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Abstract

Textural variations in sediment are considered to be one of the primary controls on the
geochemical composition. This relation has been widely exploited for the climatological
interpretation of unconsolidated Quartenary sediment cores. Despite the common objec-
tives in respectively unconsolidated and consolidated sedimentological studies, for the
latter the use of novel techniques to acquire geochemical data, such as non-destructive
XRF on cores, has not been applied yet. Because there is an ever increasing need for de-
tailed (textural) sedimentological data, this study investigated the possibilities of in-situ
XRF for semi-automatic textural characterization.

An improvement to the current work flow of XRF core scanning data acquisition was
suggested by a pre-calibration filtering step, in order to increase the signal to noise ratio.
Apart from that, a sample selection routine was developed which, given the underlying
calibration strategy, was expected to yield improved calibration results. Embedding the
two algorithms into the calibration work flow proved that thesample selection algorithm
as well as the pre-calibration filtering step result in improved calibration output. They are
also found to be effective for real data; when applied to two datasets of unconsolidated
cores, similar results were obtained.

The second part of this study included the design of a sedimentary basin infill model
”LINMIX”, based on the mixing of different sediment sourceswith a grain size dependent
chemical composition. By doing so, the observed geochemicalsignal is decomposed into
a portion that is the result of textural variations and a portion that reflects differences in
provenance. When applying LINMIX to a record of Quaternary sediment (offshore Sene-
gal) as a proof-of-concept, the model was able to reconstruct the geochemical record satis-
fyingly by linear mixing of 3 endmembers with 3 unique Grain Size Distributions (GSD’s)
and 2 unique functions characterising the compositional change in the grain size spectrum
(Transfer function or ’TF’). This result implies that the chemical variation induced by the
relative mixing of two endmembers was only the result of grain size variation and not of
source material variation. The two endmembers that were designated a common TF, have
in a previous study been interpreted as both reflecting material from the same sediment
source. This implies that the LINMIX model has potential forsemi-automatic provenance
interpretation of sediment cores. Additionally the endmember compositions correspond
fairly well with the present-day composition of the Senegalriver and African eolian dust.

Finally it was investigated how geochemical data can support semi-automatic grain
size prediction of consolidated sediment, for which holds that there is no sediment source
variation. This was done using a dataset of Carboniferous material, which is highly vari-
able in terms of lithofacies. Around 11 meter of core has beengeochemically logged
with an XRF core scanner and successfully calibrated using 40calibration samples (20
unique sample depths). The quality of the core scanning datawas found to be high; the
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main rock-forming elements were calibrated with a signal tonoise ratio larger than 4.
Subsequently the textural information content of the geochemical data was investigated
in two different setups. Initially the data was used as a quantitative tool to fill in the gaps
between the grain size derived from plug data using Multi Variate Regression (MVR).
Apart from that it was used as input for an unsupervised Bayesian classification scheme
in terms of grain size classes. Whereas the former yielded a residual variance on the input
data smaller than 1.5φ -units in 66 % of the cases, the latter identified two core sections
that, given RGB and geochemical data, should be classified differently. In both cases, an
additional validation step should give more insight in the performance of the scanner as a
grain size predictor. Recommendations w.r.t the scanner include (1) embedding the sug-
gested algorithms in the data acquisition work flow and (2) installing a higher resolution
camera to extract textural proxies from images.
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Chapter 1

Introduction

1.1 Introduction

In Quaternary geological studies, geochemical data is widely applied for paleo-
environmental analysis (Sinha et al., 2006). In these studies, the objective is to reconstruct
the geological and climatological setting by analysis of the stored product; sediment. The
relative concentration of Fe and K for instance has been applied as a measure for the hu-
midity under which sediment has been formed (Mulitza et al.,2008). Similarly element
ratios have been applied as a grain size proxy (Dinelli et al., 2007) and for the direct
discrimination between facies (Svendsen et al., 2007). Oneof the primary catalysts for
the wide-spread application of geochemical data is the development of relatively fast and
inexpensive geochemical logging techniques.

Analogous to the studies on Quaternary sediment, the importance of geochemical data
is also recognized in hydrocarbon exploration studies. In exploration projects different
types of data are acquired that somehow reflect a proxy of the geochemistry. The Gamma
Ray logging technique for instance, measures the amount of K,Th and U in the formation
by sensing the natural radio-activity of the formation. Theacquisition of Gamma Ray
logs is applied to obtain textural properties of the subsurface. Additionallydensitymea-
surements of rock can also be considered a geochemical proxy. Nevertheless the direct
geochemical analysis of sedimentary rock is not widespreadin the hydrocarbon industry.

For as far as the data acquisition is concerned, there are difference in techniques be-
tween the two fields of expertise. However it also arises thatalthough different techniques
are being used and the material being analyzed is different (unconsolidated vs. consol-
idated sediment), the two fields of expertise share common objectives (i.e. grain size
prediction).

1
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1.2 Problem Statement

Although geology includes many different fields of expertise which focus on different
processes, different scales and consequently different material, the focus of this study is
onsedimentaryrock. Additionally we will only focus on sediment of non-organic origin,
which is also referred to assiliciclastic sediment. Sediment is the product of rock being
exposed to wind, water, temperature differences and vegetation. This process is referred
to asweatheringand is commonly subdivided intochemicalandphysicalweathering.

The process of chemical weathering has an impact on the composition of the residue
because it results in the removal of elements into solution.The breakdown of feldspar
into illite and silica for instance:

2KAlSi3O8 +3H2O → Al2(SiO5)(OH4)+4SiO2 +2K(OH)
feldspar+water → kaolinite+silica+solutes

results in the removal of potassium into solution. This means that the feldspar is turned
into a new set of minerals which in turn reflect different mineralogical characteristics.
Although the mineralogical change of the feldspar into kaolinite is trivial, it also results
into the removal of potassium and silica into the solution, therefore leading to achangein
thechemical compositionof the solid residue.

On the other hand, this chemical reaction does not only reflect a change in bulk compo-
sition of the solid residue. Additionally the dominant grain size of the bulk will decrease
when turning feldspar into clay minerals such as kaolinite.As a result the chemical and
textural changes are correlated, which illustrates the potential of geochemical data as a
textural proxy.

Physical weathering on the other hand includes volumetric changes of the rock by the
introduction of material for instance. Commonly this involves water however also vege-
tation or salt may intrude the rock causing to fracture. Additionally volumetric changes
of the rock itself, causing fracturing, is considered physical weathering (Allen, 1997).

Rates of both chemical and physical weathering are controlled by presence of water,
biological activity and temperature. More general, it is determined by the tectonic setting.
This implies that weathering rates depend on the environment in which the sediment is
formed, transported and deposited.

Sediment characteristics reflect the environment under which it was formed.

An intuitive way of looking at this is by thinking of the earth’s surface as being asedi-
mentary routing system, as described in the work of Allen (1997). A sedimentary routing
system reflects the closed system within which the sediment is generated, transported and
deposited. This concept is also referred to as the conceptual source-to-sink model (figure
1.1), that comprises different segments, each reflecting different conditions in terms of
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Figure 1.1: Schematic representation of the source-to-sink model of sediment generation
and transport (modified from Somme et al. (2009)).

sediment generation and transport. Given that the rate of weathering is not (spatially and
temporally) constant within this routing system, there is agradient in terms of sediment
generation. Additionally sediment transportation parameters (i.e. discharge) are not (spa-
tially and temporally) constant, leading to afractionationof sediment. Fractionation is
the result ofselective transport, which means that only size fractions of the weathering
product are transported. For example, if the rainfall in a a sedimentary transport system
is generally low, the expected sediment load of the river will be low and the sediment that
will be transported under these energetically low conditions will primarily consist of fine
material. On the other hand if discharge is high, more coarsematerial is transported to the
basin. This means that:

Environmental conditions are reflected by both the grain size as well as the
chemical composition of the sediment.

Given the statement above, the chemical composition of a sedimentary basin con-
tains valuable information with respect to the tectonic setting. However transport and
sediment generation rates are not the only factors controlling the composition of the sedi-
ment. There is a whole set of processes involved that controls the generation of sediment
which has been discussed in the work of Weltje and von Eynatten (2004). Figure 1.3
shows a graphical representation of their findings. As indicated in this figure, the source
area orparent lithologyalso controls the composition of the sediment. A common parent
material for sedimentary rock is igneous rock, which is formed by cooling and solidifica-
tion of magma or lava. In figure 1.2, a general classification scheme of igneous rock is
shown to illustrate the variable silica-content for the whole range of different igneous rock
species. This means that if the parent material within one sedimentary routing system is
not constant, the sedimentary record will show interferingsignals of sediment originating
from different parent material. The direct consequence is that one-to-one mapping of
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Figure 1.2: Volcanic/magmatic rock classification scheme.

Figure 1.3: Schematic representation of the process of sediment generation, presented in
the work from Weltje and von Eynatten (2004).
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chemical composition to any of the components shown in figure1.3 is only valid under
the assumption that the effect of varying source rock composition is negligible. As a
consequence:

The interpretation of a sedimentary record should incorporate a (spatial or
temporal) variable source area.

This final statement brings us to the objectives.

1.3 Objectives

The objectives of this study are threefold. From the statements given in the previous
section we derive that although the geochemical signal is partially determined by the grain
size, a direct conversion is more complicated. Therefore the general research question of
this study is:

Can geochemical data be used to obtain textural properties of siliciclastic
sediment?

However first we will focus on the acquisition of geochemicaldata. For the acquisition
of geochemical records a novel technique has proven itself in Quaternary geological stud-
ies as a fast and relatively inexpensive method to obtain high resolution geochemistry.
However there is still room for improvement with respect to the data acquisition and pro-
cessing. The first research question is therefore:

How can the current work flow of geochemical data acquisitionbe opti-
mized to reduce costs and to increase accuracy and precision?

The secondary objective in this study is to build a model thatclosely resembles the process
of basin infill in terms ofbothgeochemical and textural properties. The primary reason
of building this model is that in order to derive textural properties from geochemical data,
first a constructiveforward modelmust be created. This forward model should incorpo-
rate the possibility of multiple sediment sources comprising different parent lithologies.
Additionally it should be feasible in the sense that itsforward modelingresults are sup-
ported by real data. More formally:

Can we build a forward model of basin infill in a formal geochemical and
textural context that successfully reconstructs real observations?

Geochemistry-derived grain size prediction on consolidated sediment has some severe
complications. On the other hand there is a strong commercial interest in this data. Al-
though any direct grain size prediction is hampered by the factor of parent lithology, we
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want to find out how a direct prediction method using several data sources performs in the
absence of parent lithology variation. More explicitly, this leads to the following research
question:

Is it feasible to predict textural properties based on geochemistry, given
multiple data sources and a known, straightforward provenance setting?

We want to find an answer to this question in a quantitative sense. Recent develop-
ments have given the opportunity to acquire high resolutiongeochemical records in a
non-destructive way. This method called X-Ray FluorescenceSpectroscopy (XRF) core
scanning will be used throughout this thesis.

1.4 Methods

Most research projects start where previous work has stopped, which is also the case in
this research project. Therefore the first step in finding answers to the research ques-
tions defined above is to investigate what is written about this topic in literature. This
includes literature about the acquisition, processing andinterpretation of (geo-)chemical
data. After this literature study, we try to find answers to the research questions.

In order to answer the first question, we apply two different approaches. The objective
includes the design and implementation of new steps in the current work flow in order to
improve the quality of the geochemical record. We will initially test possible strategies
and methods on synthetic data as a proof-of-concept. When a methodology is identified
as a successful improvement of the work flow, it is tested on a real dataset. If the method-
ology is also found to be successful when applied to ’real’ data, it is adopted as a valuable
processing step.

The second research question applies to the building of a model for basin infill. This
model should have a physical foundation in the sense that no empirical methods are ap-
plied. Nevertheless the introduction of assumptions and simplification is inevitable, given
the complex nature of the processes. Subsequently the modelwill be tested on a real
dataset. For this experiment we apply a dataset of unconsolidated sediment that has been
studied in great detail by geologists. Because of this, it is reasonable to say that the
’true’ history of the sediment is known. Furthermore an extensive dataset is available,
comprising both textural and chemical data, which makes this core an ideal test case for
the model. By applying this model to real data, we want to find out whether the model
contributes to the geological interpretation. In other words, does the model yield results
that are in the line with the geological interpretation. This would imply that it provides a
semi-automatic interpretation.

The third and final research question stated that we want to investigate automatic grain
size predictions and its quantitative performance. Previously we argued that direct esti-
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mation of grain size is not feasible because of differences in parent lithology. However we
want to investigate the performance of a direct method giventhe absence of source rock
variations. To investigate this, a core that originates from the Carboniferous is used for
which this holds. The available data includes a comprehensive grain size and geochemical
record. The geochemical record is obtained using XRF core scanning. For the grain size
prediction, empirical and well-known classification methods will be used.

1.5 Thesis Structure

First a short introduction is presented about current methods to characterize sediment and
sedimentary rock. Furthermore we will present a mathematical framework for the analysis
of compositional data which, since geochemical data reflects composition as such, is used
throughout the thesis. In chapter 3 some improvements are discussed to the current work
flow of XRF core scanning data calibration (research question1). In chapter 4 we will use
XRF geochemical data in order to characterize sediment in terms of a basin infill model
based on mixing (research question 2). Chapter 5 is about the possibilities of the XRF
core scanning method for characterisation of consolidatedcores. Therefore this chapter
includes both the acquisition and processing of geochemical data as well as the application
of this data for grain size prediction (research question 3). Finally chapter 6 will present
the conclusions and recommendations.
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Chapter 2

Sediment characterisation

In this chapter, we will discuss and illustrate the context of this study. First we will give
a very general introduction on sediment generation and the current industry standard of
subsurface characterisation. We will also sketch in very general terms why this research
is relevant for hydrocarbon exploration and the methodology of geochemical logging of
sedimentary cores.

2.1 The relevance of grain size information

A detailed understanding of sedimentary basins has economic and commercial impor-
tance. This because the majority of the water and hydrocarbon reservoirs is situated in
ancient sedimentary basins, deep in the subsurface. The water or oil is situated in the
porestructure of the sedimentary rock; a connected structure ofopen spaces between the
sedimentgrains. Since the pore fluid (either water, oil, gas) is effectivelytrapped into this
pore structure, the success of extracting the pore fluid fromthe sedimentary rock depends
to a large extent on the properties of the sediment w.r.t. flow. We refer to these flow
properties by thepermeability; the ability of a material to transmit fluids.

The permeability is a quantitative measure for which holds that:

k ∝ d2 (2.1)

given a material composed of perfectly spherical ’grains’ (Graton and Fraser, 1935). Here
the intrinsic permeability is denoted byk, whered denotes the mean pore diameter. It
is not hard to imagine that the grain size and pore diameter are closely related. The
proportionality constant in this equation is determined byother material properties such
as path tortuosity (average path length of the flowing medium), porosity (fraction of air
relative to the fraction of rock) and sorting (spread in grain diameters).

Although this relation holds for a situation of a packed bed (i.e. spherical objects

9
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Figure 2.1: The sorting of the grains have a strong effect on the porosity. Figure (a) shows
moderately sorted grains whereas figure (b) shows poorly sorted grains (modified from
Brassington (1990).

and no cementation of/between these objects), it illustrates the importance of the grain
diameter on the permeability. In a real reservoir though, these grains are not perfectly
spherical and possibly cemented. Furthermore the pore structure is possibly cluttered
with material leading to a severe decrease of permeability (Johnston and Beeson, 1945).

Another important formation parameter that is determined by the grain size is the
porosity. Porosity is the fraction of open spaces in the bulk is referred to as theporosity
and therefore ranges between 0 and 1, or alternatively 0 and 100 %. If the grains are
poorly sorted, this implies a wide range of grain diameters in the sedimentmixture. As
a result, the small grains tend to fill up the pores, which leads to a strong decrease in the
porosity and permeability (see figure 2.1).

A widely used unit system for grain size is the Krumbeinφ -scale (Krumbein, 1941),
which is a logarithmic scale of the grain diameter in the metric system. The grain size in
φ -units is obtained as follows:

D = D02−φ (2.2)

whereD is the grain diameter in mm andD0 is a reference-diameter, which is usually 1
mm. Table 2.1 shows theφ -units with their equivalent grain diameters as well as their
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φ Particle Size Name
> 8 <4µm Clay

8 to 4 4-62µm Silt
4 to 3 62-125µm Very Fine Sand
3 to 2 125-250µm Fine Sand
2 to 1 0.25-0.5 mm Medium Sand
1 to 0 0.5-1 mm Coarse sand
0 to -1 1-2 mm Very coarse sand
-1 to -6 2-64mm Gravel

Table 2.1: Relation betweenφ -scale and grain diameters as well as the associated class-
name

class-names.

2.2 Subsurface Characterisation

Reliable subsurface characterisation is important in the field of geotechnical project plan-
ning and hydrocarbon exploration (searching for hydrocarbons; oil and gas. The first step
in characterising the subsurface consists usually of applying non-destructive geophysi-
cal methods. This includes electromagnetic techniques forthe shallow subsurface and
seismic techniques for the shallow and deep subsurface. However usually this data is
complemented with data acquired in a well because of the limited horizontal and vertical
resolution of seismic. Furthermore seismic processing partly relies on ground-truth data
input. It also allows us to actually ’feel’ the rocks in the subsurface by analyzing the rock
fragments present in the drilling mud.

In hydrocarbon exploration, it is common practice to perform wire line logging in
order to characterize the drilled rock in terms of some physical parameters such as density,
acoustic velocity, etc. Wire line logging is performed by lowering a sensor in a bore hole
and record the data, referenced with the along-hole depth. There are many different types
of detectors available that can be used on a wire line, but the’standard’ logs include
the density log, slowness log, resistivity log, and the gamma-ray (GR) log. The latter is
primarily designed to characterize the formation in terms of texture.

A gamma-ray logging tool is a detector that records the natural radioactivity of the for-
mation. In sedimentary formations this log normally reflects the shale (very fine-grained
rock) content of the formation. This is because the radioactive (heavy) elements tend
to concentrate in clays and shales (red. fine-grained sedimentary rock). Sandy forma-
tions on the other hand have a very low radioactivity, unlessradioactive contaminants
such as volcanic ash or granite wash are present, or when the formation water contains
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dissolved potassium salts (Serra, 1984). Gamma-rays are burst of high energy electro-
magnetic waves which are emitted spontaneously by some radioactive elements. Nearly
all of the gamma radiation encountered in the earth is emitted by the radioactive potas-
sium isotope of atomic weight 40 and the radioactive elements of the uranium and thorium
series. Each of these elements emit gamma rays, the number and energies of which are
distinctive of each element. Because in principle discrimination between K, Th and U
is possible based on the energy spectrum of the gamma-rays, aSpectral Natural Gamma
ray (SNG) tool was designed. This tool records the spectrum of the incoming gamma-ray
after which the presence of K, U and Th is being determined.

Although wire line logging is still applied in most of the hydrocarbon and geotechnical
projects, sometimes there is a need for a sample of the formation in its original form (in-
situ). If the material of interest is still at the surface andunconsolidated, this can be
obtained rather easily by using gravity coring. Gravity coring is the process of letting a
tube penetrate the sediment by free fall from the ship to the sea bottom and retrieving it
with the sediment still inside (see figure 2.3). For consolidated rock at depth the formation
is being cored in a different way; the conventional drill bitis being replaced by a bit that
extracts a piece of the formation in its original state (see figure 2.2). These formation
samples are then subsequently transported ’up-hole’ for further analysis.

The major advantage of using cores instead of the log information is that the cores can
be tested in a laboratory environment. They can be used to obtain reliable estimates of
the porosity, permeability and mineralogical content of the formation. For consolidated
cores, this data is obtained by analyzing ’core plugs’ whichare in principal also cores;
cylindrical samples taken from the cored rock. Core plugs aretypically 1 to 1 1/2 inch
in diameter and 1 inch to 2 inch long. They are ordinarily, when cut from a vertical
well bore, cut perpendicular or parallel to the axis of the core, then called horizontal and
vertical plugs, respectively.

Whereas the acquisition of this data is labor intensive and semi-automated, the op-
posite is true for the sedimentological characterisation.The sedimentological character-
isation of a cored section is also referred to as the ’core description’ and consists of the
analysis of the sedimentary rock w.r.t. several parameters. One of these parameters is
the grain size and sorting (a measure of the standard deviation of the probability density
function of the grains) which is being determined by visual inspection of the core surface.
However also the presence of burrows and other sedimentological structures is determined
in the same manner.

2.3 Compositional Data Analysis (CoDa)

The data obtained from either chemical analysis or XRF scanning methods yield element
concentrations. These element concentration reflect the presence of certain elements in
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Figure 2.2: Core drill bits (manufacturer Ceramco Pty Ltd) used to obtain cores of a
formation.

Figure 2.3: Small gravity corer (manufacturer KC-Denmark) with in the middle a lead
weight to increase the penetration performance.
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Figure 2.4: The position of compositional vectors on the plane originating from the unit-
sum constraint. Modified from Weltje (1997).

the measured sample which represent the ’whole’. In chemical analysis these element
proportions are given in parts per million (ppm), percentages or in gr

kg. The analysis of

this so called compositional data is affected by its proportional nature such that the n-
dimensional compositional space is essentially inR

n−1. One way of illustrating this is by
looking at a classical way of representing compositions made up of threeendmembers.
These endmembers represent the ’pure’ components, either physical or not physical. With
’physical’ endmembers we mean that the pure endmembers are also observed in the mix-
ture; if we measure samples consisting of a mixture of Fe and K, there is no guarantee
that we will find a sample that consists of 100% K or 100% Fe, respectively.

Since the relative proportions of all endmembers should sumup to either 1 (propor-
tions), 100 (%) or 1.000.000 (ppm), all compositional vectors will be situated on a 2
dimensional plane restricted to the positive quadrant of a 3D Cartesian coordinate system
(see figure 2.4). The position where these compositional vectors are on this plane reflect
the relative proportions of the three endmembers. This is often called the simplex, of
which a graphical representation, as shown in figure 2.4, is called a ternary diagram.

The compositional nature of the data also manifests itself in the dependency between
the components; if the fraction of one of the components is perturbed, the fraction of the
other components will by definition also be affected as a result of the unit-sum constraint.

To put these findings in more mathematical terms, the compositional space is being
referred to as the simplexS D which can be written as:

S
D = x = [x1,x2, ...xD] |xi > 0, i = 1,2, ...D;

D

∑
i=1

xi = κ (2.3)

whereκ represents the sum-constraint; either unity, 100% or 1.000.000 for ppm units,
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Figure 2.5: So called ’parallel’ compositions (changing relative concentration of two
endmembers) have a highly nonlinear appearance in compositional space (left). However
this effect is eliminated in log ratio space (right).

andxi represent the concentration of a certain elementi expressed in one of the composi-
tional unitsκ. As illustrated in figure 2.4, any vectorx will lay on a simplex, whereasκ
determines the relative position of this simplical plane w.r.t. the origin.

