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Abstract

Textural variations in sediment are considered to be onéeptimary controls on the
geochemical composition. This relation has been widelyaitqal for the climatological
interpretation of unconsolidated Quartenary sedimergddespite the common objec-
tives in respectively unconsolidated and consolidatedrssatological studies, for the
latter the use of novel techniques to acquire geochemidal dach as non-destructive
XRF on cores, has not been applied yet. Because there is ameveasing need for de-
tailed (textural) sedimentological data, this study inigged the possibilities of in-situ
XRF for semi-automatic textural characterization.

An improvement to the current work flow of XRF core scanningadatquisition was
suggested by a pre-calibration filtering step, in order togase the signal to noise ratio.
Apart from that, a sample selection routine was developeidhwlgiven the underlying
calibration strategy, was expected to yield improved catibn results. Embedding the
two algorithms into the calibration work flow proved that $emple selection algorithm
as well as the pre-calibration filtering step result in inya calibration output. They are
also found to be effective for real data; when applied to tatadets of unconsolidated
cores, similar results were obtained.

The second part of this study included the design of a sedangbasin infill model
"LINMIX”, based on the mixing of different sediment souroggh a grain size dependent
chemical composition. By doing so, the observed geochersigaél is decomposed into
a portion that is the result of textural variations and aiparthat reflects differences in
provenance. When applying LINMIX to a record of Quaternagiment (offshore Sene-
gal) as a proof-of-concept, the model was able to recorntstrageochemical record satis-
fyingly by linear mixing of 3 endmembers with 3 unique GraineSDistributions (GSD’s)
and 2 unique functions characterising the compositionaihgk in the grain size spectrum
(Transfer function or 'TF’). This result implies that theashical variation induced by the
relative mixing of two endmembers was only the result of gsaze variation and not of
source material variation. The two endmembers that werngoted a common TF, have
in a previous study been interpreted as both reflecting maafeom the same sediment
source. This implies that the LINMIX model has potential$emi-automatic provenance
interpretation of sediment cores. Additionally the endrbemcompositions correspond
fairly well with the present-day composition of the Senagadr and African eolian dust.

Finally it was investigated how geochemical data can supgEmi-automatic grain
size prediction of consolidated sediment, for which holds there is no sediment source
variation. This was done using a dataset of Carboniferousnmtwhich is highly vari-
able in terms of lithofacies. Around 11 meter of core has bgmwchemically logged
with an XRF core scanner and successfully calibrated usingadibration samples (20
unique sample depths). The quality of the core scanningwlasafound to be high; the




main rock-forming elements were calibrated with a signahadise ratio larger than 4.
Subsequently the textural information content of the geatbal data was investigated
in two different setups. Initially the data was used as a tjtaive tool to fill in the gaps
between the grain size derived from plug data using MultiatarRegression (MVR).
Apart from that it was used as input for an unsupervised Bayedassification scheme
in terms of grain size classes. Whereas the former yieldesidua& variance on the input
data smaller than 1.§-units in 66 % of the cases, the latter identified two coreisest
that, given RGB and geochemical data, should be classifiéetelitly. In both cases, an
additional validation step should give more insight in teefprmance of the scanner as a
grain size predictor. Recommendations w.r.t the scann&rdeq1) embedding the sug-
gested algorithms in the data acquisition work flow and (8)aliing a higher resolution
camera to extract textural proxies from images.
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Chapter 1

Introduction

1.1 Introduction

In Quaternary geological studies, geochemical data is Iwidgplied for paleo-
environmental analysis (Sinha et al., 2006). In these sfijtlhe objective is to reconstruct
the geological and climatological setting by analysis ef$tored product; sediment. The
relative concentration of Fe and K for instance has beenegppbk a measure for the hu-
midity under which sediment has been formed (Mulitza et24108). Similarly element
ratios have been applied as a grain size proxy (Dinelli et28l07) and for the direct
discrimination between facies (Svendsen et al., 2007). @nkee primary catalysts for
the wide-spread application of geochemical data is theldpreent of relatively fast and
inexpensive geochemical logging techniques.

Analogous to the studies on Quaternary sediment, the irmpogtof geochemical data
is also recognized in hydrocarbon exploration studies. xjplagation projects different
types of data are acquired that somehow reflect a proxy ofgbelrgmistry. The Gamma
Ray logging technique for instance, measures the amountBifiléind U in the formation
by sensing the natural radio-activity of the formation. HEuguisition of Gamma Ray
logs is applied to obtain textural properties of the sulzstef Additionallydensitymea-
surements of rock can also be considered a geochemical.pieyertheless the direct
geochemical analysis of sedimentary rock is not widespirettte hydrocarbon industry.

For as far as the data acquisition is concerned, there dezatite in techniques be-
tween the two fields of expertise. However it also arisesdtiaough different techniques
are being used and the material being analyzed is diffeterdopsolidated vs. consol-
idated sediment), the two fields of expertise share commg@ecties (i.e. grain size
prediction).




1.2 Problem Statement

Although geology includes many different fields of expeartighich focus on different
processes, different scales and consequently differetdrrak the focus of this study is
onsedimentaryock. Additionally we will only focus on sediment of non-@ugjc origin,
which is also referred to asliciclastic sedimentSediment is the product of rock being
exposed to wind, water, temperature differences and vegetal his process is referred
to asweatheringand is commonly subdivided intthemicalandphysicalweathering.

The process of chemical weathering has an impact on the catiguoof the residue
because it results in the removal of elements into solutibime breakdown of feldspar
into illite and silica for instance:

2KAISi30g+3H,0 —  Al(SiOs)(OHy) +4Si0, + 2K(OH)
feldspar- water — kaolinite+ silica+ solutes

results in the removal of potassium into solution. This nseidwat the feldspar is turned
into a new set of minerals which in turn reflect different nmadegical characteristics.
Although the mineralogical change of the feldspar into katd is trivial, it also results
into the removal of potassium and silica into the solutibeyéfore leading to ehangen
thechemical compositionf the solid residue.

On the other hand, this chemical reaction does not only teflelsange in bulk compo-
sition of the solid residue. Additionally the dominant graize of the bulk will decrease
when turning feldspar into clay minerals such as kaolinie.a result the chemical and
textural changes are correlated, which illustrates themi@l of geochemical data as a
textural proxy.

Physical weathering on the other hand includes volumetranges of the rock by the
introduction of material for instance. Commonly this inve$wvater however also vege-
tation or salt may intrude the rock causing to fracture. Addally volumetric changes
of the rock itself, causing fracturing, is considered pbgbweathering (Allen, 1997).

Rates of both chemical and physical weathering are contrb§epresence of water,
biological activity and temperature. More general, it isetlmined by the tectonic setting.
This implies that weathering rates depend on the envirohinewhich the sediment is
formed, transported and deposited.

Sediment characteristics reflect the environment undertwihizas formed.

An intuitive way of looking at this is by thinking of the ealdhsurface as being sedi-
mentary routing systenas described in the work of Allen (1997). A sedimentary irayt
system reflects the closed system within which the sedinseggnerated, transported and
deposited. This concept is also referred to as the condegmuece-to-sink model (figure
1.1), that comprises different segments, each reflectifigreint conditions in terms of
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Figure 1.1: Schematic representation of the source-té-gwodel of sediment generation
and transport (modified from Somme et al. (2009)).

sediment generation and transport. Given that the rate atheeng is not (spatially and
temporally) constant within this routing system, there gradient in terms of sediment
generation. Additionally sediment transportation partrs(i.e. discharge) are not (spa-
tially and temporally) constant, leading tdractionationof sediment. Fractionation is
the result ofselective transportwhich means that only size fractions of the weathering
product are transported. For example, if the rainfall in @@ireentary transport system
is generally low, the expected sediment load of the riverlvgllow and the sediment that
will be transported under these energetically low condgiwill primarily consist of fine
material. On the other hand if discharge is high, more caaerial is transported to the
basin. This means that:

Environmental conditions are reflected by both the graie sig well as the
chemical composition of the sediment.

Given the statement above, the chemical composition of ansedary basin con-
tains valuable information with respect to the tectonidisgt However transport and
sediment generation rates are not the only factors comigdlhe composition of the sedi-
ment. There is a whole set of processes involved that caninelgeneration of sediment
which has been discussed in the work of Weltje and von Eymdf2604). Figure 1.3
shows a graphical representation of their findings. As e in this figure, the source
area omparent lithologyalso controls the composition of the sediment. A commonrgare
material for sedimentary rock is igneous rock, which is fedioy cooling and solidifica-
tion of magma or lava. In figure 1.2, a general classificatdreme of igneous rock is
shown to illustrate the variable silica-content for the Vehrange of different igneous rock
species. This means that if the parent material within odersentary routing system is
not constant, the sedimentary record will show interfesiggals of sediment originating
from different parent material. The direct consequencéas one-to-one mapping of
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Figure 1.2: Volcanic/magmatic rock classification scheme.
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Figure 1.3: Schematic representation of the process ohsenli generation, presented in
the work from Weltje and von Eynatten (2004).
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chemical composition to any of the components shown in figu8ds only valid under
the assumption that the effect of varying source rock coitipasis negligible. As a
consequence:

The interpretation of a sedimentary record should incogtera (spatial or
temporal) variable source area.

This final statement brings us to the objectives.

1.3 Objectives

The objectives of this study are threefold. From the statgsngiven in the previous
section we derive that although the geochemical signalrisgtig determined by the grain
size, a direct conversion is more complicated. Therefaeegdmeral research question of
this study is:

Can geochemical data be used to obtain textural propertiesfailiciclastic
sediment?

However first we will focus on the acquisition of geochemidata. For the acquisition
of geochemical records a novel technique has proven its@tiaternary geological stud-
ies as a fast and relatively inexpensive method to obtaih hégolution geochemistry.
However there is still room for improvement with respectte tata acquisition and pro-
cessing. The first research question is therefore:

How can the current work flow of geochemical data acquisitiorbe opti-
mized to reduce costs and to increase accuracy and precisign

The secondary objective in this study is to build a model¢hagely resembles the process
of basin infill in terms ofboth geochemical and textural properties. The primary reason
of building this model is that in order to derive textural pesties from geochemical data,
first a constructivéorward modelmust be created. This forward model should incorpo-
rate the possibility of multiple sediment sources compgdilifferent parent lithologies.
Additionally it should be feasible in the sense thatfitsvard modelingresults are sup-
ported by real data. More formally:

Can we build a forward model of basin infill in a formal geochemical and
textural context that successfully reconstructs real obseations?

Geochemistry-derived grain size prediction on conscdéidatediment has some severe
complications. On the other hand there is a strong commenteest in this data. Al-
though any direct grain size prediction is hampered by thfaof parent lithology we




want to find out how a direct prediction method using seveastd dources performs in the
absence of parent lithology variation. More explicitlyistieads to the following research
guestion:

Is it feasible to predict textural properties based on geocémistry, given
multiple data sources and a known, straightforward provenance setting?

We want to find an answer to this question in a quantitativesserRecent develop-
ments have given the opportunity to acquire high resolugeachemical records in a
non-destructive way. This method called X-Ray Fluoresc&pectroscopy (XRF) core
scanning will be used throughout this thesis.

1.4 Methods

Most research projects start where previous work has sthppleich is also the case in
this research project. Therefore the first step in findingvens to the research ques-
tions defined above is to investigate what is written aboist tibpic in literature. This
includes literature about the acquisition, processingiatatpretation of (geo-)chemical
data. After this literature study, we try to find answers @ ithsearch questions.

In order to answer the first question, we apply two differgaraaches. The objective
includes the design and implementation of new steps in thewcuwork flow in order to
improve the quality of the geochemical record. We will ialiy test possible strategies
and methods on synthetic data as a proof-of-concept. Whertteodwogy is identified
as a successful improvement of the work flow, it is tested @abdataset. If the method-
ology is also found to be successful when applied to reaghdiais adopted as a valuable
processing step.

The second research question applies to the building of a&hiodbasin infill. This
model should have a physical foundation in the sense thammprieal methods are ap-
plied. Nevertheless the introduction of assumptions amgldication is inevitable, given
the complex nature of the processes. Subsequently the maltible tested on a real
dataset. For this experiment we apply a dataset of uncalaged sediment that has been
studied in great detail by geologists. Because of this, ie&sonable to say that the
‘true’ history of the sediment is known. Furthermore an estee dataset is available,
comprising both textural and chemical data, which makesdbre an ideal test case for
the model. By applying this model to real data, we want to fintvelether the model
contributes to the geological interpretation. In otheragoes the model yield results
that are in the line with the geological interpretation. Sitvould imply that it provides a
semi-automatic interpretation.

The third and final research question stated that we wantésiigate automatic grain
size predictions and its quantitative performance. Preshowe argued that direct esti-
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mation of grain size is not feasible because of differeneg@srent lithology. However we
want to investigate the performance of a direct method giierabsence of source rock
variations. To investigate this, a core that originatesnfitbe Carboniferous is used for
which this holds. The available data includes a comprekengain size and geochemical
record. The geochemical record is obtained using XRF comengng. For the grain size
prediction, empirical and well-known classification metbavill be used.

1.5 Thesis Structure

First a short introduction is presented about current nustho characterize sediment and
sedimentary rock. Furthermore we will present a matheralft@mework for the analysis
of compositional data which, since geochemical data reflaminposition as such, is used
throughout the thesis. In chapter 3 some improvements aceisied to the current work
flow of XRF core scanning data calibration (research quedijoin chapter 4 we will use
XRF geochemical data in order to characterize sediment mmg@f a basin infill model
based on mixing (research question 2). Chapter 5 is aboutasslplities of the XRF
core scanning method for characterisation of consolideteds. Therefore this chapter
includes both the acquisition and processing of geochéuhita as well as the application
of this data for grain size prediction (research questiorF8)ally chapter 6 will present
the conclusions and recommendations.







Chapter 2

Sediment characterisation

In this chapter, we will discuss and illustrate the contexhes study. First we will give
a very general introduction on sediment generation and dhect industry standard of
subsurface characterisation. We will also sketch in venegal terms why this research
is relevant for hydrocarbon exploration and the methodploiggeochemical logging of
sedimentary cores.

2.1 The relevance of grain size information

A detailed understanding of sedimentary basins has ecanand commercial impor-
tance. This because the majority of the water and hydrocareservoirs is situated in
ancient sedimentary basins, deep in the subsurface. Thex wabil is situated in the
pore structure of the sedimentary rock; a connected structuopenh spaces between the
sedimengrains Since the pore fluid (either water, oil, gas) is effectiiegpped into this
pore structure, the success of extracting the pore fluid trensedimentary rock depends
to a large extent on the properties of the sediment w.r.t. . fléve refer to these flow
properties by th@ermeability the ability of a material to transmit fluids.
The permeability is a quantitative measure for which hahdd:t

kO d? (2.1)

given a material composed of perfectly spherical 'grai@aton and Fraser, 1935). Here
the intrinsic permeability is denoted tky whered denotes the mean pore diameter. It
Is not hard to imagine that the grain size and pore diameteccksely related. The
proportionality constant in this equation is determinedbyer material properties such
as path tortuosity (average path length of the flowing medgliyporosity (fraction of air
relative to the fraction of rock) and sorting (spread in griameters).

Although this relation holds for a situation of a packed bee. (spherical objects
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Figure 2.1: The sorting of the grains have a strong effectwngorosity. Figure (a) shows
moderately sorted grains whereas figure (b) shows poorly dagtains (modified from
Brassington (1990).

and no cementation of/between these objects), it illustrétte importance of the grain
diameter on the permeability. In a real reservoir thoughséhgrains are not perfectly
spherical and possibly cemented. Furthermore the poretsteuis possibly cluttered
with material leading to a severe decrease of permeabhilidlir{ston and Beeson, 1945).

Another important formation parameter that is determingdhe grain size is the
porosity. Porosity is the fraction of open spaces in the bulk is refitto as thgorosity
and therefore ranges between 0 and 1, or alternatively 0 @add. If the grains are
poorly sorted this implies a wide range of grain diameters in the sedimarture. As
a result, the small grains tend to fill up the pores, whichddacda strong decrease in the
porosity and permeability (see figure 2.1).

A widely used unit system for grain size is the Krumbehscale (Krumbein, 1941),
which is a logarithmic scale of the grain diameter in the metystem. The grain size in
@-units is obtained as follows:

D=Dg2 ¢ (2.2)

whereD is the grain diameter in mm arid is a reference-diameter, which is usually 1
mm. Table 2.1 shows th@-units with their equivalent grain diameters as well asrthei
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Q Particle Size Name
>8 <4um Clay
8to4 4-62um Silt

4t03 62-125um  Very Fine Sand
3to2 125-25Qum Fine Sand
2tol 0.25-0.5mm  Medium Sand

1t00 0.5-1 mm Coarse sand
Oto-1 1-2 mm Very coarse sand
-1to -6 2-64mm Gravel

Table 2.1: Relation betweepscale and grain diameters as well as the associated class-
name

class-names.

2.2 Subsurface Characterisation

Reliable subsurface characterisation is important in the éiegeotechnical project plan-

ning and hydrocarbon exploration (searching for hydroocashoil and gas. The first step
in characterising the subsurface consists usually of amplgon-destructive geophysi-
cal methods. This includes electromagnetic techniqueshiishallow subsurface and
seismic techniques for the shallow and deep subsurface.etowsually this data is

complemented with data acquired in a well because of thedariorizontal and vertical

resolution of seismic. Furthermore seismic processingypealies on ground-truth data
input. It also allows us to actually 'feel’ the rocks in thébsurface by analyzing the rock
fragments present in the drilling mud.

In hydrocarbon exploration, it is common practice to perfarire line logging in
order to characterize the drilled rock in terms of some platgparameters such as density,
acoustic velocity, etc. Wire line logging is performed bwkying a sensor in a bore hole
and record the data, referenced with the along-hole detareTare many different types
of detectors available that can be used on a wire line, butsthedard’ logs include
the density log, slowness log, resistivity log, and the gaaray (GR) log. The latter is
primarily designed to characterize the formation in terrinexture.

A gamma-ray logging tool is a detector that records the aatadioactivity of the for-
mation. In sedimentary formations this log normally refeitte shale (very fine-grained
rock) content of the formation. This is because the radieacheavy) elements tend
to concentrate in clays and shales (red. fine-grained sedmerock). Sandy forma-
tions on the other hand have a very low radioactivity, unlegBoactive contaminants
such as volcanic ash or granite wash are present, or whemiimation water contains
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dissolved potassium salts (Serra, 1984). Gamma-rays asé dfuhigh energy electro-
magnetic waves which are emitted spontaneously by someaetilie elements. Nearly
all of the gamma radiation encountered in the earth is ethlitethe radioactive potas-
sium isotope of atomic weight 40 and the radioactive elesefthe uranium and thorium
series. Each of these elements emit gamma rays, the numth@nargies of which are
distinctive of each element. Because in principle discration between K, Th and U
is possible based on the energy spectrum of the gamma-r®pedral Natural Gamma
ray (SNG) tool was designed. This tool records the spectruimeancoming gamma-ray
after which the presence of K, U and Th is being determined.

Although wire line logging is still applied in most of the hyatarbon and geotechnical
projects, sometimes there is a need for a sample of the famiatits original form (in-
situ). If the material of interest is still at the surface amttonsolidated, this can be
obtained rather easily by using gravity coring. Gravityiegris the process of letting a
tube penetrate the sediment by free fall from the ship to #aeb®ttom and retrieving it
with the sediment still inside (see figure 2.3). For consdbd rock at depth the formation
is being cored in a different way; the conventional drillisibeing replaced by a bit that
extracts a piece of the formation in its original state (sgaré 2.2). These formation
samples are then subsequently transported 'up-hole’ fthduanalysis.

The major advantage of using cores instead of the log infoom#s that the cores can
be tested in a laboratory environment. They can be used torotsliable estimates of
the porosity, permeability and mineralogical content & tbrmation. For consolidated
cores, this data is obtained by analyzing 'core plugs’ wtaod in principal also cores;
cylindrical samples taken from the cored rock. Core plugstysieally 1 to 1 1/2 inch
in diameter and 1 inch to 2 inch long. They are ordinarily, wiait from a vertical
well bore, cut perpendicular or parallel to the axis of thee¢then called horizontal and
vertical plugs, respectively.

Whereas the acquisition of this data is labor intensive amii-aetomated, the op-
posite is true for the sedimentological characterisatibime sedimentological character-
isation of a cored section is also referred to as the 'corerg#®n’ and consists of the
analysis of the sedimentary rock w.r.t. several paramet@rse of these parameters is
the grain size and sorting (a measure of the standard dmviatithe probability density
function of the grains) which is being determined by visaalection of the core surface.
However also the presence of burrows and other sedimemtal@jructures is determined
in the same manner.

2.3 Compositional Data Analysis (CoDa)

The data obtained from either chemical analysis or XRF scgnmiethods yield element
concentrations. These element concentration reflect #gmepce of certain elements in
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Figure 2.2: Core drill bits (manufacturer Ceramco Pty Ltd) ds® obtain cores of a
formation.

Figure 2.3: Small gravity corer (manufacturer KC-Denmark)wih the middle a lead
weight to increase the penetration performance.
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Figure 2.4: The position of compositional vectors on thenplariginating from the unit-
sum constraint. Modified from Weltje (1997).

the measured sample which represent the 'whole’. In chdrmaitalysis these element
proportions are given in parts per million (ppm), perceatagr in%. The analysis of
this so called compositional data is affected by its prapodl nature such that the n-
dimensional compositional space is essentialRint. One way of illustrating this is by
looking at a classical way of representing compositions enagual of threeendmembers
These endmembers represent the 'pure’ components, eftiigical or not physical. With
‘physical’ endmembers we mean that the pure endmemberssarelaserved in the mix-
ture; if we measure samples consisting of a mixture of Fe anthéfe is no guarantee
that we will find a sample that consists of 100% K or 100% Feyeesvely.

Since the relative proportions of all endmembers should sprto either 1 (propor-
tions), 100 (%) or 1.000.000 (ppm), all compositional vestwill be situated on a 2
dimensional plane restricted to the positive quadrant dd £artesian coordinate system
(see figure 2.4). The position where these compositiondabvgare on this plane reflect
the relative proportions of the three endmembers. Thistsnofalled the simplex, of
which a graphical representation, as shown in figure 2.4lisat a ternary diagram.

The compositional nature of the data also manifests itedlie dependency between
the components; if the fraction of one of the components itigeed, the fraction of the
other components will by definition also be affected as altre$the unit-sum constraint.

To put these findings in more mathematical terms, the cortipoal space is being
referred to as the simples® which can be written as:

D
5P =x=[xg,%2,..%p]|X > 0,i =1,2,..D; lei =K (2.3)
i=

wherek represents the sum-constraint; either unity, 100% or 10@@0for ppm units,
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Figure 2.5: So called ’parallel’ compositions (changingagve concentration of two
endmembers) have a highly nonlinear appearance in compoaltspace (left). However
this effect is eliminated in log ratio space (right).

andx; represent the concentration of a certain elemerpressed in one of the composi-
tional unitsk. As illustrated in figure 2.4, any vectarwill lay on a simplex, whereas
determines the relative position of this simplical planetwthe origin.

