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The t\"7in coniposition p lane i n g raph i t e i s a 20 t i l t boiardary betvveen 
l a t t i c e s T^ich a re r o t a t e d , r e l a t i v e l y , about an a x i s i n the b a s a l p l a n e , 
P rev ious vrork has l e d t o the p r o p o s i t i o n t h a t soije s p e c i a l "type of s t ruct iore 
must n e c e s s a r i l y e x i s t i n the neiglibourhood of the boundary which v i o l a t e s 
the noiTLial hexagon ajcrangen^ent of tlie carbon a toms. I t i s demonstrated t h a t 
a t i l t boundary of the r e q u i r e d f o m can be exp la ined as an airajr of p a r t i a l 
d i s l o c a t i o n s , such a boundary b e i n g p o s s i b l e i n e i t h e r the hexagonal or the 
rhonbohedrel form. A boundary of t h i s type i s mobi le , and can , by i t s 
movement, i n t roduce o r e l i m i n a t e s t a c k i n g f a u l t s and thus change the volume 
of rhombohedral g r a p h i t e p r e s e n t i n the normal hexagonal l a t t i c e . Such 
e f f e c t s have been r e p o r t e d p r e v i o u s l y . The t r u e t^irfxining p lane i n t h i s model 
i s no t the composi t ion p l a n e , y/hich i s the p lane -^iTOIj' ^ re fe i red t o the 
s t r u c t u r a l (no t tlrie morphological) a x e s , bu t the p lane '1121 J. 
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The graphite structure consists of parallel layers of aromatic 

carbon idjigs, the C-C spacing in the rings being 1,42 A, the hexagon 

•width a 2,456 A and the layer spacing o 3.348 A, 

The standard work on the twiimiag features in graphite is that of 

PaJaclie (1941)» which identifies the twin composition plane as / 1151^ 

•witla respect to the morphological axes. We shall throughout iiiis note 

use the hexagonal structural axes (see Fig. 1) in which system the 

indices of the composition plane become -|_ 1T0I j . Tlie angle of tilt 

betvreen the twins was determined by Palache as 20 36 , which is veiy 

close to tan"*^a/2c, (20°9'using the abüve values) and equivalent to the 

insertion of one hexagon width in every other basal plane. We shall use 

the value 20 9 throughout in the follov/ing discussion. The true 

twinning plane (as distinct from this tvYin composition plane) is not 

established: this may, or may not, be ̂  1T0I j , The theory advanced by 

Piatt (1957) for the structure of the twin boundaiy results in the 

tvonning plane and the composition plane being the same. To produce 

tliis result, quite special structures must be oareated in every other 

atomic plane of the type illustrated in Fig. 2, which Piatt orefers to 

as 8«Jf»"6 sti-uctures. It is, in fact, unnecessary to adopt such a special 

arrangement to explain the observed structure as this may be interpreted 

more satisfactorily in dislocation terms, 

Graphite may exist in either the hexagonal, ABABAB,,, stacking 

sequence, or in the rhombohedral ABCAE30,,, stacking sequence. Consider 

first the hexagons drawn in Fig, 3(a-) which shows the relative positions 

of the A, B and C plsines. The 0 position may be achieved from the B 

position by a translation along, say, XY, A partial dislocation with 

a Biorgers vector XT, that is v3 '^/2 [lOOOj, can therefore constitute a 

boundary between hexagon sheets in the B and C positions. Such a 

dislocation can, of course, be either positive or negative: the 

hexagons in the region of the partial dislocation may be either compressed 

or extended, the overall lateral strain being o/2> which is the shift 

involved in the translation illustrated in Fig. 3. In Fig, 3('b) a line 
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of hexagon nets is shovm in the transition region betireen the B and C 