Whereas the choice ofκ may seem an important convention, transforming the dataset
from one compositional units system to another is a matter ofclosing the dataset to the
chosen sum. Thisclosureoperation for all componentsi = 1,2, ...D follows from:

C (z) =

[

κ ·z1

∑D
i=1zi

,
κ ·z2

∑D
i=1zi

, ....,
κ ·zD

∑D
i=1zi

]

(2.4)

Due to the constrained compositional space and the fact thatthe individual compositions
are intrinsically correlated, any direct analysis of compositional data is only possible when
keeping track of these constraints. In order to overcome thecompositional data constraints
in the simplex, Aitchison (1986) built the log ratio framework which has been extended
until today. It consists of a set of mathematical transformations and operations suitable for
compositional quantities, which we refer to as theCoDa (Compositional Data Analysis)
framework. The most intuitive compositional transformation is the additive log ratio, or
’alr’. In case of the alr-transformation, the data is being transformed from the simplexS D

into an unconstrained real spaceR
D−1 as follows:

yi,D = ln

(

xi

xD

)

, i = 1,2, ....D−1 (2.5)

The main advantage of using the alr-transform is that, instead of the individual pro-
portions, the transformed quantities are no longer hampered by their compositional na-
ture and can be analyzed as independent variables. The convenience of the logratio-
transformed quantities is illustrated in figure 2.5, where the right figures shows the same
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3-component ’process’ as shown in the left figure, however now as a function of the 2
logratio transformed quantitiesy.

While the alr transformation is determined by the choice of the denominator and
thereby not symmetric, the centered log ratio applies the geometric mean as denominator
(with D the number of elements):

yi = log

(

xi

geom(x)

)

, i = 1,2, ....D−1 (2.6)

The transformation results for an compositional dataset comprising D elements and
thereby spanning a constrained space inS D, into a dataset centered around zero and span-
ning anunconstrainedRD space. In contrast to the alr approach, the clr transformed data
is again (as it was in compositional space) situated on a plane. However on this (hyper-
)plane, the solution space stretches infinitely in all directions.

2.3.1 The compositional distance

Direct analysis of compositional data was considered difficult due to the simplicial con-
straints. However the introduced log ratio transformed dataset comprises an Euclidean
vector space. Therefore we are able to apply all vector operations to the compositional
dataset such as the norm, distance and inner product.

The ’compositional distance’ between two observations forinstance can now be cal-
culated in a straightforward manner without having to incorporate any of the simplicial
constraints. In mathematical terms the compositional distance , or ’Aitchison distance’,
between two observation is given by:

da(x,y) =

√

D

∑
i=1

[

ln
xi

geom(x)
− ln

yi

geom(x)

]2

(2.7)

which is simply the Euclidean distance ornormbetween the two logratioD-component
data vectorsx andy. The implications of logratio transformed data now comprising an
Euclidean vector is that we may use multivariate techniquesthat do not rely on a full rank
covariance matrix. Furthermore optimisation and adjustment techniques such as the least
squares approach can now be applied by minimising thecompositionaldistance.

2.3.2 The simplicial operators

Although the log ratio transformed data makes it possible toturn the compositional data
into unconstrained data, we sometimes wish to ’stay in the simplex’. If we for instance
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wish to apply a perturbation in thelog ratio space, however we wish toapply this shift
to the data in its simplicial form, we need compositional equivalent operators to do this.
Fortunately a framework exists to apply operations in log ratio space by making calcula-
tions with compositional data. It was found that a perturbation of two compositions for a
vector space structure inS D yield (Aitchison, 1986):

x⊕y = C [x1y1,x2y2, ...xDyD] (2.8)

whereC [..] represents the closure operation, as described in section.The simplicial equiv-
alent of the power transformation by a scalarα of a composition inS D was found to be:

α ⊙y = C [xα
1 ,xα

2 , ...xα
D] (2.9)

of which the purely compositional equivalent relation is asfollows:

x⊙y = C [xy
11,x

y
22, ...x

y
DD] (2.10)

These relations between the operators in the simplicial vector space and the log ratio space
facilitate to move freely between both space structures. Ifwe want to use least squares ad-
justment for instance, we wish to minimize the distance between observed and predicted.
We can apply curve fitting analogous to the ’classical’ curvefitting by minimising the
Aitchison distance for the following compositional-linear model:

y = do⊕d1⊙x (2.11)

For the proof of equivalence between the Euclidean operators on logratio’s and the sim-
plicial operators to compositional quantities, I refer to the work of Aitchison (1986).
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Chapter 3

Improvements to the XRF core
scanning work flow

In the previous chapter we illustrated the commercial and scientific importance of grain
size. The first research question that we defined in chapter 1 was:

How can the current work flow of geochemical data acquisitionbe opti-
mized to reduce costs and to increase accuracy and precision?

However since the acquisition of geochemical records in this study is primarily done
using non-destructive XRF, first a brief introduction about XRF is presented. Secondly
the latest improvements in work flow are discussed, as published by Weltje and Tjallingii
(2008). Based on their work, a number of improvements are suggested that may lead
to the reduction of cost and increase in signal to noise ratio. Finally the discussion and
conclusions are presented in the last section.

3.1 X-radiation Fluorescence Spectrometry

X-ray Fluorescence Spectrometry, or XRF is a widely used technique for the chemical
analysis of specimens. The methodology is based on the phenomenon that when materials
are exposed to short-wavelength (highly energetic) X-raysor gamma rays, ionisation of
their component atoms may take place. Ionisation consists of the ejection of one or more
electrons from the atom, and may take place if the atom is exposed to radiation with an
energy greater than its ionisation potential.

X-rays and gamma rays can be energetic enough to expel tightly held electrons from
the inner orbitals of the atom. The removal of an electron in this way renders the electronic
structure of the atom unstable, and electrons in higher orbitals ’fall’ into the lower orbital
to fill the hole left behind. In falling, energy is released inthe form of a photon, the
energy of which is equal to the energy difference of the two orbitals involved. Thus, the
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Figure 3.1: Energy spectrum with some distinct energy peaks with their associated ele-
ments (modified from Imrich (2001)).

material emits radiation, of which the energy spectrum provides a proxy of the presence
of the different components (Jenkins, 1999). The term fluorescence in XRF, stands for
the phenomenon in which the absorption of radiation of a specific energy results in the
re-emission of radiation of a different energy (generally lower).

By removal of an inner electron by an energetic photon, an electron from an outer
shell drops into its place. However there are a limited number of ways in which this can
happen. The main transitions are given names: an L→K transition is traditionally called
Kα, an M→ K transition is called Kβ . Each of these transitions yields a fluorescent
photon with a characteristic energy equal to the differencein energy of the initial and
final orbital. By sorting the energy channels and their corresponding counts, one obtains
a spectrum of which an example is given in figure 3.1.

Typically these spectra are converted to ’element intensities’ by associating these
peaks to the elements using multivariate methods. One of themajor problems of the inter-
pretation of these spectra is the result of the frequency overlap between the characteristic
lines of adjacent elements (Swerts and Van Espen, 1993). As aconsequence, the method
requires the use of sophisticated spectrum evaluation methods to obtain interference-free
and background-corrected net peak areas. These spectrum evaluation methods mainly rely
on the least squares principle; analytical functions describing the features in the spectrum
or reference spectra of pure elements are used as a model and fitted the to observed spec-
trum.

A variety of quantisation procedures are in use, ranging from simple linear calibra-
tion curves, over empirical and semi-empirical influence coefficient to full fundamental
parameter approaches (Dyck, van et al., 1986). An often usedsoftware package that
supports these parametric curve fitting methodology is called ’Axil’ (Analysis of X-ray
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Figure 3.2: Avaatech XRF core scanner.

spectra by Iterative Least squares) which supports the use of the least squares framework
for a variety of analytical functions. A windows-based version of Axil, i.e. WIN-Axil, is
being used for the processing of the XRF data in this project.

3.2 XRF core scanning

Classical XRF spectrometry analysis is performed on pulverized and homogenized sam-
ples that are normally prepared as a flat disc, typically between 20 and 50 mm in diameter.
However anondestructivelogging technique based on XRF methods has been developed
for the analysis of split sediment cores (Jansen et al., 1998). This so calledXRF core
scanner(see figure 3.2) is able to acquire XRF measurements directly at the surface of
the core. Typically reliable spectra are obtained relatively fast (1 measurement takes up
to 30 seconds).

In contrast to ’classical’ XRF sample analysis, this core scanner is able to extract an
almost continuous geochemical record; the down core resolution can go up to 1 millime-
ter. Finally, it provides data about the actual compositionof the sediment at a very specific
and confined area, which in contrast to tools such as natural-GR and color loggers that re-
spectively average over a large area or produce merely a proxy of the actual composition
superimposed with noise.

One of the drawbacks though of this in-situ methodology is the limited penetration of
the X-radiation into the material. The incident X-ray beam interacts with small sample
volumes, so the emitting characteristic X-rays contain information from a thin (microns)
layer only (Jansen et al., 1998). The response depths of the elements in the sample mate-
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rial depend on the wavelength of the fluorescent radiation and the chemical composition
of the matrix (Jenkins and De Vries, 1970). For the light elements Al and Si, this depth is
about a fewµm, for Ca several tenths ofµm, and for Fe a few hundreds ofµm.

With the core scanner one obtains energy spectra at all sampled locations with the
counts (number of X-ray photons) and the frequency (energy)of these photons. However,
as discussed in section 3.1, these spectra are not an easily interpretable quantity and there-
fore they undergo a processing step which yields an area quantity under a fitted curve. So
in principle the dataset obtained after spectral analysis involves an area quantity which is
assumed to correlate with the concentration of a specific element in the bulk. Stays the
question though, how these area quantities can be turned into (relative) concentrations.

Although the area quantity has the appearance of a concentration, several aspects are
not taken into account. The penetration depth for instance is not the same for all elements.
Additionally the sensor does not have the same efficiency forall elements, leading to a
bias. How the XRF core scanning data can be calibrated effectively will be discussed in
the next section.

3.3 Calibration of the XRF core scanner

The traditional calibration approach in calibration of theXRF data is based on trying
to estimate several coefficients that are related to measurement geometry, instrumental
response, etc. In order to extract weight fractions from intensities with elementsj and
measured specimensi the following model is applied;

Wi j = KiIi j Mi j Sj (3.1)

whereWi j represents the element concentration of elementi in specimenj, K represents
an element-specific device calibration coefficient,Mi j is the matrix effect that accounts
for scatter, absorption and enhancement effects onIi j caused by the presence of other ele-
ments in the specimen. FurthermoreSi represents the specimen effect which captures the
measurement geometry and specimen homogeneity relative tothe standard configuration.
And finally Ii j is the intensity of elementi in specimenj, obtained by post processing
of the raw spectrum by background subtraction, sumpeak and escape-peak correction,
deconvolution and peak integration (Weltje and Tjallingii, 2008).

However in the work of Weltje and Tjallingii (2008), a more robust calibration scheme
was presented. This approach is based on the CoDa-framework and therefore on logratio’s
rather than the calibration on an element-by-element basis. Weltje and Tjallingii (2008)
stated that ”the fundamental problem in this approach is that Si is very poorly constrained,
owing to inhomogeneity of the specimens (e.g. variable water content and grain-size
distribution, and the presence of burrows) and the irregular surface of a core”. In some
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setups, spatial variations in thickness of an adhesive pore-water film, which forms directly
below a protective foil covering the split core surface, also have to be considered a an
error source (Tjallingii et al., 2007). As a result of these uncontrollable variations,Si is
unknown, and will cause biased compositional predictionsW.

Weltje and Tjallingii (2008) found that the log ratio framework facilitates a more
robust and unbiased calibration process. Given the components i andD in the specimen
j, the following holds:

Wi j

WD j
=

Ki

KD

Ii j
I jD

Mi j

M jD

Sj

Sj
(3.2)

given that:
Sj

Sj
= 1, K̃iD =

Ki

KD
, M̃iD j =

Mi j

MD j
(3.3)

this yields the following calibration equation:

Wi j

WD j
= K̃iD

(

Ii j
ID j

)

M̃i jD (3.4)

The relative detection efficiencỹK is independent ofj, and can be thought of as the
average response of the measurement device during scanningof a core, i.e., a constant
unique to elementsi and D. The relative matrix effectM̃ varies with j, because it is
a function of the chemical composition. Weltje and Tjallingii (2008) stated that if it is
assumed that no prior information on the relative matrix effect is available, there is no
choice but to derive a general expression forM̃ from the core-scanner measurements:

M̃ =

(

Ii j
ID j

)ADi

(3.5)

which, when plugged into equation 3.4 yields:

(

Wi j

WD j

)

= K̃iD

(

Ii j
ID j

)AiD+1

(3.6)

They derived the more general expression by using the compositional operators and linear
parametersα andβ :

α = AiD +1

β = ln
(

K̃iD
)

(3.7)

which yields the following Log-Ratio Calibration Equation (LRCE):

ln

(

Wi j

WD j

)

= αi,D ln

(

Ii j
ID j

)

+βi,D (3.8)
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The practical application of this LRCE is illustrated in figure3.3. Here can be observed
that with the introduction of logratio’s, the logratio intensities (x-axis) behave linear with
respect to the logratio relative concentrations (y-axis).Whereas the depicted observations
only represent the calibration samples, any new intensity observation can be turned into
relative concentrations using the linear model (red dashedline). The resulting LRCE
prediction as function of the composition of the calibration samples is shown in figure 3.3
from which can be derived that they line up perfectly along the line x=y. This implies that
the compositional prediction based on XRF core logging is unbiased.

Summarizing, the application of the LRCE on XRF core scanning data of an unconsol-
idated core yielded good results. Not only did making use of element ratio’s effectively
cancel out all non-linearities induced by the compositional nature of the data (intrinsic
correlation of component concentration) and the unknown measurement geometry, the
LRCE is also expected to effectively reduce coherent noise caused by instrumentation.
This expected noise reduction is caused by the fact that a certain part of noise and mea-
surement error is uncorrelated with the transmitted wavelength. By being present in both
the numerator and the denominator in the log ratio transformed data, this noise component
is drastically reduced.

Furthermore the LRCE model is simple in terms of the number of coefficients that
must be estimated from the data; only a intersect and a slope should be determined for
every element pairi,D (see figure 3.3). This small number of coefficients facilitates re-
dundancy w.r.t. the estimation of these coefficients. And although the calibration process
is performed in the log ratio space, the results can be transformed back into relative con-
centrations using the alr inverse transformation (see figure 3.4).

By using the fact that the log ratio quantities span a real space, a robust statistical
framework was defined by Weltje and Tjallingii (2008) using the distance between alr-
transformed observedW and predicted composition̂W for the element-pairi andD. Given
thatn calibration samples are available, then this will yieldn distances between observed
and predicted for every element-pair of which the median value is being derived in the
following manner:

s2
iD = medn

[

ln
Ŵin

ŴDn
− ln

Win

WDn

]2

(3.9)

A parameter representing the signal-to-noise ratio could is defined by the total varianceV
of the signal of the element-pairsi andD as follows:

R2
iD =

ViD −s2
iD

ViD
(3.10)

We illustrate this signal to noise parameter with the following synthetic example compris-
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ing four observations and three components, calibrated by the LRCE;

W =

0.5412 0.1576 0.3012
0.3576 0.1915 0.4509
0.1871 0.4564 0.3565
0.3985 0.1152 0.4863

Ŵ =

0.5432 0.1191 0.3376
0.3146 0.1345 0.5510
0.1709 0.5371 0.2920
0.4217 0.1063 0.4720

(3.11)

the log ratio quantities (see equation 2.5) with the third column as denominator are ob-
tained as follows;

Ŵt =

ln 0.5432
0.3376 ln 0.1191

0.3376
ln 0.3146

0.5510 ln 0.1345
0.5510

ln 0.1709
0.2920 ln 0.5622

0.2920
ln 0.4217

0.4720 ln 0.1063
0.4720

=

0.4756 −1.0416
−0.5604 −1.4104
−0.5360 0.6093
−0.1128 −1.4905

(3.12)

and:

Wt =

ln 0.5412
0.3012 ln 0.1576

0.3012
ln 0.3576

0.4509 ln 0.1915
0.4509

ln 0.1871
0.3565 ln 0.4564

0.3565
ln 0.3985

0.4863 ln 0.1152
0.4863

=

0.5861 −0.6478
−0.2318 −0.8562
−0.6446 0.2477
−0.1990 −1.4398

(3.13)

The residual variance of the two alr transformed quantitiesis now determined by taking
the median value of the squared difference between predicted and observed composition,
which yields;

s2
1,3 = 0.0120 s2

2,3 = 0.1429

V2
1,3 = 0.2352 V2

2,3 = 0.9631

R2
1,3 = 0.949 R2

2,3 = 0.8516

(3.14)

This results should be interpreted as the first component having a significantly smaller
residual variance as well as a significantly smaller total variance. Furthermore this first
component reflects a much higher signal-to-noise parameterR2.

For this synthetic example the number of calibration samples is small, making this
parameter very sensitive to outliers. However when the number of samples is significantly
larger, these statistical parameter can be considered a reliable estimate of the uncertainty
of the data.

3.4 Improvements to the workflow

The work of Weltje and Tjallingii (2008) lead to the following three conclusions:
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Figure 3.3: Linear fit between log ratio measured intensitiesand log ratio of the reference
bulk chemistry of core 7920.
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Figure 3.4: The reference and predicted bulk chemistry of core 7920.
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1. Unbiased and accurate calibration results are possible using the LRCE.

2. A stabilisation of the prediction discrepancy is obtained using around 40 calibration
samples.

3. By using the CoDa framework, ’classical’ statistical techniques can provide insight
in the quality of the process.

This study includes a direct follow-up on their recommendation that further research is
needed to investigate the possibility to acquire a faster stabilisation of the prediction dis-
crepancies. Therefore we have defined the following sub-questions:

Can clever use of multi variate methods result in an improved signal to noise
ratio?

and additionally a question concerning the sample selection:

Can a more robust sample selection strategy result in a fasterstabilisation of
the prediction discrepancies?

In order to get an answer to the first research question, we will first discuss a method to
determine the repeatability of the system.

3.5 Repeatability of the System

Because the acquisition of XRF core scanning data is relatively inexpensive compared to
standard geochemical analysis, reliable estimates of the instrumental repeatability can be
obtained with relatively low cost. It is also investigated how these reliable repeatability
estimates can provide an improvement in the signal to noise ratio of the calibrated output.

The repeatability of a measurement system is a measure of thevariation in measure-
ments taken of the same sample and under the same conditions.For the XRF core scan-
ning we can quantify this by keeping the scanning device at the same location while taking
several measurements. The residual variance that we then observe after spectral analysis
and quantification is considered as noise since it does not correlate with compositional
variations in the specimen (or a location on the core). We canquantify this residual vari-
ance by taking the centered log ratio transform of a set of measurements, taken at the
exactly same location on the core. Since the clr transformeddata comprises an Euclidean
space, we can simply use the Euclidean distance between these observations as an error
estimate. Given that we have a set ofm replicate measurements comprisingD elements,
we define themeancomposition as follows:

〈clr(I j)〉 =
1
m

m

∑
i=1

clr(I j), j = 1,2, ...D (3.15)
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For one set ofmreplicate measurements withD elements, the intrinsic noise of the system
is then derived as:

δ I2 = medm

{

D

∑
i=1

[clr(Ii)−〈clr(Ii)〉]2
}

(3.16)

Which yields fork sets of replicates,k values ofδ I2. A global noise parameter is then
obtained by:

δN2 = medk
{

δ I2
k

}

(3.17)

Even though thisδN2 reflects the intrinsic noise of the measurement system, the param-
eter will certainly be affected by the core characteristicsas well; sinceδN2 is obtained
by evaluating the error of the residuals, it is also affectedby the composition of the core.
This because the presence of some elements can be quantified more precisely than others;
if there is much overlap w.r.t. fluorescent energy of two elements X and Y, discriminating
between the energy from component X and component Y is difficult. This means that
in order to get a reliable estimate ofδN2, it is advisable to estimateδN2 for every core
individually.

One should keep in mind though that this noise parameter should not be confused
with the calibration quality. The noise in the intensity data is a important factor in the
sense that if the data is very noisy, the estimation of the linear coefficients will require
more calibration samples. However the quality of the LRCE is determined by more than
just the level of noise in the observed intensities, such as the reliability of the calibration
sample chemistry. However there is also a sampling problem involved; the calibration
samples do not reflect the same material that was measured by the scanner.

3.6 Pre-calibration filtering

Given the nature of the specimens that are being analyzed (sediment cores), we can ex-
pect a limited number of minerals in the sediment. This due tothe simple reason that
there are (1) only a limited number of minerals stable enoughto withstand the process
of weathering and transportation. On the other hand, XRF corescanners yield the com-
position in terms of a large number of elements; usually morethan there are minerals in
the specimen. This means that there is a high level of correlation between the different
components. By definition all other signal is considered noise, which rises the challenge
to filter the noise from the signal.

We suggest to apply a linear decomposition of the data based on the covariance struc-
ture of the variables. By applying this decomposition, a new set of variables is obtained,
each reflecting coherent signal in the data. Additionally each variable in this set of vari-
ables reflects the variance in the original dataset in descending order. By subsequently
throwing away the data which reflect only a small portion of the variance, the hypothesis
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is that the signal to noise ratio will be increased. If this data is subsequently applied in the
LRCE in combination with calibration samples, the hypothesisis that improved results
can be obtained.

This structure is implemented by using Singular Value Decomposition (SVD) on the
clr-transformed data. SVD is a linear mapping of the data values onto a newly defined
coordinate system represented by the eigenvectors. The SVDfor a data matrixX with
observations (rows) and components (columns) looks as follows:

X = USVT (3.18)

where U is anm×n matrix, S isn×n andVT is alson×n, given thatn is the number
of variables andm the number of observations. The columns ofU are the coordinates of
the data projected onto the newly defined basis. The rows ofVT contain the right singular
values and form an orthonormal basis; the eigenvectors of the covariance matrix. The
elements ofScontain the singular values which are always larger than zero. The so called
’scores’ of the dataX are obtained by performing the following transformation:

YT = XTV (3.19)

An important implication of this linear transformation is that the data loss is minimal in
a least square sense, givenl the number of eigenvectors andl ≤ D. The dimensionally
reducedscoreson this reduced space is obtained as follows:

YT
l = XT

l Vl (3.20)

wherel reflects a subset of the eigenvectors, or the firstl columns ofV. For the singular
valuessi, which are on the diagonal of matrixS, the following holds:

λi = s2
i (3.21)

which is the variance of the initial data along the principalaxis i.