Whereas the choice af may seem an important convention, transforming the dataset
from one compositional units system to another is a mattetasingthe dataset to the
chosen sum. Thislosureoperation for all components= 1,2, ...D follows from:

[k k2 K-Zp
= |5 ——5—»—p
2i=1Zd =14 Yi=14

Due to the constrained compositional space and the factitbandividual compositions
are intrinsically correlated, any direct analysis of cosiponal data is only possible when
keeping track of these constraints. In order to overcomedhgositional data constraints
in the simplex, Aitchison (1986) built the log ratio frametkavhich has been extended
until today. It consists of a set of mathematical transfdioms and operations suitable for
compositional quantities, which we refer to as @@Da (Compositional Data Analysis)
framework. The most intuitive compositional transforroatis the additive log ratio, or
‘alr’. In case of the alr-transformation, the data is beirsmsformed from the simples®
into an unconstrained real spakB—! as follows:

c(z) (2.4)

yip=In (ﬁ>,i:1,2,....D—1 (2.5)
: X0
The main advantage of using the alr-transform is that, austef the individual pro-
portions, the transformed quantities are no longer handpleyetheir compositional na-
ture and can be analyzed as independent variables. Thergenge of the logratio-
transformed quantities is illustrated in figure 2.5, whée ight figures shows the same
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3-component 'process’ as shown in the left figure, howevev as a function of the 2
logratio transformed quantities

While the alr transformation is determined by the choice & tienominator and
thereby not symmetric, the centered log ratio applies tloenggric mean as denominator
(with D the number of elements):

yi = log (L>,i:1,2,....D—1 (2.6)
geom(x)

The transformation results for an compositional datasenpresing D elements and
thereby spanning a constrained spaceHninto a dataset centered around zero and span-
ning anunconstrained®P space. In contrast to the alr approach, the clr transforraéal d
is again (as it was in compositional space) situated on aeplalowever on this (hyper-
)plane, the solution space stretches infinitely in all dicets.

2.3.1 The compositional distance

Direct analysis of compositional data was considered diffidue to the simplicial con-
straints. However the introduced log ratio transformedskit comprises an Euclidean
vector space. Therefore we are able to apply all vector tipesato the compositional
dataset such as the norm, distance and inner product.

The 'compositional distance’ between two observationsristance can now be cal-
culated in a straightforward manner without having to ipasate any of the simplicial
constraints. In mathematical terms the compositionahdist , or 'Aitchison distance’,
between two observation is given by:

2 Xi Yi ?
da(x,y) = i; [Ingeom(x)_lngeorr(x) (2.7)

which is simply the Euclidean distance morm between the two lograti®-component
data vectorx andy. The implications of logratio transformed data now compgsan
Euclidean vector is that we may use multivariate technidiuasdo not rely on a full rank
covariance matrix. Furthermore optimisation and adjustrtechniques such as the least
squares approach can now be applied by minimisingtimepositionatdistance.

2.3.2 The simplicial operators

Although the log ratio transformed data makes it possibleito the compositional data
into unconstrained data, we sometimes wish to ’stay in thmpleix’. If we for instance
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wish to apply a perturbation in tHeg ratio space however we wish t@pply this shift
to the data in its simplicial form, we need compositionaliegjent operators to do this.
Fortunately a framework exists to apply operations in ldgrspace by making calcula-
tions with compositional data. It was found that a pertudrabf two compositions for a
vector space structure ¥P yield (Aitchison, 1986):

XD®Y = C[X1y1,X2Y2, ...XDYD] (2.8)

wherec|..] represents the closure operation, as described in se@tiesimplicial equiv-
alent of the power transformation by a scaiaof a composition irs® was found to be:

acy=cxy,xg,.. x5 (2.9)

of which the purely compositional equivalent relation ig@kws:

XOY = c[X1,%2,...X50] (2.10)
These relations between the operators in the simplicidbvepace and the log ratio space
facilitate to move freely between both space structureselfvant to use least squares ad-
justment for instance, we wish to minimize the distance ketmobserved and predicted.
We can apply curve fitting analogous to the ’classical’ cuitterg by minimising the
Aitchison distance for the following compositional-lingaodel:

y=do®d1 ®X (2.11)

For the proof of equivalence between the Euclidean opeyatoiogratio’s and the sim-
plicial operators to compositional quantities, | refertie tvork of Aitchison (1986).
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Chapter 3

Improvements to the XRF core
scanning work flow

In the previous chapter we illustrated the commercial amehsific importance of grain
size. The first research question that we defined in chapteisi w

How can the current work flow of geochemical data acquisitiorbe opti-
mized to reduce costs and to increase accuracy and precisign

However since the acquisition of geochemical records ia $hudy is primarily done
using non-destructive XRF, first a brief introduction abolrRFXis presented. Secondly
the latest improvements in work flow are discussed, as fhadiby Weltje and Tjallingii
(2008). Based on their work, a number of improvements areesigd that may lead
to the reduction of cost and increase in signal to noise.rdtinally the discussion and
conclusions are presented in the last section.

3.1 X-radiation Fluorescence Spectrometry

X-ray Fluorescence Spectrometry, or XRF is a widely usedriegfe for the chemical

analysis of specimens. The methodology is based on the ptesran that when materials
are exposed to short-wavelength (highly energetic) X-@ygamma rays, ionisation of
their component atoms may take place. lonisation consisteaejection of one or more
electrons from the atom, and may take place if the atom issegbto radiation with an

energy greater than its ionisation potential.

X-rays and gamma rays can be energetic enough to expebtigid electrons from
the inner orbitals of the atom. The removal of an electrohigway renders the electronic
structure of the atom unstable, and electrons in highetadggfall’ into the lower orbital
to fill the hole left behind. In falling, energy is releasedtire form of a photon, the
energy of which is equal to the energy difference of the twatals involved. Thus, the
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Figure 3.1: Energy spectrum with some distinct energy peaklts their associated ele-
ments (modified from Imrich (2001)).

material emits radiation, of which the energy spectrum jgles a proxy of the presence
of the different components (Jenkins, 1999). The term flemgace in XRF, stands for
the phenomenon in which the absorption of radiation of aifipeanergy results in the

re-emission of radiation of a different energy (generadlyér).

By removal of an inner electron by an energetic photon, artreledrom an outer
shell drops into its place. However there are a limited nunatb&ays in which this can
happen. The main transitions are given names: -arKltransition is traditionally called
Ka, an M— K transition is called 8. Each of these transitions yields a fluorescent
photon with a characteristic energy equal to the differencenergy of the initial and
final orbital. By sorting the energy channels and their cqoesling counts, one obtains
a spectrum of which an example is given in figure 3.1.

Typically these spectra are converted to 'element intessiby associating these
peaks to the elements using multivariate methods. One oh#jer problems of the inter-
pretation of these spectra is the result of the frequencylagwbetween the characteristic
lines of adjacent elements (Swerts and Van Espen, 1993).cAasequence, the method
requires the use of sophisticated spectrum evaluationadstto obtain interference-free
and background-corrected net peak areas. These spectalimtian methods mainly rely
on the least squares principle; analytical functions desq the features in the spectrum
or reference spectra of pure elements are used as a modetteddHe to observed spec-
trum.

A variety of quantisation procedures are in use, rangingifeimple linear calibra-
tion curves, over empirical and semi-empirical influenceftoient to full fundamental
parameter approaches (Dyck, van et al., 1986). An often aeétd/are package that
supports these parametric curve fitting methodology iseddlxil’ (Analysis of X-ray
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F

Figure 3.2: Avaatech XRF core scanner.

spectra by lterative Least squares) which supports thefube teast squares framework
for a variety of analytical functions. A windows-based vensof Axil, i.e. WIN-AXil, is
being used for the processing of the XRF data in this project.

3.2 XRF core scanning

Classical XRF spectrometry analysis is performed on puledrend homogenized sam-
ples that are normally prepared as a flat disc, typically betw20 and 50 mm in diameter.
However anondestructivdogging technique based on XRF methods has been developed
for the analysis of split sediment cores (Jansen et al., )199Bis so calledXRF core
scanner(see figure 3.2) is able to acquire XRF measurements diretctheasurface of
the core. Typically reliable spectra are obtained relgtif@st (1 measurement takes up
to 30 seconds).

In contrast to 'classical’ XRF sample analysis, this corengsea is able to extract an
almost continuous geochemical record; the down core résnlaan go up to 1 millime-
ter. Finally, it provides data about the actual compositibthe sediment at a very specific
and confined area, which in contrast to tools such as na@iRednd color loggers that re-
spectively average over a large area or produce merely § pifdke actual composition
superimposed with noise.

One of the drawbacks though of this in-situ methodology éslitimited penetration of
the X-radiation into the material. The incident X-ray bearteracts with small sample
volumes, so the emitting characteristic X-rays containrimfation from a thin (microns)
layer only (Jansen et al., 1998). The response depths ofeheeats in the sample mate-
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rial depend on the wavelength of the fluorescent radiati@htbe@ chemical composition
of the matrix (Jenkins and De Vries, 1970). For the light edata Al and Si, this depth is
about a fewum, for Ca several tenths @fim, and for Fe a few hundreds gim.

With the core scanner one obtains energy spectra at all sanhptations with the
counts (number of X-ray photons) and the frequency (enextjylese photons. However,
as discussed in section 3.1, these spectra are not an edsilyretable quantity and there-
fore they undergo a processing step which yields an aredigguander a fitted curve. So
in principle the dataset obtained after spectral analysislves an area quantity which is
assumed to correlate with the concentration of a specifin@hé in the bulk. Stays the
question though, how these area quantities can be turne@elative) concentrations.

Although the area quantity has the appearance of a contienfraeveral aspects are
not taken into account. The penetration depth for instamnetithe same for all elements.
Additionally the sensor does not have the same efficiencalfalements, leading to a
bias. How the XRF core scanning data can be calibrated efégtivill be discussed in
the next section.

3.3 Calibration of the XRF core scanner

The traditional calibration approach in calibration of tiRF data is based on trying
to estimate several coefficients that are related to measurtegeometry, instrumental
response, etc. In order to extract weight fractions frorensities with elementg and
measured specimenghe following model is applied;

Wi = KilijM;; S (3.1)

whereW; represents the element concentration of elemanspecimenj, K represents

an element-specific device calibration coefficiévlf; is the matrix effect that accounts
for scatter, absorption and enhancement effecty @aused by the presence of other ele-
ments in the specimen. Furtherm@eepresents the specimen effect which captures the
measurement geometry and specimen homogeneity relative gtandard configuration.
And finally ljj is the intensity of elemernitin specimenj, obtained by post processing
of the raw spectrum by background subtraction, sumpeak acape-peak correction,
deconvolution and peak integration (Weltje and Tjallingd08).

However in the work of Weltje and Tjallingii (2008), a morébcst calibration scheme
was presented. This approach is based on the CoDa-framendtherefore on logratio’s
rather than the calibration on an element-by-element b&getje and Tjallingii (2008)
stated that "the fundamental problem in this approach s§ha very poorly constrained,
owing to inhomogeneity of the specimens (e.g. variable wadatent and grain-size
distribution, and the presence of burrows) and the irregsuaface of a core”. In some
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setups, spatial variations in thickness of an adhesivewater film, which forms directly
below a protective foil covering the split core surfacepdigve to be considered a an
error source (Tjallingii et al., 2007). As a result of theseantrollable variations§ is
unknown, and will cause biased compositional predictidhs

Weltje and Tjallingii (2008) found that the log ratio framesk facilitates a more
robust and unbiased calibration process. Given the conmp®nandD in the specimen

j, the following holds:
Wi _ K lij Mij S

U T A 3.2
Wb; Kbljp Mjp S (3-2)
given that:
Si o Ki ~ Mij
—=1 Kp =— Mpi = — )
Sj s iD Kn’ iDj MD] (3 3)
this yields the following calibration equation:
W - lij \ o~
— =Kip [ — | Mjj 4
Wb, iD (le> iiD (3.4)

The relative detection efficiend is independent of, and can be thought of as the
average response of the measurement device during scasinégngore, i.e., a constant
unique to elements andD. The relative matrix effecM varies with j, because it is
a function of the chemical composition. Weltje and Tjallif@008) stated that if it is
assumed that no prior information on the relative matrieeffis available, there is no
choice but to derive a general expressionNbfrom the core-scanner measurements:

. [ Api
N — (L) (3.5)
Ipj

which, when plugged into equation 3.4 yields:

% . IL Ap+1
(VVD1> =Ko ('DJ’) (3:6)

They derived the more general expression by using the catrgas operators and linear
parametersr andp:
a=Ap+1
(3.7)
B =In (KiD)
which yields the following Log-Ratio Calibration EquationRCE):

Wiy lj .
In (V\T) =aipln (E) +Bip (3.8)
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The practical application of this LRCE is illustrated in figl#&. Here can be observed
that with the introduction of logratio’s, the logratio imi&ties (x-axis) behave linear with
respect to the logratio relative concentrations (y-aXéhereas the depicted observations
only represent the calibration samples, any new inteng&igeoration can be turned into
relative concentrations using the linear model (red dagdimed. The resulting LRCE
prediction as function of the composition of the calibratsamples is shown in figure 3.3
from which can be derived that they line up perfectly alorglthe x=y. This implies that
the compositional prediction based on XRF core logging iSaseul.

Summarizing, the application of the LRCE on XRF core scanning ofean unconsol-
idated core yielded good results. Not only did making usel@hent ratio’s effectively
cancel out all non-linearities induced by the compositioreure of the data (intrinsic
correlation of component concentration) and the unknowasuement geometry, the
LRCE is also expected to effectively reduce coherent noissethby instrumentation.
This expected noise reduction is caused by the fact thattailcgrart of noise and mea-
surement error is uncorrelated with the transmitted wanggle By being present in both
the numerator and the denominator in the log ratio transéadrdata, this noise component
is drastically reduced.

Furthermore the LRCE model is simple in terms of the number effaents that
must be estimated from the data; only a intersect and a slopddsbe determined for
every element pair,D (see figure 3.3). This small number of coefficients faciitate-
dundancy w.r.t. the estimation of these coefficients. Atlaoaigh the calibration process
is performed in the log ratio space, the results can be tamsfd back into relative con-
centrations using the alr inverse transformation (seedigu).

By using the fact that the log ratio quantities span a real espaaobust statistical
framework was defined by Weltje and Tjallingii (2008) usimg tistance between alr-
transformed observédf and predicted compositialtf for the element-pairandD. Given
thatn calibration samples are available, then this will yieldistances between observed
and predicted for every element-pair of which the medianeas being derived in the
following manner:

W

2
N \lvln
= In— —1
st medj[nWDn nWDn}

A parameter representing the signal-to-noise ratio cauttefined by the total varianté
of the signal of the element-pairandD as follows:

(3.9)

R, — Vo 5D (3.10)
Vip

We illustrate this signal to noise parameter with the follogwsynthetic example compris-
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ing four observations and three components, calibratetidy. RCE;

0.5412 01576 Q3012 0.5432 01191 03376

W= 0.3576 01915 04509 W= 0.3146 01345 05510 (3.11)
0.1871 04564 03565 0.1709 05371 02920
0.3985 01152 04863 0.4217 01063 04720

the log ratio quantities (see equation 2.5) with the thirthico as denominator are ob-
tained as follows;

In33332 |n31isd 0.4756 —1.0416
Wi — In234e In334s 05604 —1.4104 (3.12)
~ In33%8 In33%22 05360 06093 '
In32230 In33%83  —0.1128 —1.4905
and:
In2342 In3378 0.5861 —0.6478
wt— Noagte Ingasse 02318 —0.8562 (3.13)
T IndBL N2 T _0.6446 02477 '
IN33%8% Ing4l32  —0.1990 —1.4398

The residual variance of the two alr transformed quantiiesow determined by taking
the median value of the squared difference between predactéd observed composition,
which yields;

§3=00120 5,=0.1429

Vf3=02352 V5;=09631 (3.14)

Rf;=0949 R,=0.8516

This results should be interpreted as the first componenhgav significantly smaller
residual variance as well as a significantly smaller totailavece. Furthermore this first
component reflects a much higher signal-to-noise pararR8ter

For this synthetic example the number of calibration sasyesmall, making this
parameter very sensitive to outliers. However when the rarmabsamples is significantly
larger, these statistical parameter can be consideredhllesestimate of the uncertainty
of the data.

3.4 Improvements to the workflow

The work of Weltje and Tjallingii (2008) lead to the follovgrthree conclusions:
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Figure 3.3: Linear fit between log ratio measured intensitiad log ratio of the reference
bulk chemistry of core 7920.
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Figure 3.4: The reference and predicted bulk chemistry o# @®20.
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1. Unbiased and accurate calibration results are posssiolg the LRCE.

2. A stabilisation of the prediction discrepancy is obtdinsing around 40 calibration
samples.

3. By using the CoDa framework, 'classical’ statistical teiglies can provide insight
in the quality of the process.

This study includes a direct follow-up on their recommeratathat further research is
needed to investigate the possibility to acquire a fastdilssation of the prediction dis-
crepancies. Therefore we have defined the following sulstopres:

Can clever use of multi variate methods result in an improvgadad to noise
ratio?

and additionally a question concerning the sample selectio

Can a more robust sample selection strategy result in a fastdailisation of
the prediction discrepancies?

In order to get an answer to the first research question, wdimsil discuss a method to
determine the repeatability of the system.

3.5 Repeatability of the System

Because the acquisition of XRF core scanning data is relgtimekpensive compared to
standard geochemical analysis, reliable estimates ohgteumental repeatability can be
obtained with relatively low cost. It is also investigatenlnhthese reliable repeatability
estimates can provide an improvement in the signal to natse of the calibrated output.

The repeatability of a measurement system is a measure gétlaion in measure-
ments taken of the same sample and under the same condfonge XRF core scan-
ning we can quantify this by keeping the scanning devicesasfime location while taking
several measurements. The residual variance that we tlsemvebafter spectral analysis
and quantification is considered as noise since it does nmo¢late with compositional
variations in the specimen (or a location on the core). Wequemtify this residual vari-
ance by taking the centered log ratio transform of a set ofsoresents, taken at the
exactly same location on the core. Since the clr transfortaéal comprises an Euclidean
space, we can simply use the Euclidean distance betwees ahssrvations as an error
estimate. Given that we have a sethofeplicate measurements comprisidgelements,
we define themeancomposition as follows:

m

(clr(l})) = %;clr(lj), j=12,..D (3.15)
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For one set omreplicate measurements withelements, the intrinsic noise of the system
is then derived as:
D
312 = med" { Z[clr(li) - <c|r(|i)>]2} (3.16)
i=
Which yields fork sets of replicatess values ofdl2. A global noise parameter is then

obtained by:
ON? = med {51} (3.17)

Even though thi®N? reflects the intrinsic noise of the measurement system, ahenp-
eter will certainly be affected by the core characteristisavell; sincedN? is obtained
by evaluating the error of the residuals, it is also affedtgdhe composition of the core.
This because the presence of some elements can be quantfieghracisely than others;
if there is much overlap w.r.t. fluorescent energy of two edata X and Y, discriminating
between the energy from component X and component Y is difficthis means that
in order to get a reliable estimate dN2, it is advisable to estimat&N? for every core
individually.

One should keep in mind though that this noise parameteridghmt be confused
with the calibration quality. The noise in the intensity aléd a important factor in the
sense that if the data is very noisy, the estimation of thealircoefficients will require
more calibration samples. However the quality of the LRCE temeined by more than
just the level of noise in the observed intensities, sucthasdliability of the calibration
sample chemistry. However there is also a sampling probfemived; the calibration
samples do not reflect the same material that was measurée lsganner.

3.6 Pre-calibration filtering

Given the nature of the specimens that are being analyzédr(set cores), we can ex-
pect a limited number of minerals in the sediment. This duthéosimple reason that
there are (1) only a limited number of minerals stable enaoghithstand the process
of weathering and transportation. On the other hand, XRF scmeners yield the com-
position in terms of a large number of elements; usually ntloa@ there are minerals in
the specimen. This means that there is a high level of ctoiwalbhetween the different
components. By definition all other signal is consideredaoighich rises the challenge
to filter the noise from the signal.

We suggest to apply a linear decomposition of the data baséueacovariance struc-
ture of the variables. By applying this decomposition, a neto$ variables is obtained,
each reflecting coherent signal in the data. Additionallghezariable in this set of vari-
ables reflects the variance in the original dataset in deliegrorder. By subsequently
throwing away the data which reflect only a small portion & variance, the hypothesis
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Is that the signal to noise ratio will be increased. If thisada subsequently applied in the
LRCE in combination with calibration samples, the hypothésithat improved results
can be obtained.

This structure is implemented by using Singular Value Degoposition (SVD) on the
clr-transformed data SVD is a linear mapping of the data values onto a newly defined
coordinate system represented by the eigenvectors. Thef8V®data matrixX with
observations (rows) and components (columns) looks as/sll

X =USsV' (3.18)

where U is atmmx n matrix, S isn x nandV' is alson x n, given thatn is the number

of variables anan the number of observations. The columndJoére the coordinates of
the data projected onto the newly defined basis. The rows afontain the right singular
values and form an orthonormal basis; the eigenvectorseottivariance matrix. The
elements o contain the singular values which are always larger than. ZHre so called

'scores’ of the datX are obtained by performing the following transformation:

YT =XV (3.19)

An important implication of this linear transformation tsat the data loss is minimal in
a least square sense, giviethe number of eigenvectors ahel D. The dimensionally
reducedscoreson this reduced space is obtained as follows:

YT =XV, (3.20)

wherel reflects a subset of the eigenvectors, or the fficslumns ofV. For the singular
valuess;, which are on the diagonal of matr& the following holds:

Ai=¢ (3.21)

which is the variance of the initial data along the princigsisi.

This methodology is often being used to compress large fdirftensional datasets
for storage reasons or to evaluate the intrinsic dimen$tgrad the dataset. However in
this case we suggest the dimension reduction as a filterpgadtthe core scanning data.
If we would throw away some eigenvectols{ D) comprising thé smallest eigenvalues
of which we know that the dimensionality of the coherent algrin the data is smaller
than the number of variables, this means that we throw awgnyakuncorrelated with
S. Given that the variance of the signals S is sufficientlgdathan the residuals of the
measurement system, the principal direction that are echdte more likely to be noise-
dominated. In reality though, the problem is to determins lttand, more importantly
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this 'true’ dimensionality of the signal present in the dakhis is where théN? statistic,
derived from the replicate analysis, comes into play.