staclcLng positioiis from which it v/ill be evident that, in this case, 

an extension of a/2 has been introduced (as v/ell as a shear, of course), 

For sii:iplicity the distortion is shown illative to an undistoort̂ ed A 

layer; in fact the strain is distributed symietrically over both layers, 

but the relative strain is the same as that shavn. Let us suppose the 

B-G line of hexagons to be cut at OO' , and the strain released. This 

resTolts in the arrangement of Fig. 3(o). Suppose no;? tliat the hexagons 

of both layers ere rotated about OO' , so that the gap PQ, of widtli a/2, 

is closed by tl:ie rotation. The angle of tilt required to achieve this 

is tan*" °/2o, or 20 9 . Thus a boundary is formed \7hich is equivalent 

to the insertion (or removal) of an extra half-hexagon on each successive 

plane (or a full hexagon Vid-dtli on every alternate plane). The operation 

of the dislocations, '^'5^'2. [̂ 1000 ] and 1/30/2 CooTo], in sequence on 

successive planes is obviously equivalent to the perfect dislocation 

a (jloToJ on alternate planes in the hexagonal stacking, 

The structure which will satisfy the observed tilt angle is dravm 

in detail in Fig. 4, for the case of both hexagonal graphite (above the 

dotted line) and rhombohedral graphite (belov; the dotted line), and again 

the A plane has been talcen, for convenience, as an undistorted reference 

plane. In each case a partial dislocation of the type discussed is 

introduced into the intermediate layer of hexagons (vro.vy lines), as 

evidenced by the difference in position between extix3me loft and right, 

but Yi/ith the strain removed by an operation of the iypo illustrated in 

Pig. 3(b) and (c), the gap created being shov-/n in black. For both the 

hexagonal and rhombohedral cases, the tilt required to close such 

gaps in the planes is the same, nanx3ly 20 9', In each case the original 

•type of structure can be preserved: hexagonal ABABAB,,, tivins to 

hexagonal ACACAC... and rhombohedral ABCABC,.,, can tiTiji to rhombohedral 

BACBAC.,. In Fig, 4 the rhombohedral transformation illustrated shows 

ABC,., tviliming to ACB,,, and the exact sequence obviously depends on 

the direction of the Burger's vector, as any plane (say A) may be 

transformed to either of the other tvro possibilities (B or C) by a similar 
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vector of different direction. Stacking faults can therefore exist. 

If, then, the lattice is rotated as described above, the strijcture will 

now fit along tiie cut planes when the angle of rotation is 20 9 , This 

is illi:istrated diagrainmatically by the diagram at the foot of Fig. 4. 

Thus a sequence of partial dislocations can give a tilt boundary of 

the observed angle. The twin boundary in such a structure is thus an 

array of partial dislocations, forrmig a tilt boundary, and is evidently 

mobile, v/hich is consistent with experimental observations (Laves and 

Baskin 1936). 

Once this possibilily is recognized, a number of characteristics of 

the graphite structure become resolvable. It follows that tvojining in 

the hexagonal structure does not necessarily involve any transformation 

to the rhombohedral fom (as was deduced by Laves and Baskin from x-ray 

measurements), although rhombohedral stacking faults could be perpetuated 

through the tv/inned str-ucture, or even created. Apart from, the twinning 

question, such partial dislocations can obviously constitute tl:ie 

boxmdaries of stacking faults, and thus the gliding of those dislocations 

•under stress can increase (or diminish) the amount of rhombohedral 

graphi-te. This necessary association of gliding with rhombohedral 

de*velopment has already been noted by Laves and Baskin. 

The dislocation structure of the twin composition plane iniposes 

oerî ain restrictions on the possible junctions of such boundaries. For 

exarî le, as in Fig. 5(a), tv70 boundaries may conform if their common 

vector lies along the third possible bovndary line. One such boimdary 

may -terminate either on an'other or at a straight-forward dislocation 

boundary which is not of •tlie -tvidnning type; see Fig. 5(b). Three boundaries 

may also conform, but the sign of •the tilt is important. In some cases, 

inŝ tead of three \Kn.n lamellae meeting, one of these nay be split into 

two of opposî te tilt (Fig, 5(c)). In any case, because of the tilting 

condition, there will always be very special restraints in the neighbourhood 

of nodes and at the ends of lamellae and the adap-tafion cfgraphî te in this 

respect presumably depends on "the readiness v/ith v/hidi partial dislocations 

may be formed. This derives from •the relatively •weak In^terplanar (van der 

Waals) bonding in graphî te. 
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I t i s not a t once evident v;hy the composition plane observed i s •< 1121r 

r a the r than 'ilTol'; , as tlie creat ion of the l a t t e r req'uii'^s the same 