This methodology is often being used to compress large multi-dimensional datasets
for storage reasons or to evaluate the intrinsic dimensionality of the dataset. However in
this case we suggest the dimension reduction as a filtering step of the core scanning data.
If we would throw away some eigenvectors (l ≤ D) comprising thel smallest eigenvalues
of which we know that the dimensionality of the coherent signals in the data is smaller
than the number of variables, this means that we throw away signal uncorrelated with
S. Given that the variance of the signals S is sufficiently larger than the residuals of the
measurement system, the principal direction that are omitted are more likely to be noise-
dominated. In reality though, the problem is to determine this l and, more importantly
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this ’true’ dimensionality of the signal present in the data. This is where theδN2 statistic,
derived from the replicate analysis, comes into play.

A straightforward approach to determinel is to cutoff the smallest eigenvectors of
which their combined sum is smaller thanδN2. To define this methodology in a more
formal way, theD ascendingeigenvalues are being transformed to a set of cumulative
eigenvaluesλi given by:

λ cum
i =

i

∑
j=1

λi , i = 1,2, ...D (3.22)

If we let V i represent thei-th eigenvector in the set of eigenvectorsV, ordered onascend-
ing eigenvalues, the set of principal axesV∗ that can be considered to be above the noise
level follows from:

V i ∋ V∗ | λ cum
i ≤ δN2

, i = 1,2, ...D (3.23)

This means that the setV ∋ V∗ will be omitted in the back-transformation to the original
linear basis. The eigenvalues, cumulative eigenvalues andthe component rejection is
graphically depicted in figure 3.5 where the red line indicates the difference between data
variance and noise levelδN2. Notice the strong correlation and negligible information
loss while reducing the intrinsic dimensionality by 4.

The hypothesis is that this method of filtering out the PC’s with low variance will im-
prove the signal to noise ratio and hence result in a better calibration model fit. However
this is only the case for measurement noiseuncorrelatedwith the composition; otherwise
it will be part of the higher order PC’s. Furthermore one should keep in mind that the prin-
cipal component with the smallest eigenvalue does not carryany information; variableD
of the clr-transformed data will reflect the principal axis perpendicular to the hyperplane.
As mentioned in section 2.3,D dimensional compositional quantities will, by definition,
be situated on aRD hyperplane, when clr-transformated.

Algorithm Implementation

The framework given above has been implemented in a MATLAB script. In pseudo-
code, the program performs the following steps where after it outputs the filtered data
derived froml PCs. In order to facilitate the program to detect observationobtained at the
same down core location, it is required to supply the down core depths together with the
observations:

1. The data is clr-transformed,

2. Replicate samples are detected (using the depth attribute),
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3. Calculate replicates variance parameterδ I2
k at every replicate locationk,

4. Calculate global noise parameter byδN2,

5. The column-mean is subtracted from all observations,

6. SVD,

7. Calculate cumulative eigenvaluesλ cum,

8. Evaluating equation 3.23 to identify the significant PC’s,

9. Back-transform to original basis using the set of eigenvectors V∗ and the corre-
sponding scores and add the mean calculated in (5).

3.7 Sample Selection

Whereas the PCA-filtering step was mainly introduced to improve the final prediction,
a good geochemical prediction is only obtained when there isan appropriate calibration
sample set. Therefore we will further look into the current calibration methodology and
how this can be improved.

In a previous study the prediction discrepancies for a dataset of an unconsolidated
core were found to level out when using more than 40 calibration samples (Weltje and
Tjallingii, 2008). However the hypothesis is that an improved result can be obtained with
a more robust approach. This is expected to be primarily the case if (1) the dataset to
which the model is fitted will be large (the probability of taking the ’good’ points will
decrease) and (2) when the variability of the element concentrations is large (if there is no
variation at all, the choice of calibration sample is of no importance).

3.7.1 Sample selection; the concept

The basis for the approach that will be suggested here is thatthe best linear fit will be
obtained when the points to which the linear curve for an element combination is fitted
are (1) unclustered and (2) cover the entire spectrum of solutions. This originates from
the fact that the effect of measurement error on the linear fitwill be smallest when the
points to which the fit is performed are far apart. The limiting cases are resp.:

1. If a line is fitted to two observations (subjected to noiseN(µ,σ2)) that are infinitely
far apart, the effect of the random noise will be infinitely small, and

2. If a line is fitted to two observation (subjected to noiseN(µ,σ2)) infinitely close to
each other, there will be an infinitely number of solutions for the linear model.
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One way of selecting the locations to get the most effective fit of the linear model
would be to select the minimum and maximum intensity of everyobserved component.
However using this approach could result in the selection ofhigh and low readings
of a certain element that is dominated by noise (the element is almost undetectable).
Constructing a linear fit by calibrating with the noise-extremes will yield unreliable
LRCE model estimates! In addition, the selection of extremes for every element is also
not efficient in case of highly correlated intensity measurements (for instance when
the relative concentration of Ca directly correlates with the concentration of Zi). This
problem of correlation can be solved by using PCA instead of the raw intensities.

3.7.2 Implementation

The suggested method is to assign a number of calibration samples to every PC propor-
tional with the fraction of its eigenvalueλi w.r.t. the total variance of the data. In more
mathematical terms withl the number of PC’s inV∗:

λ %
j =

λ cum
j

∑p
i=1λ cum

i
, j = 1,2, ...l (3.24)

Given this percentage of variance for each PC, the number of calibration samples are
assigned proportional to this percentage. In order to get the best possible fit, the first
two samples selected on all principal axes will reflect the two ’extremes’. However to
prevent the selection of any negative or positive outliers,the samples are selected based
on their distance to the 10th and 90th percentile. All other ’vacant’ samples are distributed
more or less uniform along the principal axis. In order to achieve this, the range of
scores on a certain principal axis is being divided intop thresholds between the 20th and
80th percentile, wherep reflects the number of samples to be selected. Within a certain
threshold we wish to accomplish to select the sample that hasthe smallest sum of squared
scores on all other than the current principal axis.

The identification of observations closest to the principalaxis is being done in order
to accomplish that sample-sets on a certain principal component will reflect only the ’pro-
cess’ along this principal axis without interference of theother ’processes’. However this
sample selection strategy is merely based on some general idea rather than that we have
determined explicitly whether this interference will harmthe calibration process.

After this initiation step of distributing the samples overthe PCs, the program will
evaluate the spatial distribution down core of the selectedsamples. Because the routine
tries to equally distribute the locations over the range of all principal components thereby
neglecting the sample distance, sample locations might be too close each other to sample
as individuals. Therefore a logical step in the process is toevaluate the down core loca-
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tions and between-sample distance. In the implementation of the program, this minimum
between-sample distance can be fed to the program.

The second extension of the program concerns the fact that the significance of
improvement achieved using the sample selection routine isrelatively small in the ’tail’
(so for a large number of calibration samples). From now on the number of samples for
which the PCA-based locating of samples is considered effective Scrit , can be defined
by the user. However if the user does not give anScrit , it seems reasonable to put some
more weight on the down core distribution rather than getting even more dense sample
distributions on the principal axes. This down core uniformdistribution is achieved by
picking samples at positions right in between the already located samples using the PCA
approach that have the largest between-sample distance.

A intuitive way of illustrating the sample selection is by looking at biplots. Biplot
analysis is a commonly used way of evaluating and interpreting the results of a multi
variate dataset. A biplot (figure 3.6) shows the normalized scores on respectively the first
two or three principal axis, as obtained using PCA, which are indicates in figure 3.6 by
red markers. The variable arrows on the other hand indicate the loadingof a variable on
the specific principal axis. Two parallel arrows indicate a high correlation between the
two variables. A 90 degrees angle on the other hand means thatthe correlation between
the two variables is absent whereas a 180 degrees angle indicates a negative correlation.

3.7.3 Geometrical context

An illustrative way of showing the concepts of the sample selection is by looking at a
biplot. A biplot is a 2 or 3 dimensional plot showing theloadingsof the original variables
on the new principal axes. The axes of the variables are indicated by vectors which show
the covariance structure of the data; a 90 degrees angle implies zero correlation whereas
a small angle indicates a strong correlation. In a biplot, also thescoresof the observation
on the newly defined principal axes. The sample selection algorithm initially selects the
extreme (10th and 90th percentile) scores along these principal axes, whereas the number
of samples is proportional to the variance covered by the axis. An example of a biplot is
shown in figure 3.6.

The biplot in figure 3.6 shows the results for core 7920 in which we observe roughly
two highly correlated clusters in the clr transformed dataset; group 1 covering Ti and Fe,
group 2 covering Si and K. What is also apparent in this figure isthat the samples selected
by the selection algorithm, indicated by green markers, include the most extreme scores
in both the negative and the positive direction of the two principal axis. Note that this
is only the case because the intrinsic dimensionality of thedata was found to be two or
larger. Otherwise the sample selection strategy would onlybe applied to the first principal
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Figure 3.6: Biplot of the clr transformed data of Core 7920 withthe selected calibration
samples for n= 8.

axis, leading to a sample set mainly situated along the x-axis.

3.8 Module Performance

Given the two objectives discussed in the introduction, we suggest the following hypothe-
ses:

1. A better element concentration prediction can be obtained when non-significant
PCs are filtered out of the data before model fitting.

2. It is possible to achieve a better calibration result whenthe calibration points are
carefully selected using the described method.

In order to quantify the performance of the resp. filtering and sample selection, a frame-
work is being given here to quantify the performance. The calibration results are analyzed
by calculating discrepancies for all elementsD and all locationsL that were not included
in the calibration process. In order to be able to compare thespread in predictions with
the spread in replicate intensity measurements, a comparison is performed in log ratio
space in which euclidean distances are a valid distance. Thedistance between ’true’ and
predicted concentration̂W can be used as a global discrepancy parameter for a specific
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A B C D E F G H I
Mineral I 0 0 0 1 0 2 0 0 1
Mineral II 0 2 0 1 0 1 0 0 1
Mineral III 1 3 1 0 1 0 2 1 0

Table 3.1: Minerals that were part of the synthetic rock, measured with the XRF core
scanner.

set ofD elements andk observations:

Ψ = medk

{
√

D

∑
i=1

[

clr(Wki)−clr
(

Ŵki
)]2

}

(3.25)

which reflects a global measure for the prediction discrepancies; a high value ofΨ reflects
a large distance in clr space and therefore a low-quality prediction. In order to get a
global value for the random selection of calibration samples, the median value over all
simulations yields a curve with the globalΨ as function of the number of calibration
samples available. This curve was then compared to aΨ curve obtained by selecting the
calibration samples using the sample selection routine.

3.8.1 Algorithm performance for synthetic data

In order to assess whether the algorithms for filtering and sample selection are signif-
icantly better compared to the resp. unfiltered and random sample selection strategy,
synthetic datasets were generated thereby allowing for applying the inverse as well as
the forward model. This synthetic dataset is created using the fact that log ratio trans-
formed data obey the rules of a ’normal’ dataset and can therefore be perturbed using an
’ordinary’ random number generator.

Creating synthetic dataset

The first step in order to obtain a synthetic dataset is to adopt a set of minerals that are
going to be the components of mixture (see table 3.1). This table must be interpreted
as rows representing mineral phases and the columns indicating the stoichiometry of the
given phase in terms of the set of elements{A,B,C, ....}. After the random generation
of mineral compositions, the corresponding element compositions are calculated which
are subsequently transformed to mass fractions by using some arbitrary molar weights.
In order to transform these compositions into XRF intensities, the alr-transform of the
elementintensitiesis determined using an arbitrary denominator element. To generate
these intensities, we adopted the most straightforward model that hasα = 1 andβ = 0
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for all element-pairs. This yields the following model for the alr transformed quantitiesI t

andWt wherei denotes the numerator,D the common denominator andj the observation:

I t
iD, j = αiD ·Wt

iD, j +βiD, i = 1,2, ...D (3.26)

subsequently we perform the reduced space transformation on the scoresX derived from
SVD of the clr-transformed intensities:

YT
l = XT

l Vl (3.27)

where l is smaller than the number of elementsD in this synthetic mixture. Since we
now know, by definition, that the data has an intrinsic dimensionality of l , we can now
add noise by knowing that every PC that is abovel is purely noise. Pseudo-observations
subjected to measurement noise are generated as follows:

X̃ = X +N(µ,σ) (3.28)

for a givenµ andσ . This simply means that the concentrations are perturbed with noise
with a given meanµ and standard deviationσ2. For this synthetic experiment, we adopt
µ = 0 or more general, an unbiased prediction. Although this work flow mimics the
forward model, in reality the noise component is not independent of the composition

Simulations

In order to analyze the algorithm performance, the sample selection routine was put to the
test. In order to achieve this, datasets were simulated (n = 500) with a random mineral
composition. Each dataset comprises 200 observations which were calibrated using an in-
creasing number of pseudo-calibration samples. Additionally 60 randomly selected repli-
cate samples were added to be used in the filtering step. Obviously the replicates within
one replicate series reflect the same intensity reading, although they areindividually and
independentlyperturbed with noise. The calibration was performed both with the samples
selected randomly as well as using the sample selection routine. The performance of the
calibration process was also investigated for the case where the data was filtered using
PCA-filtering respectively before and after it was feed to thesample selection routine.

In addition to the experimental setup described above, we also simulated data in the
same manner, however now for a standard number of calibration samples while increas-
ing the number of preserved principal axis. If the hypothesis is correct, there should be
an optimal number of PC’s (red. smallest medianΨ) which is smaller than raw data di-
mensionality. Additionally we expect this optimum to coincide with the findings of the
filtering algorithm.
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Figure 3.8: The model prediction discrepancies as determined from randomly generated
synthetic data (n=100) with an intrinsic dimensionality of 3, versus the number of PC’s
preserved in the filtering step.

Results

In figure 3.7 the medianΨ-values for the number of calibration samples are shown. As
can be seen in figure 3.7, the sample selection algorithm establishes a fast stabilisation of
the discrepancies compared to the random approach. We can roughly say that there is an
20-30% faster decline of the prediction discrepancyΨ.

The PCA-filtering is also a successful preprocessing step since the obtained discrep-
ancies using the PCA filtering are much smaller than the discrepancies obtained with the
unfiltered data. In general, 4 out of 9 principal components were preserved in the process
of back transformation which results in the removal of effectively 4 principal components
(one principal component only reflects the hyperplane the clr transform data is situated
on). Although we generated the data with intrinsically 3 principal components, the filter-
ing routine is at least conservative (it does not throw away too manyPC’s) and still gets
rid of a significant number of principal components.

When we look at the prediction discrepancies compared to the number of preserved
PC’s (see figure 3.8), there can be seen that an optimal number of PC’s is present. This
optimum is located at the filtered data dimensionality of 3 which is equal to the intrinsic
dimensionality of the dataset. The ’true’ intrinsic dimensionality is known because it was
used as value forl in the generation of the input data. In order to quantify whether the
results obtained with the newly suggested methods aresignificantlybetter, a statistical
tests will be applied. This will be discussed in the next section.
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Statistical Significance

One of the major advantages of constructing a large number ofsynthetic datasets is that
it allows us to asses the statistical significance of the results. Statistical tools yield a solid
foundation to the overall idea that both modules (PCA-filtering and sample selection)
give a better result. In order to apply a statistical test, the null hypotheses are defined as
followed;

1. The sample selection procedure does not give lower valuesof Ψ compared to the
random approach;

2. Using the PCA filtered data for the calibration does not yield lower values ofΨ
compared to using the unfiltered data.

To test both null-hypothesis an Analysis Of Variance (ANOVA) was considered. Since I
want to test equality betweentwogroups, the ANOVA is equivalent to the t-test. This test
works under the assumption of (Freedman et al., 2007);

• Independency of cases (outcome does not depend on the outcome of other realisa-
tions);

• Normality of the distribution of the residuals

• Equality of Variances within groups.

Unfortunately normally distributed noise on the clr transformed compositions will cause
non-normal distribution of the prediction discrepancies in terms ofΨ.

In order to cope with this, a nonparametric test can be used. Such a test is based on
testing the hypothesis based on ranks rather than the valuesitself. This results in assump-
tion (2) being replaced by an equal distribution requirement. Given that we compare two
equal quantities with each other (Ψ) which only differ w.r.t. the perturbation of noise, we
can say that the equal distribution requirement is met.

A non-parametric test used for two groups is the Mann-Whitney(Hollander and
Wolfe, 1973; Mann and Whitney, 1947) test which quantifies theprobability that two
groups are from the same population. Generally the null hypothesis is defined as the two
populations being from the same population given a certain level of significance. The
two-sample Mann-Whitney test can be used when the following requirements are met;

• Samples drawn randomly from the population,

• Within- and between-group independency,

• Ordinal or continuous measurement scale.
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These requirements are all met, given the experimental setup. The setup was such that
500 random datasets were generated randomly and calibratedusing a different number
of calibration samples. Given this setup, the sample selection algorithm does not yield
independent sets of samples for 1 dataset, which makes the results for one datasetnot
independent in the direction of the number of samples. However we wish to apply the
test forevery number of calibration samplesand in this ’direction’ the observations are
independent since they are obtained from different randomly generated datasets. Given
that the random number generator has a periodicity larger than 210000, it is reasonable to
assume independency.

The continuous measurement scale requirement is also met; data is considered to be
continuous if the values may take on any value within a finite or infinite interval, which is
the case forΨ. Furthermore you can count, order and measureΨ, making this a continu-
ous quantity.

Statistical Experiment

The Mann-Whitney test was applied by comparing the discrepancies derived from a ran-
dom specimen selection with the PCA-based sample selection and the discrepancies ob-
tained by applying the pre-calibration filtering step.

In figure 3.9 the discrepancies of both the random approach, the sample selection and
the filtering i.c.w. the sample selection are shown for two cases: 5 calibration samples and
30 calibration samples. Here one can see that where the performance of the filtered results
increases (Ψ decreases) with the number of calibration samples, the results obtained with
the sample selection converges towards the random sample selection discrepancies with
increasing number of samples. In the figure on the right, the distribution of discrepancies
are shown where we observe that the sample selection resultsare very similar to the
random sample selection in terms ofΨ.

Since the test is applied for every number of samples, it willresult in two curves of
the probability of equal mean as function of the number of calibration samples. In order
to quantify the significance of the improvement by using PCA filtering and the sample
selection routine, a confidence limit is adopted at 5% which reflects the probability of a
type 1 error (probability of rejecting the null-hypothesiswhile it should be accepted).

Test results

The Mann-Whitney test of theΨ values yields that the sample selection routine results
in a significant improvement of the model fit up to 13 calibration specimens (when the
number of calibration specimens is 14, the probability exceeds the level of significance
5%). The test results w.r.t. the combined use of sample selection and PCA-filtering show
for all number of calibration specimens very small values ofp (p < 10−40). Based on
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Figure 3.9: Distributions of the discrepanciesΨ for the synthetic datasets for n= 5 and
n = 30.

these results we rejecth0 referring to the filtering step andh0 of the calibration sample
selection up to a maximum of 13 selected samples. Although for this (synthetic) dataset,
the use of the two modules is beneficial for the prediction results for 13 selected samples,
this value might well be affected by the nature of the dataset. In order to investigate the
performance of the modules for the processing of ’real’ data, they were applied to data of
unconsolidated sediment.

3.8.2 Application to core 7919 and 7920

The work flow is rather straightforward; first the routine of PCA-filtering was applied to
define the number of significant PCs and to filter the data of core7920 accordingly. After
that the random sample selection strategy was tested using data of core 7919; in total 100
different permutations of the observation indices were generated. For every simulation,
the number of calibration samples was increased, ranging from 3 to 50 samples, thereby
creating 100× (50−3) different predictions. These results were compared to the results
obtained by calibrating with samples selected by the selection routine, with the number
of samples ranging again between 3 and 50.

In figure 3.10 the median discrepancies as a function of the number of calibration
samples are shown for both the filtered and unfiltered data of soft-sediment core 7920.
This filtering step was performed with the preservation of 5 dimensions of the 8 variables
(elements). The test results w.r.t. the sample selection are shown in figure 3.11 which
were determined using the data of core 7919.

The results in figure 3.10 indicate a significant improvementw.r.t. the prediction
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Figure 3.10: Discrepancy parameter as function of the number of calibration samples
using the filtered and unfiltered data for the data of core 7920.

discrepancies whilst using the filtering step. Also the sample selection strategy shown in
figure 3.11 yields good results; with the selection of 10 calibration samples, the expected
Ψ is comparable to theΨ obtained while calibrating with 40 randomly selected samples.
From the plot with the discrepancy values as a function of thenumber of samples it
may seem that the discrepancies become unstable for an increasing number of samples.
However this is the result of the experimental setup; the prediction discrepancies are only
evaluated for the observations which havenot been used in the calibration process. This
means that if the number of samples is increasing, the numberof samples that are used to
evaluate the performance decreases. Since the global discrepancy parameter is determined
as the median of this set,Ψ becomes more unstable if the set ofcalibration samples
increases.

3.9 Discussion and Conclusions

The research question that corresponds to the work that was presented in this chapter was:

How can the current work flow be optimized to reduce costs and to in-
crease accuracy and or precision?

which was subdivided into:
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Figure 3.11: Discrepancy parameter as function of the number of calibration samples
using the random approach (blue) and the sample selection algorithm. These results are
derived from core 7919.

Can clever use of multi variate methods result in an improved signal to noise
ratio?

Can a more robust sample selection strategy result in a fasterstabilisation of
the prediction discrepancies?

Based on the previous work of Weltje and Tjallingii (2008) andthe CoDa framework,
two modules were designed in order to achieve better calibration results. This included a
module that could result in a significant signal to noise ratio of the intensity data. Further-
more a sample selection strategy was defined that should result in a faster stabilisation of
prediction discrepancies.

The pre-calibration filtering step is found to provide improved results for both a real
dataset as well as synthetic data. For the latter, the Mann-Whitney two-sampled test
yielded significantly lower prediction discrepancies, given a 5% level of significance. The
probability under the null-hypothesis though was much smaller than this 5% (< 10−40).
Additionaly a calibration sample selection strategy has been developed by using Principal
Component Analysis. It was applied to the calibration of synthetic data which yielded that
the algorithm is effective until 13 calibration samples. When the number of samples was
larger, the sample selection was identified as being not significantly better, given an level
of significance of 5 %. When applied to a real dataset of core 7919, calibration using the
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selected samples resulted in a very fast stabilisation of the prediction discrepancy, com-
pared to the random sample selection. Therefore we concludethat the two modules are
valuable and facilitate (1) calibrated output of higher quality and (2) the same prediction
quality using a smaller sample set.
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Chapter 4

Linear Mixing in a Sedimentary Basin

Whereas the first chapter discussed some new developments w.r.t. the processing of the
geochemical data, we will now turn to the interpretation of geochemical data. In the
section discussing the primary objective of this study we stated that the primary objective
is to perform grain size predictions based on geochemistry.This implies that we somehow
have to understand the relation between these two quantities. In the first chapter the we
discussed the complexity of the process of basin infill and the factors controlling the
composition of the sediment in the basin. We furthermore defined the research question:

Can we build a forward model of basin infill in a formal geochemical and
textural context that successfully reconstructs real observations?