A straightforward approach to determihés to cutoff the smallest eigenvectors of
which their combined sum is smaller thaiN2. To define this methodology in a more
formal way, theD ascendingeigenvalues are being transformed to a set of cumulative
eigenvalueg\; given by:

i
A=Y N, i=12.D (3.22)
=1

If we let V; represent theth eigenvector in the set of eigenvectdtsordered orascend-
ing eigenvalues, the set of principal axésthat can be considered to be above the noise
level follows from:

VisV* | ASMM< BN? i=1,2..D (3.23)

This means that the set> V* will be omitted in the back-transformation to the original
linear basis. The eigenvalues, cumulative eigenvaluestl@aomponent rejection is
graphically depicted in figure 3.5 where the red line indisahe difference between data
variance and noise levé@iN?. Notice the strong correlation and negligible information
loss while reducing the intrinsic dimensionality by 4.

The hypothesis is that this method of filtering out the PC’'$1\hotv variance will im-
prove the signal to noise ratio and hence result in a bettdaraaon model fit. However
this is only the case for measurement naiseorrelatedwith the composition; otherwise
it will be part of the higher order PC’s. Furthermore one stdaep in mind that the prin-
cipal component with the smallest eigenvalue does not @yyinformation; variabl®
of the clr-transformed data will reflect the principal axerpendicular to the hyperplane.
As mentioned in section 2.8 dimensional compositional quantities will, by definition,
be situated on &P hyperplane, when clr-transformated.

Algorithm Implementation

The framework given above has been implemented in a MATLABpsC In pseudo-

code, the program performs the following steps where afteuiputs the filtered data
derived froml PCs. In order to facilitate the program to detect observathgained at the

same down core location, it is required to supply the dowe c@pths together with the
observations:

1. The data is clr-transformed,

2. Replicate samples are detected (using the depth atiribute
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3. Calculate replicates variance parameil%rat every replicate locatiok
4. Calculate global noise parameterd&iy?,

5. The column-mean is subtracted from all observations,

6. SVD,

7. Calculate cumulative eigenvalugs'™,

8. Evaluating equation 3.23 to identify the significant PC's,

9. Back-transform to original basis using the set of eigetared/* and the corre-
sponding scores and add the mean calculated in (5).

3.7 Sample Selection

Whereas the PCA-filtering step was mainly introduced to imerine final prediction,
a good geochemical prediction is only obtained when theamiappropriate calibration
sample set. Therefore we will further look into the currealilration methodology and
how this can be improved.

In a previous study the prediction discrepancies for a éatasan unconsolidated
core were found to level out when using more than 40 calibmasiamples (Weltje and
Tjallingii, 2008). However the hypothesis is that an imgFdvesult can be obtained with
a more robust approach. This is expected to be primarily #se o (1) the dataset to
which the model is fitted will be large (the probability of tag the 'good’ points will
decrease) and (2) when the variability of the element canagons is large (if there is no
variation at all, the choice of calibration sample is of ngortance).

3.7.1 Sample selection; the concept

The basis for the approach that will be suggested here ighkdbest linear fit will be
obtained when the points to which the linear curve for an el@neombination is fitted
are (1) unclustered and (2) cover the entire spectrum otisakl This originates from
the fact that the effect of measurement error on the lineavilitbe smallest when the
points to which the fit is performed are far apart. The lingtcases are resp.:

1. Ifaline is fitted to two observations (subjected to ndigg, 02)) that are infinitely
far apart, the effect of the random noise will be infinitelyadinand

2. If aline is fitted to two observation (subjected to ndig:, g2)) infinitely close to
each other, there will be an infinitely number of solutionstfee linear model.
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One way of selecting the locations to get the most effectiveffithe linear model

would be to select the minimum and maximum intensity of eveygerved component.
However using this approach could result in the selectiomigh and low readings
of a certain element that is dominated by noise (the elensatmost undetectable).
Constructing a linear fit by calibrating with the noise-ertes will yield unreliable

LRCE model estimates! In addition, the selection of extrenoegvVery element is also
not efficient in case of highly correlated intensity measwsts (for instance when
the relative concentration of Ca directly correlates witd tdoncentration of Zi). This
problem of correlation can be solved by using PCA insteadefalw intensities.

3.7.2 Implementation

The suggested method is to assign a number of calibratioplsarto every PC propor-
tional with the fraction of its eigenvalug w.r.t. the total variance of the data. In more
mathematical terms withthe number of PC’s iV*:

cum

0,
A=

J .
S E— j=12..1 (3.24)
J Zipzl)‘icum

Given this percentage of variance for each PC, the numberliiration samples are
assigned proportional to this percentage. In order to getest possible fit, the first
two samples selected on all principal axes will reflect the textremes’. However to
prevent the selection of any negative or positive outlidre,samples are selected based
on their distance to the 10th and 90th percentile. All otliacant’ samples are distributed
more or less uniform along the principal axis. In order toiewh this, the range of
scores on a certain principal axis is being divided iptbiresholds between the 20th and
80th percentile, where reflects the number of samples to be selected. Within a oertai
threshold we wish to accomplish to select the sample thatieesmallest sum of squared
scores on all other than the current principal axis.

The identification of observations closest to the princgpas is being done in order
to accomplish that sample-sets on a certain principal corapowill reflect only the *pro-
cess’ along this principal axis without interference of titleer 'processes’. However this
sample selection strategy is merely based on some geneeatather than that we have
determined explicitly whether this interference will hattme calibration process.

After this initiation step of distributing the samples otbe PCs, the program will
evaluate the spatial distribution down core of the selestedples. Because the routine
tries to equally distribute the locations over the rangdIigdrancipal components thereby
neglecting the sample distance, sample locations mighddelbse each other to sample
as individuals. Therefore a logical step in the process ev&duate the down core loca-
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tions and between-sample distance. In the implementafitregrogram, this minimum
between-sample distance can be fed to the program.

The second extension of the program concerns the fact tlasitnificance of
improvement achieved using the sample selection routinelasively small in the 'tail’
(so for a large number of calibration samples). From now emitlimber of samples for
which the PCA-based locating of samples is considered efée&;i;, can be defined
by the user. However if the user does not giveSaR, it seems reasonable to put some
more weight on the down core distribution rather than ggtémen more dense sample
distributions on the principal axes. This down core unifatistribution is achieved by
picking samples at positions right in between the alreadsitled samples using the PCA
approach that have the largest between-sample distance.

A intuitive way of illustrating the sample selection is byolang at biplots. Biplot
analysis is a commonly used way of evaluating and intemgetihe results of a multi
variate dataset. A biplot (figure 3.6) shows the normalizentess on respectively the first
two or three principal axis, as obtained using PCA, which adécates in figure 3.6 by
red markers. The variable arrows on the other hand indibatlading of a variable on
the specific principal axis. Two parallel arrows indicateighhcorrelation between the
two variables. A 90 degrees angle on the other hand meanththabrrelation between
the two variables is absent whereas a 180 degrees anglatiesi@ negative correlation.

3.7.3 Geometrical context

An illustrative way of showing the concepts of the samplestbn is by looking at a
biplot. A biplotis a 2 or 3 dimensional plot showing tleadingsof the original variables
on the new principal axes. The axes of the variables areateticby vectors which show
the covariance structure of the data; a 90 degrees anglesrg@ro correlation whereas
a small angle indicates a strong correlation. In a biplat #hescoresof the observation
on the newly defined principal axes. The sample selectiooriftgn initially selects the
extreme (10th and 90th percentile) scores along theseijpairexes, whereas the number
of samples is proportional to the variance covered by the. akn example of a biplot is
shown in figure 3.6.

The biplot in figure 3.6 shows the results for core 7920 in Whi@ observe roughly
two highly correlated clusters in the clr transformed dettagroup 1 covering Ti and Fe,
group 2 covering Si and K. What is also apparent in this figutledsthe samples selected
by the selection algorithm, indicated by green markerduaethe most extreme scores
in both the negative and the positive direction of the twagipal axis. Note that this
is only the case because the intrinsic dimensionality ofddia was found to be two or
larger. Otherwise the sample selection strategy would balgpplied to the first principal
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Biplot of clr transformed intensities. Decided indices depicted in green.
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Figure 3.6: Biplot of the clr transformed data of Core 7920 witle selected calibration
samples for n= 8.

axis, leading to a sample set mainly situated along the x-axi

3.8 Module Performance

Given the two objectives discussed in the introduction, uggest the following hypothe-
ses:

1. A better element concentration prediction can be obthimken non-significant
PCs are filtered out of the data before model fitting.

2. It is possible to achieve a better calibration result wttencalibration points are
carefully selected using the described method.

In order to quantify the performance of the resp. filtering aample selection, a frame-
work is being given here to quantify the performance. Thicaiion results are analyzed

by calculating discrepancies for all elemebtand all locationd. that were not included

in the calibration process. In order to be able to comparespinead in predictions with

the spread in replicate intensity measurements, a congpaissperformed in log ratio
space in which euclidean distances are a valid distancediBtence between 'true’ and
predicted concentratioW can be used as a global discrepancy parameter for a specific
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\ A B C D EF G H I
Mineral | 0O 0 01 0 2 0 0 1
Mineralll |O 2 0 1 0 1 0 0 1
Minerallll |12 3 1 0 1 0 2 1 O

Table 3.1: Minerals that were part of the synthetic rock, nuead with the XRF core
scanner.

set ofD elements an#t observations:

Y= medﬁ{\/iil [cr (W) —clr(\fwi)]z} (325)

which reflects a global measure for the prediction discrejgana high value d¥ reflects

a large distance in clr space and therefore a low-qualitgiptien. In order to get a

global value for the random selection of calibration samptee median value over all
simulations yields a curve with the glob®# as function of the number of calibration
samples available. This curve was then compared¥ocarve obtained by selecting the
calibration samples using the sample selection routine.

3.8.1 Algorithm performance for synthetic data

In order to assess whether the algorithms for filtering andpsa selection are signif-
icantly better compared to the resp. unfiltered and randampkaselection strategy,
synthetic datasets were generated thereby allowing folyigpthe inverse as well as
the forward model. This synthetic dataset is created usiedgdct that log ratio trans-
formed data obey the rules of a 'normal’ dataset and canfibrerée perturbed using an
‘ordinary’ random number generator.

Creating synthetic dataset

The first step in order to obtain a synthetic dataset is to aa@et of minerals that are
going to be the components of mixture (see table 3.1). Thike tanust be interpreted
as rows representing mineral phases and the columns imgjadae stoichiometry of the
given phase in terms of the set of elemef#sB,C,....}. After the random generation
of mineral compositions, the corresponding element coiitipas are calculated which
are subsequently transformed to mass fractions by usin@ swhitrary molar weights.
In order to transform these compositions into XRF intensjtibe alr-transform of the
elementintensitiesis determined using an arbitrary denominator element. Teegge

these intensities, we adopted the most straightforwardeinbat hasa = 1 andf3 =0
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for all element-pairs. This yields the following model foetalr transformed quantitigs
andwW! wherei denotes the numeratd,the common denominator arjdhe observation:

lib.j = dip Wb ; +Bp, i=1,2..D (3.26)

subsequently we perform the reduced space transformatitimeoscoreX derived from
SVD of the clr-transformed intensities:

YT =XV (3.27)

wherel is smaller than the number of elememmsn this synthetic mixture. Since we
now know, by definition, that the data has an intrinsic dinn@meslity of I, we can now
add noise by knowing that every PC that is abbigpurely noise. Pseudo-observations
subjected to measurement noise are generated as follows:

X =X+N(u,o) (3.28)

for a givenu ando. This simply means that the concentrations are perturb#dmise
with a given mearu and standard deviatiom?. For this synthetic experiment, we adopt
U = 0 or more general, an unbiased prediction. Although thiskwimw mimics the
forward model, in reality the noise component is not indejeen of the composition

Simulations

In order to analyze the algorithm performance, the sampéesen routine was put to the
test. In order to achieve this, datasets were simulated 300) with a random mineral
composition. Each dataset comprises 200 observationdwiace calibrated using an in-
creasing number of pseudo-calibration samples. Addilipea randomly selected repli-
cate samples were added to be used in the filtering step. @dyithe replicates within
one replicate series reflect the same intensity readinmpadih they aréndividually and
independentlyerturbed with noise. The calibration was performed both the samples
selected randomly as well as using the sample selectiomeouthe performance of the
calibration process was also investigated for the caseemfer data was filtered using
PCA-filtering respectively before and after it was feed toghmple selection routine.

In addition to the experimental setup described above, s@ simulated data in the
same manner, however now for a standard number of calibratimples while increas-
ing the number of preserved principal axis. If the hypothésicorrect, there should be
an optimal number of PC’s (red. smallest med#nwhich is smaller than raw data di-
mensionality. Additionally we expect this optimum to cdoe with the findings of the
filtering algorithm.
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Resulting Discrepancies Psi using DECIDEPOSITION and PRINCOMPFILT.
(SYNTHETIC DATASET)
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Figure 3.7: Median discrepancy values for the different bemof calibration samples
picked randomly. The plot shows both the sample selectiotenesults by using both
sample selection and PCA-filtering methodology.
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Prediction discrepancies versus the data dimensionality (n = 100)
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Figure 3.8: The model prediction discrepancies as deteechiitom randomly generated
synthetic data (n=100) with an intrinsic dimensionality gh@rsus the number of PC’s
preserved in the filtering step.

Results

In figure 3.7 the mediak’-values for the number of calibration samples are shown. As
can be seen in figure 3.7, the sample selection algorithrblestas a fast stabilisation of
the discrepancies compared to the random approach. We gghlycsay that there is an
20-30% faster decline of the prediction discrepakty

The PCA-filtering is also a successful preprocessing steqe ghre obtained discrep-
ancies using the PCA filtering are much smaller than the disereies obtained with the
unfiltered data. In general, 4 out of 9 principal componergsafpreserved in the process
of back transformation which results in the removal of ffesty 4 principal components
(one principal component only reflects the hyperplane thérghsform data is situated
on). Although we generated the data with intrinsically 31pipal components, the filter-
ing routine is at least conservative (it does not throw avemymanyPC’s) and still gets
rid of a significant number of principal components.

When we look at the prediction discrepancies compared to uh&er of preserved
PC's (see figure 3.8), there can be seen that an optimal numB&'sis present. This
optimum is located at the filtered data dimensionality of 3alhs equal to the intrinsic
dimensionality of the dataset. The 'true’ intrinsic dimiemglity is known because it was
used as value fadrin the generation of the input data. In order to quantify wieethe
results obtained with the newly suggested methodssepaficantlybetter, a statistical
tests will be applied. This will be discussed in the nextisect
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Statistical Significance

One of the major advantages of constructing a large numbsgyrdhetic datasets is that
it allows us to asses the statistical significance of thelteshtatistical tools yield a solid
foundation to the overall idea that both modules (PCA-fitgrand sample selection)
give a better result. In order to apply a statistical tes,ribill hypotheses are defined as
followed;

1. The sample selection procedure does not give lower valiidscompared to the
random approach;

2. Using the PCA filtered data for the calibration does notdyleiver values ot
compared to using the unfiltered data.

To test both null-hypothesis an Analysis Of Variance (ANQWeas considered. Since |
want to test equality betweawo groups, the ANOVA is equivalent to the t-test. This test
works under the assumption of (Freedman et al., 2007);

¢ Independency of cases (outcome does not depend on the autfather realisa-
tions);

e Normality of the distribution of the residuals
e Equality of Variances within groups.

Unfortunately normally distributed noise on the clr traorsied compositions will cause
non-normal distribution of the prediction discrepancieseirms oftV.

In order to cope with this, a nonparametric test can be usadh & test is based on
testing the hypothesis based on ranks rather than the vitdetfs This results in assump-
tion (2) being replaced by an equal distribution requirem&iven that we compare two
equal quantities with each othéP) which only differ w.r.t. the perturbation of noise, we
can say that the equal distribution requirement is met.

A non-parametric test used for two groups is the Mann-Whit(tégllander and
Wolfe, 1973; Mann and Whitney, 1947) test which quantifies ghabability that two
groups are from the same population. Generally the null thgsis is defined as the two
populations being from the same population given a cerinllof significance. The
two-sample Mann-Whitney test can be used when the follonaggirements are met;

e Samples drawn randomly from the population,
¢ Within- and between-group independency,

e Ordinal or continuous measurement scale.
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These requirements are all met, given the experimentapséftbe setup was such that
500 random datasets were generated randomly and calilwaiegl a different number
of calibration samples. Given this setup, the sample seleeigorithm does not yield
independent sets of samples for 1 dataset, which makes shésf®r one datasenot
independent in the direction of the number of samples. Hewexe wish to apply the
test forevery number of calibration samplasd in this 'direction’ the observations are
independent since they are obtained from different rang@eherated datasets. Given
that the random number generator has a periodicity larger #0900 it is reasonable to
assume independency.

The continuous measurement scale requirement is also atetjgdconsidered to be
continuous if the values may take on any value within a finitefinite interval, which is
the case fok!. Furthermore you can count, order and mea$¥irenaking this a continu-
ous quantity.

Statistical Experiment

The Mann-Whitney test was applied by comparing the discreparderived from a ran-
dom specimen selection with the PCA-based sample seleatiitha discrepancies ob-
tained by applying the pre-calibration filtering step.

In figure 3.9 the discrepancies of both the random approbelsample selection and
the filtering i.c.w. the sample selection are shown for twgesa 5 calibration samples and
30 calibration samples. Here one can see that where thepenfice of the filtered results
increasesY decreases) with the number of calibration samples, thdtsesttained with
the sample selection converges towards the random saniptgige discrepancies with
increasing number of samples. In the figure on the right, isteiloution of discrepancies
are shown where we observe that the sample selection reseltgery similar to the
random sample selection in terms'Bf

Since the test is applied for every number of samples, itn@gllt in two curves of
the probability of equal mean as function of the number abcation samples. In order
to quantify the significance of the improvement by using PCteriihg and the sample
selection routine, a confidence limit is adopted at 5% whedlects the probability of a
type 1 error (probability of rejecting the null-hypothesikile it should be accepted).

Test results

The Mann-Whitney test of th& values yields that the sample selection routine results
in a significant improvement of the model fit up to 13 calibvatspecimens (when the
number of calibration specimens is 14, the probability exisethe level of significance
5%). The test results w.r.t. the combined use of sample tsaeand PCA-filtering show
for all number of calibration specimens very small valuepdp < 1074%). Based on
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Figure 3.9: Distributions of the discrepanciésfor the synthetic datasets for=a5 and
n= 30.

these results we rejebp referring to the filtering step anlah of the calibration sample
selection up to a maximum of 13 selected samples. Althougthfe (synthetic) dataset,
the use of the two modules is beneficial for the predictionlte$or 13 selected samples,
this value might well be affected by the nature of the datalsebrder to investigate the
performance of the modules for the processing of real’ dhay were applied to data of
unconsolidated sediment.

3.8.2 Application to core 7919 and 7920

The work flow is rather straightforward; first the routine @@ &-filtering was applied to
define the number of significant PCs and to filter the data of €888 accordingly. After
that the random sample selection strategy was tested uatagticore 7919; in total 100
different permutations of the observation indices wereegated. For every simulation,
the number of calibration samples was increased, rangamg & to 50 samples, thereby
creating 100« (50— 3) different predictions. These results were compared toehkelts
obtained by calibrating with samples selected by the selecbutine, with the number
of samples ranging again between 3 and 50.

In figure 3.10 the median discrepancies as a function of tmebeun of calibration
samples are shown for both the filtered and unfiltered dataftisediment core 7920.
This filtering step was performed with the preservation oifrbahsions of the 8 variables
(elements). The test results w.r.t. the sample selectierslaown in figure 3.11 which
were determined using the data of core 7919.

The results in figure 3.10 indicate a significant improvememtt. the prediction




Chapter 3. Improvements to the XRF core scanning work flow 43
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Figure 3.10: Discrepancy parameter as function of the nunddecalibration samples
using the filtered and unfiltered data for the data of core 7920

discrepancies whilst using the filtering step. Also the darsplection strategy shown in
figure 3.11 yields good results; with the selection of 10krakion samples, the expected
W is comparable to th& obtained while calibrating with 40 randomly selected saapl
From the plot with the discrepancy values as a function ofrthmber of samples it
may seem that the discrepancies become unstable for amsegenumber of samples.
However this is the result of the experimental setup; thdipt®n discrepancies are only
evaluated for the observations which hana been used in the calibration process. This
means that if the number of samples is increasing, the nuailsamples that are used to
evaluate the performance decreases. Since the globapigswry parameter is determined
as the median of this se# becomes more unstable if the setaaflibration samples
increases.

3.9 Discussion and Conclusions
The research question that corresponds to the work thatmeasted in this chapter was:

How can the current work flow be optimized to reduce costs andd in-
crease accuracy and or precision?

which was subdivided into:
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Figure 3.11: Discrepancy parameter as function of the nunddecalibration samples
using the random approach (blue) and the sample selectigorihm. These results are
derived from core 7919.

Can clever use of multi variate methods result in an improvgadad to noise
ratio?

Can a more robust sample selection strategy result in a fasédyilisation of
the prediction discrepancies?

Based on the previous work of Weltje and Tjallingii (2008) ahd CoDa framework,

two modules were designed in order to achieve better céiiloraesults. This included a
module that could result in a significant signal to noiseorafithe intensity data. Further-
more a sample selection strategy was defined that should iresLfaster stabilisation of

prediction discrepancies.

The pre-calibration filtering step is found to provide imyed results for both a real
dataset as well as synthetic data. For the latter, the ManmR@htwo-sampled test
yielded significantly lower prediction discrepancies ggiva 5% level of significance. The
probability under the null-hypothesis though was much tnahan this 5% & 10-49).
Additionaly a calibration sample selection strategy hanleveloped by using Principal
Component Analysis. It was applied to the calibration of Bgtit data which yielded that
the algorithm is effective until 13 calibration samples. Whiee number of samples was
larger, the sample selection was identified as being noifgigntly better, given an level
of significance of 5 %. When applied to a real dataset of cor®,7/&libration using the
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selected samples resulted in a very fast stabilisationeptlkdiction discrepancy, com-
pared to the random sample selection. Therefore we conthade¢he two modules are
valuable and facilitate (1) calibrated output of higherlgyand (2) the same prediction
guality using a smaller sample set.
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Chapter 4

Linear Mixing in a Sedimentary Basin

Whereas the first chapter discussed some new developmentstiverprocessing of the
geochemical data, we will now turn to the interpretation ebghemical data. In the
section discussing the primary objective of this study vaéest that the primary objective
IS to perform grain size predictions based on geochemising implies that we somehow
have to understand the relation between these two quantliethe first chapter the we
discussed the complexity of the process of basin infill ared fittors controlling the
composition of the sediment in the basin. We furthermorendefthe research question:

Can we build a forward model of basin infill in a formal geochemical and
textural context that successfully reconstructs real obgeations?

The primary reason of building such a model is that the paréorce of the forward model
provides insight in theinderlying physicaforward model configuration and parameters.
If we have an answer to this question, inverse modeling caappéed in order to recon-
struct the history of the basin. However because of the cexitglof sedimentary basin
infill, inverse modeling in terms of all these processes iddfynition an under-determined
problem that leaves us with many unknowns.

