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Summary

Due to rapid advances in computer technology the field of computational aeroacoustics
has become an alternative to empirical and experimental methods for the prediction of
sound production and propagation. However, in order to provide numerical aeroacous-
tic predictions for realistic applications a hybrid approach is still often the only option.
OpenFOAM is a popular open-source CFD package in the academic world and its usage is
increasing in industry as alternative for expensive commercial software. Currently there
is no acoustic module in OpenFOAM. Following a hybrid methodology, the user would
therefore need to transfer saved flow data to another software package to perform the
acoustic calculation. This requires high data storage and makes the method (unnecessar-
ily) complicated and cumbersome.

In this thesis an aeroacoustic method based on the linearized Euler equations (LEE) has
been implemented in OpenFOAM. Instead of using the standard available OpenFOAM
schemes, a different numerical method was implemented. This involves solving a Riemann
problem to determine the convective terms. The code was verified on a series of bench-
mark problems for which analytical or reference solutions are available. The considered
problems were one-dimensional wave propagation, the propagation of an acoustic pulse
in uniform flow, the radiation by elementary acoustic sources and source radiation in two
types of non-uniform flow. In all cases the found numerical solution was very close to
the reference solution. The Riemann based solver was compared for these problems with
a LEE solver that uses the readily available discretization schemes of OpenFOAM. Both
implementations were shown to be able to correctly account for convection and refrac-
tion effects. The Riemann based solver has as advantage that it propagates waves in a
less dispersive manner than the standard solver, but has as disadvantage that it is more
diffusive. As validation case the sound production by a pair of co-rotating vortices was
chosen. In addition to reference data, a direct simulation was carried out to also serve
as reference solution. The hybrid method was tested with the LEE and with Lighthill’s
analogy. If the average acoustic source is not included as source term in the LEE, the
LEE and Lighthill solutions were found to be very similar. Compared to the direct sim-
ulation, both hybrid methods showed a clear phase difference, which for this case can be
attributed to the start-up phase of the hybrid simulation. Finally, it was demonstrated
that the flow calculation can be done on small domain, followed by a mapping of the
obtained acoustic source onto the larger acoustic grid, after which the acoustic equations
are solved for that flow time step. This leads to considerable savings in computational
power and disk space usage.
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Chapter 1

Introduction

Aircraft noise emission during landing and take-off is one of the main challenges in aero-
nautical engineering, in particular due the continuously stringent noise reduction targets
imposed on civil aircraft. Noise reduction is also an active topic in the wind energy sector,
because the power generation of onshore wind turbines can be limited by noise restric-
tions. More examples can be found in other engineering disciplines, such as automotive
and civil engineering. In order to design for less noise, accurate tools are needed to predict
the acoustic source terms generated by the flow and the subsequent propagation of waves.
With experimental methods it is possible to investigate high Reynolds number flows, but
it is not always feasible or cost-efficient to build, test and then perform the experiment
for a broad range of flow conditions or designs. Empirical methods are easy to use, but in
many cases not applicable or accurate enough. The field of computational aeroacoustics
(CAA) provides an alternative for the prediction of sound compared with empirical and
experimental methods. In conjunction with advances in computational fluid dynamics,
CAA has matured over the years. However, most of the developed methods in CAA
are not open-source. For academics it is preferred to work with open-source codes, since
these are free and pose no restrictions on code sharing or publication. In order to increase
the understanding and usage of CAA, it is necessary to provide the academic world with
open-source alternatives. For this reason we would like to investigate the possibility to
implement an aeroacoustic method in an open-source software package. The chosen soft-
ware is OpenFOAM, due to its increasing popularity in both research communities and
industry.

The coupling of aerodynamics and acoustics poses several computational difficulties, which
are related to either scale differences or boundary conditions:

• For low Mach numbers a large length scale separation between the acoustic and flow
fields exist [33].

• There is a large difference between the magnitudes of the acoustic and aerodynamic
disturbances [8]. Numerical errors may overshadow sound production due to its low
acoustic efficiency if both flow and sound are calculated simultaneously.
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2 Introduction

• Special treatment of the boundaries is essential, since reflection from outwards prop-
agating waves back into the computational domain distorts the solution [26].

• Commonly used levels of artificial dissipation and dispersion in conventional CFD
can greatly attenuate the waves as they propagate to the far field. This puts high
demands on the numerical scheme [8].

