRAM cell stores its
logic value in a leaky storage capacitor, which is not directly connected to a power
supply node, a fact that results in the gradual loss of the stored charge in the
capacitor. In order to store data in a DRAM for a long period of time, the stored
data in the cell needs to be refreshed regularly to prevent the total depletion of
stored information. There are many causes of leakage current, some pull the cell
voltage up, while others pull the cell voltage down, such that the net voltage change
within the cell is determined by the net effect of all active leakage mechanisms for
a given memory cell [Keshavarzi97].

BL

WL

Vc

Logic 0

Logic 1

VWVVWVVWV
VWVVWV
XWXXWXXWX
XWXXWX

YWYYWYYWY
YWYYWY
ZWZZWZZWZ
ZWZZWZ

Faulty

High
voltage

Low
voltageGND

Vdd

Cell voltage (Vc)

Vbh

Vbl

Figure 4.4. Basic structure and ranges of stored voltages of a DRAM cell.

Directly after a write operation, the voltage in the capacitor should be set to a

4.3. DRAM-specific faults | 83

high (or a low) enough level that allows enough time before the voltage is completely
destroyed by leakage. Therefore, it is possible to divide stored cell voltages, present
directly after performing a write operation, into three regions [see Figure 4.4]. The
“logic 1” region directly after performing a write 1 operation, the “logic 0” region
directly after performing a write 0, and the “faulty” region directly after performing
a faulty write 1 or 0 operation. The logic 1 region extends from the high power
supply voltage (Vdd) to the border high voltage (Vbh), the logic 0 region extends
from GND to the border low voltage (Vbl), while the faulty region takes on the
voltages between Vbh and Vbl .

The exact values of the voltages in the figure depend on a number of factors, such
as the specific memory design, the fabrication technology and the type and severity
of the defect in a defective memory. As an example, these voltages can assume the
following values in a defect-free memory: Vdd = 2.5 V, Vbh = 95% · Vdd = 2.38 V,
Vbl = 5% · Vdd = 0.13 V.

Assume that a defective memory cell has a net leakage current that pulls the
cell voltage down, then the voltage ranges corresponding to a stored logic 0 and
stored logic 1, directly after performing a write operation, are shown in Figure 4.5.
The figure shows that, in addition to the region of proper operation, there are three
faulty regions: the hard fault region, the soft fault region and the transient fault
region. In the following, each of the three types of faults is described in more detail.

Direction
of
leakage

[\[\[[\[\[[\[\[[\[\[[\[\[[\[\[[\[\[

]\]]\]]\]
]\]]\]]\]
]\]

^\^\^

`\`\``\`\``\`\``\`\``\`\``\`\``\`\`

a\aa\aa\a
a\aa\aa\a
a\a

b\b\b

c\cc\cc\c
c\cc\cc\c
c\cc\cc\c
c\cc\cc\c
c\cc\cc\c
c\cc\cc\c
c\cc\cc\c

voltage
Correct

Vdd

GND

voltage
Correct

Vdd

GND
Logic 1 Logic 0

Soft fault Transient fault

Hard fault

Hard fault

Vbh

Vcs Vcs

Vbh

region region

region

region

Figure 4.5. Voltage ranges in DRAM cells directly after an operation.

Hard faults

Definition—Hard faults are memory faults that do not depend on time in any
way, neither for sensitization nor for detection. They are directly sensitized after
performing a number of memory operations, without the need to wait for a while
for the faulty behavior to take effect. Furthermore, once they are sensitized they

84 | Chapter 4. Modeling faulty memory behavior

remain sensitized unless overwritten, giving unlimited amount of time for their
subsequent detection.

Root-cause—These faults result from defects in the memory that prevent proper
functionality under all circumstances for a specific sequence of memory operations.
Figure 4.5 shows the region of hard fault voltages, directly after performing a write
operation on a DRAM cell having a net leakage current that gradually pulls the cell
voltage down. The voltage level Vcs in the figure is the cell sense threshold voltage,
above which the sense amplifier detects a stored logic 1, and below which the sense
amplifier detects a stored 0. Therefore, in the column representing logic 1 in the
figure, any voltage below Vcs is considered as a hard fault, since it can be directly
detected by a read operation. In the column representing logic 0 in the figure, the
hard fault range is between Vdd and Vbh , since it takes more time than the refresh
time to deplete the faulty charge in the cell to a detectable 0.

Fault modeling—Since hard faults should not depend on time for their sensiti-
zation nor detection, neither S nor F , in the FP notation of a hard fault, should
have a time parameter attached to it. This is identical to the FP description of any
generic fault, as listed in Tables 4.2 and 4.1, as all of these faults are considered to
be time independent.

Examples—Figure 4.6 shows examples of memory defects that generate hard faults
for both DRAM and SRAM cells. For the DRAM cell, the open defect (Rop)
between the pass transistor and the cell capacitor restricts current flow to and
from the cell and prevents write operations from changing the value stored in
the cell, thereby causing an up transition fault (<0w1/0/−>) as well as a down
transition fault (<1w0/1/−>) for high open resistance values [Al-Ars01a]. The
transition faults here represent hard faults since they are sensitized once the write
operations are performed. For the SRAM cell, the open defect (Rop) at the gate
of the pull-down transistor causes a down transition fault (<1w0/1/−>) when the
open resistance has a high value [Hamdioui00]. This type of fault requires a write
operation, and will always be sensitized once the faulty operation is performed.

Vdd

False
node

True
node

WL
BL

Rop

Rop

Figure 4.6. Opens in DRAM and SRAM cells causing hard as well as soft faults, each for a
specific range of defect resistances.

4.3. DRAM-specific faults | 85

Soft faults

Definition—Soft faults are memory faults sensitized by a sequence of memory
operations, that only become detectable after some time from their sensitization.
These faults have usually been tested for by the addition of a delay within the test,
to facilitate the detection of the fault, as it is the case for the data retention fault ,
for example [Dekker90].

Root-cause—Soft faults are caused by writing weak voltages into memory cells,
that soon get depleted by naturally occurring leakage currents. Figure 4.5 shows
the region of soft fault voltages within a DRAM cell having a net leakage current
to GND. With such leakage current, soft faults take place after a w1 operation that
sets a cell voltage between Vbh and Vcs , since this faulty voltage sensitizes a fault
when time passes to deplete the voltage to a level below Vcs .

Fault modeling—In terms of the FP notation, soft faults are represented as
<ST /F/R>, where the sensitizing operation sequence has an added time parameter
T to indicate that some time should first elapse before the fault effect is completely
sensitized. The fact that time is needed to sensitize soft faults is particularly frus-
trating for test designers, since test time is a major cost factor in the whole process
of memory testing. Therefore, soft faults are primarily tested for using specialized
design-for-testability (DFT) techniques or using stresses rather than introducing
idle time into the testing process, as discussed later in Section 4.4.

Examples—Figure 4.6 shows examples of memory opens that cause soft faults
in both DRAM and SRAM cells. For the DRAM cell, if the open defect has an
intermediate resistance value that is not too high (causing hard faults) and not too
low (not causing a fault at all), write operations succeed but are only able to write
a weak voltage into the cell. As time passes, and due to naturally occurring leakage
in DRAM cells, a weakly written voltage is depleted gradually, thereby losing the
stored information over time. The assumed net leakage current toward GND results
in soft faults associated with weak logic 1 voltages, while a net leakage current
toward Vdd results in soft faults associated with weak logic 0 voltages. Therefore,
this defect causes what we may call soft transition faults, and using the FP notation,
these can be written as <0w1T/0/−> and <1w0T/1/−>. The SRAM open shown
in Figure 4.6 is located at the gate of the pull-down transistor, a defect position
that (in combination with a low floating gate voltage) degrades the ability of GND
to compensate for leakage currents through the pull-up transistors. Therefore, a
stored 0 voltage on the defective side of the cell will be gradually degraded through
leakage, until the cell flips and looses its stored voltage a while later. This faulty
behavior is referred to as data retention fault, and has the FP notation <0T /1/−>.

Transient faults

Definition—Transient faults are memory faults that do not remain sensitized in-
definitely, but tend to correct themselves after a period of time [Al-Ars01b]. Tran-
sient faults are tested for by performing all the operations in the fault in back-to-back

86 | Chapter 4. Modeling faulty memory behavior

mode directly after each other, and following them with a detecting read operation
directly afterwards.

Root-cause—Transient faults are caused by writing weak faulty voltages into
memory cells, that soon get corrected by naturally occurring leakage currents. Fig-
ure 4.5 shows the region of transient fault voltages in a DRAM cell having a net
leakage current to GND. With such leakage current, transient faults are only sen-
sitized after a w0 operation that sets a cell voltage between Vbh and Vcs , since such
a faulty voltage is automatically corrected by leakage after some idle time.

Fault modeling—In terms of the FP notation, transient faults are represented as
<S/FL/R>, where the underscore below S means that the operations in S should
be performed in back-to-back mode directly after each other, and that the faulty
cell value F has an added time parameter L (life time) to indicate that these faults
are time limited. In terms of detection conditions, an underscore below operations
in a transient fault means that the operations have to be performed after each other
within one march element. For example, if S = w1w0 then the detection condition
should be m(..., w1, w0, ...).

Examples—As an example of transient faults, consider the DRAM open shown
in Figure 4.6, where Rop limits the ability of write operations to charge up and
discharge cell voltages. For a specific range of Rop values, write operations set
a faulty voltage within the cell that is not strong enough to qualify as a hard
fault. As time passes, and due to naturally occurring leakage in DRAM cells, a
weakly written faulty voltage is depleted gradually, thereby correcting the faulty
information over time. Assuming a net leakage current toward GND results in
transient faults associated with faulty logic 0 voltages, while a net leakage toward
Vdd results in transient faults associated with faulty logic 1 voltages. Therefore,
the shown defect causes what we may call transient transition faults, and using the
FP notation, these can be written as <0w1/0L/−> and <1w0/1L/−>. Transient
faults have not yet been observed in SRAMs.

4.3.3 Space of DRAM faults

Any generic memory fault, described in Section 4.2, can represent a DRAM-specific
fault by adding a DRAM-specific fault attribute to it. For example, it is possible
to construct a number of DRAM-specific versions of the transition fault, such as
the partial transition fault, the dirty transition fault, the soft transition fault, and
so on. As discussed above, there are five DRAM-specific attributes, classified into
two different classes. The first class consists of the following two voltage dependent
faults: partial faults (p), and dirty faults (d). The second class consists of the
following three time dependent faults: hard (h), soft (s) and transient (t) faults.
It is important to note here that there are two different types of partial faults, one
is the initialization related partial faults (pi), while the other is the activation (or
sensitization) related partial faults (pa).

In addition to these individual attributes, it is possible to have multiple at-

4.3. DRAM-specific faults | 87

tributes at the same time associated with a given generic fault model. As a result,
it is possible to establish the whole space of DRAM faults, by considering the
possibility that multiple attributes apply to a fault at the same time, for a given
defect.

First of all, note that any voltage dependent attribute can be combined with
any time dependent attribute, without restrictions. The reason behind this is the
fact that these two classes of DRAM-specific faults are based on two physically
independent root causes, which results in faults that are independent as well. This
means that each generic fault can be associated with a voltage dependent attribute
in combination with a timing dependent attribute in the following way:

Fault =

{

Voltage dependent

attribute

} {

Timing dependent

attribute

}

FP (4.4)

Furthermore, note that the different attributes of time dependent faults (h, s
and t), are not compatible with each other. The reason for this is that each specific
attribute of time dependent faults, influencing memory behavior, is based on the
strength of applied memory operations and on the direction of the leakage current,
either supporting or opposing the applied operations [see Section 4.3.2]. As a result,
only one time dependent behavior can take place at a given time, and for a given
defect. More precisely, the set of timing dependent faults is equal to {h, s, t}. It is
worth noting here that the hard fault attribute does not modify a generic fault in
any way, which means that it is identical to the absence of an attribute (symbolized
by -).

In contrast, the different attributes of voltage dependent faults are compatible
and can be combined with each other. The reason for this is that voltage depen-
dent faults influence the behavior of the memory in different time instances, while
the sensitizing operation sequence is applied. Table 4.3 shows that partial faults
influence the behavior during the initialization (I) and activation (A), while dirty
faults influence the behavior between I and A, and after A. More precisely, the
set of voltage dependent faults is equal to {-, p, d, pd}, where - stands for no at-
tribute, while pd stands for the combined attribute “partial dirty”. It is important
to note here that there are three different combinations of partial faults (p): the
initialization related partial faults (pi), the activation related partial faults (pa),
and the initialization and activation related partial fault (pia).

In conclusion, Expression 4.4 can be expanded to describe all possible DRAM-
specific faults as follows:

Fault =























-

p

d

pd





































h

s

t















FP (4.5)

Expression 4.5 indicates that any generic fault model can be either regular (-),
partial (p), dirty (d) or partial dirty (pd), while being hard (h or -), soft (s) or

88 | Chapter 4. Modeling faulty memory behavior

transient (t) at the same time. In total, this gives a space of 4 × 3 = 12 different
attributes for DRAM-specific faults. Table 4.4 lists all these different attributes,
and shows an example of how they can be attributed to the transition 0 fault (TF0).

Table 4.4. Space of DRAM-specific faults.

Fault FP Name

1 hTF0 <1w0/1/−> hard transition 0 fault

2 piahTF0 <w1iw0a/1/−> partial hard TF0

3 dhTF0 <1w0[C]/1/−> dirty hard TF0

4 piadhTF0 <w1iw0a[C]/1/−> partial dirty hard TF0

ghTF0 <w1iw0a[Cd]/1/−> general hard TF0

5 sTF0 <1w0T/1/−> soft transition 0 fault

6 piasTF0 <w1iw0a
T /1/−> partial soft TF0

7 dsTF0 <1w0[C]T/1/−> dirty soft TF0

8 piadsTF0 <w1iw0a[C]T /1/−> partial dirty soft TF0

gsTF0 <w1iw0a[Cd]T /1/−> general soft TF0

9 tTF0 <1w0/1L/−> transient transition 0 fault

10 piatTF0 <w1iw0a/1L/−> partial transient TF0

11 dtTF0 <1w0[C]/1L/−> dirty transient TF0

12 piadtTF0 <w1iw0a[C]/1L/−> partial dirty transient TF0

gtTF0 <w1iw0a[Cd]/1L/−> general transient TF0

Fault #1 in the table is the hTF0, which is identical to the generic TF0. Fault
#2 is the partial hard TF0, which is denoted by the FP <w1i w0a/1/−>. The i in
the sequence w1i is caused by the initialization related partial fault (pi), where it
stands for the number of times the initializing w1 operation should be performed
(i ≥ 0). The a in the sequence w0a is caused by the activation related partial fault
(pa), where it stands for the number of times the activating w0 operation should be
performed (a ≥ 1). Fault #3 is the dirty hard TF0, which is obtained by adding a
completing sequence of operations ([C]) to the sensitizing operation sequence (S).
Fault #4 in the table is the partial dirty hard TF0, which is denoted by the FP
<w1i w0a [C]/1/−>. This fault contains i initializing w1 operations, it contains
a activating w0 operations, in addition to the completing operation sequence [C].
The four types of hard transition faults can be represented by the general hard TF0

(ghTF0), denoted by <w1i w0a [Cd]/1/−>, where i ≥ 0, a ≥ 1 and d ∈ {0, 1}. The
ghTF0 can be reduced to any type of hard TF0 by properly setting its parameters
i, a and d. For example, it can be reduced to the hTF0 by using i = 0, a = 1 and
d = 0; it can be reduced to the piahTF0 by using d = 0; and it can be reduced to
the dhTF0 by using i = 0, a = 1 and d = 1.

4.4. Industrial test practices | 89

Fault #5 in the table is the soft TF0, since it adds a delay time (T) to the
sensitizing operation of the generic transition fault. In the same way, a soft version
of the partial, dirty, and partial dirty TF0 is obtained by adding a T to their
respective sensitizing sequences. And finally, all these soft TF0 can be represented
by the general soft TF0 (gsTF0), denoted as <w1i w0a [Cd]T /1/−>, where i ≥ 0,
a ≥ 1 and d ∈ {0, 1}. The gsTF0 can be reduced to any type of soft TF0 by
properly setting its three parameters i, a and d. It can be reduced to the sTF0 by
using i = 0, a = 1 and d = 0, it can be reduced to the piasTF0 by using d = 0, and
it can be reduced to the dsTF0 by using i = 0, a = 1 and d = 1.

Faults #9 through #12 in the table represent the four different types of transient
TF0, since they add a life time (L) to the fault effect F . In addition, an underscore is
added to each operation in S, which means that these operations must be performed
in back-to-back mode (i.e., instantaneously after each other and without delay)2.
The general transient TF0 (gtTF0) is represented by the FP <w1i w0a [Cd]/1L/−>,
where i ≥ 0, a ≥ 1 and d ∈ {0, 1}. The gtTF0 can be reduced to any type of
transient TF0 by properly setting its three parameters i, a and d.

4.4 Industrial test practices

Industrial testing of memories is a complex and involved process that uses as many
operational aspects of the memory as possible to stress its functionality, in an
attempt to induce a failure. Industrially used test aspects can mainly be classified
into two categories, the used stress combinations, and the applied memory-specific
operations. This section gives a general discussion of those industrial aspects of
memory testing.

4.4.1 Stress combinations

A stress combination (SC) consists of a number of stresses with specific assigned
values, applied together to the memory under test. A stress (ST) represents some
way of facilitating the fault detection process, which includes for example cycle time
tcyc, temperature T , and supply voltage Vdd . Several papers have been published,
showing the effectiveness of stresses [Goto97, Schanstra99, vdGoor99].

As mentioned in Section 4.3.2, STs are used to accelerate the detection process
of soft faults. Without STs, the detection of soft faults can only take place by in-
troducing idle time in the memory test, something that significantly increases the
test cost. Figure 4.7 shows how the maximum voltage achievable by a w1 operation
performed on a cell containing GND (Vw1) decreases gradually by decreasing the
access time to the memory cell. When timing is significantly shortened by aggres-
sively driving it below the boundaries set in the specifications, all cells (functional

2In terms of detection conditions, an underscore below operations in a transient fault means
that the operations have to be performed after each other within one march element. For example,
if S = w1w0 then the detection condition should be m(..., w1, w0, ...).

90 | Chapter 4. Modeling faulty memory behavior

and defective) are brought closer to failure, and are actually forced to fail when
Vw1 ≤ Vcs .

voltage
Correct

deddedded
deddedded
deddedded
deddedded
deddedded
deddedded
deddedded
ded

feffeffef
feffeffef
feffeffef
feffeffef
feffeffef
feffeffef
feffeffef
fefVw1 = Vcs

gegeg

hehhehheh
hehhehheh
hehhehheh
hehhehheh
hehhehheh
hehhehheh
hehhehheh
heh

Vcs

Vw1

ieieiieieiieieiieieiieieiieiei
jejejjejejjejejjejejjejejjejej

kekek

lelel

Vbh

Vcs

Vw1 = Vdd

Soft fault

Hard fault

region

region

Timing reduction

Figure 4.7. Eliminating soft faults by forcing a directly detectable fault using timing for a w1.

When an ST is selected to eliminate the soft fault problem of a specific defect,
it should satisfy two conditions.

1. It is necessary that the ST is able to force a directly detectable fault in any
defective cell, no matter how minor the defect is, which can only be achieved
by bringing even functional cells to the verge of failure. STs able to achieve
this for a given defect are called decisive STs for the considered defect, while
STs that only influence, but do not force detectable faults are called indecisive
STs for that defect.

2. The degradation in functionality induced by the decisive ST should take place
gradually in such a way that badly defective cells are killed first and functional
cells are killed last. These STs are referred to as continuously decisive STs.

It follows directly from this discussion that:

It is sufficient to identify only one continuously decisive stress for a given
defect in order to eliminate soft faults from the faulty behavior of that defect.

There are practical difficulties, however, in applying STs to eliminate soft faults
in DRAMs. The most serious of which is related to the amount of degradation
required to eliminate the soft fault problem. Since the fabrication process of in-
tegrated circuits is not a perfect one, the characteristics of functional memories
represent a statistical distribution around an ideal norm, which makes it practi-
cally impossible to identify an exact border that separates functional components
from faulty ones. Therefore, great care should be taken when defining the values

4.4. Industrial test practices | 91

for decisive STs in order to prevent cutting into the range of functional compo-
nents. In the industry, it is commonly accepted to eliminate some functional (but
weak) components in order ensure the high quality of the memories delivered to
the customer [Vollrath00].

As an example, a well-known industrial stress condition is the so-called Vdd

bump test, which uses one of the supply voltages as the stress parameter [Al-Ars01c].
The stresses commonly used in industry can be divided into the following classes:

1. Algorithmic stresses—They specify more precisely the way a test algorithm
should be applied. This can be in terms of:

(a) The specific addressing direction (AD) used to access memory cells in
the test [vdGoor04a]. There is, for example, fast-x addressing (denoted
by xm) and fast-y addressing (denoted by ym).

(b) The specific counting method (CM) used in the test to proceed from one
cell to the next [vdGoor04a]. There is, for example, the binary CM, the
Gray code CM, etc.

(c) The specific data to be read/written. This usually is denoted as the data
background (BG). There is, for example, the solid BG (where all cells
use the same value) and the checkerboard BG (where the vertical and
horizontal neighbors of the cell contain the complement value stored in
the cell).

2. Environmental stresses—These are stresses which relate to the environ-
ment the chip has to be tested in. Temperature, voltage and timing are
typical examples of this class of stresses.

The exact way these stresses are used depends on the specific design and con-
struction of the memory under test.

4.4.2 Device-specific fault primitives

This section discusses the shortcomings of the current FP notation and suggests
ways to improve it. The discussion here is related to the way external operations
performed on the memory result in sensitizing faults. The improvements to the
FPs concentrate on a given type of DRAMs as the memory of interest, but similar
strategies may be used to take other types of memory into consideration.

Shortcomings of current FPs

The FP notation presented in Section 4.2 is a generic notation that is compatible
with almost all RAM devices today. Such a generic notation does not address the
faulty behavior needs of specific types of memory devices (DRAMs, for example).
The inability of FPs to describe DRAM-specific faulty behavior originates from the
limited types of operations S can describe.

92 | Chapter 4. Modeling faulty memory behavior

The definition of S is based on a reduced memory model, as shown in Fig-
ure 4.8(a), that is the same for all RAM devices [vdGoor98]. This model assumes
that a memory has only three input/output terminals: an address input bus (Ad-
dress), a data input/output bus (Data in/out), and a command input (R/W) to
perform either a read or a write. For example, this model can represent a TF1 tran-
sition fault as in <0w1/0/−>c, where the address bus contains the address of the
cell c, the R/W input encodes a write operation and the data in/out bus contains
the written data 1. The advantage of this model is that it is simple, thereby keeping
the needed analysis of the faulty behavior simple. The model is also generic, which
makes analysis results based on this model applicable to many memory devices.
The disadvantage of the model, however, is that it neglects a number of parame-
ters that could effect the behavior of the memory (e.g., temperature and voltage).
An attempt has been made to improve on this model by including voltages and
temperature (T), found to be important in testing [Offerman97]. Still, the model
does not include timing or memory-specific operations.

model

R/W

Address memory
Reduced

(a)

model

Data in/out

Power supply

Detailed
memory

(b)

Environment

Address

Data in/out

Temperature
Timing

Command

Figure 4.8. Memory models used for defining S: (a) a reduced memory model, (b) a detailed
memory model.

Figure 4.8(b) shows such a memory model with 3 input and/or output terminals,
and which takes supply voltages, temperature and timing into consideration. The
data in/out bus and the address bus are the same in the reduced as well as the
detailed models. The command bus in the new model replaces the R/W input in
the old model.

In order to carry out this extension on the new model shown in Figure 4.8(b),
we need to select a specific memory product in order to give the exact definitions of
the command bus and specify the type of supply voltages and timing parameters to
be modified. Table 4.5 gives these definitions for a current Infineon DRAM product
[Falter00].

Table 4.5 identifies two voltages for the power supply and two clock related
parameters to control timing. In addition, the table lists the five DRAM-specific
primitive commands.

4.4. Industrial test practices | 93

Table 4.5. Definitions of command, voltage, timing and temperature parameters for a DRAM.

Terminal Definition Description

Command Act Activate: access a row of cells and sense their
data content.

Wr Write: write data into a memory cell.

Rd Read: forward data from the sense amplifier
to output.

Pre Precharge: restore data to cells and
precharge bit lines.

Nop No operation

Supply voltage Varr1 First array voltage: power supply to the cell
array.

Varr2 Second array voltage: power supply to the
cell array.

Timing Frq Frequency of the clock signal

τ Duty cycle of the clock signal

Temperature T Ambient temperature

Extending the FP notation

Extending the current FP notation can be done by enabling S to describe any
possible operation sequence performed on the new model shown in Figure 4.8(b)
using the specific terminal definitions of the current Infineon DRAM product listed
in Table 4.5. The needed extensions involve: 1) describing the five DRAM-specific
commands, 2) describing the algorithmic stresses, and 3) describing the environ-
mental stresses of the memory. Each one of these extensions is described below.

Describing memory-specific commands The first step to account for the five
DRAM commands of Table 4.5 is to modify the set of possible operations in FPs
to include all of them. This way the set of possible performed operations should
be {Actcw

, Rddcb
, Wrdcb

, Pre, Nop}. Unlike the traditional read (r) and write
(w) operations, these five commands are not independent from each other, which
means that some Ss should not be allowed. Therefore, the condition described
in Expression 2.11 should be satisfied to limit the space of S to those practically
possible.

Act Cd1 ... Cdi ... Cdn Pre Nop ... Nop, Cdi ∈ {Wr0, Wr1, Rd0, Rd1, Nop}

Describing algorithmic stresses Algorithmic stresses refer to the specific ad-
dressing used to detect a given fault, or to the needed data background. The needed
data background is already described by the current FP notation. In order to take
addressing into consideration, a number of attributes should be added to the FP to

94 | Chapter 4. Modeling faulty memory behavior

specify the topological relation between the cells accessed within the FP. The most
important attributes are BL (cells are along the same bit line), WL (cells are along
the same word line), and DG (cells are along the diagonal). For example, the two
cells in the fault <0a1v/0/−>BL are indicated by BL to be along the same bit line.
In addition to the topological relationships, it is important to identify adjacency
relationships of the cell in an FP. A well-known example of these relations is the
four closest neighbors of a given cell (the cells to the north, south, east and west),
symbolized by the � in the fault <0a1v/0/−>�, which means that the aggressor is
one of the four neighbors of the victim.

Describing environmental stresses Unlike performed operations on the com-
mand bus, environmental stresses are not discrete but continuous quantities. This
means that it is not possible to identify all allowed stresses and individually inte-
grate them into S. Rather, a parameterization of the stresses can be considered by
introducing stress defining variables for each stress. Therefore, five stress variables
should be introduced into S, one for each stress listed in Table 4.5. To distinguish
stresses from operations, stresses are included in square brackets. For example, S
= [Varr1 = 3.5] Actcw

Wrdcb
Pre [Varr1 = 3.0] Actcw

Rddcb
Pre means that cell c

(with row address cw and column address cb) is written with data d at an array
voltage of 3.5 V and then read at a voltage of 3.0 V.

4.4.3 Examples of new notation

In this section, examples are given to justify the need for extending the FP nota-
tion. The examples concern the memory-specific commands and the environmental
stresses included in the new FP notation.

Memory-specific commands

Consider a bridge defect that connects two DRAM memory cells together. This
defect causes a write operation to the aggressor to affect the stored voltage in the
victim. If the bridge resistance is high enough, it would take a number of write
operations to the aggressor to change the stored voltage in the victim.

Assume that the victim stores a 0, and that it takes 3 w1 operations to the
aggressor to flip the state of the victim. The traditional FP notation describes this
faulty behavior as <1aw1aw1aw1a0v/1/−>. This description cannot be uniquely
translated into the DRAM primitive commands since it is possible to perform the w
and r operations in single cycle mode and in fast page mode. In the new notation,
the faulty behavior can be uniquely described using fast page mode as follows <0a

Actaw
Wr1ab

Wr1ab
Wr1ab

Pre 0v/1/−>.

4.4. Industrial test practices | 95

Stress combinations

Again, consider the example where a bridge defect connects two DRAM cells to-
gether. This bridge results in the following FP <0a Actaw

Wr1ab
Wr1ab

Wr1ab
Pre

0v/1/−>. To help sensitize this FP, stress combinations can be used to optimize
the S so that the FP would be detected more easily.

For this faulty behavior in particular, increasing the supply voltage from its
nominal value (Vn) to a higher value (Vh) while writing would shorten the time
needed to deplete the victim capacitor. At the same time, reducing the operation
temperature to a lower Tl decreases the resistance of the bridge in favor of the failure
mechanism. Identifying the most optimal values for Vh and Tl depends on the nature
of the bridge being considered. Taking these stress combinations into consideration,
the new FP description of the failure mechanism would be <[Varr1 = Vh, T = Tl]
0a Actaw

Wr1ab
Wr1ab

Wr1ab
Pre 0v/1/−>.

96 | Chapter 4. Modeling faulty memory behavior

Summary

This chapter discussed the modeling of faulty behavior of memory devices,
both in general and specifically for DRAM devices. The DRAM-specific
fault modeling approach presented here reduces the complexity of the gen-
eral analysis of memory faults and restricts the fault space to those faults
relevant to DRAMs. The main issues presented in this chapter are the
following:

• Formally defining the concepts of fault primitives and functional fault
models, the cornerstones of current-day memory fault analysis. These
concepts restrict the attention of fault analysis activities to those
aspects of the faulty behavior relevant for effective and efficient test
generation.

• Enumeration of the two most important classes of memory faults:
single-cell static faults and two-cell static faults. These two classes
have been used repeatedly to successfully generate memory tests for
a large number of memory devices.

• Discussion of the exponential complexity needed to analyze the full
space of dynamic memory faults, as each increment of the number of
operations to be analyzed results in a large relative increase in the
number of faults a memory should be inspected for.

• Introduction of the different types of DRAM-specific faults: those
related to improperly set voltages, and those related to time depen-
dence due to leakage.

• Identification of the space of DRAM-specific faults, using five indi-
vidual fault attributes, which result in 12 different attribute com-
binations. These 12 attribute combinations modify the behavior of
a given generic FP in such a way that describes all DRAM-specific
faults.

• Generalization of the FP notation to take DRAM-specific commands
into consideration, along with the stress combinations necessary for
DRAM testing.

Contents of this chapter

5.1 Conventional analysis

5.2 Approximate simulation

5.3 Two dimensional analysis

5.4 DRAM-specific simulation 5
Fault analysis approximation methods

Although electrical simulation has become a vital tool in the design process of mem-
ory devices, memory testing has not yet been able to employ electrical simulation
as an integral part of the test generation and optimization process. This is due
to the exponential complexity of the simulation based fault analysis, a complexity
that made such an analysis impractical. This chapter describes new methods to
reduce the complexity of the fault analysis from exponential to constant with re-
spect to the number of analyzed operations, thereby making it possible: 1) to use
electrical simulation to generate test patterns, and 2) to perform simulation-based
stress optimization of tests.

Section 5.1 gives shows the high time complexity of simulation, along with an
example of a conventional simulation-based fault analysis performed by simulating
all needed operation sequences precisely and without approximation. This section
serves as an example to compare with the approximate analysis method presented
in Section 5.2. Section 5.3 presents a generalization of the approximate analysis
method, in order to deal with multiple floating nodes in a defective memory. Finally,
Section 5.4 tailors the approximate simulation method to the needs of the DRAM,
and shows how to use simulation to optimize stresses.

5.1 Conventional analysis

In this section, the direct simulation approach for fault analysis, called the precise
simulation, is presented. The section starts with a discussion of the time complexity
of simulation, followed by an example and the properties of the precise simulation.

97

98 | Chapter 5. Fault analysis approximation methods

5.1.1 Complexity of simulation

The increasing complexity of the faulty behavior of memory devices, associated with
the ever increasing costs of memory testing, makes it important to look for new
innovative ways to tackle fault analysis and test issues for memories [Iyer99]. The
complexity of the fault analysis is particularly demanding for DRAMs, as a result of
their vulnerability to dynamic faults (which involve multiple memory operations),
since each additional analyzed operation requires an exponential increase in fault
analysis time [see Section 4.2.3]. Previous work on dynamic faults has either been
limited to the impact of specific types of memory operations (sequences of reads, for
example), or only concerned with analyzing a limited number of dynamic sequences
to limit simulation time [Al-Ars03a, Al-Ars00].

As discussed in Section 4.2, the faulty behavior of memory devices can be repre-
sented using the FP notation <S/F/R>, where S stands for the sensitizing opera-
tion sequence needed to sensitize the faulty behavior, F stands for the value stored
in the faulty cell, while R is the value on the output. The most well-known class of
FPs is the class of single-cell static FPs, where at most one operation and only one
cell is associated with sensitizing the fault [see Table 4.1]. Transition faults (TFs)
are an example of single-cell static FPs, where a transition write operation (0w1
or 1w0) fails to flip the cell to the opposite value. In total, there are 12 different
single-cell static FPs, as described by the FP notation of Table 4.1.

As operations are added to S, in order to investigate the dynamic faulty behavior
of the memory, the possible number of different Ss, and the associated number of
dynamic FPs, increases rapidly. For a single-cell FP, S typically starts with an
initialization of either 0 or 1, followed by one of three possible memory operations
w0, w1 or r for each increment in #O. As a result, the possible number of different
Ss can be calculated by Equation 4.2:

#S = 2 · 3#O

When no operation is performed (#O = 0) the number of possible FPs is 2, and
when one or more operations are performed, S is able to sensitize 10 different FPs
for each increment in #O, as summarized in Equation 4.3:

#single-cell FPs =

{

2 : #O = 0

10 · 3(#O−1) : #O ≥ 1

Figure 5.1 plots the number of possible Ss and the number of possible FPs
against #O, where the exponential nature of these relations can be clearly seen.
It is clearly not practically possible to investigate the dynamic faulty behavior of
the memory, by directly applying all possible Ss, since such a task would take an
infinite amount of time to perform. Using the analysis approach presented in this
chapter, the total infinite space of dynamic faulty behavior can be approximated
within a short amount of analysis time.

5.1. Conventional analysis | 99

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5
#O

#S
#FP

Figure 5.1. Plot of #S and #FP as a function of #O.

5.1.2 Example of conventional analysis

Consider the open defect (Rop) within a DRAM cell, as shown in Figure 5.2, where
Spice simulations are to be used to analyze the faulty behavior resulting from this
open. The analysis takes a range of possible open resistances into consideration (1
Ω ≤ Rop ≤ 10 MΩ, for example). The injected open in the cell model creates a
floating node of the cell capacitor, the voltage of which (Vc) may vary between
Vdd = 2.4 V and GND. A floating node is a memory node that is not properly
controlled by a memory operation as a result of the defect. The improper control
the memory operation has on the floating node results in setting an improper
voltage on the node by the end of the operation. Determining which memory node
an injected open causes to be floating depends on the type of the open and the
design of the memory. The floating node for opens within memory cells is taken to
be the node connected to the cell capacitor, since the other node is controlled by
the pass transistor.

Vc
Rop

BL WL

Figure 5.2. DRAM memory cell with an open defect.

Next, the fault analysis is performed for some points in the (Vc, Rop) plane,
which is called the analysis space. Therefore, a number of values for Vc and Rop

are selected to perform the fault analysis. This usually corresponds to applying a
grid on the analysis space, giving rise to a number of intersection points for which
the analysis is performed.

100 | Chapter 5. Fault analysis approximation methods

Proper Proper

RDF0 WDF0

Ω

RDF0

(B1) (B2) (B3) (B4)

(B5)

(C1) (A1)

(A2)

RDF0
(C2)

900

600

1500

2500

300

GND V Vmp

c

opR [k]

dRDF10

dRDF00

dRDF00 dRDF10

dRDF00

dIRF00

dDRDF01
dIRF00

dd

TF0

TF1

IRF0 TF0

IRF0 TF0

IRF0 TF0

V
0.6 1.81.2

Figure 5.3. Fault analysis results of the open in Figure 5.2 in the analysis space.

For each analysis point in the analysis space, the faulty behavior of the memory
is analyzed by simulating a number of memory operations. The more operations
are simulated, the more accurate our understanding of the faulty behavior becomes.
However, the number of different possible Ss grows exponentially with respect to
#O according to Equation 4.2: #S = 2 · 3#O. Therefore, the more operations
are performed, the more time it takes to carry out the analysis, which makes it
important to limit the number of used operations. For example, if sequences of
only two operations (#O = 2) are considered to be performed on a single memory
cell, then there are 2 · 3#O = 18 different sequences of w0, w1 and r operations
possible. Each of these sequences has to be performed for each analysis point in
the analysis space.

Figure 5.3 shows the fault analysis results performed for the open shown in
Figure 5.2. The results were generated using an analysis space of 10 voltage points
(x-axis) and 15 resistance points (y-axis), and using Ss of at most 2 operations
[Al-Ars03b]. The Vmp vertical line in the middle of Figure 5.3 represents the middle-
point voltage in the cell. If a cell has a voltage below Vmp , we consider the cell
to contain a stored 0, while if a cell has a voltage above Vmp , we consider the
cell to contain a stored 1. The analysis results are organized as fault regions in the
analysis space that change gradually (i.e., continuously) with respect to Vc and Rop .
For example, Region B5 in Figure 5.3 contains the static fault TF0 (<0w1/0/−>),
while Region A1 contains the static fault TF1 (<1w0/1/−>) and the dynamic fault
dRDF10 (<1w0r0/1/1>).

5.2. Approximate simulation | 101

5.1.3 Fault analysis time

This section estimates the time needed to perform the fault analysis, using the
precise simulation approach. The time needed can be described by the following
relation:

Tpsim = #P · #S · Ts (5.1)

where #P is the number of points in the analysis space, #S is the number of Ss to
be performed for each point (equals 2 · 3#O), and Ts is the time needed to simulate
each S. Furthermore, #P can be further decomposed into #P = #X ·#Y , where
#X is the number of points taken along the x-axis of the analysis space, and #Y
is the number of points taken along the y-axis of the analysis space. Ts can also be
further decomposed into Ts = To ·#O, where To is the simulation time needed for a
single memory operation. In summary, the simulation time needed for the precise
analysis can be written as:

Tpsim = #X · #Y · 2 · 3#O · To · #O (5.2)

We use the analysis performed in Figure 5.3 as an example, where Vc is taken
to be the x-axis and Rop is taken to be the y-axis.

1. #X = 10 points (10 Vc values on a linear scale, GND ≤ Vc ≤ 2.4 V)

2. #Y = 15 points (2 Rop values per decade on a logarithmic scale, 1Ω ≤ Rop ≤
10 MΩ)

3. #S = 18 (2-operation Ss)

4. To = 10 s of simulation time

5. #O = 2

This adds up to Tpsim = #X ·#Y ·#S ·To ·#O = 10 · 15 · 18 · 10 · 2 = 54000 s =
15 hours. Note that despite the restriction of the analyzed #O to 2, the simulation
still takes a long time to perform.

5.2 Approximate simulation

This section presents the new fault analysis approach, called the approximate sim-
ulation [Al-Ars02b]. Here, only the relatively simple one dimensional (1D) anal-
ysis of the approximate simulation is discussed, leaving the more complex two
dimensional analysis to the next section. The section starts with an example, then
the properties of the approximate simulation approach are discussed.

102 | Chapter 5. Fault analysis approximation methods

5.2.1 Example of 1D analysis

The new approximate simulation approach differs from precise simulation in that
it enables the investigation of the analysis space for operation sequences with any
#O, with a limited amount of analysis time. It achieves this by compromising the
accuracy of the results.

Consider the defective DRAM cell shown in Figure 5.2, where an open (Rop)
creates one floating node of the voltage across the cell capacitor (Vc). The analysis
takes a range of possible open resistances (1 Ω ≤ Rop ≤ 10 MΩ) and possible
floating cell voltages (GND ≤ Vc ≤ Vdd) into consideration. Since only one floating
node is being analyzed here, this approximate simulation is referred to as the one
dimensional (1D) analysis. In the next section, a method is described that takes
two floating nodes into consideration, which is therefore referred to as the two
dimensional analysis.

In the 1D analysis, three different (Vc, Rop) result planes are generated, one for
each memory operation (w0, w1, and r). Each result plane describes the impact
of successive w0, successive w1, or successive r operations on Vc for a given value
of Rop . Figure 5.4 shows the result planes for the w0 and w1 memory operations
performed for the open shown in Figure 5.2.

opR [k]Ω opR [k]Ω

Vc [V]Vc [V]

1000

100

10

1

1000

100

10

1

Vdd1.81.20.6GNDVddGND

300

(b) Plane of w1(a) Plane of w0

0.6 1.2 1.8
1.9

Step 1

(1) w0 (1) w1

(2) w0
(2) w1

Vcs Vcs

Step 2

Figure 5.4. Result planes of the approximate simulation for the operations (a) w0, and (b) w1.

Plane of w0: This result plane is shown in Figure 5.4(a). To generate this figure,
the floating cell voltage Vc is initialized once to Vdd , and once to GND, and then
the operation sequence w0w0...w0 is applied to the cell. When the initial voltage is

5.2. Approximate simulation | 103

Vdd , the net result of the write sequence is the gradual decrease (depending on the
value of Rop) of Vc towards GND, as reflected in the figure. When the initial voltage
is GND, the write sequence has no effect on Vc and, therefore, has no impact on the
figure. The voltage level after each w0 operation is recorded on the result plane,
resulting in a number of curves. Each curve is indicated by an arrow pointing in the
direction of the voltage change. The arrows are numbered as (n)w0, where n is the
number of w0 operations needed to get to the indicated curve. We stop performing
the w0 sequence when the voltage change ∆Vc as a result of w0 operations becomes
∆Vc ≤ 0.24 V, a value that is arbitrarily selected at first, but can afterwards be
reduced if it turns out that more w0 operations are needed to describe the faulty
behavior. This selection of ∆Vc results in identifying up to four different w0 curves
in the plane. The Vcs curve (shown in the figure as a dotted line) is the cell sense
threshold voltage, which is the cell voltage above which the sense amplifier reads
a 1, and below which the sense amplifier reads a 0. The Vcs curve is copied from
the plane of the r operation, which is explained in detail below [see “Plane of r”
below].

Plane of w1: This result plane is shown in Figure 5.4(b). To generate this figure,
Vc is initialized once to Vdd and once to GND and then the operation sequence
w1w1...w1 is applied to the cell. With an initial voltage of GND, the result of
the sequence is a gradual increase of Vc towards Vdd . With an initial voltage of
Vdd , the write sequence has no effect on Vc and, therefore, has no impact on the
figure. The voltage level after each w1 operation is recorded on the result plane,
which gives a number of curves in the plane. The curves are indicated in the
same way as the curves in the plane of w0. We stop the w1 sequence when ∆Vc

becomes less than some arbitrarily selected small value (0.24 V in this example).
It is interesting to note the bump in the curve (1)w1 of Figure 5.4(b) at about
Rop = 1000 kΩ, starting from Rop = 300 kΩ till about 3000 kΩ. Remember that
any memory operation starts with the activation command (Act), where the sense
amplifier senses the voltage stored in the cell and amplifies it. Above Rop = 300
kΩ, the sense amplifier fails in sensing a stored 0, and senses a 1 instead, which
helps the w1 operation in charging up the cell to a higher Vc. This increases the
(1)w1 voltage gradually, starting from Rop = 300 till 1000 kΩ. Vcs is shown in the
figure as a dotted line.

Plane of r: This result plane is shown in Figure 5.5. To generate this figure, first
Vcs is established and indicated on the result plane (shown as a bold curve in the
figure). This is done by performing a read operation for a number of Vc values, and
recursively identifying the Vc border above which the sense amplifier detects a 1
and below which the sense amplifier detects a 0. As Rop increases, Vcs turns closer
to GND which means that it gets easier to detect a 1 and more difficult to detect a

104 | Chapter 5. Fault analysis approximation methods

01. Then the sequence rrr...r is applied twice: first for Vc that is marginally lower
than Vcs (0.12 V lower in this example), and a second time for Vc that is marginally
higher than Vcs (0.12 V higher). The voltage level after each r operation in both
read sequences is recorded on the result plane, which generally results in two sets
of curves on the plane. Each set of curves is indicated in the same way as for the
curves in the plane of w0. Note that with Vc < Vcs (the part below the bold curve
in the figure) only one r operation is enough to set Vc to GND, and therefore there
are no curves in this part of the plane.

OUTPUT 1

opR [k]Ω

OUTPUT 0

Vc [V]

1

10

100

1000

Vdd1.81.20.6GND

(1) r (1) r

(2) r
Vcs

Figure 5.5. Result plane of the approximate simulation for the r operation.

It is possible to use the result planes of Figure 5.4 to analyze a number of aspects of
the faulty behavior. We mention three aspects here and show how to derive them
from the figure.

1. Approximate the behavior resulting from any operation sequence performed
on the defective memory.

2. Indicate the critical resistance (Rcr), which is the Rop value where the cell
starts to cause faults on the output for at least one sequence of operations.

1This is caused by the fact that the precharge cycle sets the bit line voltage to Vdd . Therefore,
as Rop increases, a 0 stored in the cell fails to pull the bit line voltage down during a read
operation, and the sense amplifier detects a 1 instead of a 0.

5.2. Approximate simulation | 105

3. Generate a test that detects the faulty behavior of the defect for any resistance
value and any initial floating voltage.

(1) The result planes can be used to approximate the faulty behavior of any se-
quence of memory operations. For example, the results shown in Figure 5.4 can be
used to find out the behavior of, say, 1w0w1r1 for Rop = 100 kΩ. The behavior is
evaluated as follows:

1. Starting with an initial Vc = Vdd = 2.4 V, check the value of Vc after perform-

ing one w0 operation, (Vc = Vdd)
w0−→ (Vc = 0.7 V) [see dashed line of Step 1

in Figure 5.4(a)].

2. Using the new Vc = 0.7 V, check the value of Vc after performing one w1

operation, (Vc = 0.7 V)
w1−→ (Vc > 1.9 V) [see dashed line of Step 2 in Fig-

ure 5.4(b)]. The figure shows that starting with Vc = GND, one w1 operation
pulls Vc up to 1.9 V. This means that starting with 0.7 V > GND in the cell,
a w1 operation should pull Vc up to at least 1.9 V.

3. Using Vc > 1.9 V, check the behavior of the read operation, (Vc > 1.9 V)
r−→

(Vc > 2.2 V), output = 1.

This means that the memory behaves properly and no fault is detected using
the sequence 1w0w1r1 for Rop = 100 kΩ.