In this chapter we will investigate one of these componeritgkvis the process of
mixing of chemically and texturally different sediment soes. A model is built for
this process which is subsequently applied to a soft-setimere in order to test the
performance. The main reason of applying it to a soft-sedingere is that it is, in
contrast to 'old’ sedimentary rock, not altered by diag&nesnother important reason of
applying this model to 'young’ sediment is that the histofyhis sediment is well-known
and well-defined. Because of this, any model outcome can lidatedl with the rather
accurate and well-defined 'reality’.

47
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4.1 Core 9508; Offshore Africa, Senegal

Core 9508 was obtained from the continental slope off Senegfal about
15/29.90N/17/56.88W from 2384 m water depth using gravaying (see figure 4.1).
The continental slope off Northern Senegal is consideretieal location to study the
varying influx of eolian dust from the arid region in the Noehd fluvial sediment from
the African continent, respectively. Historical recordggest that Sahel droughts result
from changes in the large-scale distribution of sea surtewgerature. The primary ob-
jective of the work of Mulitza et al. (2008) was to reconstrtie last 57.000 years in
terms of climatology and to investigate whether the sedtrrethe core shows evidence
for these large-scale variations in sea surface temperdisiribution.

In the work of Mulitza et al. (2008), a large number of core p&es, uniformly dis-
tributed along the core, were analyzed with respect to tipeachemical composition.
Furthermore the grain size distribution of these samplesdetermined. This was done
because it turned out from previous previous work that waeethe fluvial portion typi-
cally has grain sizes below 10m (Gac and Kane, 1986), the eolian dust consists mostly
(between 44% and 83%) of grains larger thanud (Stuut et al., 2005). Based on these
distributions the relative portion of fluvial sediment riela to the eolian sediment was
derived based on the mass-percentage undemivith respect to the bulk.

Additionally discrimination between the fluvial and eoljportion was done based on
two element ratios (Fe/K and Al/Si resp.) of which the rasgltAl/Si ratio is shown in
figure 4.2. This figure also shows the mass percentage of therialasmaller than 10
um that is considered to be an indicator for the fluvial influxora these results was
derived that both the grain size related parameter, as wétieaAl/Si ratio were found to
coincide fairly well with so called Heinrich Stadials (H988). These Heinrich Stadials
coincide with the destruction of northern hemisphere ica\v&@s. The icebergs melting
caused significant amounts of fresh water to be added to théy Wdantic causing a dis-
turbance in the density-driven thermo-haline circulatbdroceanic water. The result of
these processes for the Sahel region is a series of peritiusakatively low precipitation.
As a result, the hypothesis was that sediment charactsrisiark the occurrence of these
Heinrich Stadials; influx from fluvial origin reflecting theterstadialswhere eolian sed-
iment marking the Stadials. The approximate time intergdithe Heinrich Stadials as
interpreted in the work of Mulitza et al. (2008), are indexhin grey and were determined
from the age-model.

Based on these findings Mulitza et al. (2008) concluded thatd¢hative influx of
fluvial and eolian sediment has a climatological signifieanEurthermore it was found
that this signal is apparent in both the grain size data asasehe geochemical record.
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Figure 4.1: Location of core 9508 (modified from Mulitza et(@008)).
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(modified from Mulitza et al. (2008)).
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4.2 LINMIX model

In chapter 1 we briefly discussed the framework of sedimgriasin infill and the pri-
mary concerns w.r.t. the direct mapping of the concentnaifaertain elements to a grain
size signal. We stated that the one-to-one mapping of elecogcentrations or ratio’s to
grain size reflects a simplification of the "true’ history @dsment deposition. Also the
application of grain size information in the way as was daonthe work of Mulitza et al.
(2008) (a simple ’hard’ partitioning of the grain size spant), is considered to fail to
provide insight into paleo-climate in many cases (Weltjd Bnins, 2003).

The same can be said about provenance (i.e. parent lithokotglysis based on
geochemical data; analogous to the grain size predictiendirect application of geo-
chemical data towards any sedimentological parameterlisjostified when all other
parameters have a negligible effect on the composition.eM@neral, we can say that
the observed chemical signal is the result of a convolutiamsmurce signal and selective
transport signal. Additionally, this convoluted signahdze perturbed after deposition by
diagenetic processes.

In all other cases, we are dealing with an under-determimeligm that cannot be
readily solved for its components. However the fact thatdlae so many geochemical
controls does not necessarily mean that the explanatorgipoingeochemistry is low; it
only requires more data in orderdeconvolvehe signal. Still the introduction of a set of
assumptionandsimplificationsof the reality are necessary to perform this deconvolution.

4.2.1 The concept

We will now introduce the concepts of the LINMIX model, whighbased on a set of
assumptions and simplifications. Even though the initisliagotions (i.e. that an element
ratio is a direct indicator of a sediment property) are tcafibe a new set of assumptions,
the new set reflects a more physical set, regarding the matdsasin infill. The model
is built on the following foundation:

1. The different sediment sources have a unique composigosus-grain-size func-
tion.

2. The sedimentary record is the result of varying influx dfiedent sediment sources,
having their own unique grain size distributions.

which is described in great detail in the work of Weltje anch®(2003), both the concepts
as well as data that behaves accordingly.

Generally we can say that eolian sediment for instance, aoedgo fluvial sediment,
is well sorted coarse material. Furthermore arid regiortk piimarily eolian sediment
transport produce geochemically different sediment caetgb#o the fluvial sediments,
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that are produced in a humid environment. Given that the tgieads (the grain size and
geochemical signal) are correlated, we want to find out wdretthere is an underlying
relation that characterizes these two signals.

This relation will be applied in the model as Transfer Fumsi (TF’s); functions
describing the chemical composition as a function of thengsae. Although the pro-
cesses underlying the transport and the associated cdiopaschange of sediment are
complex, it was found by Tolosana-Delgado and von Eyna60§g) that some general-
isations w.r.t. the (petrographic) composition is valichey found that the petrographic
composition could be approximated well by a linear modehef lbg ratio’s for a wide
range of grain sizes. The fact that a (log ratio) linear apipnation yields acceptable
results, makes it possible to estimate these linear paeaisiey using only a small num-
ber of observations (degrees of freedom = 2). As a resultgossible to estimate these
TF’s based on the chemical data of only 2 grain size fracti@usce the mutual relation
between mineralogy is trivial, the following assumptiomdopted:

The compositional change as a function of grain size can Hecigntly pa-
rameterised by a logratio linear model.

Whereas isolating a grain size fraction is not possible forsotidated sediment, grain
size fractions of unconsolidated sediment can be phygitsallated by using dry sieving.
This allows for chemical analysis of isolated size fractiand therefore the estimation of
data points on the TF's.

The underlying TF model is important to characterize the positional change of a
certain endmember. However initially, the endmember casitiom is determined readily
from the bulk chemistry using the inverse modekafiph simple linear mixing

4.2.2 Simple linear mixing

Since the suggested model is based on the concept of lingargnwe will first discuss
this concept in its most general form. Linear unmixing isdzhen the concept of ex-
pressing a compositiancomprisingD components, intdl mixing coefficientan, andN
‘pure’ endmember compositionys(Weltje, 1997; Renner, 1991). In vector notation:

X1,1

. N , | X1
X = Zmy., X = (4.1)

4

XD1

If a set of observed compositiodsi, X2, ...Xk} can be sufficiently expressed into linear
mixing of two endmembers for instance, this means that tkemed composition (of any
entry ofxy) is a linear function of my, mp}. Alternatively we are, given that we know the
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mixing proportions, able to extract the fraction of a comgatin the 'pure’ endmembers
y1 andys, by solving the linear system:

X = Miy1 + by, (4.2)
where for the endmember weights hold that:
M +mp=1 (4.3)

It now appears that this system is easily extended towargstara of more endmembers.
However by introducing more endmembers and additionallyenetement®, problems
may arise when applying this to real data. Given that theegy$$ overdetermined (if <
D), itis unlikely that this system has a solution as a resutheésurement error. However
besides the fact there is most likely no solution, the sotuts also not constrained to
the nonnegative part of the solution space which may leadpbyaically non-feasible
solution.

One way of avoiding a violation of the unit-sum and non-neggtconstraints would
be to use log ratios. However whereas linear mixing probleetsave accordingly in
compositional mixing space, linear mixing is non-lineatdg ratio space. In figure 4.3,
the relations between the endmember weights and the oloseovepositions (in resp.
weights, ratio’s and log ratio’s) are shown for a synthetvo endmember case. When
the number of endmembers increase as well as the number @ioc@nts, parameteris-
ing the behavior of these components as a function of thengigroportions becomes
even more difficult. Even though the mixing in log ratio/l@gio configuration seems to
behave approximately linear, at the 100% membership loesiit is definately not. Un-
fortunately this part of the mixing space is the most impar{zart for the estimation of
the endmember composition. Based on the results shown irefig@rwe conclude that
the most suitable coordinate system in which the linearasgon can be applied is the
compositional space.

Whereas the linear mixing represented in figure 4.3 compasggstem with only
two endmembers, this system is easily extended in a germ@ral fThe linear mixing
for a system of three endmembers can be thought of as a tedieggam framework
(a representation of the® simplex in a constraine®?), above which the fraction of
a certain component changes linearly in the z-direction bying along the x,y-plane.
Although we will sketch the problem comprising a three enahber system, this system
can easily be extended to a multi-endmember system; see figaifor the 4-endmember
case, where the color indicates the fraction of a compomethiei bulk.

One preliminary step before applying regression is to appdpordinate transformation
such that the membership is transformed into coordinateeeeimplexs". The reason
for applying this transformation is that by doing so, the ftamof coefficients that must
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Figure 4.3: Linear mixing in compositional space, ratio spaand log ratio space.

be estimated is reduced by 1 compared to the original mixpage. Or, more general, we
transform the original mixing space, comprisiNgcomponents into a Cartesian system
in RN—-1,

For a three endmember case the transformation matibgiven by:

T 1 1
To—| 08 2, 2 4.4
3 T cotg /3 (4.4)
—sing ——~ 7

which is the transformation matrix for a ternary diagranresgntation. The derivation of
this transformation matrix for any number of endmember&scdbed in many geometry
textbooks such as the one from Schartz (1974), but can be atiged by subsequently
transforming the data to barycentric coordinates and éiootaf the Cartesian coordinate
system to the desired viewpoint.

If we letm reflect the relative fractions of the endmembers in the butkix nvector,
the following change of coordinates is applied:

c=T-m (4.5)

As can be seen in figure 4.4, by staying in the simplex we are &bhpply simple
linear methods to estimate the compositional change witmloeeship. The endmember
compositions are determined by subsequently applyingtL®geares Regression and
evaluating the composition at the pure endmembers locaitiaihe simplex " (the corner
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C ition versus fora4 case.

Element fraction of the bulk [-]

Ycoord Xcoord

Figure 4.4: Linear mixing and the compositional respongeratoordinate transforma-
tion in resp.s3 ands4.

points of the ternary triangle).

There is however no free lunch; by staying in the simplex madr regression model
must be constrained such that the predicted compositidrbeiphysically meaningful
(non-negative and not larger than 1, in case of fractiomsrdler to achieve this we will
apply a Constrained Least Squares (CLS) methodology whialitseis the following
model, given the number of endmembBr$or a componen:

a;+agCxj = Dbj N=2
a;+agCyj+agtkj = b; N=3 (4.6)
a1 +8sCzj +8gCyj +aulxj = bj N=4 '

Given that there ar®l observations of this elemeptandN endmembers, we can rewrite
this system into the following components:

1 c1 €2 €3 -+ CiN-1 af,j bj 1
1 c1 Cp2 C3 -+ CoN-1 a,j bj 2
Ci = aj = bi =
] . . . . . | : J .
1l cm1 Cm2 Cvm3 “** CvmN-1 ai j bjm
4.7)

with which equation 4.6 can be rewritten as:
Cj-aj = bj (4.8)

This system can be solved in a least squares sense givel thdll. However in order
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to prevent the solution to become non-feasible (negatiwiea or fraction larger than
unity) this system of equation must be solved using a set oétcaints. In a case of 2
endmembers the constraints w.r.t. the solution space are:

maslnf[g)sla] aves[T S ][G] (6] e

which can be written more general into the following form &system oN endmembers
and a given elemerjt

Iy a 1 —Iq a 0
Ar-aj=| <] Aca= : N I (4.10)
In an 1 —In an 0

where Iy is the location of endmembeX in terms of the barycentric coordinates
{C1,Cp,...CNn—1}. WhereA; and Ag are the compositional constraint matrices to esti-
mate the fraction of one element, we must incorporate thepositional constraints such
that the estimated compositias a wholds feasible. If we define the following building

blocks: .
A 11
SRR

we can define the full system of constraints fotaendmember system that is composed
of D elements as follows:

Ac 0 -~ 0 . q
0 Ac -~ O al q

e N N e R (4.12)
L Ac Ac -+ Ac % L

In order to obtain the geochemistry of the endmembers we sab& the following linear
system of equations using least squares:

él 0 0 0 a1 b1
0 & 0 O a; b

Ha=| . . || l=|7" (4.13)
0O o0 -- éD ap bD

wherec;j is M x N matrix with the observed membership transformed to the lgimap
coordinate system, analogous to equation 4.7. Even thowghawve not isolated the
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endmembers in any way from the bulk we can now, by solving ¢bisstrained linear
system, estimate the chemical compositigrof every endmembaerusing the estimated
linear coefficients:
i 0 --- 0
- ol -0
bp = L. .

W

(4.14)
00 - |

For clarity, we shall refer to thisndmembecomposition, as opposed to thalk chem-

istry b, by thepartial bulk chemistryby,.

4.2.3 Generalized linear mixing model

Before moving on, let us revisit our objectives. In order toenghe model be in line
with the objectives, the model must be more complex then beigg a matter of mixing
endmembers with some arbitrary (best fitting) compositionthe objective was stated
that the composition itself is again a function of grain sidgich therefore results in
the partial bulk chemistry being determined by both a TranBtinction and a Grain Size
Distribution (GSD). For the moment we assume that every emdb@r has its own unique
TF and GSD.

A discrete version of the Transfer Function, denotedChwf a certain endmember
for D elements, discretized int® grain size classes can be written as:

Ci1 G2 -+ Cip
C1 Cpo - Cp

(4.15)
Ce1 Ce2 -+ Cep

Because this Transfer Function reflects the compositioragthin size classes, the (hor-

izontal) sum of all fractions should sum to one, represeritire ‘'whole’:

D
S CGi=1 k=12.G (4.16)
=1

If we define the weight fractionsin all G grain size classes, which is in principle the
GSD, as follows:
f11

f
f—| 2t fi=1 (4.17)

fe1
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the bulk chemistryf one endmembercan now be written as:
bpi =Cf -f, (4.18)

As mentioned before, this is only an approximation; in tgdhe TF’'s and the GSD’s are
both continuous functions. In that case the concentrafian elemenj in an endmember
I is obtained by integration along the grain size spectrunotdehbyx:

. o
B = / e (0 fi(x)cx (4.19)

wherec;j is the continuous function describing the fraction of elaheén endmembej
as function of the real variabbe grain size.

The partial bulk chemistry obtained here is equivalent ® ghrtial bulk chemistry
defined in equation 4.14. However it is now being expresse explicitly as the result
of the product between a compositional function and a fonctlescribing the relative
importance (mass fraction). The ability to estimate thisipebulk chemistry by means of
both the bulk chemistry and the more complex approach ubmdFE's and GSD implies
that we have a way to validate the forward model with the is&enodel. In other words,
we are now able to unwrap the 1-dimensional geochemistyamgrain size signal and a
source component, determined by the TF.

4.2.4 LINMIX model

Suppose we would be able to measure the bulk chentistiya sample being a mixture
of several endmembers, all having a unique Transfer Fum@iothe LINMIX model
follows by plugging equation 4.18 into equation 4.1:

X1,1
X N . N

“l=b= > My, =3 CI-fi-m] (4.20)
: i= i=

XD 1

Theoretically the forward model (the right hand side) sdadrrespond to the measured
bulk (the left hand side) and, more importantly, this systémquation can be solved w.r.t.
my, given thatG+ N < D. However it is unlikely that this system has a solution inecias
is applied to real data. This because the quality of the nredsthemical composition of
the grain size fractions (i.e. the discrete TF denote@€pys low due to several reasons.
First of all we are not able to reconstruct the 'real’ continsa GSD because we can
only isolate a limited number of fractions. The system sgtgpkin equation 4.20 also
assumes a uniform distribution of grain sizes within anated class. This has turned out




58

as being far from reality; there is between-class overlaptha within-class distribution
is more or less bell-shaped. There are also limits w.r.t. vililee of the compositional
analysis of these size fractions because above a certam gje, the grains become
complex aggregates of individual minerals, making the tea reliable.

All these error sources contribute to the predicted bulkntkry b and compositional
matrix C from which the combined effect on the different componesidanoted byp.
Therefore the system will most likely not have a solution aad only be approximated
using regression techniques:

X1,1
X2.1

~
J— ~
= ~

+e&p (4.21)

N
ZQT -[fi-my]

XD,1

Similarly to the LINMIX model for the bulk chemistry, we caefine an analogous model
for the isolated grain size classes. If we have the graindigtebutions of the endmem-
bers and the bulk chemistry of an isolated grain size clasgam apply this linear system
and thereby obtain a pseudo-observation of the TF. Howeverder to do so, the linear
model must be slightly modified. This can be illustrated bykiog more into the GSD

vectorf. Let us define for am endmember system the GSmatrix F:

F=[f, fy - fy] (4.22)

If we wish to apply the system suggested in equation 4.21 we tarewrite the system
such that the nett weights- my applied to the Transfer Functiorf sum up to one;

otherwise the mixing proportions of the different endmeraléthin a grain size class
do not sum up to one. To achieve this unit-sum constraintmniveduce a Mass Fraction
Matrix M which is uniquely defined for every observation and everyngseze class:

M1 Mip -+ Myn
M M . M

M=c¢ {(16 . mT) . F} = _2’1 _2’2 . ?’N (4.23)
Mg1 Mgz -+ Mgn

wherem is a vector of membership coefficients alftlis aG x 1 vector full of ones. If we
now redefine our model for the case we have measured the betkistny of an isolated
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grain size clasg, denoted b)Bg, we obtain the following results for an elemgnt

X1,1

X21 - - d
.| =P Pay = | 2 Gign M| 0 (4.24)
i=

XD,1

whereM 4y andcjq j) represent resp. the mass contribution of endmerivea given
grain size clasg and the fraction of elementin a grain size clasg of '‘pure’ endmember
.

Now we have characterized the GSD’s, membership and the asitigqn of isolated
grain size classes, we can solve for the discrete TF, demyt€yl, by applying the CLS
regression model given in equation 4.6. However we prefefth in a functional form,
rather than in the discrete matitx.

4.2.5 Fitting a transfer function

The tedious linear operations applied in the previous stilzgeyield compositions in dif-
ferent grain size classes for the different endmembersamember pairs. However since
we would like to determine a continuous endmember compositve have to transform
these observations into a functional relation between asitipn and grain size. The next
objective is therefore to obtain feasible Transfer Fumgifsom this data. It was found by
Tolosana-Delgado and von Eynatten (2008) that the comgpnaltchange w.r.t. the grain
size can be reasonably well approximated by a linear functidlthough his findings
were based on a dataset of mineral composition rather tleagethchemical composition,
we assume the same behavior of the geochemistry based oacthindt they are very
closely related (Posch and Kurz, 2007). The ordinary legisti®es adjustment may seem
directly applicable in this situation, however the probseanise from the fact that it is a
linear fit relating a compositional quantity as a functionaofeal variable (in this case
the grain size). And since the compositional space is nouahdean vector space, the
minimisation of the distance requires a different framewor

As discussed also in section 2.3, the log ratio transforned dn the other hand
will comprise an Euclidean vector space and can therefordireetly plugged into the
ordinary least squares adjustment framework. Let us fifsel¢he log ratio transformed
compositionsy as a function of a real variabkeand the compositional slope and intersect
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Figure 4.5: Graphic representation of applying linear regsion to the composition vs
membership in the simplex structw& (D =4, G=4, N = 3).

d; anddg for a combination of componentsnd j:

~

Xk.i
Xy =1

X
o — | Yki
ykv(”) - |n yn’j

. — | Y
507(”) _lndol

dyj
oL =g,

(4.25)

from which follows that for any combination efandj in {1,2,...D}, for whichi # j the
compositional linear function is given by:

Yie(i) = Oo.(ij) T Ow(ij) R (if) (4.26)

If we want to perform this curve fitting 'in the simplex’, weeaforced to find a least
squares solution to the following model (Daunis-i-Estéadet al., 2002):

Yk =do® X ©d1 & & (4.27)

with & = [&1, &2, ....,€p] being the compositional discrepancies between model and ob
served composition. The compositional operators alreadicate that a least squares
solution is now obtained by minimising the Aitchison distannstead of the Euclidean
distance. By doing so one yields a least-squares estimale abimpositional 'intersect’
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do and 'slope’d)1.
The two curve fitting approaches are complementary in theeséirat the two compo-
sitional fitting parameters relate to the log ratio paramseds followed:

% = clr(da)

G — oria) (4.28)

givena= 0 anda = 1. A synthetic example of this process is shown in figure 4 an
4.6. In figure 4.6 the relation between the additive log ratmposition (for all element
combinations = 1,2, 3 andj = 1, 2, 3 for which holds that # j) and some real variable is
shown, which is in this case the grain sizegtunits. The plots in the middle column (el-
ement 2 is denominator element) indicate that the condeniraf element 2 is very low
for the highg-values. However as the grain size increases, the contientd element

2 increases. When putting the plots in figure 4.6 in the leastrgs framework, the fitted
curves shown in the plots are obtained using ordinary lepsires and characterized by
& andoy.

The curve fitting results in the simplex are represented urég.5; the uppermost plot
shows the input data, which has a distinct compositionaglirtrend. As mentioned be-
fore, the observations in the rightmost corner (compasitsodominated by component
2) represent the smallegtunit values. The plot in the middle shows the same results as
obtained from the linear fit whereas the plot at the bottonwshithe compositional slope
and intersect. These last two compositions are the two ceitigas given bydy anddy,
given in equation 4.28.

4.2.6 The optimal transfer function

As stated in section 4.2.2, linear mixing problems behaviepgy linear when expressed
in fractions and mixing proportions which can therefore eadily plugged into ordinary
least squares regression. The same linear mixing returioslanear compositional re-
sponse when the composition is evaluated in the log ratioespBhis nonlinearity is the
most severe at high endmember membership, which is edgetiteamost important part
in the suggested model because we obtain the endmember sibiopby extrapolation
On the other hand we try to stick to the model suggested by$amnla-Delgado and von
Eynatten, 2008), in which is stated that these Transfer tiams can be approximated
reasonably well by a linear model in log ratio space.