The field of CAA can be divided in two main branches: a direct simulation and a hybrid
approach. In the first branch the full compressible flow equations are solved for both the
flow and sound propagation. The domain covers the sound production and at least part
of the near acoustic field. Due to the high computational cost originating from the earlier
mentioned scale separation, a direct calculation remains restricted to simple geometries
and to low and moderate Reynolds numbers [33]. In a hybrid method the flow and
acoustic field are calculated separately so that the numerical method can be optimized
for the physics that are solved. A hybrid method assumes that there is a one-way coupling
between flow and acoustics: the unsteady flow generates sound and alters its propagation,
but there is no feedback from the sound waves to the flow. This assumption is justified for
low Mach number flows [33]. Relevant engineering applications can be analyzed with this
approach and hence in this project the focus lies on a hybrid method applied to the low
Mach number regime. With OpenFOAM it is possible to do both the flow and acoustic
calculation. This is more convenient than using two separate software packages, which
would require flow data to be transferred to the acoustic solver.

As indicated above, one challenge when applying a hybrid method is the need for a
good numerical scheme. The standard schemes of OpenFOAM are lacking from this
perspective. We therefore propose to solve a Riemann problem with second order accuracy
to determine the flux of the convective terms. The goals can be summarized as follows:

• Implementation and verification of a hybrid method based on a system of equations.

• Implementation of a high-resolution scheme, verify it and compare it with the stan-
dard schemes.

• Validation of the method.

• Real case application.

In chapter 2 an introduction is given to the necessary theory of aeroacoustics for this
thesis. The derivation of the Riemann solver and its implementation in OpenFOAM is
discussed in chapter 3. The results from benchmarking the solver are shown in chapter 4.
Validation results are presented in chapter 5 and the results from a realistic case are
shown in chapter 6. Conclusions and recommendations are given in the last chapter.



Chapter 2

Computational aeroacoustics

In this chapter a brief overview is given of hybrid methods (Sec. 2.1), basic concepts of
numerically simulated wave propagation (Sec. 2.2) and boundary treatment (Sec. 2.3).

2.1 Hybrid methods

Noise predictions are typically made by a two-step approach due to the large difference
in requirements on the flow field and acoustic propagation. In the following paragraphs
a few of these so-called hybrid methods are explained.

2.1.1 Lighthill’s acoustic analogy

An acoustic analogy is a reformulation of the conservation laws of fluid motion. The
first acoustic analogy was due to Lighthill [21] and it forms the basis of much other work
performed in the field of aeroacoustics. Lighthill’s equation is:( ∂2

∂t2
− c2

0∇2
)
ρ′ =

∂2Tij
∂xi∂xj

, (2.1)

where Tij= ρuiuj − τij + [(p− p0)− c2
0(ρ− ρ0)]δij is the Lighthill stress tensor and c0 is

the speed of sound. The aeroacoustic problem has been reformulated into an equivalent
acoustic problem in a stagnant medium: An acoustic analogy. The terms on the right-
hand side are assumed to be known from a flow simulation, while the left-hand side
represents the propagation of the acoustic quantity. Usually the last two terms of Tij
(viscous stress, sound generation due to shear and entropy fluctuations) are neglected for
flows with a high Reynolds number and low Mach number, leaving only the momentum
contribution ρuiuj .

In order to solve Eq. (2.1) analytically, a Green’s function may be utilized. For free space
propagation, such a function can be found and from this follows the formal solution to

3



4 Computational aeroacoustics

Eq. (2.1) (see Appendix A for a clarification):

ρ′(x, t) =
1

4πc2
0

∂2

∂xi∂xj

∫
V

Tij(ξ, t− ‖x− ξ‖/c0)
‖x− ξ‖ d3ξ, (2.2)

where x is the distance from a reference system to the observer and ξ the distance from
the reference system to the source, see Fig. 2.1. Lighthill’s analogy is limited by the

ξx − 

S

ξ
x

O

Figure 2.1: Coordinate system. O is the observer, S the source.

fact that it does not account for solid surfaces and does not correctly describe refraction
effects. For these reasons extensions have been proposed:

• Solid boundaries. Curle’s analogy is a generalization of Lighthill’s formulation for
walls present in the flow.

• Moving, solid boundaries. The formulation of Ffowcs Williams and Hawkings ac-
counts for reflections by solid, moving surfaces, making the theory applicable to
arbitrarily moving immersed bodies.

• Extension to parallel shear flows due to Lilley and a modification by Goldstein [12].

These will be discussed in the next paragraphs.