(2) The approximate simulation can also be used to state the critical resistance,
which is the Rop value below which the memory behaves properly for at least one
operation sequence. For the fault analysis shown in Figure 5.4, the memory would
behave properly for any operation sequence as long as Rop < 200 kΩ. To understand
why, note that a fault would only be detected when a w1 operation fails to charge
Vc up above Vcs , or a w0 fails to discharge Vc to below Vcs , where Vcs is indicated by
the dotted curve in Figures 5.4(a) and (b). In both cases, performing a r after the
w detects the faulty behavior. This situation takes place on the result planes at the
intersection between the first write operation curves, (1)w0 or (1)w1, and the Vcs

curve. The (1)w0 curve intersects Vcs curve at Rop = 200 kΩ, as indicated by the
dot in Figure 5.4(a). Note that the curve (1)w1 in Figure 5.4(b) does not intersect
the Vcs curve, which means that w1 operations can never result in detecting a fault.

(3) The approximate simulation can also be used to generate a test that detects
the faulty behavior caused by any defect resistance Rop for any initial floating
voltage Vc, in case a fault can be detected. In the case of Figure 5.4, faults can
be detected with Rop ≥ 200 kΩ. Inspecting the figure shows that with Rop ≥ 200
kΩ, and with any voltage Vc, the sequence w1w1w0 will sensitize a fault, and a
subsequent r0 will detect it. This, in turn, means that the faulty behavior can
be represented by the FP =<w1w1w0/1/−>. For Rop = 200 kΩ, this can be
validated by noting that performing two w1 operations charges Vc up from any
voltage (GND or higher) to Vdd . With Vc = Vdd , the sequence w0r0 detects a fault

106 | Chapter 5. Fault analysis approximation methods

as discussed in point (2) above. As Rop increases, the faulty behavior becomes
more prominent and easier to detect since Vcs decreases rapidly towards GND.
With Rop ≥ 300, any read operation with any initial Vc results in 1 on the output,
which means that any sensitizing w0 fails to bring about a successful r0. Therefore,
this faulty behavior can be modeled using the FP <w12 w0/1/−>c, which is a
partial fault in the initialization (I). Since the open defect does not force leakage
current to any specific direction, all time dependent faults are possible (hard, soft
and transient). This means that the following two additional FPs are also possible:
<w12 w0T/1/−>c and <w12 w0/1L/−>c. To detect the hard and transient faults,
the detection condition m (..., w1, w1, w0, r0, ...) is sufficient. The soft fault
requires the detection condition m (..., w1, w1, w0, Del, r0, ...).

5.2.2 Fault analysis time

The approximate simulation is much less time consuming than the precise simula-
tion. The time needed can be described using Equation 5.1 as follows:

Tasim = #P · #S · Ts

where #P is the number of points in the analysis space, #S is the number of Ss
to be performed for each point, and Ts is the time needed to simulate each S.
In the approximate simulation, #S = 6 since we use only 3 operation sequences,
a sequence of w0, w1 and r, each with 2 different initial voltages. Furthermore,
#P = #Y , where #Y is the number of points taken along the y-axis of the analysis
space (#X is dropped since we do not take any point on the x-axis). Ts can be
further decomposed as Ts = To · #O, where To is the simulation time needed for a
single memory operation.

The #O for the approximate simulation depends on how fast a given S charges
the memory cell. However, in order to keep a simulation accuracy along the x-
axis that is approximately as good as that of the precise simulation, we need at
most #X points along the x-axis, which means that we need at most #O = #X.
Operations, however, usually charge Vc fast for most of the Rop range, thereby
reducing the average #O needed. In summary, the worst case simulation time
needed for the approximate analysis can be written as:

Tasim = #X · #Y · To (5.3)

We use the analysis performed in Figure 5.4 as an example, where Vc is taken
to be the x-axis while Rop is taken to be the y-axis.

1. #Y = 15 points (2 Rop values per decade on a logarithmic scale)

2. #S = 6 (w0, w1 and r Ss, each with 2 initial voltages)

3. To = 10 s of simulation time

5.3. Two dimensional analysis | 107

4. #O ≈ 2 (this is the average per S over the Rop range)

This adds up to Tasim = #Y ·#S ·To ·#O = 15 · 6 · 10 · 2 = 1800 s = 0.5 hours,
which is about 30 times faster than precise simulation. The difference can be much
higher if the number of operations increases. The general theoretical worst case
speedup of the approximate simulation approach can be derived from Equations 5.2
and 5.3 as:

Speedup =
Tpsim

Tasim

= 2 · #O · 3#O (5.4)

which is an exponential speedup with respect to #O.

5.3 Two dimensional analysis

Some defects in the memory result not only in a floating cell node, but also in
a floating node elsewhere, which the memory is not able to control properly dur-
ing write and read operations. As a result, the approximation method presented
in Section 5.2 for the case of a single floating memory node is not sufficient to
approximate the faulty behavior. This section introduces a generalization of the
approximation method that is able to deal with two floating nodes in a defective
memory. This method is referred to as the two dimensional (2D) analysis. The
2D analysis presented here can be extended further to deal with multiple floating
nodes.

Consider the bit line open shown in Figure 5.6, a resistive open (Rop) at this
location on BT reduces the ability of the memory to control the voltage on the right
hand side of the bit line and across all cells on that part of BT. Figure 5.6 also
shows the cell capacitance (Cc), and the bit line capacitance (Cb) which represents
the capacitance of the BT part to the right of the open. The figure shows that Rop

causes two floating nodes: (1) the cell voltage Vc across the cell capacitor Cc, and
(2) the bit line voltage Vb across the parasitic bit line capacitance Cb.

BT

Rop WL

VbCb Cc
Vc

To other
memory
cells& precharge

circuits

write driver,
To SA,

Figure 5.6. Open defect on BT that requires a 2D analysis.

The fact that Rop causes two floating nodes in the memory implies that the
analysis of the faulty behavior of this open should take all possible BT voltages
(GND ≤ Vb ≤ Vdd) and cell voltages (GND ≤ Vc ≤ Vdd) into consideration. In

108 | Chapter 5. Fault analysis approximation methods

addition, the analysis should include a range of possible open resistances (10 kΩ ≤
Rop ≤ 10 MΩ) into consideration. The results of the analysis can be represented
as three result spaces, one for each memory operation (w0, w1 and r), where the
x-axis of the result space stands for Vc, the y-axis stands for Vb, while the z-axis
stands for Rop . Since it is difficult to visualize these types of figures, it is more
convenient to represent the results as a number of (Vc, Vb) planes, one for each Rop

value, which in turn are organized into three sets, one for each memory operation
(w0, w1 and r). As it is the case for the 1D analysis, the only important part of
the result space of r is the Vcs curve, which is included and discussed as part of
the result spaces of w0 and w1. Therefore, only the result spaces of w0 and w1 are
discussed next.

Planes for w0

Figures 5.7 and 5.8 show three different (Vc, Vb) planes for three Rop values, result-
ing from performing a sequence of w0 operations on the defective memory model
shown in Figure 5.6. For example, Figure 5.7, with Rop = 200 kΩ, has six main
curves numbered in the figure as 1 through 6. Curve 1 is a vector from point
(Vc, Vb) = (0, 0) to (0.13, 0.08), describing the impact of performing (1)w0 on a
memory initialized to (0, 0). Curves 2, 3 and 4 describe the impact of performing
(1)w0 operation on a memory initialized to (0.0, 2.0), (2.0, 2.0) and (2.0, 0.0), re-
spectively. Curve 5 is a bundle of vectors that describe the impact of the sequence
w0w0...w0 on Vc and Vb. The net effect of performing the (n)w0 sequence is the
gradual convergence of Vc and Vb voltages to a specific point P = (0.16, 0.11) that
is independent of the initialization.

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w0 with 200kOhm

Vcs

2 3

41

P

5

6

Output 1

Output 0

Figure 5.7. Simulation results for w0 in the (Vc, Vb) planes for Rop = 200 kΩ.

The sequence of w0 operations stops when the distance (D =
√

∆V 2
c + ∆V 2

b)
between two (Vc, Vb) points resulting from consecutive w0 operations becomes less
than D = 0.025 V, which is shown by simulations to be small enough to represent

5.3. Two dimensional analysis | 109

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w0 with 10kOhm

Vcs

(a) w0 plane with Rop = 10 kΩ

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w0 with 100kOhm

Vcs

(b) w0 plane with Rop = 100 kΩ

Figure 5.8. Simulation results for w0 in the (Vc, Vb) planes for (a) 10 kΩ, and (b) 100 kΩ.

the faulty behavior. This selection of D is arbitrary at the first iteration of the
fault analysis and may later be reduced if a more detailed analysis is required.

Curve 6 in Figure 5.7 is the sense threshold cell voltage (Vcs) curve, which
indicates the cell voltage below which the sense amplifier detects a 0 and above
which the sense amplifier detects a 1. This curve is generated by initializing Vb

to a specific voltage between 0 V and 2.0 V and then identifying the Vc threshold
that distinguishes a 0 and a 1 on the output. Five points have been chosen on
Vb, which result in the following Vcs points (identified by a little “+” sign in Fig-
ure 5.7): (1.77, 0.00), (1.77, 0.45), (1.77, 0.90), (0.03, 1.35) and (0.03, 1.80). Curve 3
in Figure 5.7 shows that, with an initial (Vc, Vb) = (2.0, 2.0), a single w0 operation
is not able to discharge Vc low enough for the sense amplifier to detect a 0, which
means that w0 operations fail with Rop = 200 kΩ.

Figure 5.8(a) with Rop = 10 kΩ and Figure 5.8(b) with Rop = 100 kΩ are
generated in the same way as Figure 5.7. Figure 5.8(a) shows that the w0 sequence
gradually modifies the floating voltages in the memory such that they eventually
settle at (Vc, Vb) = (0.0, 0.7), where Vc has the proper w0 value of 0.0 V but Vb

has a value of 0.7 V that is different from the proper precharge value of 1.0 V.
Figure 5.8(b) shows that the w0 sequence results in a voltage equilibrium point of
(0.1, 0.15). Both Figures 5.8(a) and (b) show that, irrespective of the initialization,
a single w0 operation sets (Vc, Vb) to a value below the Vcs curve, which means that
w0 operations behave properly for 10 kΩ ≤ Rop ≤ 100 kΩ.

Planes for w1

Figure 5.9 shows three different (Vc, Vb) planes for three Rop values, resulting from
performing a sequence of w1 operations. To generate each plane in the figure, the
Vc and Vb voltages are initialized to a given value and then a sequence of w1w1...w1
operations is performed on the cell. The net effect is the gradual convergence of Vc

and Vb voltages toward a specific point in the (Vc, Vb) plane.

110 | Chapter 5. Fault analysis approximation methods

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w1 with 10kOhm

Vcs

(a) w1 plane with Rop = 10 kΩ

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w1 with 50kOhm

Vcs

(b) w1 plane with Rop = 50 kΩ

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

V
b

[V
]

Vc [V]

w1 with 100kOhm

Vcs

(c) w1 plane with Rop = 100 kΩ

Figure 5.9. Simulation results for w1 in the (Vc, Vb) planes for (a) 10 kΩ, (b) 50 kΩ and (c) 100
kΩ.

In the example shown in Figure 5.9, 4 (Vc, Vb) initializations have been used:
(0.0, 0.0), (2.0, 0.0), (2.0, 2.0), and (0.0, 2.0); all values are in volts. The sequence
of w1 operations is stopped when D ≤ 0.025 V. This selection of D = 0.025 V
is arbitrary at the first iteration of the fault analysis and may later be reduced if
a more detailed analysis is required. In addition to the w1 vectors in each result
plane, there is also the sense threshold cell voltage (Vcs) curve, that indicates the
cell voltage (Vc) below which the sense amplifier detects a 0 and above which the
sense amplifier detects a 1 for a given value of Vb and Rop .

Figure 5.9(a) with Rop = 10 kΩ shows that the w1 sequence gradually modifies
the voltages in the memory toward the point (Vc, Vb) = (2.0, 1.3), which is close to
the proper value after w1 of (2.0, 1.0). Figure 5.9(b) shows that, with Rop = 50 kΩ,
the w1 sequence gradually modifies memory voltages towards the point (1.9, 1.7).
In these two planes, a single w1 operation is able to pull Vc up from any initial
voltage to a voltage above the Vcs curve, which means that with 10 kΩ ≤ Rop ≤ 50
kΩ no fail can be detected on the output.

Figure 5.9(c) with Rop = 100 kΩ shows that the w1 sequence gradually ap-
proaches a voltage point of (1.8, 1.8) that is above the Vcs curve, which means that

5.4. DRAM-specific simulation | 111

after a sequence of w1 operations the memory succeeds in writing a 1 into the cell.
However, a single w1 operation with an initialization of (0.0, 0.0) or (2.0, 0.0) fails
to write a high enough Vc voltage for the sense amplifier to detect a 1. Therefore,
w1 operations start to fail with an Rop value of about 100 kΩ.

Critical resistance & detection condition

The result planes in Figures 5.7 and 5.9 can be used to identify important aspects of
the faulty behavior, such as the value of the critical resistance (Rcr) and a detection
condition to detect the defective memory.

The result planes indicate that both w0 and w1 fail for a specific Rop value and
with some initial conditions. Since w1 fails at an open resistance of about 100 kΩ,
which is less than the Rop = 200 kΩ needed for w0 to fail, Rcr corresponds to the
lower 100 kΩ value.

The failing w1 operation can be detected with the sequence w1r1, in case Vc and
Vb are properly initialized. Figure 5.9(c) shows that w1 fails for an initialization
of (0.0, 0.0) and (0.0, 2.0), which means that w1 fails as long as Vc is equal to 0.0
V irrespective of the value of Vb. Therefore, in order to force w1 to fail for Rop

as close as possible to Rcr , Vc should be brought as close as possible to 0.0 V.
Figure 5.8(b) shows that, with Rop = 100 kΩ and for an initialization of (2.0, 2.0),
it takes four w0 operations (indicated by four arrows) to get to a saturation point
P of (0.1, 0.15). The figure also shows that starting with other initial voltages,
it takes four or fewer w0 operations to get to the same point P. In other words,
starting with any initial floating node voltages, the sequence w0w0w0w0 gradually
modifies the floating voltages toward the point (Vc, Vb) = (0.1, 0.15), which could
be used as an initialization for Vc.

In conclusion, the FP that describes this faulty behavior is <w04 w1/0/−>BTd ,
where the BTd indicates that the fault can be sensitized in any cell on the defective
part of BT. This is a partial hard FP. Because the defect does not force leakage
in any given direction, the FP can also be transient and soft. This results in
the following two additional FPs: <w04 w1/0L/−> and <w04 w1T/0/−>. The
following detection condition is sufficient to detect the hard and transient FP caused
by the BL open of Figure 5.6, that ensures the lowest possible failing Rop value:
m(..., w0, w0, w0, w0, w1, r1, ...). The soft FP requires inserting a delay into the
detection condition as follows: m(..., w0, w0, w0, w0, w1, Del, r1, ...).

5.4 DRAM-specific simulation

This section extends the approximate simulation method to deal with DRAM-
specific commands, not only DRAM operations. Then, a method is shown to use
simulation for stress optimization in the memory, in order to accelerate failure and
reduce the delay time needed to detect DRAM-specific soft faults.

112 | Chapter 5. Fault analysis approximation methods

5.4.1 Approximation with DRAM commands

The 1D and 2D approximate simulation presented above are limited to the analysis
of the impact of the generic memory operations w0, w1 and r. They are not capable
of performing a detailed analysis of DRAMs, based on the five DRAM-specific
commands: Act, Wr, Rd, Pre and Nop. Performing the analysis using DRAM-
specific commands is important to generate DRAM-specific tests, used later in
Chapter 9.

The 1D analysis of Section 5.2 made it possible to understand the faulty be-
havior of the memory, for any possible sequence of memory operations, despite
the presence of an infinite number of possible sequences of operations. Since it is
impossible to simulate all operation sequences, the 1D analysis simulates a limited
number of sequences, called basic sequences, and then it uses those to approximate
the behavior of any other sequence. The basic sequences for the 1D analysis above
are w0w0 ... w0, w1w1 ... w1 and rr ... r.

Therefore, in order to perform an approximation of the faulty behavior using
DRAM commands, we need to find those basic sequences made up of DRAM-
specific commands that make such an approximation possible.

The main question this set of DRAM-specific basic sequences has to answer
is: Given an arbitrary point in the (Rop , Vc) plane, how much approximately is
the voltage change (∆Vc) resulting from performing any given DRAM command?
This problem is depicted in Figure 5.10, where Command stands for any DRAM
command, Vc1 stands for Vc before Command is applied, and Vc2 stands for Vc after
Command is applied.

GND

Rop

VddVc

Vc1 Vc2

Command

Figure 5.10. Effect of Command on the Vc in the DRAM result plane.

Table 5.1 lists 13 DRAM-specific basic sequences able to approximate ∆Vc for
any other command sequence. The basic sequences are classified into four different
groups: charge up group, discharge group, charge/discharge group (C/D group),
and no charge group. The name in each group refers to the direction of expected
voltage change within the memory cell during the application of the sequence. In
the following, we show how these basic sequences can be used to approximate the
impact of each of the five DRAM commands on Vc.

Wr: The impact of writing commands on Vc does not depend on the previously
performed command, but on the data being written. Therefore, it is important

5.4. DRAM-specific simulation | 113

Table 5.1. Basic command sequences used to reconstruct any DRAM sequence.

Charge up group # Discharge group # C/D group # No charge group

1. Wr1 Wr1 Wr1 ... Wr1 5. Wr0 Wr0 Wr0 ... Wr0 9. Act Rd Rd ... Rd 13. Pre Nop Nop ... Nop

2. Wr1 Rd1 Rd1 ... Rd1 6. Wr0 Rd0 Rd0 ... Rd0 10. Act Nop Nop ... Nop

3. Wr1 Nop Nop ... Nop 7. Wr0 Nop Nop ... Nop 11. Act Act Act ... Act

4. Wr1 Pre Pre ... Pre 8. Wr0 Pre Pre ... Pre 12. Act Pre Pre ... Pre

to inspect the behavior of Wr1 commands (Sequence 1) and the behavior of Wr0
commands (Sequence 5).

Nop: The no operation represents wait states where the memory is supposed not
to change its state. During Nop, however, the value of Vc does change (as a result
of leakage, for example) and it, therefore, needs to be analyzed. The impact of
Nop on Vc depends on the previously performed commands and on the amount of
leakage current into the cell. Sequence 3 evaluates the impact of Nop after Wr1,
Sequence 7 after Wr0, Sequence 10 after Act, and Sequence 13 after Pre.

Rd: Reading performs an external read from the sense amplifiers to the I/O
buffers. The impact of Rd on Vc depends on the previously performed commands.
Therefore, Sequence 2 identifies the impact for a previously performed Wr1, Se-
quence 6 for performed Wr0, and Sequence 9 for performed Act.

Act: Activation performs an internal read by accessing a row of cells and sensing
the data the cells contain. Starting with a Vc above Vcs , Act increases Vc, while
starting with a Vc below Vcs , Act reduces Vc. Therefore to identify the impact
of Act on Vc, Sequence 11 in Table 5.1 is needed and should be performed twice:
starting with Vc above Vcs and with Vc below Vcs .

Pre: Precharging closes the activated row of cells and sets the voltage of bit lines
and data lines to their precharge levels. During this operation, the change in Vc

is decided by the previously performed command, which might be Act, Wr1, Wr0,
Rd or Nop. Rd and Nop are unimportant, since Rd only performs an external
read, which means that it has little impact on internal behavior. The same is true
for Nop, which simply represents a wait state and does not influence subsequent
Pre operations. It is important, however, to identify the impact of Pre on Vc

with a previously performed Wr1 (Sequence 4), with a previously performed Wr0
(Sequence 8), and with a previously performed Act (Sequence 12).

5.4.2 Stress optimization methodology

As discussed in Section 4.4, the effectiveness of memory tests does not merely
depend on the applied sequence of memory operations. It heavily employs mod-

114 | Chapter 5. Fault analysis approximation methods

ifications to various operational parameters or stresses (STs), either to ensure a
higher fault coverage of a given test or to target specific failure mechanisms not de-
tected at nominal operational conditions [Falter00, McConnell98]. The STs usually
used in testing are timing, temperature, supply voltage.

The fault analysis concept that enables simulation based optimization of STs
is the ability to state the critical resistance (Rcr) of a defect [Al-Ars03c]. Rcr is
the resistive value of a defect at which the memory starts to show faulty behavior.
Using this important piece of information, the criterion to optimize any ST can be
stated as follows:

A change in a given ST should modify the value of the critical resistance
in such a direction which maximizes the resistance range that results in a

detectable functional fault.

Figure 5.11 shows a graphical representation of the optimization methodology.
The figure shows two different result planes, one is generated with the stress ST1,
while the other is generated using the stress ST2. The application of ST2 reduces
the value of Rcr , thereby increasing the range of the Fail region, relative to the Fail
region of ST1. Therefore, the stress ST2 is considered to be more stressful than
the stress ST1.

mnmnmnmnmmnmnmnmnmmnmnmnmnmmnmnmnmnmmnmnmnmnmmnmnmnmnmmnmnmnmnmmnmnmnmnm

ononononoononononoononononoononononoononononoononononoononononoonononono

pnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnppnpnpnpnp

qnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnqqnqnqnq

Rcr

Rcr

Fail(ST2) > Fail(ST1)

ST2 is more stressful!

ST1 ST2

Fail Fail

Pass Pass

Figure 5.11. Graphical representation of stress optimization.

In the industry, a Shmoo plot is considered as an important method used to
optimize STs for a given memory test [Baker97]. Two STs (S1 and S2) are chosen
to be optimized in a given range. A test is then applied to the memory and, for
each combination of S1 and S2, the pass/fail outcome of the test is registered on
the Shmoo plot. This creates a two dimensional graphical representation of the
pass/fail behavior of the memory under the applied test. Figure 5.12 shows an
example of a Shmoo plot, where the x-axis represents the clock cycle time and
the y-axis represents the supply voltage Vdd . The figure shows, for example, that
a lower voltage and a shorter cycle time are the most stressful conditions for the
applied test.

5.4. DRAM-specific simulation | 115

rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr
rsr

tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst
tst

[ns]

FAIL

PASS

Vdd [V]

52
t

50 6454 56 58 60 62 66

2.2

2.0

1.8

2.4

2.6

2.8

cyc

Figure 5.12. Shmoo plot to optimize the cycle time and supply voltage.

Shmoo plotting has the advantage of direct optimization of a pair of STs for a
given test on a chip, in case the chip is known to have the targeted defect. Shmoo
plotting suffers, however, from the following disadvantages:

1. Depending on the length of the test, generating a Shmoo plot may take large
amounts of time since the test has to be repeated for each (x, y) combination
in the plot [Hamada93].

2. The tester provides only a restricted controllability and observability of in-
ternal parts of the circuit under test [Niggemeyer99].

3. It is not always clear how the externally observed failure of the memory relates
to the internal faulty behavior caused by the targeted defect.

4. Since only a limited number of memory devices are investigated, the resulting
STs may not be the most optimal for the investigated test and targeted defect.

For a test designer attempting to optimize a given test for a specific defect
using Shmoo plots, the above mentioned problems make optimization a rather
difficult and challenging task. The simulation-based stress optimization method
presented in this section targets these problems and provides more insight into the
faulty behavior, an insight that guides a test designer through the process of test
optimization, so that test development time can be reduced.

The concept of simulation-based stress optimization will be used in Chapter 9
to optimize test stresses for the elevated strap resistance problem.

116 | Chapter 5. Fault analysis approximation methods

Summary

This chapter discussed the simulation-based algorithms used to analyze the
faulty behavior of the memory within a practical amount of time. These
algorithms solve the two main problems in applying Spice simulation to
analyze the faulty behavior of memories: 1. the excessive amount of sim-
ulation time needed, and 2. the difficulty to interpret simulation results
in terms of faults and tests. The main issues presented in this chapter are
the following.

• Discussion of the time complexity of using Spice simulation to pre-
cisely analyze the faulty behavior of memories.

• Introduction of the 1D approximate simulation method, to approxi-
mate the faulty behavior of the memory, thereby limiting the needed
simulation time. The 1D simulation method is only able to analyze
defective memories with one disconnected (or floating) node, such as
the floating cell voltage caused by a cell open.

• Generalization of 1D simulation method to take two floating nodes
into consideration, such as bit line opens causing a floating cell volt-
age and a floating bit line voltage.

• Extension of the approximate simulation method to account for
DRAM-specific commands. This is done by identifying a minimum
set of DRAM-specific command sequences, that could be used to
approximate any possible sequence of commands.

• Derivation of a simulation-based stress optimization method, using
the concept of the critical resistance. This method can be used to
accelerate the Shmoo plot approach, used industrially to optimize
memory test stresses.

Contents of this chapter

6.1 Concept of BL coupling

6.2 Simulation of BL coupling

6.3 Impact of BL twisting 6
Effects of bit line coupling

With the shrinking dimensions of manufactured structures on memory chips and the
increase in memory size, bit line coupling is becoming ever more influential on the
memory behavior. This chapter discusses the effects of BL coupling on the faulty
behavior of DRAMs. It starts with an analytical evaluation of coupling effects,
followed by a simulation-based fault analysis using a Spice simulation model. Two
BL coupling mechanisms are identified (pre-sense and post-sense coupling), which
are found to have a partly opposing effect on the faulty behavior. In addition, the
influence of BL twisting on the faulty behavior of the memory is analyzed.

This chapter begins with a general discussion of the concept of BL coupling
in Section 6.1, where a theoretical analysis of BL coupling is given. Section 6.2
validates the theoretical analysis of BL coupling using a simulation-based fault
analysis approach. Finally, Section 6.3 discusses the impact of BL twisting on
coupling effects, and on the faulty behavior of defective memories.

6.1 Concept of BL coupling

The long, narrow BL structures running in parallel on the surface of a memory
chip are particularly prone to relatively large amounts of capacitive coupling (or
crosstalk) noise from adjacent BLs. As the integration density of memory devices
increases, the problems associated with BL coupling noise become more signifi-
cant because of the weak cell signals that must be sensed reliably on these lines
[Redeker02]. This section discusses the concept of BL coupling in general, and the
way it influences the faulty behavior of defective memory devices [Al-Ars04b].

117

118 | Chapter 6. Effects of bit line coupling

6.1.1 Modeling BL coupling

The simulation model used in this chapter is based on a DRAM design validation
model from Infineon Technologies, used to simulate the behavior of their memory
products. In order to limit the needed simulation time, the model has been reduced
in complexity, while electrically compensating removed components. The simula-
tion model contains three folded BL pairs, one of which is shown in Figure 6.1. This
model also contains a 2 × 2 cell array with NMOS access transistors, in addition
to a sense amplifier and precharge devices. The removed memory cells are com-
pensated for by load cells and parasitic components of different values distributed
along the BLs. External to the BL pair, the simulation model contains one data
output buffer needed to examine data on the output, and a write driver needed
to perform write operations. The memory model employs Spice BSIM3v3 device
parameters for the simulations. Two different sets of simulation model parameters
are used in Sections 6.2 and 6.3, one corresponding to a 0.20 µm technology and
the other corresponding to a 0.14 µm technology, respectively. The sets of model
parameters are chosen to be different in order to get two independent sets of data
to test the theory. A similar simulation model is also used later in Chapters 7 and
9 to simulate the faulty behavior of the memory.

devices

amplifierbuffer

driver
select

Cell

Cell

cell
Load

cell
Load

cell
LoadLoad

cell

Cell

Cell
7

60

1

Cbb1 bb2C Cbb3

Cbb1

Cbb1

bb2C

bb2C

Cbb3

Cbb3

Precharge

Sense

&&

Output

Write

BTm

BCm

Column WL2

BTb

BCt

WL0

WL1 WL3

WL4

WL5

WL6

WL7

Figure 6.1. Closeup block diagram of one BL pair of the three used for simulation.

The model contains three BL pairs, denoted as BLt for top, BLm for middle,
and BLb for bottom, as shown in Figure 6.2. Figure 6.1 shows both the true (BTm)
and complementary (BCm) bit lines of BLm, the complementary (BCt) bit line of
BLt only, and the true (BTb) bit line of BLb only.

The different BLs influence each other by a number of distributed coupling
capacitances (Cbb1 + Cbb2 + Cbb3 = Cbb). Note that BL coupling capacitances are
the same whether coupling takes place within a given BL pair or between different
BL pairs. This is true since all BLs on a chip are manufactured in the same way,
using the same materials, having the same dimensions, and at the same distances
from each other. Identifying a given BL as BT or BC depends solely on the way
that BL is connected to the sense amplifier and not on the way it is manufactured.

6.1. Concept of BL coupling | 119

uvuvuuvuvuuvuvu
wvwwvw
wvwxx

Cbb

Cbb

Cbb

Cbb

Cbb

BTm

BCm

BTb

BCb

BCt

BTt

BLm

BLt

BLb

Defective cell

WL0

Figure 6.2. Three BL pairs implemented in the simulation model.

The total BL capacitance (Cb) is made up of the sum of the BL coupling ca-
pacitance (Cbb), and the remaining capacitance (Cbr) not related to BL coupling,
but to word line (WL) coupling, substrate coupling, etc. In the simulation model
of Figure 6.1, these capacitances are related as follows:

Cb = Cbb + Cbr = 10 × Cbb (6.1)

These are typical cell array capacitances in megabit DRAMs with a folded BL
pair arrangement [Konishi89, Itoh01]. As a result of Cbb , two different kinds of cou-
pling effects may take place: pre-sense coupling and post-sense coupling [Aoki88].

Pre-sense coupling (∆V1) is generated after the WL is activated and cells are
accessed, but before the sense amplifier is activated. The noise on a given floating
BL results from coupling to two BLs, above and below the victim BL. The amount
of worst-case ∆V1 developing on the floating BL relative to the full voltage V1

developing on neighboring BLs can be approximated as [Hidaka89]:

∆V1

V1
≈ 1

2 + (Cbr/Cbb)
(6.2)

This relation indicates that the amount of pre-sense coupling noise increases
with increasing Cbb from 0 V for Cbb = 0 to 1

2
as Cbb approaches ∞. For the used

simulation parameters in (6.1), the worst-case ∆V1

V1
≈ 1

11
.

Post-sense coupling (∆V2) is generated after the sense amplifier is activated and
the BLs are pulled either to 0 or 1 according to the logic value sensed by the sense
amplifier. The main reason for this type of noise is the time difference between
sense amplifier activation and the instant the sense amplifier decides to sense a 0
or 1 (∆t). The amount of ∆V2 can be approximated according to the following
relation [Aoki88]:

∆V2 ≈ α
Cbb

C2
b

(∆t)3 (6.3)

where α is a constant that depends on a number of sense amplifier related param-
eters and has a value in the order of 1012 ∼ 1013 FV

s3
. The relation shows the strong

120 | Chapter 6. Effects of bit line coupling

dependence of ∆V2 on the time delay until the sense amplifier pulls the BLs either
up or down. This means that even small delays in the sense amplifier operation
can cause a relatively large amount of post-sense coupling noise.

The total amount of BL coupling noise ∆V is equal to the sum of pre-sense and
post-sense coupling (∆V1 + ∆V2). Whether ∆V1 or ∆V2 constitutes the dominant
factor in ∆V depends heavily on design specific parameters that generally cannot
be evaluated analytically, which leaves circuit simulation as the only analysis option
[Itoh01].

6.1.2 Effects of coupling

BL coupling results in developing small coupling voltages on adjacent BLs, which
influences proper sense amplifier operation. From a testing point of view, it is
important to understand how a specific initialization of a neighborhood of cells
affects the sensing of a given victim, so that the worst-case values can be written
in the neighboring cells.

The model considered here [see Figure 6.2] consists of 3 BL pairs, each with
2×2 cells, which means that the defective cell (Cell 0 on BLm) has a neighborhood
of 3 × 2 × 2 = 12 cells with a possible influence on the behavior. But since the
precharge operation functions properly (assuming that the defective cell suffers
from an open within the cell, which does not influence the precharge voltage on
the BLs), the history of operations performed on any cell other than the defective
cell does not influence the faulty behavior of the memory1. Therefore, the only
cells able to influence the faulty behavior are those sharing the same WL with
the defective cell. This means that the neighborhood consists of two cells, each
containing either 0 or 1, which results in 22 = 4 different data backgrounds.

The effects of BL coupling on the faulty behavior can be divided into pre-sensing
effects, and post-sensing effects. Figure 6.3 gives graphical representations for both
cases, when Cell 0 on BTt contains a logic 1 and Cell 0 on BTb contains a logic 1.

Pre-sensing effects. As soon as WL0 is accessed, Cell 0 on BTt starts to pull
the voltage on BTt by an amount of Va to a higher level; this is indicated by the up-
arrow next to Va in the figure. As a result of Cbb, the voltage on BCt is also pulled
by an amount of Vb to higher level; this is indicated by the up-arrow next to Vb in
the figure. Finally, as a result of Cbb between BCt and BTm, the voltage on BTm
is pulled higher by an amount of Vc, which promotes sensing a logic 1 in the victim;
this is indicated by the up-arrow next to Vc in the figure2. From Equations 6.1 and
6.2, the amount Vc is related to Va by the relation Vc

Va
= Vb

Va

Vc

Vb
≈ 1

112 . In the same
way, as soon as WL0 is accessed, Cell 0 on BTb starts to pull the voltage on BTb

1On the other hand, a defective precharge circuitry would mean that the read/write history
affects the faulty behavior and should be simulated

2The increase in the voltage on BTm further results in an increase in the voltage on BCm,
but this effect is an order of magnitude less and is therefore negligible

6.1. Concept of BL coupling | 121

BTt

BCt

BTb

BCb

BTm

BCm
yzyyzyyzy{z{{z{{z{
|| Vc

Va

Vb
BTt

BCt

BTb

BCb

BTm

BCm
}z}z}}z}z}}z}z}~z~~z~~z~

"1"

"1"

Ve

Vd

(a) Pre−sensing

"1"

"1"

(b) Post−sensing

Vf

Vg

Vh

Vi

WL0 WL0

Figure 6.3. Effects of (a) pre-sense and (b) post-sense coupling.

by an amount of Vd to a higher level, which in turn pulls the voltage on BCm by an
amount of Ve higher. This increase in the voltage on BCm promotes sensing a logic
0 in the victim cell. The values of Vd and Ve are related by Ve

Vd
≈ 1

11
, which means

that the cell on BTb has a much higher influence on the faulty behavior than the
cell on BTt. In conclusion:

1. The worst-case pre-sensing BG is x̄at
xvxab

(i.e., Cell 0 on BTt contains x̄ and
Cell 0 on BTb contains x).

2. Cell 0 on BTb has a much higher pre-sensing influence (first-order effect) on
the faulty behavior than Cell 0 on BTt (second-order effect).

Post-sensing effects. Once the sense amplifier is activated, and since Cell 0 on
BTt contains 1, the sense amplifier pulls the voltage on BTt high while the voltage
on BCt is pulled low by an amount of Vf [see Figure 6.3(b)]. As a result of Cbb ,
the voltage on BTm is pulled low by an amount of Vg, which promotes sensing a
logic 0 in the victim cell. In a similar way, once the sense amplifier is activated,
and since Cell 0 on BTb contains a 1, the sense amplifier pulls the voltage on BTb
high by an amount of Vh as indicated in Figure 6.3. As a result of Cbb , the voltage
on BCm is also pulled high by an amount of Vi, which promotes sensing a logic 0
in the victim cell. Both neighboring cells have a first-order effect on the victim. In
conclusion:

1. The worst-case post-sensing BG is xat
xvxab

(i.e., Cell 0 on BTt contains x
and Cell 0 on BTb contains x).

2. Both cells have a comparable first-order effect on the faulty behavior.

Comparing the two results of pre and post-sensing, we find that each requires
a different BG to ensure the worst-case sensing condition. It is possible to use a
memory test that covers both BGs to ensure covering the worst-case condition.
But to reduce test time, a single worst-case BG is needed, and therefore we should
identify whether pre-sensing or post-sensing is more dominant.

122 | Chapter 6. Effects of bit line coupling

6.2 Simulation of BL coupling

This section uses Spice simulation to evaluate the impact of BL coupling on the
faulty behavior of DRAMs. We start with a discussion of the simulation-based
fault analysis method, then we use it to evaluate the behavior with the presence of
coupling.

6.2.1 Fault analysis method

The fault analysis method described here is the approximate simulation method
(or one dimensional analysis) described in much more detail in Section 5.2. The
analysis performed here corresponds to BLs with no coupling. This means that
the coupling capacitances shown in Figure 6.1 are all set to zero: Cbb1 = Cbb2 =
Cbb3 = 0.

Consider the defective DRAM cell shown in Figure 6.4, where a resistive open
(Rop) between BT (true bit line) and the access transistor limits the ability to
control and observe the voltage across the cell capacitor (Vc). The open is injected
into Cell 0 and simulated as part of the reduced memory model shown in Figure 6.1.
The reasons for choosing this specific cell defect to analyze BL coupling include the
following.

1. This defect models a strap connection between the drain of the pass transistor
and the cell capacitor that is difficult to manufacture and may have resistive
values that are higher than normal [Adler95].

2. Gradually, increasing the resistive value of this defect results in the gradual
reduction of the differential BL signal needed for proper sensing. Therefore,
this defect is ideal for analyzing the impact of BL coupling on the faulty
behavior.

3. The relative simplicity of the defect model and the required fault analysis.

The analysis takes a range of possible open resistances (10 kΩ ≤ Rop ≤ 10 MΩ)
and a range of possible cell voltages (GND ≤ Vc ≤ Vdd) into consideration.

Rop

BT Vc
Cell 0

WL0

Figure 6.4. Open injected into Cell 0.

Two different (Vc, Rop) result planes are generated, one for the w0 operation on
a cell initialized to one (1w0) and one for the w1 operation on a cell initialized to 0

6.2. Simulation of BL coupling | 123

(0w1). These result planes describe the impact of successive w0 and successive w1
operations on Vc (denoted as (n)w0 and (n)w1, respectively), for a given value of
Rop . Write operations described here refer to single-cycle operations, where a cell
is accessed, written, then disconnected, and followed by a memory precharge. Fig-
ure 6.5(a) shows an automatically generated result plane corresponding to (n)w0
operations, while Figure 6.5(b) shows the result plane corresponding to (n)w1 op-
erations, for the open Rop shown in Figure 6.4.

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

1w0w0w0 ... w0

Vcs
(1)w0
(2)w0
(3)w0
(4)w0
(5)w0
(6)w0
(7)w0

(a) w0 plane

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

0w1w1w1 ... w1

Vcs
(1)w1
(2)w1
(3)w1
(4)w1
(5)w1
(6)w1
(7)w1

(b) w1 plane

Figure 6.5. Simulation results in the (Vc, Rop) plane for (a) (n)w0, and (b) (n)w1.

Plane of w0: This result plane is shown in Figure 6.5(a). To generate this figure,
the floating cell voltage Vc is initialized to Vdd (because a w0 operation is performed)
and then the operation sequence 1w0w0...w0 is applied to the cell (i.e., a sequence
of w0 operations to a cell initialized to 1). The net result of this sequence is
the gradual decrease (depending on the value of Rop) of Vc towards GND. The
voltage level after each w0 operation is recorded on the result plane, resulting in a
number of curves. The curves are numbered as (n)w0, where n is the number of
w0 operations needed to get to the curve. For example, the arrows in the figure
indicate that, for Rop = 1000 kΩ, a single w0 operation represented by (1)w0 pulls
Vc from Vdd to about 1.2 V, while four w0 operations represented by (4)w0 pull Vc

to about 0.3 V. We stop performing the w0 sequence when the voltage change ∆Vc,
as a result of w0 operations, becomes ∆Vc ≤ 0.05 V, which results in identifying
up to 7 different w0 curves in the plane. Initially, an arbitrary small value for
∆Vc is selected, which can be reduced afterwards if it turns out that more than 7
w0 operations are needed to describe the faulty behavior. The sense threshold cell
voltage (Vcs), shown as a solid line that runs across the center of the figure, is the
cell voltage above which the sense amplifier reads a 1, and below which the sense
amplifier reads a 0. This curve is generated by performing a read operation for a
number of Vc values and iteratively identifying the Vc border that distinguishes a

124 | Chapter 6. Effects of bit line coupling

1 and a 0 on the output. Vcs is almost independent of Rop here because there is no
BL coupling considered in this simulation since all BL coupling capacitances are
set to zero (Cbb1 = Cbb2 = Cbb3 = 0). The small deviation Vcs has from the center
of the figure is due to sense amplifier imbalance and other types of coupling, such
as WL-BL coupling.

Plane of w1: This result plane is shown in Figure 6.5(b). The plane is generated
in the same way as the result plane of w0. First, Vc is initialized to GND and then
the operation sequence 0w1w1...w1 is applied to the cell. The result is a gradual
increase of Vc towards Vdd . The voltage level after each w1 operation is recorded
on the result plane, which gives a number of curves in the plane. We stop the w1
sequence when ∆Vc becomes small enough (0.05 V in this example). Vcs is also
shown in the figure as a solid line.

As discussed in Section 5.2, it is possible to use the result planes to analyze a
number of important aspects of the faulty behavior such as: the resistive value of
the defect where the memory starts to fail, and the test needed to detect the faulty
behavior resulting from the open defect [Al-Ars02b].

6.2.2 Simulation results

This section presents the simulation results of the effects of BL coupling on the
faulty behavior of the memory model shown in Figure 6.1, having the cell open
shown in Figure 6.4. The device parameters used in the simulation model corre-
spond to a memory manufactured in 0.20 µm technology. The analysis method
used here is the same as that outlined in Section 6.2.1. Four different simulations
are performed, one for each data background (BG): BG 0x0 (both aggressors on
BTt and BTb are 0, while the stored voltage of the victim is floating), BG 0x1
(cell on BTt is 0 and on BTb is 1), BG 1x0 (cell on BTt is 1 and on BTb is 0) and
BG 1x1 (both cells are 1).

The analysis results show that the write curves are very similar in all BGs, and
are also similar to the (n)w0 curves shown in Figure 6.5(a) and the (n)w1 curves
shown in Figure 6.5(b). Therefore, they are not significantly influenced by BL
coupling, and are not discussed further.

The effects of BL coupling on the faulty behavior are evident in the way the Vcs

curve is influenced. This is expected since the Vcs curve is closely associated with
the amount of differential voltage developing on a given BL pair. Figure 6.6(a)
shows four different Vcs curves for the simulated BGs, plus the one resulting in the
case of zero coupling (no coup.) [see Figure 6.5(a)].

The figure shows that for a victim with a stored 0, the worst-case coupling is
generated with BG 1x0, then with BG 0x0, followed by the case with no coupling,
then BG 1x1 and finally BG 0x1. For a victim with a stored 1, the worst-case
coupling is generated with BG 0x1, then BG 1x1, no coupling, BG 0x0, and finally
BG 1x0. This means that the worst-case condition for a victim containing value x

6.2. Simulation of BL coupling | 125

corresponds to BG x̄xx. Comparing these results with the theoretical analysis of
Section 6.1.2 indicates that the dominant BL coupling effect in the simulations of
Figure 6.6(a) is pre-sense coupling.

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

Vcs curves

Vcs no coup.
Vcs BG 0x0
Vcs BG 1x0
Vcs BG 0x1
Vcs BG 1x1

(a) BL coupling

10

100

1000

10000

0.5 1.0 1.5 2.0
R

op
 [k

O
hm

]

Vc [V]

Vcs curves with reduced Cbr

Vcs BG 0x0
Vcs BG 1x0
Vcs BG 0x1
Vcs BG 1x1

(b) Modified BL coupling

Figure 6.6. Vcs curves showing effects of (a) regular BL coupling, and (b) modified BL coupling.

The figure also shows that the most influential cell on the behavior is the one
on BTb, which is expected since it generates cooperating pre-sense and post-sense
coupling effects. The cell on BTt has a limited impact on the behavior since it
generates opposing pre-sense and post-sense coupling effects. It is interesting to
note that, for a given victim value, some BGs actually help the faulty behavior to
produce the correct read output, which indicates the importance of selecting the
worst-case background values.

In order to check the correct correspondence between simulation results and
the theoretical analysis of Section 6.1.2, one could ask the question: Is it possible
to modify the simulation model in such a way that would make post-sensing more
dominant than pre-sensing?

Referring to Equations 6.2 and 6.3, ∆V1 and ∆V2 are related as follows:

∆V1

∆V2
∼ (Cbr + Cbb)

2

Cbr + 2Cbb

(6.4)

where we consider ∆t as a constant. This relationship indicates that in order
to increase the relative impact of ∆V2 compared to ∆V1, the ratio in Equation 6.4
should be reduced, which in turn can be done by reducing Cbr . Figure 6.6(b) shows
four new Vcs curves corresponding to a modified simulation model with Cbr2 = Cbr

2
.

The figure shows that for a victim containing a 0, the worst-case condition is ensured
by BG 0x0, then BG 1x0, BG 1x1, and finally BG 0x1. On the other hand, the
worst-case condition for a cells containing a 1 is ensured with BG 0x1, then BG
1x1, BG 1x0, and finally BG 0x0. This represents a mixed behavior where the
post-sensing effects are dominant when sensing a 0 in the victim, while pre-sensing

126 | Chapter 6. Effects of bit line coupling

effects are dominant when sensing a 1 in the victim [see Section 6.1.2]. Reducing
Cbr further does not change this mixed behavior.

It is worth noting that post-sensing effects are also able to dominate both sensing
a 0 and a 1 in the victim. This situation is shown in the simulation results of the
analysis in Section 6.3.2, where a memory simulation model with different device
parameters is used.

In conclusion, depending on the specific memory design and fabrication technol-
ogy, either pre-sensing or post-sensing effects (or both) may dominate the resulting
faulty behavior. This, in turn, means that unless an analysis is done to identify
the exact coupling effects for a specific memory, then all possible worst-case data
backgrounds have to be considered during testing.

6.3 Impact of BL twisting

Research in crosstalk reduction on BLs in memory devices indicates the effective-
ness of BL twisting techniques in eliminating BL noise in current and future fab-
rication technologies [Redeker02]. In addition, there is some published qualitative
analysis of the possible impact of BL twisting on the faulty behavior of memories
[Schanstra03]. This section quantitatively investigates the influence of BL twist-
ing on the faulty behavior of DRAMs, both theoretically and using an electrical
simulation model to evaluate the behavior. A number of BL twisting techniques
are evaluated and the way a neighborhood of cells influences the behavior is shown
[Al-Ars04c].

6.3.1 Theoretical evaluation of twisting

BL twisting is used to reduce the influence of BL coupling on the behavior of the
memory, by shielding parts of a BL from neighboring BLs. There are many types
of BL twisting schemes used in the industry. Figure 6.7 compares the untwisted BL
scheme with other important twisted BL organizations: a. the solid BLs (no twist),
b. the single BL twist, and c. the triple BL twist [Aoki88]. These BL organizations
are known to be effective at reducing crosstalk between adjacent BLs and they
have all been used in commercially produced memory components [Redeker02].
Note how BL twisting modifies the type of BLs simultaneously accessed, resulting
in cells on both BT and BC being accessed at the same time with a given WL
rather than cells connected only to BT or BC. In Section 6.1.2 above, we analyzed
the impact of solid BLs on the behavior, and in this section, we discuss the impact
of single and triple twisting on the behavior.