For the latter we have shown the framework to move freely betwthe simplex and
the log ratio space by using the simplicial operators fotyreation and power transfor-
mation. By using this framework we can (1) apply linear cufitteag w.r.t. thelog ratio
compositional response as a function of grain size and (@ydinear curve-fitting w.r.t.
thesimplicial composition as a function of membership.
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Figure 4.6: The results of applying a linear fit to all numeyaitienominator pairs yields
all the [&p, 1) pairs, given that i~ j (the diagonal).
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compositional coefficients (bottom).




64

To revisit the primary objective; find a set of Transfer Fumres with which the geo-
chemical data can be reconstructed successfully and inpti@al sense. However the
Transfer Functions affect both the geochemical data ofiteefeactions, the partial bulk
and the bulk. Nevertheless we are able to estimate this feraRgnction from (1) the par-
tial bulk chemistry we obtain from the fractionized data &Bgfrom the bulk chemistry
I.c.w. the membership (see equation 4.20).

Because of this redundant information we adopt a weightechgeebetween those
two quantities as follows:

bpi = mear{wclr[bp], (1—w)clr[by]} (4.29)

wherew reflect the relative importance of the XRF-bulk-derived adriulk w.r.t the
partial bulk from the fractionized data. Now the 'optimalidmember compositions are
determined, we want to obtain an updated compositionakestoql intersectl; anddg
such that we reconstruct these 'optimal’ endmember cortiposias follows:

bpi =CiT-f (4.30)

whereC; is again aD x G matrix of the discretized TF of endmembediscretized into
the grain size classes with mean grain sig@s @, ...@s} :

Ci=[dod@ods dod@eds - do®@Ody] (4.31)

We can rewriteC; using the perturbation and power transformation rulestimanatrixD

with column vectorgyg (9= 1,2, ...G; G the number of grain size classes) representing the
composition of a infinitely small grain size class with megrand with fy representing
the mass-fraction in the specific class:

D=[¢1 ¢ - ¢c], ¢g = fg- cv[do- c[d1?9]] (4.32)

wherecy [..] denotes theertical closure operation.

Even though this system can be solved or at least approxingatmimising the clr
distance) using an optimisation toolkit, applying thisteys might become computation-
ally expensive. Furthermore there are some limitation®isg this system for both the
compositional slope and intersebitanddgy. One of the limitations is that in order to have
an overdetermined system in equation 4.32, the dataseldshudiill the requirement that
D > 2N. Otherwise the optimisation can only be applied in a singdifiorm by solving
either for the compositional intersestg or the compositional slope; .

An advantage of applying a simplified approach by only ediimgadg, is that the
system not only becomes less computationally expensivegntalso be solved using
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standard linear linear methods. If we assume the compnoaltgloped; (estimated from
the XRF of grain size fractions) as being 'true’, the terfol; %9] will be constant for a
given grain size class, which we will now refer to as by thegeld) vectonh:

¢g = fg-c.[do-c[d1%9]] = fq-c,[do-h(g)] = fg-h(g) - do (4.33)

since matrixD does not have nonlinear terms anymore we can sum over afl gize
classeg = 1,2,...G of which we put the result on the diagonal of a matix

Z?:l hj71- fj 0 0 0 d071
_ 0 S hjo-fj 0 0 d _
E.do= _ 2=zt | 1% =bp (4.34)
0 0 0 y%.hjp-f do,p
From this system the new perturbing composiﬁ@rfollows directly from:
do=c [E™* bp] (4.35)

Surprisingly enough the nonlinear system of equation whkimhid additionally only be
solved under conditions w.r.t. the number of grain sizesdasand elements, can now be
solved by simple element-by-element division.

Even though we have obtained a physically feasible lineaingimodel structure,
there are infinitely many model configuration possible. Tasause not only the EM-TF
configuration can be altered; the model outcome is also méted by the given weight
value in the weighted averaging step (see equation 4.29). Wi determine this weight
parameter will be discussed in the next section.

4.2.7 Model performance

Before moving on to the results of the linear mixing modelafework must be defined
that will determine the quality of the linear mixing (LINMMnodel. There are in princi-
ple three types of data sources that were used to obtain tdelipedictions; endmember
data, chemical compositions of the grain size fractionstaedXRF core scanning data.
A satisfying model will yield discrepancies between modad a@ata that are not signifi-
cantly larger than the uncertainty of the input data itself.

An estimate of discrepancy between a model prediction aratasburce of the compo-
sitional quantityv and comprising the same set@felements is defined as follows:

JZ () ()Y 436
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Estimates of the discrepancy paramétean be determined for a whole series of different
data sources and models. The same approach can be usedrioitietine quality of a
data source by evaluating the dispersion of replicate sesrgialyzed and sampled in the
same way and using the same sample material. In principleaweherefore distinguish
between thé--parameters that relate to the quality of the input:

e Uncertainty of the XRF-bulk data;
e Uncertainty of the fractionized data;
e Uncertainty of the Endmember data,
whereas the discrepancy between data quality and the poedidy the LINMIX model:

e XRF-bulk down core composition vs. the LINMIX modeled dowrnre&€acomposi-
tion,

¢ Input fractionized data vs. LINMIX modeled fractionizedtaa
¢ Input endmember data vs. LINMIX modeled endmembers.

will be denoted byF. In principle the most optimal LINMIX model yields fractiaed
data, endmember data and XRF-bulk at the same accuracy ofghedata itself. How-
ever this complete error modeling structure can only be wbwhen there are reliable
estimates of the uncertainties of all the input data sources

However even if these uncertainty estimates are availéiileerror modeling struc-
ture becomes rather complex and computationally expem#ia incorporating the ac-
curacy of the GSD shape as well as the membership record. tidserror propagation
with respect of the accuracy of the fractionized data andffect of the final TF's is not
easily solved analytically. This because the errors arerdehed by several aspects:

1. Quality of the endmember unmixing;

2. How well does the model behave according to 'reality’ wigbpect to the compo-
sitional linear trend,;

3. Quality of the geochemical data;
4. Within class distribution of mass;
5. Possible between-class overlap of mass.

For simplicity, we will adopt a simplified version of the ernmodeling by adopting the
assumption that all error sources except (2) have a nelgigitect on the final prediction
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error. The consequence of this assumptions is that theegisncyF between pseudo-
observations and (initial or optimized) compositionakbm trend can be derived from the
data and used to asses the model performance. Another agsutat is introduced is
that the accurracy of the model input can be satisfyinglapeaterised by their associated
mean and standard deviation. Given thgtienotes the integrity of the chemistry of the
size classes, itis parameterised{lpy, o, }. Obtaining a reliable estimate of the XRF-bulk
integrity on the other hand is easily done by evaluating #stduals between the XRF
calibration model (LRCE) and the calibration samples. Néwdess this methodology
is implicitly also based on the assumption that the log riiear calibration model is
'true’ and the samples used to calibrate with are unbiasedlagous to the chemistry of
the size fractions, again the accuracy is modelled by twarpaters; the mean and the
standard deviatiofipix, Ox}.

The second group of discrepancy valteshat was introduced represented the per-
formance of the LINMIX model; how far does the LINMIX modehdate from the input
data. This subsequently determined for the bulk chemisgreMaluating the LINMIX
model predictions and the predictions by XRF core scannimglitfonaly the discrepan-
cies between the pseudo-observations, representingabeetical compositional change
with grain size, and the final logratio-linear TFs give arireate of the goodness of fit
between the data and the compositional linear functionsv tiie framework is defined
for both data and model prediction, model acceptance iigge adopted. This includes
one acceptance criterion that relates to the bulk chemigfryand one criterion that re-
lates to the analysis of the size fractias If for a given model configuration anal the
following holds, the model will be accepted:

cg=1 | med{R} < \r/inﬂngug
(4.37)

=1 | med{R} < %+ux
where{ g, 0y} characterize the discrepancies between pseudo-obsewaind derived
compositional linear TFs anfluy, ox} represent the mean and standard deviation of the
XRF calibration residuals. The values i and n, represent the number of observa-
tions that were effectively used to calibrate the linearingxmodel and is an integer
relaxation-parameter quantifying the strictness.

The "optimal’ solution for the TF-EM configuration awdthat is accepted according
to the criteria given in equation 4.37 follows by minimisitig objective functior,,:

Vg

min{s } = min o (med{Fy} — ug)z — \r/;‘n:, (med{R,} — ux)2 (4.38)
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This relations means in principle that we want to keep théadie between LINMIX-
bulk and XRF-bulk data equally large as the distance betwd&sdMLX-fractionized and
XRF-fractionized geochemistry. Analogous to the accepamiteria the number of ob-
servations is also incorporated; if a large number of olzems is available we accept
a smaller distance between model prediction and data. Thieintibat is (1) accepted
according to the acceptance criteria for angnd that (2) shows the minimal value tar
for a specific (range ofiv is now identified as the 'optimal’ model.

4.2.8 Summary of the work flow

To summarize the whole work flow, a flowchart of the unmixinghef geochemical data
is shown in figure 4.8. Here one can see that the geochemitzatdtermined by using
calibrated XRF core scanning is the guide for the optimisapmcess. This data will
represent the bulk chemistry of the mixture from which thaipbbulk chemistryﬁp can
be obtained using the unmixed GSD’s and the inverse modek@eation 4.14). In order
to do this, the membership is plugged into fesimplicial framework, from which the
partial bulk is determined using constrained least squaethods. The calculation of the
first guess Transfer Function matiixis also done by applying the inverse linear mixing
framework, however now by applying this framework to evergig size classndividu-
ally, which yieldsbg (see equation 4.24).
After this initialisation step the forward model is appligach that the partial bulk chem-
istry is obtained by applying linear mixing using the GSDK's and Memberships. This
results in an estimate of the partial bulk givenfb;;y(see equation 4.21). A weighted av-
erage between the partial bulk from XF@Ei and the derived partial bulk chemistry from
the fractionized daté,; yields an updated version bf,; which will be the input of the
compositional least square fitting, given in equation 4.B§.calculating the necessary
shift (the compositional slope is not altered) in log ratio spafcéhe Transfer Functions
in order to reproducdgm, an updated Transfer Function is obtained which yields the
geochemical prediction in the optimal sense, as shown iatemu4.21.

One should keep in mind though that the LINMIX model, as itefinked here, is based
on two assumptions:

The compositional change as a function of grain size can Hecigntly pa-
rameterised by a logratio linear model.

The compositional slope, as determined from the fractexhata is ‘true’
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Figure 4.8: Flowchart of LINMIX model.
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Fraction grain sizéum| phi-units

1 <2 106267
2 2—-10 7.8048
3 10—-40 56438
4 40—-100 39829
5 > 100 28219

Table 4.1: Isolated grain size fractions with the grain didergange and average grain
size in phi-units.

Ny Ng Nm
n, 444 6 92
ng - 6 6

Nm - - 191

Table 4.2: Number of observations of each dataset (b = XRK;lgu¥ analysis of grain
size fractions and m = GSD analysis) and their down core irgetions.

4.3 Application to Core 9508; Offshore Senegal

In this section the LINMIX model was applied to a real datasie¢ data of core 9508
that was described in more detail in section (tag). The c@® obtained offshore Africa
and was studied in great detail w.r.t. its paleo-climatmabinformation content. Ad-
ditionally grain size data, XRF core scanning data as well B& Xf isolated grain size
fractions has been acquirddactionized dataA summary of the number of observations
in each dataset as well as their down core intersection®isrsin table 4.2.

4.3.1 Unmixing grain size distributions

Representative samples were taken from the core which wahgzaxal w.r.t. the grain size
distribution. Grain size distributions were numericaltymixed by applying the endmem-
ber unmixing algorithm EMMA (Weltje, 1997). This algoritheearches for the optimal
set of grain size distributions that sufficiently reconstsuall the observed GSD’s. Ad-
ditionally the number of endmember-GSD’s used to reconsthe observations is min-
imized. Analogous to PCA methodologies, the discrepancyéden the mixed GSD’s

and the observed GSD'’s descreasing while increasing thé&uof endmember-GSD’s.
Given that a goodness-of-fit is adopted, a cutoff can be egp@uch that the number of
endmember-GSD’s is manageable. For the data of core 9508&sitfound that a three
endmember system (see figure 4.10) yields an acceptablen (coe#ficient of determi-

nation of R? = 0.84) approximation of the observed grain size signal (seadigo).
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Goodness of fit in grain size spectrum for the different number of EMs
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Figure 4.9: Goodness-of-fit between grain size observatansthe EMMA unmixing
results for different number of endmembers. Adopting tleee@members results in a
mean R value of 0.84.
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Figure 4.10: Endmembers found for Core 9508 using the EMMArétgm.
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Al Fe K Si Ti
Al - 0.8587 0.7686 0.9389 0.5151
Fe | 0.8587 - 0.9518 0.9440 0.9200
K | 0.7686 0.9518 - 0.7415 0.7446
Si | 0.9389 0.9440 0.7415 - 0.7450
Ti | 0.5151 0.9200 0.7446 0.7450 -

Table 4.3: R values for all log ratio pairs for the 9508-dataset.

The result of this unmixing step is a membership-record atsimy three compositional
variables.

4.3.2 Calibration of the core Scanning data

The XRF core scanning data was calibrated and thereby tuntedisemi-quantitative
dataset by using the LRCE discussed in section 3.1. A usefiigtgtao quantify the
performance of the log ratio calibration models is Rfestatistic. TheR? statistic, which
ranges from zero to unity, may be interpreted as the magnibfidiown-core variability
relative to the width of the error bar. TH statistic for all log-ratio pairs is shown in
table 4.3 where the columns represent the denominator.

According to theR? statistics in core 9508 the best calibration results arainbt
by using a log ratio model with Fe as common denominator wiietded R > 0.85
for all log ratio pairs. The down core compositional recastifained by applying this
calibration model are shown in figure 4.11. In the data of &&@8 we observe, analogous
to the work of Mulitza et al. (2008), several distinct and dewl decreases in the Fe-
concentration, leading to an increase of the logratio’sctvivere ascribed to be the result
of an arid climate in the Sahel. The predicted element canagons obtained using the
calibration step are now ready to be used in the linear mixindel. The major advantage
of using this calibrated XRF core scanning data over the iclin samples alone is that
we have obtained a relatively high resolution geochemabrd with many overlapping
data points with the grain size recomjy(, = 92).

4.3.3 Model acceptance

We would like to investigate whether the acceptance catas well as the values of the
objective function have potential to provide an semi-awtbengeological interpretation.
In other words, will the model identify endmembers 1 and 2eisdpmaterial of the same
source (eolian material). In order to test this we setupdleviing objective:

Find the model that is accepted according to the acceptariteria and that
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Figure 4.11: Down core logratio (alr)
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composition of core $With Fe as common

Figure 4.12: Results of the calibration of the XRF data witl dalibration sample com-
position on the x-axis and predicted composition on theig-ax
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TF1  TF2 TF3 medFg} med{F;} med{R,}  med{R}

w=20 w=1 w=20 w=1
{1,2,3 - - 0.2869 0.5311 0.4382 0.1212
{1,2} 3 - 0.4903 0.6532 0.3595 0.1169
{1,3} 2 - 0.3745 0.5148 0.2883 0.1511
{2,3} 1 - 0.5658 0.9546 0.3126 0.1506
1 2 3 0.6118 0.8248 0.4120 0.1131
(ux = 0.0960)

Table 4.4: Different configurations of endmember-TF pairthwhe discrepancies.

Model # Complexityy TF1 TF2 TF3 c¢y=1cg=1 cp=1cg=1
r=1 r=2
1 1 {1,2,3 - - empty empty
2 2 {1,2} 3 - empty w=0.75
3 2 {1,3} 2 - empty empty
4 2 {2,3} 1 - empty empty
5 3 1 2 3 empty empty

Table 4.5: Configurations and the results w.r.t. the accepatriteria as well as w for
the optimal solution in terms of .

comprises a minimal complexity.

where the complexity is the number of TF’s that are used torrsituct the bulk chemistry
and fractionized data. By doing so, we want to find out whethprealiction quality
parameter could assist in the geological interpretatiohe fethodology we apply to
investigate this is to run the model using every possibleem&fimember set. For every
possible model configuration the F-distance parameter wesdined for bottw = 0
andw = 1 which, in words, simply means that we asses how 'closelg’ rttodel can
resemble the fractionized data and bulk chemistry, resiet

4.3.4 Acceptance results

Table 4.4 shows the results of the discrepancy parametérdatifferent LINMIX model
configurations. There are a couple of things we observe sethesults. First of all we
observe that the least complex modEIM1, EM2,EM3}, has the best fit w.r.t. the com-
positional linear trend. This follows from the discrepan@lue of 0.2869 forw = 0.
Additionally we observe that models 3 and 4 are, for as faha$tlk chemistry is con-
cerned, the least capable of reconstructing the bulk chgnfimed{FR,} = 0.1511 where
the XRF data hagi = 0.0960). Although model 1 is the most respectful for the com-
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positional linear trend, it is not capable of reconstrugtime bulk-chemistry satisfyingly
which results in the rejection of this model for all

However, as indicated in table 4.5, model 2 is accepted wiasha minimun# -value
for w=0.75. Given the interpretation of the different endmembéts, is in line with
the findings of Mulitza et al. (2008). They state that endmersld and 2 reflect both
eolian sediment whereas endmember 3 is the fluvial portitwe. iodel outcome is that
the compositional change that is observed witklative change of endmembers 1 and 2
Is only the result of grain size variations. In other wordgttendmembers 1 and 2 have
in principle the same source material and were transpontéftei same way. However to
reconstruct the geochemistry and fractionized data, endree3 must be modelled using
an additional TF indicating different a different source.

4.3.5 Unmixing results

Shown in figure 4.13 are the partial bulk chemistry from the XiRifk as well as the bulk
chemistry as determined using model 1 ane- 1. At the corner points of the simplex
in the xy-plane plane, the partial bulk chemistries are shivam respectively the XRF-
bulk (green) and the forward linear mixing (black). On thkeesthand the blue and red
markers indicate the linear mixing model prediction forrakmbership observations by
mixing of the two different sets of partial bulk chemistri@€RF and fractionized data,
respectively).

Theinitial predictions by the two different sets of partial bulk chemes are not in
correspondence; for K for instance, the initial guess ofttine bulk chemistries are not
overlapping w.r.t. the fraction of bulk (red. the z-directiof the figures). Also the red’
prediction of Al is significantly lower compared to the 'blyeediction. However when
looking at the optimized partial bulk in figure 4.14 which vedgtained by applyingv =1,
one can immediately see the strong improvement betweerncprddulk and observed
XRF-bulk. This is the most apparent for the Al, Ti and K concation. There seems
to be no significant change in the Fe-concentration whichivgn the fairly good initial
guess, as expected.

The down core bulk chemistry as obtained using the same namdkimodel param-
eters is shown in figure 4.15, where one can see that the LIN®&itKnate of the bulk
chemistry has a lower variance compared to the XRF-bulk. Mewehen looking at the
initial guessed bulk chemistry, the optimisation of the Tis definately resulted in an
improved prediction.

In order to further investigate the improvement, it is alsorthwhile to look at the
predicted bulk chemistry down core in log ratio space (figude3). What becomes clear
from this figure is that whereas Al/K and Fe/K are estimatedeaaccurately, the Ti/K
ratio is poorly reconstructed. There even seems to be negetirelation between the
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Composition vs EM(AI) Composition vs EM(Fe)

Figure 4.13: Initial guess of the partial bulk chemistry imoXRF-bulk (blue) and the
results from the forward linear mixing model (red) using 1 Tke composition of the pure
endmembers are shown at the corner points as derived fromRetXilkb, (green) and

the forward linear mixingv)pi (black).

Composition vs EM(AI) Composition vs EM(Fe)

Composition vs EM(K)

0.2
0.15
0.1

0.5

Figure 4.14: Optimized results of the partial bulk chemyisitom XRF-bulk (blue) and
the results from the forward linear mixing model (red) usingA The composition of
the pure endmembers are shown at the corner points as denivedthe XRF-bulkop,

(green) and the forward linear mixirivgDi (black).
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Figure 4.15: Reference, initial guess and optimized bulnaistry obtained using a 1-TF
forward linear mixing. Shown here are only the locations whetliSD and XRF-bulk

was observed.

observed and predicted Ti/K concentration for some coréser Since in model 1
only one TF was adopted, the level of variance that can besaetiiin the predicted
bulk chemistry is limited; we are only altering th@ersectand not theslopeof the TF’s
which implies that with the fixed GSD'’s, the variance of thékidhat can be achieved is
restricted.

When looking at the results of model 2 in figure 4.16, it appdaas the down core
prediction is in correspondence with the observed bulk ¢ieyn The peaks and troughs
are reconstructed effectively than for the 1-TF model. fkenmore in figure 4.20, the
improvement of the optimisation step is very clear in thedipancies between LINMIX
and XRF-bulk. Also the mean of the intrinsic data uncertaantyg the discrepancy be-
tween the XRF-bulk and LINMIX are almost the same, which leathe acceptance of
this model. In figure 4.17, the 2 determined TF’s of model 2sdrewn which indicate
that the two TF’s are very similar, except for the sign diiece in slope of the Fe curve.
Whereas the TF that describes the two coarsest endmembeas aseasing Fe con-
centration with fining sediment, the other TF shows a deer@ake content with fining
sediment. Given that these TF's reflect the history and métamsport of the sediment,




78

Figure 4.16: Reference, initial guess and optimized bubnaistry obtained using a 2-TF
forward linear mixing. Shown here are only the locations whetisSD and XRF-bulk

was observed
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Figure 4.18: XRF-bulk and 1-TF linear mixing results (exgsed in log ratio composi-
tion; K as common denominator), obtained using-vt and model 1.

the next section discusses the geological context of theedeT F's.

4.3.6 Interpretation

Given that the interpretation by Mulitza et al. (2008) isetrwve would expect this to
come forward in the chemical fingerprint. If we now turn to ém@lmember compositions
(figure 4.21) found for model 2, it turns out that for the eplendmembers the Fe/K
proportion is around 2. For the fluvial portion on the othemndhahe Fe/K ratio is around
4. If we compare these values with the present-day sedinoampasitions for the fluvial
(Gac and Kane, 1986) and eolian (Orange et al., 1993) mhtériasp. 483 and 235
we can conclude that the values derived from the LINMIX moale realistic in that
sense. Furthermore it turns out that the choice of eitherainddfigure 4.21, lower
plots) or model 2 (figure 4.21, upper plots) has a negligiffisceéon the final endmember
composition. In order to assess the overall behavior of thewle convert the rather
difficult to interpret TF to the composition of two infinitegmall grain size classes (see
figure 4.22). The selected grain size clasges- (3 andg = 10) correspond respectively
to the coarsest and finest sediment in the mixture. From &d$eresults can be derived
that, in contrast to the fluvial TF, the eolian TF (TF 1; the eqppost pie-plots) is rather
constant along the grain size spectrum. This observatsomsline with what we expect;
in an arid environment, chemical weathering is almost absaning the compositional
change with grain size primarily being determined by thesudgl breakdown of grains.
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Figure 4.19: XRF-bulk and 2-TF linear mixing results (exgsed in log ratio composi-
tion; K as common denominator), obtained using-W.75 and model 2.
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discrepancies as obtained in the calibration process fodet@ and w= 0.75.
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Endmember composition 1 ~ Endmember composition 2  Endmember composition 3

Figure 4.21: Compositions of the pure endmembers for the gurafiion with TF's for
resp. {EM1,EM2 and {EM3} (model 2) and w= 0.75 (upper) and{EM1,EM2,EM3
(model 1) and w= 1 (lower).