2.1.2 Curle’s acoustic analogy

Fixed, rigid bodies can produce sound by the interaction of the surface with the unsteady
flow (e.g. turbulence). The presence of solid surfaces in the flow can be a significant
sound source. In addition to the quadrupole volume sources exterior to the body, the
acoustic field now also compromises a dipole surface distribution. Using again the free
field Green function G0 = 1/(4π‖x− ξ‖)δ(t− τ + ‖x− ξ‖)/c0), the analogy becomes [25]:

ρ′(x, t) =
∂2

∂xi∂xj

∫
V

Tij
4πc2

0‖x− ξ‖
dV − ∂

∂xj

∫
S

pδij − τij
4πc2

0‖x− ξ‖
nidS, (2.3)

both evaluated at the retarded time τ = t − ‖x − ξ‖/c0.1 The first integral is Eq. (2.2).
The second term, called “loading noise”, represents the aerodynamic forces acting on the
body.

1When the body acts like a compact source, i.e. l/λ << 1 with l as characteristic dimension of the
body, the variation of the retarded time along the body may be neglected.
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It is useful to know the relative importance of the volume and surface integrals. In Tab. 2.1
the scaling laws for the density fluctuation and the acoustic power intensity for a dipole
and quadrupole source are listed. Their derivation can for example be found in [9]. For

Variable Dipole Quadrupole

ρ′(x, t) ∼ ρ0
c30‖x−ξ‖

lu3
0 ∼ 1

c40‖x−ξ‖
(
u0
l

)2
l3ρ0u

2
0

I ∼ ρ0
‖x−ξ‖2c30

l2u6
0 ∼ ρ0

c50‖x−ξ‖2
l2u8

0

Table 2.1: Scaling laws.

the expression of the acoustic power intensity the relations I = p′2

ρ0c0
(planar wave, far

field) and p′ = c2
0ρ
′ were used. The overbar denotes time averaging. The derivation of the

quadrupolar scaling was originally done for a turbulent jet flow (replacing u0 with the jet
velocity and l for the jet diameter), but holds for unbounded turbulent flows in general.
Entropy noise and the viscous stress contribution were neglected. For the dipole scaling
a compact body was assumed.

It can be seen that for a quadrupole source the acoustic intensity scales with the 8th

power of velocity, while the acoustic intensity scales for a dipole distribution with the 6th

power of velocity. For low Mach numbers, M << 1, the dipole term is thus expected
to be dominant. If the body is non-compact (e.g. a long flat plate with a trailing edge
located in a turbulent flow) the aerodynamic noise generation efficiency increases. The
acoustic intensity then scales with the 5th power of velocity [9].

Curle’s equation has been used for example for the sound prediction of a two-dimensional
circular cylinder in a uniform flow [15] and the trailing edge of a NACA 0012 airfoil [34].
For both low Mach number cases the far-field was largely determined by the surface
pressure dipoles. If the volume integral may be neglected, the computational cost and
data storage can be reduced significantly.

2.1.3 Ffowcs Williams-Hawkings formulation

The integration method of Ffowcs Williams and Hawkings (FW-H) is the most general
form of Lighthill’s analogy. It has been used for e.g. helicopter rotor and propeller
calculations. The idea of FW-H is to partition the domain into regions that are divided by
a hypothetical surface on which the modeled problem exactly corresponds to the physical
situation. The original domain is partitioned in a region inside the body and a region
outside the body. The fluid motion on and outside the f = 0 surface is kept identical to
the original problem. The inner solid domain is replaced by a fluid and given an arbitrary
description, i.e. the freestream values p = 0, u = 0 and ρ = ρ0. One now attempts
to construct conservation laws for the entire domain using the concept of generalized
functions, here denoted by a tilde

ρ̃ =

{
ρ f > 0
ρ0 f < 0

(2.4)
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See Fig. 2.2 for clarification of the domains. Similarly, the generalized stress tensor is
pδij − τij for f > 0 and zero otherwise, and ρ̃i = ρui if f > 0 and zero for f < 0.
Obviously, this will result in a mismatch with the exterior flow at the f = 0 boundary. To
correct for this, discontinuous source terms on the right-hand side of the continuity and
momentum equations appear, which will act as acoustic sources. In this way the exterior
field “feels” the same effect as when the interior domain would be the solid body. After

f = 0

f < 0 f > 0

Figure 2.2: Classical FW-H. The control surface f = 0 is at the solid body.

some manipulations, the following inhomogeneous wave equation is found [10]:

�2p′(x, t) =
∂2

∂xi∂xj
Tij − ∂

∂xi

(
(pδij − τij)njδ(f)

)
+
∂

∂t

(
ρ0vnδ(f)

)
, (2.5)

where the unit vector directed from the body is denoted by nj and δ(f) is the Dirac delta
function, which is only non-zero on the f = 0 surface. Eq. (2.5) is the classical formulation
as derived by Ffowcs Williams and Hawkings. On the left hand-side a quadrupole, dipole
and monopole (which represents volume displacement via the local normal velocity vn of
the surface) source can be seen. If the solid surface is stationary, the monopole source (for
which the radiated density fluctuations scale with u2) disappears and Eq. (2.5) reduces
to Curle’s formulation.