The primary reason of building such a model is that the performance of the forward model
provides insight in theunderlying physicalforward model configuration and parameters.
If we have an answer to this question, inverse modeling can beapplied in order to recon-
struct the history of the basin. However because of the complexity of sedimentary basin
infill, inverse modeling in terms of all these processes is bydefinition an under-determined
problem that leaves us with many unknowns.

In this chapter we will investigate one of these components which is the process of
mixing of chemically and texturally different sediment sources. A model is built for
this process which is subsequently applied to a soft-sediment core in order to test the
performance. The main reason of applying it to a soft-sediment core is that it is, in
contrast to ’old’ sedimentary rock, not altered by diagenesis. Another important reason of
applying this model to ’young’ sediment is that the history of this sediment is well-known
and well-defined. Because of this, any model outcome can be validated with the rather
accurate and well-defined ’reality’.

47
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4.1 Core 9508; Offshore Africa, Senegal

Core 9508 was obtained from the continental slope off Senegalat about
15/29.90N/17/56.88W from 2384 m water depth using gravity coring (see figure 4.1).
The continental slope off Northern Senegal is considered anideal location to study the
varying influx of eolian dust from the arid region in the Northand fluvial sediment from
the African continent, respectively. Historical records suggest that Sahel droughts result
from changes in the large-scale distribution of sea surfacetemperature. The primary ob-
jective of the work of Mulitza et al. (2008) was to reconstruct the last 57.000 years in
terms of climatology and to investigate whether the sediment in the core shows evidence
for these large-scale variations in sea surface temperature distribution.

In the work of Mulitza et al. (2008), a large number of core samples, uniformly dis-
tributed along the core, were analyzed with respect to theirgeochemical composition.
Furthermore the grain size distribution of these samples was determined. This was done
because it turned out from previous previous work that whereas the fluvial portion typi-
cally has grain sizes below 10µm (Gac and Kane, 1986), the eolian dust consists mostly
(between 44% and 83%) of grains larger than 10µm (Stuut et al., 2005). Based on these
distributions the relative portion of fluvial sediment relative to the eolian sediment was
derived based on the mass-percentage under 10µm with respect to the bulk.

Additionally discrimination between the fluvial and eolianportion was done based on
two element ratios (Fe/K and Al/Si resp.) of which the resulting Al/Si ratio is shown in
figure 4.2. This figure also shows the mass percentage of the material smaller than 10
µm that is considered to be an indicator for the fluvial influx. From these results was
derived that both the grain size related parameter, as well as the Al/Si ratio were found to
coincide fairly well with so called Heinrich Stadials (H., 1988). These Heinrich Stadials
coincide with the destruction of northern hemisphere ice shelves. The icebergs melting
caused significant amounts of fresh water to be added to the North Atlantic causing a dis-
turbance in the density-driven thermo-haline circulationof oceanic water. The result of
these processes for the Sahel region is a series of periods with relatively low precipitation.
As a result, the hypothesis was that sediment characteristics mark the occurrence of these
Heinrich Stadials; influx from fluvial origin reflecting theinterstadialswhere eolian sed-
iment marking the Stadials. The approximate time intervalsof the Heinrich Stadials as
interpreted in the work of Mulitza et al. (2008), are indicated in grey and were determined
from the age-model.

Based on these findings Mulitza et al. (2008) concluded that the relative influx of
fluvial and eolian sediment has a climatological significance. Furthermore it was found
that this signal is apparent in both the grain size data as well as the geochemical record.
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Figure 4.1: Location of core 9508 (modified from Mulitza et al. (2008)).

Figure 4.2: The Al/Si ratio (red), a record of the benthicσ18O (black) and the volume
percentage of all material smaller thanµm. The Heinrich Stadials are indicates in grey
(modified from Mulitza et al. (2008)).
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4.2 LINMIX model

In chapter 1 we briefly discussed the framework of sedimentary basin infill and the pri-
mary concerns w.r.t. the direct mapping of the concentration of certain elements to a grain
size signal. We stated that the one-to-one mapping of element concentrations or ratio’s to
grain size reflects a simplification of the ’true’ history of sediment deposition. Also the
application of grain size information in the way as was done in the work of Mulitza et al.
(2008) (a simple ’hard’ partitioning of the grain size spectrum), is considered to fail to
provide insight into paleo-climate in many cases (Weltje and Prins, 2003).

The same can be said about provenance (i.e. parent lithology) analysis based on
geochemical data; analogous to the grain size prediction, the direct application of geo-
chemical data towards any sedimentological parameter is only justified when all other
parameters have a negligible effect on the composition. More general, we can say that
the observed chemical signal is the result of a convolution of a source signal and selective
transport signal. Additionally, this convoluted signal can be perturbed after deposition by
diagenetic processes.

In all other cases, we are dealing with an under-determined problem that cannot be
readily solved for its components. However the fact that there are so many geochemical
controls does not necessarily mean that the explanatory power of geochemistry is low; it
only requires more data in order todeconvolvethe signal. Still the introduction of a set of
assumptionsandsimplificationsof the reality are necessary to perform this deconvolution.

4.2.1 The concept

We will now introduce the concepts of the LINMIX model, whichis based on a set of
assumptions and simplifications. Even though the initial assumptions (i.e. that an element
ratio is a direct indicator of a sediment property) are traded for a new set of assumptions,
the new set reflects a more physical set, regarding the process of basin infill. The model
is built on the following foundation:

1. The different sediment sources have a unique composition-versus-grain-size func-
tion.

2. The sedimentary record is the result of varying influx of different sediment sources,
having their own unique grain size distributions.

which is described in great detail in the work of Weltje and Prins (2003), both the concepts
as well as data that behaves accordingly.

Generally we can say that eolian sediment for instance, compared to fluvial sediment,
is well sorted coarse material. Furthermore arid regions with primarily eolian sediment
transport produce geochemically different sediment compared to the fluvial sediments,
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that are produced in a humid environment. Given that the two signals (the grain size and
geochemical signal) are correlated, we want to find out whether there is an underlying
relation that characterizes these two signals.

This relation will be applied in the model as Transfer Functions (TF’s); functions
describing the chemical composition as a function of the grain size. Although the pro-
cesses underlying the transport and the associated compositional change of sediment are
complex, it was found by Tolosana-Delgado and von Eynatten (2008) that some general-
isations w.r.t. the (petrographic) composition is valid. They found that the petrographic
composition could be approximated well by a linear model of the log ratio’s for a wide
range of grain sizes. The fact that a (log ratio) linear approximation yields acceptable
results, makes it possible to estimate these linear parameters by using only a small num-
ber of observations (degrees of freedom = 2). As a result it ispossible to estimate these
TF’s based on the chemical data of only 2 grain size fractions. Since the mutual relation
between mineralogy is trivial, the following assumption isadopted:

The compositional change as a function of grain size can be sufficiently pa-
rameterised by a logratio linear model.

Whereas isolating a grain size fraction is not possible for consolidated sediment, grain
size fractions of unconsolidated sediment can be physically isolated by using dry sieving.
This allows for chemical analysis of isolated size fractions and therefore the estimation of
data points on the TF’s.

The underlying TF model is important to characterize the compositional change of a
certain endmember. However initially, the endmember composition is determined readily
from the bulk chemistry using the inverse model ofemph simple linear mixing.

4.2.2 Simple linear mixing

Since the suggested model is based on the concept of linear mixing, we will first discuss
this concept in its most general form. Linear unmixing is based on the concept of ex-
pressing a compositionx comprisingD components, intoN mixing coefficientsm, andN
’pure’ endmember compositionsy (Weltje, 1997; Renner, 1991). In vector notation:

x =
N

∑
i=1

miyi, x =











x1,1

x2,1

· · ·
xD,1











(4.1)

If a set of observed compositions{x1,x2, ...xk} can be sufficiently expressed into linear
mixing of two endmembers for instance, this means that the observed composition (of any
entry ofxk) is a linear function of{m1,m2}. Alternatively we are, given that we know the
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mixing proportions, able to extract the fraction of a component in the ’pure’ endmembers
y1 andy2, by solving the linear system:

x = m1y1 +m2y2 (4.2)

where for the endmember weights hold that:

m1 +m2 = 1 (4.3)

It now appears that this system is easily extended towards a system of more endmembers.
However by introducing more endmembers and additionally more elementsD, problems
may arise when applying this to real data. Given that the system is overdetermined (ifn≤
D), it is unlikely that this system has a solution as a result ofmeasurement error. However
besides the fact there is most likely no solution, the solution is also not constrained to
the nonnegative part of the solution space which may lead to aphysically non-feasible
solution.

One way of avoiding a violation of the unit-sum and non-negativity constraints would
be to use log ratios. However whereas linear mixing problemsbehave accordingly in
compositional mixing space, linear mixing is non-linear inlog ratio space. In figure 4.3,
the relations between the endmember weights and the observed compositions (in resp.
weights, ratio’s and log ratio’s) are shown for a synthetic two endmember case. When
the number of endmembers increase as well as the number of components, parameteris-
ing the behavior of these components as a function of the mixing proportions becomes
even more difficult. Even though the mixing in log ratio/log ratio configuration seems to
behave approximately linear, at the 100% membership locations it is definately not. Un-
fortunately this part of the mixing space is the most important part for the estimation of
the endmember composition. Based on the results shown in figure 4.3 we conclude that
the most suitable coordinate system in which the linear regression can be applied is the
compositional space.

Whereas the linear mixing represented in figure 4.3 comprisesa system with only
two endmembers, this system is easily extended in a general form. The linear mixing
for a system of three endmembers can be thought of as a ternarydiagram framework
(a representation of theS 3 simplex in a constrainedR2), above which the fraction of
a certain component changes linearly in the z-direction by moving along the x,y-plane.
Although we will sketch the problem comprising a three endmember system, this system
can easily be extended to a multi-endmember system; see figure 4.3 for the 4-endmember
case, where the color indicates the fraction of a component in the bulk.
One preliminary step before applying regression is to applya coordinate transformation
such that the membership is transformed into coordinates onthe simplexS n. The reason
for applying this transformation is that by doing so, the number of coefficients that must
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Figure 4.3: Linear mixing in compositional space, ratio space and log ratio space.

be estimated is reduced by 1 compared to the original mixing space. Or, more general, we
transform the original mixing space, comprisingN components into a Cartesian system
in R

N−1.

For a three endmember case the transformation matrixT is given by:

T3 =

[

−cosπ
3

1
2

1
2

−sinπ
3 −cot π

6
2

√
3

2

]

(4.4)

which is the transformation matrix for a ternary diagram representation. The derivation of
this transformation matrix for any number of endmembers is described in many geometry
textbooks such as the one from Schartz (1974), but can be summarized by subsequently
transforming the data to barycentric coordinates and a rotation of the Cartesian coordinate
system to the desired viewpoint.

If we let m reflect the relative fractions of the endmembers in the bulk in a 1×n vector,
the following change of coordinates is applied:

c = T ·m (4.5)

As can be seen in figure 4.4, by staying in the simplex we are able to apply simple
linear methods to estimate the compositional change with membership. The endmember
compositions are determined by subsequently applying Least Squares Regression and
evaluating the composition at the pure endmembers locations in the simplexS n (the corner
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Figure 4.4: Linear mixing and the compositional response after coordinate transforma-
tion in resp.S 3 andS 4.

points of the ternary triangle).

There is however no free lunch; by staying in the simplex our linear regression model
must be constrained such that the predicted composition will be physically meaningful
(non-negative and not larger than 1, in case of fractions). In order to achieve this we will
apply a Constrained Least Squares (CLS) methodology which results in the following
model, given the number of endmembersN for a componentj:

a1 +a2cx, j = b j N = 2
a1 +a2cy, j +a3cx, j = b j N = 3

a1 +a2cz, j +a3cy, j +a4cx, j = b j N = 4
(4.6)

Given that there areM observations of this elementj andN endmembers, we can rewrite
this system into the following components:

c j =











1 c1,1 c1,2 c1,3 · · · c1,N−1

1 c2,1 c2,2 c2,3 · · · c2,N−1
...

...
...

...
. .. · · ·

1 cM,1 cM,2 cM,3 · · · cM,N−1











a j =











a1, j

a2, j
...

ai, j











b j =











b j,1

b j,2
...

b j,M











(4.7)
with which equation 4.6 can be rewritten as:

c j ·a j = b j (4.8)

This system can be solved in a least squares sense given thatM > N. However in order
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to prevent the solution to become non-feasible (negative solution or fraction larger than
unity) this system of equation must be solved using a set of constraints. In a case of 2
endmembers the constraints w.r.t. the solution space are:

A1 ·ai =

[

1 0
1 1

][

a1

a2

]

≤
[

1
1

]

A0 ·ai =

[

−1 0
−1 −1

][

a1

a2

]

≤
[

0
0

]

(4.9)

which can be written more general into the following form fora system ofN endmembers
and a given elementj:

A1 ·a j =







l1
...

lN













a1
...

aN






≤







1
...
1






, A0 ·a j =







−l1
...

−lN













a1
...

aN






≤







0
...
0






(4.10)

where lN is the location of endmemberN in terms of the barycentric coordinates
{c1,c2, ...cN−1}. WhereA1 and A0 are the compositional constraint matrices to esti-
mate the fraction of one element, we must incorporate the compositional constraints such
that the estimated compositionas a wholeis feasible. If we define the following building
blocks:

Ac =

[

A1

A0

]

, q =

[

1N

0N

]

(4.11)

we can define the full system of constraints for anN endmember system that is composed
of D elements as follows:

A ·a =















Ac 0 · · · 0
0 Ac · · · 0
...

...
.. .

...
0 0 · · · Ac

Ac Ac · · · Ac















·











a1

a2
...

aD











≤















q
q
...
q
q















(4.12)

In order to obtain the geochemistry of the endmembers we mustsolve the following linear
system of equations using least squares:

H ·a =











č1 0 0 0
0 č2 0 0
...

...
. ..

...
0 0 · · · čD





















a1

a2
...

aD











=











b1

b2
...

bD











(4.13)

whereč j is M ×N matrix with the observed membership transformed to the simplicial
coordinate system, analogous to equation 4.7. Even though we have not isolated the
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endmembers in any way from the bulk we can now, by solving thisconstrained linear
system, estimate the chemical compositionb̂p of every endmemberi using the estimated
linear coefficientŝa:

b̂p =











l i 0 · · · 0
0 li · · · 0
...

...
. ..

...
0 0 · · · l i











· â (4.14)

For clarity, we shall refer to thisendmembercomposition, as opposed to thebulk chem-
istry b, by thepartial bulk chemistrybp.

4.2.3 Generalized linear mixing model

Before moving on, let us revisit our objectives. In order to have the model be in line
with the objectives, the model must be more complex then onlybeing a matter of mixing
endmembers with some arbitrary (best fitting) composition.In the objective was stated
that the composition itself is again a function of grain sizewhich therefore results in
the partial bulk chemistry being determined by both a Transfer Function and a Grain Size
Distribution (GSD). For the moment we assume that every endmember has its own unique
TF and GSD.

A discrete version of the Transfer Function, denoted byC, of a certain endmemberi
for D elements, discretized intoG grain size classes can be written as:

Ci =











C1,1 C1,2 · · · C1,D

C2,1 C2,2 · · · C2,D
...

...
.. .

...
CG,1 CG,2 · · · CG,D











(4.15)

Because this Transfer Function reflects the composition in the grain size classes, the (hor-
izontal) sum of all fractions should sum to one, representing the ’whole’:

D

∑
j=1

Ck, j = 1, k = 1,2, ...G (4.16)

If we define the weight fractionsf in all G grain size classes, which is in principle the
GSD, as follows:

f =











f1,1

f2,1
...

fG,1











,

G

∑
k=1

fk,1 = 1 (4.17)
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the bulk chemistryof one endmember ican now be written as:

b̌p,i = CT
i · f i (4.18)

As mentioned before, this is only an approximation; in reality the TF’s and the GSD’s are
both continuous functions. In that case the concentration of an elementj in an endmember
i is obtained by integration along the grain size spectrum denoted byx:

b̌p,i j =
∫ +∞

−∞
ci j (x) fi(x)dx (4.19)

whereci j is the continuous function describing the fraction of element i in endmemberj
as function of the real variablex; grain size.

The partial bulk chemistry obtained here is equivalent to the partial bulk chemistry
defined in equation 4.14. However it is now being expressed more explicitly as the result
of the product between a compositional function and a function describing the relative
importance (mass fraction). The ability to estimate this partial bulk chemistry by means of
both the bulk chemistry and the more complex approach using the TF’s and GSD implies
that we have a way to validate the forward model with the inverse model. In other words,
we are now able to unwrap the 1-dimensional geochemistry, into a grain size signal and a
source component, determined by the TF.

4.2.4 LINMIX model

Suppose we would be able to measure the bulk chemistryb of a sample being a mixture
of several endmembers, all having a unique Transfer Function C, the LINMIX model
follows by plugging equation 4.18 into equation 4.1:











x1,1

x2,1
...

xD,1











= b =
N

∑
i=1

mi b̌p,i =
N

∑
i=1

CT
i · [f i ·mi] (4.20)

Theoretically the forward model (the right hand side) should correspond to the measured
bulk (the left hand side) and, more importantly, this systemof equation can be solved w.r.t.
mi, given thatG+N ≤ D. However it is unlikely that this system has a solution in case it
is applied to real data. This because the quality of the measured chemical composition of
the grain size fractions (i.e. the discrete TF denoted byCi) is low due to several reasons.

First of all we are not able to reconstruct the ’real’ continuous GSD because we can
only isolate a limited number of fractions. The system suggested in equation 4.20 also
assumes a uniform distribution of grain sizes within an isolated class. This has turned out
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as being far from reality; there is between-class overlap and the within-class distribution
is more or less bell-shaped. There are also limits w.r.t. thevalue of the compositional
analysis of these size fractions because above a certain grain size, the grains become
complex aggregates of individual minerals, making the dataless reliable.

All these error sources contribute to the predicted bulk chemistry b̌ and compositional
matrix C from which the combined effect on the different components is denoted byεD.
Therefore the system will most likely not have a solution andcan only be approximated
using regression techniques:











x1,1

x2,1
...

xD,1











= b̌ ≈
[

N

∑
i=1

CT
i · [f i ·mi]

]

+ εD (4.21)

Similarly to the LINMIX model for the bulk chemistry, we can define an analogous model
for the isolated grain size classes. If we have the grain sizedistributions of the endmem-
bers and the bulk chemistry of an isolated grain size class, we can apply this linear system
and thereby obtain a pseudo-observation of the TF. However in order to do so, the linear
model must be slightly modified. This can be illustrated by looking more into the GSD
vectorf. Let us define for ann endmember system the GSDmatrix F:

F =
[

f1 f2 · · · fn
]

(4.22)

If we wish to apply the system suggested in equation 4.21 we have to rewrite the system
such that the nett weightsf i ·mi applied to the Transfer FunctionsCi sum up to one;
otherwise the mixing proportions of the different endmembers within a grain size class
do not sum up to one. To achieve this unit-sum constraint, we introduce a Mass Fraction
Matrix M which is uniquely defined for every observation and every grain size class:

M = C

[

(1G ·mT) ·F
]

=











M1,1 M1,2 · · · M1,N

M2,1 M2,2 · · · M2,N
...

...
. ..

...
MG,1 MG,2 · · · MG,N











(4.23)

wherem is a vector of membership coefficients and1G is aG×1 vector full of ones. If we
now redefine our model for the case we have measured the bulk chemistry of an isolated
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grain size classg, denoted by̌bg, we obtain the following results for an elementj:











x1,1

x2,1
...

xD,1











= b̌g b̌g(i)
=

[

n

∑
i=1

Ci(g, j) ·M(g,i)

]

+ εD (4.24)

whereM (g,i) andci(g, j) represent resp. the mass contribution of endmemberi in a given
grain size classg and the fraction of elementj in a grain size classg of ’pure’ endmember
i.

Now we have characterized the GSD’s, membership and the composition of isolated
grain size classes, we can solve for the discrete TF, denotedby Ci, by applying the CLS
regression model given in equation 4.6. However we prefer the TF in a functional form,
rather than in the discrete matrixCi .

4.2.5 Fitting a transfer function

The tedious linear operations applied in the previous subsection yield compositions in dif-
ferent grain size classes for the different endmembers or endmember pairs. However since
we would like to determine a continuous endmember composition, we have to transform
these observations into a functional relation between composition and grain size. The next
objective is therefore to obtain feasible Transfer Functions from this data. It was found by
Tolosana-Delgado and von Eynatten (2008) that the compositional change w.r.t. the grain
size can be reasonably well approximated by a linear function. Although his findings
were based on a dataset of mineral composition rather than the geochemical composition,
we assume the same behavior of the geochemistry based on the fact that they are very
closely related (Posch and Kurz, 2007). The ordinary least squares adjustment may seem
directly applicable in this situation, however the problems arise from the fact that it is a
linear fit relating a compositional quantity as a function ofa real variable (in this case
the grain size). And since the compositional space is not an euclidean vector space, the
minimisation of the distance requires a different framework.

As discussed also in section 2.3, the log ratio transformed data on the other hand
will comprise an Euclidean vector space and can therefore bedirectly plugged into the
ordinary least squares adjustment framework. Let us first define the log ratio transformed
compositions ˇxk as a function of a real variablek and the compositional slope and intersect
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Figure 4.5: Graphic representation of applying linear regression to the composition vs
membership in the simplex structureS n (D = 4, G= 4, N = 3).

d1 andd0 for a combination of componentsi and j:

x̌k,(i j ) = ln
xk,i
xk, j

y̌k,(i j ) = ln
yk,i
yn, j

δ0,(i j ) = ln d0i
d0 j

δ1,(i j ) = ln d1i
d1 j

(4.25)

from which follows that for any combination ofi and j in {1,2, ...D}, for which i 6= j the
compositional linear function is given by:

y̌k,(i j ) = δ0,(i j ) +δ1,(i j ) · x̌k,(i j ) (4.26)

If we want to perform this curve fitting ’in the simplex’, we are forced to find a least
squares solution to the following model (Daunis-i-Estadella et al., 2002):

yk = d0⊕xk⊙d1⊕ εk (4.27)

with εk = [ε1,ε2, ....,εD] being the compositional discrepancies between model and ob-
served composition. The compositional operators already indicate that a least squares
solution is now obtained by minimising the Aitchison distance instead of the Euclidean
distance. By doing so one yields a least-squares estimate of the compositional ’intersect’
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d0 and ’slope’d)1.
The two curve fitting approaches are complementary in the sense that the two compo-

sitional fitting parameters relate to the log ratio parameters as followed:

δa = clr(da)

da = clr−1(δa)
(4.28)

given a = 0 anda = 1. A synthetic example of this process is shown in figure 4.5 and
4.6. In figure 4.6 the relation between the additive log ratiocomposition (for all element
combinationsi = 1,2,3 and j = 1,2,3 for which holds thati 6= j) and some real variable is
shown, which is in this case the grain size inφ -units. The plots in the middle column (el-
ement 2 is denominator element) indicate that the concentration of element 2 is very low
for the highφ -values. However as the grain size increases, the concentration of element
2 increases. When putting the plots in figure 4.6 in the least squares framework, the fitted
curves shown in the plots are obtained using ordinary least squares and characterized by
δ0 andδ1.
The curve fitting results in the simplex are represented in figure 4.5; the uppermost plot
shows the input data, which has a distinct compositional linear trend. As mentioned be-
fore, the observations in the rightmost corner (composition is dominated by component
2) represent the smallestφ -unit values. The plot in the middle shows the same results as
obtained from the linear fit whereas the plot at the bottom shows the compositional slope
and intersect. These last two compositions are the two compositions given byd0 andd1,
given in equation 4.28.