The opposite is true for very humid environments of whichftbeial portion of the
sediment is considered the product. Observations shovsétitnent exposed to a very
humid environment is often exposed to severe chemical weath Typical for intensive
chemical weathering is the residual accumulation of (hyxdes of Fe, (Mn), and Al (see
cover photo). When looking at the Al concentration of the #ViF, relative enrichment
in Al and K is observed in the fine portion. Fe on the other hamtkicreasing with grain
size. With respect to the Ti concentration can be statedhlbatompositional change with
grain size is low, as is the overall fraction of Ti in the bulkiven that the LINMIX-model
yields a composition with grainsize in a functional formistfunction can be extrapolated
to a considerable grain size which leads to the compositidheoparent rock. Although
the extrapolation towards a source rock composition makwotheory, the compaosition
is expressed in only a small number of elements (red. rookifgg elements) which does
not provide enough information to classify it accordinglyurthermore, this logratio-
linear model is adopted merely for mathematical converdeartd does not necessarily
reflect reality. Especially near the edges of the sedimegicl grain size spectrum, the
validity of the logratio-linear model is not ensured, asrfdiby Tolosana-Delgado and
von Eynatten (2010).
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TF1 Composition for phi = 10 TF1 Composition for phi =3

TF2 Composition for phi =3
2%%

Figure 4.22: Model 2 TF compositions fgr=10and ¢ = 3.

4.4 Discussion and Conclusions
This chapter discussed the following research question:

Can we build a forward model of basin infill in a formal geochemnical and
textural context?

The answer to this question is that we have successfullyhpeteaised a forward model
for the process of sediment mixing. Additionally it was apg@lto data of a Quaternary
core of unconsolidated sediment of which was known thatfieces two different sedi-
ment sources. According to the defined acceptance critedaedaxation parameter it

is the only model that was accepted. Given the results ofthemance framework, we
conclude that model 2 is the most likely model that undethessedimentation. This con-
clusion is based on the fact that it provides a satisfyingmstruction of the input data.
This model outcome is in line with the geological interptieta since the only accepted
and optimal model configuration corresponds with the gaoddgnterpretation. Further-
more the composition of the endmembers was found to comelsp@asonably well with
present-day values. This includes the composition of ealisst from the Sahel mountain
(model; Fe/k=4, observations; FeA&4.8) and the composition of fluvial sediment from
the Senegal river (model; FeAR, observations; FeH<2.3).
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Although this is what follows from the data, one must keep indrthat the model
is based on several assumptions. One of these assumptibias ike underlying TF can
be sufficiently described with a compositional linear fuoict Additionally the composi-
tional slope was assumed to be correctly derived from thatifnaized data. This implies
that if other or more data is available, the model acceptaoutd lead to different results.
Nevertheless the adoption of the most complex model imxaoessaryo reconstruct the

available data.
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Chapter 5

In-situ Grain size Prediction of Core
E10-3

5.1 Introduction
This chapter will discuss the third and last research qoiestiat we stated in this study:

Is it feasible to predict textural properties of consolidaed sediment satis-
fyingly, given multiple data sources and a known, straightbrward prove-
nance setting?

In the previous section we discussed the forward model twarporates linear mixing.
This process of linear mixing is very common in sedimentaagis. Furthermore, as
illustrated in the previous section, the inverse modelihg mixed quantity is mathemati-
cally straightforward, although the introduction of the fESults in a small complication.

For the unconsolidated sediment it was found that the sedimiethe Quaternary
core, that was known to reflect a mixture of 2 different sediths®urces, could be satis-
fyingly decomposed into three grain size endmembers. Apanrt that, it was found that
an acceptable geochemical reconstruction was obtained &/Reansfer Functions were
adopted.

However in order to apply this framework to a core of consaikd sediment, there are
some problems that arise. First of all, GSD’s cannot beawtd and unmixed due to the
simple fact that the grains in this core are physically dgacto each other. In this core
not the grains itself are the building blocks of the matebat the grains are all connected
and turned into one structure; theatrix. Furthermore diagenetic processes might have
altered the chemical composition, leading to a composttiah does not 'obey’ the rules
of linear mixing. Therefore the grain size prediction foistieore requires a different
approach.
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5.1.1 Research Question

There are effectively three research questions w.r.t tmsaaated core. Whereas the
in-situ geochemical logging technique is widely exploile@uaternary geological stud-
les, its performance with respect to the analysis of codatdid, 'hard rock’, cores is

unknown. Given some differences w.r.t. the data acquisitioe first question that must
be answered is:

Can XRF core scanning data of consolidated sediment be ssfodg<cali-
brated?

If the calibration of this data yields satisfying results get to the following questions.
First we want to investigate how the XRF methodology, in carabon with the accu-

rate grain size data derived from the plugs, performs asransdlcontinuous grain size
predictor. In other words:

Is it possible to fill-in the gaps in between the sparse plugnlaions in
terms of mean grain size?

Finally we want to investigate how the methodology can f&t# the semi-automatic
classification of the core. Since this classification is tabtensive and is limited w.r.t.
resolution, a way of combining the sources of data could vesrla quality control and
additionally result in improved classification results:

What is the added value of XRF core scanning data in the psosEdown
core lithofacies classification?

5.1.2 Methodology

In order to get an answer to the first question, a complete LRGE flaw is followed for
the data of an consolidated core. If the data is calibratedessfully, we will investigate
the other two questions. To find an answer to these two qumsstibe geochemical data
must somehow be embedded in a model, either empirical oraythysical foundation.
Any model which is applied may rely on input data as it is beaeguired in a full core
analysis work flow, which includes:

1. Spectral Gamma Ray
2. Core Description

3. Plug Analysis (grain size, among others)
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Figure 5.1: Block E-10 depicted in the upper left in red. Seuwww.tullowoil.com.

As mentioned already in the introduction, the applicatiba physically feasible model
such as the linear mixing model described in section 4 is ticatpd by the fact that we
do not have fractionized geochemistry and Grain size Distion to unmix accordingly.

However for this study, a dataset of a consolidated core demasailable that consists
of sediment that originates from one common source rocks(pesm. F. van den Belt,
TNO). Because of this, the LINMIX model is drastically sinfidd and a direct approach
to model grain size from geochemistry is justified.

5.2 Carboniferous core E10-3

In order to asses the methodologies as discussed in thepsesctions, a consolidated
core was used as a test case. This core is acquired in anreffsietl that was drilled for
hydrocarbon exploration purposes by Wintershall Noord@¥eThe depth of the cored
section is around 4000 m below sea-level and originates thenCarboniferous. The well
is situated on the North Sea (Dutch sector) in block E10-3¢ckvis indicated in figure
5.1. A complete core analysis was performed by Panterra BVhidiwthe findings were
presented in the core analysis report by Boels (2003). Haoweafere going further into
the core data and its purpose for geochemical and textuaflsis, we will present a brief
introduction about the core.
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5.2.1 Geological Setting

In general, the Early Carboniferous (360-325 Ma) is charexetd by the deposition of
carbonates on shelves and isolated platforms while invateng basins calciturbidites
and mudstones were deposited (Freedman et al., 1990). TimeiriNa (326-313 Ma)

is characterized by increasing siliciclastic influx frone thsing Variscan Mountains in
the south and the Fennoscandian Shield in the north (Rickah,&000). In this way,

Namurian sediments progressively in-filled and blankebedsubmarine relief that had
existed during the Early Carboniferous. Due to an ongoingessive trend, Namurian
basinal shales and turbidites were gradually replaced bg-g&ain conditions at the end
of the Namurian which marks the onset of the Westphalian-@18Ma). Most of the

economically interesting coal seams formed during the pYedian A and B in a lower

delta plain environment (Drozdzewski, 2005). An increassand content and a shift
towards dryer conditions, leading to a decrease in the nuwfbeoal seams, took place
during the late Westphalian and Stephanian (Besly et al3)199

5.2.2 Core description

Panterra BV Netherlands has performed a study of core E1043 the sedimentology,
petrography and reservoir quality which is referred to astire descriptionThe results
of this core description were reported in (Boels, 2003). Cdt6-& was characterized
as reflecting a deltaic system of braided rivers with varyimarine influence. In this
core Panterra recognized a couple of different lithofaaigsociations: poorly drained
floodplain, floodplain, swamp, crevasse splays, intenbigi@ry bay and braided channel
deposits. A detailed description of each lithofacies assion is given in appendix (tag).
Additionally they recognized a number of grain size class@sging from mudstone to
very coarse sandstones, found in the braided river beds. varview of the observed
grain size classes in given in table 5.1.

5.2.3 Diagenesis

Panterra stated that the diagenetic elements that are @eced in the core can be subdi-
vided into three groups;

1. Early Diagenesis;
2. Intermediate Diagenesis;

3. Late Diagenesis.
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Class Textural Classification Mean Grain Sizer{] (@-units) Sorting

M  Mudstone 6 (7.4) (1.6)

J Siltstone 31(5) 11
S1l  Very fine lower sandstone 74 (3.7) 15
S1lu Very fine upper sandstone 105 (3.2) 1.7
S2|  Fine lower sandstone 149 (2.75) 1.7
S2u  Fine upper sandstone 210 (2.25) 1.7
S3I  Medium lower sandstone 297 (1.75) 1.9
S3u  Medium upper sandstone 420 (1.25) 1.7
S41  Coarse lower sandstone 595 (0.75) 2.0
S4u  Coarse upper sandstone 841 (0.25) 2.2
S5  Very Coarse lower sandstone 1189 (0) 2.4

Table 5.1: Grain size classes and the textural propertiesrauntered in core E10-3.

The early phase of diagenesis was marked by the replacerineetk, unstable minerals
by clays (kaolinite and illite). This replacement would Batimulated compaction in the
early burial phase.

The following phase consists of the formation of hematite.alstudy of the Upper
Carboniferous of the Southern North Sea (Belt, van den, 1999a$ suggested that
hematite formed during 2 phases: primarily, directly affeposition, and secondarily,
during the penetration of oxidising meteoric waters as alte$ Permian uplift. In core
E10-3, the reddened braided channel sandstones are erdbedgiey, poorly drained
floodplain deposits. This suggests initial environmentaiditions were reducing and
therefore late hematite formation is possibly related tovan uplift. Late diagenesis
comprises the formation of ferroan dolomite, anhydritdesie, and barite.

5.2.4 Core selection

Of the complete core E10-3, a subset of core sections hasuseehin this study. The
selection of these sections was based on the inclusion df littaffacies and grain size
classes identified in the core. Furthermore there are tvep t9& meter in length, that are
adjacent w.r.t. depth (core 1 box 13 and 14 and core 2 box 134mnesp.).

The down core lithofacies classification (with the depthéasing towards the right)
of the selected core is shown in figure 5.2. As depicted th&we core selection can
roughly be subdivided into three parts. The first part casagpsimarily of the Crevasse
Splay and Interdistributary Bay lithofacies. This simplyane that this first regions re-
flects resp. proximal and distal deposits of this deltaienrsystem. The second section on
the other hand reflects the coarse grained deposits of aeldrawegr system. The third and
last section reflects predominantly Crevasse Splay lithesags well as Swamps which
partly consists of coal seems. Therefore we can state tinilsgbctions mainly reflect the
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Observed Facies in selected core sections

LEGEND

Figure 5.2: Lithofacies in the core sections applied in #isdy (BC* = braided channel,
CS = crevasse splay, F = Well-drained Floodplain, IB = intastibutary bay, IFL =
Poorly-drained Floodplain and SW = swamp.

distal deposits of the deltaic system.

With respect to the dominant grain size in these three sectiee would expect the
finest sediment in the distal deposits found in the Poorlyingid Floodplain whereas the
coarse to very coarse material will be found in the braideerrsediment in the middle
part. As far as the Swamp is concerned, since it is not doedhlay clastic sediment, a
classification in terms of grain size is difficult since thgamic matter is not composed of
grain (mineral assemblages) as such.

5.2.5 Data Acquisition

Core E10-3 has been analyzed using an XRF core scanner at tble Rational Insti-
tute for Marine Research (NIOZ) in November 2009. The coreldess scanned at two
different voltages (10kV and 30kV) which yielded an extgastompositional record of
the core (see table 5.2 for all elements). Whereas the Qaayecores described in the
previous part primarily consisted of fine-grained sedinmaixed with water, these cores
are completely dry. In addition to this, the core surfacelieen polished. Therefore the
measurement could be obtained directly at the core inste@dkiog measurements with
a thin plastic seal in between in order to protect the sensor.

In addition to the XRF data (intensities), the core scannertha ability to obtain
high resolution RGB-images of the cores. This ability was eietl which yielded RGB
images (8 bits per channel) with a resolution of 100®D48 pixels, which corresponds
in the along core direction to around 100 pixels per cengmeobre.

The data that is obtained with the core scanner reflects g mfatke relative concentra-
tion of each element in the measured specimen (in this caseaection). This intensity
is semi-quantitative in the sense that a high intensityirepaf Fe as compared to a lower
reading reflects a higher Fe content in the specimen. Howbkeesemi-quantitative per-
formance of the core scanning data is only exploited aft@ar&s of processing steps is
performed.
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10kv {AlSi,P,S,ClK,Ca,Ti,Cr,Mn,Fe,Co,Rh
30 kV {Zn,Ga,Br,Rb,Sr,Y,Zr,Au,Pb,Bi

Table 5.2: Elements that have been quantified in Core E10-3R#ycore scanning with
two different voltages.

5.3 Data Processing

The work flow of the data processing consists of four parts:
1. Pre-calibration filtering of the intensity data,
2. Calibration sample selection and acquisition,
3. First-pass calibration,

4. Second calibration step without elements that have a m@acentration< 1 % or
R? < 0.5,

5. Post-calibration evaluation of the calibrated data WighPCA filtering framework.

The first step is there to reduce the noise in the data indugéumeasurement system.
Subsequently the filtered data is being used to obtain a safibfation sample locations
that yield the most effective log ratio calibration proce¥ghen the data of these cali-
bration samples is available, a first pass calibration isgperformed to identify which
components are effectively calibrated using the log ratiedr model. Furthermore this
step is there to identify the mean (log ratio) concentratibeach element.

Then a second calibration step is performed, however nowrlby applying it to
a subset of the elements. After this final calibration rumg talibrated data is being
evaluated, analogous to the initial filtering step howewaw mased on a global noise
parametePN? derived from replicate analysif the calibration samples

5.3.1 Preprocessing

One of the pre-processing steps that is performed befolleratihg the XRF data is the
filtering using the PCA approach (see section (tag)). Thisredoy applying a Singular
Value Decomposition (SVD) and back transform to the origbesis using a subset of
all the eigenvectors. This number of eigenvectors is detexdby using the global noise
paramete®N?; the eigenvectors with the smallest eigenvalues which laasembined
variance smaller than or equalddl? are omitted in the back-transformation. The number
of eigenvectors that is being preserved is being referrad the ’intrinsic dimensionality’

of the data.
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In section 4 , we described the results for the unconsolidséeliment core. It was
found that the intrinsic dimensionality of the 7920 datasas only 5. For this consol-
idated core, we expect a comparable or higher relative nmition content because of
advantageous measurement conditions.

The filtering was performed by making use of a set of replicadasurements along
core on both 10 kV and 30 kV. From these replicate samples [di®noise parame-
ter SN2 was derived that determined the cumulative eigenvalueffcuttis cutoff was
applied to the clr transformed data decomposed into Pahé&pmponents. The filtered
dataset in terms of compositions was then generated by toackformation using a sub-
set of the initial eigenvectors.

We found that a total number of 15 principal components isatiffely above the
global noise leve®N2. This result confirms the hypothesis stated in (Weltje amdlifpii,
2008) that improved calibration results can be achievet wainsolidated cores due to
the simple fact that there is (1) less attenuation and scattdhe X-ray and (2) higher
repeatability due to the lack of pore water.

5.3.2 Calibration sample selection and acquisition

As mentioned before, the calibration samples were seld=edd on the raw XRF core
scanning data using the sample selection algorithm. Théstsen algorithm is based
on the simple geometric principle that a least squaresiifiegs more reliable if the
observations are distributed along the whole range of obdevalues. Therefore the
algorithm selected observations on the principal axesatgatiniformly distributed along
the range of observed scores. The number of samples perpaliaxis that are being
selected is proportional to the variance of this component.

A summary of the results of the selected sample can be segquie $.4. From these
results we conclude that that the program has successéldigted locations that cover the
entire range of values for almost all principal componefRts some components this is
not the case, which is induced by the fact that the algoritbesdot select the minimum
score and maximum score, but the 5% and 95% percentile bheeelucing the chance
of selecting outliers.

In figure 5.4 the observations as determined by the submtiiat selects locations
using PCA are depicted as well as the locations that weretedlexachieve a good down
core distribution of samples. From this figure we derive thatspatial spreading routine
nicely fills up the underexplored parts, where the red markewer the entire span of
the principal component scores. Furthermore there arecatitms selected that are too
close to each other which is achieved by selecting a minimetwéen-sample distance
of 8 cm.

It was suggested by Weltje and Tjallingii (2008) that sefert set of calibration
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Selected samples, n=20
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Figure 5.3: Selection of core sections and the recognizbdfiacies.

O

samples that include all lithological units would give tresbcalibration result. In order
to asses whether this is the case, we applied the set of grairtlasses (see table 5.1),
as identified by Panterra. When looking at table 5.3 it becoctes this selection of
lithological extremes is partly achieved. For 20 calibvatsamples 8 out of 10 grain size
classes are explored. However since the number of seleateglass is larger than the
number of lithofacies, the sample selection was also padrfor only a small set of
samples (hnumber of samples is equal to number of classes}thiBeselection 7 our of
10 grain size classes were explored. Based on these resultsaweonclude that the
sample selection establishes the inclusion of litholdgg&remes which, as suggested in
the work of Weltje and Tjallingii (2008), yields the bestibahtion results.

The calibration samples were acquired by simply using a haamm order to get an
idea of the variability of replicate calibration samplels28 samples were physically di-
vided into two parts and analyzed separately. The chipsaf@dgments were measured
w.r.t. their chemical composition using ICP which, in costrto the XRF core scanner,
yields semi-quantitative geochemical estimates (i.e. ppgr/kg).

5.3.3 Calibration of the XRF data

Since we now the set of calibration specimens analyzed wheir composition, we are
able to perform a first-pass calibration step. The first pakration yields the quality as
well as mean down core relative concentrations. This gqueliuantified by the signal
to noise parametd®?.
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Grainsize clas$ J M S1l Slu S2I S2u S3I S3u Ss4l S{lu
n=10 0 3 0 2 1 1 1 0 1 11| 7/10
n=20 0 6 3 5 1 1 1 2 1 0| 8/10

Table 5.3: The observed lithofacies at the positions of éhecsed indices for resp.-a 10
(n equals the number of unique classes) and 20, which is the amount of samples that
was acquired from core E10-3.

PC 1 with selected locations. Selected indices and min/max on PCs.
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Figure 5.5: Summary of the princompfilt algorithm which yedldhat the data could be
satisfyingly reconstructed using a subset of 15 PC'’s.

If the R? value for a set of elements (numeratoand denominator elemef) is
found to be smaller than 0.5 this component is omitted in do®sd run of core scanning
calibration. IfRJZD < 0.5 this simply means that the magnitude of the residual vaeias
smaller than half the magnitude of the variance of the lo@ iignal, which we found a
reasonable cutoff. In addition to this criterion, the elaisef which the maximum down
core fraction is smaller than 1 % were also omitted in the seéany calibration process.
We applied this cutoff because we are primarily interesteitié major rock-forming ele-
ments and not in trace-elements. The final set of elemertsvéira 'preserved’ included
Al, Fe, K, Si, Ti which represent an average fraction of thikloi 98 % (given that the
results from the initial calibration step is 'true’).

In table 5.4 theR? values are shown for all log ratio combinations; rows repnés
the numerator and columns represent the denominator. Ifoussl that Si as common
denominator yielded the best results by means of the ragu®8. The signal to noise
values for the model with Si as common denominator yieldsAld?.96 and for K 0.92.
Given that these three components already make up on avB#dage of the core, we
selected this as the 'best’ model.

The logratio-linear model shown in figure 5.7 shows that tbecentration of the
different components is always increasing w.r.t. the messilog ratio intensities. This
makes the obtained results plausible in the sense thassiagelog ratio intensities yield
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Figure 5.6: Biplot of the calibrated geochemical data of C&#0-3.

increasing log ratio concentrations. Furthermore theestbpt was found is significantly
large which means that the dynamic range of the log ratimsities is of comparable
magnitude compared to the dynamic range of the concemigatio

In figure 5.6, a biplot is shown of the clr-transformed eletsethat were selected
according to the quality criteria. This biplot illustratée covariance structure such that
parallel variable 'arrows’ indicate a strong correlaticgtween the two variables. This
means that there is one apparent signal in the dataset timgrises the clr-transformed
concentration of Al, Ti and K. Calcium on the other hand is niegly correlated to the
signal of this cluster. The other coherent signal repregensi concentration which is
negatively correlated with Fe. Furthermore we can concthdethe cluster comprising
Fe and Siis not correlated to the Al/Ti/K cluster becaus@eiirtd0 degrees angle between
the variable indicators.

5.3.4 Post-calibration filtering

The third step of the data processing is the evaluation ahtaeompositional predictions
by using the calibration sample quality. This quality was\a=l from the replicate sets
of calibration samples. These replicate calibration sasplovide a rough estimate of
the residual variance induced by sampling and the chemizdysis techniques that are
applied. Whereas the "initial’ signal to noise paraméemwas adopted to provide a sig-
nal to noise parameter of the XRF data itself, we can in prieaerive another signal to
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Al Ca Fe K Si Ti
Al 0 0.7346 0.8645 0.3372 0.9610 0.6336
Ca| 0.7346 0 0.3811 0.7897 0.7212 0.6745
Fe | 0.8645 0.3811 0 0.8855 0.8735 0.9311
K [ 0.3372 0.7897 0.8855 0 0.9752 0.8519
Si | 0.9610 0.7212 0.8735 0.9752 0 0.9739
Ti | 0.6336 0.6745 0.9311 0.8519 0.9739 0
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Table 5.4: Values of the signal to noise parametéfdrind in the second-pass calibration
step of the E10-3 data.
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noise parameter that is related to the calibration prodeg=n though the intrinsic dimen-
sionality of the XRF data itself is significantly higher forigicore due to the favorable
measurement conditions, the sampling conditions are t&filess favorable for these
'hard rock’ cores. There are two main problems that arisenwdoequiring calibration
samples for consolidated sediment.