Single twist

Close consideration of the impact of the single twist on memory behavior shows that
the single twist fails in completely eliminating pre-sense BL coupling but succeeds
in eliminating post-sense coupling. The net effect is that the single twist results in

6.3. Impact of BL twisting | 127

������������������
Defective cell

BTt

BCt

BTb

BCb

BTm

BCm

Defective cell

�������������������
� BTm

BCm ������������������������������
Defective cell

BTm

BCm

BTt

BCt

BCb

BTb
WL0

(c) Triple BL twist

BTt

BCt

BTb

BCb

WL0

(b) Single BL twist

WL0

(a) Solid BLs

Figure 6.7. Analyzed BL organizations: (a) solid BLs, (b) single twist, and (c) triple twist.

making pre-sense coupling more significant than post-sense coupling on the faulty
behavior of the memory. In the following, a more detailed discussion of this point
is given.

For pre-sense coupling, Figure 6.8(a) shows the pre-sense voltage development
on BTm and BCm as a result of a logic 1 stored in both neighboring cells. Since
the accessed cell on BCt has a logic 1, a small upward voltage differential of Va

develops on BCt during pre-sensing, which in turn results in pulling BTm up by
Vb. As a result of BL twisting, the amount of Vb developing on BTm is almost one
half of that in the case of solid BLs3. The same situation takes place with BCb,
where an up voltage differential of Vc induces an up voltage differential of Vd on
BCm. In conclusion, the single twist cuts the amount of pre-sense BL coupling by
almost one half, where the remaining coupling effect requires a worst-case BG of
x̄at

xvxab
(i.e., Cell 0 on BCt contains x̄ and Cell 0 on BCb contains x).

�\��\��\��\��\��\�

Va

Vc

BTm

BCm

Va

Vc

Vb

"1"

"1"

Vd

BTt

BCt

BCb

BTb
WL0

(a) Pre-sense

�\�\��\�\��\�\�
�\�\��\�\��\�\� BTm

BCm

"1"

"1"

BTt

BCt

BCb

BTb
WL0

Va1

Vb1

Vb2

Vc2

Vc1

Vd1

Vb1

Va1

Va2

Vd2

Vd1

Vc1

(b) Post-sense

Figure 6.8. Voltage development for a single twist during (a) the pre-sense, and (b) the post-
sense stages.

For post-sense coupling, Figure 6.8(b) shows the voltage development on BTm
and BCm as a result of a logic 1 stored in both neighboring cells. During post-
sensing, and since the accessed cell on BCt has a logic 1, the top sense amplifier

3It is actually slightly higher than one half as a result of second-order coupling which is not
considered in this discussion

128 | Chapter 6. Effects of bit line coupling

pulls the voltage on BCt up by an amount of Va1, which induces an up differential
voltage of Va2 on BTm. At the same time, the top sense amplifier pulls the voltage
on BTt down by an amount of Vb1 resulting in a down voltage of Vb2 on BTm. Since
Va2 and Vb2 are equal and opposite to each other, they nullify each other leaving a
zero net coupling voltage on BTm. The same situation takes place with the bottom
sense amplifier, which pulls BCb down by Vc1 inducing Vc2 on BCm, and pulls BTb
up by Vd1 inducing Vd2 on BCm. Vc2 and Vd2 nullify each other leaving a zero net
coupling voltage on BCm. In conclusion, the single BL twist totally eliminates
post-sense coupling effects.

Triple twist

Close consideration of the impact of the triple twist on the memory behavior reveals
that the triple twist succeeds in completely eliminating the influence of BL coupling,
both pre-sense and post-sense coupling. This means that one cannot evaluate the
impact of the triple twist on the faulty behavior of the memory by theoretically
analyzing the effect of BL coupling, and therefore electrical simulation here becomes
necessary to evaluate the second-order coupling effects on the faulty behavior.

This can be understood by noticing that the triple twist splits the BL into four
equal parts, such that one half of any coupling effect is induced onto BTm while
the other half is induced onto BCm. Since only a voltage differential between BTm
and BCm is able to influence the behavior of the memory, then a common change
(whether increasing or decreasing) in the voltage of BTm and BCm has no impact
on the behavior. In other words, the triple twist transforms the differential mode
noise into common mode noise for which the sense amplifier is insensitive.

As an example, Figure 6.9 shows the pre-sense coupling voltage development
on BTm and BCm as a result of a logic 1 stored in both neighboring cells. During
pre-sensing, and since the accessed cell on BCt has a logic 1, an up voltage of Va

develops on BCt, which in turn results in pulling BCm up by Vb1 and in pulling
BTm up by Vb2 at the same time. Both Vb1 and Vb2 are equal and therefore do
not result in a differential voltage developing between BTm and BCm. The same
situation takes place with BCb, where an up voltage Vc induces an up voltage of
Vd1 on BCm and an up voltage of Vd2 on BTm. Since both Vd1 and Vd2 are equal,
they do not result in a differential voltage developing between BTm and BCm.

6.3.2 Simulation and analysis results

This section presents the results of the simulation analysis of the three different
BL organizations shown in Figure 6.7 and discusses their impact of the faulty
behavior. The memory simulation model employed for the analysis is the same as
the one shown in Figure 6.1, while the device parameters used in the simulation
model correspond to a memory manufactured in 0.14 µm technology. These device
parameters are chosen to be different from those used in Section 6.2.2, in order to
get a new and independent set of results to test the theory. The simulation is based

6.3. Impact of BL twisting | 129

�\�\��\�\��\�\��\�\�
�\�\��\�\��\�\��\�\�����

Va

Va

Vc

BTb

BTt

BCb

BTm

BCm

Vb1Vd1

Vd2

"1"

"1"

BCt

WL0

Vb2

Figure 6.9. Pre-sense voltage development for a triple twist.

on the concepts of the result planes and the cell sense voltage (Vcs) curves, used to
evaluate the faulty behavior in Section 6.2.2.

Consider the defective DRAM cell shown in Figure 6.4, where a resistive open
(Rop) between BT (true bit line) and the pass transistor limits the ability to control
and observe the voltage across the cell capacitor (Vc). The open is injected into
Cell 0 and simulated as part of the reduced memory model shown in Figure 6.1.

Figure 6.10 shows three result planes for the three BL organizations discussed
above: a. solid BLs, b. single twist and c. triple twist. The x-axis of the result plane
represents the value of the voltage within the cell (Vc), while the y-axis represents
the value of the defect resistance (Rop). Each result plane shows 4 different Vcs

curves, one for each of the four possible BGs: 0x0, 1x0, 0x1 and 1x1. The Vcs

curve is the cell sense threshold voltage, which is the cell voltage at which the
sense amplifier distinguishes a 0 from a 1. This means that if a read operation is
performed when Vc > Vcs then the sense amplifier detects a logic 1, while Vc < Vcs

results in sensing a logic 0. Therefore, the leftmost Vcs curve in any of the result
planes is associated with the worst-case BG for detecting a 0, while the rightmost
Vcs curve is associated with the worst-case BG for detecting a 1.

Figure 6.10(a) presents the 4 BGs associated with the solid BL organization,
where no twisting is used. The figure shows that the worst-case BG for detecting a
0 in the defective cell is 0x0, while the worst-case BG for detecting a 1 in the cell
is 1x1. In other words, a worst-case BG of xxx is needed, which means that the
post-sense coupling effect is prevalent for the simulated memory model according
to Section 6.1.2.

Figure 6.10(b) shows the 4 BGs associated with the single twist BL organization,
which according to the analytical evaluation presented in Section 6.3.1 should only
be affected by pre-sense BL coupling. The figure shows that the worst-case BG for
detecting a 0 in the cell is 1x0, while the worst-case BG for detecting a 1 in the cell
is 0x1. In other words, a worst-case BG of x̄xx is needed, which indeed matches
that of a pre-sense coupling effect. This means that by introducing the single
twist into the model, post-sense coupling effects (prevalent before introducing the
twist, as indicated by Figure 6.10(a)) have been neutralized, which makes pre-sense

130 | Chapter 6. Effects of bit line coupling

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

Vcs with solid BLs

BG 0x0
BG 1x0
BG 0x1
BG 1x1

(a) Solid BLs

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

Vcs with single twist

BG 0x0
BG 1x0
BG 0x1
BG 1x1

(b) Single twist

10

100

1000

10000

0.5 1.0 1.5 2.0

R
op

 [k
O

hm
]

Vc [V]

Vcs with triple twist

BG 0x0
BG 1x0
BG 0x1
BG 1x1

(c) Triple twist

Figure 6.10. Vcs curves with different BGs for the (a) solid BL organization, (b) single twist,
and (c) triple twist.

coupling effects become the more prevalent sort of BL coupling.

Figure 6.10(c) shows the 4 BGs associated with the triple twist BL organiza-
tion, which according to the analytical evaluation presented in Section 6.3.1 should
totally eliminate pre-sense as well as post-sense BL coupling effects. The figure
shows that the worst-case BG for detecting a 0 in the cell is 0x0, while the worst-
case BG for detecting a 1 is 1x1, which indicates an existing post-sense coupling
effect on the defective cell. Although this may seem to be contradictory with the
analytical evaluation of Section 6.3.1, it can actually be explained by the fact that
Section 6.3.1 only takes into consideration first-order BL coupling effects caused
by BL to BL coupling capacitances. It is important to note, however, that second-
order BL coupling exists in the form of BL to “line” to BL coupling (BL to WL to
BL, for example), which is negligible when compared to the direct first-order BL
to BL coupling. But in the absence of first-order coupling, second-order coupling
becomes the major factor in the faulty behavior. This is also indicated by the fact
that the Vcs curves of Figure 6.10(c) are located closer together than those of Fig-
ure 6.10(a), which means that the post-sense coupling effect with the triple twist

6.3. Impact of BL twisting | 131

represents a fraction of the full post-sense coupling effect without any twists.
The analysis also shows that the single twist vcs curves in Figure 6.10(b) are

closer together than the triple twist vcs curves in Figure 6.10(c). This can be
thought to indicate that the single twist is more effective in eliminating bit line
coupling effects than the triple twist, which contradicts the theoretical analysis in
Section 6.3.1. This can, however, also be explained by assuming the effect of post-
sense coupling to be much larger than the effects of pre-sense coupling, thereby
making that post-sense effect always dominant if it is not eliminated from the
behavior. This can be mathematically illustrated as follows.

V0t = ∆V ′ + ∆V ′′ (6.5)

= ∆V ′ + f · ∆V ′ (6.6)

= ∆V2 − ∆V1 + f · ∆V2 − f · ∆V1 (6.7)

where V0t represents the coupling voltage in the case of solid BLs (0t stands for
0 twists), V ′ and V ′′ stand for first-order and second-order coupling effects, re-
spectively, and f represents the factor that relates V ′ to V ′′. Since second-order
effects are supposed to be a fraction of first-order effects, f should satisfy the re-
lation 0 < f < 1. V1 and V2 stand for pre and post-sense coupling voltages [see
Equations 6.2 and 6.3].

The coupling voltages in the case of the single BL twist (V1t) and the triple BL
twist (V3t) can be represented as:

V1t =
1

2
∆V1 + f · ∆V1 − f · ∆V2 (6.8)

V3t = f · ∆V2 − f · ∆V1 (6.9)

The fact that the impact of the triple twist coupling voltage seems to be bigger
than the impact of the single twist coupling voltage can be represented as:

V3t > V1t =⇒ f · ∆V2 − f · ∆V1 >
1

2
∆V1 + f · ∆V1 − f · ∆V2 (6.10)

=⇒ f >
∆V1

4(∆V2 − ∆V1)
(6.11)

Applying the condition that 0 < f < 1 to Equation 6.11, results in the following
condition that relates pre and post-sense coupling voltages:

∆V2 >
5

4
∆V1 (6.12)

Condition 6.12 states that, even though second-order effects are a fraction f of
first-order effects, it is possible for V3t to be bigger than V1t as long as post-sense
effects (∆V2) remain large enough (relative to ∆V1).

132 | Chapter 6. Effects of bit line coupling

In the case of the triple twist, analytical evaluation of second-order BL coupling
effects on the behavior is overly complex, and electrical simulation can provide
considerable insight into the faulty behavior of a defective memory.

Summary

This chapter discussed the impact of BL coupling on the faulty behavior of
DRAM devices. For some defects, BL coupling has a significant influence
on the faulty behavior, that should be taken into consideration when testing
the memory for possible faults. The analysis identified two main causes
of BL coupling: 1. pre-sense coupling effects, and 2. post-sense coupling
effects. Both of them are analyzed and validated using a simulation-based
fault analysis approach. In the coming chapters, these principles are used
to take BL coupling into consideration when realistic tests are derived for
the memory. The main issues presented in this chapter are the following.

• Introduction of the principle of BL coupling and its importance for
current and future memory devices.

• Theoretically discussing the causes and consequences of BL coupling
on the faulty behavior of the memory.

• Validation of the theoretical discussion of BL coupling using a
simulation-based fault analysis approach of a defective memory,
where the simulated faulty behavior is shown to support the the-
oretical analysis.

• Evaluation of the effectiveness of two industrial BL twisting tech-
niques (single twist and triple twist) in eliminating the effects of BL
coupling.

• Identification of the way these BL twisting techniques modify the
faulty behavior of the memory.

• Validation of the theoretical discussion of BL twisting using a
simulation-based fault analysis approach of a defective memory.

Contents of this chapter

7.1 Memory simulation model

7.2 Classification of defects

7.3 Application of 1D analysis

7.4 Application of 2D analysis 7
Application of the approximation method

In order to demonstrate the effectiveness and practicality of the approximate sim-
ulation fault analysis methods presented in Chapter 5, these methods have been
applied in an industrial setting at Infineon Technologies on real memory simulation
models manufactured in a number of different technologies, ranging from 0.35 µm
to 0.11 µm feature sizes. This chapter applies the approximate simulation methods
to analyze the faulty behavior of a large number of realistic defects that may take
place in a DRAM. The analysis employs the simulation model of a real DRAM,
manufactured by Infineon in a 0.2 µm technology, and injects resistive defects into
the model. Both approximate algorithms (the one dimensional and the two dimen-
sional simulation methods) discussed in previous chapters are applied here, and
the results of the analysis indicate the effectiveness of the approximate simulation
methods to analyze the faulty behavior of the memory.

Section 7.1 starts the chapter by presenting the simulation model used for sim-
ulating the memory behavior, and discusses the different ways employed to reduce
the size of the simulation model. Then, Section 7.2 enumerates and classifies pos-
sible defects that can take place in the memory. The classification divides the set
of all possible defects into opens, shorts and bridges, some of which result in one
floating node, while others result in two floating nodes. Section 7.3 discusses the
fault analysis results of applying the one dimensional (1D) approximate method to
those defects causing a single floating node, while Section 7.4 discusses the fault
analysis results of applying the two dimensional (2D) approximate method to those
defects causing two floating nodes.

133

134 | Chapter 7. Application of the approximation method

7.1 Memory simulation model

In this section, we present the simulation model to be used for defect injection and
analysis of the faulty behavior of the memory. The ideal situation would be to inject
a defect at all possible locations in the memory, and then to inspect the memory for
possible faulty behavior by performing a simulation of the full memory model. The
problem with this approach is the huge amount of possible defect combinations,
and the long simulation time required. To get an impression of the time needed for
such a task, it is enough to note that performing a full memory model simulation
of a single memory operation that is 40 ns long, may take more than 5 hours of
simulation time. Therefore, it is important to reduce the memory simulation model,
so that only relevant circuits are included, leaving out other circuits unnecessary
for the simulation [Al-Ars01e, Naik93, Nagi96]. In the following, the circuits used
in the simulation are discussed first, followed by the methods used to reduce the
size of the simulation model.

7.1.1 Simulated DRAM circuits

As discussed in Section 3.2, memory circuits can be divided into three signal paths:
the data path, the address path, and the control path. The data path is the part of
the memory that processes and regulates the data flow within the memory, while
the other two paths provide the timing and control needed for the data path to
function properly. The data path is able to provide the full basic functionality of
memory, from storing input data during a write operation, to reproducing this data
during a read operation. Therefore, it is possible to restrict the simulation model of
the memory to the data path, without any loss of simulated memory functionality.

Figure 7.1 shows the different parts of the data path used for the simulation
model of the memory [compare with Figure 3.5]. The model has the following
components:

• Three BL pairs, each containing 2 memory cells

• Three sense amplifiers (SAs)

• Three precharge circuits

• Access devices

• One read buffer

• One write buffer

The model contains three BL pairs, one at the top (BTt and BCt), one in the
middle (BTm and BCm), and one at the bottom (BTb and BCb). One reason three
BL pairs are included in the model is the fact that we would like to evaluate the
impact of different backgrounds patterns (BGs) on the simulated faulty behavior.

7.1. Memory simulation model | 135

Precharge
circuits

Precharge
circuits

Precharge
circuits

Access
devices

Read
buffer

Write
buffer

Cell

Cell

Cell Cell

Cell

Cell

WLtWLc
BTt

BCt

BTm

BCm

BTb

BCb

SAt

SAm

SAb

Figure 7.1. Block diagram of the memory simulation model used for fault analysis.

Each BL pair has a couple of cells, one connected to the true BL (BT), while the
other is connected to the complement BL (BC). This gives a total of 6 memory
cells, three of which are connected to a true BL and controlled by the word line
WLt, while the other three are connected to a complement BL and controlled by
WLc.

Each BL pair is connected to a sense amplifier and has its own precharge devices.
Furthermore, the three BL pairs are connected through the access devices to a read
buffer and a write buffer. The electrical schematics and behavior of each of these
components is discussed in detail in Section 3.2.

Before performing the simulation of the cell array column, we need to isolate it
by simplifying the circuits connected to it along the data path and in the control
and decoding paths. Isolation is important for our purposes, since simulating the
whole circuit takes an excessive amount of time. Isolation is done by removing
electrical components connected to the array column, and replacing them by other
simpler components in such a way that the behavior of the array column is affected
minimally. In addition to simplification, the column should be initialized at the
beginning of each simulation by specifying the initial voltages across all capacitors
and the initial state of all latches.

7.1.2 Model reduction techniques

In order to ensure the correctness of the simulations performed on a reduced simu-
lation model, it is important to compensate for the removed circuits, such that the
reduced simulation model can reflect the behavior of the full model. A number of
memory characteristics, related to its design, structure and operation, make mem-
ory simulation models particularly suitable for model reduction, without significant
loss in model accuracy [Al-Ars99, Al-Ars00].

136 | Chapter 7. Application of the approximation method

• Memory design—Memory circuits are commonly divided into three dif-
ferent signal paths (data, address and control paths) that are electrically
independent from one another to a large extent. Therefore, it is possible,
with minor modifications to the model, to eliminate unneeded signal paths
and to simulate only those paths required for analyzing the faulty behav-
ior. For example, it is possible to simulate the behavior of the data path
by eliminating the whole address path, and replacing the address decoders
with parasitic components in combination with voltage sources to drive the
decoded waveform on different WLs.

• Memory structure—Memory circuits are constructed in a very modular
way, by connecting a large number of identical components in parallel to build
large, highly repetitive memories. Therefore, a large number of components
can be lumped together into a single representative component, with scaled
electrical parameters. For example, the circuit models of a large number of
idle memory cells can be lumped together into a single memory cell with
electrical characteristics that represent all the idle cells it replaces.

• Memory operation—Memory circuits operate primarily based on the prin-
ciple of precharging and isolated sensing of voltage levels, and not on direct
transfer of current from one circuit to the other. This means that memory
circuits operate by being first set into a known initial precharge state, and
then by isolating them from the rest of the memory, until they stabilize at a
specific final state. Therefore, it is possible to correctly simulate the memory
components under investigation by eliminating those circuits that are com-
pletely isolated from the desired parts of the memory. For example, it is
possible to correctly simulate the sensing behavior of a single BL pair, with-
out the need to include a write or a read buffer in the model, since these are
always isolated from the BL pair throughout the sensing process.

As shown in Figure 7.1, the simulation model used here is only concerned with
the simulation of the data path. Therefore, most of the circuits on the control
and the address paths can be simplified or left out. Moreover, circuits on the data
path that remain idle throughout the simulation can also be simplified or cut off.
Still, the circuits eliminated from the simulation model need to be compensated by
parasitic resistances and capacitances to correctly model the load on the simulated
parts of the memory. In the following, a number of techniques are given that can
be used to simplify the DRAM electrical circuits.

1. Signals driving transistor gates—These signals are relatively easy to sim-
plify, since there is no direct current (DC) transfer to or from the gate of a
MOS transistor. The interaction between the gate and other nodes of a tran-
sistor is limited to small signal, or alternating current (AC), effects. Two
different simplifications are possible here.

7.1. Memory simulation model | 137

• Any voltage signal, generated by the address or control paths and is
driving a transistor gate in the data path, may be replaced by a voltage
source generating the same voltage signal. This simplification method
has been applied to the data path for signals like those on the word lines
and the column select lines.

• Most signals on the address and control paths are digital (i.e., are ei-
ther high or low), but some signals can assume three states (so-called
tri-state signals), and in addition to being high or low, they can also
be left floating. The high and low voltages of a tri-state signal can be
reproduced using a voltage source, while the floating state of the sig-
nal can be reproduced using a transistor that disconnects the voltage
source whenever the signal is supposed to be floating. This situation is
represented in Figure 7.2.

Tri−state
line

Tri−state
lineCircuit to be

simulated

Circuit
to be

simplified

Circuit to be
simulated

Simplification

Figure 7.2. Simplification of circuits with tri-state signals driving a transistor gate.

2. Signals connected to transistor drain/source—In case a signal line is
connected to a drain or source of a transistor, simplification becomes more
involved, because DC current can flow from drain to source when the tran-
sistor is conducting. One possible situation of this type that applies to the
memory cell array is when the signal line to be simplified is kept floating at
anytime it is connected to the circuit to be simulated. In this special case,
the signal line and the circuit controlling it may be simplified by a transistor,
a voltage source and an equivalent capacitor, configured in the way shown in
Figure 7.3. For example, this type of simplification can be carried out for the
write drivers connected to the bit lines along the data path.

Tri−state
lineCircuit to be

simulated

Circuit
to be

simplified

Circuit to be
simulated

Tri−state
line

Simplification

ControlControl

Figure 7.3. Simplification of circuits connected to the drain/source of a transistor.

138 | Chapter 7. Application of the approximation method

3. General simplification methods—In case none of the methods above
work, one of the following two general simplification methods can be applied.

• It might be possible to trace the signal line backwards, thus including
more and more devices into the simulated circuit, in the hope that a
cut-set of lines is eventually found that would conform to one of the
simplification methods mentioned above.

• In case back tracing is not possible, then more aggressive simplification
techniques are necessary. One such technique is to define a so called be-
havioral model or simulation macro, that describe the external behavior
of a collection of components rather than the components themselves.
This way, the quantity and quality of the models the simulator needs to
evaluate is significantly reduced, which results in a shorter simulation
time. This simplification technique has not been applied on our circuits.

7.2 Classification of defects

In this thesis, we will mainly be concerned with analyzing defects that take place
in the memory cell array, since it takes the largest amount of surface area in the
memory and is the part most prone to defects [Al-Ars99, Hamdioui04a]. The de-
fects to be considered are modeled at the electrical level by parasitic resistances.
Depending on the signal lines the injected defects are connected to, the defects may
be classified into the following three categories [see Figure 7.4]:

• Open—Opens represent unwanted resistances on a signal line that is sup-
posed to conduct perfectly.

• Short—Shorts are undesired resistive paths between a signal line and power
supply (Vdd or GND).

• Bridge—Bridges are unwanted resistive paths between two signal lines.

It is also possible to model defects as a capacitance coupling between nodes
[Al-Ars03a], but these types of defects do not commonly take place in practice
[Henderson91], and they usually do not result in a significant impact on the faulty
behavior of the memory [Al-Ars99]. The resistive value of opens, shorts and bridges
is given by Rop , Rsh and Rbr , respectively; each of which may take any value in the
range 0 ≤ R ≤ ∞ Ω. In the following, all memory cell array defects to be analyzed
are presented. To this end, this section starts by defining a number of relationships
between the injected defects, used to limit the number of simulated defects. This
is followed by listing the locations of injected opens, shorts and bridges.

7.2. Classification of defects | 139

br

sh

Circuit

Circuit Circuit

Circuit Circuit

Circuit

Open Short BridgeopR

R

R

Figure 7.4. Classification of the defects to be simulated and analyzed.

7.2.1 Relations between injected defects

The cell array of the memory is designed with a high degree of symmetry, which
results in a corresponding symmetry in the defects injected into the cell array.
This symmetry in the injected defects results in a symmetry in the faulty behavior
induced by symmetrical defects. Therefore, it is sufficient to analyze the faulty
behavior of only one defect in a group of symmetrical defects, and then deduce
the faulty behavior of other symmetrically related defects without the need for
new simulation and analysis. For this purpose, we provide the following symmetry
definitions [Simonse98]:

Table 7.1. Static single-cell fault models and their complementary counterparts.

Fault model Complement

SF0 <0/1/−> ⇐⇒ SF1 <1/0/−>

IRF0 <0r0/0/1> ⇐⇒ IRF1 <1r1/1/0>

DRDF0 <0r0/1/0> ⇐⇒ DRDF1 <1r1/0/1>

RDF0 <0r0/1/1> ⇐⇒ RDF1 <1r1/0/0>

WDF0 <0w0/1/−> ⇐⇒ WDF1 <1w1/0/−>

TF0 <1w0/1/−> ⇐⇒ TF1 <0w1/0/−>

• A defect D1 at a given position shows the complementary faulty behavior
of a defect D2 at another position, if the faulty behavior of D1 is the same
as that of D2, with the only difference that all 1s are replaced by 0s, and
vice versa. For example, the fault <xwy/z/−> is complementary to the
fault <xwy/z/−>. Table 7.1 lists all static single-cell fault models and their
complementary counterparts. The table does not include two-cell faults since
it is easy to generalize the table to include them.

140 | Chapter 7. Application of the approximation method

• A defect D1 shows the interchanged faulty behavior of a defect D2,
if the faulty behavior of D1 and D2 contain two-cell faults, and if these
two-cell faults are the same with the exception that the aggressor and vic-
tim cells are interchanged. In general, if a two-cell fault has the following
notation <S/F/R>x,y, then the interchanged fault is given by the nota-
tion <S/F/R>y,x. For example, if a defect D1 causes the two-cell fault
<1; 0w0/1/−>x,y, then the interchanged defect D2 causes the same fault
<1; 0w0/1/−>y,x, but with aggressor and victim interchanged.

• A defect D1 shows the single-sided complementary behavior of a defect
D2, if the faulty behavior of D1 and D2 contain two-cell faults, and if these
two-cell faults are the same with the exception that all 1s are replaced by
0s, and vice versa, in either the aggressor or the victim cells (not both). If
the victim sides of two faults are the complement of each other, then these
two faults are called victim-sided complementary . If the aggressor sides of
two faults are the complement of each other, then these two faults are called
aggressor-sided complementary . For example, suppose that D1, D2 and D3
affect cells x and y, and that D1 forces a 0w0 operation to cause an up
transition in y if cell x is in state 1, then this faulty behavior of D1 is denoted
by <1; 0w0/1/−>x,y. The aggressor-sided complementary defect D2 should
force a 0w0 operation to cause an up transition in y if cell x is in state 0,
which is the fault denoted by <0; 0w0/1/−>x,y. On the other hand, The
victim-sided complementary defect D3 should force a 1w1 operation to cause
a down transition in y if cell x is in state 1, which is the fault denoted by
<1; 1w1/0/−>x,y.

In Section 7.2.2, defect names are given attributes to point out the symmetrical
relationship a given defect shares with others, based on the symmetry definitions
given above (complementary, interchanged and single-sided complementary). Ta-
ble 7.2 lists all symmetry attributes and describes their meaning. As a result of
these relationships, it is sufficient to simulate the behavior of only one represen-
tative of a group of symmetrically related defects. This one defect we choose to
simulate is called the simulated defect and is given the attribute “s”.

In some situations, defects can be classified according to more than one of the
symmetrical relationships given in Table 7.2. In this case, the defect group contains
more than one letter selected from the table. For example, bridges between two
cells, which are classified as interchanged and as complementary at the same time,
are given the attributes “i” for interchanged and “c” for complementary, resulting
in the combined attribute “ic”.

7.2.2 Definition of defects

Here, all targeted defects in the memory cell array are explicitly defined, and every
instance of these defects is given a label to refer to it later in the thesis. Figure 7.5

7.2. Classification of defects | 141

Table 7.2. Symmetry attributes given to defect names and their meaning.

Attribute Meaning

s Defect to be simulated and analyzed

c Defect with the complementary behavior to the simulated one

i Defect with the interchanged behavior to the simulated one

a Defect with an aggressor-sided complementary behavior

v Defect with a victim-sided complementary behavior

shows an overview of the locations of defects to be simulated. The defects are
classified into opens, shorts and bridges. The opens and shorts are divided into
defects in memory cells, on BLs or on WLs, while bridges are divided into defects
involving no cells, one cell and two different cells. In the following, we start with
defining the locations of opens, then shorts and finally bridges.

Simulated defects

Shorts

No cells One cell Two cells

Opens

On BLsIn cells On WLs On BLsIn cells On WLs

Bridges

Figure 7.5. Overview of simulated defect locations.

Location of opens

At the layout level, opens are usually caused by broken lines, or particle contami-
nation that results in increasing line resistivity at the open position. Figure 7.6(a)
shows a layout example of a BL open caused by particle contamination, resulting
in an increase in the BL resistance and inducing some kind of faulty behavior in
the memory.

Opens in the memory cell array can be either opens within cells (OC), opens
on BLs (OB) or opens on WLs (OW). Figure 7.6(b) shows these three different
locations of opens. There are three types of OCs, on top (t), in the middle (m)
and at the bottom (b), all of which (partially) disconnect the cell from the BL and
limit the ability of the memory to control and observe the voltage within the cell.
There are two types of OBs, disconnecting the cell from circuitry on the top of the
BL (t), and disconnecting the cell from circuitry at the bottom of a the BL (b).

142 | Chapter 7. Application of the approximation method

(a) BL open

BL WL

OBb

OBt

OCt OCm

OCb
OW

(b) Location of opens

Figure 7.6. (a) Layout level example of a BL open. (b) Positions of opens in the cell array.

There is only one word line open called OW, which limits the ability of the memory
to properly access the cell.

BL in the figure can either be the true bit line (BT), or the complementary bit
line (BC). The faulty behavior of defects related to BT is complementary to the
faulty behavior of defects related to BC, which means that it is enough to simulate
the faulty behavior on BT. Table 7.3 summarizes the possible open defects, where
the (s) and (c) subscripts in the name of the defect refer to the simulated defect and
the one with the complementary behavior, respectively. The table also indicates
whether a 1D or 2D analysis is needed to evaluate the faulty behavior of the memory
with the presence of the defect.

Table 7.3. Analyzed open defects in the memory cell array.

BT open BC open Analysis Description

1 OCts OCtc 1D Pass transistor connection to the bit line broken

2 OCms OCmc 1D Pass transistor connection to the capacitor broken

3 OCbs OCbc 1D Cell connection to the capacitor plate broken

4 OBts OBtc 2D Bit line disconnected from the cell at the top

5 OBbs OBbc 2D Bit line disconnected from the cell at the bottom

6 OWs OWc 1D Word line disconnected from memory cell

Location of shorts

At the layout level, shorts can be caused by a number of physical failures such as
extra metal deposition or isolation breakdown, that result in faulty connections be-
tween power supply lines and other signal lines in the memory. Figure 7.7(a) shows
a layout example of a power supply short caused by extra metal deposition, result-
ing in a faulty new connection being formed between two otherwise disconnected
lines.

Shorts, similar to opens, can be either within cells (SC), on bit lines (SB), or
on word lines (SW). Figure 7.7(b) shows the short positions of these three different

7.2. Classification of defects | 143

Vdd GND

(a) Power line shorts

WLBL

SB

SC

SW

(b) Location of shorts

Figure 7.7. (a) Physical example of power supply shorts. (b) Positions of shorts in the cell array.

types of shorts. At each position indicated in the figure, a short may connect the
node either to Vdd or GND. Shorts to Vdd are indicated by the letter (v) as in SCv
and SBv, while shorts to GND are indicated by the letter (g) as in SCg and SBg. BL
in the figure can either be the true bit line (BT), or the complementary bit line (BC).
The faulty behavior of shorts related to BT is complementary to the faulty behavior
of defects related to BC, which means that it is enough to analyze the fault behavior
on either BT or BC. Table 7.4 summarizes the possible short defects, where the (s)
subscript in the name stands for a short that is simulated and analyzed, while (c)
in the name of the defect refers to a short with the complementary behavior.

Table 7.4. Analyzed shorts in the memory cell array.

BT short BC short Analysis Description

1 SCvs SCvc 1D Cell storage capacitor shorted to Vdd

2 SCgs SCgc 1D Cell storage capacitor shorted to GND

3 SBvs SBvc 2D Bit line connected to victim cell shorted to Vdd

4 SBgs SBgc 2D Bit line connected to victim cell shorted to GND

5 SWvs SWvc 1D Word line connected to victim cell shorted to Vdd

6 SWgs SWgc 1D Word line connected to victim shorted to GND

Location of bridges

At the layout level, bridges can be the result of extra metal deposition or isolation
layer misalignment, that cause faulty connections between different lines in the
memory. Figure 7.8(a) shows a layout example of a bridge between the WL and
the BL contacts caused by a misalignment in the isolation layer. The small black
structure in the middle of the figure represents the WL contact, which is sandwiched
between two relatively large BL contacts. The WL and BL contacts are separated
from each other by a thin isolation layer, that is difficult to manufacture. The
figure shows that the isolation layer is not created properly, leaving a small space
on top through which the BL contact stretches and connects to the WL.

144 | Chapter 7. Application of the approximation method

BLWLBL

Bridges

(a) BL-WL bridge

CTbCCb

CCm CTm

CTtCCt

WLc WLt

SAb

SAm

SAt

BCb

BTb
BCm

BTm
BCt

BTt

(b) Nodes for bridges

Figure 7.8. (a) Physical example of a BL-WL bridge. (b) Nodes where bridges can take place.

At the electrical level, bridges are resistive connections between two nodes in
the memory. In order to take all cell array bridges into consideration, we need to
consider bridges between any two nodes in the cell array. Since the cell array has a
repetitive structure, it is possible to consider only the region surrounding a single
cell in the array as a representative of the whole. Such a representative part is
shown in Figure 7.8(b), where all nodes are given names for later reference.

The figure shows three BL pairs, at the top (BTt and BCt), in the middle (BTm
and BCm), and at the bottom (BTb and BCb). Each BL pair has two memory
cells connected to it, giving a total of six cells, three on BT (with nodes CTt, CTm
and CTb) and three on BC (with nodes CCt, CCm and CCb). The cells connected
to BT are controlled by the true WL (WLt), while the cells connected to BC are
controlled by the complement WL (WLc).

Therefore, the figure identifies 6 BLs (BTt, BCt, BTm, BCm, BTb and BCb),
6 cell nodes (CTt, CCt, CTm, CCm, CTb and CCb), and 2 WLs (WLt and WLc),
resulting in a total of 14 different nodes. This in turn means that there is a total of
14 × 13/2 = 91 bridges theoretically possible. In reality, however, bridges cannot
take place between any two arbitrary nodes in the memory, since only nodes in
close proximity of one another can be bridged. Furthermore, many of these bridges
result in exactly the same faulty behavior, such as bridges between a given cell
to any idle (not accessed) cell. In the following, we choose a total of 24 different
bridges to analyze, that give a good representation of the behavior of all 91 possible
bridges.

We can classify bridges into those involving zero cells (BZ), one cell (BO) and
two cells (BW). BO defects are the easiest to discuss, and therefore we list them first
in Table 7.5. For these defects, the defective cell is the one accessed and inspected
for possible faulty behavior, since we assume that the faulty behavior would appear
there most prominently. The table lists 6 bridges identified as simulated (s), and 6
with a complementary faulty behavior (c).

Table 7.6 lists the bridges that involve two memory cells. During simulation, the

7.2. Classification of defects | 145

Table 7.5. Possible bridge defects involving one cell (BO) in the memory cell array.

Sim. BO Comp. BO Ana. Description

1 BO1s CTm-WLt BO1c CCm-WLc 1D Accessed cell bridged to own WL

2 BO2s CTm-WLc BO2c CCm-WLt 1D Accessed cell bridged to another idle WL

3 BO3s CTm-BTm BO3c CCm-BCm 2D Accessed cell bridged to own BL

4 BO4s CTm-BCm BO4c CCm-BTm 2D Accessed cell bridged to own comp. BL

5 BO5s CTm-BCt BO5c CCm-BTb 2D Accessed cell bridged to another comp. BL

cell containing the node CTm is accessed and inspected for faulty behavior. The ta-
ble lists two defects in the first column, identified as simulated bridges (s), followed
by their complementary (c) counterparts in the second column. For example, the
bridge BW1s connects the cell on BTm to the cell on BCm. This complementary
couterpart of this defect is identical to the defect itself and therefore need not be
mentioned.

Table 7.6. Possible bridges between two memory cells (BW) in the memory cell array.

Sim. BW Comp. BW Analysis Description

1 BW1s CTm-CCm — — 2D Accessed cell bridged to idle cell

2 BW2s CTm-CTb BW2c CCm-CCb 2D Accessed cell bridged to active cell

Table 7.7 lists the bridges that do not involve memory cells (bridges with zero
cells or BZ), but connect nodes outside memory cells. The CTm cell is the one
accessed and inspected for faulty behavior for the bridges listed in the simulated BZ
column, while the CCm cell is the one inspected for bridges in the complementary
BZ columns. Note that the bridge BZ6s, there is no complementary bridge entry
in the table, since it is identical to the simulated bridge itself.

Table 7.7. Possible bridges not involving memory cells (BZ) in the memory cell array.

Sim. BZ Comp. BZ Ana. Description

1 BZ1s BTm-BCm BZ1c BCm-BTm 1D Accessed true bit line to accessed complementary bit line

2 BZ2s BTm-BCt BZ2c BCm-BTb 2D Accessed true bit line to another complementary bit line

3 BZ3s BCm-BTb BZ3c BTm-BCt 2D Accessed complementary bit line to another true bit line

4 BZ4s BTm-WLt BZ4c BCm-WLc 2D Accessed true bit line to accessed word line

5 BZ5s BCm-WLt BZ5c BTm-WLc 2D Accessed complementary bit line to accessed word line

6 BZ6s WLt-WLc — — 2D Accessed word line to idle word line

146 | Chapter 7. Application of the approximation method

Summary of analyzed defects

In total, there are 48 bridge defects that cover most realistic defective connections
that may take place in the memory cell array. Only 25 of those need be simulated,
while the behavior of the others can be subsequently derived according to the
symmetrical equivalence rules described in Section 7.2.1.

Table 7.8 gives a summary of all the defects discussed above, the faulty be-
havior of which is simulated and analyzed in detail in the coming sections. The
table first lists the simulated defects and their complementary counterparts, di-
vided into opens, shorts and bridges. Then, the type of analysis needed to simulate
the faulty behavior of each defect is listed. The 1D entry refers to the fact that
the corresponding defect causes one floating node and requires the application of
the one dimensional analysis, while the 2D entry means that the corresponding de-
fect causes two floating nodes and requires the application of the two dimensional
analysis. Finally, the table gives a short description of the defect.

7.3 Application of 1D analysis

In this section, we apply the 1D approximate simulation method to analyze the
faulty behavior of those cell array defects that cause a single floating node, and
therefore require the 1D analysis [Al-Ars02b, Al-Ars02c]. The used simulation
model is shown in Figure 7.1. It includes 3 BL pairs coupled with each other
using coupling capacitances, which makes it possible to simulate BL coupling with
different background patterns (BGs). The different BGs and their relationship
to the simulation model is discussed in Section 7.1.1. More detailed discussion of
BGs and the impact of BL coupling on the faulty behavior can be found in the
literature [Al-Ars04b, Al-Ars04c]. Assuming that cell CTm in Figure 7.1 is the one
under investigation, then the BG for this cell is chosen to be the combination of
the data stored in cell CTt and cell CTb. Such a BG is represented as tmb, where
t stands for the data in CTt, while b represents the data in CTb. The value m
stands for the initial data stored in CTm, which is often represented by a don’t
care (x), since the initialization of the cell is mostly done by an operation that is
part of the fault. To analyze the impact of BGs, all simulations are repeated for
the following four different BGs 0m0, 0m1, 1m0 and 1m1.

The 1D fault analysis approach (discussed in Section 5.2) is performed for all
1D defects, and the results of this analysis are presented in Table 7.9. In case
multiple operations are needed to sensitize a fault (partial faults) the operations
are denoted as wxh or rxh, where h stands for the number of repetitions of the
operation. The results in the table have been derived according to the following
criteria.

• If the simulation shows that the defect causes the cell to loose its charge and
change its logic value very fast (within the time span of a single memory op-
eration), then the faulty behavior is modeled using a state fault (<x/x̄/−>).

7.3. Application of 1D analysis | 147

Table 7.8. All analyzed defects in the memory cell array.

Sim. def. Comp. def. Analysis Description

OCts OCtc 1D Pass transistor connection to the bit line broken

OCms OCmc 1D Pass transistor connection to the capacitor broken

OCbs OCbc 1D Cell connection to the capacitor plate broken

OBts OBtc 2D Bit line disconnected from the cell at the top

OBbs OBbc 2D Bit line disconnected from the cell at the bottom

OWs OWc 1D Word line disconnected from memory cell

SCvs SCvc 1D Cell storage capacitor shorted to Vdd

SCgs SCgc 1D Cell storage capacitor shorted to GND

SBvs SBvc 2D Bit line connected to victim cell shorted to Vdd

SBgs SBgc 2D Bit line connected to victim cell shorted to GND

SWvs SWvc 1D Word line connected to victim cell shorted to Vdd

SWgs SWgc 1D Word line connected to victim shorted to GND

BO1s BO1c 1D Accessed cell bridged to own WL

BO2s BO2c 1D Accessed cell bridged to another idle WL

BO3s BO3c 2D Accessed cell bridged to own BL

BO4s BO4c 2D Accessed cell bridged to own comp. BL

BO5s BO5c 2D Accessed cell bridged to another comp. BL

BW1s — 2D Accessed cell bridged to idle cell

BW2s BW2c 2D Accessed cell bridged to active cell

BZ1s BZ1c 1D Accessed true bit line to accessed complementary bit line

BZ2s BZ2c 2D Accessed true bit line to another complementary bit line

BZ3s BZ3c 2D Accessed complementary bit line to another true bit line

BZ4s BZ4c 2D Accessed true bit line to accessed word line

BZ5s BZ5c 2D Accessed complementary bit line to accessed word line

BZ6s — 2D Accessed word line to idle word line

• If the simulation shows that the defect causes write operations to store a
weaker voltage than what is needed by a read operation to detect a correct
value in the cell, then the faulty behavior is modeled using a faulty write
operation (<wx/x̄/−>).

• If the simulation shows that the defect causes multiple write operations to
have a cumulative voltage effect in the cell capacitance (i.e., multiple write
operations cause a gradual increase or decrease in cell voltage), then the faulty
behavior is modeled as a partial fault <wxh wx̄/x/−> [see Section 4.3.1].

The first column in Table 7.9 lists the name of the simulated defect, followed
by the used BG in the second column. The third column uses the FP notation
to describe the resulting faulty behavior. The following 12 columns indicate the
type of the DRAM-specific fault being modeled by the FP. There are five basic
types of faults: hard (h), soft (s), transient (t), partial (p) and dirty (d). Together,

148 | Chapter 7. Application of the approximation method

Table 7.9. Simulation results of the 1D fault analysis, where x ∈ {0, 1}

Defect BG FP h ph dh pdh s ps ds pds t pt dt pdt

OCts, 0x0 <w13w0/1/−> − + − − − + − − − + − −
OCms 1x0 <w13w0/1/−> − + − − − + − − − + − −
and 0x1 <w03w1/0/−> − + − − − + − − − + − −
OCbs 1x1 <w03w1/0/−> − + − − − + − − − + − −
OWs 0x0 <w0/1/−> + − − − + − − − + − − −

1x0 <w0/1/−> + − − − + − − − + − − −
0x1 <w1/0/−> + − − − + − − − + − − −
1x1 <w1/0/−> + − − − + − − − + − − −

SCvs 000 <0/1/−> + − − − + − − − − − − −
100 <0/1/−> + − − − + − − − − − − −
001 <0/1/−> + − − − + − − − − − − −
100 <0/1/−> + − − − + − − − − − − −

SCgs 010 <1/0/−> + − − − + − − − − − − −
110 <1/0/−> + − − − + − − − − − − −
011 <1/0/−> + − − − + − − − − − − −
111 <1/0/−> + − − − + − − − − − − −

SWvs 000 <0/1/−> + − − − + − − − − − − −
100 <0/1/−> + − − − + − − − − − − −
001 <0/1/−> + − − − + − − − − − − −
101 <0/1/−> + − − − + − − − − − − −

SWgs 0x0 <w13w0/1/−> − + − − − + − − − + − −
1x0 <w13w0/1/−> − + − − − + − − − + − −
0x1 <w13w0/1/−> − + − − − + − − − + − −
1x1 <w13w0/1/−> − + − − − + − − − + − −

BO1s 010 <w12w0/1/−> − + − − − − − − − + − −
110 <w12w0/1/−> − + − − − − − − − + − −
011 <w12w0/1/−> − + − − − − − − − + − −
111 <w12w0/1/−> − + − − − − − − − + − −

BO2s 010 <1/0/−> + − − − + − − − − − − −
110 <1/0/−> + − − − + − − − − − − −
011 <1/0/−> + − − − + − − − − − − −
111 <1/0/−> + − − − + − − − − − − −

BZ1s 0x0 <w0/1/−> + − − − + − − − + − − −
1x0 <w1/0/−> + − − − + − − − + − − −
0x1 <w1/0/−> + − − − + − − − + − − −
1x1 <w1/0/−> + − − − + − − − + − − −

7.3. Application of 1D analysis | 149

they combine to make up 12 possible fault combinations [see Section 4.3.3]. In
the following, the faulty behavior of each defect is discussed in more detail. The
description of some defects contain little figures on the right-hand side, to indicate
the different positions of the defects. These figures also contain arrows along the
BL, that carry the tag “SWP”, which stands for sense amplifier, write driver and
precharge circuits. These arrows point toward the direction along which these
memory components are connected to the bit line.