4.2.6 The optimal transfer function

As stated in section 4.2.2, linear mixing problems behave perfectly linear when expressed
in fractions and mixing proportions which can therefore be readily plugged into ordinary
least squares regression. The same linear mixing returns a nonlinear compositional re-
sponse when the composition is evaluated in the log ratio space. This nonlinearity is the
most severe at high endmember membership, which is essentially the most important part
in the suggested model because we obtain the endmember composition byextrapolation.
On the other hand we try to stick to the model suggested by (Tolosana-Delgado and von
Eynatten, 2008), in which is stated that these Transfer Functions can be approximated
reasonably well by a linear model in log ratio space.

For the latter we have shown the framework to move freely between the simplex and
the log ratio space by using the simplicial operators for perturbation and power transfor-
mation. By using this framework we can (1) apply linear curve-fitting w.r.t. thelog ratio
compositional response as a function of grain size and (2) apply linear curve-fitting w.r.t.
thesimplicial composition as a function of membership.
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Figure 4.6: The results of applying a linear fit to all numerator/denominator pairs yields
all the [δ0,δ1] pairs, given that i6= j (the diagonal).
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Figure 4.7: Input data (top), least squares linear regression results (middle) and the two
compositional coefficients (bottom).
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To revisit the primary objective; find a set of Transfer Functions with which the geo-
chemical data can be reconstructed successfully and in the optimal sense. However the
Transfer Functions affect both the geochemical data of the size fractions, the partial bulk
and the bulk. Nevertheless we are able to estimate this Transfer Function from (1) the par-
tial bulk chemistry we obtain from the fractionized data and(2) from the bulk chemistry
i.c.w. the membership (see equation 4.20).

Because of this redundant information we adopt a weighted average between those
two quantities as follows:

b̄p,i = mean{wclr[b̂pi ], (1−w)clr[b̌pi ]} (4.29)

wherew reflect the relative importance of the XRF-bulk-derived partial bulk w.r.t the
partial bulk from the fractionized data. Now the ’optimal’ endmember compositions are
determined, we want to obtain an updated compositional slope and intersectd1 andd0

such that we reconstruct these ’optimal’ endmember compositions as follows:

b̄p,i = Ci
T · f i (4.30)

whereCi is again aD×G matrix of the discretized TF of endmemberi, discretized into
the grain size classes with mean grain sizes{φ1,φ2, ...φG} :

Ci = [d0⊕φ1⊙d1 d0⊕φ2⊙d1 · · · d0⊕φG⊙d1] (4.31)

We can rewriteCi using the perturbation and power transformation rules intothe matrixD
with column vectorsϕg (g= 1,2, ...G; G the number of grain size classes) representing the
composition of a infinitely small grain size class with meanφg and with fg representing
the mass-fraction in the specific class:

D =
[

ϕ1 ϕ2 · · · ϕG
]

, ϕg = fg · Cv[d0 · C [d1
φ(g)]] (4.32)

whereCv [..] denotes theverticalclosure operation.

Even though this system can be solved or at least approximated (minimising the clr
distance) using an optimisation toolkit, applying this system might become computation-
ally expensive. Furthermore there are some limitations of solving this system for both the
compositional slope and intersectd1 andd0. One of the limitations is that in order to have
an overdetermined system in equation 4.32, the dataset should fulfill the requirement that
D ≥ 2N. Otherwise the optimisation can only be applied in a simplified form by solving
either for the compositional intersectd0 or the compositional sloped1.

An advantage of applying a simplified approach by only estimating d0, is that the
system not only becomes less computationally expensive, itcan also be solved using
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standard linear linear methods. If we assume the compositional sloped1 (estimated from
the XRF of grain size fractions) as being ’true’, the termC [d1

φ(g)] will be constant for a
given grain size class, which we will now refer to as by the (closed) vectorh:

ϕg = fg · C v [d0 · C [d1
φ(g)]] = fg · C v [d0 ·h(g)] = fg ·h(g) ·d0 (4.33)

since matrixD does not have nonlinear terms anymore we can sum over all grain size
classesg = 1,2, ...G of which we put the result on the diagonal of a matrixE:

E · d̄0 =











∑G
j=1h j,1 · f j 0 0 0

0 ∑G
j=1h j,2 · f j 0 0

...
...

...
...

0 0 0 ∑G
j=1h j,D · f j











·











d0,1

d0,2
...

d0,D











= b̄p (4.34)

From this system the new perturbing compositiond̄0 follows directly from:

d̄0 = C
[

E−1 · b̄p
]

(4.35)

Surprisingly enough the nonlinear system of equation whichcould additionally only be
solved under conditions w.r.t. the number of grain size classes and elements, can now be
solved by simple element-by-element division.

Even though we have obtained a physically feasible linear mixing model structure,
there are infinitely many model configuration possible. Thisbecause not only the EM-TF
configuration can be altered; the model outcome is also determined by the given weight
value in the weighted averaging step (see equation 4.29). How we determine this weight
parameter will be discussed in the next section.

4.2.7 Model performance

Before moving on to the results of the linear mixing model, a framework must be defined
that will determine the quality of the linear mixing (LINMIX) model. There are in princi-
ple three types of data sources that were used to obtain the model predictions; endmember
data, chemical compositions of the grain size fractions andthe XRF core scanning data.
A satisfying model will yield discrepancies between model and data that are not signifi-
cantly larger than the uncertainty of the input data itself.
An estimate of discrepancy between a model prediction and a data source of the compo-
sitional quantityW and comprising the same set ofD elements is defined as follows:

F =

√

√

√

√

D

∑
i=1

(

ln

(

Ŵi

geom(Ŵ)

)

− ln

(

Wi

geom(W)

))2

(4.36)
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Estimates of the discrepancy parameterF can be determined for a whole series of different
data sources and models. The same approach can be used to determine the quality of a
data source by evaluating the dispersion of replicate samples analyzed and sampled in the
same way and using the same sample material. In principle we can therefore distinguish
between theF-parameters that relate to the quality of the input:

• Uncertainty of the XRF-bulk data;

• Uncertainty of the fractionized data;

• Uncertainty of the Endmember data,

whereas the discrepancy between data quality and the predictions by the LINMIX model:

• XRF-bulk down core composition vs. the LINMIX modeled down core composi-
tion,

• Input fractionized data vs. LINMIX modeled fractionized data,

• Input endmember data vs. LINMIX modeled endmembers.

will be denoted byF̂ . In principle the most optimal LINMIX model yields fractionized
data, endmember data and XRF-bulk at the same accuracy of the input data itself. How-
ever this complete error modeling structure can only be adopted when there are reliable
estimates of the uncertainties of all the input data sources.

However even if these uncertainty estimates are available,this error modeling struc-
ture becomes rather complex and computationally expensivewhen incorporating the ac-
curacy of the GSD shape as well as the membership record. Alsothe error propagation
with respect of the accuracy of the fractionized data and itseffect of the final TF’s is not
easily solved analytically. This because the errors are determined by several aspects:

1. Quality of the endmember unmixing;

2. How well does the model behave according to ’reality’ withrespect to the compo-
sitional linear trend;

3. Quality of the geochemical data;

4. Within class distribution of mass;

5. Possible between-class overlap of mass.

For simplicity, we will adopt a simplified version of the error modeling by adopting the
assumption that all error sources except (2) have a negligible effect on the final prediction
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error. The consequence of this assumptions is that the discrepancyF between pseudo-
observations and (initial or optimized) compositional linear trend can be derived from the
data and used to asses the model performance. Another assumption that is introduced is
that the accurracy of the model input can be satisfyingly parameterised by their associated
mean and standard deviation. Given thatFg denotes the integrity of the chemistry of the
size classes, it is parameterised by{µb,σb}. Obtaining a reliable estimate of the XRF-bulk
integrity on the other hand is easily done by evaluating the residuals between the XRF
calibration model (LRCE) and the calibration samples. Nevertheless this methodology
is implicitly also based on the assumption that the log ratiolinear calibration model is
’true’ and the samples used to calibrate with are unbiased. Analogous to the chemistry of
the size fractions, again the accuracy is modelled by two parameters; the mean and the
standard deviation{µx,σx}.

The second group of discrepancy valuesF̂ that was introduced represented the per-
formance of the LINMIX model; how far does the LINMIX model deviate from the input
data. This subsequently determined for the bulk chemistry by evaluating the LINMIX
model predictions and the predictions by XRF core scanning. Additionaly the discrepan-
cies between the pseudo-observations, representing the theoretical compositional change
with grain size, and the final logratio-linear TFs give an estimate of the goodness of fit
between the data and the compositional linear functions. Now the framework is defined
for both data and model prediction, model acceptance criteria are adopted. This includes
one acceptance criterion that relates to the bulk chemistry, cb, and one criterion that re-
lates to the analysis of the size fractionscg. If for a given model configuration andw the
following holds, the model will be accepted:

cg = 1 | med
{

F̂g
}

≤ rσg√
ng

+ µg

cb = 1 | med
{

F̂b
}

≤ rσx√
nb

+ µx

(4.37)

where{µg,σg} characterize the discrepancies between pseudo-observations and derived
compositional linear TFs and{µx,σx} represent the mean and standard deviation of the
XRF calibration residuals. The values ofng and nb represent the number of observa-
tions that were effectively used to calibrate the linear mixing model andr is an integer
relaxation-parameter quantifying the strictness.

The ’optimal’ solution for the TF-EM configuration andw that is accepted according
to the criteria given in equation 4.37 follows by minimisingthe objective functionH (w,r):

min{H } = min

[√
ng

rσg

(

med
{

F̂g
}

−µg
)2−

√
nb

rσb

(

med
{

F̂b
}

−µx
)2

]

(4.38)
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This relations means in principle that we want to keep the distance between LINMIX-
bulk and XRF-bulk data equally large as the distance between LINMIX-fractionized and
XRF-fractionized geochemistry. Analogous to the acceptance criteria the number of ob-
servations is also incorporated; if a large number of observations is available we accept
a smaller distance between model prediction and data. The model that is (1) accepted
according to the acceptance criteria for anyw and that (2) shows the minimal value forH
for a specific (range of)w is now identified as the ’optimal’ model.

4.2.8 Summary of the work flow

To summarize the whole work flow, a flowchart of the unmixing ofthe geochemical data
is shown in figure 4.8. Here one can see that the geochemical data determined by using
calibrated XRF core scanning is the guide for the optimisation process. This data will
represent the bulk chemistry of the mixture from which the partial bulk chemistryb̂p can
be obtained using the unmixed GSD’s and the inverse model (see equation 4.14). In order
to do this, the membership is plugged into theS n simplicial framework, from which the
partial bulk is determined using constrained least squaresmethods. The calculation of the
first guess Transfer Function matrixC is also done by applying the inverse linear mixing
framework, however now by applying this framework to every grain size classindividu-
ally, which yieldsbg (see equation 4.24).
After this initialisation step the forward model is appliedsuch that the partial bulk chem-
istry is obtained by applying linear mixing using the GSD’s,TF’s and Memberships. This
results in an estimate of the partial bulk given byb̂p (see equation 4.21). A weighted av-
erage between the partial bulk from XRFb̂p,i and the derived partial bulk chemistry from
the fractionized datǎbp,i yields an updated version of̄bp,i which will be the input of the
compositional least square fitting, given in equation 4.35.By calculating the necessary
shift (the compositional slope is not altered) in log ratio space of the Transfer Functions
in order to reproducēbp,i, an updated Transfer Function is obtained which yields the
geochemical prediction in the optimal sense, as shown in equation 4.21.

One should keep in mind though that the LINMIX model, as it is defined here, is based
on two assumptions:

The compositional change as a function of grain size can be sufficiently pa-
rameterised by a logratio linear model.

The compositional slope, as determined from the fractionized data is ’true’
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Figure 4.8: Flowchart of LINMIX model.
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Fraction grain size[µm] phi-units
1 < 2 10.6267
2 2−10 7.8048
3 10−40 5.6438
4 40−100 3.9829
5 > 100 2.8219

Table 4.1: Isolated grain size fractions with the grain diameter range and average grain
size in phi-units.

nb ng nm

nb 444 6 92
ng - 6 6
nm - - 191

Table 4.2: Number of observations of each dataset (b = XRF-bulk, g = analysis of grain
size fractions and m = GSD analysis) and their down core intersections.

4.3 Application to Core 9508; Offshore Senegal

In this section the LINMIX model was applied to a real dataset; the data of core 9508
that was described in more detail in section (tag). The core was obtained offshore Africa
and was studied in great detail w.r.t. its paleo-climatological information content. Ad-
ditionally grain size data, XRF core scanning data as well as XRF of isolated grain size
fractions has been acquired;fractionized data. A summary of the number of observations
in each dataset as well as their down core intersections is shown in table 4.2.

4.3.1 Unmixing grain size distributions

Representative samples were taken from the core which were analyzed w.r.t. the grain size
distribution. Grain size distributions were numerically unmixed by applying the endmem-
ber unmixing algorithm EMMA (Weltje, 1997). This algorithmsearches for the optimal
set of grain size distributions that sufficiently reconstructs all the observed GSD’s. Ad-
ditionally the number of endmember-GSD’s used to reconstruct the observations is min-
imized. Analogous to PCA methodologies, the discrepancy between the mixed GSD’s
and the observed GSD’s descreasing while increasing the number of endmember-GSD’s.
Given that a goodness-of-fit is adopted, a cutoff can be applied such that the number of
endmember-GSD’s is manageable. For the data of core 9508 it was found that a three
endmember system (see figure 4.10) yields an acceptable (mean coefficient of determi-
nation ofR2 = 0.84) approximation of the observed grain size signal (see figure 4.9).
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Figure 4.9: Goodness-of-fit between grain size observationsand the EMMA unmixing
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mean R2 value of 0.84.

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

5

6

7

8

Grain Diameter [mm]

P
er

ce
nt

ag
e 

in
 c

la
ss

 [%
]

Endmembers found using EMMA

 

 
EM1
EM2
EM3

Figure 4.10: Endmembers found for Core 9508 using the EMMA algorithm.
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Al Fe K Si Ti
Al - 0.8587 0.7686 0.9389 0.5151
Fe 0.8587 - 0.9518 0.9440 0.9200
K 0.7686 0.9518 - 0.7415 0.7446
Si 0.9389 0.9440 0.7415 - 0.7450
Ti 0.5151 0.9200 0.7446 0.7450 -

Table 4.3: R2 values for all log ratio pairs for the 9508-dataset.

The result of this unmixing step is a membership-record comprising three compositional
variables.

4.3.2 Calibration of the core Scanning data

The XRF core scanning data was calibrated and thereby turned into a semi-quantitative
dataset by using the LRCE discussed in section 3.1. A useful statistic to quantify the
performance of the log ratio calibration models is theR2 statistic. TheR2 statistic, which
ranges from zero to unity, may be interpreted as the magnitude of down-core variability
relative to the width of the error bar. TheR2 statistic for all log-ratio pairs is shown in
table 4.3 where the columns represent the denominator.

According to theR2 statistics in core 9508 the best calibration results are obtained
by using a log ratio model with Fe as common denominator whichyieldedR2 ≥ 0.85
for all log ratio pairs. The down core compositional record,obtained by applying this
calibration model are shown in figure 4.11. In the data of core9508 we observe, analogous
to the work of Mulitza et al. (2008), several distinct and sudden decreases in the Fe-
concentration, leading to an increase of the logratio’s, which were ascribed to be the result
of an arid climate in the Sahel. The predicted element concentrations obtained using the
calibration step are now ready to be used in the linear mixingmodel. The major advantage
of using this calibrated XRF core scanning data over the calibration samples alone is that
we have obtained a relatively high resolution geochemical record with many overlapping
data points with the grain size record (nm,b = 92).

4.3.3 Model acceptance

We would like to investigate whether the acceptance criteria as well as the values of the
objective function have potential to provide an semi-automatic geological interpretation.
In other words, will the model identify endmembers 1 and 2 as being material of the same
source (eolian material). In order to test this we setup the following objective:

Find the model that is accepted according to the acceptance criteria and that
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Figure 4.11: Down core logratio (alr) composition of core 9508 with Fe as common
denominator.
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Figure 4.12: Results of the calibration of the XRF data with the calibration sample com-
position on the x-axis and predicted composition on the y-axis.
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TF1 TF2 TF3 med
{

Fg
}

med
{

Fg
}

med{Fb} med{Fb}
w = 0 w = 1 w = 0 w = 1

{1,2,3} - - 0.2869 0.5311 0.4382 0.1212
{1,2} 3 - 0.4903 0.6532 0.3595 0.1169
{1,3} 2 - 0.3745 0.5148 0.2883 0.1511
{2,3} 1 - 0.5658 0.9546 0.3126 0.1506

1 2 3 0.6118 0.8248 0.4120 0.1131
(µx = 0.0960)

Table 4.4: Different configurations of endmember-TF pairs with the discrepancies.

Model # Complexity TF1 TF2 TF3 cb = 1|cg = 1 cb = 1|cg = 1
r = 1 r = 2

1 1 {1,2,3} - - empty empty
2 2 {1,2} 3 - empty w = 0.75
3 2 {1,3} 2 - empty empty
4 2 {2,3} 1 - empty empty
5 3 1 2 3 empty empty

Table 4.5: Configurations and the results w.r.t. the acceptance criteria as well as w for
the optimal solution in terms ofH .

comprises a minimal complexity.

where the complexity is the number of TF’s that are used to reconstruct the bulk chemistry
and fractionized data. By doing so, we want to find out whether aprediction quality
parameter could assist in the geological interpretation. The methodology we apply to
investigate this is to run the model using every possible TF-endmember set. For every
possible model configuration the F-distance parameter was determined for bothw = 0
and w = 1 which, in words, simply means that we asses how ’closely’ the model can
resemble the fractionized data and bulk chemistry, respectively.

4.3.4 Acceptance results

Table 4.4 shows the results of the discrepancy parameter forthe different LINMIX model
configurations. There are a couple of things we observe in these results. First of all we
observe that the least complex model{EM1,EM2,EM3}, has the best fit w.r.t. the com-
positional linear trend. This follows from the discrepancyvalue of 0.2869 forw = 0.
Additionally we observe that models 3 and 4 are, for as far as the bulk chemistry is con-
cerned, the least capable of reconstructing the bulk chemistry (med{Fb} = 0.1511 where
the XRF data hasµx = 0.0960). Although model 1 is the most respectful for the com-
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positional linear trend, it is not capable of reconstructing the bulk-chemistry satisfyingly
which results in the rejection of this model for allw.

However, as indicated in table 4.5, model 2 is accepted whichhas a minimumH -value
for w = 0.75. Given the interpretation of the different endmembers, this is in line with
the findings of Mulitza et al. (2008). They state that endmembers 1 and 2 reflect both
eolian sediment whereas endmember 3 is the fluvial portion. The model outcome is that
the compositional change that is observed with arelativechange of endmembers 1 and 2
is only the result of grain size variations. In other words, that endmembers 1 and 2 have
in principle the same source material and were transported in the same way. However to
reconstruct the geochemistry and fractionized data, endmember 3 must be modelled using
an additional TF indicating different a different source.

4.3.5 Unmixing results

Shown in figure 4.13 are the partial bulk chemistry from the XRF-bulk as well as the bulk
chemistry as determined using model 1 andw = 1. At the corner points of the simplex
in the xy-plane plane, the partial bulk chemistries are shown from respectively the XRF-
bulk (green) and the forward linear mixing (black). On the other hand the blue and red
markers indicate the linear mixing model prediction for allmembership observations by
mixing of the two different sets of partial bulk chemistries(XRF and fractionized data,
respectively).

The initial predictions by the two different sets of partial bulk chemistries are not in
correspondence; for K for instance, the initial guess of thetwo bulk chemistries are not
overlapping w.r.t. the fraction of bulk (red. the z-direction of the figures). Also the ’red’
prediction of Al is significantly lower compared to the ’blue’ prediction. However when
looking at the optimized partial bulk in figure 4.14 which wasobtained by applyingw= 1,
one can immediately see the strong improvement between predicted bulk and observed
XRF-bulk. This is the most apparent for the Al, Ti and K concentration. There seems
to be no significant change in the Fe-concentration which is,given the fairly good initial
guess, as expected.

The down core bulk chemistry as obtained using the same modeland model param-
eters is shown in figure 4.15, where one can see that the LINMIXestimate of the bulk
chemistry has a lower variance compared to the XRF-bulk. However when looking at the
initial guessed bulk chemistry, the optimisation of the TFshas definately resulted in an
improved prediction.

In order to further investigate the improvement, it is also worthwhile to look at the
predicted bulk chemistry down core in log ratio space (figure4.18). What becomes clear
from this figure is that whereas Al/K and Fe/K are estimated rather accurately, the Ti/K
ratio is poorly reconstructed. There even seems to be negative correlation between the
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Figure 4.13: Initial guess of the partial bulk chemistry from XRF-bulk (blue) and the
results from the forward linear mixing model (red) using 1 TF.The composition of the pure
endmembers are shown at the corner points as derived from the XRF-bulkb̂pi (green) and
the forward linear mixinǧbpi (black).
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Figure 4.14: Optimized results of the partial bulk chemistry from XRF-bulk (blue) and
the results from the forward linear mixing model (red) using 1TF. The composition of
the pure endmembers are shown at the corner points as derived from the XRF-bulk̂bpi

(green) and the forward linear mixinǧbpi (black).
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Figure 4.15: Reference, initial guess and optimized bulk chemistry obtained using a 1-TF
forward linear mixing. Shown here are only the locations where both GSD and XRF-bulk
was observed.

observed and predicted Ti/K concentration for some core sections. Since in model 1
only one TF was adopted, the level of variance that can be achieved in the predicted
bulk chemistry is limited; we are only altering theintersectand not theslopeof the TF’s
which implies that with the fixed GSD’s, the variance of the bulk that can be achieved is
restricted.