The first problem mainly has to do with down core positionifidne acquisition of
a sample on a soft sediment core can be performed ratherademith reference to the
down core position; a small (diameter) sampling cylindepriessed into the soil and
retracted from the sediment with the sediment content @sReplicate samples are ob-
tained by performing the same procedure on a location atahee stratigraphic depth
such that is reflects more or less the same material. Howawaple acquisition as it is
done in this study has a much lower down core positioning raoyu

Another difficulty with this hard rock arises from the natafehe rock. The samples
obtained from this consolidated are, in contrast to the-sefiment cores, a collection
of rock fragments with a rather variable size and shape. Dubi$ variable size and
shape, replicate samples reflect different intra-sampli@hidity. In order to implement
the variability of the replicate samples into the calibvatprocess, the methodology of
the pre-processing PCA-filtering step is applied. This meélaatswe derived an estimate
of the intrinsic variability of the calibration samples bgrtving a median clr-distance
between replicate sets. However whereas the prior franlewas related to the replicate
variance of the intensitidsin the form of812, we now replace thefor anW that reflects
the compositional distance within a replicate setnafalibration specimen replicates:

OW? = med“{i[clr(vv.) - <c|r(V\/.)>]2} (5.1)

a global intrinsic noise parameter is obtained by takingleeian value over all replicate
setsk:

SN = med, { SW?} (5.2)

This framework yielded that in principle only 2 principalraponents can be considered
to be above the global noise level, given the variable suiiisat, Ca, Fe, K, Si, Ti. In
other words; two principal components can effectively diéscthe information content
of the data. This means that the 2-dimensional biplot shewiigure 5.6 in principle
shows the total information content of the data that can besidered to be above the
noise level.
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5.4 Grain Size Modeling

Core sections are usually analyzed using a large set of measat methods. In this
study we will focus on the XRF-bulk and the images which willthe primary grain size
proxies The grain size data itself consists of (1) a down core diaasion in terms of

grain size classes and (2) the more detailed analysis ofptogs.

Core Description

The core description represents the data that was obtaynadual inspection of the core.
The grain size component of the core description includesrdirmuous classification
record of the core in terms of grain size classes. Althoughpmpearance the resolution
of the classification reported in the core analysis repastehhigh resolution (red. itis a
continuous record), the intrinsic resolution is low. Thaghe result of the fact that within
a core section that is assigned a certain class, the 'trassification will most probably
yield a mixture of different classes. This implies that tleeecdescription has, although
not quantified as such, a limited resolution which can bestedad into aninimum down
core class-size In other words; if there is a small contrasting bed of 1 cnckhess,
this will not be classified as such because of its small 'sik®vertheless in some cases
core sections are classified as mixtures, however any ifioom regarding the mixing
coefficients is lacking. The unquantifiable resolution amellack of mixing coefficients
in case of a mixed class, implies that there is a level of saivjey involved in this data.

Images

Besides the data that has been acquired as part of the coysianeadrk flow, images have
been obtained as part of the XRF core scanning. These imalgkegaioable information
in terms of color and texture; it is not hard to imagine that dolor and texture of the
rock holds information concerning the lithotype as well esiigsize.

The resolution of the images is high compared to consumeerasn(i.e. 100 pixels
per centimeter in the down core direction). However the iesagre not suitable for the
detection of individual grains. Given the fact that 10t corresponds to 3 to 2 phi-
units, which is classified in the Wentworth classificatioradme sand, the possibilities to
identify individual grains are limited to the coarse parttd grain size spectrum.

Although the application of the textural properties is lbied due to the resolution, the
colors on the other hand contain information w.r.t. theditigies. Given the nature of
RGB data, we will apply some adjustments to the RGB data forgaging convenience.
One of these adjustments is the fact that the color, in tef@sbit RGB values, is only
partially a compositional quantity. The observation inrigrof each of these channels
range (for 8 bit values) between 0 and 255 where 255 meana fha¢l is fully saturated
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Four component RGBD simplex

Zcoord

Ycoord

Figure 5.8: The RGBD solution space spanning a 4-componeiiex.

with either red, green or blue (red. a white pixel). Although fraction of each channel
(RGB) represents a compositional quantity, the sum of theevafueach channel does
not necessarily have to sum up to an arbitrary but fixed vdluether words, there is an
additional component that determines the 'darkness’ wiattbws directly from the sum
of the RGB-values. This darkness quantity, denoteXfpllows from the RGB-values:

X 768 _im (5:3)

for an 8 bit system. The value of 768 is the maximum possibleevaf the summed
RGB-values; 3< 28 = 768. However the contrast ¥y is optimal if the RGB-data have
been stretched such that they range between 0-255. Otlediveislarkness-paramebey
will dominate the RGBD composition.

By performing this transformation the pixel valu€X;, Xo, X3, X4} become a com-
positional quantity in the sense that they sum up to 768 fer&fbit case. Therefore
the solution space now spans a 4-component simplex (see fig8rand 5.9), op*.
This also means that by performing a logratio-transforomgtthe RGB data is (1) in an
unconstrained space and (2) in the same units as the geaiatata (clr-transformed
composition).
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Figure 5.9: RGBD color scheme.

RGBD of Core E10-3

After the primary processing step of transforming the RGB tdBR(the data is being
turned into a dataset equally sampled as the XRF core scadatag Since the logratio
transformed data now comprises an unconstrained spaceam&raply take the empir-
ical mean of the clr-transformed RGBD-data within the mead@vn core locations.
These measured locations are modeled>ag tm building blocks which is reasonable to
assume, given the sensor’s footprint. Based on the instrianssetup, it is reasonable to
assume a uniform effectiveness of the X-ray source andvwecen the 1x 1 cm blocks.
The down core strips of 1 cm in width are shown in figure 5.10e @ibwn core RGBD
data on the other hand is shown in figure 5.8. In this figureethee a couple of different
processes we observe in the RGBD-composition.

First of all there is a strong increase in red for the first 1B8avvations, which cor-
responds to the first core, core 1 Box 13. This is not surprisinge the corresponding
core section (core 1; box 13) contains oxidized sandsishish yield a relative increase
in redness. The other clear events occur between 700-808581850 which correspond
to core 2 box 18 and core 2 box 33, respectively. Also for tloeses it is not surprising
that there is a tendency of increasing 'darkness’; the s in these cores have a very
low reflectance w.r.t. all colors.
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Figure 5.10: Cropped core sections, 1 cm in the cross-corectiion.
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Figure 5.11: Down core record of the logratio RGBD-data.

RGBD Information Content

Given that we mitigated the semi-compositional nature ef RGB-data, the RGBD-
values can now be assessed w.r.t. their covariance steudtufigure 5.11 we observed
some level of correlation between green and blue for ingtacproper way of evalu-
ating the information content of a set of correlated vagabs to perform PCA, thereby
reducing the dimensionality of the data. The loadings ofveables on the first two
eigenvectors obtained with PCA are shown in figure 5.12. Giliahthe first two prin-
cipal components represent 99% of the variance, it is redderto say that this 2-D plot
summarizes the information content of the RGBD data.

In the biplot can be derived that the first principal compdrierdominated by the
darkness variable. The second component on the other hanshéasure of the amount
of blue, relative to the amount of red. Given the nature ofrtiagerial, we conclude
that this is in line with the expectations. The dominant algined. the first principal
component) is merely a grain size signal; highly reflectiaadsor low reflective shale.
The second principal component on the other hand reflectsetheshales vs the blue
shales.

Given this RGBD record, a straightforward classification dase the RGBD data

is able to discriminate reasonably well between red shhleg’ shale and coal layers.
Additionally the 'darkness’ value is expected to correlaiey well with the grain size.
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Figure 5.12: Biplot of the RGBD data of core E10-3.

XRF core scanning data

The XRF core scanning data has been calibrated using the LRGHodous as was found
for the measured intensities, the calibrated data als@sept a limited dimensionality.
The resulting concentrations for the subset of elementsaws in figure 5.13.

However in order to evaluate the performance of the geoctteyas a grain size pre-
dictor, we should determine the correlation coefficidsegsveergeochemistry and grain
size. A straightforward way to asses this is to obtain theatation between grain size and
geochemistry in terms of additive logratio pairs with eletse and ] wherei = 1,2,..D,

] =1,2,...D andi # j. The results of this are shown in figure 5.5.

Here we observe three element pairs showing a strong iittignain size signal which
includes Al/Si, Ti/Si and K/Si. The magnitude of these Idgra are negatively correlated
with the grain size which is in line with what we would expeait; increase ig-units is
analogue to a decrease in grain diameter. In general we expenrichment of Al and K
in the fine sediment whereas Si and Ti are concentrated inoduse fraction. This is the
result of the relatively high resistance of the minerals mali Si and Ti primarily occur.
On the other hand the fine fraction is expected to reflect highi Aatios as a result of the
relative low resistance against chemical weathering oenainphases containing Al (i.e.
feldspar).

Although the Al/Si ratio is found to partly reflect a grain sigignal, other logratio
pairs also show considerable correlation with the graie.sidditionally the RGBD-data
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Figure 5.13: Down core geochemical record of the scanned Ed@&-3 sections.
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Figure 5.14: Biplot of the logratio calibrated XRF, RGBD agrhin size data.

was found to contain lithofacies information by (1) the #ypito discriminate between
redox-environments and (2) the ability to discriminatenmsn sand and shale. The co-
variance structure of all input quantities (RGBD and XRF-buglgresented in figure 5.14
in a biplot. From this figure can be derived that the only paatmcorrelating positively
with the grain size is the darkness. As far as D is concerteslig in line with what we
expect, given the relative 'darkness’ of the shales. Alseatbgative correlation of Si with
the grain diameter is analogous to what we would expect. & hesults imply that the
principal components can be given a geological/sedimegicdl context. Whereas the
first principal components is a grain size signal, the seqoimtipal components reflects
theredox-environmenhigh score is an oxidising environment whereas a low saake |
cates a reducing environment. This interpretation is basethe loading of red on the
second principal components and its negative correlatitmbiue.

Summarising we conclude that we have many indicators whighauable as a grain
size proxy. Although linear regression with Al/Si for inste will yield proper grain size
predictions, we expect to get the best results if the graia & predicted while using
all variables, geochemistry and RGBD, simultaneously. Givenfact that additional
data sources (red. grain size proxies) can be applied i twdupport the XRF-based
prediction, there are endless possibilities w.r.t the rhadghitecture and complexity. A
widely used technique to apply when multiple predictorsaalable for the estimation
of a single variable is Multi Variate Regression, or MVR.
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Al Ca Fe K Si Ti
Al - 0.2949 0.2896 0.0590 0.8638 0.0554
Ca| -02949 - -0.1698 -0.2781 0.0682 -0.2891
Fe | -0.2896 0.1698 - -0.2793 0.2633 -0.2753
K | -0.0590 0.2781 0.2793 - 0.8221 0.0208
Si | -0.8638 -0.0682 -0.2633 -0.8221 - -0.7252
Ti | -0.0554 0.2891 0.2753 -0.0208 0.7252 -

Table 5.5: Correlation coefficient between the differenttedrrsformed element pairs and
the grain size record. Columns represent the denominates the numerator.

5.4.1 Multi Variate Regression (MVR)

Multi-Variate Regression is probably the most straighti@mmvmodel to adopt when there
are multiple predictors for one variable. In this case tlegmtors may include any of the
available data; XRF, RGBD, spectral gamma ray, etc. The muititearegression model
then follows forn predictorsx by finding a least squares solution w.ytas follows:

y=ap+aixs +aXo+...a%n+ £ (5.4)

However whereas the model shown above is a first order polialpaiso a model with
the variables in an higher order foxxthcomprise a linear model. However in this case we
will use the first-order multi-variate model.

The reason of choosing this first-order model is that, gitenfact that the composi-
tional change with grain size (i.e. the TF) was successfuliygleled as a compositional
linear function, a first-order regression approach to tegliain size from composition
makes sense. Nevertheless this methodology relies onmamsintassumption about the
grain size distribution. Since it maps the compositionatlyeon the grain size, there is
an intrinsic assumption about the grain size distributiba;grain size distribution is such
that the integral of the product between GSD and TF equalsdhgosition at the mean
grain sizeu.

Cipu
Co.u +oo
: :/ 6ij (%) fi (x)dx (5.5)

Co,u
Or, more general, the grain size distribution is infinitatyadl in the grain size spectrum,
resulting in the composition as a function of grain sizedwihg the intrinsic Transfer

Function. However given that we are not able to estimate t8B'&from the data, we
think this assumption is reasonable. The multi-variabledr system given above can
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be solved in a straightforward way using least squares rdetbgies or any other opti-
misation strategies. Here the Expectation Maximisatiod) &lgorithm has been used,
however the principles of this optimisation strategy faitsade the scope of this study and
are described in the work of Meng (1993).

The input data of the MVR includes both the calibrated XRF all agethe RGBD.
However both quantities are alr-transformed, in order ibzatthem in their uncon-
strained form. For the XRF-data we apply Si as common dendoriméhich was found
to yield logratio variables with the most pronounced catieh with grain size, given the
high level of correlation of the Si/Al ratio. Apart from th&t has an overall high concen-
tration of and it showed a high performance in the XRF calibrastep. Furthermore we
apply the alr-transformation to the RGBD-data by using D asaomdenominator. This
decision is based on the overall high level of correlatiotween lithology and darkness.
Furthermore the fact that the darkness is the dominant lsigiiae RGBD data made us
decide to use it as such.

5.4.2 Classification

Besides the quantitative approach, we also applied a catagprediction. The cate-
gories or classes with which we wish to characterize the aoeethe grain size classes
that were identified in the core report (Boels, 2003). Althowmy other categorical
dataset can be applied, the success of the classificatidwisusly determined by the
geochemical variation between the different classes. Tineapy reasons for performing
the classification is to get a quantitative classificationdore sections that comprise a
mixture of different classes. However also it can also giea way of quality control on
the final classification results. A well-established teqgieito cope with classification as
well asmixturesof classes is based on the Bayesian theorem.

Classification

Given that we have a partitioning of the core in terms of @asa classification strategy
is defined with the (clr-transformed) XRF and RGBD data as infiiis classification
scheme is based on the Bayesian theorem:
vy +_ P(G)

This theorem implies, in words, that the probability of tHeservationX to be of class

I is determined by the likelihood of (red. the marginal distribution of given a class
Ci) and the probability of encountering claisat all (theprior probability) divided by
the marginal distribution of X. The practical applicatiohtbis Bayesian framework to
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classification is performed by fitting Probability Densityrietions (PDF’s) to the dafé
in the different classes, thereby obtaining a functionahfof the likelihood.

The input is obtained by supplying the observations withdésignated class, which
represent the ’training data’. From this training data thergmal distributions of the
variables in X, given they are member of clasare derived. Subsequently a global class-
probability, orprior probability P(C;), is empirically derived. Together with the marginal
distributions ofX within the solution space, that also follow from this traigidata set,
this can be readily plugged into the Bayesian framework.

After this training step, an observatiofithat is situated somewhere in the solution
space can now be assignegasterior probability P(C;|X) for a class. However, more
general, this probability can be interpretednaiging proportionsof the different classes.
Using this mixing proportions, the forward linear mixing deb for a given quantity
for observatiork, with the values of this quantity for the classes 1,2,...C denoted by

Y1,¥2,...Yc: c
Yk = _Zl)/i -R(Gi|X) (5.7)

An illustration of this classification technique is showrfigure 5.15. The two figures
show the observations within X that are known to reflect claasd 2 , respectively. A
PDF is fitted to this subset of the data which yields a funaidorm of the probabilities
within the solution space of. By plugging the result of this function for an arbitrary out-
come ofX, together with the prior probabilities & andX into the Bayesian framework,
the posterior probabilities for all classes are obtained.

The improvement of using this approach versus the classificas determined in
the core description is that now there are mixing propostiofnthe different grain size
classes for every observation. Therefore this approadlitédes a quantitative approach
to a categorical data type which, in contrast to the curyamsled approach, also yields
relative mixing proportions. If necessary, it can still bEisformed into a 'hard’ classifier
by selecting the class for an observatioior which the posterior probability is maximal.

5.4.3 Results

The two methods (MVR and classification) have been applietiéadata of core E10-

3. Both methods yield a down core grain size record that comggs the currently

available grain size record, as obtained from the classifita However whereas the
MVR is 'trained’ with the plug analysis, the classificatios based on the continuous
classification record.
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Figure 5.15: Graphical representation of the methodologfiting a multivariate Gaus-
sian distribution to the data X for two classes.

MVR results

The results of the MVR for core 1 and core 2 are shown in figuté and 5.17, respec-
tively. In the figures are the core images, grain size derfvech the core description
(continuous green curve) and the plug analysis depictezk(gmarkers).

What can be observed in the MVR predictions is thatterall prediction is unbiased
within acceptable limits (see figure 5.18). Neverthelessdlare some core sections that
show a biased prediction w.r.t. the core description-@erigrain size. However this bias
is the direct consequence of the discrepancies betweewthésta sources as a result of
ambiguous classification; observations that are classifsed mixture however without
the mixing coefficients. Overall though it is reasonabledsume that the plug analysis
results are closest to the ’true’ grain size.

Furthermore the MVR results show a significantly higher hetsan; it detects small
scale variability w.r.t the grain size such as 3702.7 m. Addally the sudden change
in lithotype at depth 3699.6 is well reconstructed, desghieeabsence of any magnitude
control on the grain size by neighboring plug observations.

With respect to the prediction discrepancies a standardéhtiew of the residuals is
found of 1.0¢-unit (see figure 5.18). The consequence of this value is theen a
Gaussian distribution of the residuals, is that 66 % of theeolmations will be not more
than 1@-unit discrepant with the 'real’ grain size. However thisoisly true under the
assumption that the grain size derived from the plugs i€’tru

Classification Results

The results of the classification are shown in figures 5.20 &2l 5.22 which shows the
original classification as well as the grain size predictlmased on the posterior probabil-
ities and the grain size of the corresponding class.

The predicted grain size record in figures 5.20,5.21 and, Sl2@&vs an overall good
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Figure 5.16: Core section§(1,13), (1,14),(1,18),(1,38),(2,3)} (core, box respectively)
of E10-3 together with the grain size, as obtained from plugjysis (green markers) and
the MVR predictions (blue).
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Figure 5.17: Core section§(2,4),(2,13),(2,14),(2,18),(2,33)} (core, box respectively)
of E10-3 together with the grain size, as obtained from pluglysis (green markers) and
the MVR predictions (blue).
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Figure 5.18: Histogram of the prediction discrepancieste MVR and a normal proba-
bility plot.

match with both the plug analysis grain size and the corerget®n results. Furthermore
the overall grain size prediction obtained with the BayesiEssification is unbiased,;
figure 5.19 displays the residuals between plug data andgpeedgrain size. However
the predicted grain size record in core section 18 (core énseto be deviating from

the core description results. There are some bands in tleevdaich are classified by
the Bayesian scheme as small bands of coarse material in & widine-grained shale.

Also the transitions at 3663.6 and 3663.9 m downcore depgtlilgrclassified as smooth
transitions and (2) sometimes repositioned in the down destion with respect to the
core description.

Another core section for which the classification resultgsgicantly different from
the core description is core section 14 (core 1). Here a saation of 10 cm is observed
for which the predicted grain size is relatively coarse cared to the core description.
The same result, but less pronounced, was obtained with #We Rpproach; the small
band with light-colored material is classified as a relatiwarse-grained rock.

The predicted grain size in the other core sections is in rgémet deviating much
from the initial grain size. However this finding is rathewial since the unsupervised
classification has bedamnained with the input data. Therefore one should keep in mind
that the XRF-guided classification is in the absolute sense&lneer to the reality than
the input data, however it indicates regions where the ptiedi based on XRF and RGBD
deviates from the initial grain size record.

5.5 Discussion and Conclusions

Question 1:
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Figure 5.19: Histogram of the prediction discrepanciestsd Bayesian Classification.

Can XRF core scanning data of consolidated sediment be ssfatlgscali-
brated?

XRF core scanning has shown to be an effective geochemicgiinggdevice for

consolidated cores. When applying the PCA-filtering to dataaseé E10-3, 15 prin-

cipal components (of the 23 elements measured) were fourk tabove the noise
level. From the calibration of the core itself we concludattthe XRF core scanning
data of core E10-3 has been successfully calibrated. A slegass calibration step
whereby only preserving the elements for which the signaldise ratio is higher than
4 and the down core concentration is higher than 1%, retuthecelements Al, Ca,

Fe, K, Si, Ti. Nevertheless the calibration samples in thigly have a significantly
lower quality than the intensity data, leading to an ultienedlibrated data dimensional-
ity above the noise level of 2. This is the result of the rathaccurate sample acquisition.

Question 2:

Is it possible to fill-in the gaps in between the sparse plugenlaions in
terms of mean grain size?

The XRF core scanning data and the RGB data have been embedttedgrain size
prediction work flow. The quantitative and direct approa€hhe grain size prediction
by using the plug data yields a high resolution grain size@nmaevith a minimal bias.
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Figure 5.20: Core section§(1,13),(1,14),(1,18),(1,38),(2,3)} (core, box respectively)
of E10-3 with initial classification (above core image), thard’ Bayesian classification
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Figure 5.21: Core sectiong(2,4),(2,13),(2,14),(2,18),(2,23)} (core, box respec-
tively)of E10-3 with initial classification (under core imalg the 'hard’ Bayesian clas-
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Figure 5.22: Core section§(2,33)} of E10-3 with initial classification (under core im-
age), the 'hard’ Bayesian classification results (aboveecionage), the input grain size
record (blue curve) and the predicted grain size record @adve).

Although it followed from the data that some skewness is gmesthe discrepancies
between the plug data and the predictions stays roughlymiild phi-units in 66 % of
the cases.

Question 3:

What is the added value of XRF core scanning data in the psookdown
core lithofacies classification?

A down core classification based on geochemistry and RGBD{uata been applied
in order to get a continuous record in terms of grain sizeselas From the correlation
coefficients of the different predictors w.r.t. the graimessignal we conclude that the
elements Al, Si, K and Ti are the most valuable contributorthe grain size prediction.
The tendency of relative enrichment w.r.t. Si with an insreg grain size and depletion
of Al is widely accepted.

The classification scheme identified 2 core sections as leisglassified. This in-
cludes core 1 box 14 and core 1 box 18 where the XRF-guidedfatas®n has yielded
a relatively coarse-grained classification w.r.t. the imghata. Additionally in these core
the XRF-guided classification has identified some small doane shifts of the class-
boundaries. Since the classification scheme has a praabflbundation, proxies for
the class mixing proportionsvere obtained rather than the ’hard’ classification in the
core description. This resulted in smooth down core traomstin terms of grain size.
These observations illustrate how the XRF core scanning earséful as a quality con-
trol. Furthermore the ability to increase the resolutionhaf classification with an order
of magnitude can be considered an improvement. Nevertheleslidation of the core
predictions in terms of grain size (classes) is necessaegtimate the performance in a
guantitative sense.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this study we tried to find answers to three main questigvswill conclude on these
research questions one by one.
Question 1:

How can the current work flow be optimized to reduce costs andd in-
crease accuracy and or precision?