Opens at OCt, OCm and OCb

BL WL

OBb

OBt

OCt OCm

OCb
OW

SWP

The positions of these opens are indicated in
the figure to the right. The arrow with the tag
“SWP” points to the direction along which the
BL gets connected to the sense amplifier, write
driver and precharge circuits. The opens OCt,
OCm and OCb take place within the memory
cell and limit the ability of the memory to charge or discharge the cell during write
operations. As a result, multiple write operations cause a cumulative charge up or
discharge of the cell, which means that in order to ensure proper initialization, a
sequence of write operations needs to be performed. During read operations, these
defects limit the ability of the cell to put a high enough voltage margin on the
bit lines, needed to ensure proper sensing of stored data. The low voltage margin
on BLs during sensing makes the faulty behavior of these defects very sensitive
to voltage disturbances, such as those from background data in neighboring cells,
which have a large influence on the read output. According to Table 7.9, the faulty
behavior is represented by the FP <wx3 wx̄/x/−>, which requires a sequence of
three initializing wx operations, followed by a sensitizing wx̄ operation. The three
initializing operations are needed to bring the voltage in the cell to a strong enough
level, since the open makes it difficult for a single operation to set a full voltage in
the cell. The sensitizing wx̄ operation fails to properly change the voltage in the
cell, leaving a faulty value of x behind.

Table 7.9 indicates that the FP of these defects depends on the BG, which
means that the BG plays a significant role in the faulty behavior. This is true since
the small voltage margin during the read operation can be easily affected by BL
coupling from neighboring cells. The four simulated BGs are 0x0, 1x0, 0x1 and
1x1, where the initial value of the faulty cell is taken to be x (don’t care) since the
initialization of the faulty cell makes part of the FP. The table shows that for BG
= 0x0 and 1x0, the faulty behavior is represented by <w13 w0/1/−>, while for
BG = 0x1 and 1x1, the faulty behavior is represented by <w03 w1/0/−>.

Since these opens result in FPs that require an initialization consisting of 3
operations, the faults are attributed as partial. They are not dirty, though, since
they do not require completing operations to be sensitized. At the same time,
these opens do not force leakage current into the cell toward a specific direction,
and therefore leakage can cause hard, soft, as well as transient faults.

150 | Chapter 7. Application of the approximation method

Open at OW

BL WL

OBb

OBt

OCt OCm

OCb
OW

SWP

This open takes place along the WL of the faulty
cell, which limits the ability of the memory to
control the broken WL part connected to the
cell. For very high open resistances, the bro-
ken WL part remains floating at a given voltage
which can leave the cell either constantly con-
nected to the bit line, or constantly disconnected from it. In both cases, the voltage
in the cell has no impact on the read operation, and therefore the read output is
controlled by the background data (through BL coupling) rather than the data in
the faulty cell itself. This way, if the BG causes the read output to be x, then we
need to write x̄ into the cell in order to sensitize the fault. This faulty behavior
can be represented by the FP <wx/x̄/−>.

The BG plays a significant role in the faulty behavior of this defect, since the
small voltage margin during the read operation can easily be influenced by BL
coupling from neighboring cells. The table shows that for BG = 0x0 and 1x0, the
faulty behavior is represented by <w0/1/−>, while for BG = 0x1 and 1x1, the
faulty behavior is represented by <w1/0/−>.

Since this open does not force leakage currents into the cell toward a specific
direction, leakage currents can lead to hard faults, soft faults as well as transient
faults. However, this open does not require multiple initializing operations, nor
completing operations, which means that it is neither partial nor dirty.

Shorts SCv and SCg

WLBL

SB

SC

SW

SWP

The positions to which these shorts are con-
nected are indicated in the figure to the right.
The arrow with the tag “SWP” points to the
direction along which the BL gets connected to
the sense amplifier, write driver and precharge
circuits. The shorts SCv and SCg take place
within the memory cell and connect the cell capacitor node either to Vdd or to
GND. For very low short resistances, the cell voltage gets pulled to Vdd or GND
very fast and causes a fault. The resulting faulty behavior can be represented in
the form of a state fault (<x/x̄/−>), which means that a stored value in the cell
would be spontaneously modified from x to x̄ without performing any operations
on the defective cell.

The BG has no major impact on the faulty behavior of these defects, since the
voltage in the cell is mainly controlled by the short defect, resulting in the same
type of FP for all BGs. The short to Vdd always cases the state fault <0/1/−>,
while the short to GND always causes the state fault <1/0/−>.

Since the shorts result in a leakage current that pulls the cell voltage in the same
direction as the resulting fault, the faulty behavior is attributed as a soft fault, and

7.3. Application of 1D analysis | 151

can therefore be represented as <xT /x̄/−>, where T stands for a time delay needed
for the fault to get sensitized. When the short has a very low resistance, the leakage
becomes very high and T becomes very short. When T becomes smaller than the
cycle time of a single memory operation, the fault is modeled as a hard fault.

Short SWv

This short connects the WL to Vdd and forces the cell to be connected to the BL
at all time, resulting in a leakage like behavior to the precharge voltage of the BL
(Vdd/2). Furthermore, as a result of internal biases in the sense amplifier toward
sensing a 1, a voltage of Vdd/2 in the cell gets detected as a 1 by a read operation.
The resulting faulty behavior is that of a typical data retention fault represented by
<0T /1/−>, which means that a stored value 0 gradually depletes toward a faulty
1 as a result of leakage.

The BG has a limited impact on the faulty behavior, since shorting the WL
influences all cells along the same row, which depletes the voltages in the cells in
the background as well. Therefore, as Rsh decreases, the effect of the BG decreases
as well, thereby keeping it secondary to other effects in memory operation.

Since the short results in a leakage current that pulls the cell voltage in the
same direction as the resulting fault, the faulty behavior is attributed as a soft
fault, and can therefore be represented as <0T /1/−>, where T stands for a time
delay needed for the fault to become sensitized. When the short has a very low
resistance, the leakage becomes very high and the fault is modeled as a hard fault.

Short SWg

This short connects the WL of the faulty cell to GND, which restricts access to the
cell and reduces the ability of the memory to write and read proper memory cell
voltages. This type of faulty behavior is very similar to that exhibited by opens
within the cell, which also restrict access to the cell. Just like the behavior of
cell open, this defect caused multiple write operations to have a cumulative effect
on the cell voltage. Therefore, in order to initialize the faulty behavior, multiple
wx operations should be performed. This initialization should be followed by the
operation wx̄ to sensitize the fault in the cell. In conclusion, this faulty behavior
can represented by the fault <w13 w0/1/−>, which starts with three initializing
w1 operations, followed by a sensitizing w0 operation that fails.

Unlike the behavior of cell opens, the faults caused by this defect are indepen-
dent from background data. The reason for this is that a WL shorted to GND
impacts all cells in the row connected to the same defective WL, which means that
not only the victim cell but also the background cells cannot be accessed. There-
fore, as Rsh decreases, the effect of the BG decreases as well, thereby keeping it
secondary to other effects in memory operation.

Since this short does not force leakage current into the cell toward a specific
direction, leakage currents can lead to hard faults, soft faults as well as transient

152 | Chapter 7. Application of the approximation method

faults in the cell. At the same time, the sequence of three initializing operations
indicate that the faulty behavior can also be attributed as partial.

Bridge BO1 between CTm (CCm) and WLt (WLc)

CTb

CTm

CTt

CCb

CCm

CCt

WLc WLt

BTm
BCt

BCm
BTb

BCb
SAb

SAm

SAt
BTt

The nodes to which this bridge is connected are
indicated in the figure to the right. The de-
fect BO1 is a bridge that connects the cell stor-
age capacitance to its WL, thereby forcing the
stored cell voltage to follow the voltage present
on the WL during memory operation. With a
very low bridge resistance, the voltage in the cell
strongly follows the voltage on the WL, which
means that once the cell is accessed by pulling the WL high, the cell voltage is
pulled high as well. As a result, any write 0 operation fails, while any read opera-
tion results in a 1 on the output. As the bridge resistance increases, the cell voltage
becomes slower in tracking the WL voltage, which causes multiple operations to
have a cumulative effect on the cell voltage. In conclusion, the faulty behavior can
be represented by the fault <w12 w0/1/−>, which starts with two initializing w1
operations, followed by a sensitizing w0 that fails, leaving a faulty 1 behind in the
cell.

The faulty behavior of this defect is not affected by the BG, since the bridge to
the strong voltage of the WL is much more influential than coupling voltages from
the cells in the background. Therefore all BGs result in exactly the same type of
faulty behavior in the memory.

Since the idle voltage of the WL is GND, which is opposite to the active voltage
of the WL, the bridge results in a leakage current that pulls the cell voltage in the
opposite direction to the resulting fault. Therefore, the faulty behavior is attributed
as a transient fault, and can therefore be represented as <w1 w1 w0/1L/−>, where
the underlined operation should follow the previous one instantaneously to prevent
the elimination of the fault as a result of leakage. At the same time, since multiple
operations are needed to initialize the fault, it can be attributed as a partial fault.

Bridge BO2 between CTm (CCm) and WLc (WLt)

This defect is a bridge between the cell storage capacitance and a WL connected
to a cell on BC, a WL that is idle all the time and carries the voltage of GND.
The faulty behavior resulting from this bridge is identical to the faulty behavior
resulting from the short SCg which connects the cell to GND. These two defects
share the same FP, the same impact of BG on the faulty behavior, and the same
DRAM-specific attributes associated to the fault.

7.4. Application of 2D analysis | 153

Bridge BZ1 between BTm and BCm

This defect forms a bridge between the true bit line and the complement bit line
that results in pulling the voltages on BT and BC closer together. For very low
bridge resistances, the voltages on both BT and BC are pulled very close together
which makes it difficult for the sense amplifier to detect the correct voltage in the
cell. The read output in this case depends on both the stored voltage in the cell
and on the BG. As a result, when the read output is always forced to be x, we need
to perform a wx̄ operation on the cell in order to sensitize the fault. This faulty
behavior can be represented by the FP <wx/x̄/−>.

The faulty behavior is influenced by BG in such a way, that 0x0 causes the FP
<w0/1/−> while the other BGs cause the FP <w1/0/−>. Since this bridge does
not force leakage current into the cell toward a specific direction, leakage currents
can lead to hard faults, soft faults and transient faults. However, this bridge does
not require multiple initializing operations, nor completing operations, which means
that it is neither partial nor dirty.

7.4 Application of 2D analysis

This section presents the 2D analysis results [see Section 5.3] of a simulation-
based study of the defects listed in Table 7.8 that require the 2D analysis method
[Al-Ars03d]. In the same way outlined in Section 7.3, the analysis takes BL cou-
pling into consideration, and simulates the faulty behavior with different BGs. All
simulations are repeated for the four different BGs 0x0, 0x1, 1x0 and 1x1. A
summary of the results of this analysis is presented in Table 7.10. In case multiple
operations are needed to sensitize a fault (partial faults) the operations are denoted
as wxh or rxh, where h stands for the number of repetitions of the operation. The
criteria used to derive the results in the table are the same as those used to derive
the results in Table 7.9, as discussed in Section 7.3.

The first column in the table lists the name of the simulated defect, followed
by the used BG in the second column. The third column uses the FP notation to
describe the resulting faulty behavior. The following 12 columns indicate the type
of the DRAM-specific fault being modeled by the FP. There are five basic types of
faults: hard (h), soft (s), transient (t), partial (p) and dirty (d). Together, they
combine to make up 12 possible fault combinations [see Section 4.3.3].

Open at OBt

BL WL

OBb

OBt

OCt OCm

OCb
OW

SWP

The position of this open is indicated in the fig-
ure to the right. The arrow with the tag “SWP”
points to the direction along which the BL gets
connected to the sense amplifier, write driver
and precharge circuits. This open takes place on
the BL between the precharge, write and read

154 | Chapter 7. Application of the approximation method

Table 7.10. Simulation results of the 2D fault analysis, where t, x, b ∈ {0, 1}

Defect BG FP h ph dh pdh s ps ds pds t pt dt pdt

OBts 0x0 <w02w1/0/−> − + − − − + − − − + − −
1x0 <w02w1/0/−> − + − − − + − − − + − −
0x1 <w02w1/0/−> − + − − − + − − − + − −
1x1 <w02w1/0/−> − + − − − + − − − + − −

OBbs txb No fail − − − − − − − − − − − −
SBvs 0x0 <w12w0/1/−> − + − − − + − − − + − −

1x0 <w12w0/1/−> − + − − − + − − − + − −
0x1 <w12w0/1/−> − + − − − + − − − + − −
1x1 <w12w0/1/−> − + − − − + − − − + − −

SBgs 000 <0w1/0/−> + − − − + − − − + − − −
100 <0w1/0/−> + − − − + − − − + − − −
001 <0w1/0/−> + − − − + − − − + − − −
101 <0w1/0/−> + − − − + − − − + − − −

BO3s, 000 <0/1/−> + − − − + − − − − − − −
BO4s 100 <0/1/−> + − − − + − − − − − − −
and 011 <1/0/−> + − − − + − − − − − − −
BO5s 111 <1/0/−> + − − − + − − − − − − −
BW1s 000 <w12; 0/1/−> − + − − − + − − − + − −

100 <w12; 0/1/−> − + − − − + − − − + − −
011 <w02; 1/0/−> − + − − − + − − − + − −
111 <w02; 1/0/−> − + − − − + − − − + − −

BW2s 0xb <w02w1/0/−> − + − − − + − − − + − −
1xb <w02w1/0/−> − + − − − + − − − + − −

BZ2s t00 <0w1/0/−> + − − − + − − − + − − −
t01 <0w1/0/−> + − − − + − − − + − − −

BZ3s 00b <0w1/0/−> + − − − + − − − + − − −
10b <0w1/0/−> + − − − + − − − + − − −

BZ4s 010 <1w0/1/−> + − − − + − − − + − − −
110 <1w0/1/−> + − − − + − − − + − − −
011 <1w0/1/−> + − − − + − − − + − − −
111 <1w0/1/−> + − − − + − − − + − − −

BZ5s 000 <0w1/0/−> + − − − + − − − + − − −
100 <0w1/0/−> + − − − + − − − + − − −
001 <0w1/0/−> + − − − + − − − + − − −
101 <0w1/0/−> + − − − + − − − + − − −

BZ6s 000 <0w1/0/−> + − − − + − − − + − − −
100 <0w1/0/−> + − − − + − − − + − − −
001 <0w1/0/−> + − − − + − − − + − − −
101 <0w1/0/−> + − − − + − − − + − − −

7.4. Application of 2D analysis | 155

circuits and memory cell, which limits the ability of the memory to write a specific
voltage into the cell and the ability to read stored data from the cell. The open
requires a 2D analysis since it results in two floating nodes: 1. the faulty cell under
analysis, and 2. the part of the BL that is disconnected from the sense amplifier
and write driver.

The results of the 2D fault analysis show that multiple write operations cause
a cumulative charge up or discharge of the cell, which means that in order to
ensure proper initialization, a sequence of write operations needs to be performed.
Therefore, the faulty behavior is represented by the FP <wx2 wx̄/x/−>, which
requires a sequence of two initializing wx operations, followed by a sensitizing wx̄
operation. The two initializing operations are needed to bring the voltage in the
cell to a strong enough level, since the open makes it difficult for a single operation
to set a full voltage in the cell. The sensitizing wx̄ operation fails to properly
change the voltage in the cell, leaving a faulty value of x behind. Note that as the
value of Rop increases, the faulty behavior becomes easier to sensitize and detect,
since the read operation becomes more difficult to perform. This is due to the fact
that the open prevents setting up a high enough voltage across the sense amplifier
to perform a correct read operation. As a result, an increase in the open resistance
results in an easily detectable faulty behavior, which means that the fault requires
less initializing wx operations in the FP.

The BG plays a very limited role in the faulty behavior of this defect, since the
BL open reduces the length of the BL segment connected to the sense amplifier,
thereby reducing the amount of BL coupling affecting the behavior of the memory.
All four simulated BGs (0x0, 1x0, 0x1 and 1x1) result in the same faulty behavior,
<w02 w1/0/−>.

Since this open results in FPs that require an initialization consisting of 2
operations, the faults are attributed as partial. At the same time, this open does
not force leakage current into the cell toward any specific direction, which means
that all leakage related faults (hard, soft and transient) are possible.

Open at OBb

This open takes place on the BL, disconnecting the memory cell from a part of
the BL and all other cells connected to it. According to the specific design of
the simulated memory, such an open does not disconnect the memory cell from any
critical write and read circuits, but merely reduces the capacitive influence the other
cells have on the inspected cell. This open requires a 2D analysis since it results in
two floating nodes: 1. the node of the inspected cell, and 2. the part of BL that is
disconnected from the sense amplifier and write driver. The fault analysis results
show that there is no faulty behavior associated with this defect, because the cell
remains connected to the rest of memory components (sense amplifier, write driver
and precharge circuits). It should be noted, however, that other memory designs
may indeed result in faults in the inspected cell, in case the sense amplifier, write
drivers of precharge circuits become disconnected from the cell by the open.

156 | Chapter 7. Application of the approximation method

Short at SBv

WLBL

SB

SC

SW

SWP

The position to which this short is connected
is indicated in the figure to the right. The ar-
row with the tag “SWP” points to the direction
along which the BL gets connected to the sense
amplifier, write driver and precharge circuits.
This short takes place on the BL and connects
it to the power supply node Vdd , which forces the BL to be charged up toward Vdd

resulting in a bias against writing and reading a correct 0 in the inspected cell.
The two floating voltages resulting from this defect are the stored cell voltage and
the voltage on the defective BL. The resulting faulty behavior can be represented
as <wx2 wx̄/x/−>, which requires a sequence of two initializing wx operations
needed to bring the voltage in the cell to a strong enough voltage, followed by a
sensitizing wx̄ operation that fails to properly change the voltage in the cell, leaving
a faulty value of x behind.

The BG has no major impact on the faulty behavior of this defect, since the
voltage on the BL is mainly influenced by the short itself and not by the sense
voltage during reading, which in turn causes the same type of FP for all BGs. Since
this defect results in FPs that require an initialization consisting of 2 operations,
the faults are attributed as partial. At the same time, this defect does not force
leakage current into the cell toward a specific direction, and therefore leakage can
result in hard, soft, as well as transient faults.

Short at SBg

This short creates a connection between the BL and GND, which forces the BL
to be discharged toward 0 V and resulting in a bias against writing and reading a
correct 1 in the inspected cell. The two floating voltages resulting from this defect
are the stored cell voltage and the voltage on the defective BL. The resulting faulty
behavior can be represented as <xwx̄/x/−>, which requires initializing the cell to
x, followed by a sensitizing wx̄ operation that fails to properly change the voltage
in the cell, leaving a faulty value of x behind.

The BG has no major impact on the faulty behavior of this defect, since the
voltage on the BL is mainly influenced by the short itself and not by the sense
voltage during reading. Since this defect results in FPs that do not require initial-
izing operations nor completing operations, the faults are not attributed as partial
nor dirty. At the same time, this defect does not force leakage current into the cell
toward a specific direction, and therefore leakage can cause hard, soft as well as
transient faults.

7.4. Application of 2D analysis | 157

Bridge BO3, BO4 and BO5 between cell and a BL

CTb

CTm

CTt

CCb

CCm

CCt

WLc WLt

BTm
BCt

BCm
BTb

BCb
SAb

SAm

SAt
BTt

The nodes to which these bridges are connected
are indicated in the figure to the right. These
defects connect the cell storage capacitance to
a BL (either to its own, to a complement, or
to an unrelated BL), thereby forcing the stored
cell voltage to follow the voltage present on the
BL during memory operation. The two floating
voltages caused by these defects are the voltage
within the defective cell and the voltage on the defective BL. As a result of the
defects, the cell leaks its charge gradually to the BL, and exhibits a typical state
fault where the cell spontaneously looses its charge after short amount of time.
This defect also causes read operations to fail for low defect resistances, as a result
of the decreased cell charge. The state fault is represented by the FP <x/x̄/−>.
Bridges with higher Rbr values result in a weaker leakage current into the cell,
thereby forcing the state fault to become a soft state fault.

The BG has a significant influence on the FP of these defects, since sensing takes
place for a depleted cell charge and a low voltage margin, making BL coupling
rather significant in controlling the sensed result. According to Table 7.10, the
simulated defect causes the FP <0/1/−> for BGs 000 and 100, while it causes the
FP <1/0/−> for BGs 011 and 111.

Since the defect forces the leakage current into the cell to flow toward Vdd/2,
the fault can either be a hard fault (in the case of strong leakage) or a soft fault
(in the case of weak leakage). However, the fault cannot be attributed as transient,
since the passing of time can only strengthen the fault effect.

Bridge BW1 between two cells on the same BL pair

CTb

CTm

CTt

CCb

CCm

CCt

WLc WLt

BTm
BCt

BCm
BTb

BCb
SAb

SAm

SAt
BTt

The nodes to which this bridge is connected are
indicated in the figure to the right. This bridge
connects two cells on the same BL pair to each
other, which results in both cells to share their
charges together and in writing both cells when
one of them is written. The two floating voltages
caused by this defect are the voltages within the
two bridged cells. The faulty behavior resulting
from this defect can be described by the FP <wx2; x̄/x/−>a,v, which is a coupling
fault where writing the aggressor with the opposite value of that in the victim
results in flipping the value of the victim.

The BG has a big impact on the faulty behavior. For the simulated defect,
Table 7.10 indicates that the defect causes the FP <w12; 0/1/−> for BGs 000 and
100, while it causes the FP <w02; 1/0/−> for BGs 011 and 111. Since the fault
requires multiple sensitizing operations, the faulty behavior is attributed as partial.

158 | Chapter 7. Application of the approximation method

At the same time, since the defect does not force the leakage current into the cell
toward a specific direction, the fault can be attributed as hard, soft as well as
transient.

Bridge BW2 between two cells on adjacent BL pairs

This bridge connects two cells connected to two adjacent BL pairs, but share the
same WL, which makes them share their charge and influence each other during
write operations. The two floating voltages caused by this defect are the voltages
within the two bridged cells. Note that in this case, the aggressor cell is the same as
the bottom cell of the BG, which means that the BG here consists of only the top
neighbor of the victim cell. The general faulty behavior of this <wx2 wx̄/x/−>,
where two wx operations are used to initialize the cell to a specific voltage followed
by a sensitizing wx̄ which leaves x behind in the cell.

Although this defect is very similar to the bridge BW1 which connects two cells
on the same BL pair, the resulting faulty behavior is very different. The reason for
the difference is that, for BW2, both bridged cells are accessed during a write or
read operation, whereas only one cell is accessed in the case of BW1.

Since the defect causes FPs that require multiple initializing write operations,
the resulting faulty behavior can be attributed as partial. At the same time, since
the defect does not force leakage into the cell toward a specific direction, the fault
can be hard, soft and transient.

Bridge BZ2 between BTm (BCm) and BCt (BTb)

CTb

CTm

CTt

CCb

CCm

CCt

WLc WLt

BTm
BCt

BCm
BTb

BCb
SAb

SAm

SAt
BTt

The nodes to which this bridge is connected are
indicated in the figure to the right. This bridge
connects two BLs on adjacent BL pairs together,
resulting in influencing both read and write op-
erations on all cells that belong to these two
bridged BLs. For the bridge BZ2s, the two float-
ing nodes are chosen to be CTm and CTt, while
for the bridge BZ2c, the two floating nodes are
chosen to be CCm and CCb. Note that the second floating node is the same as
the neighboring cell (either top or bottom) used for the BG. Therefore, the BG for
this defect contains only one cell.

The faulty behavior resulting from this defect can be represented as <xwx̄/x/−>.
The defect does not force leakage into the cell toward a specific direction, and there-
fore the resulting fault can be hard, soft and transient.

Bridge BZ3 between BCm (BTm) and BTb (BCt)

This bridge connects two BLs on adjacent BL pairs together, resulting in influencing
both read and write operations on all cells that belong to these two bridged BLs.

7.4. Application of 2D analysis | 159

This bridge is similar to BZ2, with the exception that the bridge is connected to
the complementary BL of the victim cell. The two floating voltages caused by
this defect are chosen to be the voltage within the victim cell, and the voltage
within the neighboring aggressor cell. The second floating voltage is the same as
the neighboring cell used for the BG and, therefore, the BG for this defect contains
only one cell.

The faulty behavior resulting from this defect can be represented as <xwx̄/x/−>.
The defect does not force leakage into the cell toward a specific direction, and there-
fore the resulting fault can be hard, soft and transient.

Bridges BZ4 and BZ5 (between BLs and WLs)

These defects bridge the BL to the WL of the victim cell, causing the voltage
on the BL to be influenced by the strong voltage drivers that set the voltage on
the WL. The faulty behavior resulting from these defects can be represented as
<xwx̄/x/−>. The BG has limited impact on this faulty behavior, since the BL
is mainly influenced by the strong WL voltage during sensing rather than being
influenced by the small coupling voltages. These defects do not force call leakage
current toward a specific direction, which results in hard, soft as well as transient
faults.

Bridge BZ6 between WTr (WCr) and WTl (WCl)

This defect bridges the active WL connected to the victim with an idle WL, which
prevents setting the proper voltage on the WL at the right time. The general faulty
behavior resulting from this defect can be represented as <xwx̄/x/−>. Since WL
is driven by strong voltage drivers, this fault does not take place unless the bridge
has very high bridge resistances. This bridge does not force cell leakage toward
a specific direction, which means that the sensitized fault can be hard, soft and
transient.

160 | Chapter 7. Application of the approximation method

Summary

This chapter presented the application results of the simulation-based fault
analysis algorithms, meant to evaluate the faulty behavior of a defective
memory. The results indicate the effectiveness of the proposed fault anal-
ysis algorithms, and their ability to describe any DRAM-specific faulty
behavior, within a reasonable amount of simulation time. The main issues
presented in this chapter are as follows.

• Introduction of the reduced Spice simulation model of the memory,
used to perform the fault analysis in this chapter. Depending on the
simulation time of the model and the available computing power, a
reduced memory model is important to limit the amount of needed
simulation time to perform the simulation-based fault analysis.

• Discussion of Spice model reduction techniques, used to reduce the
size of a memory simulation model, while keeping the high accuracy of
the simulation. These techniques are particularly suited for memory
devices, based on a number of memory-specific characteristics related
to its design, structure and operation.

• Presentation of the different defects that may take place in the mem-
ory and the way they are represented using an electrical Spice model.
These defects are also classified into three different classes (opens,
shorts and bridges), and their possible positions in the memory are
shown.

• Evaluation of the faulty behavior of those defects that result in only
one floating node, which require the application of the 1D fault anal-
ysis, as well as those defect that result in two floating nodes and,
therefore, require the application of the 2D fault analysis method.

• The conclusion that, with the exception of dirty faults, most DRAM-
specific faults as described in Chapter 4 are very common and do
take place in practice. Dirty faults, on the other hand, take place for
special DRAM designs only and, therefore, they are not observed in
the analysis performed in this chapter.

Contents of this chapter

8.1 Taxonomy of DRAM faults

8.2 DRAM-specific tests

8.3 Customizing march tests 8
Space of DRAM tests

Based on a full analysis of possible fault models in a given memory device, we can
derive the full space of possible tests for that memory. The full space of DRAM
faults has been analyzed in Section 4.3.3 of this thesis. This chapter uses the
space of faults to derive the full space of DRAM tests. In addition, results of
the simulations performed in Chapter 7 are used to identify those tests needed to
realistically test a given defective memory with a known internal structure.

Section 8.1 starts with a taxonomy of the space of DRAM faults, followed by
the derivation of the space of DRAM tests in Section 8.2. Section 8.3 discusses a
number of practical aspects needed to be taken into consideration when tests are
to be applied on a memory in practice.

8.1 Taxonomy of DRAM faults

First, we discuss the full space of DRAM-specific faults, based on all theoretically
possible combinations of faults. Then, we discuss those faults that are practically
expected to take place in the memory.

8.1.1 Theoretical fault space

Any generic memory FP, described in Section 4.2, can represent a DRAM-specific
fault by adding a DRAM-specific fault attribute to it [see Section 4.3.3]. For exam-
ple, it is possible to construct a number of DRAM-specific versions of the transition
fault, such as the partial transition fault, the dirty transition fault, the soft tran-
sition fault, and so on. There are five DRAM-specific attributes, classified into
two different classes. The first one is the class of voltage dependent faults, which

161

162 | Chapter 8. Space of DRAM tests

consists of the following two fault attributes: partial faults (p), and dirty faults (d).
The second one is the class of time dependent faults, which consists of the following
three fault attributes: hard (h), soft (s) and transient (t) faults. It is important to
note here that there are two different types of partial faults, one is the initialization
related partial fault (pi), while the other is the activation (or sensitization) related
partial fault (pa).

In addition to these individual attributes, it is possible to have multiple at-
tributes at the same time associated with a given generic fault model. As a result,
it is possible to establish the whole space of DRAM faults by considering the possi-
bility that multiple attributes apply to a given fault at the same time. In order to
do this, it is important to consider whether different DRAM-specific attributes are
compatible with each other. Below, we consider the following three possibilities:

• Compatibility of voltage dependent attributes with time dependent attributes

• Compatibility of voltage dependent attributes among themselves

• Compatibility of time dependent attributes among themselves

Voltage and time attributes compatibility— Voltage dependent attributes
are based on the inability of the memory to write a full voltage into the memory cell,
while time dependent attributes are caused by naturally occurring leakage currents
depleting the stored cell voltage. Therefore, voltage and time dependent attributes
are based on two physically independent root causes, which results in faults that
are independent as well. This means that each generic fault can be associated with
a voltage dependent attribute in combination with a time dependent attribute in
the following way:

Fault =

{

Voltage dependent

attribute

} {

Time dependent

attribute

}

FP (8.1)

Voltage attributes compatibility— The different attributes of voltage de-
pendent faults are compatible, which means that they can be combined with each
other. The reason for this is that voltage dependent faults influence the behavior
of the memory in different parts of the sensitizing operation sequence (S) of the FP
[see Section 4.3]. Table 4.3 shows that partial faults influence the behavior during
the initialization (I) and activation (A), while dirty faults influence the behavior
between I and A, and after A. More precisely, the set of voltage dependent faults
is equal to {-, p, d, pd}, where - stands for no attribute, while pd stands for the
combined attribute “partial dirty”. Here, it is important to note here that there
are three different combinations of partial faults (p): the initialization related par-
tial faults (pi), the activation related partial faults (pa), and the initialization and
activation related partial fault (pia).

Time attributes compatibility— In contrast to voltage dependent attributes,
the different attributes of time dependent faults (h, s and t), are not compatible

8.1. Taxonomy of DRAM faults | 163

with each other (i.e., they cannot be combined with each other). The reason for
this is that each specific attribute of time dependent faults is based on the direc-
tion and strength of the leakage current [see Section 4.3.2]. A leakage current that
falls within the specs of the memory leads to a hard fault (h), a leakage current
exceeding the specs and supporting the applied operation leads to a transient fault
(t), while a leakage current exceeding the specs and opposing the applied opera-
tion leads to a soft fault (s). As a result, only one time dependent behavior can
take place at a given time, and for a given defect. More precisely, the set of time
dependent faults is equal to {h, s, t}. It is worth noting here that the hard fault
attribute does not modify a generic FP in any way, which means that it is identical
to the absence of an attribute (symbolized by -).

In conclusion, Expression 8.1 can be expanded to describe all possible DRAM-
specific faults as follows:

Fault =























-

p

d

pd





































h

s

t















FP (8.2)

Expression 8.2 indicates that any generic fault model can be either regular (-),
partial (p), dirty (d) or partial dirty (pd), while being hard (h or -), soft (s) or
transient (t) at the same time. In total, this gives a space of 4 × 3 = 12 different
attributes for DRAM-specific faults. Table 8.1 lists all these different attributes,
and shows an example of how they can be attributed to the down transition fault
(TF0).

Fault #1 in the table is the hTF0, which is identical to the generic TF0. Fault
#2 is the partial hard TF0, which is denoted by the FP <w1i w0a/1/−>. The i in
the sequence w1i is caused by the initialization related partial fault (pi), where it
stands for the number of times the initializing w1 operation should be performed
(i ≥ 0). The a in the sequence w0a is caused by the activation related partial fault
(pa), where it stands for the number of times the activating w0 operation should be
performed (a ≥ 1). Fault #3 is the dirty hard TF0, which is obtained by adding a
completing sequence of operations ([C]) to the sensitizing operation sequence (S).
Fault #4 in the table is the partial dirty hard TF0, which is denoted by the FP
<w1i w0a [C]/1/−>. This fault contains i initializing w1 operations, it contains
a activating w0 operations, in addition to the completing operation sequence [C].
The four types of hard transition faults can be represented by the general hard TF0

(ghTF0), denoted as <w1i w0a [Cd]/1/−>, where i ≥ 0, a ≥ 1 and d ∈ {0, 1}. The
ghTF0 can be reduced to any type of hard TF0 by properly setting its parameters
i, a and d. For example, it can be reduced to the hTF0 by using i = 0, a = 1 and
d = 0; it can be reduced to the piahTF0 by using d = 0; and it can be reduced to
the dhTF0 by using i = 0, a = 1 and d = 1.

Fault #5 in the table is the soft TF0, since it adds a delay time (T) to the

164 | Chapter 8. Space of DRAM tests

Table 8.1. Space of DRAM-specific faults for the down transition fault (TF0).

Fault FP Name

1 hTF0 <1w0/1/−> hard transition 0 fault

2 piahTF0 <w1iw0a/1/−> partial hard transition 0 fault

3 dhTF0 <1w0[C]/1/−> dirty hard transition 0 fault

4 piadhTF0 <w1iw0a[C]/1/−> partial dirty hard transition 0 fault

ghTF0 <w1iw0a[Cd]/1/−> general hard transition 0 fault

5 sTF0 <1w0T/1/−> soft transition 0 fault

6 piasTF0 <w1iw0a
T /1/−> partial soft transition 0 fault

7 dsTF0 <1w0[C]T/1/−> dirty soft transition 0 fault

8 piadsTF0 <w1iw0a[C]T /1/−> partial dirty soft transition 0 fault

gsTF0 <w1iw0a[Cd]T /1/−> general soft transition 0 fault

9 tTF0 <1w0/1L/−> transient transition 0 fault

10 piatTF0 <w1iw0a/1L/−> partial transient transition 0 fault

11 dtTF0 <1w0[C]/1L/−> dirty transient transition 0 fault

12 piadtTF0 <w1iw0a[C]/1L/−> partial dirty transient transition 0 fault

gtTF0 <w1iw0a[Cd]/1L/−> general transient transition 0 fault

sensitizing operation of the generic transition fault. In the same way, a soft version
of the partial, dirty, and partial dirty TF0 is obtained by adding a T to their
respective sensitizing sequences. And finally, all these soft TF0 can be represented
by the general soft TF0 (gsTF0), denoted as <w1i w0a [Cd]T /1/−>, where i ≥ 0,
a ≥ 1 and d ∈ {0, 1}. The gsTF0 can be reduced to any type of soft TF0 by
properly setting its three parameters i, a and d. It can be reduced to the sTF0 by
using i = 0, a = 1 and d = 0, it can be reduced to the piasTF0 by using d = 0, and
it can be reduced to the dsTF0 by using i = 0, a = 1 and d = 1.

Faults #9 through #12 in the table represent the four different types of transient
TF0, since they add a life time L to the fault effect R. In addition, an underscore is
added to each operation in S, which means that these operations must be performed
in back-to-back mode (i.e., instantaneously after each other and without delay)1.
The general transient TF0 (gtTF0) is represented by the FP <w1i w0a [Cd]/1L/−>,
where i ≥ 0, a ≥ 1 and d ∈ {0, 1}. The gtTF0 can be to any type of transient TF0

by properly setting its three parameters i, a and d.

1In terms of detection conditions, an underscore below operations in a transient fault means
that the operations have to be performed after each other within one march element. For example,
if S = w1w0 then the detection condition should be m(..., w1, w0, ...).

8.1. Taxonomy of DRAM faults | 165

8.1.2 Realistic fault space

In this section, we describe the DRAM-specific fault attributes that may take place
in practice when a given defect affects the behavior of the memory. All possible
memory cell array opens, shorts and bridges have been classified and simulated in
Chapter 7. Each defect in Table 7.8, when injected into the memory, causes its own
type of faulty behavior, which in turn can be modeled by a fault from the space
of fault primitives (such as those listed in Table 4.1), in combination with some of
the 12 DRAM-specific fault attributes listed in Table 8.1.

The results of the simulation-based fault analysis in this thesis, and others
[Al-Ars99], performed to analyze the faulty behavior of DRAMs, indicate the fol-
lowing realistic restrictions on the space of DRAM faults:

1. Restrictions for single-cell faults.

(a) State faults may not be partial. Although this is theoretically possible,
partial state faults have not been observed in practice, because they are
commonly caused by strong defects that fail the memory easily, without
the need for a special initialization and/or activation.

(b) Single-cell faults can suffer from initialization partial faults (pi), but not
activation partial faults (pa). This is true since single-cell faults are
sensitized by applying an operation on the victim [see Figure 8.1(a)].
The activation of this fault has to fail in order to cause a fault effect.
Hence, repeating this operation reinforces the proper behavior rather
than the faulty behavior.

To precharge
circuits

WL WL
BL

(b) Partial in A

Rbr

BL

Rop

WL
RopBL

WL

(a) Partial in I (c) Dirty faults

drivers
To write

and SAs

Figure 8.1. Defects causing (a) partial faults in I , (b) in A, and (c) causing dirty faults.

2. Restrictions for two-cell faults.

(a) State coupling faults may not be partial, as these have not been ob-
served in practice. For example, <0; 1/0/−> may not have the form
<w0h; 1/0/−> [see note about state faults in the restrictions for single-
cell faults above].

166 | Chapter 8. Space of DRAM tests

(b) Coupling faults may not suffer from sensitization related partial faults
(pa), in case the sensitizing operation is performed on the victim. This
due to the same reasons outlined for single-cell faults. For example, the
fault <1; 1w0/1/−> may not have the from <1; 1w0h/1/−>.

(c) Only the aggressor in a coupling fault may suffer from initialization
related partial faults (pi), since the aggressor is the cell that causes the
fault. Figure 8.1(b) shows a typical bridge that causes coupling faults,
where it is clear that the fault effect can be strengthened by performing
multiple operations on one cell, but not on both.

(d) Coupling faults may not be dirty. Although theoretically possible, these
have not been observed in simulations.

3. General restrictions. The completing operation [C] of dirty faults (d) can
either be a write or a read operation performed on a cell (a) along the same
bit line of the faulty cell (v), but with the opposite data to the sensitizing
operation on v. Figure 8.1(c) shows an example of a defect on BL that causes
dirty faults.

As an example of the realistic restrictions on the space of DRAM faults, Ta-
ble 8.2 shows the realistic DRAM fault space of the down transition fault (TF0).
Based on the restrictions listed above, the full space of DRAM TF0 faults shown in
Table 8.1 is reduced to that shown in Table 8.2. The only difference between the
two tables is that the partial fault is only applicable for the initialization part of the
fault (pi), and not for the activation part (pa). More precisely, the only restriction
on the full space of DRAM transition faults is that a = 1.

In summary, the difference between realistic single and two-cell DRAM-specific
faults can be represented in the following two expressions.

Single-cell fault =























-

pi

d

pd





































h

s

t















FP, Two-cell fault =

{

-

p

}















h

s

t















FP (8.3)

These expressions indicate that there are fewer realistic restrictions on single-
cell faults than there are on two-cell faults. Single-cell faults can be attributed
as partial, dirty and partial dirty, while two-cell faults can only be attributed as
partial.

8.2 DRAM-specific tests

In this section, we use the space of DRAM-specific faults derived in the previous
section to identify the space of DRAM-specific tests, that would detect any pos-
sible DRAM fault. We base our analysis on single-cell and two-cell static faults,

8.2. DRAM-specific tests | 167

Table 8.2. Realistic space of DRAM-specific faults for the down transition fault (TF0).

Fault FP Name

1 hTF0 <1w0/1/−> hard transition 0 fault

2 pihTF0 <w1iw0/1/−> partial hard transition 0 fault

3 dhTF0 <1w0[C]/1/−> dirty hard transition 0 fault

4 pidhTF0 <w1iw0[C]/1/−> partial dirty hard transition 0 fault

ghTF0 <w1iw0[Cd]/1/−> general hard transition 0 fault

5 sTF0 <1w0T/1/−> soft transition 0 fault

6 pisTF0 <w1iw0T/1/−> partial soft transition 0 fault

7 dsTF0 <1w0[C]T/1/−> dirty soft transition 0 fault

8 pidsTF0 <w1iw0[C]T/1/−> partial dirty soft transition 0 fault

gsTF0 <w1iw0[Cd]T /1/−> general soft transition 0 fault

9 tTF0 <1w0/1L/−> transient transition 0 fault

10 pitTF0 <w1iw0/1L/−> partial transient transition 0 fault

11 dtTF0 <1w0[C]/1L/−> dirty transient transition 0 fault

12 pidtTF0 <w1iw0[C]/1L/−> partial dirty transient transition 0 fault

gtTF0 <w1iw0[Cd]/1L/−> general transient transition 0 fault

described in Section 4.2, and start with tests for hard, then transient, and finally
for soft faults.

8.2.1 Detecting hard faults

Hard faults are time-independent faults that get sensitized once their sensitizing
operation sequence is performed, and they remain sensitized afterwards until they
are detected. In the following, we discuss the detection conditions needed to detect
each of the hard faults first, and then we list the tests to detect these faults.

Detection conditions for hard faults

According to Section 8.1.2, a single-cell hard fault can either be partial with respect
to initialization (pih), dirty (dh), or both (pidh). The fault pih is modeled by
multiple initialization operations, while the fault dh is modeled by performing a
write or read operation on a cell along the same BL as the faulty cell, but with
opposite data to the sensitization.

Table 8.3 lists all single-cell hard faults, along with the detection conditions
needed to detect them [compare with Table 4.1]. The table considers the general
form of single-cell hard faults, where both partial, as well as dirty faults take place.
The detection conditions are designed to detect both faults as well. For example,

168 | Chapter 8. Space of DRAM tests

the (partial, dirty and hard) write-0 destructive fault (pidh WDF0), must first be
initialized a multiple number of times (w0h

v). Then, a completing operation with
data 1 (a value opposite to that of the sensitizing value) must be applied to a
different cell along the same BL ([O1a]), before the sensitizing write 0 operation
can be performed (w0v). The only requirement the completing write operation
has to fulfill is to change the state of the BLs connected to the victim cell. The
exact address of the aggressor is therefore not important, only the fact that it lies
along the same BL. The detection condition starts with multiple w0 operations to
initialize the cell to 0. The operation O1 ensures that the opposite data is present
in a cell along the same BL just before any cell (with address higher than the
current cell) is sensitized by the w0 operation. Then, the read operation ensures
the detection of the fault.

Table 8.3. List of single-cell, hard FPs and their detection conditions. The completing operation
Oxa is performed with a value (x) opposite to that in the sensitizing operation and to a different
cell (a) along the same BL.

Fault <S/F/R>, O ∈ {w, r} Detection condition, O ∈ {w, r}
1 dh SF0 <0v[O1a]/1/−>a∈BL(v) m(...w0, ...O1a, ...r0, ...)

2 dh SF1 <1v[O0a]/0/−>a∈BL(v) m(...w1, ...O0a, ...r1, ...)

3 pidh WDF0 <w0h
v [O1a]w0v/1/−>a∈BL(v) m(...w0h, ...O1a, ...w0, ...r0, ...)

4 pidh WDF1 <w1h
v [O0a]w1v/0/−>a∈BL(v) m(...w1h, ...O0a, ...w1, ...r1, ...)

5 pidh TF1 <w0h
v [O0a]w1v/0/−>a∈BL(v) m(...w0h, ...O0a, ...w1, ...r1, ...)

6 pidh TF0 <w1h
v [O1a]w0v/1/−>a∈BL(v) m(...w1h, ...O1a, ...w0, ...r0, ...)

7 pidh IRF0 <w0h
v [O1a]r0v/0/1>a∈BL(v) m(...w0h, ...O1a, ...r0, ...)

8 pidh IRF1 <w1h
v [O0a]r1v/1/0>a∈BL(v) m(...w1h, ...O0a, ...r1, ...)

9 pidh DRDF0 <w0h
v [O1a]r0v/1/0>a∈BL(v) m(...w0h, ...O1a, ...r0, ...r0, ...)

10 pidh DRDF1 <w1h
v [O0a]r1v/0/1>a∈BL(v) m(...w1h, ...O0a, ...r1, ...r1, ...)

11 pidh RDF0 <w0h
v [O1a]r0v/1/1>a∈BL(v) m(...w0h, ...O1a, ...r0, ...)

12 pidh RDF1 <w1h
v [O0a]r1v/0/0>a∈BL(v) m(...w1h, ...O0a, ...r1, ...)

Table 8.4 lists all two-cell hard faults, along with the detection conditions needed
to detect them [compare with Table 4.2]. The table considers the general form of
two-cell hard faults, where both partial, as well as dirty faults take place. The
detection conditions are designed to detect both faults. When operations need to
be performed on both the aggressor and the victim to sensitize the corresponding
fault, then we assume that these operations can be performed in any order, starting
with the aggressor then the victim, or vice versa. Some faults have two detection
conditions: one is needed to sensitize the fault when the aggressor has a lower
memory address than the victim (a < v), while the other is needed when a > v.
Some faults, on the other hand, require only one detection condition (such as FP
#1 and #25). This is possible when the initialization, sensitization and detection

8.2. DRAM-specific tests | 169

Table 8.4. List of two-cell, hard FPs and their detection conditions.

Fault <Sa; Sv/F/R> Detection condition

a < v a > v

1 h SF0;0 <0; 0/1/−> m(...0);m(..., r0, ...)

2 h SF0;1 <0; 1/0/−> ⇑(r1, ...w0, ...) ⇓(r1, ...w0, ...)

3 h SF1;0 <1; 0/1/−> ⇑(r0, ...w1, ...) ⇓(r0, ...w1, ...)

4 h SF1;1 <1; 1/0/−> m(...1);m(..., r1, ...)

5 pah CFds0w0;0 <0w0h; 0/1/−> ⇓(...w0h);m(r0...) ⇑(...w1h);m(r1...)

6 pah CFds0w0;1 <0w0h; 1/0/−> ⇑(r1, ..., w0h, ...) ⇓(r1, ..., w0h, ...)

7 pah CFds1w1;0 <1w1h; 0/1/−> ⇑(r0, ..., w1h, ...) ⇓(r0, ..., w1h, ...)

8 pah CFds1w1;1 <1w1h; 1/0/−> ⇓(...w1h);m(r1...) ⇑(...w1h);m(r1...)

