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SUNMARY

The twin composition plane in graphite is a 20° tilt boundary between
lattices which are rotated, relatively, about an exis in the basal plane,
Previous work has led to the proposition that sore special type of structure
must necessarily exist in the neighbourhood of the boundary which violates
the normal hexagon arrangerent of the carbon atoms, It is demonstrated that
a tilt boundary of the required form can be explained as an array of partial
dislocations, such a boundary being possible in either the hexagonal or the
rhombohedrel form, A boundary of this type is mobile, and can, by its
movenent, introduce or eliminate stacking faults and thus change the volume
of rhoribohedral graphite present in the normal hexagonal lattice, Such
effects have been reported pre'v:Lously. The true tm.nm_ng plane in this model
is not the composition plane, which is the plane 21701 ¢ -referred to the
structural (not the morphological) axes, but the plene’ 115‘1;




The graphite structure consists of parallel layers of aromatic
carbon rings, the C«C spacing in the rings being 1.42 X., the hexagon
width a 2,456 & and the layer spacing c 3.348 X.

The standard work on the twinning features in graphite is that of
Palache (1941), which identifies the twin composition plane as { 1131}
with respect to the morphological axes, We shall throughout this note
use the hexagonal structural axes (se‘e Fig, 1) in which system the
indices of the composition plane become {1701} , The engle of ilt
between the twins was determined by Palache as 20°36', which is very
close to tan™'®/2c, (20°9'using the sbove values) and equivalent to the
insertion of one hexagon width in every other basal plane, We shall use
the value 2009' throughout in the following discussion, The true
twinning plane (as distinet from this twin composition plane) is not
established: this may, or mey not, be {1T01} . The theory advenced by
Platt (1957) for the structure of the twin boundary results in the
twinning plane and the composition plane being the sare, To produce
this result, quite special structures rust be created in every cther
atomic plane of the type illustrated in Fig., 2, which Platt refers to
as 8«8 structures, It is, in fact, unnecessary to adopt such a special
arrangement to explain the observed structure as this may be interpreted

more satisfactorily in dislocation terms,

Graphite may exist in either the hexagonal, ABABAB,,, stacking
sequence, or in the rhombohedral ABCABC,,. stacking sequence, Consider
first the hsxagons drevm in Fig, 3(a) which shows the relative positions
of the A, B and C planes, The C position may be achieved from the B
position by a translation along, say, XY, A partial dislocation with
a Burgers vector XY, that is V3 a/2 EOOO], can ’cherefoxwe constitute a
boundary between hexagon sheets in the B and C positions, Such a
dislocation can, of course, be either positive or negative: the
hexagons in the region of the partial dislocation may be either compressed
or extended, the overall lateral strein being /2, which is the shift
involved in the translation illustrated in Fig, 3, In Fig, 3(b) a line




of hexagon nets is shown in the transition region between the B and C
stacking positions from which it will be evident that, in this case,

an extension of /2 has been introduced (as well as a shear, of course),
For simplicity the distortion is shown relative to an undistorted A
layer; in fact the strain is distributed symmetrically over both layers,
but the relative strain is the same as that shown., Let us suppose the
B~C line of hexagons to be cut at 00/ , end the strain released. This
results in the arrangement of Fig. 3(c). Suppose now that the hexagons
of both layers are rotated about 00 s so that the gap PQ, of width a/2,
is closed by the rotation, The angle of tilt required to achieve this

is ten”'@/2c, or 20°9', Thus a boundery is formed which is equivalent
to the insertion (or removal) of an extra half-hexagon on each successive
plane (or a full hexagon width on every alternate plane). The operation
of the dislocations, V342 [1000 Jand V3¢/2 [0070], in sequence on
successive planes is obviously equivalent to the perfeoct dislocation

a [1 OTO] on alternate planes in the hexagonal stacking,

The structure which will satisfy the observed tilt angle is drawm
in detail in Fig, L4, for the case of both hexagonal graphite (above the
dotted line) and rhombohedral graphite (below the dotted line), and again
the A plane has been taken, for convenience, as an undistorted reference
plane, In each case a partial dislocation of the type discussed is
introduced into the intermediate layer of hexagons (wavy lines), as
evidenced by the difference in position between extreme left and right,
but with the strain removed by an operation of the type illustrated in
Fig. 3(b) and (c), the gep created being shovmn in black, For both the
hexagonal and rhombohedral cases, the tilt required to close such
gops in the planes is the same, namely 20°9’, In each case the original
type of structure can be preserved: hexagonal ABABAB,,. twins to
hexagonal ACACAC,,. and rhoribohedral ABCABC,... can twin to rhombohedral
BACBAC,,. In Fig. 4 the rhombohedral transformation illustrated shows
ABC,.., twinning to ACB,.. and the exact sequence obviously depends on
the direction of the Burger's vector, as eny plane (say A) may be
trensformed to either of the other two possibilities (B or C) by a similer
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vector of different direction. Stacking faults can therefore exist.