2.1.4 Linearized Euler equations

The linearized Euler equations (LEE) are known to be able to correctly account for
convection effects, an inhomogeneous medium and refraction by a non-uniform flow. The
primary assumption of the LEE is that the instantaneous variables can be decomposed
into a time-averaged mean quantity and a small unsteady part:

ρ = ρ0 + ρ′, ui = u0i + u′i, p = p0 + p′. (2.6)

To obtain a system in terms of the fluctuating variables, the above decomposition is in-
serted into the Euler equations (viscous effects have a negligible influence on wave propa-
gation), from which the steady mean flow equations are then subtracted. To linearize the
system, the second order terms (multiplications of first order fluctuations) are neglected.
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These are much smaller than first order fluctuations. This leads to the LEE [7]:

∂ρ′

∂t
+

∂

∂xj
(ρ′u0j + ρ0u

′
j) = Sc (2.7a)

∂ρ0u
′
i

∂t
+

∂

∂xj
(ρ0u

′
iu0j + p′δij) +

∂u0i

∂xj
(ρ0u

′
j + ρ′u0j) = Sm,i (2.7b)

∂p′

∂t
+

∂

∂xi
(γp0u

′
i + p′u0i) + (γ − 1)(p′

∂u0i

∂xi
− u′i

∂p0

∂xi
) = Se (2.7c)

A more complete motivation and derivation of the above equation set may be found in
Appendix B. In the present work isentropic flow is considered, i.e. ρ′ = p′

c2
= ρ0

γp0
p′.

Because of this assumption, the density equation becomes unnecessary. If there are no
large mean density jumps, we can normalize the pressure with respect to the density,
making the system consistent with the incompressible solvers of OpenFOAM. Eqs. (2.7)
then reduce to the following:

∂u′i
∂t

+
∂

∂xj
(u′iu0j + p′δij) +

∂u0i

∂xj
(u′j +

p′

γp0
u0j) = Sm,i (2.8a)

∂p′

∂t
+

∂

∂xi
(γp0u

′
i + p′u0i) + (γ − 1)(p′

∂u0i

∂xi
− u′i

∂p0

∂xi
) = Se (2.8b)

The left-hand side of Eqs. (2.8) is a linear form that contains all propagation effects.
In general, the system is excited by (non-linear) source terms on the right-hand, i.e.
monopoles in the energy equation and dipole and quadrupole-like sources in the mo-
mentum equation. As source term that follows from CFD data, Bailly [2] uses on the
right-hand side of the momentum equation:

Sm,i = −
{∂u′iu′j
∂xj

− ∂u′iu
′
j

∂xj

}
. (2.9)

It is custom to perform aero-acoustic benchmark cases on a non-dimensional basis. The
variables in Eqs. (2.8) are non-dimensionalized as follows:

t∗ =
c0t

l
, x∗i =

xi
l
, u′∗ =

u′i
c0
, u∗i =

ui
c0
, p′∗ =

p′

ρ0c2
0

, p∗0 =
p0

ρ0c2
0

. (2.10)

Here l is a typical length scale and c0 the speed of sound. The system of Eqs. (2.8) keeps
the same form, but now one may think of the variables as Mach numbers, non-dimensional
pressures and non-dimensional time and length scales. The simulations reported in chap-
ter 4 were all carried out on a non-dimensional basis and with an acoustic Courant number
less than one, which is defined as:

acoustic Courant No. =
(u+ c0)∆t

∆x
=

(1 +M)∆t
∆x

(2.11)

as opposed to the Courant number definition used for flow simulations:

Courant No. =
u∆t
∆x

. (2.12)

It is interesting to see the relation between the LEE and other acoustic analogies. Suppose
we have a parallel mean flow, i.e. ū = f(y) and v̄ = 0. The density and speed of sound
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are a function of y only, while the mean pressure p̄ must be constant, because the steady
mean flow obeys Euler’s equations. Moreover, assume that the isentropic relation holds.
In order to formulate a single equation expressed in term of p′ we use the convective
operator D̄/D̄t = ∂/∂t+ ū∂/∂x. Applying this operator on the continuity equation and
subtracting from this the divergence of the momentum equations gives:

1
c2

D̄2p′

D̄t2
−∇2p′ − 2ρ̄

dū

dy

∂v′

∂x
= −∇ · S. (2.13)

This is Philips’ analogy. The “d” is used to emphasize that ū is only a function of the
transverse coordinate. The term with v′ can be eliminated by applying the D̄/D̄t on
Eq. (2.13) and adding 2dū/dy times the y-derivative of the momentum equation. In this
way several terms then cancel each other out. The result is:

D̄

D̄t

( 1
c2

D̄2p′

D̄t2
−∇2p′

)
+ 2

dū

dy

∂2p′

∂x∂y
= Γ, (2.14)

where Γ is the following source term:

Γ = − D̄

D̄t
∇ · S + 2

dū

dy

∂Sy
∂x

. (2.15)

The left hand side of Eq. (2.14) is now identical to Lilley’s third order non-linear wave
equation, which has as source term [9]:

Γ = − D̄

D̄t

∂2ρu′iu
′
j

∂xi∂xj
− 2

dū

dy

∂2ρu′2u
′
j

∂x∂xj
. (2.16)

Thus for a unidirectional shearflow the LEE reduce to Lilley’s analogy if the source term
in the LEE is given by:

Sm,i = −∂ρu
′
iu
′
j

∂xj
. (2.17)

If the medium is stagnant, the LEE reduce to Lighthill’s analogy.

2.2 Wave propagation errors

2.2.1 Basic concepts

In this section a few relations and concepts useful for wave propagation analysis are
described. The two main types of errors are dissipation and dispersion. These can be
quantified using the amplification factor, which is defined as the change of the solution
during a single timestep:

G =
u(x, t+ ∆t)
u(x, t)

. (2.18)

The dissipation error is then the ratio between the magnitudes of the numerical and exact
amplification factors:

εd =
|Gnum|
|Gexact| . (2.19)
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The dispersion error is given by the difference in phase:

εφ =
φnum
φexact

or εφ = φnum − φexact, (2.20)

where
φ = tan−1

(={G}
<{G}

)
. (2.21)

An often used quantity is the wavenumber k. This is a spatial frequency:

k =
2π
λ
. (2.22)

The number of points per wavelength that is required to resolve a wave (given a certain
criterion) is a measure of the resolution of a numerical scheme:

PPW =
λ

∆x
, (2.23)

which means that PPW is related to k via

k∆x =
2π

PPW
. (2.24)

The phase speed, vp, is the speed at which the phase - e.g. the crest - propagates. During
a time interval, a simple sine wave generates ωt waves, which travel over a distance kx.
Thus ωt = kx, leading to a velocity x/t:

vp =
ω

k
. (2.25)

A wave can also be compromised of waves with different frequencies. The amplitudes
of the internal waves then form an envelope, see Fig. 2.3. The speed of the amplitude

 

 
Numerical
Exact

(a) Dissipation.

 

 
Numerical
Exact

(b) Dispersion.

Figure 2.3: Illustration of the dissipation and dispersion error. Left: Damping of the solution.
Right: Crests propagate at the wrong (phase) velocity and the energy moves at
the wrong (group) velocity (notice the change in shape of the envelope).

envelope is called the group velocity. It is defined by:

vg ,
∂ω

∂k
. (2.26)
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The group speed vg can be thought of as the energy propagating velocity. If the wave
propagation is non-dispersive, the phase speed and group speed are the same. This is the
case for the linear convection equation on differential level. However, on the discrete level
this is generally not true. This is further discussed in the next section.

2.2.2 Numerical schemes

The majority of CAA studies uses high-order finite difference schemes [26, 27]. Although
we will not use a finite difference method in this project, it is used here to show why high-
order methods are often favored. In contrast to CFD where schemes opt to maximize
the order of accuracy, in CAA schemes are optimized with respect to preserving wave
properties. To illustrate this, consider the central discretization of a derivative:

∂f

∂x
(x) ≈ 1

∆x

N∑
j=−N

ajf(x+ j∆x). (2.27)

With a seven point stencil, a 6th order scheme can be constructed from Taylor series
approximations, thus fixing all coefficients aj . A different strategy is to opt for a fourth
order scheme by fixing a0, a1 and a2 (a−1 = −a1, a−2 = −a2) and leave a3 as a free
parameter. In order to take the wavespeed into account in the analysis, Eq. (2.27) can
be Fourier transformed into wavenumber space, which after some manipulation yields a
relation between the exact, physical wavenumber and the numerical wavenumber. The
parameter a3 can now be used as a design variable to minimize the difference between
the exact and numerical wavenumbers. Tam and Webb [27] carried out such an analysis
and developed dispersion-relation-preserving (DRP) schemes. These are one of the most
popular choices in literature.