9 pah CFds0w1;0 <0w1h; 0/1/−> ⇑(r0, ..., w1h, ...) ⇓(r0, ..., w1h, ...)

10 pah CFds0w1;1 <0w1h; 1/0/−> ⇓(...0, w1h);m(r1...) ⇑(...0, w1h);m(r1...)

11 pah CFds1w0;0 <1w0h; 0/1/−> ⇓(...1, w0h);m(r0...) ⇑(...1, w0h);m(r0...)

12 pah CFds1w0;1 <1w0h; 1/0/−> ⇑(r1, ..., w0h, ...) ⇓(r1, ..., w0h, ...)

13 pah CFds0r0;0 <0r0h; 0/1/−> ⇑(r0h, ...) ⇓(r0h, ...)

14 pah CFds0r0;1 <0r0h; 1/0/−> ⇓(r0h, ...1);m(r1...) ⇑(r0h, ...1);m(r1...)

15 pah CFds1r1;0 <1r1h; 0/1/−> ⇓(r1h, ...0);m(r0...) ⇑(r1h, ...0);m(r0...)

16 pah CFds1r1;1 <1r1h; 1/0/−> ⇑(r1h, ...) ⇓(r1h, ...)

17 pih CFwd0;0 <w0h; 0w0/1/−>⇑(...w0h);m(r0...) ⇓(...w0h);m(r0...)

18 pih CFwd1;0 <w1h; 0w0/1/−>m(...w1h);⇓(...0, w0);m(r0...) m(...w1h);⇑(...0, w0);m(r0...)

19 pih CFwd0;1 <w0h; 1w1/0/−>m(...w0h);⇓(...1, w1);m(r1...) m(...w0h);⇑(...1, w1);m(r1...)

20 pih CFwd1;1 <w1h; 1w1/0/−>⇑(...w1h);m(r1...) ⇓(...w1h);m(r1...)

21 pih CFtr0;0 <w0h; 1w0/1/−>m(...1);⇓(...w0h);m(r0...) m(...1);⇑(...w0h);m(r0...)

22 pih CFtr1;0 <w1h; 1w0/1/−>m(...w1h);⇓(...w0);m(r0...) m(...w1h);⇑(...w0);m(r0...)

23 pih CFtr0;1 <w0h; 0w1/0/−>m(...w0h);⇓(...w1);m(r1...) m(...w0h);⇑(...w1);m(r1...)

24 pih CFtr1;1 <w1h; 0w1/0/−>m(...0);⇓(...w1h);m(r1...) m(...0);⇑(...w1h);m(r1...)

25 pih CFir0;0 <w0h; 0r0/0/1> m(..., w0h);m(..., r0, ...)

26 pih CFir1;0 <w1h; 0r0/0/1> ⇑(r0, ..., w1h) ⇓(r0, ..., w1h)

27 pih CFir0;1 <w0h; 1r1/1/0> ⇑(r1, ..., w0h) ⇓(r1, ..., w0h)

28 pih CFir1;1 <w1h; 1r1/1/0> m(..., w1h);m(..., r1, ...)

29 pih CFdr0;0 <w0h; 0r0/1/0> m(..., w0h);m(..., r0, r0, ...)

30 pih CFdr1;0 <w1h; 0r0/1/0> ⇑(r0, r0, ..., w1h) ⇓(r0, r0, ..., w1h)

31 pih CFdr0;1 <w0h; 1r1/0/1> ⇑(r1, r1, ..., w0h) ⇓(r1, r1, ..., w0h)

32 pih CFdr1;1 <w1h; 1r1/0/1> m(..., w1h);m(..., r1, r1, ...)

33 pih CFrd0;0 <w0h; 0r0/1/1> m(..., w0h);m(..., r0, ...)

34 pih CFrd1;0 <w1h; 0r0/1/1> ⇑(r0, ..., w1h) ⇓(r0, ..., w1h)

35 pih CFrd0;1 <w0h; 1r1/0/0> ⇑(r1, ..., w0h) ⇓(r1, ..., w0h)

36 pih CFrd1;1 <w1h; 1r1/0/0> m(..., w1h);m(..., r1, ...)

170 | Chapter 8. Space of DRAM tests

of the fault requires exactly the same data, and when it is possible to interchange
the order of the operations performed on the aggressor and the victim.

As an example of the faults in Table 8.4, consider the (partial, hard) 0w0 disturb
0 coupling fault (pah CFds0w0;0). When a < v, this fault is sensitized by performing
a write 0 a multiple number of times wh in a decreasing address order. This way, all
victim cells are first initialized to 0, and the fault is then sensitized by the hammer
w0 sequence on all potential a cells with an address less than that of v. The fault
is then detected by a read 0 operation in any address order. When a > v, the
same sequence of sensitizing write operations should be performed in an increasing
address order.

Tests for hard faults

Based on the detection conditions in Tables 8.3 and 8.4, it is possible to derive
memory tests that detect all single-cell and two-cell hard faults. March 1CH below
detects all single-cell hard faults.

March 1CH = { m(w0h, w1a, r0, r0); m(w1h, w0a, r1, r1); m(w0h, w1a, w0, r0);

ME0 ME1 ME2

m(w1h, w0a, w1, r1); m(w0h, w1, r1); m(w1h, w0, r0)}
ME3 ME4 ME5

This march test has six march elements (ME0 through ME5), each of which
begins with a hammer write operation and ends with a detecting read operation.
Each two consecutive march elements represent the exact complement of each other,
as they are generated to target complementary FPs. The test substitutes the dirty
operation (O) in the detection conditions of Table 8.3 by a write operation, since
this choice reduces the length of the test when the completing operation needs
to change the data present in a. The test has a relatively high complexity of
(16 ·n+6 ·h ·n) compared to other single-cell march tests, as a result of the partial
and the dirty DRAM-specific faults.

Table 8.5 lists all march elements in March 1CH along with the hard single-
cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. For example, ME0 (march element 0) shares an entry #1/3
with dh SF. This entry means that FP #1, which refers to the fault dh SF0, is first
detected in March 1CH by the 3rd operation of ME0. The table shows that each
of ME0 and ME1 detect 4 different FPs, while each of ME2, ME3, ME4 and ME5
detect a single FP.

A march test that detects all two-cell hard faults can be represented by March
2CH below.

March 2CH = { m(w0h); ⇑(r0h, w1h); ⇑(r1h, w0h);

ME0 ME1 ME2

⇓(r0h, w1h); ⇓(r1h, w0h); m(r0)}
ME3 ME4 ME5

8.2. DRAM-specific tests | 171

Table 8.5. Detection capabilities of march elements in March 1CH.

Fault dh SF pidh WDF pidh TF pidh IRF pidh DRDF pidh RDF

ME0 #1/3 − − #7/3 #9/4 #11/3

ME1 #2/3 − − #8/3 #10/4 #12/3

ME2 − #3/4 − − − −
ME3 − #4/4 − − − −
ME4 − − #5/3 − − −
ME5 − − #6/3 − − −

This march test has 6 march elements (ME0 through ME5), many of which
begin with a hammer read operation and end with a hammer write operation. These
sequences are characteristic for march tests that aim to detect two-cell faults. The
march element ME1 is the exact complementary of ME3, while ME2 is the exact
complementary of ME4. This results from the fact that these march elements are
constructed to detect complementary FPs. This test has a complexity of n+9 ·n ·h.

Table 8.6 lists all march elements in March 2CH along with the hard two-
cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. There are two columns for each fault, one for a < v and the
other a > v. For example, ME1 (march element 1) shares an entry #1 with h SF.
This entry means that FP #1, which refers to the fault h SF0;0, is first detected in
March 2CH by the read operations in ME1.

8.2.2 Detecting transient faults

The idea of transient FPs implies that, after a fault is sensitized, leakage results in
correcting the faulty behavior before it is detected on the output. In the following,
we first discuss the detection conditions needed to detect transient faults, and then
we introduce the tests that should detect these faults.

Detection conditions for transient faults

An FP has two components to describe a fault: F (the value of the faulty cell)
and R (the output on a read operation). It is possible for F to change in such a
way that a faulty state would be transformed into a proper state within the cell.
However, the value of R cannot be transient, since it gets sensitized and detected
on the output at the same time.

For example, the FP <1w1/0/−> represents a non-transition write 1 operation
that sets a faulty 0 into the memory cell. Under the assumption that faults are con-
stant in time, this FP would remain sensitized until a read operation is performed
to detect this fault on the output. Under the assumption of transient FPs, this FP

172 | Chapter 8. Space of DRAM tests

Table 8.6. Detection capabilities of march elements in March 2CH.

ME h SF pah CFds pih CFwd pih CFtr pih CFir pih CFdr pih CFrd

a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v

ME0 − − − − − − − − − − − − − −

ME1 #1 #7 − − − − − #26 − #30 − #34 −

#3 − #9 − − − − − − − − − − −

− − #13 − − − − − − − − − − −

ME2 #2 − #6 #8 #20 #19 − #23 #27 − #31 − #35 −

#4 #12 #10 − − − #24 #28 #32 #36

− − #16 #14 − − − − − − − − − −

ME3 − #3 − #7 #17 #18 − #21 #25 #29 #33

− − − #9 − − − #22 − #26 − #30 − #34

− − − #11 − − − − − − − − − −

− − − #13 − − − − − − − − − −

− − − #15 − − − − − − − − − −

ME4 − #2 #8 #6 #19 #20 #23 − − #27 − #31 − #35

− − #10 #12 − − #24 − − − − − − −

− − #14 #16 − − − − − − − − − −

ME5 − − #5 − #18 #17 #21 − − − − − − −

− − #11 − − − #22 − − − − − − −

− − #15 − − − − − − − − − − −

would only remain sensitized for a limited period of time and then the state of the
cell gets automatically corrected to its expected value (i.e., logic 1). As a second
example, consider the FP <1r1/1/0> that represents a faulty read operation, re-
sulting in an incorrect value on the output. It cannot be transient since the output
of the faulty read operation is sensitized and detected simultaneously.

Table 8.7 lists all single-cell transient faults, along with their detection con-
ditions [compare with Table 8.3]. The table takes both the initialization partial,
as well as the dirty transient faults into consideration. For example, the (partial,
dirty and transient) write-0 destructive fault (pidt WDF0), must first be initialized
a multiple number of times (w0h

v). Then, a completing operation with data 1 must
be applied to a different cell along the same BL ([O1a]), before the sensitizing write
0 operation can be performed (w0v). To ensure the detection of this transient fault,
all of these operations must be applied directly after each other (back-to-back), and
directly followed by a detecting read operation. The detection condition starts with
multiple w0 operations to initialize the cell to 0, directly followed by O1a, w0 and
a detecting r0. Note that this detection condition is not a regular one, since it
requires operations to be performed on two different cells (a and v) within only one
march element. The fact that the operations in these detection conditions need to
be performed back-to-back is indicated by the underscore below the corresponding
operations.

Table 8.8 lists all two-cell transient faults, along with their detection conditions
[compare with Table 8.4]. For example, the (partial, transient) 0w0 disturb 0 cou-
pling fault (pat CF0w0;0), must first be initialized to a 0, then sensitized by writing

8.2. DRAM-specific tests | 173

Table 8.7. List of single-cell, transient FPs and their detection conditions. The underlined
operations must be performed back-to-back.

Fault <S/FL/R>, O ∈ {w, r} Detection condition, O ∈ {w, r}
1 dt SF0 <0v[O1a]/1L/−>a∈BL(v) m(..., w0, O1a, r0, ...)

2 dt SF1 <1v[O0a]/0L/−>a∈BL(v) m(..., w1, O0a, r1, ...)

3 pidt WDF0 <w0h
v [O1a]w0v/1L/−>a∈BL(v) m(..., w0h, O1a, w0, r0, ...)

4 pidt WDF1 <w1h
v [O0a]w1v/0L/−>a∈BL(v) m(..., w1h, O0a, w1, r1, ...)

5 pidt TF1 <w0h
v [O0a]w1v/0L/−>a∈BL(v) m(..., w0h, O0a, w1, r1, ...)

6 pidt TF0 <w1h
v [O1a]w0v/1L/−>a∈BL(v) m(..., w1h, O1a, w0, r0, ...)

7 pidt IRF0 <w0h
v [O1a]r0v/0L/1>a∈BL(v) m(..., w0h, O1a, r0, ...)

8 pidt IRF1 <w1h
v [O0a]r1v/1L/0>a∈BL(v) m(..., w1h, O0a, r1, ...)

9 pidt DRDF0 <w0h
v [O1a]r0v/1L/0>a∈BL(v) m(..., w0h, O1a, r0, r0, ...)

10 pidt DRDF1 <w1h
v [O0a]r1v/0L/1>a∈BL(v) m(..., w1h, O0a, r1, r1, ...)

11 pidt RDF0 <w0h
v [O1a]r0v/1L/1>a∈BL(v) m(..., w0h, O1a, r0, ...)

12 pidt RDF1 <w1h
v [O0a]r1v/0L/0>a∈BL(v) m(..., w1h, O0a, r1, ...)

0 a multiple number of times (0w0h) to the aggressor. The detection condition uses
a so-called nested march element to detect the fault, where the indices i and
j are used to control the progress of the performed operations. For every victim
v = i, the march element performs an initializing w0 operation on i, then performs
a sensitizing hammer w0 sequence on all possible aggressors a = j in the memory,
and finally detects the fault by performing a r0 on i. Needless to say, nested march
elements are computationally expensive.

These expensive nested march elements result from a very strict interpretation
of transient faults, where all initializing, sensitizing, and detecting operations must
be performed directly after each other. It is possible to use a more relaxed interpre-
tation of transient faults for two-cell faults, where the initialization is not required
to be back-to-back with sensitization and detection, which results in less complex
detection conditions. Here, however, we use the more strict interpretation, since it
is capable of detecting all soft two-cell faults.

Tests for transient faults

Based on the detection conditions in Tables 8.7 and 8.8, it is possible to derive
memory tests that detect all single-cell and two-cell transient faults. A march test
that detects all single-cell transient faults can be represented by March 1CT below.

March 1CT = { m(w0h, w1a, r0, r0); m(w1h, w0a, r1, r1); m(w0h, w1a, w0, r0);

ME0 ME1 ME2

m(w1h, w0a, w1, r1); m(w0h, w1, r1); m(w1h, w0, r0)}
ME3 ME4 ME5

174 | Chapter 8. Space of DRAM tests

Table 8.8. List of two-cell, transient FPs and their detection conditions.

Fault <Sa;Sv/F/R> Detection condition

1 t SF0;0 <0; 0/1L/−> mi(...,mj(..., w0i, w0j , r0i, ...), ...)

2 t SF0;1 <0; 1/0L/−> mi(...,mj(..., w1i, w0j , r1i, ...), ...)

3 t SF1;0 <1; 0/1L/−> mi(...,mj(..., w0i, w1j , r0i, ...), ...)

4 t SF1;1 <1; 1/0L/−> mi(...,mj(..., w1i, w1j , r1i, ...), ...)

5 pat CFds0w0;0 <0w0h; 0/1L/−> mi(...,mj(..., w0i, w0h
j , r0i, ...), ...)

6 pat CFds0w0;1 <0w0h; 1/0L/−> mi(...,mj(..., w1i, w0h
j , r1i, ...), ...)

7 pat CFds1w1;0 <1w1h; 0/1L/−> mi(...,mj(..., w0i, w1h
j , r0i, ...), ...)

8 pat CFds1w1;1 <1w1h; 1/0L/−> mi(...,mj(..., w1i, w1h
j , r1i, ...), ...)

9 pat CFds0w1;0 <0w1h; 0/1L/−> mi(...,mj(..., w0i, w0j , w1h
j , r0i, ...), ...)

10 pat CFds0w1;1 <0w1h; 1/0L/−> mi(...,mj(..., w1i, w0j , w1h
j , r1i, ...), ...)

11 pat CFds1w0;0 <1w0h; 0/1L/−> mi(...,mj(..., w0i, w1j , w0h
j , r0i, ...), ...)

12 pat CFds1w0;1 <1w0h; 1/0L/−> mi(...,mj(..., w1i, w1j , w0h
j , r1i, ...), ...)

13 pat CFds0r0;0 <0r0h; 0/1L/−> mi(...,mj(..., w0i, w0j , r0
h
j , r0i, ...), ...)

14 pat CFds0r0;1 <0r0h; 1/0L/−> mi(...,mj(..., w1i, w0j , r0
h
j , r1i, ...), ...)

15 pat CFds1r1;0 <1r1h; 0/1L/−> mi(...,mj(..., w0i, w1j , r1
h
j , r0i, ...), ...)

16 pat CFds1r1;1 <1r1h; 1/0L/−> mi(...,mj(..., w1i, w1j , r1
h
j , r1i, ...), ...)

17 pit CFwd0;0 <w0h; 0w0/1L/−> mi(...,mj(..., w0i, w0h
j , w0i, r0i, ...), ...)

18 pit CFwd1;0 <w1h; 0w0/1L/−> mi(...,mj(..., w0i, w1h
j , w0i, r0i, ...), ...)

19 pit CFwd0;1 <w0h; 1w1/0L/−> mi(...,mj(..., w1i, w0h
j , w1i, r1i, ...), ...)

20 pit CFwd1;1 <w1h; 1w1/0L/−> mi(...,mj(..., w1i, w1h
j , w1i, r1i, ...), ...)

21 pit CFtr0;1 <w0h; 1w0/1L/−> mi(...,mj(..., w1i, w0h
j , w0i, r0i, ...), ...)

22 pit CFtr1;1 <w1h; 1w0/1L/−> mi(...,mj(..., w1i, w1h
j , w0i, r0i, ...), ...)

23 pit CFtr1;0 <w1h; 0w1/0L/−> mi(...,mj(..., w0i, w1h
j , w1i, r1i, ...), ...)

24 pit CFtr0;0 <w0h; 0w1/0L/−> mi(...,mj(..., w0i, w0h
j , w1i, r1i, ...), ...)

25 pit CFir0;0 <w0h; 0r0/0L/1> mi(...,mj(..., w0i, w0h
j , r0i, ...), ...)

26 pit CFir1;0 <w1h; 0r0/0L/1> mi(...,mj(..., w0i, w1h
j , r0i, ...), ...)

27 pit CFir0;1 <w0h; 1r1/1L/0> mi(...,mj(..., w1i, w0h
j , r1i, ...), ...)

28 pit CFir1;1 <w1h; 1r1/1L/0> mi(...,mj(..., w1i, w1h
j , r1i, ...), ...)

29 pit CFdr0;0 <w0h; 0r0/1L/0> mi(...,mj(..., w0i, w0h
j , r0i, r0i, ...), ...)

30 pit CFdr1;0 <w1h; 0r0/1L/0> mi(...,mj(..., w0i, w1h
j , r0i, r0i, ...), ...)

31 pit CFdr0;1 <w0h; 1r1/0L/1> mi(...,mj(..., w1i, w0h
j , r1i, r1i, ...), ...)

32 pit CFdr1;1 <w1h; 1r1/0L/1> mi(...,mj(..., w1i, w1h
j , r1i, r1i, ...), ...)

33 pit CFrd0;0 <w0h; 0r0/1L/1> mi(...,mj(..., w0i, w0h
j , r0i, ...), ...)

34 pit CFrd1;0 <w1h; 0r0/1L/1> mi(...,mj(..., w0i, w1h
j , r0i, ...), ...)

35 pit CFrd0;1 <w0h; 1r1/0L/0> mi(...,mj(..., w1i, w0h
j , r1i, ...), ...)

36 pit CFrd1;1 <w1h; 1r1/0L/0> mi(...,mj(..., w1i, w1h
j , r1i, ...), ...)

8.2. DRAM-specific tests | 175

This march test has six march elements (ME0 through ME5), each of which
begins with a hammer write operation and ends with a detecting read operation.
This test is identical to the test for hard single-cell DRAM faults (March 1CT =
March 1CH), and therefore has the same complexity of 16·n+6·h·n. The reason the
two tests are the same is due to the fact that March 1CT requires all operations
that belong to a given detection condition to be performed back-to-back (since
they are designed to detect transient faults). At the same time, this is also the way
March 1CH is constructed, since back-to-back application of the test happens to
be faster than other ways to detect the faulty behavior.

Table 8.9 lists all march elements in March 1CT along with the transient single-
cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. Again, the detection capabilities of March 1CT are identical
to the detection capabilities of March 1CH. For example, ME0 (march element 0)
shares an entry #1/3 with dt SF. This entry means that FP #1, which refers to
the fault dt SF0, is first detected in March 1CT by the 3rd operation of ME0. The
table shows that each of ME0 and ME1 detect 4 different FPs, while each of ME2,
ME3, ME4 and ME5 detect a single FP.

A march test that detects all two-cell, transient faults can be represented by
March 2CT below.

March 2CT = {mi(mj(w0i, w0h
j , r0i, r0i), mj(w0i, w1h

j , r0i, r0i), mj(w1i, w0h
j , r1i, r1i),

ME0,0 ME0,1 ME0,2

mj(w1i, w1h
j , r1i, r1i), mj(w0i, w0j , w1h

j , r0i), mj(w1i, w0j , w1h
j , r1i),

ME0,3 ME0,4 ME0,5

mj(w0i, w1j , w0h
j , r0i), mj(w1i, w1j , w0h

j , r1i), mj(w0i, w0j , r0
h
j , r0i),

ME0,6 ME0,7 ME0,8

mj(w1i, w0j , r0
h
j , r1i), mj(w0i, w1j , r1

h
j , r0i), mj(w1i, w1j , r1

h
j , r1i),

ME0,9 ME0,10 ME0,11

mj(w0i, w0h
j , w0i, r0i), mj(w0i, w1h

j , w0i, r0i), mj(w1i, w0h
j , w1i, r1i),

ME0,12 ME0,13 ME0,14

mj(w1i, w1h
j , w1i, r1i), mj(w1i, w0h

j , w0i, r0i), mj(w1i, w1h
j , w0i, r0i),

ME0,15 ME0,16 ME0,17

mj(w0i, w1h
j , w1i, r1i), mj(w0i, w0h

j , w1i, r1i))}
ME0,18 ME0,19

This test has only one march element (ME0) that contains 20 nested march
elements (ME0,0 through ME0,19). This test has a complexity of 60 ·n2 +20 ·h ·n2,
which is of the order O(n2). This is a very complex test indeed, one of the most
costly ever proposed. The reason behind the high computational complexity is the
fact that it detects transient faults, for which the operations to initialize, sensitize
and detect the faults have to be performed back-to-back, directly after each other.
This makes march tests with linear complexity insufficient to detect the faults, and
prevents using the possible parallelism present in the needed detection conditions.

This version of the test assumes that an aggressor can cause a fault in any
victim anywhere in the memory. This assumption is, however, not realistic. The

176 | Chapter 8. Space of DRAM tests

Table 8.9. Detection capabilities of march elements in March 1CT.

Fault dt SF pidt WDF pidt TF pidt IRF pidt DRDF pidt RDF

ME0 #1/3 − − #7/3 #9/4 #11/3

ME1 #2/3 − − #8/3 #10/4 #12/4

ME2 − #3/4 − − − −
ME3 − #4/4 − − − −
ME4 − − #5/3 − − −
ME5 − − #6/3 − − −

impact of an aggressor is almost always limited to the adjacent neighboring cells.
This observation can significantly simplify March 2CT, by limiting the value of j
to a limited number of adjacent cells. Such a realistic two-cell march test (March
2CTr) is discussed later in Section 8.3.

Table 8.10 lists all march elements in March 2CT along with the transient
two-cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. The correspondence is apparent between the detection conditions
in Table 8.8 and the individual nested march elements in March 2CT. With the
exception of the first 4 nested march elements (each of which detects 4 different
FPs), the elements from ME0,4 till ME0,19 each is dedicated to detect a single
FP, and therefore corresponds to a single detection condition in Table 8.8. For
example, ME0,0 (nested march element 0,0) shares an entry #1/3 with t SF. This
entry means that FP #1, which refers to the fault t SF0;0, is first detected in March
2CT by the 3rd operation of ME0,0.

8.2.3 Detecting soft faults

The idea of soft FPs implies that an operation can set a partly correct voltage into
the cell, which then can gradually be depleted and cause a detectable fault in the
cell after a period of time. In this section, we start by discussing the detection
conditions needed to detect all soft faults, and then we generate memory tests for
these soft faults.

Detection conditions for soft faults

In general terms, an FP has two components to describe a fault: F (the value of the
faulty cell) and R (the output on a read operation). It is possible for F to change
in such a way that a weak, proper state would be transformed into a faulty state
within the cell. However, the value of R cannot be soft, since it is only important
at the instant of reading and not later in time.

For example, the FP <1w1/0/−> represents a non-transition write 1 operation

8.2. DRAM-specific tests | 177

Table 8.10. Detection capabilities of march elements in March 2CT.

ME t SF pat CFds pit CFwd pit CFtr pit CFir pit CFdr pit CFrd

ME0,0 #1/3 #5/3 − − #25/3 #29/4 #33/3

ME0,1 #2/3 #6/3 − − #26/3 #30/4 #34/3

ME0,2 #3/3 #7/3 − − #27/3 #31/4 #35/3

ME0,3 #4/3 #8/3 − − #28/3 #32/4 #36/3

ME0,4 − #9/4 − − − − −
ME0,5 − #10/4 − − − − −
ME0,6 − #11/4 − − − − −
ME0,7 − #12/4 − − − − −
ME0,8 − #13/4 − − − − −
ME0,9 − #14/4 − − − − −
ME0,10 − #15/4 − − − − −
ME0,11 − #16/4 − − − − −
ME0,12 − − #17/4 − − − −
ME0,13 − − #18/4 − − − −
ME0,14 − − #19/4 − − − −
ME0,15 − − #20/4 − − − −
ME0,16 − − − #21/4 − − −
ME0,17 − − − #22/4 − − −
ME0,18 − − − #23/4 − − −
ME0,19 − − − #24/4 − − −

that sets a faulty 0 into the memory cell. Under the assumption that faults are
constant in time, this FP should be sensitized the instant the write operation
is performed. Under the assumption of soft FPs, however, this FP would only
be sensitized after a specific amount of time T . This behavior is recorded by
subscripting the last sensitizing operation with T , as in <1w1T/0/−>. The idle
time T needs to have a value that is larger than the refresh time of the cell, which
is typically around 64 ms. It should be noted here that this value is not fixed, but
depends heavily on the technology of the memory and the operation temperature.

Table 8.11 lists all single-cell soft faults, along with the detection conditions
needed to detect them. This table is easy to construct based on the detection con-
ditions in Table 8.3, by introducing a delay time T after every sensitizing operation
to allow enough time for the soft fault to get sensitized. Note that the detection
conditions for soft IRFs and RDFs do not include the T , since these faults are
detected as soon as they get sensitized by the read operations. The table lists both
the partial, as well as the dirty types of soft faults. The detection conditions are
designed to detect both faults. For example, the (partial, dirty and soft) write-0

178 | Chapter 8. Space of DRAM tests

Table 8.11. List of single-cell, soft FPs and their detection conditions.

Fault <S/F/R>, O ∈ {w, r} Detection condition, O ∈ {w, r}
1 ds SF0 <0v[O1a]T /1/−>a∈BL(v) m(...w0, ...O1a, ...T, ...r0, ...)

2 ds SF1 <1v[O0a]T /0/−>a∈BL(v) m(...w1, ...O0a, ...T, ...r1, ...)

3 pids WDF0 <w0h
v [O1a]w0vT /1/−>a∈BL(v) m(...w0h, ...O1a, ...w0, ...T, ...r0, ...)

4 pids WDF1 <w1h
v [O0a]w1vT /0/−>a∈BL(v) m(...w1h, ...O0a, ...w1, ...T, ...r1, ...)

5 pids TF1 <w0h
v [O0a]w1vT /0/−>a∈BL(v) m(...w0h, ...O0a, ...w1, ...T, ...r1, ...)

6 pids TF0 <w1h
v [O1a]w0vT /1/−>a∈BL(v) m(...w1h, ...O1a, ...w0, ...T, ...r0, ...)

7 pids IRF0 <w0h
v [O1a]r0vT /0/1>a∈BL(v) m(...w0h, ...O1a, ...r0, ...)

8 pids IRF1 <w1h
v [O0a]r1vT /1/0>a∈BL(v) m(...w1h, ...O0a, ...r1, ...)

9 pids DRDF0 <w0h
v [O1a]r0vT /1/0>a∈BL(v) m(...w0h, ...O1a, ...r0, ...T, ...r0, ...)

10 pids DRDF1 <w1h
v [O0a]r1vT /0/1>a∈BL(v) m(...w1h, ...O0a, ...r1, ...T, ...r1, ...)

11 pids RDF0 <w0h
v [O1a]r0vT /1/1>a∈BL(v) m(...w0h, ...O1a, ...r0, ...)

12 pids RDF1 <w1h
v [O0a]r1vT /0/0>a∈BL(v) m(...w1h, ...O0a, ...r1, ...)

destructive fault (pids WDF0), must first be initialized a multiple number of times
(w0h). Then, a completing operation with data 1 must be applied to a different
cell along the same BL ([O1a]), before the sensitizing write 0 operation can be
performed (w0). To ensure the detection of this soft fault, a delay time T must
be introduced after the sensitizing w0 operation to allow for sensitization to take
place. The detection condition is identical to that used for the hard WDF0, apart
from the introduction of a delay T after the sensitizing w0 operation.

Table 8.12 lists all two-cell soft faults, along with the detection conditions
needed to detect them. This table is constructed from Table 8.4, by introduc-
ing a delay T after every sensitizing operation in each detection condition. Note,
though, that the detection conditions for soft CFir and CFrd do not include a delay
T , since these faults are detected as soon as they get sensitized by their respective
read operations. When operations need to be performed on both the aggressor and
the victim to sensitize the corresponding fault, then we assume that these opera-
tions can be performed in either order, starting with the aggressor then the victim,
or vice versa. The table takes both soft and partial faults into consideration, and
lists detection conditions designed to detect both faults. For example, the (par-
tial, soft) 0w0 disturb 0 coupling fault (pas CFds0w0;0), must first be sensitized by
writing 0 a multiple number of times (0w0h) to all cells in the memory, followed by
a waiting period of T , and finally detected by a subsequent read operation. The
detection condition for this fault is identical to that of the corresponding hard fault
(pah CFds0w0;0), with the exception of the delay T added after the w0h to ensure
sensitizing the soft fault.

8.2. DRAM-specific tests | 179

Table 8.12. List of two-cell, soft FPs and their detection conditions.

Fault <Sa; Sv/F/R> Detection condition

a < v a > v

1 s SF0;0 <0; 0T /1/−> m(...0); T ;m(..., r0, ...)

2 s SF0;1 <0; 1T /0/−> ⇑(r1, ...w0, T, ...) ⇓(r1, ...w0, T, ...)

3 s SF1;0 <1; 0T /1/−> ⇑(r0, ...w1, T, ...) ⇓(r0, ...w1, T, ...)

4 s SF1;1 <1; 1T /0/−> m(...1); T ;m(..., r1, ...)

5 pas CFds0w0;0 <0w0h; 0T /1/−> ⇓(...w0h); T ;m(r0...) ⇑(...w1h); T ;m(r1...)

6 pas CFds0w0;1 <0w0h; 1T /0/−> ⇑(r1, ..., w0h, T, ...) ⇓(r1, ..., w0h, T, ...)

7 pas CFds1w1;0 <1w1h; 0T /1/−> ⇑(r0, ..., w1h, T, ...) ⇓(r0, ..., w1h, T, ...)

8 pas CFds1w1;1 <1w1h; 1T /0/−> ⇓(...w1h); T ;m(r1...) ⇑(...w1h); T ;m(r1...)

9 pas CFds0w1;0 <0w1h; 0T /1/−> ⇑(r0, ..., w1h, T, ...) ⇓(r0, ..., w1h, ...)

10 pas CFds0w1;1 <0w1h; 1T /0/−> m(...0);⇓(...w1h); T ;m(r1...) m(...0);⇑(...w1h); T ;m(r1...)

11 pas CFds1w0;0 <1w0h; 0T /1/−> m(...1);⇓(...w0h); T ;m(r0...) m(...1);⇑(...w0h); T ;m(r0...)

12 pas CFds1w0;1 <1w0h; 1T /0/−> ⇑(r1, ..., w0h, T, ...) ⇓(r1, ..., w0h, T, ...)

13 pas CFds0r0;0 <0r0h; 0T /1/−> ⇑(r0h, T, ...) ⇓(r0h, T, ...)

14 pas CFds0r0;1 <0r0h; 1T /0/−> ⇓(r0h, ...1); T ;m(r1...) ⇑(r0h, ...1); T ;m(r1...)

15 pas CFds1r1;0 <1r1h; 0T /1/−> ⇓(r1h, ...0); T ;m(r0...) ⇑(r1h, ...0); T ;m(r0...)

16 pas CFds1r1;1 <1r1h; 1T /0/−> ⇑(r1h, T, ...) ⇓(r1h, T, ...)

17 pis CFwd0;0 <w0h; 0w0T /1/−>⇑(...w0h); T ;m(r0...) ⇓(...w0h); T ;m(r0...)

18 pis CFwd1;0 <w1h; 0w0T /1/−> a < v: m(...w1h);⇓(...0, w0); T ;m(r0...)

a > v: m(...w1h);⇑(...0, w0); T ;m(r0...)

19 pis CFwd0;1 <w0h; 1w1T /0/−> a < v: m(...w0h);⇓(...1, w1); T ;m(r1...)

a > v: m(...w0h);⇑(...1, w1); T ;m(r1...)

20 pis CFwd1;1 <w1h; 1w1T /0/−>⇑(...w1h); T ;m(r1...) ⇓(...w1h); T ;m(r1...)

21 pis CFtr0;0 <w0h; 1w0T /1/−>m(...1);⇓(...w0h); T ;m(r0...) m (...1);⇑(...w0h); T ;m(r0...)

22 pis CFtr1;0 <w1h; 1w0T /1/−>m(...w1h);⇓(...w0); T ;m(r0...) m(...w1h);⇑(...w0); T ;m(r0...)

23 pis CFtr0;1 <w0h; 0w1T /0/−>m(...w0h);⇓(...w1); T ;m(r1...) m(...w0h);⇑(...w1); T ;m(r1...)

24 pis CFtr1;1 <w1h; 0w1T /0/−>m(...0);⇓(...w1h); T ;m(r1...) m(...0);⇑(...w1h); T ;m(r1...)

25 pis CFir0;0 <w0h; 0r0T /0/1> m(..., w0h);m(..., r0, ...)

26 pis CFir1;0 <w1h; 0r0T /0/1> ⇑(r0, ..., w1h) ⇓(r0, ..., w1h)

27 pis CFir0;1 <w0h; 1r1T /1/0> ⇑(r1, ..., w0h) ⇓(r1, ..., w0h)

28 pis CFir1;1 <w1h; 1r1T /1/0> m(..., w1h);m(..., r1, ...)

29 pis CFdr0;0 <w0h; 0r0T /1/0> m(..., w0h);m(..., r0, T, r0, ...)

30 pis CFdr1;0 <w1h; 0r0T /1/0> ⇑(r0, T, r0, ..., w1h) ⇓(r0, T, r0, ..., w1h)

31 pis CFdr0;1 <w0h; 1r1T /0/1> ⇑(r1, T, r1, ..., w0h) ⇓(r1, T, r1, ..., w0h)

32 pis CFdr1;1 <w1h; 1r1T /0/1> m(..., w1h);m(..., r1, T, r1, ...)

33 pis CFrd0;0 <w0h; 0r0T /1/1> m(..., w0h);m(..., r0, ...)

34 pis CFrd1;0 <w1h; 0r0T /1/1> ⇑(r0, ..., w1h) ⇓(r0, ..., w1h)

35 pis CFrd0;1 <w0h; 1r1T /0/0> ⇑(r1, ..., w0h) ⇓(r1, ..., w0h)

36 pis CFrd1;1 <w1h; 1r1T /0/0> m(..., w1h);m(..., r1, ...)

180 | Chapter 8. Space of DRAM tests

Tests for soft faults

Based on the detection conditions in Tables 8.11 and 8.12, it is possible to derive
memory tests that detect all single-cell and two-cell soft faults. A march test that
detects all single-cell soft faults can have the form of March 1CS below.

March 1CS = { m(w0h, w1a, r0, T, r0); m(w1h, w0a, r1, T, r1); m(w0h, w1a, w0, T, r0);

ME0 ME1 ME2

m(w1h, w0a, w1, T, r1); m(w0h, w1, T, r1); m(w1h, w0, T, r0)}
ME3 ME4 ME5

This march test has six march elements (ME0 through ME5), each of which be-
gins with a hammer write operation and ends with a detecting read operation. This
test is similar to the tests for hard single-cell DRAM faults (March 1CH), which
is expected since the space of soft faults is derived from the space of hard faults.
This march test substitutes the dirty operation (O) in the detection conditions of
Table 8.11 by a write operation, since this choice reduces the length of the test.
The test has a complexity of 16 · n+ 6 · h · n+ 6 · T · n, which is higher than 1CH
by 6 · T · n. For a typical idle time of T > 64 ms, the total idle test time becomes
rather long relative to the total length of the test (assuming h ≈ 5). In order to
reduce test time, it is important to implement a number of test time reduction
methods, such as design-for-testability (DFT) techniques or the application of test
stresses that force soft faults to become directly detectable hard faults, which in
turn do not require any delay time to detect. The theory behind these methods is
discussed in Section 4.4.1, while an example of applying these methods to a specific
test problem is discussed in Section 9.4.

Table 8.13 lists all march elements in March 1CS along with the soft single-
cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. For example, ME0 (march element 0) shares an entry #1/5
with ds SF. This entry means that FP #1, which refers to the fault ds SF0, is first
detected in March 1CS by the 5th operation of ME0. The table shows that each
of ME0 and ME1 detect 4 different FPs, while each of ME2, ME3, ME4 and ME5
detect a single FP.

A march test that detects all two-cell soft faults can be represented by March
2CS below.

March 2CS = { m(w0h); ⇑(r0h, T, r0, w1h); ⇑(r1h, T, r1, w0h);

ME0 ME1 ME2

⇓(r0h, T, r0, w1h); ⇓(r1h, T, r1, w0h); T ; m(r0)}
ME3 ME4 ME5 ME6

This march test has 7 march elements (ME0 through ME6). It is based on
March 2CH for hard faults, with a number of added delays T to a number of march
elements in the test (sometimes separating one read operation from a hammer read

8.3. Customizing march tests | 181

Table 8.13. Detection capabilities of march elements in March 1CS.

Fault ds SF pids WDF pids TF pids IRF pids DRDF pids RDF

ME0 #1/5 − − #7/3 #9/5 #11/3

ME1 #2/5 − − #8/3 #10/5 #12/3

ME2 − #3/5 − − − −
ME3 − #4/5 − − − −
ME4 − − #5/4 − − −
ME5 − − #6/4 − − −

sequence). Note that ME5 is simply a single delay T added to sensitize the faults
before the final detecting read operations are performed in ME6. This test has
a time complexity of 5 · n + 9 · h · n + (4 · n + 1)T . The delay time introduced
by T takes a relatively long period to perform, which makes this test very costly.
In order to reduce test time, it is important to implement a number of test time
reduction methods, such as test stresses, which force soft faults to become directly
detectable hard faults. An example of applying stresses to a specific test problem
is discussed in Section 9.4.

Table 8.14 lists all march elements in March 2CS along with the soft two-
cell FPs, and indicates the first memory operation in the test that detects the
corresponding FP. There are two columns for each fault, one for a < v and the
other a > v. The table is very similar to Table 8.6 for hard faults. For example,
ME1 shares an entry #1/1 with s SF. This entry means that FP #1, which refers
to the fault h SF0;0, is first detected in March 2CS by the read operations in ME1.

8.3 Customizing march tests

The march tests listed in Section 8.2 are general memory tests designed to detect the
targeted DRAM-specific faults in any DRAM. It is possible, however, to customize
these march tests based on the specific design or implementation of the DRAM
under test. This customization can be done for a number of reasons, such as
reducing the complexity of some tests, or to extend their detection capability to
detect more faults associated with special DRAM designs. In this section, we first
customize the above tests for specific electrical DRAM designs, then we show how
to reduce the complexity of March 2CT based on layout information of the memory.

8.3.1 Memory design considerations

The memory tests discussed in the previous section are generated under the as-
sumption that we have no information about the internal design of the memory. In
this section, we suggest a number of different internal memory design alternatives

182 | Chapter 8. Space of DRAM tests

Table 8.14. Detection capabilities of march elements in March 2CS.

ME s SF pas CFds pis CFwd pis CFtr pis CFir pis CFdr pis CFrd

a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v a < v a > v

ME0 − − − − − − − − − − − − − −

ME1 #1 #7 − − − − − #26 − #30 − #34 −

#3 − #9 − − − − − − − − − − −

− − #13 − − − − − − − − − − −

ME2 #2 − #6 #8 #20 #19 − #23 #27 − #31 − #35 −

#4 #12 #10 − − − #24 #28 #32 #36

− − #16 #14 − − − − − − − − − −

ME3 − #3 − #7 #17 #18 − #21 #25 #29 #33

− − − #9 − − − #22 − #26 − #30 − #34

− − − #11 − − − − − − − − − −

− − − #13 − − − − − − − − − −

− − − #15 − − − − − − − − − −

ME4 − #2 #8 #6 #19 #20 #23 − − #27 − #31 − #35

− − #10 #12 − − #24 − − − − − − −

− − #14 #16 − − − − − − − − − −

ME5 − − − − − − − − − − − − − −

ME6 − − #5 − #18 #17 #21 − − − − − − −

− − #11 − − − #22 − − − − − − −

− − #15 − − − − − − − − − − −

that exhibit limited types of the fully possible range of faulty behavior. This re-
duces the complexity of the memory tests needed to detect the faulty behavior of
the memory.

Available memory design alternatives

The discussion in Chapter 7 indicates that the faulty behavior of the memory
simulated in that chapter does not exhibit any type of dirty faults. The reason
for this is the fact that the write and precharge circuitry is located on the same
side of each BL pair [see Figure 7.1]. The examples of dirty faults discussed in
Section 8.1.2 above show that in order for partial faults to take place the precharge
circuitry should be located on one side of the BL pair, while the write drivers and
the sense amplifiers located on the other side [see Figure 8.1(c)].

Table 8.15. Different positions of the SA, WD and PR on either side of a BL pair.

Upside Downside Description

SA WD PR SA WD PR

1 t t t b b b SA, WD and PR all on the same side of BL

2 t t b b b t SA and WD on one side, PR on the other

3 t b t b t b SA and PR on one side, WD on the other

4 t b b b t t SA on one side, WD and PR on the other

8.3. Customizing march tests | 183

Table 8.15 lists the 8 different combinations the sense amplifiers (SA), the write
drivers (WD) and the precharge circuits (PR) can be positioned with respect to
each other on either side of a BL pair. An entry “t” means that the corresponding
circuitry is located at the top of the BL pair, while an entry “b” means that the
corresponding circuitry is located at the bottom of the BL pair. Since the top and
the bottom of a BL pair are symmetrical, only 4 combinations in Table 8.15 are
unique, while the other 4 combinations can be derived by viewing the BL pair from
the upside or from the downside.

For example, Figure 8.2 shows one possible position allocation of the SA, WD
and PR circuitry. In this configuration, the SA and WD are located on one side
of the BL pair and the PR is located on the other side. Considering the upside of
the BL pair, the SA and the WD are located at the top while the PR is located at
the bottom. Considering the downside of the BL pair, the PR is located at the top
while the SA and the WD are located at the bottom. Obviously, both of these BL
organizations are identical.

Downside

PR

Upside

SA and
BL pairWD

Figure 8.2. Upside and downside symmetry of BL pairs.

Despite the fact that there are 4 different unique combinations of SA, WD and
PR listed in Table 8.15, in practice only two of these four combinations are used
in real designs. BL pairs are usually designed such that the SA is located in the
neighborhood of the WD, since this makes it easier for the WD to set the proper
value into the SA during a write operation. Therefore, the only valid practical
combinations in Table 8.15 are combination #1 and combination #2, where the
SA and WD are located at the same side of the BL pair. The implications of these
two combinations on the required testing is discussed next.

Impact of design on faults

We start this discussion with combination #2 in Table 8.15, since it is the easier one
to discuss. This combination corresponds to the situation when the SA and WD
circuits are located at one end of the BL pair, while the PR circuits are located at
the other end of the BL pair. This organization is the one we keep referring to when
discussing dirty faults [see Figure 8.1(c) and the associated discussion]. Apart from
being responsible for causing dirty faults when some specific defects are present,
this organization does not prevent any type of fault from taking place. As a result,
this BL pair organization is capable of exhibiting the full space of memory faults as

184 | Chapter 8. Space of DRAM tests

described in Expression 8.3. This means that in order to perform a full test for the
faulty behavior of this memory design, all memory tests discussed in the Section 8.2
(1CH, 2CH, 1CT, 2CT, 1CS and 2CS) should be applied to the memory.

The second situation corresponds to combination #1 in Table 8.15, where all
three circuits SA, WD and PR are located at the same side of the BL pair. This
situation corresponds to the electrical memory model shown in Figure 7.1, which
has been simulated and analyzed in detail in Chapter 7. According to the analysis
in that chapter, this BL pair organization prevents the memory from exhibiting
any types of dirty faults. In other words, this organization reduces the full space of
memory faults exhibited as a result of all possible defects from the one described
in Expression 8.3 to the following one.

Single-cell fault =

{

-

pi

}















h

s

t















FP, Two-cell fault =

{

-

p

}















h

s

t















FP (8.4)

Note that this reduction in the space of possible faults influences only single-cell
faults, since they are the only faults that can be dirty. As a result, the space of
two-cell faults remains identical to the general one. Consequently, in order to test
for all possible faults caused by this design, all two-cell tests described in Section 8.2
(2CH, 2CT and 2CS) should be applied to the memory. The tests for single-cell
faults, however, can be reduced in complexity as dirty faults do not need to be
tested for in this organization.

Impact of design on testing hard faults

Table 8.16 lists all single-cell hard faults, along with the detection conditions needed
to detect them [compare with Table 8.3]. The table considers the reduced form of
single-cell hard faults, where only partial faults take place, but not dirty faults. For
example, the (partial, hard, but not dirty) write-0 destructive fault (pih WDF0),
must be initialized and sensitized with a w0 a multiple number of times (w0h) in
order for the fault to be sensitized. The detection condition starts with multiple w0
operations to initialize and sensitize the cell to 0, then the read operation ensures
the detection of the fault.

A test that detects the single-cell hard faults for the BL pair configuration #1
in Table 8.15 is the following.

March 1CHswp = { m(w0h, r0, r0); m(w1h, r1, r1);

ME0 ME1

m(w0h, w1, r1); m(w1h, w0, r0)}
ME2 ME3

8.3. Customizing march tests | 185

Table 8.16. Single-cell, hard (but not dirty) FPs for BL pair configuration #1 in Table 8.15.