Based on the log ratio framework suggested by Aitchison, exifilg step was suggested
that applies the uncertainty estimates of the XRF by rem@ieaualysis. Additionally a
sample selection criterion was suggested in order to aglaie\effective XRF calibration.
By applying these two algorithms to core 7919 and 7920, it waed that both algorithms
are effective. The sample selection criterion yielded acédn in the amount of samples
needed to obtain the same level of prediction quality thabtsined when the samples
are selected randomly. Additionally the pre-calibratidtefing step was found to result
in lower discrepancies between predicted and 'true’ gemdstey.

When applying the sample selection algorithm to synthetia,dawas found that the
same calibration quality was obtained with around 20-308% gamples compared to the
random approach. Furthermore the filtering step resultedsignificant increase in the
signal to noise ratio. The performance of both routines vigenga statistical foundation;
the sample selection criterium is effective for all numbgcalibration samples and the
filtering step was found to be effective up to a maximum of Ii®gasfor this dataset
(level of significance 5 %).

When applying the sample selection algorithm to the data & EA0-3, it designated
20 sample locations on which covered 8/10 of the identifiexdngsize classes. When
the number of requested samples was the same as the numiiaotyfples, 7/10 grain
size classes were explored. These results illustrate ihty @b the algorithm to identify
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lithological extremes, although it has no lithologicalaatput.

Question 2:

Can we build a forward model of basin infill in a formal geochemical and
textural context?

Based on the concepts of linear mixing of endmembers withia gize dependent com-
position, the LINMIX model was built. The forward LINMIX maing for core 9508
has been successful in the sense that it yields compodifioedictions of comparable
guality of the XRF-core scanning data. These predictiongvauind to be obtained for
1 specific EM-TF configuration. This model was found to havealggical significance
because the two endmembers that were assigned 1 TF, havédbagfied in previous
work as reflecting sediment of a different sediment sourcka(e vs fluvial). Chemically
the obtained TF’s correspond to the model findings; fluvidirsent has in general, in
contrast to eolian sediment, a tendency to be more rich inTle& concentration of K
on the other hand is generally lower in fluvial sediment. Apgeom the TF'’s itself,
the corresponding endmember composition are within aabéplimits of present-day
observations of fluvial and eolian sediment collected in @éntfrica.

Question 3:

Is it feasible to predict textural properties based on geocémistry, given
multiple data sources and a known, straightforward provenance setting?

Since the prediction of textural properties was based on X&RE€ scanning, first the per-
formance of the scanner was investigated when applied teatidated sediment, the re-
sult of which are encouraging. The PCA-filtering step preseid5b principal components
of the 23 elements measured.

Subsequently the XRF core scanning data and the RGBD data hasinbedded in
a grain size prediction work flow using Multi Variate Regress(MVR). The discrep-
ancies between the plug data and the predictions stayswmlithig-units in 66 % of the
cases. Additionally a classification scheme based on Bay&sierence identified two
distinct core sections that should be classified diffeyegten the XRF and RGBD data.
By applying this Bayesian classificationixing proportions of the different classes are
obtained; something which the core description is lackibe core sections of which
the Bayesian classification deviates from the core desoniicludes core 1 box 14 and
core 1 box 18 where the XRF-guided classification yields ativelg coarse-grained
classification w.r.t. the input data. Additionally the XRHEided classification resulted in
small down core shifts and smoothening of the class-boueslarhese results illustrate
the value of XRF core scanning as a quality control. Furtheentioe ability to increase
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the resolution of the classification with an order of magiétican be considered an
improvement. Nevertheless a validation of the core pretistin terms of grain size
(classes) is necessary to validate the predictions qatngly.

General research question:

Can geochemical data be used to obtain textural propertiesfailiciclastic
sediment?

The answer to this question is not so straightforward aneidép on the available geo-
logical information. For instance in case there is evidetheg the sediment originates
from the same source, a fairly good grain size predictiorossiple. Carboniferous core
E10-3 was texturally characterised rather accurate.

However in the absence of source-information, the answehitoquestion is less
straightforward. Although the LINMIX model is capable oftworporating source infor-
mation, factors like the validity of the compositional tdegind thebelief in the correspon-
dence between EMMA-derived grain size endmembers andrtie #ndmembers affect
the answer to this question. In the test-case that was disdus this thesis, the LINMIX
model was able to reconstruct the input data. However inrdadapply this model, ad-
ditional information is necessary to predict grain sizee Tdirect’ grain size prediction
based on geochemistry, which is essentially the 1-TF madeled to be insufficient.

6.2 Recommendations

Based on the conclusions and the findings presented in tlustinee suggest a couple of
recommendations. These recommendations are subdivittedifferent topics knowing;
sampling-related, model-related, scanner-related aftdae@-related suggestions.

Sampling

XRF core scanning data relies on two aspect; intensity datédt@sned with the scanner
and geochemical data of the calibration samples. Whereaggrimary source of error
for the unconsolidated cores is on the intensity data smiethie consolidated core the
final geochemical prediction is primarily affected by thdélmation sample quality. This
‘quality’ is not only determined by the quality of the geoafmeal analysis techniques, as
well to the sampling itself; variability of sample size anctaracy of its corresponding
down core position.

The used sampling methodology (using a slash-hammer)drstady is definitely not
the most accurate one, because chips will come off at pladesvacohesions which in
itself is not independent of the composition. Future sangpshould be performed similar
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to the acquisition of plugs. Using a small drill or some oteampling device will most
probably give a direct reduction of the residual variance.

Another important question that should be answered foréutise of in-situ XRF
on consolidated cores is how many calibration samples agdatkin order to perform
proper grain size prediction/classification. Given thailtssnve obtained w.r.t. the num-
ber of explored lithotypes, we suggest to use at least as roalityration samples as
there are lithotypes being identified. This is based on thdirfgs that for n = 20 and
12 lithotypes, almost all lithotypes were explored (8/I)rthermore the prediction dis-
crepancies found for the synthetic data stabilized aftewrad 15 samples.

Nevertheless this sampling strategy is merely a rule-ofaihand has no strong phys-
ical foundation. Therefore we recommend further reseanctamnpling strategy and addi-
tionally on the general applicability of calibration samglfor this purpose. For instance
we can imagine that a clean sandstone without any 'contartéshlas a pretty much
standard composition, at least within the same sedimebtsi and stratigraphic level.

Linear Unmixing

A strong recommendation about the LINMIX model is the facttttine reliability of the
endmember compositions can be drastically increased. Byplsagthe pure endmem-
bers, the estimation of the TF’s is simplified, making the elaoutput more reliable.
Another topic of discussion is the information content af TFs. The extrapolation of
the geochemistry towards the composition of the sourcenmbtes applied in this study
is disputable due to several reasons. First of all the nuimfcelements that have been an-
alyzed is very small leading to a large blind spot. Espectak fact that the geochemistry
of the size fractions was not expressed in terms of Si coratoris can be considered a
hiatus. This because Silica is one of the major rock-fornalggnents. Secondly it is the
general idea that the chemical alteration of the matermbHarge impact on the composi-
tion of the weathering products, making the reconstruatidhe source rock composition
from sediment difficult. Especially elements that are riyasbluble will not record their
crustal abundances in any simple fashion (Taylor and Mcaenh981). Finally the ex-
trapolation is only valid under the assumption that the cositppnal linear model of the
TF is valid along the entire grain size spectrum. Recent warfiedd data has shown that
the compositional linear trend shows some nonlinearitielivwere found to occur at
specific grain size values (Tolosana-Delgado and von Egma2010).

This implies that if the LINMIX approach is applied on anatlere, the set of ele-
ments in which the composition is being expressed shoulgdsma large set of elements
that includes relatively insoluble elements. Secondlyerdata should give more insight
into the compositional behavior along the grain size spettrThis could lead to a more
in-depth understanding. Furthermore it should be invagtid) how applicable and valid
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Figure 6.1: The calculation of a variogram in the stratigtap directions yields grain
size information while perpendicular to this direction, nasal correlation will be found
(synthetic example!).

these TF’s are in the context of their spatial and tempotahual.

The scanner

The quantitative grain size prediction by XRF core scanniag $hown to provide infor-
mation that cannot be estimated in an acceptable time sjaq e current methodolo-
gies. Especially because the scanner can even go beyonérheypplied XRF-sensor
resolution of 1 cm. What need to be investigated though is kérehere is a need for
higher resolution geochemical record. If so, we suggestrggravement of the scanner
in its current setup w.r.t. its camera. One of the limitasiof the scanner’s camera is the
resolution. This because it does not facilitate grain sregligtion supported by identifi-
cation and/or counting of individual grains. With the cuntreesolution this methodology
is restricted to the coarse end of the grain size spectruma-saed and coarser.

If the resolution of the camera would be higher, there ard-esthblished multi-
variate techniques for the derivation of grain size. A pagsapproach in this would
be to first determine the direction of the stratigraphic I¢see figure 6.1). Secondly the
calculation of a directional variogram should be perforrtethap the spatial correlation
along the core. Subsequently the range of the variograntd¢bah lead to a proxy of the
grain size. However as mentioned, it is important that thetigraphic direction is taken
into account. This is especially important in presence dirsentological structures such
as cross-bedding because if one would determine a varioginder a direction other than
the stratigraphic level, one will end up with an unexpeactéollv spatial correlation. This
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because in a cross-bedding structure there is beddingevhating fine and coarse sedi-
ment and if the variogram is not determined parallel to tleidding, the spatial variation
is absent leading to a mis-classification.

Another way of extracting the grain size distribution woblklto apply an unmixing
strategy on the RGBD data for a given XRF observation. GivenR@BD data com-
prises a compositional quantity, it can be unmixed usingg@WMA algorithms into the
number and fingerprint of these color-endmembers. We inegbiat if there is a homoge-
neous mud at the specific section of the image, the unmixitigietibe very effective. On
the other hand if the material has a strong texture, it leadse identification of specific
endmembers; either grains, pores or possible even cenfisatbdequently the unmixing
strategy is performed, analogous to the unmixing in terngraih size endmembers, the
chemical fingerprints of these endmembers can be derives. miéans that if the XRF
scanner has measured a transition from pure mud to sandsatigtional zone of the
grain size record can be filled in by support of the color data.

The Software

A recommendation w.r.t. the data acquisition follows digeérom the suggested filter-
ing and sample selection approach. One of the problems Witheasuggested methods
and techniques is that it complicates the whole work flow. reJseust take time to filter
their data, subsequently do the sample selection. Furtiverthey have to decide about
a strategy of replicate sample acquisition; where shouwdg be acquired and how many
replicate analyses are necessary for a reliable repaatadstimate.However the algo-
rithms suggested in this thesis can be implemented on thesatton side, rather than the
user side. If the scanner has scanned a core section, theacmeastructure of the data
can already be estimated. Given that the covariance steuofuhe intensities is known,
although not calibrated as such, the selection of 'extréna@alogous to the calibration
sample selection, can be performed. The replicate analysiese 'extremes’ seems a
reasonable approach because the repeatability of theescanpartly determined by the
composition of the bulk. As such, this approach will provadesliable estimate of the re-
peatability. Nevertheless this approach asks for a diresttpcan spectrum quantification;
the calculation of element intensities from the observextsp. Given that this approach
iIs more user-friendly since it is full-automatic, we recoemd a direct and embedded
spectrum analysis in order to facilitate this full-autoimatork flow.
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Data Cores 7920 and 7919
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Figure A.1: Composition of calibration sample vs. predictednposition of core 7920.

Al, denom = Ca

Si, denom = Ca

Cl, denom = Ca

K, denom = Ca

- - ’
0 ‘
-1 +
- + +
-1 P R
o o [S] Q 8
g -2 g ol g g
o o 2, O -25 o
i<} o .l o e -3
g3 g7 g 3 8
[=2] {2 {2 =2
=} o -4 o o
] ] o] ’ 4 35
-4 -35} ¢
5 ,
-5 -6 -4 -4
-4 -2 -6 -4 -2 0 -4 -3 -2 -4 -3 -2

Logratio Intens.

Ti, denom = Ca

Logratio Intens.

Mn, denom = Ca

Logratio Intens.

Fe, denom = Ca

-2 - -1
-5.5
s 3 G s —15
c /7| S -6 c ’
8 © 13 + 3 P
8 -4 g 8 -65 S -2
o o o
g g 7 g
J 5 i 1 25
4
-75
’ S
6 8 ) _SL
-6 -4 -2 -8 -7 -6 -5 3 2 -1

Logratio Intens.

Logratio Intens.

Al Si
0.2 1
/ /
/ 0.8 /
S 0.15 / [T /
< / < ’
o o
o O 0.6 /
° o /
g o 8o &
kS 5 04 [
o o
@ 0057 / a
/ 021/
/ /
0 0
0 01 02 0o 05 1
Reference Conc. Reference Conc.
Ca Ti
1 0.01
/ /
/ /
s 08 , 0008 ,
c / c
o o
O 06 O 0.006
o o
Q Q
o o
L 04 £ 0.004
o o /
7 /
%02}, % o0002| ,
/ /
0 0
0 05 1 0 0.005 0.01

Reference Conc.

Reference Conc.

Logratio Intens.

Logratio Intens.

Cl K
0.06 0.04
/ /
/ /
g 0.05 + ! g 0.03
S 4+ S
(¢} L o
T 004 T 002
k3] 3]
o o
g g /
& 003 & 001} /
/
7/

0.02F
0.02 004 0.06
Reference Conc.

0
0 002 004
Reference Conc.

x10Mn Fe
1 0.1
/ /
/ /
g 08 L g 0.08 ,
o / o /
O 06 / O 0.06
° =l
Q Q
3] °
L2 04 £ 004
o <
/ /
% o2f, % 002},
/7 /7
0 0
0 05 1 0 005 01
Referencg {gonc. Reference Conc.

Figure A.2: LRCE model results of 7920.
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Chemical composition

Figure A.3: Down core compositional record of 7920.
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Chemical composition
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Figure A.5: LRCE model results of 7919.
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Appendix B

Lithofacies in core E10-3

Described below are the different lithofacies, as idertifie the core report of Core
E10-3 (Boels, 2003).

Braided channel complex (BC3)

Roughly 55% of the cores from Well E10-3 consists of the bréideannel lithofacies
association, making it the dominant lithofacies assammti The grain size of the
sandstones is mainly upper fine to medium sand but varies frelnbles- to silt-sized
sand. The sedimentary structures observed within the bedprise alternations of
massive, high-angle cross-bedding, low-angle crossibgddangential cross-bedding,
horizontal lamination, and ripple lamination.

The sandstones of the braided channel lithofacies assntiate interpreted as the
bed load deposits of a high-energy braided channel compkte®. The large continu-
ous sandbody thickness, the general absence of a cleargigaitrend, the abundance
of tangential and low-angle cross lamination, and the @grained internal erosive
reactivation surfaces all suggest that these units makeeppsits from high-energy
braided streams.

Crevasse splay (CS)
About 11% of the cored interval was assigned to the Crevaskey $igposits. The
lithofacies association consists of parallel, low-anglad ripple laminated very fine-
grained sandstone beds with moderate amounts of carbamaceter and clay (5-35%)
occurring as intraclasts and laminations. Also, these siep@re moderately often
rootletted at the top. The average bed thickness is 0.89 s @Hsociation commonly
marks the transition of IB (interdistributary bay) to IFLo@rly drained floodplain) facies
associations.

These deposits were interpreted as crevasse splay depobissis of the fine-grained
nature of the sandstone beds, the relatively thin bed tegknthe clay occurring as
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laminae and the occurrence within floodplain sediments @Rt IB, see below). These
deposits formed on the floodplain as the result of a breaabficgannel margins during
high water discharge. The rootletting in the upper part @ deposits would imply

an abrupt cessation of sediment deposition allowing deveént of vegetation on the
sediment surface.

Poorly drained floodplain (IFL)

Poorly drained Floodplain deposits (IFL) comprise neai®$ulof the cored interval.
The association consists of dark grey to black, abundaotbletted claystones with
regular coal laminae, frequent siderite nodules, and cqmeserved organic matter. The
poorly drained floodplain contains abundant intercalaiohswamp (SW) and crevasse
splay (CS) deposits. The poorly drained floodplain is recogphias such by the dark
grey colour, the abundant rootletting and good presenmvaifcorganic matter. This all
indicates a waterlogged or slightly submerged, reducingr@mment with intense plant
growth. Being a lateral equivalent of the braided channetistames, the dominance of
clay-sized deposits implies a setting distal to the actig&ibutary.

Interdistributary bay deposits (IB)

Nearly 12% of the cored interval consists of InterdistrédmytBay deposits. The associ-
ation consists of dark grey, relatively undisturbed lartedaclaystones with a few silt
or sand laminae. Some beds have a yellowish coloration dsel&rite cementation.
Distortion through soft sediment deformation occurs splly. The transition from
IB (Interdistributary bay) to IFL (poorly drained floodpigilithofacies association in the
cored interval systematically occurs through CS lithofa@ssociation (crevasse splay).

The well-preserved parallel lamination of the claystorses] the absence of rootlet-
ting imply deposition within a permanently standing bodywatter, hence the deposits
classify as Interdistributary bay deposits. The upwardditeon from Interdistributary
Bay to Poorly drained Floodplain deposits through CrevasdaySps considered to
reflect the progradation of fluvial facies.

Swamp (SW)

Swamps comprise a small percentage of the cored interval Bmarallel laminated
organic rich claystones with cm-thick coal laminae. Thel dmals, and the abundance
of organic material suggest a waterlogged, anoxic envierinwith abundant floral
inhabitance and no clastic input. Hence, these deposidassified as Swamp (SW).

Well drained Floodplain (F)
3% of the cored interval consists Well-drained Floodplaiich only occurs in the
lowermost section of core 2. It consists of thoroughly retddd sandy claystones with a
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mottled appearance and an overall reddish coloration. Bagiments occur which may
represent the former host sediments give the rock its kassatiappearance.

These sediments are termed Well-drained Floodplain ors ldishe following argu-
ments. The strong disturbance of the sediment suggestssadimentation rates and
pedogenesis. The primary red coloration indicated thatreg bf deposition the ground
water table was periodically below the sediment surfacéatime of deposition. For
example, the environment could have been subject to sddtmoding.
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Appendix C

E10-3 Compositional record
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Core Begin [km] End [km] Index range
Core 1 Box 13 3.6586 3.6593 1-73
Core 1 Box 14 3.6595 3.6604 74-161
Core 1 Box 18 3.6631 3.6640 162-249
Core 1 Box 38 3.6796 3.6805 250-337
Core2Box3 3.6861 3.6870 338-423
Core2Box4 3.6870 3.6879 424-511
Core 2 Box 13 3.6943 3.6952 512-599
Core 2 Box 14 3.6952 3.6961 600-687
Core 2 Box 18 3.6988 3.6997 688-771
Core 2 Box 23 3.7026 3.7035 772-859
Core 2 Box 33 3.7109 3.7118 860-947

Table C.1: Down core ranges in terms of meters and indices egjhi this study.
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Figure C.1: Down core compositional record of Core E10-3.




Appendix D

Data Acquisition of core 9508

This section describes the data acquisition steps thatpegfermed on core 9508, as per-
formed in the work of Mulitza et al. (2008). Before the geocleahanalysis of the sedi-
ment was performed, the terrigenous fraction was isoldkedprimary source of calcium
is of marine origin which is in this study of minor interesth@ necessary pretreatment
steps to isolate the terrigenous fraction are:

1. Organic Carbon was removed by adding 10 ml H202 (35%) tocxpately 750
mg of bulk sediment.

2. Calcium Carbonate was removed by adding 10 ml HCL (100%) t€Hrbon-free
sediment in 100 ml demineralised water and boiled for 1 nairtatspeed up the
reaction.

3. In order to remove the biogenic silica, NaOH pellets aead

Grain Size Distributions of Core 9508 were obtained using dt€olaser Particle Sizer
LS200, resulting in 59 grain size classes ranging from G3Btum.

A continuous record of the geochemistry was obtained byingen XRF core scan at
10 kV with measurement time of 30 seconds and an amperagdgiA5The XRF data
was calibrated by using geochemical data derived from seatisamples. These samples
were taken uniformly distributed along-core at 4 cm inté&sval he element concentra-
tions in these samples were determined on 4 g of dry subsarbpl&nergy Dispersive
Polarisation X-ray fluorescence (EDP-XRF).

Grain size fractions have been physically isolated andyaedl|w.r.t. the chemical
composition, again by using EPD-XRF. This yielded the coritjmrsin terms of 6 ele-
ments which together represented on average 40 % (40 gntkglspof the total mass of
the samples. The grain size ranges of the isolated fraciiashown in table 4.1.

In order to obtain a down core age model, radiometric datiag werformed on
foraminifera (small organisms) picked from the coarseatrgsize fraction.
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Appendix E

Running Example CLS

To illustrate the Constrained Least Squares procedure, Wa&eow present a small ex-
ample of a 2-endmember system and 3 elements. We have tbwifadl observations

(rows):
03 04 03 03 07
b=1]01 032 058 |, m=| 06 04
035 05 015 0.2 08
The objective is now to estimate the coefficieatshat determine the compositional

change with membership. The number of coefficients is equé@l x N which sums
up to 8 coefficients. Let us first present the system of coimésradenoted byA:

[ 1 0 0o 0 0 O] [ 1]
1 1 0 0 0 O 1
-1 0 0 0 0 O 0
-1 -1 0 0 0 O 0
0 0 1 0 0 0| [a] 1
0O 0 1 1 0 O a 1
0 0-1 0 0 O ag | _ |0
0 0-1-1 0 O aa |~ |0
0O 0 0 0 1 O as 1
O 0 0 0 1 1| |as] 1
0O 0 0 0-1 0O 0
0 0 0 0 -1 -1 0
1 1 1 1 1 1 1

| -1 -1 -1 -1 -1 -1 | 0|
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Analogous the matrix with which we solve for the coefficieHtss now given by:

By solving this CLS system (using the built-in MATLAB functidsglin for instance), the
coefficients fora are obtained. The partial bulk chemistry now follows from:

O
©
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o O -
o O O

By applying the same methodology, also the composition ofangsize class can be
determined. Let us define the following discrete grain sig&itutions, shown in figure
E.1. Although in reality a grain size distribution is distized into much more classes, we
assume that the synthetic GSD can be satisfyingly reprabiusiag only 2 classes. If we
would mix these two GSD’s into the mixing proportions givezidw, we will end up with
the relative proportion of each endmember. However thegggotions do not necessarily
sum up to one. Therefore the proportions e@esedwhich leads, for the 3 observations,
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to the closed proportions shown in figure E.2.

Since the proportions sum up to one, the CLS system can béyreadd which yields
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Figure E.1: Discrete GSD'’s of the synthetic 2-endmembeegys
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Figure E.2: The closed proportiord for the three observations, respectively.
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