The group speed of a wave package that is compromised of different wavenumbers can
shown to be equal to the derivative of the exact wavenumber with respect to the numerical
wavenumber. If all the components travel with the same speed, this will be equal to one.
Otherwise the wave package will spread out as it propagates. In Fig. 2.4 the relation
between the exact and numerical wavenumber, respectively k and k, is shown for a few
schemes. It can be seen that for non-optimized schemes the high wavenumber waves travel
at a quite different velocity from the physical velocity. This is known as a dispersion error.
By increasing the stencil size, the error can be reduced. Alternatively, the standard central
scheme can be used but with a small ∆x.

2.3 Boundary conditions

In this section a brief description of two often used boundary conditions. These are the
characteristic boundary condition and the bufferzone technique.

2.3.1 Characteristic boundary condition

Since a hyperbolic system propagates solutions in distinctive directions, it seems logical to
use this property when constructing a non-reflective boundary condition. One of the early
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E−2
E−4
DRP−7
DRP−15
Exact

Figure 2.4: Illustration of the effect of scheme optimization. On the x-axis the exact, phys-
ical wavenumber is used and on the y-axis the numerical wavenumber. Shown
are the classical, non-optimized central (E-2) and fourth order (E-4) schemes, 7
point fourth order optimized central DRP scheme (DRP-7) and 15 point opti-
mized DRP scheme. Various other schemes lie between DRP-7 and DRP-15 and
they follow the trend of a smaller dispersive error as the stencil size is increased.
Note that waves move backwards for wavenumbers larger than the wavenumber
corresponding to the maximum of a given scheme, i.e. the derivative is negative.

methods that does so was due to Thompson [28, 29]. His reasoning starts by separating the
terms of a hyperbolic equation into those that are in the direction in which the boundary
condition should work - say x - and those that are transverse to the boundary (y, z), i.e.:

∂U
∂t

+ A
∂U
∂x

+ C, (2.28)

where A contains terms like the velocity in the x-direction, but not in the y-direction,
since these are gathered into C. Diagonalizing the system yields

lTi
∂U
∂t

+ λilTi
∂U
∂x

+ lTi C, (2.29)

where lTi is the ith eigenvector corresponding to the eigenvalue λi. Thompson defined

Li = λilTi
∂U
∂x

. (2.30)

A non-reflecting condition now follows:

Li =

{
λilTi

∂U
∂x for outgoing waves,

0 for incoming waves.
(2.31)

A full discussion on how this can be applied to the Navier-Stokes equations is beyond
the scope of the present text, but detailed descriptions can be found in [23, 28, 29].
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Basically, 1D problems are considered by lumping transverse components together (which
are optionally dropped, see Poinsot and Lele [23] who call this a Local One-Dimensional
Inviscid problem, LODI) and then matching characteristics at the boundary. The specific
values addressed to the Li’s then depend on the type of boundary condition, see the list
Thompson provides in [29]. The waveTransmissive boundary condition that is used in
the validation study is said to be based on the LODI, although this is rather hard to see
from the code.

The convectiveOutlet boundary condition does something similar. It applies an un-
steady convective condition at the boundaries by calculating on the boundaryfield:

dφ

dt
+ Un

dφ

dn
= 0, (2.32)

where φ is any dependent variable (ρ′, p′, u′) and Un the normal component of the
convective velocity, in this case the speed of sound. This boundary condition is used in
most of the verification cases of chapter 4.

2.3.2 Buffer zone

Instead of letting waves pass through the boundary without reflection, the buffer zone
technique attempts to resolve the waves as they propagate to the boundaries. Adjacent
to the domain, an absorbing layer is added where the flow physics are altered. The
technique modifies the governing equations in the exit zone by adding a damping term to
the right-hand side:

∂U
∂t

+ A
∂U
∂x

= −σ(x)(U−Utarget), (2.33)

where U is the state vector, Utarget the target (in this case zero) and σ a damping function:

σ(x) =

{
σmax

(
x−x0
w

)m
if x ≥ x0,

0 if x < x0.
(2.34)

Here w is the width of the bufferzone, m an exponent that determines the profile shape
and x0 the location where the bufferzone starts. Adding the artificial damping term has
a similar effect as cranking up the viscosity by adding µ(x)d

2U
dx2 to the left-hand side.



Chapter 3

The Riemann solver

In this chapter the theoretical basis and practical implementation of the Riemann solver
is described. First some concepts are briefly described in section 3.1, after which the
approach is applied to our system in section 3.2. The chapter is concluded with an
outline of the implementation in OpenFOAM.

3.1 The Riemann problem for linear hyperbolic equations

An excellent treatment on Riemann solvers is given in the books by Leveque [20] and
Toro [30]. Here we will not attempt to give a complete presentation similar to theirs, but
instead outline some basic theory by considering an example problem. Since Eqs. (2.8)
form a linear hyperbolic system, we restrict our discussion to such systems. For a linear
problem a Riemann solver is the equivalent of a characteristic solver and an analytical
approach is possible.