Fault <S/F/R> Detection condition

1 h SF0 <0/1/−> m(...r0, ...)

2 h SF1 <1/0/−> m(...r1, ...)

3 pih WDF0 <w0h/1/−> m(...w0h, ...r0, ...)

4 pih WDF1 <w1h/0/−> m(...w1h, ...r1, ...)

5 pih TF1 <w0hw1/0/−> m(...w0h, ...w1, ...r1, ...)

6 pih TF0 <w1hw0/1/−> m(...w1h, ...w0, ...r0, ...)

7 pih IRF0 <w0hr0/0/1> m(...w0h, ...r0, ...)

8 pih IRF1 <w1hr1/1/0> m(...w1h, ...r1, ...)

9 pih DRDF0 <w0hr0/1/0> m(...w0h, ...r0, ...r0, ...)

10 pih DRDF1 <w1hr1/0/1> m(...w1h, ...r1, ...r1, ...)

11 pih RDF0 <w0hr0/1/1> m(...w0h, ...r0, ...)

12 pih RDF1 <w1hr1/0/0> m(...w1h, ...r1, ...)

This march test has four march elements (ME0 through ME3), each of which
begins with a hammer write operation and ends with a detecting read operation.
Each two consecutive march elements represent the exact complement of each other,
as they are generated to target complementary FPs. The first two march elements
(ME0 and ME1) are designed to detect all single-cell FPs except TF0 and TF1,
whereas ME2 is designed to detect TF1 and ME3 is designed to detect TF0. The
test has a complexity of (8 ·n+4 ·h ·n), which is lower than the complexity of 1CH
that can also detect dirty single-cell faults.

Impact of design on testing transient faults

Table 8.17 lists all single-cell transient faults, along with their detection conditions
[compare with Table 8.16]. For example, the (partial, transient, but not dirty)
write-0 destructive fault (pit WDF0), must first be initialized and sensitized a
multiple number of times (w0h). To ensure the detection of this transient fault, all
of these operations must be applied directly after each other (back-to-back), and
directly followed by a detecting read operation. The detection condition starts with
multiple w0 operations to initialize and sensitize the cell to 0, directly followed by
a detecting r0 operation. The fact that the operations must be performed back-to-
back is indicated by the underscores below the corresponding operations.

A march test March 1CTswp can be proposed to detect all the faults described
in Table 8.17. Such a test can have the following form.

186 | Chapter 8. Space of DRAM tests

Table 8.17. Single-cell, transient (but not dirty) FPs for the BL configuration #1 in Table 8.15.

Fault <S/FL/R> Detection condition

1 t SF0 <0/1L/−> m(..., w0, r0, ...)

2 t SF1 <1/0L/−> m(..., w1, r1, ...)

3 pit WDF0 <w0hw0/1L/−> m(..., w0h, r0, ...)

4 pit WDF1 <w1hw1/0L/−> m(..., w1h, r1, ...)

5 pit TF1 <w0hw1/0L/−> m(..., w0h, w1, r1, ...)

6 pit TF0 <w1hw0/1L/−> m(..., w1h, w0, r0, ...)

7 pit IRF0 <w0hr0/0L/1> m(..., w0h, r0, ...)

8 pit IRF1 <w1hr1/1L/0> m(..., w1h, r1, ...)

9 pit DRDF0 <w0hr0/1L/0> m(..., w0h, r0, r0, ...)

10 pit DRDF1 <w1hr1/0L/1> m(..., w1h, r1, r1, ...)

11 pit RDF0 <w0hr0/1L/1> m(..., w0h, r0, ...)

12 pit RDF1 <w1hr1/0L/0> m(..., w1h, r1, ...)

March 1CTswp = March 1CHswp = { m(w0h, r0, r0); m(w1h, r1, r1);

ME0 ME1

m(w0h, w1, r1); m(w1h, w0, r0)}
ME2 ME3

This test is identical to March 1CHswp described above in this section (1CTswp

= 1CHswp). This is unsurprising, since the same situation is true for the general
tests generated in Section 8.2, where the general test generated to detect all single-
cell transient FPs (March 1CT) is identical to the general test generated to detect
all single-cell hard FPs (March 1CH).

Impact of design on testing soft faults

Table 8.18 lists all single-cell soft (but not dirty) faults, along with the detection
conditions needed to detect them. This table is easy to construct based on the
detection conditions in Table 8.16, by introducing a delay time T after every sen-
sitizing operation to allow enough time for the soft fault to get sensitized. Note
that the detection conditions for soft IRFs and RDFs do not include the T , since
these faults are detected as soon as they get sensitized by the read operations.
For example, the (partial, soft but not dirty) write-0 destructive fault (pis WDF0),
must first be initialized and sensitized a multiple number of times (w0h). To ensure
the detection of this soft fault, a delay time T must be introduced after the last
w0 operation to allow for sensitization to take place. The detection condition is

8.3. Customizing march tests | 187

identical to that used for the hard WDF0, apart from the introduction of a delay
T after the sensitizing w0 operation.

Table 8.18. List of single-cell, soft (but not dirty) FPs for the BL configuration #1 in Table 8.15.

Fault <S/F/R> Detection condition

1 s SF0 <0T /1/−> m(...w0, ...T, ...r0, ...)

2 s SF1 <1T /0/−> m(...w1, ...T, ...r1, ...)

3 pis WDF0 <w0h
T/1/−> m(...w0h, ...T, ...r0, ...)

4 pis WDF1 <w1h
T/0/−> m(...w1h, ...T, ...r1, ...)

5 pis TF1 <w0hw1T /0/−> m(...w0h, ...w1, ...T, ...r1, ...)

6 pis TF0 <w1hw0T /1/−> m(...w1h, ...w0, ...T, ...r0, ...)

7 pis IRF0 <w0hr0T /0/1> m(...w0h, ...r0, ...)

8 pis IRF1 <w1hr1T /1/0> m(...w1h, ...r1, ...)

9 pis DRDF0 <w0hr0T /1/0> m(...w0h, ...r0, ...T, ...r0, ...)

10 pis DRDF1 <w1hr1T /0/1> m(...w1h, ...r1, ...T, ...r1, ...)

11 pis RDF0 <w0hr0T /1/1> m(...w0h, ...r0, ...)

12 pis RDF1 <w1hr1T /0/0> m(...w1h, ...r1, ...)

Based on the detection conditions in Table 8.18, it is possible to derive memory
tests that detect all single-cell soft faults for this specific memory design. Such a
march test can have the form of March 1CSswp below.

March 1CSswp = { m(w0h, r0, T, r0); m(w1h, r1, T, r1);

ME0 ME1

m(w0h, w1, T, r1); m(w1h, w0, T, r0)}
ME2 ME3

This march test has four march elements (ME0 through ME3), each of which
begins with a hammer write operation and ends with a detecting read operation.
This test is similar to the test for hard single-cell DRAM faults (March 1CHswp),
which is expected since the space of soft faults is derived from the space of hard
faults. The test has a complexity of 8 · n+ 4 · h · n+ 4 · T · n, which is higher
than 1CHswp by 4 · T · n. For a typical idle time of T > 64 ms, the total idle
test time becomes rather long relative to the total length of the test (assuming
h ≈ 5). In order to reduce test time, it is important to implement a number of test
time reduction methods, which force soft faults to become directly detectable hard
faults, as they do not require any delay time to detect. The theory behind these
methods is discussed in Section 4.4.1, while an example of applying these methods
to a specific test problem is discussed in Section 9.4.

188 | Chapter 8. Space of DRAM tests

8.3.2 Memory layout implications

Assuming that a test designer has no knowledge of the internal layout of the memory
under test, then the designer is obliged to perform the most general form of memory
tests to be able to detect every possible fault that may take place in the memory.
It is possible, however, to reduce the test time of the memory by restricting the
complexity of memory tests based on information of the layout, as discussed in this
section.

Section 8.2 introduced a very computationally expensive test called March 2CT
to test for all two-cell transient faults. This test has a complexity of the order O(n2)
because it assumes that each cell can be coupled to all other cells in the memory.
This assumption is unnecessary, since practically a cell can only be coupled to the
closest physically neighboring cells on the layout. Once the layout of the memory is
known, it is possible to reduce the complexity of this test from quadratic to linear
with the number of memory cells.

The most widely used DRAM layout today is shown in Figure 3.16, as discussed
in Section 3.3.3. This layout employs a reflected WL organization that allows
memory cells to be placed closer to each other, which achieves a higher integration
density than the regular WL organization. With this WL organization, each cell
has three closest physical neighbors on the layout [Muhmenthaler91]. This situation
is shown in Figure 8.3(a), where the closest neighbors are highlighted by arrows
that connect between them. The reflected WL organization refers to the fact that
WL3 follows WL1 instead of WL2.

BT0 BC0 BT1 BC1 BT2 BC2

WL0

WL1

WL4

WL3

WL2

WL0

WL1

WL4

WL3

WL2

BL pair 0 BL pair 1 BL pair 2

(a) Separated BLs (b) Combined BLs

Combine
BLs

C0,0

C1,0

C4,0

C0,1

C1,1

C4,1

C0,2

C1,2

C4,2

C2,0

C3,0

C2,1

C3,1

C2,2

C3,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C2,0 C2,1 C2,2

C3,0

C1,0

C3,1

C1,1 C1,2

C3,2

Figure 8.3. Physically neighboring cells (a) on the layout, and (b) with combined BLs.

Each memory cell in the figure is indicated by the letter C and a couple of
numbers that refer to the WL and BL the cell is connected to. For example, the
cell C3,2 is the memory cell connected to WL3 and BL2. All even numbered WLs
(such as WL0, WL2, etc.) access cells connected to BT, while all odd numbered

8.3. Customizing march tests | 189

WLs access cells connected to BC. Considering C1,1, for example, the three closest
neighboring cells on the layout are C0,1, C0,2 and C3,1.

When march tests are applied to the memory under test, memory cells are ac-
cessed in an increasing, or a decreasing logical address order [refer to Section 4.2.4].
In the memory example shown in Figure 8.3(a), an increasing logical cell address
corresponds to the following cell sequence C0,0, C1,0, C2,0, C3,0, C4,0, C1,0, C1,1,
etc. In this example, a march test accesses a cell on BT first, then a cell on BC,
then again on BT, then BC, etc., according to their logical address and not to their
physical position. This means that from a march test point of view (i.e., using
logical addressing), there is no difference between a cell connected to BT or to BC.
Therefore, it is possible to combine each BT and BC of a given BL pair to inspect
the way cell neighbors are organized from a march test point of view. This is done
in Figure 8.3(b), which combines each BTx and BCx in Figure 8.3(a) into a single
BL pair x line.

In order to identify all logically neighboring cells from Figure 8.3(b), it is only
necessary to swap WL2 and WL3, so that a logically ordered WL sequence can be
obtained. This is done in Figure 8.4. This figure shows clearly each cell and its
closest neighbors, derived from the physical cell proximity in Figure 8.3(a).

WL3

WL2

WL0

WL1

WL4

BL pair 0 BL pair 1 BL pair 2

C3,0 C3,1 C3,2

C2,0 C2,1 C2,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C1,0 C1,1 C1,2

Figure 8.4. Logically neighboring cells.

Based on the information presented in Figure 8.4, it is possible to introduce a
localized version of March 2CT (called March 2CTr) that reduces the complexity
of the test from quadratic to linear, by limiting the possible cells that could act
as aggressors to only the three cells connected by an arrow in Figure 8.4. The
localized version of the test is given next.

190 | Chapter 8. Space of DRAM tests

March 2CTr = {mi(mj(w0i, w0h
j , r0i, r0i), mj(w0i, w1h

j , r0i, r0i), mj(w1i, w0h
j , r1i, r1i),

ME0,0 ME0,1 ME0,2

mj(w1i, w1h
j , r1i, r1i), mj(w0i, w0j , w1h

j , r0i), mj(w1i, w0j , w1h
j , r1i),

ME0,3 ME0,4 ME0,5

mj(w0i, w1j , w0h
j , r0i), mj(w1i, w1j , w0h

j , r1i), mj(w0i, w0j , r0
h
j , r0i),

ME0,6 ME0,7 ME0,8

mj(w1i, w0j , r0
h
j , r1i), mj(w0i, w1j , r1

h
j , r0i), mj(w1i, w1j , r1

h
j , r1i),

ME0,9 ME0,10 ME0,11

mj(w0i, w0h
j , w0i, r0i), mj(w0i, w1h

j , w0i, r0i), mj(w1i, w0h
j , w1i, r1i),

ME0,12 ME0,13 ME0,14

mj(w1i, w1h
j , w1i, r1i), mj(w1i, w0h

j , w0i, r0i), mj(w1i, w1h
j , w0i, r0i),

ME0,15 ME0,16 ME0,17

mj(w0i, w1h
j , w1i, r1i), mj(w0i, w0h

j , w1i, r1i))}
ME0,18 ME0,19

where {j} only has three elements

This test is identical to March 2CT, with the exception that j in this test refers
only to the three cells connected to cell i by an arrow in Figure 8.4. This test has
only one march element (ME0) that contains 20 nested march elements (ME0,0
through ME0,19). This test has a complexity of 180 · n + 60 · h · n, which is of the
order O(n).

8.3. Customizing march tests | 191

Summary

This chapter presented the DRAM-specific tests needed to test for all the
DRAM-specific fault models introduced in this thesis. Using these tests
should give memory test engineers insights into the way fault models should
be used to generate memory tests practically and efficiently. The main
issues presented in this chapter are the following:

• Detailed discussion of the space of DRAM-specific faults, using five
individual fault attributes, which result in 12 different attribute com-
binations. These 12 attribute combinations modify the behavior of
a given generic FP in such a way that describes all DRAM-specific
faults.

• Discussion of the two DRAM-specific fault models related to improp-
erly set voltages: partial faults and dirty faults.

• Discussion of the two time dependent fault models in DRAMs re-
lated to leakage currents: soft faults and transient faults. Soft faults
are characterized by the need to wait for a specific period of time to
ensure the sensitization of the fault, while transient faults are charac-
terized by the need to perform all sensitizing operations successively
and without waiting to ensure sensitizing the fault.

• Reduction of the general space of DRAM faults to a set of realistic
memory faults that have been observed by simulation in the faulty
behavior of a DRAM.

• Derivation of DRAM-specific tests for each of the proposed realistic
memory faults. In total, six general tests have been proposed to
detect (hard, transient and soft) single-cell and two-cell faults.

• Customization of DRAM-specific tests to reduce test complexity and
suit specific memory organizations. Two different bases for test re-
duction have been proposed: reduction on the bases of memory de-
sign and reduction on the bases of memory layout. Four different
customized tests have been proposed that significantly reduce the
complexity of the general tests.

Contents of this chapter

9.1 Definition of problem

9.2 Analysis methodology

9.3 Results and tests

9.4 Optimizing stresses 9
Case study: the strap problem

In order to further clarify the concepts of the simulation-based fault analysis
method and the faulty behavior approximation algorithms, this chapter presents
a simulation-based analysis of the faulty behavior resulting from a special type of
open defect within memory cells. This type of open causes only one floating node
in the memory, and it is thus an appropriate example for the one dimensional (1D)
analysis [see Section 5.2]. The strap problem is different from a typical open de-
fect within the cell in having a special parabolic dependence on temperature. This
chapter runs through the whole course of a practical application of the 1D analysis,
starting from problem definition through test generation and ending in stress op-
timization with respect to timing, temperature and voltage. The analysis used in
this section uses the five DRAM-specific commands, rather than the generic mem-
ory operations w0, w1 and r. This chapter is based on a more elaborate internal
report written for Infineon, detailing the procedure and ending with the practical
application of the derived tests for their memories [Al-Ars02d, Al-Ars02b].

Section 9.1 starts with a definition of the strap problem, along with an electrical
model of it to be used for the simulation. This section also discusses the concepts
of process corners and process variations, and presents a way to model them at the
electrical level. Section 9.2 describes the simulation-based fault analysis method-
ology used to analyze the faulty behavior of the strap. Section 9.3 takes process
variations into consideration, discusses their impact on the faulty behavior, and
derives memory tests to detect the faults in all process corners. Finally, Section 9.4
uses the concept of the critical resistance for stresses optimization of the derived
memory tests.

193

194 | Chapter 9. Case study: the strap problem

9.1 Definition of strap problem

In this section, we provide some background information regarding the simulation
model, the open defect to be analyzed, the concept of process corners, and the
simulated sequences.

9.1.1 The defect

The special open defect analyzed in this chapter models an increase in the resistive
value of what is called the strap connection. The strap connection is a conduc-
tive path between the drain region of the pass transistor of the memory cell and
the trench capacitor [Adler95]. Figure 9.1(a) shows an SEM (scanning electron
microscope) image of the memory cell, where the position of the strap is indicated.
Figure 9.1(b) gives a schematic representation of the cell and strap. Due to im-
perfections in the fabrication process, the strap may take up any resistive value
according to the statistical distribution of the fabrication process.

Ideally, the memory is designed such that the strap should be manufactured
with a predefined target value (Rst), that is integrated as part of the pass transistor
model of the memory cell. An increase in the strap resistance can be electrically
modeled as an added series resistance (Rop) along the conductive path between
the pass transistor and the trench capacitor in the cell, as shown in Figure 9.1(c).
An increase in Rop reduces the ability of the memory to control the voltage stored
across the cell capacitor, which leaves the stored voltage in the cell (Vc) floating to
a certain extent.

WL Trench capBL

WL
BL Trench cap

Strap WL

Rop
Vc

Trench cap

BL
resistance

Strap

(a) (b)

p
n n

(c)

Increased strap

Figure 9.1. Modeling the cell and the strap from (a) silicon, to (b) the layout level, and (c) the
electrical level (source: Infineon Technologies).

From a physical point of view, the modeled increase in the strap resistance
Rop can be attributed to a number of factors, such as a change in the doping
concentration of the strap, or a geometrical misalignment in the positioning or
sizing of the strap.

9.1. Definition of strap problem | 195

9.1.2 Simulation model

The memory Spice model used to perform the simulations for the strap problem
is the same as the model discussed in Section 7.1, used to analyze the faulty be-
havior of the opens, shorts and bridges in Chapter 7. To reduce simulation time,
the memory model is reduced to include only those parts of the memory needed
to perform the fault analysis. Figure 9.2 shows a block diagram of the memory
model. The model has three BL pairs (BTt-BCt, BTm-BCm and BTb-BCb), each
containing 2 memory cells, one of which is connected to the true bit line (BT) while
the other is connected to the complementary bit line (BC). In addition, the model
has 3 sense amplifiers (SAt, SAm and SAb), precharge circuits and access devices.
A write buffer is included to enable simulating a write operation, in addition to a
read buffer for simulating a read operation.

�����������������������������������
�����������������������������������

Precharge
circuits

Precharge
circuits

Precharge
circuits

Access
devices

Read
buffer

Write
buffer

WLtWLc
BTt

BCt

BTm

BCm

BTb

BCb

SAt

SAm

SAb

Defective
cell

Cell

Cell

Cell Cellt

Cellb

Cellm

Figure 9.2. Spice simulation model used in the fault analysis.

Each word line in the model is connected to three memory cells, WLt is con-
nected to three cells on BT, while WLc is connected to three cells in BC. The fault
analysis described in this section is performed on Cellm (the memory cell connected
to WLt and BTm). The behavior of cells connected to BC is the complementary
to that of cells connected to BT. The faulty behavior of a cell connected to BC is
the same as the faulty behavior of a cell connected to BT, with all 0s in the fault
replaced with 1s, and vice versa [see Section 7.2.1].

In order to take the impact of background patterns (BGs) into consideration,
we assume that the faulty behavior of Rop can only be influenced by the three BL
pairs in the simulation model. In the case of the strap open, Cellt and Cellb are
influential on the faulty behavior, since all three are connected to the same word
line (WLt). Therefore, when Cellm is accessed, Cellt and Cellb are accessed at the
same time, thereby influencing the behavior of the operations performed on Cellm.
To simulate the impact of different BGs, the simulation analysis is performed for

196 | Chapter 9. Case study: the strap problem

different voltages stored in Cellt and Cellb. There are four different BGs:

1. BG 00—This refers to 0s stored in Cellt on BTt and Cellb on BTb.

2. BG 10—This refers to a 1 stored in Cellt on BTt and a 0 stored in Cellb on
BTb.

3. BG 11—This refers to 1s stored in Cellt and Cellb.

4. BG 01—This refers to a 0 stored in Cellt and a 1 stored in Cellb.

9.1.3 Process variations

During the fabrication process of memory components, the characteristics of the
produced components vary in a given range around their target specifications.
These variations result in some components operating slower or faster than the
targeted speed of operation. It is important to evaluate the impact of process vari-
ations on the faulty behavior of the memory, since a test should be able to detect
the faulty behavior for any produced memory component.

The fact that produced components operate with different speeds implies that
transistors on the chip operate with different speeds. Therefore, process variations
can be modeled and simulated as variations in the transistor parameters used in
simulation [Foty97]. Since each type of transistor on chip (there are a number
of PMOS and NMOS transistors with different doping, oxide thickness, etc.) is
produced with its own sequence of process steps, there should be a separate set of
parameter variations for each transistor type. Since such an approach results in a
large number of possible variations, transistors are usually divided into sets that
are supposed to have a correlated behavior. Here, we discuss two ways to classify
transistors:

• 2D variations—These refer to dividing all transistors into two sets, PMOS
and NMOS, each with independently varying parameters. From a design
point of view, it is usually considered enough to consider variations in PMOS
and NMOS transistors separately.

• 3D variations—From a fault analysis point of view, in addition to the
independent PMOS variations, variations in array NMOS transistors (or
pass transistors) should be considered independently from variations in other
NMOS transistors (or peripheral transistors), since array NMOS transistors
are manufactured in a special way different from other transistors.

2D variations

Figure 9.3(a) shows how to model process variations considering PMOS vs NMOS
transistor variations. The x-axis represents the measured saturation current of

9.1. Definition of strap problem | 197

NMOS transistors (Id sat NMOS), while the y-axis represents the measured sat-
uration current of PMOS transistors (Id sat pFET). The ellipse represents the
process spread around the center. Each point in the ellipse represents one possible
combination of Id sat for NMOS vs PMOS. Transistors with Id sat at the center
of the ellipse (the crossing of the two principal axes) are said to belong to the
nominal corner. These are modeled using the nominal transistor parameters. For
every other point in the ellipse, a set of variations in the transistor parameters
(∆parameter) are added to the nominal parameter set.

Fast corner

snfp

fnsp

sncpfafncpsa

Slow corner

Id_sat

Id_sat NMOS

Id_sat NMOS

PMOS

array

peripheral

(b) Independent array NMOS

Fast

Slow corner

fnsp

snfp

Id_sat

Id_sat NMOS

Nominal
corner

PMOS

corner

(a) Correlated array NMOS

Figure 9.3. Modeling process variations using variations in transistor behavior: PMOS vs (a) a
single set of correlated NMOS transistors, and vs (b) array NMOS taken to vary independently
from peripheral NMOS transistors.

A process corner is a term that refers to any point in the ellipse of Fig-
ure 9.3(a). This means that each process corner has an associated set of transistor
parameters describing transistor behavior at that point. Besides the nominal cor-
ner, the figure shows four additional process corners:

• snsp corner or slow corner—This refers to the process corner where NMOS
and PMOS transistors conduct the least drain current. The symbol snsp
stands for slow NMOS and slow PMOS.

• snfp corner—This corner has slow NMOS and fast PMOS transistors. It
refers to the process corner with low NMOS drain current and high PMOS
drain current.

• fnsp corner—This corner has fast NMOS and slow PMOS transistors. It
refers to the process corner with high NMOS drain current and low PMOS
drain current.

• fnfp corner or fast corner—This refers to the process corner where NMOS
and PMOS transistors conduct the most drain current.

198 | Chapter 9. Case study: the strap problem

Note that the fast and slow corners (fnfp and snsp) are the so-called 3σ-corners,
since they have 3 times the standard variations of the statistical spread of the
fabrication process. If the tests generated by the 3σ variations are considered too
pessimistic (unrealistic), the 2σ-corners can be used to have more reliable simula-
tions. Note that the distance between the snfp and the fnsp corners is less than
the distance between the fnfp and snsp corners. This is caused by the correlation
the NMOS and PMOS have with each other because they are fabricated in close
proximity on the same chip [Foty97].

3D variations

Figure 9.3(b) shows how variations in the PMOS, array NMOS and peripheral
NMOS may be considered independently. The x-axis represents the measured
saturation current of array NMOS transistors (Id sat NMOS array), the y-axis
represents the measured saturation current of peripheral NMOS transistors (Id sat
NMOS peripheral), while the z-axis represents that of PMOS transistors (Id sat
PMOS). The figure shows a 3D ellipsoid that represents the process spread around
the center. Each point in the ellipsoid represents one possible combination of
Id sat for the three sets of transistors. Transistors with Id sat at the center of the
ellipsoid (the crossing of the three principal axes) are modeled using the nominal
transistor parameters. For every other point in the ellipsoid, a set of variations in
the transistor parameters (∆parameter) are added to the nominal parameter set.

Note that the ellipse in Figure 9.3(a) can be retrieved from Figure 9.3(b) by
intersecting the ellipsoid with the plane x = y (i.e., with the condition that all
NMOS transistors are totally correlated). Also note that many process corners in
Figures 9.3(a) and (b) are the same: nominal corner, snsp, fnfp, snfp and fnsp.
There are, however, two added corners that are specific to the 3D variations.

• sncpfa corner—This corner has slow peripheral NMOS, centralized or nom-
inal PMOS, and fast array NMOS transistors.

• fncpsa corner—This corner has fast peripheral NMOS, centralized or nom-
inal PMOS, and slow array NMOS transistors.

9.2 Analysis methodology

In this section, we describe the analysis methodology by discussing the analysis
performed at the nominal corner of the process. Four different backgrounds (BGs)
are analyzed: BG 00, BG 10, BG 11, and BG 01. We start by presenting the
DRAM-specific sequences used in the analysis, followed by a detailed discussion of
the results of BG 00, then the results for the other BGs are summarized.

9.2. Analysis methodology | 199

9.2.1 Simulated sequences

In the approximate simulation approach, we need to understand the faulty behavior
of the memory for any possible sequence of memory operations, but since there is
an infinite number of possible sequences, it is impossible to simulate all of them.
The solution is to simulate a limited number of sequences, called basic sequences,
and then use those to approximate the behavior of any other sequence. Therefore,
we need to find those DRAM-specific basic sequences, consisting of the commands
Act, Wr, Rd, Pre and Nop, that make such an approximation possible.

Section 5.4 presents 13 DRAM-specific basic sequences using the five DRAM
commands, to perform a simulation-based fault analysis of the memory. These
13 basic sequences are listed in Table 9.1. They are classified into four different
groups: charge up group, discharge group, charge/discharge group (C/D group),
and no charge group. The name in each group refers to the direction of expected
voltage change within the memory cell during the application of the sequence.

Table 9.1. Basic sequences used to reconstruct any DRAM-specific sequence.

Charge up group # Discharge group # C/D group # No charge group

1. Wr1 Wr1 Wr1 ... Wr1 5. Wr0 Wr0 Wr0 ... Wr0 9. Act Rd Rd ... Rd 13. Pre Nop Nop ... Nop

2. Wr1 Rd1 Rd1 ... Rd1 6. Wr0 Rd0 Rd0 ... Rd0 10. Act Nop Nop ... Nop

3. Wr1 Nop Nop ... Nop 7. Wr0 Nop Nop ... Nop 11. Act Act Act ... Act

4. Wr1 Pre Pre ... Pre 8. Wr0 Pre Pre ... Pre 12. Act Pre Pre ... Pre

Taking the strap problem into consideration, and since the cell is only accessed
between the Act and Pre commands, faults can only be sensitized when the cell is
accessed using the commands performed between Act and Pre. Therefore, for the
analysis of the strap, we can exclude Sequences 4, 8 and 12 in Table 9.1, since they
inspect the impact of Pre commands, we can exclude Sequence 11 since it inspects
the impact of Act commands, and exclude Sequence 13 since it inspects the impact
of Nop commands performed after Pre. This leaves the following sequences to be
analyzed:

• Sequences 1, 2 and 3 of the charge up group

• Sequences 5, 6 and 7 of the discharge group, and

• Sequences 9 and 10 of the C/D group.

Fortunately, we do not need to generate all 8 result planes for these 8 sequences.
Simulations show that, for the strap problem, all remaining 3 sequences in each
group have similar impact on the faulty behavior, which means that the result
planes they generate are similar [Al-Ars02c]. Therefore, only one sequence from the
remaining 3 in each group needs to be simulated as a representative sequence. We
select the sequences with the no operations as representatives, since these are the

200 | Chapter 9. Case study: the strap problem

most suitable candidates for test generation. The clock cycles with no operations
can be used to test multiple memory banks in parallel, thereby reducing overall
test time. The following sequences are chosen to analyze the faulty behavior:

• Sequence of Wr0: Wr0 Nop Nop ... Nop (Sequence 7 in Table 9.1)

• Sequence of Wr1: Wr1 Nop Nop ... Nop (Sequence 3)

• Sequence of Act: Act Nop Nop ... Nop (Sequence 10)

9.2.2 Background 00

Figure 9.4 and 9.5 show the simulation results in the nominal process corner (as
defined in Section 9.1.3), at nominal stresses (according to the specifications of
the memory), and with BG 00 (0 is stored in cells on the adjacent BL pairs).
The results are divided into three different result planes, one for each analyzed
basic sequence [compare with Figure 5.4 and 5.5]. Each result plane describes the
impact of performing successive commands on Vc for a given value of Rop , shown in
Figure 9.1(c). The x-axes in the result planes represents the stored voltage within
the cell (Vc), and the y-axis represents the value of the open resistance (Rop). The
value of Vc is not given in absolute voltage levels, but as percentages of Vdd . In the
same way, a scaled value of Rop is shown on the y-axis using the scale factor r.

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
0Wr1

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

1Wr1
10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
1Wr0

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

0Wr0

(2)Nop

(1)Nop0Wr1

Vcs

(3)Nop

1Wr0(1)Nop

Vcs

Rcr

(b) Plane of Wr1(a) Plane of Wr0

(3)Nop

(2)Nop

Figure 9.4. Result planes in the nominal corner, at nominal stress and with BG 00, for the
sequences (a) Wr0, and (b) Wr1.

9.2. Analysis methodology | 201

Plane of Wr0: This result plane is shown in Figure 9.4(a). To generate this
figure, the floating cell voltage Vc is initialized to the two worst case voltages, Vdd

and GND, and then the sequence Wr0 Nop ... Nop is applied to the cell. With
an initial Vc of Vdd , the sequence results in the gradual decrease (depending on
the value of Rop) of Vc towards GND. With an initial Vc of GND, the value of Vc

remains at GND. The voltage level after each command in the sequence is recorded
on the result plane, which results in a number of curves in the plane. All curves
have names, and some of them are indicated by an arrow pointing in the direction
of voltage change. The 1Wr0 curve identifies the impact of Wr0 on a cell voltage
initialized to Vdd , while the 0Wr0 curve (the last entry in the legend) identifies the
impact of Wr0 on a cell voltage initialized to GND. The curves numbered as (n)Nop
indicate the impact of no operations on Vc following a 1Wr0, where n is the number
of Nops needed to get to the indicated curve. We stop performing the sequence
when the voltage change ∆Vc as a result of the performed sequence becomes small
enough. In this example, we stop the sequence when ∆Vc ≤ 0.1 V, a value that
is arbitrarily selected at first, but can afterwards be reduced if it turns out that a
longer sequence is needed to describe the faulty behavior. The figure also shows
the cell sense threshold curve (Vcs), above which the sense amplifier senses a 1 and
below which the sense amplifier senses a 0. The Vcs curve is copied from the plane
of the Act sequence, which is explained in detail below [see “Plane of Act” below].

Plane of Wr1: This result plane is shown in Figure 9.4(b). To generate this
figure, Vc is initialized to the two worst case voltages Vdd and GND and then the
sequence Wr1 Nop ... Nop is applied to the cell. With an initial Vc of GND, the
result is the gradual increase of Vc towards Vdd , while an initial Vdd remains as it
is in the cell. The voltage level after each command in the sequence is recorded on
the result plane, which produces a number of curves in the plane. These curves are
indicated in the same way as for the curves in the plane of Wr0 above. We stop
the sequence when ∆Vc becomes small enough (0.1 V in this example).

Plane of Act: This result plane is shown in Figure 9.5. To generate this figure,
first the threshold within the cell that determines the sense amplifier output Vcs

(the cell voltage above which the sense amplifier detects a 1, and below which it
detects a 0) is established and indicated on the result plane. Then the sequence
Act Nop ... Nop is applied twice: first for Vc that is initially marginally lower than
Vcs , and a second time for Vc that is marginally higher than Vcs . The voltage level
after each command is recorded on the result plane, which results in a number of
curves on the plane. The +Act curve indicates the impact of performing Act with
Vc marginally higher than Vcs , while -Act indicates the impact of performing Act
with Vc marginally lower than Vcs . The other curves indicated the impact of the
nth Nop following the initial Act.

Using the result curves in Figure 9.4, we can analyze the following aspects of the

202 | Chapter 9. Case study: the strap problem

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
-Act

-(1)Nop
-(2)Nop
-(3)Nop
-(4)Nop

+Act
+(1)Nop
+(2)Nop
+(3)Nop
+(4)Nop

+Act

−Act Vcs

+(1)Nop

Figure 9.5. Result plane in the nominal corner, at nominal stress and with BG 00, for the Act
sequence.

faulty behavior:

1. Identify the critical resistance (Rcr), which is the Rop value where the cell
starts to cause faults on the output, for any sequence of operations.

2. Generate a test that detects the faulty behavior of the defect for any resistance
value and any initial floating voltage.

(1) For the fault analysis shown in Figure 9.4, the memory behaves properly for
any operation sequence as long as Rop < 210rΩ. To understand why, note that
a fault would only be detected when a Wr1 operation fails to charge Vc up above
Vcs , or a Wr0 fails to discharge Vc to below Vcs (Vcs is indicated by a curve in
Figure 9.4). In both situations, trying to read after performing the write would
detect the faulty behavior. Note that for Rop > 210rΩ, Wr0 fails to discharge Vc

to the value needed by Act to sense a 0. This is indicated in Figure 9.4(a) as a dot
at the intersection between the 1Wr0 curve and the Vcs curve. Furthermore, note
that the curve 0Wr1 in Figure 9.4(b) does not intersect the Vcs curve, which means
that Wr1 operations never fail no matter how high Rop becomes!

(2) Now, the result planes are used to generate a detection condition that detects
the faulty behavior caused by any defect resistance for any initial floating voltage,
in case a fault can be detected. Figure 9.4 shows that faults can be detected with
Rop ≥ 210rΩ. Inspecting the figure shows that with Rop ≥ 210rΩ, and with any
voltage Vc, the sequence Act Wr1 Nop Nop Wr0 will sensitize a fault. This, in turn,
means that the faulty behavior can be represented by the FP =<Wr1 Nop Nop
Wr0/1/−>. For Rop = 210rΩ, this can be validated by noting that performing Wr1

9.2. Analysis methodology | 203

Nop Nop charges Vc up from any voltage (GND or higher) to approximately Vdd .
With Vc = Vdd , performing Wr0 sensitizes the fault which can then be detected as
discussed in point (1) above. Since the strap does not force leakage current to any
specific direction, all time dependent faults are possible (hard, soft and transient).
This means that the following two additional FPs are also possible: <Wr1 Nop Nop
Wr0T /1/−> and <Wr1 Nop Nop Wr0/1L/−>. To detect the hard and transient

faults, the detection condition m(..., Wr1, Nop, Nop, Wr0, Pre, Act, Rd0, ...) is
sufficient. The soft fault requires the detection condition m(..., Wr1, Nop, Nop,
Wr0, Pre, Del, Act, Rd0, ...), where Del stands for a delay time to test the ability
of the cell to retain its data.

9.2.3 Backgrounds 10, 11 and 01

In this section, fault analysis results are given in the nominal process corner and
with nominal stress conditions for BGs 10, 11 and 01. For each BG, the result
planes are presented in order to discuss their faulty behavior. As the discussion in
Section 9.2.2 have shown, the only important part of the result plane of Act is the
Vcs curve, which is included and discussed as part of the result planes of Wr0 and
Wr1. Therefore, only the result planes of Wr0 and Wr1 are discussed next, but not
that of Act.

Background 10

Figure 9.6 shows the result planes for BG 10. Figures 9.6(a) and (b) give the results
for Wr0 and Wr1, respectively. The curves in the figures show the same tendencies
in the behavior as those in Figure 9.4.

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
1Wr0

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

0Wr0

(a) Wr0

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
0Wr1

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

1Wr1

(b) Wr1

Figure 9.6. Result planes with BG 10 for (a) Wr0 and (b) Wr1.

Each figure has a number of curves. The curve Vcs represents the sense amplifier
threshold voltage, below which a 0 is detected on the output and above which a 1
is detected. The other curves represent the impact of each corresponding command

204 | Chapter 9. Case study: the strap problem

on the cell voltage Vc. For example, points of 1Wr0 indicate the voltage the cell
contains after Wr0 to a cell initialized to Vdd , for a given Rop value. In the same
way, points of (1)Nop indicate the voltage the cell contains after one Nop command
is performed, and so on.

Although the results in this figure are not exactly the same as those shown in
Figure 9.4, the important aspects of the faulty behavior have not changed. The cell
starts to fail when Rop ≥ 205rΩ when the curve Vcs intersects 1Wr0 in Figure 9.6(a).
This means that modifying BG from 00 to 10 does not have a big impact on the
faulty behavior of the memory. Yet, the small increase in the range of failing Rop

values indicates that BG 10 is slightly more effective in stressing the test than BG
00.

Background 11

Figure 9.7 shows the analysis results for BG 11. Figures 9.7(a) and (b) give the
results for Wr0 and Wr1, respectively. The figures show that the Vcs curve changed
significantly with BG 11, compared to BGs 10 and 00. The sense amplifier is now
biased towards detecting a stored 0 instead of detecting a stored 1. A detailed
discussion of the impact of BGs on the way the sense amplifier senses stored cell
voltages can found in Chapter 6.

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
1Wr0

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

0Wr0

(a) Wr0

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
0Wr1

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

1Wr1

(b) Wr1

Figure 9.7. Analysis results with BG 11 for (a) Wr0 and (b) Wr1.

Inspecting Figure 9.7(a) reveals that the Vcs curve does not intersect the 1Wr0 or
any of the (n)Nop curves, which means that the Wr0 sequence never fails. However,
the Vcs curve does intersect the 0Wr1 curve in Figure 9.7(b) at about Rop = 205rΩ.
This indicates that the Wr1 sequence starts to fail with Rop ≥ 205rΩ.

A detection condition to detect the hard and transient types of this fault is
m(..., Wr0, Nop, Nop, Wr1, Pre, Act, Rd1, ...). The soft fault requires the detection
condition m(..., Wr0, Nop, Nop, Wr1, Pre, Del, Act, Rd1, ...), where Del stands
for a delay time to test the ability of the cell to retain its data. It is interesting
to note that this detection condition has a similar sequence of commands as the

9.3. Results and tests | 205

detection condition derived for BG 00, with the exception that the data used in
this detection condition is complementary to that used in the condition for BG 00
(i.e., 1s are replaced with 0s, and vice versa).

Background 01

Figure 9.8 shows the analysis results for BG 01. The results in this figure are similar
to those shown in Figure 9.7. The cell starts to fail when Rop ≥ 200rΩ when the
curve Vcs intersects the 0Wr1 curve in Figure 9.8(b). This means that modifying
BG from 11 to 01 does not have a big impact on the faulty behavior of the memory.

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
1Wr0

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

0Wr0

(a) Wr0

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
0Wr1

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

1Wr1

(b) Wr1

Figure 9.8. Analysis results with BG 01 for (a) Wr0 and (b) Wr1.

Still, close inspection of the results associated with BG 11 and 01 reveals that
using BG 01 slightly increases the range of failing Rop as compared to BG 11. This
means that it is actually easier to detect a fault with BG 01. A similar remark has
been made for BGs 00 and 10.

9.3 Results and tests

In this section, a summary of the results is given for the fault analysis performed in
the 7 different process corners, as discussed in Section 9.1.3. In addition, tests are
given that satisfy the detection conditions required to detect the faulty behavior of
the strap.

9.3.1 Summary of results

All 7 process corners (nominal, fnfp, snsp, snfp, fnsp, sncpfa and fncpsa) have been
simulated and analyzed [see Section 9.1.3] at nominal stresses (nominal voltage,
temperature and timing). For each process corner and each BG, the three result
plains (Wr0, Wr1 and Act) have been generated [Al-Ars02d]. To simplify the
discussion here, only the two most important outcomes of the analysis are given:

206 | Chapter 9. Case study: the strap problem

(1) the critical resistance (Rcr) at which the memory starts to fail, and (2) the
detection condition needed to detect the faulty behavior. Table 9.2 lists these two
outcomes for each process corner. The column “Corner” lists the process corner at
which the analysis is performed, the column “BG” indicates the background data,
the column Rcr states the critical resistance, while the column “Det. condition”
lists the needed detection condition.

Table 9.2. Summary of results in the 7 different process corners [Al-Ars02d].

Corner BG Rcr Det. condition Corner BG Rcr Det. condition

Nominal 00 210rΩ CondT fnfp 00 220rΩ CondT

10 205rΩ CondT 10 205rΩ CondT

11 205rΩ CondC 11 220rΩ CondC

01 200rΩ CondC 01 205rΩ CondC

snsp 00 200rΩ CondT snfp 00 210rΩ CondT+

10 185rΩ CondT 10 205rΩ CondT+

11 105rΩ CondC− 11 205rΩ CondC

01 100rΩ CondC− 01 200rΩ CondC−

fnsp 00 205rΩ CondT sncpfa 00 205rΩ CondT

10 200rΩ CondT 10 200rΩ CondT

11 200rΩ CondC− 11 160rΩ CondC

01 160rΩ CondC− 01 130rΩ CondC

fncpsa 00 210rΩ CondT

10 205rΩ CondT

11 210rΩ CondC−

01 205rΩ CondC−

CondT: m(..., Wr1, Nop, Nop, Wr0, Pre, Act, Rd0, ...)

CondC: m(..., Wr0, Nop, Nop, Wr1, Pre, Act, Rd1, ...)

CondT−: m(..., Wr1, Nop, Wr0, Pre, Act, Rd0, ...)

CondC−: m(..., Wr0, Nop, Wr1, Pre, Act, Rd1, ...)

CondT+: m(..., Wr1, Nop, Nop, Nop, Wr0, Pre, Act, Rd0, ...)

The detection conditions listed in the table detect the hard as well as the tran-
sient faults cased by the strap, but not the soft faults. In order to detect the
soft faults, a delay of (Del) should be added to each detection condition, after the
Pre and before the Act commands. Section 9.4 below discusses how to apply test
stresses in order to eliminate soft faults without the need to include this time delay
into the detection conditions.

The table identifies the following characteristics for the faulty behavior, result-
ing from an elevated strap resistance with nominal stresses:

1. The value of Rcr varies between a minimum of 100rΩ for the snsp corner with
BG 01, and a maximum of 220rΩ for the fnfp corner with BG 00 and BG 11.

9.3. Results and tests | 207

2. For each process corner, BG 01 always results in the lowest Rcr , while BG
00 results in the highest. This means that BG 01 is the most stressful BG,
while BG 00 is the most relaxed one.

3. Depending on the process corner, the difference in Rcr between different BGs
could be as large as 100 rΩ for snsp, or as small as 5 rΩ for fncpsa.

4. BG 00 results in the most stable Rcr value across different process corners.
With BG 00, Rcr changes by only 20 rΩ from a high of 220 rΩ for fnfp and
the a low of 200 rΩ for snsp. This is a change of about 9% from the high Rcr

value.

5. The process corners sncpfa and fncpsa, specifically considered for fault anal-
ysis, did not result in significantly low nor significantly high Rcr values. This
could probably be attributed to a compensating effect between array NMOS
and periphery NMOS transistor (i.e., an increase in the speed of array devices
compensates a decrease in the speed of periphery devices, and vice versa).

6. The detection conditions needed to detect the faulty behavior caused by the
defect have the same general structure for all process corners. The only
difference is in the number of initializing Wr and Nop operations needed to
precharge Vc to a strong enough voltage.

7. In general, slow array NMOS transistors require more initializing Nops (longer
detection condition), while fast array CMOS transistors require less initializ-
ing Nops (shorter detection condition). However, PMOS transistors also have
an influence on the length of the detection conditions.

9.3.2 Test generation

In this section, we use the detection conditions listed in Table 9.2 to generate a
march test to detect the fault, taking into account the needed BG pattern. Note
that these tests are only suitable to detect the hard and transient faults caused by
the strap, but not to detect soft faults, as they require incorporating a delay time
into the test. Section 9.4 below shows how to use test stresses rather than delay
time to eliminate soft faults.

Simulation-based tests

According to Table 9.2, BGs 00 and 10 share the same worst-case detection condi-
tion, which is m(..., Wr1, Nop, Nop, Nop, Wr0, Pre, Act, Rd0, ...) corresponding
to the corner snfp. The fact that changing the value of Cellt between 0 and 1 does
not change the detection condition means that Cellt is insignificant for the faulty
behavior. This indicates that in order for this detection condition to work, only
Cellb [see Figure 9.2] should contain a 0. This is done using a memory initialization
step to write a 0 in the whole memory, as follows m(Act, Wr0, Pre).

208 | Chapter 9. Case study: the strap problem

For BGs 11 and 01, the worst-case detection condition is m(..., Wr0, Nop, Nop,
Nop, Wr1, Pre, Act, Rd1, ...). In this case, the BG indicates that only a value of 1
contained in Cellb is significant for the detection condition. This is done using an
initialization step to write a 1 in the whole memory, as follows m(Act, Wr1, Pre).

Therefore, there are two possible tests, any of which detects the faulty behavior.
The subscripts 00 and 11 stand for the BG used in the test.

1. T00 = {m(Act, Wr0, Pre);
m(Act, Wr1, Nop, Nop, Nop, Wr0, Pre,

Act, Rd0, Pre)}

2. T11 = {m(Act, Wr1, Pre);
m(Act, Wr0, Nop, Nop, Nop, Wr1, Pre,

Act, Rd1, Pre)}
Since each of the two tests detects the faulty behavior, we only need to perform

one of them to properly test for the strap problem. Referring to Table 9.2, it is
clear that T11 has a lower Rcr than T00 in all analyzed process corners. Therefore,
we choose to use T11.