type of transformation: in th i s case the inser t ion of a hexagon leng^th 

in to every other plane (see Fig, 4) leading •to a t i l t angle across the 

\ lT01] plane of tan*'^2y3o, or 22 5 7 ' , One of the differences betv/een 

•these •two possible planes i s t h a t , for a t i l t of a given sign, •there i s 

only one possible p a r t i a l for each layer plane in the 'ilToij- case , Vi^iercas 

in -tlie case of -1121\ there may be •two p o s s i b i l i t i e s . Thus suppose 'the 

pos i t ions of a gi-ven plane in the o r ig ina l s tructure and the •t\7inned 

struc-ture to be symbolized by B-G: •this i s •the case , for example, in 

tlie second plane drâ wn in P ig . 4 . Rhombohedral stacking sequences of 

•the follov7ing type are possible across i'I121j : B-^ , C~A, A-B , . . , or 

B-G, C-B, A-G . . . Using s i m l e r notat ion for the ( theore t ica l ) case of 

the -',lT01f composition plane, these altemati^ves do not a r i s e . The 

sequence must be B-G, C-A, A-^i, In the simple hexagonal •twinned l a t t i c e , 

A-^, B»^, A-A, . , , there i s no d i s t i nc t ion , as one p o s s i b i l i t y only 

ex i s t s for both cases . For A-B, B-G, A-B, however, which i s a lso pure 

hexagonal stacking in each twin, another pos s ib i l i t y a r i ses in the -iHSlI; 

case , namely A-B, B-A, A-B, This i s again a s t ructure which could not 

conform vri.th a -,lToi[ t i l t boundary. Pa r t i cu la r ly v/here stacking fau l t s 

o x i s t , then, the \^•\2^j boundary i s much less r e s t r i c t i v e in the necessary 

conditions i t iirtposes, and vrould appear to be much more l ike ly to form im 

lattirves ccn"taining a d i s t r ibu t ion of stacking faiiLts, Ko cases of 

the observation of o. \^TOIj coniposition plane appear to hâ ve been repor^ted, 

al^though i t may be possible to produce such "tvans in tliin f lakes of very 

perfect graphite , 

The point of t h i s disc'ussian i s , -then, that "tlie p r inc ipa l t\-nnning 

charac^teristics of graphite can be explained in dis locat ion •terms, and 

•that, on th i s b a s i s , the true twinning plane (as d i s t i nc t from the •tvïin 

composition plane) i s j H ^ l f in the s t ruc tu r a l (not the morphological) 

system of axBs, An experimental coi;ifirmation of •üiis proposit ion would 

be valuable , 

file:///lT01


n 

m* ^ tm 

References 

Lave?, F,., and Baskin, Y. , 195^, Z .Kr i s t a l logr , , 107, 22. 

Palache, G,, 1941, Amer, Min,, 26, 709, 

P l a t t , J , R. , 1957, Z ,Kr i s t a l logr , , 109, 3 . 



f 

^i. Basal 
atomic 

hexagon 

Crystal 
-habit 
hexagon 

— < , > 

Figure 1. The relation between the 
structural and the morphological 
hexagons. The twin composition 
plane is {1101} with respect to 
the Oia^a^ and c axes. 

Twin composition 
plane 

Figure 2. The boundary structure 
proposed by Platt. 
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Figure 3. (a) The relative positions of hexagons in the A, B and C planes, (b) The 
distortion introduced into a row of hexagons in the neighbourhood of a partial 
dislocation, taking the A layer as a rigid reference network. (In fact, both layers 
are sheared similarly, of course.) (c) The B-C row of hexagons showing the gap, 
of width a/2, closed by the lattice rotation of 20° 9. 
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Figure 4. Successive layer planes in graphite showing the twin 
boundary dislocation structure for (a) hexagonal and 
(b) rhombohedral graphite. The lower diagram dem­
onstrates (for the hexagonal case ) how a rotation of 
20°9» closes up the lattice in the required way. 
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Figure 5. Possible twinning forms : (a) two lamellae with common boundary vectors, (b) 
a single lamella terminating at a dislocation boundary, and (c) the possible split into 
two lamellae of opposite tilt. 