When looking at the results of model 2 in figure 4.16, it appearsthat the down core
prediction is in correspondence with the observed bulk chemistry. The peaks and troughs
are reconstructed effectively than for the 1-TF model. Furthermore in figure 4.20, the
improvement of the optimisation step is very clear in the discrepancies between LINMIX
and XRF-bulk. Also the mean of the intrinsic data uncertaintyand the discrepancy be-
tween the XRF-bulk and LINMIX are almost the same, which lead to the acceptance of
this model. In figure 4.17, the 2 determined TF’s of model 2 areshown which indicate
that the two TF’s are very similar, except for the sign difference in slope of the Fe curve.
Whereas the TF that describes the two coarsest endmembers hasan increasing Fe con-
centration with fining sediment, the other TF shows a decrease in Fe content with fining
sediment. Given that these TF’s reflect the history and mode of transport of the sediment,
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Figure 4.16: Reference, initial guess and optimized bulk chemistry obtained using a 2-TF
forward linear mixing. Shown here are only the locations where both GSD and XRF-bulk
was observed.
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Figure 4.17: Initial (solid line) and optimized (dashed line) Transfer Functions of model
2 with{EM1,EM2} (left) and EM3 (right) and w= 0.75.
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Figure 4.18: XRF-bulk and 1-TF linear mixing results (expressed in log ratio composi-
tion; K as common denominator), obtained using w= 1 and model 1.

the next section discusses the geological context of the derived TF’s.

4.3.6 Interpretation

Given that the interpretation by Mulitza et al. (2008) is true, we would expect this to
come forward in the chemical fingerprint. If we now turn to theendmember compositions
(figure 4.21) found for model 2, it turns out that for the eolian endmembers the Fe/K
proportion is around 2. For the fluvial portion on the other hand, the Fe/K ratio is around
4. If we compare these values with the present-day sediment compositions for the fluvial
(Gac and Kane, 1986) and eolian (Orange et al., 1993) material of resp. 4.83 and 2.35
we can conclude that the values derived from the LINMIX modelare realistic in that
sense. Furthermore it turns out that the choice of either model 1 (figure 4.21, lower
plots) or model 2 (figure 4.21, upper plots) has a negligible effect on the final endmember
composition. In order to assess the overall behavior of the TF, we convert the rather
difficult to interpret TF to the composition of two infinitelysmall grain size classes (see
figure 4.22). The selected grain size classes (φ = 3 andφ = 10) correspond respectively
to the coarsest and finest sediment in the mixture. From these2-TF results can be derived
that, in contrast to the fluvial TF, the eolian TF (TF 1; the uppermost pie-plots) is rather
constant along the grain size spectrum. This observations is in line with what we expect;
in an arid environment, chemical weathering is almost absent leaving the compositional
change with grain size primarily being determined by the physical breakdown of grains.
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Figure 4.19: XRF-bulk and 2-TF linear mixing results (expressed in log ratio composi-
tion; K as common denominator), obtained using w= 0.75and model 2.
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Figure 4.20: Histogram of the initial and final bulk discrepancies(core 9508) and the
discrepancies as obtained in the calibration process for model 2 and w= 0.75.
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Figure 4.21: Compositions of the pure endmembers for the configuration with TF’s for
resp. {EM1,EM2} and{EM3} (model 2) and w= 0.75 (upper) and{EM1,EM2,EM3}
(model 1) and w= 1 (lower).

The opposite is true for very humid environments of which thefluvial portion of the
sediment is considered the product. Observations show thatsediment exposed to a very
humid environment is often exposed to severe chemical weathering. Typical for intensive
chemical weathering is the residual accumulation of (hydr)oxides of Fe, (Mn), and Al (see
cover photo). When looking at the Al concentration of the fluvial TF, relative enrichment
in Al and K is observed in the fine portion. Fe on the other hand is decreasing with grain
size. With respect to the Ti concentration can be stated thatthe compositional change with
grain size is low, as is the overall fraction of Ti in the bulk.Given that the LINMIX-model
yields a composition with grainsize in a functional form, this function can be extrapolated
to a considerable grain size which leads to the composition of the parent rock. Although
the extrapolation towards a source rock composition may work in theory, the composition
is expressed in only a small number of elements (red. rock-forming elements) which does
not provide enough information to classify it accordingly.Furthermore, this logratio-
linear model is adopted merely for mathematical convenience and does not necessarily
reflect reality. Especially near the edges of the sedimentological grain size spectrum, the
validity of the logratio-linear model is not ensured, as found by Tolosana-Delgado and
von Eynatten (2010).
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Figure 4.22: Model 2 TF compositions forφ = 10andφ = 3.

4.4 Discussion and Conclusions

This chapter discussed the following research question:

Can we build a forward model of basin infill in a formal geochemical and
textural context?

The answer to this question is that we have successfully parameterised a forward model
for the process of sediment mixing. Additionally it was applied to data of a Quaternary
core of unconsolidated sediment of which was known that it reflects two different sedi-
ment sources. According to the defined acceptance criteria and relaxation parameterr, it
is the only model that was accepted. Given the results of the acceptance framework, we
conclude that model 2 is the most likely model that underliesthe sedimentation. This con-
clusion is based on the fact that it provides a satisfying reconstruction of the input data.
This model outcome is in line with the geological interpretation since the only accepted
and optimal model configuration corresponds with the geological interpretation. Further-
more the composition of the endmembers was found to corresponds reasonably well with
present-day values. This includes the composition of eolian dust from the Sahel mountain
(model; Fe/K=4, observations; Fe/K=4.8) and the composition of fluvial sediment from
the Senegal river (model; Fe/K=2, observations; Fe/K=2.3).
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Although this is what follows from the data, one must keep in mind that the model
is based on several assumptions. One of these assumptions isthat the underlying TF can
be sufficiently described with a compositional linear function. Additionally the composi-
tional slope was assumed to be correctly derived from the fractionized data. This implies
that if other or more data is available, the model acceptancecould lead to different results.
Nevertheless the adoption of the most complex model is notnecessaryto reconstruct the
available data.
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Chapter 5

In-situ Grain size Prediction of Core
E10-3

5.1 Introduction

This chapter will discuss the third and last research question that we stated in this study:

Is it feasible to predict textural properties of consolidated sediment satis-
fyingly, given multiple data sources and a known, straightforward prove-
nance setting?

In the previous section we discussed the forward model that incorporates linear mixing.
This process of linear mixing is very common in sedimentary basins. Furthermore, as
illustrated in the previous section, the inverse modeling of a mixed quantity is mathemati-
cally straightforward, although the introduction of the TFresults in a small complication.

For the unconsolidated sediment it was found that the sediment of the Quaternary
core, that was known to reflect a mixture of 2 different sediment sources, could be satis-
fyingly decomposed into three grain size endmembers. Apartfrom that, it was found that
an acceptable geochemical reconstruction was obtained when 2 Transfer Functions were
adopted.

However in order to apply this framework to a core of consolidated sediment, there are
some problems that arise. First of all, GSD’s cannot be retrieved and unmixed due to the
simple fact that the grains in this core are physically attached to each other. In this core
not the grains itself are the building blocks of the material, but the grains are all connected
and turned into one structure; thematrix. Furthermore diagenetic processes might have
altered the chemical composition, leading to a compositionthat does not ’obey’ the rules
of linear mixing. Therefore the grain size prediction for this core requires a different
approach.

85
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5.1.1 Research Question

There are effectively three research questions w.r.t the consolidated core. Whereas the
in-situ geochemical logging technique is widely exploitedin Quaternary geological stud-
ies, its performance with respect to the analysis of consolidated, ’hard rock’, cores is
unknown. Given some differences w.r.t. the data acquisition, the first question that must
be answered is:

Can XRF core scanning data of consolidated sediment be successfully cali-
brated?

If the calibration of this data yields satisfying results, we get to the following questions.
First we want to investigate how the XRF methodology, in combination with the accu-
rate grain size data derived from the plugs, performs as an almost continuous grain size
predictor. In other words:

Is it possible to fill-in the gaps in between the sparse plug observations in
terms of mean grain size?

Finally we want to investigate how the methodology can facilitate the semi-automatic
classification of the core. Since this classification is labor intensive and is limited w.r.t.
resolution, a way of combining the sources of data could workas a quality control and
additionally result in improved classification results:

What is the added value of XRF core scanning data in the process of down
core lithofacies classification?

5.1.2 Methodology

In order to get an answer to the first question, a complete LRCE work flow is followed for
the data of an consolidated core. If the data is calibrated successfully, we will investigate
the other two questions. To find an answer to these two questions, the geochemical data
must somehow be embedded in a model, either empirical or witha physical foundation.
Any model which is applied may rely on input data as it is beingacquired in a full core
analysis work flow, which includes:

1. Spectral Gamma Ray

2. Core Description

3. Plug Analysis (grain size, among others)
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Figure 5.1: Block E-10 depicted in the upper left in red. Source: www.tullowoil.com.

As mentioned already in the introduction, the application of a physically feasible model
such as the linear mixing model described in section 4 is complicated by the fact that we
do not have fractionized geochemistry and Grain size Distribution to unmix accordingly.

However for this study, a dataset of a consolidated core is made available that consists
of sediment that originates from one common source rock (pers. com. F. van den Belt,
TNO). Because of this, the LINMIX model is drastically simplified and a direct approach
to model grain size from geochemistry is justified.

5.2 Carboniferous core E10-3

In order to asses the methodologies as discussed in the previous sections, a consolidated
core was used as a test case. This core is acquired in an offshore well that was drilled for
hydrocarbon exploration purposes by Wintershall NoordzeeBV. The depth of the cored
section is around 4000 m below sea-level and originates fromthe Carboniferous. The well
is situated on the North Sea (Dutch sector) in block E10-3, which is indicated in figure
5.1. A complete core analysis was performed by Panterra BV of which the findings were
presented in the core analysis report by Boels (2003). However before going further into
the core data and its purpose for geochemical and textural analysis, we will present a brief
introduction about the core.
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5.2.1 Geological Setting

In general, the Early Carboniferous (360-325 Ma) is characterized by the deposition of
carbonates on shelves and isolated platforms while in intervening basins calciturbidites
and mudstones were deposited (Freedman et al., 1990). The Namurian (326-313 Ma)
is characterized by increasing siliciclastic influx from the rising Variscan Mountains in
the south and the Fennoscandian Shield in the north (Ricken etal., 2000). In this way,
Namurian sediments progressively in-filled and blanketed the submarine relief that had
existed during the Early Carboniferous. Due to an ongoing regressive trend, Namurian
basinal shales and turbidites were gradually replaced by delta-plain conditions at the end
of the Namurian which marks the onset of the Westphalian (318-303 Ma). Most of the
economically interesting coal seams formed during the Westphalian A and B in a lower
delta plain environment (Drozdzewski, 2005). An increase in sand content and a shift
towards dryer conditions, leading to a decrease in the number of coal seams, took place
during the late Westphalian and Stephanian (Besly et al., 1993).

5.2.2 Core description

Panterra BV Netherlands has performed a study of core E10-3 w.r.t. the sedimentology,
petrography and reservoir quality which is referred to as thecore description. The results
of this core description were reported in (Boels, 2003). Core E10-3 was characterized
as reflecting a deltaic system of braided rivers with varyingmarine influence. In this
core Panterra recognized a couple of different lithofaciesassociations: poorly drained
floodplain, floodplain, swamp, crevasse splays, interdistributary bay and braided channel
deposits. A detailed description of each lithofacies association is given in appendix (tag).
Additionally they recognized a number of grain size classes, ranging from mudstone to
very coarse sandstones, found in the braided river beds. An overview of the observed
grain size classes in given in table 5.1.

5.2.3 Diagenesis

Panterra stated that the diagenetic elements that are encountered in the core can be subdi-
vided into three groups;

1. Early Diagenesis;

2. Intermediate Diagenesis;

3. Late Diagenesis.



Chapter 5. In-situ Grain size Prediction of Core E10-3 89

Class Textural Classification Mean Grain Size [µm] (φ -units) Sorting
M Mudstone 6 (7.4) (1.6)
J Siltstone 31 (5) 1.1

S1l Very fine lower sandstone 74 (3.7) 1.5
S1u Very fine upper sandstone 105 (3.2) 1.7
S2l Fine lower sandstone 149 (2.75) 1.7
S2u Fine upper sandstone 210 (2.25) 1.7
S3l Medium lower sandstone 297 (1.75) 1.9
S3u Medium upper sandstone 420 (1.25) 1.7
S4l Coarse lower sandstone 595 (0.75) 2.0
S4u Coarse upper sandstone 841 (0.25) 2.2
S5l Very Coarse lower sandstone 1189 (0) 2.4

Table 5.1: Grain size classes and the textural properties asencountered in core E10-3.

The early phase of diagenesis was marked by the replacement of weak, unstable minerals
by clays (kaolinite and illite). This replacement would have stimulated compaction in the
early burial phase.

The following phase consists of the formation of hematite. In a study of the Upper
Carboniferous of the Southern North Sea (Belt, van den, 1999) it was suggested that
hematite formed during 2 phases: primarily, directly afterdeposition, and secondarily,
during the penetration of oxidising meteoric waters as a result of Permian uplift. In core
E10-3, the reddened braided channel sandstones are embedded in grey, poorly drained
floodplain deposits. This suggests initial environmental conditions were reducing and
therefore late hematite formation is possibly related to Permian uplift. Late diagenesis
comprises the formation of ferroan dolomite, anhydrite, siderite, and barite.

5.2.4 Core selection

Of the complete core E10-3, a subset of core sections has beenused in this study. The
selection of these sections was based on the inclusion of most lithofacies and grain size
classes identified in the core. Furthermore there are two sets, two meter in length, that are
adjacent w.r.t. depth (core 1 box 13 and 14 and core 2 box 13 and14 resp.).

The down core lithofacies classification (with the depth increasing towards the right)
of the selected core is shown in figure 5.2. As depicted there,the core selection can
roughly be subdivided into three parts. The first part consists primarily of the Crevasse
Splay and Interdistributary Bay lithofacies. This simply means that this first regions re-
flects resp. proximal and distal deposits of this deltaic river system. The second section on
the other hand reflects the coarse grained deposits of a braided river system. The third and
last section reflects predominantly Crevasse Splay lithofacies as well as Swamps which
partly consists of coal seems. Therefore we can state this third sections mainly reflect the
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Observed Facies in selected core sections

BC3              BC4              BC5              CS              F              IB              IFL              SW              

LEGEND

Figure 5.2: Lithofacies in the core sections applied in thisstudy (BC* = braided channel,
CS = crevasse splay, F = Well-drained Floodplain, IB = inter-distributary bay, IFL =
Poorly-drained Floodplain and SW = swamp.

distal deposits of the deltaic system.
With respect to the dominant grain size in these three sections we would expect the

finest sediment in the distal deposits found in the Poorly Drained Floodplain whereas the
coarse to very coarse material will be found in the braided river sediment in the middle
part. As far as the Swamp is concerned, since it is not dominated by clastic sediment, a
classification in terms of grain size is difficult since the organic matter is not composed of
grain (mineral assemblages) as such.

5.2.5 Data Acquisition

Core E10-3 has been analyzed using an XRF core scanner at the Dutch National Insti-
tute for Marine Research (NIOZ) in November 2009. The core hasbeen scanned at two
different voltages (10kV and 30kV) which yielded an extensive compositional record of
the core (see table 5.2 for all elements). Whereas the Quaternary cores described in the
previous part primarily consisted of fine-grained sedimentmixed with water, these cores
are completely dry. In addition to this, the core surface hasbeen polished. Therefore the
measurement could be obtained directly at the core instead of taking measurements with
a thin plastic seal in between in order to protect the sensor.

In addition to the XRF data (intensities), the core scanner has the ability to obtain
high resolution RGB-images of the cores. This ability was exploited which yielded RGB
images (8 bits per channel) with a resolution of 10000×2048 pixels, which corresponds
in the along core direction to around 100 pixels per centimeter core.
The data that is obtained with the core scanner reflects a proxy of the relative concentra-

tion of each element in the measured specimen (in this case a core section). This intensity
is semi-quantitative in the sense that a high intensity reading of Fe as compared to a lower
reading reflects a higher Fe content in the specimen. Howeverthe semi-quantitative per-
formance of the core scanning data is only exploited after a series of processing steps is
performed.
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10 kV {Al,Si,P,S,Cl,K,Ca,Ti,Cr,Mn,Fe,Co,Rh}
30 kV {Zn,Ga,Br,Rb,Sr,Y,Zr,Au,Pb,Bi}

Table 5.2: Elements that have been quantified in Core E10-3 by XRF core scanning with
two different voltages.

5.3 Data Processing

The work flow of the data processing consists of four parts:

1. Pre-calibration filtering of the intensity data,

2. Calibration sample selection and acquisition,

3. First-pass calibration,

4. Second calibration step without elements that have a meanconcentration< 1 % or
R2 < 0.5,

5. Post-calibration evaluation of the calibrated data withthe PCA filtering framework.

The first step is there to reduce the noise in the data induced by the measurement system.
Subsequently the filtered data is being used to obtain a set ofcalibration sample locations
that yield the most effective log ratio calibration process. When the data of these cali-
bration samples is available, a first pass calibration is being performed to identify which
components are effectively calibrated using the log ratio linear model. Furthermore this
step is there to identify the mean (log ratio) concentrationof each element.

Then a second calibration step is performed, however now by only applying it to
a subset of the elements. After this final calibration run, the calibrated data is being
evaluated, analogous to the initial filtering step however now based on a global noise
parameterδN2 derived from replicate analysisof the calibration samples.

5.3.1 Preprocessing

One of the pre-processing steps that is performed before calibrating the XRF data is the
filtering using the PCA approach (see section (tag)). This is done by applying a Singular
Value Decomposition (SVD) and back transform to the original basis using a subset of
all the eigenvectors. This number of eigenvectors is determined by using the global noise
parameterδN2; the eigenvectors with the smallest eigenvalues which havea combined
variance smaller than or equal toδN2 are omitted in the back-transformation. The number
of eigenvectors that is being preserved is being referred toas the ’intrinsic dimensionality’
of the data.
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In section 4 , we described the results for the unconsolidated sediment core. It was
found that the intrinsic dimensionality of the 7920 datasetwas only 5. For this consol-
idated core, we expect a comparable or higher relative information content because of
advantageous measurement conditions.

The filtering was performed by making use of a set of replicatemeasurements along
core on both 10 kV and 30 kV. From these replicate samples the global noise parame-
ter δN2 was derived that determined the cumulative eigenvalue cutoff. This cutoff was
applied to the clr transformed data decomposed into Principal Components. The filtered
dataset in terms of compositions was then generated by back-transformation using a sub-
set of the initial eigenvectors.

We found that a total number of 15 principal components is effectively above the
global noise levelδN2. This result confirms the hypothesis stated in (Weltje and Tjallingii,
2008) that improved calibration results can be achieved with consolidated cores due to
the simple fact that there is (1) less attenuation and scatter of the X-ray and (2) higher
repeatability due to the lack of pore water.

5.3.2 Calibration sample selection and acquisition

As mentioned before, the calibration samples were selectedbased on the raw XRF core
scanning data using the sample selection algorithm. This selection algorithm is based
on the simple geometric principle that a least squares linear fit is more reliable if the
observations are distributed along the whole range of observed values. Therefore the
algorithm selected observations on the principal axes thatare uniformly distributed along
the range of observed scores. The number of samples per principal axis that are being
selected is proportional to the variance of this component.

A summary of the results of the selected sample can be seen in figure 5.4. From these
results we conclude that that the program has successfully selected locations that cover the
entire range of values for almost all principal components.For some components this is
not the case, which is induced by the fact that the algorithm does not select the minimum
score and maximum score, but the 5% and 95% percentile, thereby reducing the chance
of selecting outliers.

In figure 5.4 the observations as determined by the subroutine that selects locations
using PCA are depicted as well as the locations that were selected to achieve a good down
core distribution of samples. From this figure we derive thatthe spatial spreading routine
nicely fills up the underexplored parts, where the red markers cover the entire span of
the principal component scores. Furthermore there are no locations selected that are too
close to each other which is achieved by selecting a minimum between-sample distance
of 8 cm.

It was suggested by Weltje and Tjallingii (2008) that selecting a set of calibration
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Selected samples, n=20

Selected samples, n=10
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LEGEND

Figure 5.3: Selection of core sections and the recognized lithofacies.

samples that include all lithological units would give the best calibration result. In order
to asses whether this is the case, we applied the set of grain size classes (see table 5.1),
as identified by Panterra. When looking at table 5.3 it becomesclear this selection of
lithological extremes is partly achieved. For 20 calibration samples 8 out of 10 grain size
classes are explored. However since the number of selected samples is larger than the
number of lithofacies, the sample selection was also performed for only a small set of
samples (number of samples is equal to number of classes). For this selection 7 our of
10 grain size classes were explored. Based on these results wemay conclude that the
sample selection establishes the inclusion of lithological extremes which, as suggested in
the work of Weltje and Tjallingii (2008), yields the best calibration results.

The calibration samples were acquired by simply using a hammer. In order to get an
idea of the variability of replicate calibration samples, all 20 samples were physically di-
vided into two parts and analyzed separately. The chips and/or fragments were measured
w.r.t. their chemical composition using ICP which, in contrast to the XRF core scanner,
yields semi-quantitative geochemical estimates (i.e. ppmor gr/kg).

5.3.3 Calibration of the XRF data

Since we now the set of calibration specimens analyzed w.r.t. their composition, we are
able to perform a first-pass calibration step. The first pass calibration yields the quality as
well as mean down core relative concentrations. This quality is quantified by the signal
to noise parameterR2.
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Grainsize class J M S1l S1u S2l S2u S3l S3u S4l S4u
n = 10 0 3 0 2 1 1 1 0 1 1 7/10
n = 20 0 6 3 5 1 1 1 2 1 0 8/10

Table 5.3: The observed lithofacies at the positions of the selected indices for resp. n= 10
(n equals the number of unique classes) and n= 20, which is the amount of samples that
was acquired from core E10-3.
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Figure 5.5: Summary of the princompfilt algorithm which yielded that the data could be
satisfyingly reconstructed using a subset of 15 PC’s.

If the R2 value for a set of elements (numeratorj and denominator elementD) is
found to be smaller than 0.5 this component is omitted in the second run of core scanning
calibration. IfR2

jD < 0.5 this simply means that the magnitude of the residual variance is
smaller than half the magnitude of the variance of the log ratio signal, which we found a
reasonable cutoff. In addition to this criterion, the elements of which the maximum down
core fraction is smaller than 1 % were also omitted in the secondary calibration process.
We applied this cutoff because we are primarily interested in the major rock-forming ele-
ments and not in trace-elements. The final set of elements that were ’preserved’ included
Al, Fe, K, Si, Ti which represent an average fraction of the bulk of 98 % (given that the
results from the initial calibration step is ’true’).

In table 5.4 theR2 values are shown for all log ratio combinations; rows represent
the numerator and columns represent the denominator. It wasfound that Si as common
denominator yielded the best results by means of the resulting R2. The signal to noise
values for the model with Si as common denominator yields forAl 0.96 and for K 0.92.
Given that these three components already make up on average94 % of the core, we
selected this as the ’best’ model.

The logratio-linear model shown in figure 5.7 shows that the concentration of the
different components is always increasing w.r.t. the measured log ratio intensities. This
makes the obtained results plausible in the sense that increasing log ratio intensities yield
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Figure 5.6: Biplot of the calibrated geochemical data of CoreE10-3.

increasing log ratio concentrations. Furthermore the slope that was found is significantly
large which means that the dynamic range of the log ratio intensities is of comparable
magnitude compared to the dynamic range of the concentrations.