Practical aspects

If we assume that the memory functions exactly as the electrical model does on a
simulator, the generated tests above would function exactly as expected. Practi-
cally, however, real silicon may deviate from the simulated behavior. As a result,
the exact number of operations needed to charge the memory to the desired voltage
may differ. It is possible to increase the test time in an attempt to ensure coverage
by increasing the number of Nop operations in the test. This gives the following
list of tests:

• Original test: T00 = {m(Act, Wr0, Pre);
m(Act, Wr1, Nop, Nop, Nop, Wr0, Pre,

Act, Rd0, Pre)}

• Add 1 Nop: T00
+ = {m(Act, Wr0, Pre);

m(Act, Wr1, Nop, Nop, Nop, Nop, Wr0, Pre,
Act, Rd0, Pre)}

• Add 2 Nops: T00
++ = {m(Act, Wr0, Pre);

m(Act, Wr1, Nop, Nop, Nop, Nop, Nop, Wr0, Pre,
Act, Rd0, Pre)}

• etc.

Keep in mind that the more Nops are added, the less the impact each additional
Nop will have, because the closer the cell voltage gets to Vdd the more difficult it
becomes to charge the cell higher.

9.3. Results and tests | 209

Common industrial tests

The following test is commonly used for detecting an increased strap resistance:

Tind = {m(Act, Wr0, Pre); M0
m(Act, Wr1, Pre,

Act, Rd1, Nop, Nop, Nop, Wr0, Pre,
Act, Rd0, Pre) M1

m(Act, Wr1, Pre); M2
m(Act, Wr0, Pre,

Act, Rd0, Nop, Nop, Nop, Wr1, Pre,
Act, Rd1, Pre)} M3

The march element M0 takes care of initializing the whole memory to an initial
0 state; M0 is identical to the first march element of T00. M1 starts with a Wr1
operation to charge the cell up, which is done in the same way by T00. The test
then checks the stored value in the cell using a Rd1 to ensure that Vdd has been
reached, followed by three Nops to ensure full restoration of the stored 1, and then
a Wr0 is performed to sensitize the fault. Finally, a read operation detects whether
a fault is sensitized. March elements M2 and M3 have the same sequence as M0
and M1, but apply the complementary data to the memory; this part of the test
corresponds to T11.

This test applies a modified version of both T00 and T11. The modification
involves an added sequence of Pre Act Rd operations in M1 and M3. According to
the fault analysis performed above, there is no clear benefit for this added Rd in
detecting the strap problem. In addition, since T11 always has a higher coverage
than T00, it is sufficient to perform T11 instead of both.

In conclusion, the analysis performed in this chapter recommends reducing the
industrially used test with 32 operations to the much reduced test T11 with 13
operations, which reduces the test time by 59%.

Industrial evaluation

An experimental version of the strap test has been included into the test flow of
a commodity DRAM product in order to evaluate the effectiveness of the tests
proposed by our analysis as opposed to the commonly used industrial test for
the strap problem (Tind). The experimental version of the strap test employs the
following sequence:

Texp = {m(Act, Wr0, Pre); M0
m(Act, Wr1, Nop, Nop, Nop, Wr0, Pre,

Act, Rd0, Pre) M1
m(Act, Wr1, Pre); M2
m(Act, Wr0, Pre Nop, Nop, Nop, Wr1, Pre,

Act, Rd1, Pre)} M3

210 | Chapter 9. Case study: the strap problem

Texp is similar to Tind, but with the sequence “Pre, Act, Rd1” removed from
M1 and M3. Texp is made up of the concatenation of the two tests T00 and T11.
As mentioned earlier in this section, it is sufficient in principle to use T11 to detect
all cells with a strap problem, as long as the physical high voltage Vdd is used to
represent the background BG 11. Although it is possible to write physical data for
most of the cells in the cell array, it is not possible to do this for parts of the cell
array where failing BL pairs are repaired with redundant elements. Therefore, it
is important to test for both BG 00 and BG 11, to insure that the most stressful
background is used.

Tind and Texp have been included into the test flow for months, and the de-
tection results of both tests have been compared. The comparison shows that the
coverage of both tests is identical for those failing cells diagnosed subsequently by
failure analysis to suffer exclusively from an increased strap resistance. The com-
parison also indicates that Tind has a slightly increased fault coverage for cells that
suffer from other forms of failure mechanisms (such as sense amplifier mismatch).
This means that Texp not only detects problematic cells with an increased strap
resistance, it is also more exclusive in detecting less defective cells suffering from
other failure mechanisms.

9.4 Optimizing test stresses

This section discusses the problem of test stress (ST) optimization for the strap
problem. ST optimization for a test means properly adjusting the STs (timing, tem-
perature and voltage) such that a higher coverage of a given test can be achieved.
As discussed in Section 4.4, the application of STs is necessary to eliminate soft
faults, without the need to include costly delay time into the test. STs able to
eliminate soft faults have the property of being decisive STs, which means that
they are able to force a directly detectable fault in any memory (defective as well
as functional). STs not having this property are referred to as indecisive.

Simulation-based optimization of STs is made possible using the concept of the
critical resistance (Rcr) of a defect [Al-Ars03b, Al-Ars03c]. Table 9.2 lists examples
of Rcr values generated for the strap resistance problem, for example. Rcr is the
resistive value of a defect at which the memory starts to show faulty behavior.
As discussed in Section 5.4.2, this important piece of information can be used for
optimizing any test ST, as follows:

A change in a given ST should modify the value of the critical resistance in
that direction which maximizes the resistance range that results in a

detectable functional fault.

In the following, two different STs are analyzed: timing represented by the clock
cycle time (tcyc), and temperature. The optimization of voltages is not discussed
here, because of the confidential nature of this information [Al-Ars02d].

9.4. Optimizing test stresses | 211

9.4.1 Optimizing tcyc

In this section, the clock cycle time is optimized by inspecting the impact of a
number of tcyc values on the resulting Rcr . The fault analysis results of Section 9.2
indicate that Rcr is specified by the intersection point of the first Wr command
curve and the Vcs curve [see Figure 9.4(a), for example]. As a result and in order
to identify Rcr for every tcyc, it is sufficient to trace the value of Rcr by generating
the Wr command curve and the Vcs curve, and subsequently tracing their point of
intersection. In order for this approach to work, however, Rcr must be defined by
exactly the same two curves across the whole range of relevant tcyc values.

Figure 9.9 shows the result planes with BG 00 in the nominal corner, using tcyc =
0.5tnom , where tnom is the nominal clock cycle time, according to the specifications
of the memory [Infineon04]. The figure shows that reducing tcyc limits the ability
of the memory to charge up or discharge cell voltages. This can be seen in the
degradation of the stored cell voltage after performing a write command. On the
other hand, the Vsc curve remains unchanged, which means that modifying tcyc has
no impact on the activation command.

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
1Wr0

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

0Wr0

(a) Wr0

10r

100r

1000r

10000r

0% 25% 50% 75% 100%

R
op

 [O
hm

]

Vc [%Vdd]

Vcs
0Wr1

(1)Nop
(2)Nop
(3)Nop
(4)Nop
(5)Nop

1Wr1

(b) Wr1

Figure 9.9. Result planes with BG 00 and tcyc = 0.5tnom for (a) Wr0, and (b) Wr1.

The figure shows that reducing tcyc does not influence the way the critical
resistance is defined as the intersection point of the Vcs curve and the 1Wr0 curve.
However, as a result of the degradation in the ability of the write command, the
value of Rcr decreases accordingly. Figure 9.9(a) shows that the critical resistance
decreases from 210rΩ to about 100rΩ, as a result of the reduction in tcyc.

Now that we have a general picture of the faulty behavior of the memory with
nominal tcyc and with a very stressful tcyc, this section traces the value of the critical
resistance as a function of tcyc. This shows in detail the dependence of the critical
resistance on tcyc, and enables the comparison of the impact of tcyc in different
process corners and with different BGs.

Figure 9.10 shows the critical resistance as a function of tcyc in the nominal
corner. The x-axis in the figure lists tcyc, while the y-axis in the figure lists the value

212 | Chapter 9. Case study: the strap problem

of Rcr . There are four curves in the figure, one for each BG. The first important
conclusion one can derive from the figure is that tcyc is a decisive ST for the strap
problem. This is indicated by the linear decline of Rcr toward 0 rΩ with decreasing
tcyc, which means that it is possible to use timing to induce a detectable fault in
any cell (defective as well as functional). As a result, tcyc can be used to effectively
eliminate the soft fault problem caused by the strap in the memory, without the
need to include costly delay time into the test. Analysis of the impact of STs shows
that tcyc is a very effective in general to eliminate soft faults [Al-Ars03c].

Furthermore, the following conclusions can be derived from the figure:

• In general, the critical resistances with BG 00 and BG 10 have values that
are close to each other. The same is true for the critical resistance values
with BG 11 and BG 01.

• As tcyc decreases below its nominal value, the critical resistances with BG 00
and 10 start to deviate in a clear way from those with BG 11 and 01.

• With the exception of very low values of tcyc, the critical resistance with BG
10 and 01 have either a lower or exactly the same value as that with BG 00
and 11, respectively.

• For a given tcyc that is below tnom , BG 11 and BG 01 are more stressful than
BG 00 and BG 10.

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

Nominal corner

BG 00
BG 10
BG 11
BG 01

Figure 9.10. Critical resistance as a function of cycle time in the nominal corner.

Figure 9.11 shows the critical resistance as a function of the cycle time in the
rest of the process corners, other than the nominal one. The general behavior
of the critical resistance in these corners indicates the same tendencies discussed
for the nominal corner. The figure shows that, in the fnfp corner, the impact of
different BGs on the critical resistances is less than that in the nominal corner. The

9.4. Optimizing test stresses | 213

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

fnfp corner

BG 00
BG 10
BG 11
BG 01

(a) fnfp corner

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.5 0.75 1.0 1.25 1.5
R

cr
 [O

hm
]

tcyc/tnom

snsp corner

BG 00
BG 10
BG 11
BG 01

(b) snsp corner

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

snfp corner

BG 00
BG 10
BG 11
BG 01

(c) snfp corner

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

fnsp corner

BG 00
BG 10
BG 11
BG 01

(d) fnsp corner

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

sncpfa corner

BG 00
BG 10
BG 11
BG 01

(e) sncpfa corner

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

fncpsa corner

BG 00
BG 10
BG 11
BG 01

(f) fncpsa corner

Figure 9.11. Critical resistance as a function of tcyc for (a) the fnfp corner, (b) the snsp corner,
(c) the snfp corner, (d) the fnsp corner, (e) the sncpfa corner and (f) the fncpsa corner.

214 | Chapter 9. Case study: the strap problem

opposite effect takes place in the snsp corner, where the impact of different BGs on
the critical resistances increases. In the other corners, the effect of different BGs is
similar to their effect in the nominal corner.

Figure 9.12(a) shows, for BG 00, the impact of different process corners on the
critical resistance value as a function of tcyc. The figure shows clearly that, for a
given tcyc, the fnfp corner results in highest Rcr (hence, lowest test coverage), while
snsp corner results in lowest Rcr (hence, highest coverage). Moreover, the critical
resistances in the nominal corner, the snfp corner and the fncpsa corner, not only
fall between those of the fnfp and snsp corners, but also have almost the same value
for most of the tcyc range.

At the same time, Figure 9.12 shows the critical resistance as a function of cycle
time with BGs 10, 11 and 01 for all process corners. The behavior shown in this
figure is almost identical to that with BG 00. For a given value of tcyc, the fnfp
corner results in the highest value of the critical resistance, while the snsp corner
results in lowest value. The critical resistance in all other corners falls between
those of the fnfp and snsp corners.

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

BG 00

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(a) BG 00

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

BG 10

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(b) BG 10

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

BG 11

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(c) BG 11

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

0.25 0.5 0.75 1.0 1.25

R
cr

 [O
hm

]

tcyc/tnom

BG 01

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(d) BG 01

Figure 9.12. Critical resistance as a function of tcyc in all process corners with (a) BG 00, (b)
BG 10, (c) BG 11 and (d) BG 01.

9.4. Optimizing test stresses | 215

9.4.2 Optimizing temperature

In this section, an analysis is performed of the temperature effect on the faulty
behavior. The objective is to find the temperature that is most stressful for our test.
In the nominal corner, discussed in Section 9.3, simulations have been performed
using the room temperature of 27◦. In this section, the critical resistance (Rcr) is
evaluated at −50◦ C, −10◦ C, 27◦ C, 87◦, 110◦ C and 150◦ C. We begin with a
discussion of the impact of temperature on the strap resistance then analysis results
are presented.

Temperature dependence of strap resistance

In order to optimize temperature with respect to the strap resistance, it is important
to include the impact of temperature into the model of the strap. To achieve
this goal, measurement results are needed to identify the behavior of the strap at
different temperatures.

As shown in Figure 9.1, the strap resistance is modeled as a resistive open
between the pass transistor and trench capacitor. Since we perform simulations for
different strap resistances, it is important to measure the temperature dependence
of the strap using straps that have different resistance values at room temperature.

Such a measurement has been performed on a wafer that has straps with a
fairly distributed resistance values ranging from 40rΩ to 400rΩ [Al-Ars02e]. The
measured strap resistances are located on 8 dies distributed across the wafer. The
measurements have been performed at four different temperatures (−10◦ C, 27◦ C,
87◦ C and 110◦ C).

The measurements indicate that the value of the strap resistance increases as
temperature decreases, which is the expected semiconductor behavior. The mea-
surements also indicate that starting with different strap resistance values at 27◦

C, the temperature related change in the resistance follows a similar trend. A com-
monly used model to approximate the temperature dependence of semiconductor
resistivity is described by the following relation [Weste94]:

R(T) = R(T0)
[

1 + a · (T − T0) + b · (T − T0)
2
]

(9.1)

where R(T0) is the resistance at a given temperature T0, while a and b are
the statistical curve fitting constants. Curve fitting for a and b with respect to
the measured resistance data, and using a least square approximation, results in a
good curve fit. The model is subsequently programmed into Spice to simulate the
temperature dependence of the strap resistance.

Critical resistance trace

In this section, we present the simulation results of the fault analysis performed
by modifying the temperature between −50◦ C and 150◦ C. The analysis has been

216 | Chapter 9. Case study: the strap problem

performed for all 4 BGs and in all 7 process corners. The analysis is performed
with nominal voltages and using tcyc = 0.75tnom .

Figure 9.13 shows the Rcr value as a function of temperature with all BGs (in
the nominal process corner). According to the figure, the value of Rcr increases with
increasing temperature. This is expected since the value of the defect resistance
(Rop) decreases with increasing temperature as described in Section 9.4.2 above.
This means that a higher temperature reduces the impact of the defect on the
faulty behavior, thereby increasing Rcr .

60r

80r

100r

120r

140r

160r

180r

200r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

Nominal corner

BG 00
BG 10
BG 11
BG 01

Figure 9.13. Critical resistance as a function of temperature in the nominal corner.

The first important conclusion one can derive from the figure is that temper-
ature is an indecisive ST, not suitable in eliminating soft faults from the faulty
behavior of the strap. This is indicated by the very slow decline in Rcr with de-
creasing temperature, which reaches a minimum of about 60 rΩ within the analyzed
temperature range. An even lower temperature may result in a lower Rcr , but such
extreme temperatures are both expensive and unreasonable, falling well beyond the
bounds of industrial standards.

The figure shows the same trends observed with the optimization analysis of
the cycle time. Two groups of Rcr traces can be identified, BG 00 and 10 and
BG 11 and 01, where the traces in each group change in the same way and remain
close together. In addition, the BGs 10 and 01 are still more effective than their
counterparts BG 00 and 11, respectively. The most stressful BG is 01 along the
whole analyzed temperature range.

Figure 9.14 shows the critical resistance as a function of temperature in each
process corner, with all BGs. The same trends observed in the nominal corner
are also present in the other process corners: Rcr increases with temperature, Rcr

for BG 00 and 10 are close together, the same is true for BG 11 and 01, and
BG 01 is the most stressful BG in all process corners. The figure also indicates
that the difference between Rcr with different BGs is smallest in the fnfp corner
and largest in the snsp corner. The sncpfa corner shows a particularly interesting
behavior with BG 11 and BG 01, where Rcr increases between −50◦ C and 50◦

9.4. Optimizing test stresses | 217

60r

80r

100r

120r

140r

160r

180r

200r

220r

240r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

fnfp corner

BG 00
BG 10
BG 11
BG 01

(a) fnfp corner

10r

20r

30r

40r

50r

60r

70r

80r

90r

-50 0 50 100 150

R
cr

 [O
hm

]
Temp [C]

snsp corner

BG 00
BG 10
BG 11
BG 01

(b) snsp corner

60r

80r

100r

120r

140r

160r

180r

200r

220r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

snfpsa corner

BG 00
BG 10
BG 11
BG 01

(c) snfp corner

60r

80r

100r

120r

140r

160r

180r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

fnspfa corner

BG 00
BG 10
BG 11
BG 01

(d) fnsp corner

20r

40r

60r

80r

100r

120r

140r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

sncpfa corner

BG 00
BG 10
BG 11
BG 01

(e) sncpfa corner

60r

80r

100r

120r

140r

160r

180r

200r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

fncpsa corner

BG 00
BG 10
BG 11
BG 01

(f) fncpsa corner

Figure 9.14. Critical resistance as a function of temperature in (a) the fnfp corner, (b) the snsp
corner, (c) the snfp corner, (d) the fnsp corner, (e) the sncpfa corner and (f) the fncpsa corner.

218 | Chapter 9. Case study: the strap problem

C, and then decreases back between 50◦ C and 150◦ C. This means that for this
corner and with BG 11 and 01, both high and low temperatures are more stressful
than room temperature. This can be attributed to the presence of two independent
mechanisms that limit the flow of current into the cell as temperature changes. One
of them is the increased strap resistance as temperature decreases, while the other
is the gradual reduction of the drain current flowing into the cell as temperature
increases.

Figure 9.15(a) shows the critical resistance trace as a function of temperature in
all process corners with BG 00. The figure indicates that snsp results in the lowest
Rcr values while fnfp results in the highest Rcr values. The nominal corner results
in Rcr values that are between the snsp and fnfp corners. The difference between
Rcr in the snsp and fnfp corners decreases gradually as temperature decreases.
Between −10◦ C and 27◦ C, Rcr has the same value for all process corners with the
exception of the snsp corner.

0r

50r

100r

150r

200r

250r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

BG 00

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(a) BG 00

0r

50r

100r

150r

200r

250r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

BG 10

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(a) BG 10

0r

50r

100r

150r

200r

250r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

BG 11

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(b) BG 11

0r

20r

40r

60r

80r

100r

120r

140r

160r

180r

200r

-50 0 50 100 150

R
cr

 [O
hm

]

Temp [C]

BG 01

Nominal
fnfp
snsp
snfp
fnsp
sncpfa
fncpsa

(c) BG 01

Figure 9.15. Critical resistance as a function of temperature in all process corners with (a) BG
00, (b) BG 10, (c) BG 11 and (d) BG 01.

At the same time, Figure 9.15 shows the critical resistance as a function of
temperature with BGs 10, 11 and 10 for all process corners. The behavior shown
in this figure has the same trends observed with BG 00. The fnfp corner results in

9.4. Optimizing test stresses | 219

the highest value of the critical resistance, while the snsp corner results in lowest
value. The critical resistance in all other corners falls between those of fnfp and
snsp. An interesting behavior takes place at −50◦ C and with BG 10 and 11, where
Rcr has the highest value in the fncpsa corner overtaking the usually highest fnfp
corner. The difference is rather small, however.

Summary

This chapter presented a case study to apply the simulation-based fault
analysis method in analyzing the faulty behavior of the elevated strap prob-
lem. The analysis results make it possible to both generate test patterns to
detect the faulty behavior, and to optimize those tests with respect to vari-
ous memory stresses. The chapter discusses the application of the analysis
in detail, starting from the stage of defining an electrical model used in the
simulation, through test derivation, till the stage of test application. The
main issues introduced in this chapter are the following.

• Evaluation of the elevated strap problem, and derivation of a corre-
sponding electrical Spice model to be injected into the memory model
and used in the simulation.

• Selection of an electrical Spice model for the memory that is suitable
for the needed type of simulation-based fault analysis.

• Introduction of the concept of fabrication process variations, and
identifying a method to model them on the electrical level, and to
include them into the fault analysis process.

• Application of the simulation-based fault analysis of the strap prob-
lem, which results in the identification of the faulty behavior of the
memory in terms of fault primitives (FPs), and results subsequently
in deriving suitable memory tests to detect the faulty behavior of the
strap.

• Optimization of the tests generated for the strap problem, with re-
spect to two stresses (timing and temperature), in order to increase
the fault coverage of the tests and eliminate the problem of soft faults.

• Identification of timing as a decisive stress for the strap problem,
suitable to eliminate soft faults. Temperature, on the other hand, is
identified as an indecisive stress, not suitable to eliminate soft faults.

Contents of this chapter

10.1 Conclusions

10.2 Contributions

10.3 Recommendations 10
Conclusions and recommendations

Memory devices generally exhibit a rather complex form of faulty behavior, that is
both difficult to analyze and difficult to test for. This thesis discussed the problem
of fault analysis and testing of memory devices, and proposed systematic methods
to tackle this problem. This chapter summarizes the fault analysis and test results
presented in the thesis, lists the contributions of the thesis to the field of memory
testing, and presents recommendations to further continue this work in the future.

Section 10.1 starts with a discussion of the major conclusions of the thesis,
organized per chapter, and attempts to put the findings in a more general industrial
context. Section 10.2 lists the contributions of this thesis, organized in terms
of scientific as well as industrial contributions. Section 10.3 presents a vision to
implement the scientific theory presented in this thesis in a framework of automated
design tools, used to help test engineers in the field to automatically use simulation
in the analysis of the faulty behavior of a given defective memory.

10.1 Conclusions

This thesis is mainly concerned with the problem of analyzing the faulty behavior
of DRAMs, and in facilitating the implementation of electrical Spice simulation to
solve this problem. Chapter by chapter, the thesis presented this problem in detail,
and outlined the proposed solutions for it. The main conclusions associated with
each chapter of this thesis are listed below.

221

222 | Chapter 10. Conclusions and recommendations

Chapter 1—Introduction

This chapter presents the fundamental concepts of semiconductor memories in gen-
eral and memory testing in particular. It discusses the definition of a memory, its
interface, and its physical form. A number of different semiconductor memory
devices are discussed along with the advantages and disadvantages of each. The
chapter identifies the three basic types of memory testing, testing by the manufac-
turer, testing by the system integrator, and testing by the end user. Among these
three parties, the task of applying tests with high fault coverage rests squarely on
the shoulders of the memory chip manufacturer. Details are given of the different
phases of the industrial test flow, starting from the identification of new tests for a
new memory technology, to the final adaptation of the used tests to detect the sub-
tle memory-specific fails. The chapter also describes the major differences between
the DRAM and SRAM testing process. The main conclusions of this chapter are:

• DRAMs are the most widely used memories in the market today with a
considerable market share that currently stands at about 70%.

• DRAM tests are particularly difficult to construct, since they have to fulfill
special requirements with respect to their buildup and abilities.

Chapter 2—DRAM behavior and architecture

This chapter discusses the most important aspects of DRAM behavior and archi-
tecture. The discussion starts with a definition of a top-down modeling approach
typically used in the design and analysis of complex electronic systems. The chap-
ter then describes the external behavior of the DRAM and the way it is defined
using timing diagrams in memory datasheets. For a memory, the external behavior
is characterized by the different types of possible memory operations. The chapter
continues to describe the functional model of the DRAM, where the internal blocks
of the memory are treated. At this level, the internal behavior of the memory is
presented and related to the external behavior. As a result, all externally possi-
ble memory operations can be mapped to five internal DRAM commands that are
more general and more flexible in describing the behavior of the memory. These five
different DRAM commands are: activate (Act), write (Wr), read (Rd), precharge
(Pre) and no operation (Nop). These DRAM commands can be combined together
(under certain conditions) to construct all possible memory operations. The main
conclusions of this chapter are:

• DRAMs use specialized internal DRAM-specific commands, that are more
general than the simple external write and read operations commonly used
to describe DRAM operation.

• A DRAM-specific analysis of the faulty behavior of DRAMs should take into
consideration these DRAM commands, rather than the simpler external mem-
ory operations.

10.1. Conclusions | 223

Chapter 3—DRAM design and implementation

This chapter gives a detailed analysis of the internal structure and implementa-
tion of DRAM chips at both the electrical and the layout levels. The electrical
description focuses on the data path circuits since they are the most important
parts, used to evaluate the faulty behavior of the memory. In total, five circuits are
analyzed: the memory cell, the sense amplifier, the precharge circuits, the access
devices, and the data buffer. The layout description, on the other hand, focuses
on the implementation of the cell and the memory cell array, since it occupies the
largest amount of memory surface area. The main conclusions of the chapter are:

• The core functionality of DRAMs is inherently analog in nature, despite the
fact that they exhibit a digital external behavior.

• The behavior of a DRAM is heavily dependent on time as a result of the
leaky nature of the DRAM storage cell.

Chapter 4—Modeling memory faulty behavior

This chapter presents the fundamentals of modeling faulty behavior of memory de-
vices, both in general and specifically for DRAM devices. The DRAM-specific fault
modeling approach presented here reduces the complexity of the general analysis of
memory faults and restricts the fault space to those faults relevant to the memory
behavior. The chapter starts with a formal definition of the concepts of fault prim-
itives (FPs) and functional fault models (FFMs), the cornerstones of current-day
memory fault analysis. This is followed by a discussion of the exponential complex-
ity needed to analyze the full space of dynamic memory faults, as each increment
in the number of operations to be analyzed results in a large relative increase in the
number of faults a memory should be inspected for. Then, the space of DRAM-
specific faults is identified, using five individual fault attributes, which result in
12 different attribute combinations. These 12 attribute combinations modify the
behavior of a given generic FP in such a way that describes all DRAM-specific
faults. In addition, the FP notation is generalized to take DRAM-specific com-
mands into consideration, along with the stress combinations necessary for DRAM
testing. The main conclusions of this chapter are:

• The space of DRAM faults is infinitely large, where a linear increase in the
number of analyzed operations requires an exponential increase in the size of
the analysis space.

• There are two different types of DRAM-specific faults: 1. those related to
improperly set voltages (due to the analog nature of DRAM operation), and
2. those dependent on time (due to leakage current).

224 | Chapter 10. Conclusions and recommendations

Chapter 5—Fault analysis approximation methods

This chapter introduces the simulation-based algorithms used to analyze the faulty
behavior of the memory within a practical amount of time. These algorithms
solve the two main problems in applying Spice simulation to analyze the faulty
behavior of memories: 1. the excessive amount of simulation time needed, and
2. the difficulty to interpret simulation results in terms of faults and tests. This
chapter establishes the exponential time complexity of using Spice simulation to
precisely analyze the faulty behavior of memories. Then, the 1D approximate
simulation method is introduced, which approximates the faulty behavior of the
memory, thereby limiting the needed simulation time. This method is subsequently
generalized to the 2D method, used to approximate the faulty behavior of more
complex defects, such as bit line opens causing a floating cell voltage and a floating
bit line voltage. This chapter also extends the approximate simulation method to
account for DRAM-specific commands. This is done by identifying a minimum
set of DRAM-specific command sequences, that could be used to approximate any
possible sequence of commands. The main conclusions of this chapter are:

• The approximate fault analysis simulation method reduces the complexity of
the analysis time from exponential to linear, with respect to the number of
performed memory operations.

• The approximate simulation method is not only able to generate efficient test
patterns (sequences of memory operations), but is also able to optimize those
tests with respect to different memory stresses.

Chapter 6—Effects of bit line coupling

This chapter discusses the impact of BL coupling on the faulty behavior of DRAM
devices. For some defects, BL coupling has a significant influence on the faulty
behavior, that should be taken into consideration when testing the memory for
possible faults. The analysis identifies two main causes of BL coupling: 1. pre-
sense coupling effects, and 2. post-sense coupling effects. Both of these causes are
theoretically discussed and then validated using a simulation-based fault analysis
approach of a defective memory, where the simulated faulty behavior is shown to
support the theoretical analysis. The chapter also evaluates the effectiveness of
two industrial BL twisting techniques (single twist and triple twist) in eliminating
the effects of BL coupling, and identifies the way they modify the faulty behavior
of the memory. These principles are used in the rest of the thesis to take BL
coupling into consideration when realistic tests are derived for the memory. The
main conclusions of this chapter are:

• When a memory defect reduces the voltage margins the memory needs to
operate within, BL coupling would have a big impact on the faulty behavior of
the memory, and should therefore be taken into consideration when designing
memory tests.

10.1. Conclusions | 225

• When advanced BL twisting techniques are used, analytical evaluation of
second-order BL coupling effects on the behavior becomes overly complex, and
electrical simulation can provide considerable insight into the faulty behavior
of a defective memory.

Chapter 7—Application of the approximation method

This chapter presents the application results of the simulation-based fault analysis
algorithms, meant to evaluate the faulty behavior of a defective memory. The re-
sults indicate the effectiveness of the proposed fault analysis algorithms, and their
ability to describe any DRAM-specific faulty behavior, within a reasonable amount
of simulation time. The chapter introduces Spice model reduction techniques, used
to reduce the size of a memory simulation model, while keeping the high accuracy
of the simulation. These techniques are particularly suited for memory devices,
as a result of a number of memory-specific characteristics, related to their design,
structure and operation. The chapter also discusses a method to classify the dif-
ferent defects that may take place in the memory into opens, shorts and bridges.
The main conclusions of this chapter are:

• The approximate simulation method is effective in the derivation of test pat-
terns to detect the targeted faulty behavior for all the analyzed defects.

• All DRAM-specific faults described in this thesis (Chapter 4) do take place
in practice, with most of them commonly observed for many types of defects.

Chapter 8—Space of DRAM tests

This chapter derives the DRAM-specific tests needed to test for all the DRAM-
specific fault models introduced in this thesis. Using these tests should give memory
test engineers insights into the way fault models should be used to generate memory
tests practically and efficiently. The chapter gives a detailed discussion of the
space of DRAM-specific faults, using five individual fault attributes, which result
in 12 different attribute combinations. These 12 attribute combinations modify
the behavior of a given generic FP in such a way that describes all DRAM-specific
faults. The full space of faults is then reduced to a set of realistic memory faults that
have been observed by simulation in the faulty behavior of a DRAM. Subsequently,
six general DRAM tests are proposed to detect single-cell and two-cell faults. The
main conclusions of the chapter are:

• Generally derived DRAM tests are efficient in detecting some, but not all,
DRAM-specific faults. For soft fault, it is important to use high operational
stress in memory tests to reduce the needed test time. Simulations can be
effectively used to derive the needed stresses for each test.

• The efficiency of DRAM-specific tests can be increased by customizing them
to suit specific memory organizations and designs. Four different customized

226 | Chapter 10. Conclusions and recommendations

tests have been proposed that significantly reduce the complexity of the gen-
eral tests.

Chapter 9—Case study: the strap problem

This chapter presents a case study to apply the simulation-based fault analysis
method in analyzing the faulty behavior of the elevated strap problem. The analysis
results make it possible to both generate test patterns to detect the faulty behavior,
and to optimize those tests with respect to various memory stresses. The chapter
discusses the application of the analysis in detail, starting from the stage of defining
an electrical model used in the simulation, through test derivation, till the stage
of test application. The chapter also introduces the concept of fabrication process
variations, and identifies a method to model them at the electrical level, and to
include them into the fault analysis process. The main conclusions of the chapter
are:

• The approximate simulation method is effective and practically efficient in
both the derivation of suitable test patterns, and the optimization of the test
with respect to the various stresses.

• The analysis identifies timing as a decisive stress for the strap problem, suit-
able to eliminate soft faults. Temperature, on the other hand, is identified as
an indecisive stress, not suitable to eliminate soft faults.

10.2 Contributions

The main contribution of this thesis lies in the introduction of a new industrial test
development approach, referred to as the simulation-based test approach, which
strikes a tradeoff between the two currently established test development alter-
natives: the specifications and the manufacturing-based test approaches [see Sec-
tion 1.3]. Figure 10.1 shows a model of the industrial test flow, where the block
representing the contribution of the thesis is grayed out (the “Simulation-based”
block). The figure indicates that simulation-based test generation uses informa-
tion from the design stage of the design flow, where an electrical Spice model of
the memory is generated to evaluate the expected memory behavior. The Spice
model of the memory represents its internal design and behavior, in addition to
an electrical description of the fabrication process to be used to manufacture the
memory. This provides a fairly accurate representation of the specific behavior of
the memory under analysis.

In order to materialize the vision of simulation-based test development for
DRAMs, a number of theoretical (scientific) as well as practical (industrial) hur-
dles have been tackled and solved in this thesis. It is worth noting here that this
vision has been exclusively and completely carried out within the framework of this

10.2. Contributions | 227

testing
Frontend (wafer) Backend (component)

testing

Packaging

Yield analysis

Design Failure analysis

Test generation

returns
Customer

���
���

���
���

Design flow

Specification

Manufacture

Test adaptationSimulation−based

Tests from
old technology

Test flow

Memories

Figure 10.1. Manufacturing test flow where the contribution of this thesis is grayed out.

project, since there is no previously published work on employing electrical simula-
tion for DRAM test development in the literature. First, the scientific contributions
are listed, followed by the industrial contributions.

Scientific contributions

• The definition of a general space of memory faults in combination with a tax-
onomy that describes any possible faulty behavior exhibited by the memory
[Al-Ars99, Al-Ars00, Al-Ars01a, Al-Ars03a, vdGoor00]. This general space is
treated in Chapter 4.

• The identification of the specific fault classes needed to describe the faulty
behavior of DRAMs, such that the rather complex general space of mem-
ory faults is reduced to a smaller, manageable size [Al-Ars01b, Al-Ars02a,
Al-Ars04a]. These DRAM-specific fault classes are treated in Chapter 4.

• The inclusion of stresses (voltage, timing and temperature) as a theoretically
fundamental part of memory testing, and devising a language to model it
[Al-Ars01c, Al-Ars01d].

• The analysis of interactions between different memory faults in a way that
may limit the ability of memory tests to detect them [Al-Ars04c, Hamdioui03b,
Hamdioui04b].

• The theoretical derivation of a number of memory tests to effectively test
special types of faulty behavior [Hamdioui02, Hamdioui03a, Hamdioui04c,
vdGoor04a, vdGoor04b].

Industrial contributions

• Solving the problem of the long simulation time needed to simulate the faulty
behavior of the memory by introducing the concept of a reduced memory
model [Al-Ars01e]. This issue is treated in Chapter 7.

228 | Chapter 10. Conclusions and recommendations

• Introducing simulation-based fault analysis methods to properly interpret
the faulty behavior in the simulation results and to correctly map them into
memory faults [Al-Ars02b, Al-Ars02c, Al-Ars03d, Al-Ars05]. This issue is
treated in Chapter 5.

• Proposing a simulation-based stress optimization method to use circuit sim-
ulation for the identification of the most optimal stresses for a given defect
[Al-Ars03c, Al-Ars03b].

• Dealing with simulation model inaccuracy and the issue of variations in the
manufacturing process to ensure the high quality fault analysis approach
[Al-Ars02d, Al-Ars02e, Al-Ars03e].

• Evaluating the influence of parasitic capacitances in the simulation model,
and analyzing the effect of bit line coupling on the simulated faulty behavior
for a given defect [Al-Ars04b].

10.3 Recommendations

As discussed in the previous section, the simulation-based fault analysis approach
of memory devices presented in this thesis provides a new industrial alternative
for fault analysis that strikes a tradeoff between specifications and manufacturing-
based test generation. The simulation-based approach provides an alternative that
is both moderately cheap and device-specific, since it gives a fairly accurate repre-
sentation of the specific behavior of the memory under analysis. These advantages
make the proposed approach a suitable candidate to be included into the industrial
flow of a modern memory manufacturing test environment.

Model reduction

Defect injection

Defective model

Signal database

Fault analysisSpice model
Tests
Optimized

Tool framework

Signal generation

Reduced model

Figure 10.2. Framework of tools to implement the simulation-based test generation approach.

In this section, we suggest a framework of electronic design automation (EDA)
tools to implement the simulation-based fault analysis and test generation approach
into an industrial test flow. The framework is shown in Figure 10.2, where a number
of steps and tools are identified that would generate the required tests based on an

10.3. Recommendations | 229

initial Spice simulation model provided by the memory designers. The blocks that
represent tools are shaded in Figure 10.2, and are discussed in detail below. In
order to bring this framework of tools into the market, a startup company has been
established, CatRam Solutions, to supervise the development and implementation
activities associated with the framework [CatRam].

Model reduction

The framework starts with an electrical Spice model that describes the various
circuits and subcircuits of the memory, and makes it possible to simulate their
behavior using an electrical simulator. This model is fed into a “Model reduction”
tool that generates a reduced simulation model, which helps eliminate parts of the
simulation model that are not needed during the fault analysis process. Model
reduction is important to keep the simulation time of the analysis manageable
[Naik93]. Model reduction is not necessary if only a short fault analysis is needed.

Signal generation

Since a reduced simulation model is used in the fault analysis, a new set of input
signals need to be generated for driving the reduced model [Galarraga98]. These
signals are generated from the original spice model using the “Signal generation”
tool of Figure 10.2. The generated signals are collected in a database that internally
represent the different external operations performed on the memory, in combina-
tion with a number of different operational parameters (voltages, temperatures,
etc.), as required by the analysis. Again, if no reduction in the simulation model
is needed, then there is no need for this step either.

Defect injection

In order to perform the fault analysis on the reduced model, the failure mecha-
nism to be analyzed needs to be modeled as well and injected into the simulation
model. The failure mechanism is modeled using some kind of a Spice defect (resis-
tive, capacitive, change in device parameters, etc.) and injected using the “Defect
injection” tool in Figure 10.2. This results in a defective simulation model ready
for use to apply fault analysis activities on the memory [Müller98].

Fault analysis

The fault analysis itself is performed in the “Fault analysis” tool of Figure 10.2
which generates optimized tests using the reduced, defective simulation model, and
using signals from the internal signal database. The algorithms used within this
tool depend on the memory to be analyzed and on the type of the required result.
A number of algorithms have been suggested in the literature to tackle a number
of different problems, such as simulation-based test pattern generation in DRAMs
[Al-Ars02b, Al-Ars03d] and in SRAMs [Hamdioui00].

230 | Chapter 10. Conclusions and recommendations

Summary

This chapter presents the conclusions of the thesis and summarizes the
most important aspects of this Ph.D. work. This is followed by a discussion
of the contributions of this thesis to the field of memory fault analysis and
test generation. The chapter then ends with recommendations to further
continue with the work outlined here. The main issues discussed in this
chapter are the following.

• Summary of the major aspects of each chapter of the thesis. The
summary concentrates on specific contributions of this thesis work,
that are otherwise not found in the literature.

• Listing of a number of new and significant conclusions in the field of
memory fault analysis and test generation, reached within this thesis.

• Enumeration of the major contributions of this thesis to the filed of
memory testing. The contributions are classified into two different
classes: scientific contributions and industrial contributions.

• Identification of the scientific publications generated in the course of
this Ph.D. work. A total number of 26 papers have been published,
3 of which appeared in IEEE transactions journals.

• Proposal of a framework of electronic design automation tools that
incorporates the fault analysis methodologies presented in the the-
sis. The tool framework has four automated steps: model reduction,
signal generation, defect injection and fault analysis.

• Suggestion of the approach to incorporate this tool framework into
the industrial test flow of memory manufacturers to support and
accelerate the fault analysis and test generation activities.

A
List of symbols

Due to the large number of symbols used in this thesis to describe a multitude of
new mathematical concepts, we provide the following list of symbols to help the
reader identify the meaning of a given symbol in a fast and easy way. The list does
not include some symbols that are defined and used specifically in only one section.

β Transconductance parameter [A/V2], the change in the drain
current of a MOS transistor for a change of one (volt)2 in the
gate voltage.

BW Bandwidth [Byte/s], the maximum number of bytes a memory
can transfer across its data bus per second.

Coststage The cost [$] of testing for a given stage of system integration.

#C Number of different cells accessed in a memory sensitizing
operation sequence.

Cc Cell capacitance [F], the amount of capacitance a memory cell
has.

Cb Bit line capacitance [F], the total amount of capacitance ex-
hibited by a single bit line in a memory.

231

232 | Appendix A. List of symbols

GND Ground voltage [V], the low voltage level of the power supply
(usually 0 V).

h Hammer [operations], the number of times an operation must
be performed to sensitize a partial fault.

ID Drain current [A], the amount of current that flows through
a MOS transistor.

L Lifetime [s], the time it takes the memory to correct a tran-
sient memory fault.

n The total number of cells a memory has.

#O Total number of memory operations performed in a sensitizing
operation sequence.

Rbr Bridge resistance [Ω], the ohmic resistance of an electrical
bridge defect.

Rcr Critical resistance [Ω], the ohmic defect resistance value when
the circuit starts to fail.

Rdef Defect resistance [Ω], the ohmic resistance of any electrical
resistive defect.

Rop Open resistance [Ω], the ohmic resistance of an electrical open
defect.

Rsh Short resistance [Ω], the ohmic resistance of an electrical short
defect.

T Delay time [s], the amount of time needed after a sensitizing
operation sequence for a soft fault to be sensitized.

Temperature [o], the operational temperature of a circuit.

tcyc or tCK Clock cycle time [s], the time a clock signal takes to complete
one cycle.

tDH Data hold time [s], the amount of time input data should
remain on the data bus after a write operation starts.

Appendix A. List of symbols | 233

tDS Data setup time [s], the amount of time input data should be
present on the data bus before a write operation starts.

tIH Input hold time [s], the time needed for control signals to
remain on the command bus after a command starts.

tIS Input setup time [s], the time needed for control signals to be
present on the command bus before a command starts.

tOX Oxide thickness [m], the thickness of the isolation layer be-
tween the gate and the body of a MOS transistor.

tRAS Row address strobe time [s], the time allowed for a row of
memory cells to stay connected to the data path in a memory.

tRC Row cycle time [s], the total amount of time a memory oper-
ation may last.

tRCD Row-column delay time [s], the amount of time needed to
separate accessing a full row of memory cells, and addressing
a given cell in that accessed row.

tRP Row precharge time [s], the amount of time needed for the
precharge memory command.

tWR Write recovery time [s], the time needed for a write operation
to function properly.

VBL Bit line voltage [V], the voltage waveform measured on a bit
line in the memory.

Vboost Boost voltage [V], the amplified word line voltage used to
ensure a good connection between the cell and the data path.

Vc Cell voltage [V], the voltage stored within a memory cell.

Vcs Cell sense threshold voltage [V], the cell voltage level that
distinguishes a stored 0 from a stored 1.

234 | Appendix A. List of symbols

Vdd Supply voltage [V], the high voltage level of the power supply.

VDS Drain-source voltage [V], the voltage difference in a MOS tran-
sistor between the drain and the source terminals.

Vdsat Drain saturation voltage [V], the voltage that separates the
linear region from the saturation region of a MOS transistor.

VGS Gate-source voltage [V], the voltage difference in a MOS tran-
sistor between the gate and the source terminals.

VT Threshold voltage [V] of a transistor.

VWL Word line voltage [V], the voltage waveform measured on a
word line in the memory.

Y Yield [%], the fraction of functional IC chips relative to the
total number of chips produced by a manufacturing process.

B
List of abbreviations

This is a list of acronyms and abbreviations used in the theses, along with their
definitions for easy reference to the reader.

1D one dimensional

1T one transistor

2D two dimensional

A activation part

a aggressor

AC alternating current

Act activate

AD addressing direction

B byte, also bulk

b bit

BC complement bit line

BG data background pattern

BL bit line

BT true bit line

BW bandwidth

c cell

CAS column address strobe

CD critical dimension

CF coupling fault

CFdr deceptive read destructive coupling fault

235

236 | Appendix B. List of abbreviations

CFds disturb coupling fault

CFir incorrect read coupling fault

CFrd read destructive coupling fault

CFst state coupling fault

CFtr transition coupling fault

CFwd write destructive coupling fault

CL CAS latency

CM counting method

CMOS complementary metal oxide semiconductor

CPU central processing unit

CS column select

D drain

DC complement data line, also direct current

DDR double data rate

Del delay time

DG diagonal

DIMM dual in-line memory module

DLL delay-locked loop

DRAM dynamic random access memory

DRDF deceptive read destructive fault

DT true data line

EDA electronic design automation

eDRAM embedded dynamic random access memory

EEPROM electrically erasable programmable read-only memory

EPROM erasable programmable read-only memory

F false

FFM functional fault model

FP fault primitive

G gate

GND ground voltage

I initialization part

IC integrated circuit

I/O input/output

IP intellectual property

IRF incorrect read fault

ITRS International Technology Roadmap for Semiconductors

L life time

MOS metal oxide semiconductor

NMOS negative-channel metal oxide semiconductor

Appendix B. List of abbreviations | 237

Nop no operation

PC personal computer

PCB printed circuit board

PMOS positive-channel metal oxide semiconductor

ppm parts per million

Pre precharge

r read

PROM programmable read-only memory

RAM random access memory

RAS row address strobe

Rd read

RDC complement read data line

RDF read destructive fault

RDT true read data line

ROM read-only memory

R/W read/write

S source, also sensitizing operation sequence

SA sense amplifier

SC stress combination

SDRAM synchronous dynamic random access memory

SEM scanning electron microscope

SF state fault

SIMM single in-line memory module

ST stress

T true, also temperature, also delay time

TBGA tape ball grid array

TF transition fault

TSMC Taiwan Semiconductor Manufacturing Company

TSOP thin small outline package

UV ultraviolet

v victim

w write

WDC complement write data line

WDF write destructive fault

WDT true write data line

WL word line

Wr write

Y yield

Bibliography

[Abramovici90] A. Abramovici, M. Breuer and A. Friedman, Digital System Testing
and Testable Design, IEEE press, New York, 1990.

[Adams96] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive Destructive
Read Memory Fault Model and Recommended Testing,” in Proc. IEEE North
Atlantic Test Workshop, 1996.

[Adler95] E. Adler et al., “The Evolution of IBM CMOS DRAM Technology,” in
IBM J. of Research and Development, vol. 39, no. 1–2, 1995, pp. 167–188.

[Al-Ars99] Z. Al-Ars, Analysis of the Space of Functional Fault Models and Its
Application to Embedded DRAMs, Masters Thesis no. 1-68340-28(1999)-07,
CARDIT, Delft Univ. of Technology, Delft, The Netherlands, 1999.

[Al-Ars00] Z. Al-Ars and A.J. van de Goor, “Impact of Memory Cell Array Bridges
on the Faulty Behavior in Embedded DRAMs,” in Proc. Asian Test Symp.,
2000, pp. 282–289.

[Al-Ars01a] Z. Al-Ars and A.J. van de Goor, “Static and Dynamic Behavior of
Memory Cell Array Opens and Shorts in Embedded DRAMs,” in Proc. Design,
Automation and Test in Europe, 2001, pp. 496–503.