Consider the following:
qt + Aqx = 0. (3.1)

When A is a constant coefficient matrix, one may find that the above problem comes
down to p decoupled advection equations expressed in a transformed variable:

wp
t + λpwp

x = 0, (3.2)

where w = R−1q, with R as the right eigenvector matrix of the diagonal matrix that
corresponds to A. A Riemann problem is a special initial value problem where the initial
states are given by:

wp
t=0(x) =

{
wp
l if x < 0,

wp
r if x > 0.

The solution at (x, t) depends on the initial data evaluated at the characteristic x− λpt,
i.e. wp(x, t) = wp

t=0(x− λpt):

wp(x, t) =

{
wp
l if x− λpt < 0,

wp
r if x− λpt > 0.

13
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The solution to the Riemann problem is a superposition of p waves travelling with different
speeds λp

q(x, t) =
m∑

p:λp>x
t

wp
l r
p +

m∑
p:λp<x

t

wp
rr
p. (3.3)

This is illustrated in Fig. 3.1. The tracing of characteristics to find the solution can be

3 

1

2

λ 
λ 

λ 

λ xt tt

L R

t

(x ,ta  a  )
L

R

*

*

x − a x − a x − aλ 3 λ 2 1

Figure 3.1: Solution construction at point xa at time level ta. In this case the solution is
q(xa, ta) = w1

rr1 + w2
l r2 + w3

l r3. After LeVeque [20].

expressed conveniently in terms of jump relations:

W1 = q∗l − ql = (w1
r −w1

l )r
1

W2 = q∗r − q∗l = (w2
r −w2

l )r
2

W3 = q∗r − qr = −(w3
r −w3

l )r
3

after which the state at any point follows from

q(x, t) = ql +
m∑

p:λp<x
t

Wp (3.4)

= qr −
m∑

p:λp>x
t

Wp. (3.5)

Eq. (3.4) may be interpreted as the left state plus the change due to leftwards moving
waves. The solution at the face (x = 0) is often written as:

q(0, t) =
1
2

(ql + qr) +
1
2

( m∑
p:λp<0

Wp −
m∑

p:λp>0

Wp
)
, (3.6)

Since A is a constant coefficient matrix, the flux is simply Fface = Aq. Combining this
with Eq. (3.4) and Eq. (3.5) yields

Fface = Aql +
m∑

p:λp<0

AWp

= Aql +
m∑

p:λp<0

λpWp (3.7)
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Fface = Aqr −
m∑

p:λp>0

AWp

= Aqr −
m∑

p:λp>0

λpWp. (3.8)

Here we used that W contains the right eigenvectors of A, i.e. AR = ΛR. For imple-
mentation purposes, the most convenient formulation is

Fface =
1
2
A(ql + qr) +

1
2

m∑
p=1

[
(λp)− − (λp)+

]
Wp

=
1
2
A(ql + qr)− 1

2

m∑
p=1

|λp|Wp. (3.9)

Note that
λ+ = max(λ, 0), λ− = min(λ, 0). (3.10)

3.2 The Riemann based LEE solver

The LEE given by Eqs. (2.8) can be written as:

∂q
∂t

+
∂Aq
∂x

+
∂Bq
∂y

+
∂Cq
∂z

+ H = S, (3.11)

with state vector

q =


u′

v′

w′

p′

 . (3.12)

H contains part of the gradients in the mean flow terms and is not used in the derivation
of the Riemann solver. Since OpenFOAM can use unstructured grids, the Jacobian J =
Anx + Bny + Cnz is introduced:

∂Aq
∂x

+
∂Bq
∂y

+
∂Cq
∂z

=
∂(Jq)i
∂xi

. (3.13)

So:
∂q
∂t

+
∂(Jq)i
∂xi

+ H = S (3.14)

We will focus on J now, since this is the only part that is considered in the Riemann
solver. We find:

J =


U 0 0 nx
0 U 0 ny
0 0 U nz

γp0nx γp0ny γp0nz U

 , (3.15)

where U = u0 · nx + v0 · ny + w0 · nz. The eigenvalues follow from:

det(J− λI) = 0. (3.16)
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This yields
λ1,2 = U, λ3 = U +

√
γp0, λ4 = U −√γp0. (3.17)

Recall that in OpenFOAM pressure is divided by density, meaning that λ3,4 = U ± c,
where c is the speed of sound. Four different states can be distinguished, as shown in
Fig. 3.2. The corresponding right eigenvectors are1:

λ t
1,2

= u

q
l

q
r
*

r
q

q
l
*

λ 
4

= u − c

λ 
3 
= u + c

n

Figure 3.2: Characteristic waves.