In figure 5.6, a biplot is shown of the clr-transformed elements that were selected
according to the quality criteria. This biplot illustratesthe covariance structure such that
parallel variable ’arrows’ indicate a strong correlation between the two variables. This
means that there is one apparent signal in the dataset that comprises the clr-transformed
concentration of Al, Ti and K. Calcium on the other hand is negatively correlated to the
signal of this cluster. The other coherent signal representthe Si concentration which is
negatively correlated with Fe. Furthermore we can concludethat the cluster comprising
Fe and Si is not correlated to the Al/Ti/K cluster because of their 90 degrees angle between
the variable indicators.

5.3.4 Post-calibration filtering

The third step of the data processing is the evaluation of thethe compositional predictions
by using the calibration sample quality. This quality was derived from the replicate sets
of calibration samples. These replicate calibration samples provide a rough estimate of
the residual variance induced by sampling and the chemical analysis techniques that are
applied. Whereas the ’initial’ signal to noise parameterR2 was adopted to provide a sig-
nal to noise parameter of the XRF data itself, we can in principle derive another signal to
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Al Ca Fe K Si Ti
Al 0 0.7346 0.8645 0.3372 0.9610 0.6336
Ca 0.7346 0 0.3811 0.7897 0.7212 0.6745
Fe 0.8645 0.3811 0 0.8855 0.8735 0.9311
K 0.3372 0.7897 0.8855 0 0.9752 0.8519
Si 0.9610 0.7212 0.8735 0.9752 0 0.9739
Ti 0.6336 0.6745 0.9311 0.8519 0.9739 0

Table 5.4: Values of the signal to noise parameter R2 found in the second-pass calibration
step of the E10-3 data.
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Figure 5.7: The log ratio linear models as obtained in the second-pass calibration step,
using the model with Si as common denominator.
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noise parameter that is related to the calibration process.Even though the intrinsic dimen-
sionality of the XRF data itself is significantly higher for this core due to the favorable
measurement conditions, the sampling conditions are definitely less favorable for these
’hard rock’ cores. There are two main problems that arise when acquiring calibration
samples for consolidated sediment.

The first problem mainly has to do with down core positioning.The acquisition of
a sample on a soft sediment core can be performed rather accurate with reference to the
down core position; a small (diameter) sampling cylinder ispressed into the soil and
retracted from the sediment with the sediment content inside. Replicate samples are ob-
tained by performing the same procedure on a location at the same stratigraphic depth
such that is reflects more or less the same material. However sample acquisition as it is
done in this study has a much lower down core positioning accuracy.

Another difficulty with this hard rock arises from the natureof the rock. The samples
obtained from this consolidated are, in contrast to the soft-sediment cores, a collection
of rock fragments with a rather variable size and shape. Due to this variable size and
shape, replicate samples reflect different intra-sample variability. In order to implement
the variability of the replicate samples into the calibration process, the methodology of
the pre-processing PCA-filtering step is applied. This meansthat we derived an estimate
of the intrinsic variability of the calibration samples by deriving a median clr-distance
between replicate sets. However whereas the prior framework was related to the replicate
variance of the intensitiesI in the form ofδ I2, we now replace theI for anW that reflects
the compositional distance within a replicate set ofmcalibration specimen replicates:

δW2 = medm

{

D

∑
i=1

[clr(Wi)−〈clr(Wi)〉]2
}

(5.1)

a global intrinsic noise parameter is obtained by taking themedian value over all replicate
setsk:

δN2
w = medk

{

δW2
k

}

(5.2)

This framework yielded that in principle only 2 principal components can be considered
to be above the global noise level, given the variable subsetof Al, Ca, Fe, K, Si, Ti. In
other words; two principal components can effectively describe the information content
of the data. This means that the 2-dimensional biplot shown in figure 5.6 in principle
shows the total information content of the data that can be considered to be above the
noise level.
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5.4 Grain Size Modeling

Core sections are usually analyzed using a large set of measurement methods. In this
study we will focus on the XRF-bulk and the images which will bethe primary grain size
proxies. The grain size data itself consists of (1) a down core classification in terms of
grain size classes and (2) the more detailed analysis of coreplugs.

Core Description

The core description represents the data that was obtained by visual inspection of the core.
The grain size component of the core description includes a continuous classification
record of the core in terms of grain size classes. Although onappearance the resolution
of the classification reported in the core analysis report has a high resolution (red. it is a
continuous record), the intrinsic resolution is low. This is the result of the fact that within
a core section that is assigned a certain class, the ’true’ classification will most probably
yield a mixture of different classes. This implies that the core description has, although
not quantified as such, a limited resolution which can be translated into aminimum down
core class-size. In other words; if there is a small contrasting bed of 1 cm thickness,
this will not be classified as such because of its small ’size’. Nevertheless in some cases
core sections are classified as mixtures, however any information regarding the mixing
coefficients is lacking. The unquantifiable resolution and the lack of mixing coefficients
in case of a mixed class, implies that there is a level of subjectivity involved in this data.

Images

Besides the data that has been acquired as part of the core analysis work flow, images have
been obtained as part of the XRF core scanning. These images hold valuable information
in terms of color and texture; it is not hard to imagine that the color and texture of the
rock holds information concerning the lithotype as well as grain size.

The resolution of the images is high compared to consumer camera’s (i.e. 100 pixels
per centimeter in the down core direction). However the images are not suitable for the
detection of individual grains. Given the fact that 100µm corresponds to 3 to 2 phi-
units, which is classified in the Wentworth classification asa fine sand, the possibilities to
identify individual grains are limited to the coarse part ofthe grain size spectrum.

Although the application of the textural properties is limited due to the resolution, the
colors on the other hand contain information w.r.t. the lithologies. Given the nature of
RGB data, we will apply some adjustments to the RGB data for processing convenience.
One of these adjustments is the fact that the color, in terms of 8 bit RGB values, is only
partially a compositional quantity. The observation in terms of each of these channels
range (for 8 bit values) between 0 and 255 where 255 means thata pixel is fully saturated
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Figure 5.8: The RGBD solution space spanning a 4-component simplex.

with either red, green or blue (red. a white pixel). Althoughthe fraction of each channel
(RGB) represents a compositional quantity, the sum of the value of each channel does
not necessarily have to sum up to an arbitrary but fixed value.In other words, there is an
additional component that determines the ’darkness’ whichfollows directly from the sum
of the RGB-values. This darkness quantity, denoted byX4 follows from the RGB-values:

X4 = 768−
3

∑
i=1

Xi (5.3)

for an 8 bit system. The value of 768 is the maximum possible value of the summed
RGB-values; 3×28 = 768. However the contrast inX4 is optimal if the RGB-data have
been stretched such that they range between 0-255. Otherwise the darkness-parameterX4

will dominate the RGBD composition.

By performing this transformation the pixel values{X1,X2,X3,X4} become a com-
positional quantity in the sense that they sum up to 768 for the 8 bit case. Therefore
the solution space now spans a 4-component simplex (see figure 5.8 and 5.9), orS 4.
This also means that by performing a logratio-transformation, the RGB data is (1) in an
unconstrained space and (2) in the same units as the geochemical data (clr-transformed
composition).
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Figure 5.9: RGBD color scheme.

RGBD of Core E10-3

After the primary processing step of transforming the RGB to RGBD, the data is being
turned into a dataset equally sampled as the XRF core scanningdata. Since the logratio
transformed data now comprises an unconstrained space, we can simply take the empir-
ical mean of the clr-transformed RGBD-data within the measured down core locations.
These measured locations are modeled as 1×1 cm building blocks which is reasonable to
assume, given the sensor’s footprint. Based on the instrumental setup, it is reasonable to
assume a uniform effectiveness of the X-ray source and receiver on the 1×1 cm blocks.
The down core strips of 1 cm in width are shown in figure 5.10. The down core RGBD
data on the other hand is shown in figure 5.8. In this figure there are a couple of different
processes we observe in the RGBD-composition.

First of all there is a strong increase in red for the first 100 observations, which cor-
responds to the first core, core 1 Box 13. This is not surprisingsince the corresponding
core section (core 1; box 13) contains oxidized sands/siltswhich yield a relative increase
in redness. The other clear events occur between 700-800 and850-950 which correspond
to core 2 box 18 and core 2 box 33, respectively. Also for thesecores it is not surprising
that there is a tendency of increasing ’darkness’; the coal seems in these cores have a very
low reflectance w.r.t. all colors.
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Figure 5.10: Cropped core sections, 1 cm in the cross-core direction.
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Figure 5.11: Down core record of the logratio RGBD-data.

RGBD Information Content

Given that we mitigated the semi-compositional nature of the RGB-data, the RGBD-
values can now be assessed w.r.t. their covariance structure. In figure 5.11 we observed
some level of correlation between green and blue for instance. A proper way of evalu-
ating the information content of a set of correlated variables is to perform PCA, thereby
reducing the dimensionality of the data. The loadings of thevariables on the first two
eigenvectors obtained with PCA are shown in figure 5.12. Giventhat the first two prin-
cipal components represent 99% of the variance, it is reasonable to say that this 2-D plot
summarizes the information content of the RGBD data.

In the biplot can be derived that the first principal component is dominated by the
darkness variable. The second component on the other hand isa measure of the amount
of blue, relative to the amount of red. Given the nature of thematerial, we conclude
that this is in line with the expectations. The dominant signal (red. the first principal
component) is merely a grain size signal; highly reflective sand or low reflective shale.
The second principal component on the other hand reflects thered shales vs the blue
shales.

Given this RGBD record, a straightforward classification based on the RGBD data
is able to discriminate reasonably well between red shale, ’blue’ shale and coal layers.
Additionally the ’darkness’ value is expected to correlatefairly well with the grain size.



104 Semi-Automatic Core Characterisation based on Geochemical Logging Data

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R

G

B

D

Component 1

C
om

po
ne

nt
 2

Figure 5.12: Biplot of the RGBD data of core E10-3.

XRF core scanning data

The XRF core scanning data has been calibrated using the LRCE. Analogous as was found
for the measured intensities, the calibrated data also represent a limited dimensionality.
The resulting concentrations for the subset of elements is shown in figure 5.13.

However in order to evaluate the performance of the geochemistry as a grain size pre-
dictor, we should determine the correlation coefficientsbetweengeochemistry and grain
size. A straightforward way to asses this is to obtain the correlation between grain size and
geochemistry in terms of additive logratio pairs with elements i and j wherei = 1,2, ..D,
j = 1,2, ...D andi 6= j. The results of this are shown in figure 5.5.

Here we observe three element pairs showing a strong intrinsic grain size signal which
includes Al/Si, Ti/Si and K/Si. The magnitude of these logratio’s are negatively correlated
with the grain size which is in line with what we would expect;an increase inφ -units is
analogue to a decrease in grain diameter. In general we expect an enrichment of Al and K
in the fine sediment whereas Si and Ti are concentrated in the coarse fraction. This is the
result of the relatively high resistance of the minerals in which Si and Ti primarily occur.
On the other hand the fine fraction is expected to reflect high Al/Si ratios as a result of the
relative low resistance against chemical weathering of mineral phases containing Al (i.e.
feldspar).

Although the Al/Si ratio is found to partly reflect a grain size signal, other logratio
pairs also show considerable correlation with the grain size. Additionally the RGBD-data
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Figure 5.14: Biplot of the logratio calibrated XRF, RGBD andgrain size data.

was found to contain lithofacies information by (1) the ability to discriminate between
redox-environments and (2) the ability to discriminate between sand and shale. The co-
variance structure of all input quantities (RGBD and XRF-bulk)is presented in figure 5.14
in a biplot. From this figure can be derived that the only parameter correlating positively
with the grain size is the darkness. As far as D is concerned, this is in line with what we
expect, given the relative ’darkness’ of the shales. Also the negative correlation of Si with
the grain diameter is analogous to what we would expect. These results imply that the
principal components can be given a geological/sedimentological context. Whereas the
first principal components is a grain size signal, the secondprincipal components reflects
theredox-environment; high score is an oxidising environment whereas a low score indi-
cates a reducing environment. This interpretation is basedon the loading of red on the
second principal components and its negative correlation with blue.

Summarising we conclude that we have many indicators which are valuable as a grain
size proxy. Although linear regression with Al/Si for instance will yield proper grain size
predictions, we expect to get the best results if the grain size is predicted while using
all variables, geochemistry and RGBD, simultaneously. Giventhe fact that additional
data sources (red. grain size proxies) can be applied in order to support the XRF-based
prediction, there are endless possibilities w.r.t the model architecture and complexity. A
widely used technique to apply when multiple predictors areavailable for the estimation
of a single variable is Multi Variate Regression, or MVR.
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Al Ca Fe K Si Ti
Al - 0.2949 0.2896 0.0590 0.8638 0.0554
Ca -02949 - -0.1698 -0.2781 0.0682 -0.2891
Fe -0.2896 0.1698 - -0.2793 0.2633 -0.2753
K -0.0590 0.2781 0.2793 - 0.8221 0.0208
Si -0.8638 -0.0682 -0.2633 -0.8221 - -0.7252
Ti -0.0554 0.2891 0.2753 -0.0208 0.7252 -

Table 5.5: Correlation coefficient between the different alr-transformed element pairs and
the grain size record. Columns represent the denominator, rows the numerator.

5.4.1 Multi Variate Regression (MVR)

Multi-Variate Regression is probably the most straightforward model to adopt when there
are multiple predictors for one variable. In this case the predictors may include any of the
available data; XRF, RGBD, spectral gamma ray, etc. The multi variate regression model
then follows forn predictorsx by finding a least squares solution w.r.t.y as follows:

y = a0 +a1x1 +a2x2 + ...anxn + ε (5.4)

However whereas the model shown above is a first order polynomial, also a model with
the variables in an higher order formxn comprise a linear model. However in this case we
will use the first-order multi-variate model.

The reason of choosing this first-order model is that, given the fact that the composi-
tional change with grain size (i.e. the TF) was successfullymodeled as a compositional
linear function, a first-order regression approach to predict grain size from composition
makes sense. Nevertheless this methodology relies on an intrinsic assumption about the
grain size distribution. Since it maps the composition directly on the grain size, there is
an intrinsic assumption about the grain size distribution;the grain size distribution is such
that the integral of the product between GSD and TF equals thecomposition at the mean
grain sizeµ.











c1,µ
c2,µ

...
cD,µ











=
∫ +∞

−∞
ci j (x) fi(x)dx (5.5)

Or, more general, the grain size distribution is infinitely small in the grain size spectrum,
resulting in the composition as a function of grain size following the intrinsic Transfer
Function. However given that we are not able to estimate the GSD’s from the data, we
think this assumption is reasonable. The multi-variable linear system given above can
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be solved in a straightforward way using least squares methodologies or any other opti-
misation strategies. Here the Expectation Maximisation (EM) algorithm has been used,
however the principles of this optimisation strategy fall outside the scope of this study and
are described in the work of Meng (1993).

The input data of the MVR includes both the calibrated XRF as well as the RGBD.
However both quantities are alr-transformed, in order to utilize them in their uncon-
strained form. For the XRF-data we apply Si as common denominator which was found
to yield logratio variables with the most pronounced correlation with grain size, given the
high level of correlation of the Si/Al ratio. Apart from thatSi has an overall high concen-
tration of and it showed a high performance in the XRF calibration step. Furthermore we
apply the alr-transformation to the RGBD-data by using D as common denominator. This
decision is based on the overall high level of correlation between lithology and darkness.
Furthermore the fact that the darkness is the dominant signal in the RGBD data made us
decide to use it as such.

5.4.2 Classification

Besides the quantitative approach, we also applied a categorical prediction. The cate-
gories or classes with which we wish to characterize the coreare the grain size classes
that were identified in the core report (Boels, 2003). Although any other categorical
dataset can be applied, the success of the classification is obviously determined by the
geochemical variation between the different classes. The primary reasons for performing
the classification is to get a quantitative classification for core sections that comprise a
mixture of different classes. However also it can also provide a way of quality control on
the final classification results. A well-established technique to cope with classification as
well asmixturesof classes is based on the Bayesian theorem.

Classification

Given that we have a partitioning of the core in terms of classes, a classification strategy
is defined with the (clr-transformed) XRF and RGBD data as input.This classification
scheme is based on the Bayesian theorem:

P(Ci|X) = P(X|Ci) ·
P(Ci)

P(X)
(5.6)

This theorem implies, in words, that the probability of the observationX to be of class
i is determined by the likelihood ofX (red. the marginal distribution ofX given a class
Ci) and the probability of encountering classi at all (theprior probability) divided by
the marginal distribution of X. The practical application of this Bayesian framework to
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classification is performed by fitting Probability Density Functions (PDF’s) to the dataX
in the different classes, thereby obtaining a functional form of the likelihood.

The input is obtained by supplying the observations with thedesignated class, which
represent the ’training data’. From this training data the marginal distributions of the
variables in X, given they are member of classi, are derived. Subsequently a global class-
probability, orprior probabilityP(Ci), is empirically derived. Together with the marginal
distributions ofX within the solution space, that also follow from this training data set,
this can be readily plugged into the Bayesian framework.

After this training step, an observationX that is situated somewhere in the solution
space can now be assigned aposteriorprobabilityP(Ci|X) for a classi. However, more
general, this probability can be interpreted asmixing proportionsof the different classes.
Using this mixing proportions, the forward linear mixing model for a given quantityy
for observationk, with the values of this quantity for the classesi = 1,2, ...C denoted by
y1,y2, ...yC:

yk =
C

∑
i=1

yi ·Pk(Ci|X) (5.7)

An illustration of this classification technique is shown infigure 5.15. The two figures
show the observations within X that are known to reflect class1 and 2 , respectively. A
PDF is fitted to this subset of the data which yields a functional form of the probabilities
within the solution space ofX. By plugging the result of this function for an arbitrary out-
come ofX, together with the prior probabilities ofCi andX into the Bayesian framework,
the posterior probabilities for all classes are obtained.

The improvement of using this approach versus the classification as determined in
the core description is that now there are mixing proportions of the different grain size
classes for every observation. Therefore this approach facilitates a quantitative approach
to a categorical data type which, in contrast to the currently used approach, also yields
relative mixing proportions. If necessary, it can still be transformed into a ’hard’ classifier
by selecting the class for an observationk for which the posterior probability is maximal.

5.4.3 Results

The two methods (MVR and classification) have been applied tothe data of core E10-
3. Both methods yield a down core grain size record that complements the currently
available grain size record, as obtained from the classification. However whereas the
MVR is ’trained’ with the plug analysis, the classification is based on the continuous
classification record.
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Figure 5.15: Graphical representation of the methodology of fitting a multivariate Gaus-
sian distribution to the data X for two classes.

MVR results

The results of the MVR for core 1 and core 2 are shown in figure 5.16 and 5.17, respec-
tively. In the figures are the core images, grain size derivedfrom the core description
(continuous green curve) and the plug analysis depicted (green markers).

What can be observed in the MVR predictions is that theoverallprediction is unbiased
within acceptable limits (see figure 5.18). Nevertheless there are some core sections that
show a biased prediction w.r.t. the core description-derived grain size. However this bias
is the direct consequence of the discrepancies between the two data sources as a result of
ambiguous classification; observations that are classifiedas a mixture however without
the mixing coefficients. Overall though it is reasonable to assume that the plug analysis
results are closest to the ’true’ grain size.

Furthermore the MVR results show a significantly higher resolution; it detects small
scale variability w.r.t the grain size such as 3702.7 m. Additionally the sudden change
in lithotype at depth 3699.6 is well reconstructed, despitethe absence of any magnitude
control on the grain size by neighboring plug observations.

With respect to the prediction discrepancies a standard deviation of the residuals is
found of 1.0φ -unit (see figure 5.18). The consequence of this value is that, given a
Gaussian distribution of the residuals, is that 66 % of the observations will be not more
than 1φ -unit discrepant with the ’real’ grain size. However this isonly true under the
assumption that the grain size derived from the plugs is ’true’.

Classification Results

The results of the classification are shown in figures 5.20 5.21 and 5.22 which shows the
original classification as well as the grain size prediction, based on the posterior probabil-
ities and the grain size of the corresponding class.

The predicted grain size record in figures 5.20,5.21 and 5.22, shows an overall good
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Figure 5.16: Core sections{(1,13),(1,14),(1,18),(1,38),(2,3)} (core, box respectively)
of E10-3 together with the grain size, as obtained from plug analysis (green markers) and
the MVR predictions (blue).
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Figure 5.17: Core sections{(2,4),(2,13),(2,14),(2,18),(2,33)} (core, box respectively)
of E10-3 together with the grain size, as obtained from plug analysis (green markers) and
the MVR predictions (blue).
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Figure 5.18: Histogram of the prediction discrepancies of the MVR and a normal proba-
bility plot.

match with both the plug analysis grain size and the core description results. Furthermore
the overall grain size prediction obtained with the Bayesianclassification is unbiased;
figure 5.19 displays the residuals between plug data and predicted grain size. However
the predicted grain size record in core section 18 (core 1) seems to be deviating from
the core description results. There are some bands in the core which are classified by
the Bayesian scheme as small bands of coarse material in a matrix of fine-grained shale.
Also the transitions at 3663.6 and 3663.9 m downcore depth are (1) classified as smooth
transitions and (2) sometimes repositioned in the down coredirection with respect to the
core description.

Another core section for which the classification result is significantly different from
the core description is core section 14 (core 1). Here a smallsection of 10 cm is observed
for which the predicted grain size is relatively coarse compared to the core description.
The same result, but less pronounced, was obtained with the MVR approach; the small
band with light-colored material is classified as a relativecoarse-grained rock.

The predicted grain size in the other core sections is in general not deviating much
from the initial grain size. However this finding is rather trivial since the unsupervised
classification has beentrained with the input data. Therefore one should keep in mind
that the XRF-guided classification is in the absolute sense not closer to the reality than
the input data, however it indicates regions where the prediction based on XRF and RGBD
deviates from the initial grain size record.

5.5 Discussion and Conclusions

Question 1:
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Figure 5.19: Histogram of the prediction discrepancies of the Bayesian Classification.

Can XRF core scanning data of consolidated sediment be successfully cali-
brated?

XRF core scanning has shown to be an effective geochemical logging device for
consolidated cores. When applying the PCA-filtering to data ofcore E10-3, 15 prin-
cipal components (of the 23 elements measured) were found tobe above the noise
level. From the calibration of the core itself we conclude that the XRF core scanning
data of core E10-3 has been successfully calibrated. A second-pass calibration step
whereby only preserving the elements for which the signal tonoise ratio is higher than
4 and the down core concentration is higher than 1%, returnedthe elements Al, Ca,
Fe, K, Si, Ti. Nevertheless the calibration samples in this study have a significantly
lower quality than the intensity data, leading to an ultimate calibrated data dimensional-
ity above the noise level of 2. This is the result of the ratherinaccurate sample acquisition.