[Al-Ars01b] Z. Al-Ars and A.J. van de Goor, “Transient Faults in DRAMs: Con-
cept, Analysis and Impact on Tests,” in Proc. IEEE Int’l Workshop on Mem-
ory Technology, Design and Testing, 2001, pp. 59–64.

[Al-Ars01c] Z. Al-Ars et al., “Simulation based Analysis of Temperature Effect on
the Faulty Behavior of Embedded DRAMs,” in Proc. IEEE Int’l Test Confer-
ence, 2001, pp. 783–792.

[Al-Ars01d] Z. Al-Ars, A.J. van de Goor, J. Braun and D. Richter, “A Mem-
ory Specific Notation for Fault Modeling,” in Proc. Asian Test Symp., 2001,
pp. 43–48.

[Al-Ars01e] Z. Al-Ars, A.J. van de Goor, J. Braun, B. Gauch, D. Richter and
W. Spirkl, “Development of a DRAM Simulation Model for Fault Analysis
Purposes,” in Proc. Workshop on Testmethods and Reliability of Circuits and
Systems, 2001.

239

240 | BIBLIOGRAPHY

[Al-Ars02a] Z. Al-Ars and A.J. van de Goor, “Modeling Techniques and Testing
for Partial Faults in Memory Devices,” in Proc. Design, Automation and Test
in Europe, 2002, pp. 89–93.

[Al-Ars02b] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite Dynamic
Behavior for DRAM Cell Defects,” in Proc. IEEE VLSI Test Symp., 2002,
pp. 401–406.

[Al-Ars02c] Z. Al-Ars and A.J. van de Goor, “DRAM Specific Approximation of
the Faulty Behavior of Cell Defects,” in Proc. Asian Test Symp., 2002, pp. 98–
103.

[Al-Ars02d] Z. Al-Ars, Analysis of the Elevated Strap Resistance Problem, Inter-
nal Technical Report, Infineon Confidential, Infineon Technologies, Munich,
Germany, 2002.

[Al-Ars02e] Z. Al-Ars and U. Weber, Measurement of Temperature Impact on Strap
Resistance, Internal Technical Report, Infineon Confidential, Infineon Tech-
nologies, Munich, Germany, 2002.

[Al-Ars03a] Z. Al-Ars and A.J. van de Goor, “Static and Dynamic Behavior of
Memory Cell Array Spot Defects in Embedded DRAMs,” in IEEE Trans. on
Comp., vol. 52, no. 3, 2003, pp. 293-309.

[Al-Ars03b] Z. Al-Ars and A.J. van de Goor, “Test Generation and Optimization
of DRAM Cell Defects Using Electrical Simulation,” in IEEE Trans. on CAD,
vol. 22, no. 10, 2003, pp. 1371–1384.

[Al-Ars03c] Z. Al-Ars, A.J. van de Goor, J. Braun and D. Richter, “Optimizing
Stresses for Testing DRAM Cell Defects Using Electrical Simulation,” in Proc.
Design, Automation and Test in Europe, 2003, pp. 484–489.

[Al-Ars03d] Z. Al-Ars and A.J. van de Goor, “Systematic Memory Test Genera-
tion for DRAM Defects Causing Two Floating Nodes,” in Proc. IEEE Int’l
Workshop on Memory Technology, Design and Testing, 2003, pp. 27–32.

[Al-Ars03e] Z. Al-Ars and A.J. van de Goor, “Analyzing the Impact of Process
Variations on DRAM Testing Using Border Resistance Traces,” in Proc. Asian
Test Symp., 2003, pp. 24–27.

[Al-Ars04a] Z. Al-Ars and A.J. van de Goor, “Soft Faults and the Importance of
Stresses in Memory Testing,” in Proc. Design, Automation and Test in Europe,
2004, pp. 1084–1089.

[Al-Ars04b] Z. Al-Ars, S. Hamdioui and A.J. van de Goor, “Effects of Bit Line
Coupling on the Faulty Behavior of DRAMs,” in Proc. IEEE VLSI Test Symp.,
2004, pp. 117–122.

BIBLIOGRAPHY | 241

[Al-Ars04c] Z. Al-Ars, Martin Herzog, Ivo Schanstra and A.J. van de Goor, “Influ-
ence of Bit Line Twisting on the Faulty Behavior of DRAMs,” in IEEE Int’l
Workshop on Memory Technology, Design and Testing, 2004, pp. 32–37.

[Al-Ars05] Z. Al-Ars, S. Hamdioui, G. Mueller and A.J. van de Goor, “Frame-
work for Fault Analysis and Test Generation in DRAMs,” in Proc. Design,
Automation and Test in Europe, 2005, pp. 1020–1021.

[Antonin91] G. Antonin, H.-D. Oberle and J. Kolzer, “Electrical Characterization
of Megabit DRAMs, 1. External Testing,” in IEEE Design & Test of Comput-
ers, vol. 8 , no. 3, 1991, pp. 36–43.

[Aoki88] M. Aoki et al., “A 60-ns 16-Mbit CMOS DRAM with a Transposed Data-
Line Structure,” in IEEE J. Solid-State Circuits, vol. 23, no. 5, 1988, pp. 1113–
1119.

[Baker97] K. Baker and J. van Beers, “Shmoo Plotting: The Black Art of IC
Testing,” in IEEE Design and Test of Computers, vol. 14, no. 3, 1997, pp. 90–
97.

[Cataldo98] A. Cataldo, “Players Shift Seats in Quest for 1-Gbit DRAM,” in EE
Times, December 07, 1998, http://www.eetimes.com.

[CatRam] CatRam Solutions, The Computer-Aided Testing Company, Delft, The
Netherlands, http://www.catram.com.

[Cheng96] Y. Cheng, M. Chan, K. Hui, M.-C. Jeng, Z. Liu, J. Huang, K. Chen, J.
Chen, R. Tu, P.K. Ko and C. Hu, BSIM3v3 Manual, Department of EECS,
Univ. of California, Berkeley, CA, 1996.

[Dekker90] R. Dekker et al., “A Realistic Fault Model and Test Algorithms for
Static Random Access Memories,” in IEEE Trans. on CAD, vol. C-9, no. 6,
1990, pp. 567–572.

[Falter00] T. Falter and D. Richter, “Overview of Status and Challenges of System
Testing on Chip with Embedded DRAMs,” in Solid-State Electronics, no. 44,
2000, pp. 761–766.

[Foty97] D. Foty, MOSFET Modeling with Spice, Principles and Practice, Prentice
Hall Inc., New Jersey, 1997.

[Geib92] H. Geib, W. Weber, E. Wohlrab and L. Risch, “Experimental Investiga-
tion of the Minimum Signal for Reliable Operation of DRAM Sense Ampli-
fiers,” in IEEE J. of Solid-State Circuits, vol. 27, no. 7, 1992, pp. 1028–1035.

[Goto97] H. Goto, S. Nakamura and K. Iwasaki, “Experimental Fault Analysis of
1Mb SRAM Chips,” in Proc. IEEE VLSI Test Symp., 1997, pp. 31–36.

242 | BIBLIOGRAPHY

[Hamada93] M. Hamada, M. Kumanoya, M. Ishii, T. Kawagoe and M. Niiro, “A
High-Speed Boundary Search SHMOO PLOT for ULSI Memories,” in Rec.
IEEE Workshop on Memory Testing, 1993, pp. 4–9.

[Hamdioui00] S. Hamdioui and A.J. van de Goor, “Experimental Analysis of Spot
Defects in SRAMs: Realistic Fault Models and Tests,” in Proc. Asian Test
Symp., 2000, pp. 131–138.

[Hamdioui02] S. Hamdioui, Z. Al-Ars and A.J. van de Goor, “Testing Static and
Dynamic Faults in Random Access Memories,” in Proc. IEEE VLSI Test
Symp., 2002, pp. 395–400.

[Hamdioui03a] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, and M. Rodgers, “Dy-
namic Faults in Random Access Memories: Concept, Fault Models and Tests,”
in J. Elecronic Testing: Thoery and Applications, vol. 19, no. 2, 2003, pp. 195–
205.

[Hamdioui03b] S. Hamdioui, Z. Al-Ars, A.J. van de Goor and M. Rodgers, “March
SL: A Test for All Static Linked Memory Faults,” in Proc. Asian Test Symp.,
2003, pp. 372–377.

[Hamdioui04a] S. Hamdioui, Testing Static Random Access Memories: Defects,
Fault Models and Test Patterns, Kluwer Academic Publishers, Boston, MA,
2004.

[Hamdioui04b] S. Hamdioui, Z. Al-Ars, A.J. van de Goor and M. Rodgers, “Linked
Faults in Random Access Memories: Concept, Fault Models, Test Algorithms
and Industrial Results,” in IEEE trans. on Computer-Aided Design, vol. 23,
no. 5, 2004, pp. 737–757.

[Hamdioui04c] S. Hamdioui, J.D. Reyes, and Z. Al-Ars, “Evaluation of Intra-Word
Faults in Word-Oriented RAMs,” in Proc. Asian Test Symp., 2004, pp. 283–
288.

[Henderson91] C.L. Henderson, J.M. Soden and C.F. Hawkins, “The Behavior and
Testing Implications of CMOS IC Logic Gate Open Circuits,” in Proc. IEEE
Int’l Test Conf., 1991, pp. 302–310.

[Hidaka89] H. Hidaka et al., “Twisted Bit-Line Architectures for Multi-Megabit
DRAMs,” in IEEE J. Solid-State Circuits, vol. 24, no. 1, 1989, pp. 21–27.

[Galarraga98] D. Galarraga, Development of a Simulation Model for the Analysis
of the Temperature Related Behavior of Embedded DRAMs, Masters Thesis,
University of Central England, Birmingham, UK, 1998.

[IBM02] IBM, IBM043616CXLBC, 16Mb Double Data Rate SRAM, Product
Datasheet, IBM Microelectronics Division, Hopewell Junction, NY, 2002,
http://www.ibm.com.

BIBLIOGRAPHY | 243

[Infineon04] Infineon Technologies, HYB25D512[40/16/80]0B[E/F/C/T], 512Mb
Double Data Rate SDRAM, Product Data Sheet, ver. 1.2, Infineon Technolo-
gies, Munich, Germany, 2004, http://www.infineon.com.

[Itoh01] K. Itoh, VLSI Memory Chip Design, Springer-Verlag, Berlin, Germany,
2001.

[Iyer99] S.S. Iyer and H.L. Kalter, “Embedded DRAM Technology: Opportunities
and Challenges,” in IEEE Spectrum, vol. 36, no. 4, April 1999, pp. 56–64.

[Jha03] N.K. Jha and S. Gupta, Testing of Digital Systems, Cambridge Univ. Press,
Cambridge, United Kingdom, 2003.

[Kang96] S.-M. Kang and Y. Leblebici,CMOS Digital Integrated Circuits: Analysis
and Design, McGraw-Hill, NY, 1996.

[Keshavarzi97] A. Keshavarzi, K. Roy and C.F. Hawkins, “Intrinsic Leakage in
Low Power Deep Submicron CMOS ICs,” in Proc. IEEE Int’l Test Conf.,
1997, pp. 146–155.

[Konishi89] Y. Konishi et al., “Analysis of Coupling Noise between Adjacent Bit
Lines in Megabit DRAMs,” in IEEE J. Solid-State Circuits, vol. 24, no. 1,
1989, pp. 35–42.

[Majhi05] A.K. Majhi et al., “Memory Testing Under Different Stress Conditions:
An Industrial Evaluation,” in Proc. Design, Automation and Test in Europe,
2005, pp. 438–443.

[McConnell98] R. McConnell, U. Moller and D. Richter, “How we test Siemens
Embedded DRAM Cores,” in Proc. IEEE Int’l Test Conf., 1998, pp. 1120–
1125.

[MOSIS] The MOSIS Service, An Integrated Circuit Fabrication Service, Marina
del Rey, CA, http://www.mosis.com.

[Muhmenthaler91] H.-D. Oberle and P. Muhmenthaler, “Test Pattern Development
and Evaluation for DRAMs with Fault Simulator RAMSIM,” in Proc. IEEE
Int’l Test Conf., 1991, pp. 548–555.

[Müller98] B. Müller, B. Straube and W. Vermeiren, Analog Fault Simulator
aFSIM-Titan, User’s Manual, Fraunhofer-Institut für Integrierte Schaltungen,
Dresden, Germany, 1998.

[Nagi96] N. Nagi and J. Abraham, “Hierarchical Fault Modeling for Linear Analog
Circuits,” in Analog Integrated Circuits and Signal Processing, vol. 10, no. 1–2,
June–July 1996, pp. 89–99.

244 | BIBLIOGRAPHY

[Naik93] S. Naik, F. Agricola and W. Maly, “Failure Analysis of High Density
CMOS SRAMs,” in IEEE Design and Test of Computers, vol. 10, no. 2, 1993,
pp. 13–23.

[Nakamae03] K. Nakamae, H. Ikeda and H. Fujioka, “Evaluation of Final Test
Process in 64-Mbit DRAM Manufacturing System Through Simulation Anal-
ysis,” in Advanced Semiconductor Manufacturing Conf. and Workshop, 2003,
pp 202–207.

[Niggemeyer99] D. Niggemeyer and M. Rüffer, “Parametric Built-in Self-Test of
VLSI Systems,” in Proc. Design, Automation and Test in Europe, 1999,
pp. 376–380.

[Offerman97] A. Offerman and A.J. van de Goor, “An Open Notation for Memory
Tests,” in Proc. IEEE Int’l Workshop on Memory Technology, Design and
Testing, 1997, pp. 71–78.

[Prince91] B. Prince, Semiconductor Memories, A Handbook of Design Manufac-
turing and application, 2nd ed., John Wiley & Sons, West Sussex, UK, 1991.

[Prince99] B. Prince, High Performance Memories, new architecture DRAMs and
SRAMs, Revised ed., John Wiley & Sons, West Sussex, UK, 1999.

[Redeker02] M. Redeker, B.F. Cockburn and D.G. Elliott, “An Investigation into
Crosstalk Noise in DRAM Structures,” in Proc. IEEE Int’l Workshop Memory
Technology, Design and Testing, 2002, pp. 123–129.

[Rudolph04] U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege,
A. Khan, S. Pamarthy, F. Schaftlein and T. Lill, “ Extending the Capabili-
ties of DRAM High Aspect Ratio Trench Etching,” in Proc. IEEE Advanced
Semiconductor Manufacturing, 2004, pp. 89–92.

[Sarpeshkar91] R. Sarpeshkar, J.L. Wyatt, N.C. Lu and P.D. Gerber, “Mismatch
Sensitivity of a Simultaneously Latched CMOS Sense Amplifier,” in IEEE J.
of Solid-State Circuits, vol. 26, no. 10, 1991, pp. 1413–1422.

[Schanstra99] I. Schanstra and A.J. van de Goor, “Industrial Evaluation of Stress
Combinations for March Tests applied to SRAMs,” in Proc. IEEE Int’l Test
Conf., 1999, pp. 983–992.

[Schanstra03] I. Schanstra and A.J. van de Goor, “Consequences of RAM Bitline
Twisting for Test Coverage,” in Proc. Design, Automation and Test in Europe,
2003, pp. 1176–1177.

[Simonse98] J.E. Simonse, Circuit Structures, Design Requirements and Fault Sim-
ulation of CMOS SRAMs, Masters Thesis no. 1-68340-44(1998)-09, CARDIT,
Delft Univ. of Technology, Delft, The Netherlands, 1998.

BIBLIOGRAPHY | 245

[vdGoor98] A.J. van de Goor, Testing Semiconductor Memories, Theory and Prac-
tice, ComTex Publishing, Gouda, The Netherlands, 1998, http://ce.et.tudelft.
nl/˜vdgoor.

[vdGoor99] A.J. van de Goor and J. de Neef, “Industrial Evaluation of DRAM
Tests,” in Proc. Design, Automation and Test in Europe, 1999, pp. 623–630.

[vdGoor00] A.J. van de Goor and Z. Al-Ars, “Functional Memory Faults: A Formal
Notation and a Taxonomy,” in Proc. IEEE VLSI Test Symp., 2000, pp. 281–
289.

[vdGoor04a] A.J. van de Goor, S. Hamdioui and Z. Al-Ars, “Tests for Address
Decoder Delay Faults in RAMs due to Inter-Gate Opens,” in Proc. IEEE
European Test Symp., 2004, pp. 146–151.

[vdGoor04b] A.J. van de Goor, S. Hamdioui and Z. Al-Ars, “The effectiveness of
scan test and its new variants,” in Proc. IEEE Int’l Workshop on Memory
Technology, Design and Testing, 2004, pp. 26–31.

[Vollrath97] J.E. Vollrath, “Cell Signal Measurement for High-Density DRAMs,”
in Proc. IEEE Int’l Test Conf., 1997, pp. 209–215.

[Vollrath00] J. Vollrath, “Tutorial: Synchronous Dynamic Memory Test Construc-
tion, A Field Approach,” in Proc. IEEE Int’l Workshop Memory Technology,
Design and Testing, 2000, pp. 59–64.

[Vollrath02] J. Vollrath, “Signal Margin Analysis for DRAM Sense Amplifiers,” in
Proc. IEEE Int’l Workshop Electronic Design, Test and Applications, 2002,
pp. 123–127.

[Waser03] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH,
Berlin, Germany, 2003.

[Weste94] N.H.E. Weste and K. Eshraghian Principles of CMOS VLSI Design, A
Systems Perspective, Addison-Wesley Publishing, 2003.

Index

A

AC 136
access devices 36, 58
Act 39
activate command 39
activation partial fault 86, 162
AD 91
address buffer 36
address bus 28

see I/O bus
address bus multiplexing 29

see bus multiplexing
address decoder 35
address order 77
address path 50, 134

see signal path
address scrambling 64

see scrambling
addressing direction 91
aggressor (a) 70

see victim
aggressor complementary fault 140
aging process 13
algorithmic stress 91, 93
alternating current 136
analysis space 99
approximate simulation 101
array column 37

see bit line pair
array folding 36
array row 37

see word line
aspect ratio 61

B

B transistor terminal 44
back-to-back mode 86, 172

backend testing 10
see memory testing

background pattern 134, 146
balance transistor 57
bandwidth 29, 34
basic sequence 199
basic sequences 112
BC 5, 38
behavioral model 26, 27

see modeling level
Berkeley BSIM3v3 model 45
BG 134, 146
bistable element 5, 55, 59
bit 28
bit line 5, 38
bit line folding 38
bit line pair 38
BL 5, 38
BL coupling 117
BL pair 38

see cell array column
body (of transistor) 44
body-effect coefficient 45
boost voltage 51
bridge defect 138, 143
BSIM3v3 model 45
BT 5, 38
bulk (of transistor) 44
buried strap 61
burn-in testing 13

see memory testing
bus multiplexing

address bus 29
data bus 28
time 29

BW 29

247

248 | INDEX

byte 28

C

cache memory 6
capacitive coupling 117
CAS 29
case study 193
CatRam 229
CD 62
cell address scrambling 64

see scrambling
cell array 35
cell array column 37

see bit line pair
cell array row 37

see word line
cell charge up 51
cell discharge 53
cell neighborhood 63
cell sense threshold voltage 84
central processing unit 6
CFdr 76
CFds 75
CFir 76
CFrd 76
CFst 74
CFtr 75
CFwd 76
channel (of transistor) 44
channel length (L) 44
channel length modulation 48
channel width (W) 44
charge up behavior 51
clock cycle time 30
clock period 30
CM 91
CMOS 49
CMOS sense amplifier 54
column 37

see bit line pair
column address 29

see row address
column address strobe 29
column decoder 58

column gating 58
column select line 36, 58
command 39
command bus 29

see I/O bus
compatibility 162
complement bit line 5, 38
complement read data line 50
complement write data line 50
complementary fault 139
completing operation 81
component 2
component level testing 10

see memory testing
conclusions 221
conduction region 46
continuous stress 90
control logic 35
control path 50, 134

see signal path
counting method 91
coupling 117
coupling FP 70
CPU 6
critical dimension 62
critical resistance (Rcr) 104, 111, 202
cross-coupled SA 54
cross-shaped DRAM region 60
crosstalk noise 117
CS 58
customer returns 9, 17
cutoff region 46

D

D transistor terminal 44
data background 13
data buffer 36, 59
data bus 28

see I/O bus
data bus multiplexing 28

see bus multiplexing
data line 58
data path 50, 134

see signal path

INDEX | 249

data pattern 13
data rate 29
data retention fault 85
data retention test 13
data scrambling 39

see scrambling
data transfer rate 28
data word 28
datasheet 28
DC 136
DDR DRAM 3
deceptive read destructive CF 76
deceptive read destructive fault 74
decisive stress 90, 210
deep trench capacitor 61
defect 138
delay-locked loop 32
descrambling 64
design-for-testability 85, 180
detection condition 78, 106, 206

see march test
device 2
DFT 85, 180
DIMM 3
direct current 136
dirty fault 81, 162

see DRAM-specific fault
discharge behavior 53
disturb coupling fault 75
disturb test 13
DL 58
DLL 32
drain (of transistor) 44
drain current (ID) 44
drain saturation voltage 46
DRAM 2

DDR 3
synchronous 28

DRAM cell 50
DRAM command 39, 92, 199

activate 39, 200
no operation 39
precharge 39

read 39
write 39, 200

DRAM module 3
DRAM operation

fast page mode 41
read 30
read modify write 41
refresh 33, 41
write 31

DRAM-specific fault 78, 161
dirty fault 81
hard fault 83
partial fault 80
soft fault 85
time dependent fault 82
transient fault 85
voltage dependent fault 79

DRAM-specific test 166
DRDF 74
dynamic fault 15
dynamic FP 70
dynamic RAM 3

see static RAM

E

EDA 228
eDRAM 62
EEPROM 7
effects of coupling 120
electrical model 27, 49

see modeling level
electrical schematics 49
electrically erasable PROM 7

see programmable ROM
electron surface mobility 47
electronic design automation 228
electronic switch 43, 48, 51
embedded DRAM 62
end user 8
environmental stress 91, 94
EPROM 6
equalization transistor 57
erasable PROM 6

see programmable ROM

250 | INDEX

F

fab 12
failure analysis 11
fast page mode 33, 41
fault 68
fault activation part 79
fault compatibility 162
fault complement 139
fault detection 14
fault diagnosis 14
fault life time (L) 86
fault localization 14
fault modeling 67
fault primitive 69
fault taxonomy 161
faulty behavior 68
feature size 133
Fermi potential 45
FFM 67, 69
first level memory 6
first silicon 11
flash memory 7
floatingnode 99
floor plan 60
fncpsa corner 198
fnfp corner 197
fnsp corner 197
folded bit line 38
folding 36, 38
form factor 37
FP 69
FP hierarchy 70
frontend testing 10

see memory testing
functional fault model 67, 69
functional model 26, 34

see modeling level

G

G transistor terminal 44
gate (of transistor) 44
gate oxide breakdown 51
gate oxide permittivity 47
general fault 88, 163

generic fault 69, 161
geometrical model 27, 60

see modeling level
guard band 13

H

hammer 80
hammer test 13
hard fault 83, 162

see DRAM-specific fault
hard fault region 84
hole surface mobility 47

I

I/O bus
address 28
command 29
data 28

IBM 7, 61
IC 2
ideal sense amplifier 54
incorrect read coupling fault 76
incorrect read fault 73
indecisive stress 210
Infineon 1, 2, 33, 60, 61, 133
initialization part 79

see sensitization part
initialization partial fault 80, 86, 162
input/output (I/O) 2
integrated circuit 2
intellectual property 16
interchanged fault 140
IP 16
IRF 73

L

latch 59
layout model 27, 60

see modeling level
leakage current 5, 15
level of abstraction 26
Level 1 Spice model 45
Level 8 Spice model 45
life time of fault (L) 86

INDEX | 251

life-support system 11
linear region 47
logical cell address 64
logical data 39
logical model 27

see modeling level

M

macro 138
March 1CH 170
March 1CHswp 184
March 1CS 180
March 1CSswp 187
March 1CT 173
March 1CTswp 185
March 2CH 170
March 2CS 180
March 2CT 175
March 2CTr 189
march element 77, 209
march test 77, 207
masked ROM 6
MATS+ 77
memory bank 60
memory cell array 35
memory chip manufacturer 8
memory page 33
memory testing 8

backend 10
burn-in 13
component level 10
frontend 10
package 13
postfuse 12
prefuse 12
SRAM 14
wafer level 10

metal oxide semiconductor 43
microprocessor 6
mid-point voltage 55
mission-critical application 11
mixed-level modeling 26
modeling level

behavioral 26, 27

electrical 27, 49
functional 26
geometrical 27, 60
layout 27, 60
logical 27
structural 27

MOS transistor 43
MOSIS 45
multiplexing 28

N

N-channel MOS transistor 44
neighborhood 63
nested march element 173, 175
NMOS transistor 4, 44
no operation command 39
non-volatile memory 6
Nop 39
number of cells (#C) 69
number of operations (#O) 69

O

one dimensional analysis 101, 122
one transistor cell 51
open bit line 38
open defect 138, 141
operation region (of transistor) 45, 46
operation sequence 13, 68
oxide thickness (tOX) 44

P

P-channel MOS transistor 44
package testing 13

see memory testing
page 33
part 2
partial fault 80, 162

see DRAM-specific fault
parts per million 9
pass transistor 48, 51
PC 2
PCB 3
personal computer 2
physical cell address 64

252 | INDEX

physical data 39
pinch-off point 47
plane of r 103
plane of w0 102
plane of w1 103
PMOS transistor 4, 44
post-sense coupling 119
postfuse testing 12

see memory testing
ppm 9
Pre 39
pre-sense coupling 119
precharge circuits 57
precharge command 39
precharging and isolation 136
precise simulation 97
prefuse testing 12

see memory testing
printed circuit board 3
probe 12
process corner 197
process spread 197
process variations 51, 56, 196
programmable ROM 6

electrically erasable 7
erasable 6

PROM 6

R

RAM 3
RAS 29
Rd 39
RDF 73
read command 39
read destructive coupling fault 76
read destructive fault 73
read modify write 41
read operation 30

see DRAM operation
read/write gating 58
realistic fault space 165
recommendations 228
reduced memory model 20, 227
reduced simulation model 135

reflected WL organization
see physical cell address

refresh counter 36
refresh operation 33, 41

see leakage current
region

conduction 46
cutoff 46
linear 47
saturation 47

result plane 102
result space 108
ROM 3

masked 6
programmable 6

row 37
see word line

row address 29
see column address

row address strobe 29
rule of tens 9

S

S transistor terminal 44
SA 54
saturation region 47
SC 89
scan test 12
scanning electron microscope 63, 194
schematics 49
scrambling

address 64
data 39

SDRAM 28
SEM 63, 194
sense amplifier 36, 54
sensitization part 79

see initialization part
sensitization partial fault 80, 86, 162
sensitizing operation sequence 68
sequence of operations 68
SF 72
Shmoo plot 114
Shockley equations 45

INDEX | 253

short defect 138, 142
Siemens 56
signal development time 55
signal margin 55
signal path 50, 134

address path 50
control path 50
data path 50

SIMM 3
simulation macro 138
simulation model reduction 134
single-cell FP 70
single-cell static FP 71
single-sided complementary fault 140
sncpfa corner 198
snfp corner 197
snsp corner 197
soft fault 85, 162

see DRAM-specific fault
soft fault region 85
sorting 32
source (of transistor) 44
speed sorting 32
Spice model

Level 1 45
Level 8 45

SRAM 4
SRAM testing 14

see memory testing
ST 89
stacked capacitor 62
state coupling fault 74
state fault 72
static fault 14
static FP 70
static RAM 4

see dynamic RAM
strap connection 61, 194
stress 13, 89

algorithmic 93
decisive 90
environmental 94
indecisive 90

temperature 92, 215
timing 92, 211
voltage 92

stress combination 89
stress optimization 113, 210
structural model 27

see modeling level
substrate 44
surface mobility 47
switch 43, 48, 51
synchronous DRAM 28

see DRAM
system integrator 8

T

tape out 19
taxonomy 161
taxonomy of FPs 70
TBGA 3
temperature stress 92, 215
test adaptation loop 19
test components 13
test cost 85
test development

manufacturing-based 18
simulation-based 19
specifications-based 18

test flow 10
test insertion 12
test requirements 14
test space 161
test stress 13, 180

see stress
testing 8

see memory testing
TF 73
three dimensional variations 198
three-coupling FP 70
threshold voltage 44, 45
time dependent fault 82, 162

see DRAM-specific fault
time multiplexing 29

see bus multiplexing
timing diagram 28, 30

254 | INDEX

timing generator 35
timing parameter 32
timing stress 92, 211
transconductance parameter 47
transient fault 85, 162

see DRAM-specific fault
transient fault region 86
transistor 43
transistor operation region 46
transition coupling fault 75
transition fault 73
transmission gate 49
trench capacitor 61, 194
tri-state 137
true bit line 5, 38
true read data line 50
true write data line 50
TSMC 45
TSOP 2
TU Delft 1
two dimensional analysis 107, 153
two dimensional variations 196
two-cell FP 70
two-cell static FP 74
two-coupling FP 70
two-operation dynamic FP 70

U

ultraviolet (UV) light 6

V

victim (v) 70
see aggressor

victim complementary fault 140
volatile memory 6
voltage dependent fault 79, 161

see DRAM-specific fault
voltage stress 92

W

wafer 11
wafer level testing 10

see memory testing
wafer-level organization 63
WDF 73
weak voltage 85
WL 4, 36, 38
word 28
word line 4, 36, 38
Wr 39
write back window 31, 53
write command 39
write destructive coupling fault 76
write destructive fault 73
write operation 31

see DRAM operation

Y

yield 11

List of publications

Journal papers

1. Z. Al-Ars and A.J. van de Goor, “Static and Dynamic Behavior of Memory
Cell Array Spot Defects in Embedded DRAMs,” in IEEE Trans. on Com-
puters (TC’03), vol. 52, no. 3, March 2003, pp. 293–309.

2. S. Hamdioui, Z. Al-Ars and A.J. van de Goor, “Dynamic Faults in Random-
Access-Memories: Concept, Fault Models and Tests,” in Journal of Electronic
Testing: Theory and Applications (JETTA’03), April 2003, pp. 195–205.

3. Z. Al-Ars and A.J. van de Goor, “Test Generation and Optimization for
DRAM Cell Defects Using Electrical Simulation,” in IEEE Trans. on Computer-
Aided Design (TCAD’03), vol. 22, no. 10, October 2003, pp. 1371–1384.

4. S. Hamdioui, Z. Al-Ars, A.J. van de Goor and M. Rodgers, “Linked Faults
in Random-Access-Memories: Concept, Fault Models, Test Algorithms and
Industrial Results,” in IEEE Trans. on Computer-Aided Design (TCAD’04),
vol. 23, no. 5, 2004, pp. 737–757.

Conference papers

1. A.J. van de Goor and Z. Al-Ars, “Functional Memory Faults: A Formal
Notation and a Taxonomy,” in Proc. IEEE VLSI Test Symp. (18th IEEE
VTS’00), Montreal, Canada, April 30–May 4, 2000, pp. 281–289.

2. Z. Al-Ars and A.J. van de Goor, “Impact of Memory Cell Array Bridges on
the Faulty Behavior in Embedded DRAMs,” in Proc. Asian Test Symp. (9th
ATS’00), Taipei, Taiwan, December 4–6, 2000, pp. 282–289.

3. Z. Al-Ars and A.J. van de Goor, “Static and Dynamic Behavior of Mem-
ory Cell Array Opens and Shorts in Embedded DRAMs,” in Proc. Design,
Automation and Test in Europe (4th DATE’01), Munich, Germany, March
13–16, 2001, pp. 496–503.

4. Z. Al-Ars and A.J. van de Goor, “Transient Faults in DRAMs: Concept,
Analysis and Impact on Tests,” in Proc. IEEE International Workshop on
Memory Technology, Design and Testing (9th IEEE MTDT’01), San Jose,
California, August 6–7, 2001, pp. 59–64.

255

256 | List of publications

5. Z. Al-Ars, A.J. van de Goor, J. Braun and D. Richter, “Simulation based
Analysis of Temperature Effect on the Faulty Behavior of Embedded DRAMs,”
in Proc. IEEE International Test Conference (32nd IEEE ITC’01), Balti-
more, Maryland, October 28–November 2, 2001, pp. 783–792.

6. Z. Al-Ars, A.J. van de Goor, J. Braun and D. Richter, “A Memory Specific
Notation for Fault Modeling,” in Proc. Asian Test Symp. (10th ATS’01),
Kyoto, Japan, November 19–21, 2001, pp. 43–48.

7. Z. Al-Ars and A.J. van de Goor, “Modeling Techniques and Testing for Partial
Faults in Memory Devices,” in Proc. Design, Automation and Test in Europe
(5th DATE’02), Paris, France, March 4–8, 2002, pp. 89–93.

8. Z. Al-Ars and A.J. van de Goor, “Approximating Infinite Dynamic Behav-
ior for DRAM Cell Defects,” in Proc. IEEE VLSI Test Symp. (20th IEEE
VTS’02), Monterey, California, April 28–May 2, 2002, pp. 401–406.

9. S. Hamdioui, Z. Al-Ars and A.J. van de Goor, “Testing Static and Dynamic
Faults in Random Access Memories,” in Proc. IEEE VLSI Test Symp. (20th
IEEE VTS’02), Monterey, California, April 28–May 2, 2002, pp. 395–400.

10. Z. Al-Ars and A.J. van de Goor, “DRAM Specific Approximation of the
Faulty Behavior of Cell Defects,” in Proc. Asian Test Symp. (11th ATS’02),
Guam, USA, November 18–20, 2002, pp. 98–103.

11. Z. Al-Ars, A.J. van de Goor, J. Braun and D. Richter, “Optimizing Stresses
for Testing DRAM Cell Defects Using Electrical Simulation,” in Proc. Design,
Automation and Test in Europe (6th DATE’03), Munich, Germany, March
3–7, 2003, pp. 484–489.

12. Z. Al-Ars, S. Hamdioui and A.J. van de Goor, “A Fault Primitive Based
Analysis of Linked Faults,” in Proc. IEEE International Workshop on Mem-
ory Technology, Design and Testing (11th IEEE MTDT’03), San Jose, Cali-
fornia, July 28–29, 2003, pp. 33–39.

13. Z. Al-Ars, A.J. van de Goor, “Systematic Memory Test Generation for DRAM
Defects Causing Two Floating Nodes,” in Proc. IEEE International Work-
shop on Memory Technology, Design and Testing (11th IEEE MTDT’03),
San Jose, California, July 28–29, 2003, pp. 27–32.

14. Z. Al-Ars and A.J. van de Goor, “Analyzing the Impact of Process Variations
on DRAM Testing Using Border Resistance Traces,” in Proc. Asian Test
Symp. (12th ATS’03), Xi’an, China, November 17–19, 2003, pp. 24–27.

15. S. Hamdioui, Z. Al-Ars, A.J. van de Goor and M. Rodgers, “March SL: A
Test for All Static Linked Memory Faults,” in Proc. Asian Test Symp. (12th
ATS’03), Xi’an, China, November 17–19, 2003, pp. 372–377.

16. Z. Al-Ars and A.J. van de Goor, “Soft Faults and the Importance of Stresses
in Memory Testing,” in Proc. Design, Automation and Test in Europe (7th
DATE’04), Paris, France, February 16–20, 2004, pp. 1084–1089.

List of publications | 257

17. Z. Al-Ars, S. Hamdioui and A.J. van de Goor, “Effects of Bit Line Coupling
on the Faulty Behavior of DRAMs,” in Proc. IEEE VLSI Test Symp. (22nd
IEEE VTS’04), Napa, California, April 25–29, 2004, pp. 117–122.

18. A.J. van de Goor, S. Hamdioui and Z. Al-Ars, “Tests for Address Decoder
Delay Faults in RAMs due to Inter-Gate Opens,” to appear in Proc. European
Test Symp. (9th IEEE ETS’04), Corsica, France, May 23–26, 2004.

19. Z. Al-Ars, Martin Herzog, Ivo Schanstra and A.J. van de Goor, “Influence
of Bit Line Twisting on the Faulty Behavior of DRAMs,” in Proc. IEEE
International Workshop on Memory Technology, Design and Testing (11th
IEEE MTDT’04), San Jose, California, August 9–10, 2004, pp. 32–37.

20. A.J. van de Goor, S. Hamdioui and Z. Al-Ars, “The Effectiveness of Scan Test
and Its New Variants,” in Proc. IEEE International Workshop on Memory
Technology, Design and Testing (11th IEEE MTDT ’04), San Jose, California,
August 9–10, 2004, pp. 26–31.

21. S. Hamdioui, J. D. Reyes, and Z. Al-ars, “Evaluation of Intra-Word Faults in
Word-Oriented RAMs,” in Proc. Asian Test Symp. (13th ATS’04), Kenting,
Taiwan, November 15–17, 2004, pp. 283–288.

22. Z. Al-Ars, S. Hamdioui, G. Mueller and A.J. van de Goor, “Framework for
Fault Analysis and Test Generation in DRAMs,” in Proc. Design, Automation
and Test in Europe (8th DATE’05), Munich, Germany, March 7–11, 2005, pp.
1020-1021.

23. S. Hamdioui, R. Wadsworth, A.J. van de Goor and Z. Al-Ars, “Impact of
Stresses on the Fault Coverage of Memory Tests,” to appear in Proc. IEEE
International Workshop on Memory Technology, Design and Testing (13th
IEEE MTDT’05), Taipei, Taiwan.

DRAM Fault Analysis and Test
Generation

Curriculum vitae of the author

Zaid Al-Ars was born on October 28, 1974 in Bagh-
dad, Iraq. In 1993, he received his high school diploma from
the Kuwait Private School in Farwaniya, Kuwait, where he
ranked 13th on the country-wide list of graduates scoring
an average grade percentage of 98.3%. Upon completing his
high school studies, he enrolled in the BSEE program at the
Technical University of Budapest, Budapest, Hungary, where
he received the Student Certificate of Merit twice and was
granted a study scholarship for his academic achievements.
In 1995, he joined the MSEE program at the Delft Univer-

sity of Technology, Delft, The Netherlands, where he majored in computer engi-
neering and did his masters project in the field of memory testing in association
with Siemens Semiconductors, Munich, Germany. He received the MSEE degree
with honors (cum laude) in 2000, and finished his graduation project with a full
mark of 10. In the same year, he received a grant from Infineon Technologies,
Munich, Germany, to start his doctoral studies in electrical engineering at the Lab-
oratory of Computer Engineering in Delft. His Ph.D. work was mainly carried out
at Infineon, and has been concerned with the systematic fault analysis, and test
generation and optimization for commodity as well as embedded DRAM products.

In 2005, he received the VENI grant from the Netherlands Organization for
Scientific Research (NWO) to continue his research in memory testing. The grant
is given to the candidates who achieve the highest scores in a country-wide compe-
tition among eligible scientists in all fields of scientific research.

Mr. Al-Ars published numerous papers in the field of electrical defect simulation,
fault modeling and test generation in memory devices, and is part of the review
committees of a number of IEEE journals and conferences. He is a member of the
IEEE.

DRAM Fault Analysis and Test
Generation

Statements to accompany the thesis

1. As memory gradually dominates electronic circuits, and as the costs of memory
testing increase, memory testing is set to become the most valuable activity in
the production process of these circuits.

2. Simulation of memory faulty behavior is essential to effectively construct memory
tests. Test designers need to see the memory fail, just like circuit designers need
to see it function.

3. The value of a scientific theory can be measured by the number of phenom-
ena it explains. This Ph.D. work not only explains years of observation, but it
sometimes proves it wrong!

4. Acceptance without proof is the fundamental characteristic of religion. Rejection
without proof is the fundamental characteristic of science.

5. People are as happy as they make up their mind to be.

6. The best things in life are free.

7. Good enough is never good enough, but often good enough is the best you can
do.

8. Success is a journey not a destination.

9. There are no bad teams, only bad leaders. There are no bad companies, only
bad managers. There are no bad countries, only bad governments.

10. Without justice, the dream of peace will always remain just that: a dream.

11. You cannot achieve the impossible without attempting the absurd.

12. Never underestimate the power of a committed individual to change the world.
Indeed, this is the only thing that ever has.

13. Statements on this list might sound contradictory. No wonder. They describe
us, and the wonderful world we live in.

Fout Analyseren en Test Genereren
in DRAMs

Stellingen behorende bij het proefschrift (in Dutch)

1. Gegeven dat elektronische geheugens geleidelijk elektronische circuits overheersen,
en gezien de continue stijging van de kosten van geheugen testen, wordt geheugen
testen de waardevolste activiteit van het productieproces ven deze circuits.

2. De simulatie van het gedrag van defecte geheugens is essentieel om efficiënt testen
te construeren. Testontwerpers moeten het geheugen zien falen, net zoals cir-
cuitontwerpers het moeten zien functioneren.

3. De waarde van een wetenschappelijke theorie kan worden gemeten door het aantal
fenomenen die het verklaart. Dit proefschrift verklaart niet alleen jaren van
observatie, maar soms heeft het de observatie verkeerd bewezen!

4. Geloven, zonder bewijs, is het fundamentele kenmerk van een godsdienst. De
verwerping, zonder bewijs, is het fundamentele kenmerk van de wetenschap.

5. Mensen zijn zo gelukkig als zij beslissen te zijn.

6. De beste dingen in het leven zijn gratis.

7. Goed genoeg is nooit goed genoeg, maar vaak zal het toch genoeg moeten zijn.

8. Succes is de weg zelf en niet de bestemming.

9. Er zijn geen slechte teams, maar wel slechte leiders. Er zijn geen slechte bedrij-
ven, maar wel slechte managers. Er zijn geen slechte landen, maar wel slechte
overheden.

10. Zonder rechtvaardigheid, zal de droom van vrede altijd zo blijven: een droom.

11. U kunt het onmogelijke alleen bereiken door het absurde te proberen.

12. Onderschat nooit het vermogen van een toegewijd individu om de wereld te
veranderen. Dit is namelijk het enige dat ooit heeft.

13. De stellingen in deze lijst kunnen tegenstrijdig klinken. Geen wonder. Zij be-
schrijven ons, en de prachtige wereld waarin wij wonen.

	DRAM Fault Analysis and Test Generation
	Abstract
	Samenvatting (Abstract in Dutch)
	Preface
	Contents
	1 Introduction
	1.1 Semiconductor memories
	1.1.1 Definition and physical form
	1.1.2 Types of semiconductor memories

	1.2 Memory testing
	1.2.1 Definition of memory testing
	1.2.2 Manufacturing test flow
	1.2.3 Frontend and backend testing

	1.3 Contribution of the project
	1.3.1 Framework of the contribution
	1.3.2 Details of the contribution

	1.4 Outline of the thesis
	Summary

	2 DRAM behavior and architecture
	2.1 Modeling of DRAMs
	2.2 Behavioral DRAM model
	2.2.1 DRAM block diagram
	2.2.2 DRAM operations and timing diagrams

	2.3 Functional DRAM model
	2.3.1 Functional block diagram
	2.3.2 Cell array organization
	2.3.3 Internal DRAM behavior

	Summary

	3 DRAM design and implementation
	3.1 Basics of MOS transistors
	3.1.1 Physical transistor structure
	3.1.2 MOS transistor behavior
	3.1.3 Transistor as a switch

	3.2 Electrical DRAM model
	3.2.1 Electrical memory circuits
	3.2.2 Memory cell
	3.2.3 Sense ampli�er
	3.2.4 Other DRAM circuits

	3.3 DRAM layout model
	3.3.1 DRAM trench capacitor
	3.3.2 DRAM stacked capacitor
	3.3.3 Cell array layout

	Summary

	4 Modeling faulty memory behavior
	4.1 De�nition of fault models
	4.1.1 Representing operation sequences
	4.1.2 Fault primitives and fault models

	4.2 Generic space of faults
	4.2.1 Classification of fault primitives
	4.2.2 Static fault models
	4.2.3 Complexity of fault primitives
	4.2.4 Fault primitive detection and march tests

	4.3 DRAM-specifc faults
	4.3.1 Voltage dependent faults
	4.3.2 Time dependent faults
	4.3.3 Space of DRAM faults

	4.4 Industrial test practices
	4.4.1 Stress combinations
	4.4.2 Device-specific fault primitives
	4.4.3 Examples of new notation

	Summary

	5 Fault analysis approximation methods
	5.1 Conventional analysis
	5.1.1 Complexity of simulation
	5.1.2 Example of conventional analysis
	5.1.3 Fault analysis time

	5.2 Approximate simulation
	5.2.1 Example of 1D analysis
	5.2.2 Fault analysis time

	5.3 Two dimensional analysis
	5.4 DRAM-specific simulation
	5.4.1 Approximation with DRAM commands
	5.4.2 Stress optimization methodology

	Summary

	6 Effects of bit line coupling
	6.1 Concept of BL coupling
	6.1.1 Modeling BL coupling
	6.1.2 Effects of coupling

	6.2 Simulation of BL coupling
	6.2.1 Fault analysis method
	6.2.2 Simulation results

	6.3 Impact of BL twisting
	6.3.1 Theoretical evaluation of twisting
	6.3.2 Simulation and analysis results

	Summary

	7 Application of the approximation method
	7.1 Memory simulation model
	7.1.1 Simulated DRAM circuits
	7.1.2 Model reduction techniques

	7.2 Classifcation of defects
	7.2.1 Relations between injected defects
	7.2.2 Definition of defects

	7.3 Application of 1D analysis
	7.4 Application of 2D analysis
	Summary

	8 Space of DRAM tests
	8.1 Taxonomy of DRAM faults
	8.1.1 Theoretical fault space
	8.1.2 Realistic fault space

	8.2 DRAM-specific tests
	8.2.1 Detecting hard faults
	8.2.2 Detecting transient faults
	8.2.3 Detecting soft faults

	8.3 Customizing march tests
	8.3.1 Memory design considerations
	8.3.2 Memory layout implications

	Summary

	9 Case study: the strap problem
	9.1 Definition of strap problem
	9.1.1 The defect
	9.1.2 Simulation model
	9.1.3 Process variations

	9.2 Analysis methodology
	9.2.1 Simulated sequences
	9.2.2 Background 00
	9.2.3 Backgrounds 10, 11 and 01

	9.3 Results and tests
	9.3.1 Summary of results
	9.3.2 Test generation

	9.4 Optimizing test stresses
	9.4.1 Optimizing tcyc
	9.4.2 Optimizing temperature

	Summary

	10 Conclusions and recommendations
	10.1 Conclusions
	10.2 Contributions
	10.3 Recommendations
	Summary

	Appendix A List of symbols
	Appendix B List of abbreviations
	Bibliography
	Index
	List of publications
	Curriculum vitae of the author
	Statements to accompany the thesis
	Stellingen behorende bij het proefschrift (in Dutch)