If'y then, the lattice is rotated as described above s the structure will
now fit along the cut planes when the angle of rotation is 20°9’, This
is illustrated diagrammatically by the diagram at the foot of Fig, L.
Thus a sequence of partial dislocations can give a tilt boundary of

the observed angle., The twin boundary in such a structure is thus an
array of partial dislocations, forming a tilt boundary, and is evidently
mobile, which is consistent with experimental observations (Laves and
Baskin 1956).

Once this possibility is recognized, a number of characteristics of
the graphite structure become resolvable, It follows that twinning in
the hexagonal structure does not necessarily involve any transformation
to the rhombohedral form (as was deduced by Laves and Baskin from x-ray
measurements) s although rhombohedral stacking faults could be perpetuated
through the twinned structure, or even created. Apart from the twinning
question, such partial dislocations can obviously constitute the
boundaries of stacking faults, and thus the gliding of these dislocations
under stress can increase (or diminish) the amount of rhombohedral
graphite, This necessary association of gliding with rhoribohedral
development has alrecady been noted by Laves and Baskin,

The dislocation structure of the twin composition plane imposes
certain restrictions on the possible Jjunctions of such boundaries, For
example, as in Fig, 5(a), two boundaries may conform if their common
vector lies along the third possible boundary line, One such boundary
may terminate either on another or at a straight-forward dislocation
boundary which is not of the twinning type; see Fig, 5(b). Three boundaries
may also conform, but the sign of the tilt is important., In some cases,
instead of three twin lamellae nmeeting, one of these nay be split into
two of opposite tilt (Fig. 5(c)). In any case, because of the tilting
condition, there will always be very special restraints in the neighbourhood
of nodes and at the ends of lamellaec and the adaptation afgraphite in this
respect presumably depends on the readiness with which partial dislocations
may be formed., This derives from the relatively weak interplanar (van der
Waals) bonding in graphite,




It is not at once evident why the composition plene observed is {11.2'1}
rather than \ 17 O’ll\ s 28 the creation of the latter requires the same
type of tranéfomation: in this case the insertion of a hexagon length
into every other plane (see Fig, 4) leading to a tilt angle across the
{1‘1'01‘} plane of tan”'24/3c, or 22957/, One of the differences between
these two possible planes is that, for a tilt of a glven s:Lgn, there is
only one poss:.'ble partial for each layer plane in the ; ﬂ' 01? case, whercas
in the case of - 11511 there moy be two possibilities, Thus suppose the
positions of a given plane in the original structure and the twinned
structure to be symbolized by B-C: this is the case, for example, in
the second plane drawn in Fig, 4., Rhombchedral stacking sequences of
the following type are possible across {1131] : B-C, Owd, A-B,... or
BuC, CwB, A~C ,,. Using similer notation for the (theorctical) case of
the {H'O'l._f; corposition plane, these alternatives do not arise, The
sequence must be B-C, C-A, A-B, In the simple hexagonal twinned lattice,
AwAy BeC, Amly,0. there is no distinction, as one possibility only
exists for both cases, For A-B, B-C, A-B, however, which is also pure
hexagonal stacking in each twin, another possibility arises in the (1121\"
case, namely A-B, B-A, A-B, This is again a structure which could not
conform with a f,_"IT 01 f tilt boundary, Particularly where stacking faults
excist, then, the {1131} bowndsry is much loss restrictive in the necessary
conditions it imposes, and would appecar to be much more likely to form im
lattices containing a distribution of stacking faults, No cases of
the observation of a ’,1 % 01} composition plane appcar to have been reported,
although it may be possible to produce such twins in thin flakes of very
perfect graphite,

The point of this discussion is, then, that the principal twinning
characteristics of graphite can be explained in dislocation terms, and
that, on this basis, the true twimning plane (es distinet from the twin .
corposition plane) is {1131} in the structural (not the morphological)
system of axes, An exper.imnfal confirmation of this proposition would
be valuable,
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Twin composition

plane
Figure 1. The relation between the Figure 2. The boundary structure
structural and the morphological proposed by Platt.

hexagons. The twin composition
plane is {1101} with respect to
the a,a,a; and ¢ axes.

Figure 3. (a) The relative positions of hexagons in the A, B and C planes. (b) The
distortion introduced into a row of hexagons in the neighbourhood of a partial
dislocation, taking the A layer as a rigid reference network. (In fact, both layers
are sheared similarly, of course.) (c) The B-C row of hexagons showing the gap,
of width a/2, closed by the lattice rotation of 20° 9"
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(for the hexagonal case ) how a rotation of

closes up the lattice in the required way.

boundary dislocation structure for(a) hexagonal and
(b) rhombohedral graphite. The lower diagram dem-

onstrates

Figure 4. Successive layer planes in graphite showing the twin
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a single lamella terminating at a dislocation boundary, and (c) the possible split into

Figure 5. Possible twinning forms : (@) two lamellae with common boundary vectors, (b)
two lamellae of opposite tilt.