Question 2:

Is it possible to fill-in the gaps in between the sparse plug observations in
terms of mean grain size?

The XRF core scanning data and the RGB data have been embedded inthe grain size
prediction work flow. The quantitative and direct approach of the grain size prediction
by using the plug data yields a high resolution grain size record with a minimal bias.
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Figure 5.20: Core sections{(1,13),(1,14),(1,18),(1,38),(2,3)} (core, box respectively)
of E10-3 with initial classification (above core image), the ’hard’ Bayesian classification
results (above core image), the input grain size record (blue curve) and the predicted
grain size record (red curve).
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Figure 5.21: Core sections{(2,4),(2,13),(2,14),(2,18),(2,23)} (core, box respec-
tively)of E10-3 with initial classification (under core image), the ’hard’ Bayesian clas-
sification results (above core image), the input grain size record (blue curve) and the
predicted grain size record (red curve).
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Figure 5.22: Core sections{(2,33)} of E10-3 with initial classification (under core im-
age), the ’hard’ Bayesian classification results (above core image), the input grain size
record (blue curve) and the predicted grain size record (redcurve).

Although it followed from the data that some skewness is present, the discrepancies
between the plug data and the predictions stays roughly within 1.5 phi-units in 66 % of
the cases.

Question 3:

What is the added value of XRF core scanning data in the process of down
core lithofacies classification?

A down core classification based on geochemistry and RGBD-datahave been applied
in order to get a continuous record in terms of grain size classes. From the correlation
coefficients of the different predictors w.r.t. the grain size signal we conclude that the
elements Al, Si, K and Ti are the most valuable contributors to the grain size prediction.
The tendency of relative enrichment w.r.t. Si with an increasing grain size and depletion
of Al is widely accepted.

The classification scheme identified 2 core sections as beingmis-classified. This in-
cludes core 1 box 14 and core 1 box 18 where the XRF-guided classification has yielded
a relatively coarse-grained classification w.r.t. the input data. Additionally in these core
the XRF-guided classification has identified some small down core shifts of the class-
boundaries. Since the classification scheme has a probabilistic foundation, proxies for
the class mixing proportionswere obtained rather than the ’hard’ classification in the
core description. This resulted in smooth down core transitions in terms of grain size.
These observations illustrate how the XRF core scanning can be useful as a quality con-
trol. Furthermore the ability to increase the resolution ofthe classification with an order
of magnitude can be considered an improvement. Nevertheless a validation of the core
predictions in terms of grain size (classes) is necessary toestimate the performance in a
quantitative sense.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this study we tried to find answers to three main questions.We will conclude on these
research questions one by one.
Question 1:

How can the current work flow be optimized to reduce costs and to in-
crease accuracy and or precision?

Based on the log ratio framework suggested by Aitchison, a filtering step was suggested
that applies the uncertainty estimates of the XRF by replicate analysis. Additionally a
sample selection criterion was suggested in order to achieve an effective XRF calibration.
By applying these two algorithms to core 7919 and 7920, it was found that both algorithms
are effective. The sample selection criterion yielded a reduction in the amount of samples
needed to obtain the same level of prediction quality that isobtained when the samples
are selected randomly. Additionally the pre-calibration filtering step was found to result
in lower discrepancies between predicted and ’true’ geochemistry.

When applying the sample selection algorithm to synthetic data, it was found that the
same calibration quality was obtained with around 20-30% less samples compared to the
random approach. Furthermore the filtering step resulted ina significant increase in the
signal to noise ratio. The performance of both routines was given a statistical foundation;
the sample selection criterium is effective for all number of calibration samples and the
filtering step was found to be effective up to a maximum of 13 samplesfor this dataset
(level of significance 5 %).

When applying the sample selection algorithm to the data of core E10-3, it designated
20 sample locations on which covered 8/10 of the identified grain size classes. When
the number of requested samples was the same as the number of lithotypes, 7/10 grain
size classes were explored. These results illustrate the ability of the algorithm to identify
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lithological extremes, although it has no lithological data input.

Question 2:

Can we build a forward model of basin infill in a formal geochemical and
textural context?

Based on the concepts of linear mixing of endmembers with a grain size dependent com-
position, the LINMIX model was built. The forward LINMIX modeling for core 9508
has been successful in the sense that it yields compositional predictions of comparable
quality of the XRF-core scanning data. These predictions were found to be obtained for
1 specific EM-TF configuration. This model was found to have a geological significance
because the two endmembers that were assigned 1 TF, have beenidentified in previous
work as reflecting sediment of a different sediment source (eolian vs fluvial). Chemically
the obtained TF’s correspond to the model findings; fluvial sediment has in general, in
contrast to eolian sediment, a tendency to be more rich in Fe.The concentration of K
on the other hand is generally lower in fluvial sediment. Apart from the TF’s itself,
the corresponding endmember composition are within acceptable limits of present-day
observations of fluvial and eolian sediment collected in Central Africa.

Question 3:

Is it feasible to predict textural properties based on geochemistry, given
multiple data sources and a known, straightforward provenance setting?

Since the prediction of textural properties was based on XRF core scanning, first the per-
formance of the scanner was investigated when applied to consolidated sediment, the re-
sult of which are encouraging. The PCA-filtering step preserved 15 principal components
of the 23 elements measured.

Subsequently the XRF core scanning data and the RGBD data has been embedded in
a grain size prediction work flow using Multi Variate Regression (MVR). The discrep-
ancies between the plug data and the predictions stays within 1.5φ -units in 66 % of the
cases. Additionally a classification scheme based on Bayesian inference identified two
distinct core sections that should be classified differently, given the XRF and RGBD data.
By applying this Bayesian classificationmixing proportions of the different classes are
obtained; something which the core description is lacking.The core sections of which
the Bayesian classification deviates from the core description includes core 1 box 14 and
core 1 box 18 where the XRF-guided classification yields a relatively coarse-grained
classification w.r.t. the input data. Additionally the XRF-guided classification resulted in
small down core shifts and smoothening of the class-boundaries. These results illustrate
the value of XRF core scanning as a quality control. Furthermore the ability to increase
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the resolution of the classification with an order of magnitude can be considered an
improvement. Nevertheless a validation of the core predictions in terms of grain size
(classes) is necessary to validate the predictions quantitatively.

General research question:

Can geochemical data be used to obtain textural properties of siliciclastic
sediment?

The answer to this question is not so straightforward and depends on the available geo-
logical information. For instance in case there is evidencethat the sediment originates
from the same source, a fairly good grain size prediction is possible. Carboniferous core
E10-3 was texturally characterised rather accurate.

However in the absence of source-information, the answer tothis question is less
straightforward. Although the LINMIX model is capable of incorporating source infor-
mation, factors like the validity of the compositional trend and thebelief in the correspon-
dence between EMMA-derived grain size endmembers and the ’true’ endmembers affect
the answer to this question. In the test-case that was discussed in this thesis, the LINMIX
model was able to reconstruct the input data. However in order to apply this model, ad-
ditional information is necessary to predict grain size. The ’direct’ grain size prediction
based on geochemistry, which is essentially the 1-TF model,proved to be insufficient.

6.2 Recommendations

Based on the conclusions and the findings presented in this thesis, we suggest a couple of
recommendations. These recommendations are subdivided into different topics knowing;
sampling-related, model-related, scanner-related and software-related suggestions.

Sampling

XRF core scanning data relies on two aspect; intensity data asobtained with the scanner
and geochemical data of the calibration samples. Whereas theprimary source of error
for the unconsolidated cores is on the intensity data side, for the consolidated core the
final geochemical prediction is primarily affected by the calibration sample quality. This
’quality’ is not only determined by the quality of the geochemical analysis techniques, as
well to the sampling itself; variability of sample size and accuracy of its corresponding
down core position.

The used sampling methodology (using a slash-hammer) in this study is definitely not
the most accurate one, because chips will come off at places at low cohesions which in
itself is not independent of the composition. Future sampling should be performed similar
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to the acquisition of plugs. Using a small drill or some othersampling device will most
probably give a direct reduction of the residual variance.

Another important question that should be answered for future use of in-situ XRF
on consolidated cores is how many calibration samples are needed in order to perform
proper grain size prediction/classification. Given the results we obtained w.r.t. the num-
ber of explored lithotypes, we suggest to use at least as manycalibration samples as
there are lithotypes being identified. This is based on the findings that for n = 20 and
12 lithotypes, almost all lithotypes were explored (8/10).Furthermore the prediction dis-
crepancies found for the synthetic data stabilized after around 15 samples.

Nevertheless this sampling strategy is merely a rule-of-thumb and has no strong phys-
ical foundation. Therefore we recommend further research on sampling strategy and addi-
tionally on the general applicability of calibration samples for this purpose. For instance
we can imagine that a clean sandstone without any ’contaminants’ has a pretty much
standard composition, at least within the same sedimentarybasin and stratigraphic level.

Linear Unmixing

A strong recommendation about the LINMIX model is the fact that the reliability of the
endmember compositions can be drastically increased. By sampling thepure endmem-
bers, the estimation of the TF’s is simplified, making the model output more reliable.
Another topic of discussion is the information content of the TFs. The extrapolation of
the geochemistry towards the composition of the source material as applied in this study
is disputable due to several reasons. First of all the numberof elements that have been an-
alyzed is very small leading to a large blind spot. Especially the fact that the geochemistry
of the size fractions was not expressed in terms of Si concentrations can be considered a
hiatus. This because Silica is one of the major rock-formingelements. Secondly it is the
general idea that the chemical alteration of the material has a large impact on the composi-
tion of the weathering products, making the reconstructionof the source rock composition
from sediment difficult. Especially elements that are readily soluble will not record their
crustal abundances in any simple fashion (Taylor and McLennan, 1981). Finally the ex-
trapolation is only valid under the assumption that the compositional linear model of the
TF is valid along the entire grain size spectrum. Recent work on field data has shown that
the compositional linear trend shows some nonlinearities which were found to occur at
specific grain size values (Tolosana-Delgado and von Eynatten, 2010).

This implies that if the LINMIX approach is applied on another core, the set of ele-
ments in which the composition is being expressed should comprise a large set of elements
that includes relatively insoluble elements. Secondly more data should give more insight
into the compositional behavior along the grain size spectrum. This could lead to a more
in-depth understanding. Furthermore it should be investigated how applicable and valid
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Figure 6.1: The calculation of a variogram in the stratigraphic directions yields grain
size information while perpendicular to this direction, no spatial correlation will be found
(synthetic example!).

these TF’s are in the context of their spatial and temporal interval.

The scanner

The quantitative grain size prediction by XRF core scanning has shown to provide infor-
mation that cannot be estimated in an acceptable time span using the current methodolo-
gies. Especially because the scanner can even go beyond the here applied XRF-sensor
resolution of 1 cm. What need to be investigated though is whether there is a need for
higher resolution geochemical record. If so, we suggest an improvement of the scanner
in its current setup w.r.t. its camera. One of the limitations of the scanner’s camera is the
resolution. This because it does not facilitate grain size prediction supported by identifi-
cation and/or counting of individual grains. With the current resolution this methodology
is restricted to the coarse end of the grain size spectrum; sand-sized and coarser.

If the resolution of the camera would be higher, there are well-established multi-
variate techniques for the derivation of grain size. A possible approach in this would
be to first determine the direction of the stratigraphic level (see figure 6.1). Secondly the
calculation of a directional variogram should be performedto map the spatial correlation
along the core. Subsequently the range of the variogram could then lead to a proxy of the
grain size. However as mentioned, it is important that the stratigraphic direction is taken
into account. This is especially important in presence of sedimentological structures such
as cross-bedding because if one would determine a variogramunder a direction other than
the stratigraphic level, one will end up with an unexpectedly low spatial correlation. This
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because in a cross-bedding structure there is bedding of alternating fine and coarse sedi-
ment and if the variogram is not determined parallel to this bedding, the spatial variation
is absent leading to a mis-classification.

Another way of extracting the grain size distribution wouldbe to apply an unmixing
strategy on the RGBD data for a given XRF observation. Given thatRGBD data com-
prises a compositional quantity, it can be unmixed using theEMMA algorithms into the
number and fingerprint of these color-endmembers. We imagine that if there is a homoge-
neous mud at the specific section of the image, the unmixing will not be very effective. On
the other hand if the material has a strong texture, it leads to the identification of specific
endmembers; either grains, pores or possible even cement. If subsequently the unmixing
strategy is performed, analogous to the unmixing in terms ofgrain size endmembers, the
chemical fingerprints of these endmembers can be derived. This means that if the XRF
scanner has measured a transition from pure mud to sand, the transitional zone of the
grain size record can be filled in by support of the color data.

The Software

A recommendation w.r.t. the data acquisition follows directly from the suggested filter-
ing and sample selection approach. One of the problems with all the suggested methods
and techniques is that it complicates the whole work flow. Users must take time to filter
their data, subsequently do the sample selection. Furthermore they have to decide about
a strategy of replicate sample acquisition; where should they be acquired and how many
replicate analyses are necessary for a reliable repeatability estimate.However the algo-
rithms suggested in this thesis can be implemented on the acquisition side, rather than the
user side. If the scanner has scanned a core section, the covariance structure of the data
can already be estimated. Given that the covariance structure of the intensities is known,
although not calibrated as such, the selection of ’extremes’, analogous to the calibration
sample selection, can be performed. The replicate analysisof these ’extremes’ seems a
reasonable approach because the repeatability of the scanner is partly determined by the
composition of the bulk. As such, this approach will providea reliable estimate of the re-
peatability. Nevertheless this approach asks for a direct post-scan spectrum quantification;
the calculation of element intensities from the observed spectra. Given that this approach
is more user-friendly since it is full-automatic, we recommend a direct and embedded
spectrum analysis in order to facilitate this full-automatic work flow.
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Data Cores 7920 and 7919
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Figure A.1: Composition of calibration sample vs. predictedcomposition of core 7920.
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Figure A.2: LRCE model results of 7920.
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Figure A.3: Down core compositional record of 7920.
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Figure A.4: Composition of calibration sample vs. predictedcomposition of core 7919.
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Figure A.5: LRCE model results of 7919.
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Figure A.6: Down core compositional record of 7919.



Appendix B

Lithofacies in core E10-3

Described below are the different lithofacies, as identified in the core report of Core
E10-3 (Boels, 2003).

Braided channel complex (BC3)
Roughly 55% of the cores from Well E10-3 consists of the braided channel lithofacies
association, making it the dominant lithofacies association. The grain size of the
sandstones is mainly upper fine to medium sand but varies frompebbles- to silt-sized
sand. The sedimentary structures observed within the beds comprise alternations of
massive, high-angle cross-bedding, low-angle cross-bedding, tangential cross-bedding,
horizontal lamination, and ripple lamination.

The sandstones of the braided channel lithofacies association are interpreted as the
bed load deposits of a high-energy braided channel complex system. The large continu-
ous sandbody thickness, the general absence of a clear grainsize trend, the abundance
of tangential and low-angle cross lamination, and the coarse-grained internal erosive
reactivation surfaces all suggest that these units make up deposits from high-energy
braided streams.

Crevasse splay (CS)
About 11% of the cored interval was assigned to the Crevasse Splay deposits. The
lithofacies association consists of parallel, low-angle,and ripple laminated very fine-
grained sandstone beds with moderate amounts of carbonaceous matter and clay (5-35%)
occurring as intraclasts and laminations. Also, these deposits are moderately often
rootletted at the top. The average bed thickness is 0.89 m. This association commonly
marks the transition of IB (interdistributary bay) to IFL (poorly drained floodplain) facies
associations.

These deposits were interpreted as crevasse splay depositson basis of the fine-grained
nature of the sandstone beds, the relatively thin bed thickness, the clay occurring as
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laminae and the occurrence within floodplain sediments (IFLand IB, see below). These
deposits formed on the floodplain as the result of a breachingof channel margins during
high water discharge. The rootletting in the upper part of the deposits would imply
an abrupt cessation of sediment deposition allowing development of vegetation on the
sediment surface.

Poorly drained floodplain (IFL)
Poorly drained Floodplain deposits (IFL) comprise nearly 18% of the cored interval.
The association consists of dark grey to black, abundantly rootletted claystones with
regular coal laminae, frequent siderite nodules, and comonpreserved organic matter. The
poorly drained floodplain contains abundant intercalations of swamp (SW) and crevasse
splay (CS) deposits. The poorly drained floodplain is recognized as such by the dark
grey colour, the abundant rootletting and good preservation of organic matter. This all
indicates a waterlogged or slightly submerged, reducing environment with intense plant
growth. Being a lateral equivalent of the braided channel sandstones, the dominance of
clay-sized deposits implies a setting distal to the active distributary.

Interdistributary bay deposits (IB)
Nearly 12% of the cored interval consists of Interdistributary Bay deposits. The associ-
ation consists of dark grey, relatively undisturbed laminated claystones with a few silt
or sand laminae. Some beds have a yellowish coloration due tosiderite cementation.
Distortion through soft sediment deformation occurs sporadically. The transition from
IB (Interdistributary bay) to IFL (poorly drained floodplain) lithofacies association in the
cored interval systematically occurs through CS lithofacies association (crevasse splay).

The well-preserved parallel lamination of the claystones,and the absence of rootlet-
ting imply deposition within a permanently standing body ofwater, hence the deposits
classify as Interdistributary bay deposits. The upward transition from Interdistributary
Bay to Poorly drained Floodplain deposits through Crevasse Splays is considered to
reflect the progradation of fluvial facies.

Swamp (SW)
Swamps comprise a small percentage of the cored interval (ca. 3parallel laminated
organic rich claystones with cm-thick coal laminae. The coal beds, and the abundance
of organic material suggest a waterlogged, anoxic environment with abundant floral
inhabitance and no clastic input. Hence, these deposits areclassified as Swamp (SW).

Well drained Floodplain (F)
3% of the cored interval consists Well-drained Floodplain,which only occurs in the
lowermost section of core 2. It consists of thoroughly rootletted sandy claystones with a
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mottled appearance and an overall reddish coloration. Darkfragments occur which may
represent the former host sediments give the rock its brecciated appearance.

These sediments are termed Well-drained Floodplain on basis of the following argu-
ments. The strong disturbance of the sediment suggests slowsedimentation rates and
pedogenesis. The primary red coloration indicated that at time of deposition the ground
water table was periodically below the sediment surface at the time of deposition. For
example, the environment could have been subject to seasonal flooding.



132 Semi-Automatic Core Characterisation based on Geochemical Logging Data



Appendix C

E10-3 Compositional record
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Core Begin [km] End [km] Index range
Core 1 Box 13 3.6586 3.6593 1-73
Core 1 Box 14 3.6595 3.6604 74-161
Core 1 Box 18 3.6631 3.6640 162-249
Core 1 Box 38 3.6796 3.6805 250-337
Core 2 Box 3 3.6861 3.6870 338-423
Core 2 Box 4 3.6870 3.6879 424-511
Core 2 Box 13 3.6943 3.6952 512-599
Core 2 Box 14 3.6952 3.6961 600-687
Core 2 Box 18 3.6988 3.6997 688-771
Core 2 Box 23 3.7026 3.7035 772-859
Core 2 Box 33 3.7109 3.7118 860-947

Table C.1: Down core ranges in terms of meters and indices applied in this study.
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Figure C.1: Down core compositional record of Core E10-3.



Appendix D

Data Acquisition of core 9508

This section describes the data acquisition steps that wereperformed on core 9508, as per-
formed in the work of Mulitza et al. (2008). Before the geochemical analysis of the sedi-
ment was performed, the terrigenous fraction was isolated;the primary source of calcium
is of marine origin which is in this study of minor interest. The necessary pretreatment
steps to isolate the terrigenous fraction are:

1. Organic Carbon was removed by adding 10 ml H2O2 (35%) to approximately 750
mg of bulk sediment.

2. Calcium Carbonate was removed by adding 10 ml HCL (100%) to theCarbon-free
sediment in 100 ml demineralised water and boiled for 1 minute to speed up the
reaction.

3. In order to remove the biogenic silica, NaOH pellets are added.

Grain Size Distributions of Core 9508 were obtained using a Coulter Laser Particle Sizer
LS200, resulting in 59 grain size classes ranging from 0.39 to 88µm.

A continuous record of the geochemistry was obtained by running an XRF core scan at
10 kV with measurement time of 30 seconds and an amperage of 350 µA. The XRF data
was calibrated by using geochemical data derived from sediment samples. These samples
were taken uniformly distributed along-core at 4 cm intervals. The element concentra-
tions in these samples were determined on 4 g of dry subsamples by Energy Dispersive
Polarisation X-ray fluorescence (EDP-XRF).

Grain size fractions have been physically isolated and analyzed w.r.t. the chemical
composition, again by using EPD-XRF. This yielded the composition in terms of 6 ele-
ments which together represented on average 40 % (40 gr/kg sample) of the total mass of
the samples. The grain size ranges of the isolated fractionsare shown in table 4.1.

In order to obtain a down core age model, radiometric dating was performed on
foraminifera (small organisms) picked from the coarsest grain size fraction.
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Appendix E

Running Example CLS

To illustrate the Constrained Least Squares procedure, we will now present a small ex-
ample of a 2-endmember system and 3 elements. We have the following observations
(rows):

b =





0.3 0.4 0.3
0.1 0.32 0.58
0.35 0.5 0.15



 , m =





0.3 0.7
0.6 0.4
0.2 0.8





The objective is now to estimate the coefficientsa that determine the compositional
change with membership. The number of coefficients is equal to D×N which sums
up to 8 coefficients. Let us first present the system of constraints, denoted byA:
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Analogous the matrix with which we solve for the coefficientsH is now given by:

































0.3 0.7 0 0 0 0
0.6 0.4 0 0 0 0
0.2 0.8 0 0 0 0

0 0 0.3 0.7 0 0
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0 0 0.2 0.8 0 0
0 0 0 0 0.3 0.7
0 0 0 0 0.6 0.4
0 0 0 0 0.4 0.8
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By solving this CLS system (using the built-in MATLAB functionlsqlin for instance), the
coefficients fora are obtained. The partial bulk chemistry now follows from:

b̂p1 =





1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
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, b̂p2 =
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0 0 0 0 1 1
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â1

â2

â3
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By applying the same methodology, also the composition of a grain size class can be
determined. Let us define the following discrete grain size distributions, shown in figure
E.1. Although in reality a grain size distribution is discretized into much more classes, we
assume that the synthetic GSD can be satisfyingly reproduced using only 2 classes. If we
would mix these two GSD’s into the mixing proportions given below, we will end up with
the relative proportion of each endmember. However these proportions do not necessarily
sum up to one. Therefore the proportions areclosedwhich leads, for the 3 observations,
to the closed proportions shown in figure E.2.

Since the proportions sum up to one, the CLS system can be readily used which yields
the endmember compositionswithin a grain size class.
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Figure E.1: Discrete GSD’s of the synthetic 2-endmember system.
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Figure E.2: The closed proportionsM for the three observations, respectively.
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