r1 =


1
0

−nx/nz
0

 , r2 =


0
1

−ny/nz
0

 , r3 =


nx
ny
nz
cr

 , r4 =


nx
ny
nz
−cl

 . (3.18)

The right eigenvector matrix is thus:

R =


1 0 nx nx
0 1 ny ny

−nx/nz −ny/nz nz nz
0 0 cr −cl

 (3.19)

and its inverse

L =
1

cl + cr


(cl + cr)(n2

y + n2
z) −(cl + cr)nxny (cl + cr)nxnz 0

−(cl + cr)nxny (cl + cr)(n2
x + n2

z) −(cl + cr)nynz 0
clnx clny clnz 1
crnx crny crnz −1

 . (3.20)

The characteristic variable w = Lq is now introduced

w =


u′ − nxU ′
v′ − nyU ′

cl
cl+cr

U ′ + 1
cl+cr

p′

cr
cl+cr

U ′ − 1
cl+cr

p′

 . (3.21)

1In the eigenvectors r1 and r2 a division by nz is made. A possible difficulty of division by zero is
however later canceled out.
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The wave strengths are:
α = wr −wl. (3.22)

The pth jump in q across the pth wave is denoted by

Wp = αprp. (3.23)

This leads to the following wave vectors:

W1 +W2 = q∗r − q∗l
= α1r1 + α2r2

=
(

(u′r − u′l)− nx(U ′r − U ′l )
)

1
0

−nx/nz
0

+
(

(v′r − v′l)− ny(U ′r − U ′l )
)

0
1

−ny/nz
0



=


(u′r − u′l)− nx(U ′r − U ′l )
(v′r − v′l)− ny(U ′r − U ′l )
(w′r − w′l)− nz(U ′r − U ′l )

0

 , (3.24)

W3 = qr − q∗r
= α3r3

=


clnx
cl+cr

(U ′r − U ′l ) + nx
cl+cr

(p′r − p′l)
clny
cl+cr

(U ′r − U ′l ) + ny
cl+cr

(p′r − p′l)
clnz
cl+cr

(U ′r − U ′l ) + nz
cl+cr

(p′r − p′l)
clcr
cl+cr

(U ′r − U ′l ) + cr
cl+cr

(p′r − p′l)

 , (3.25)

W4 = q∗l − ql
= α4r4

=


crnx
cl+cr

(U ′r − U ′l )− nx
cl+cr

(p′r − p′l)
crny
cl+cr

(U ′r − U ′l )− ny
cl+cr

(p′r − p′l)
crnz
cl+cr

(U ′r − U ′l )− nz
cl+cr

(p′r − p′l)
− crcl
cl+cr

(U ′r − U ′l ) + cl
cl+cr

(p′r − p′l)

 . (3.26)

The wavevectors are slightly different when mean density variations are important, see
Appendix C. The flux at the face now follows from:

Fface =
1
2

(Fr + Fl)− 1
2

m∑
p=1

|λp|Wp. (3.27)

Eq. (3.27) is Godunov’s first-order upwind method. To make the solver less diffusive, a
higher-order extension is needed. This is done by extrapolating the state variables from
the cell centers towards the face in a limited linear fashion. On unstructured grids, the
Barth-Jespersen slope limiter is suitable for this purpose [3].
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3.3 Implementation in OpenFOAM

OpenFOAM is an open-source C++ library. Since the code is open-source, much solvers
and template files are readily available and can be used as a basis for further development.

In the present work, the code uses roughly the following steps. First the Riemann problem
is set up by looping over all cells. Each of these cells (called “owners”) is connected to
multiple neigbouring cells via a common face. For each such face of an owner cell, the
variables of the current cell and a neighbouring cell are passed to a separate code file
in which the Riemann problem is solved in accordance to the description of Section 3.2.
After calculating the face fluxes, they are passed to the main acoustic solver where an
explicit 4-stage Runge-Kutta time integration algorithm is used to march in time. This
implementation will from hereon referred to as aeroacousticFoam or “aacFoam” for short.
In Fig. 3.3 a visualization of the code is shown.

O N

n

1.) Loop over all cells; set up the R.P. for each face: 

Start time march

Riemann solver

Source definition: S
m 

, S
e 

Output variables at the face: u
l
', u

r
', p

l
', p

r
', U

l 
, U

r 
, p

l 
, p

r

2.) Solve R.P.; Output: F
m 

, F
e 
 (face flux)

Main solver

1.) du'/dt + ∑ F
m 

+ H = S
m

2.) dp'/dt + ∑ F
e 
+ H = S

e

3.) Update boundary field

Figure 3.3: Code visualization.
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In the present work three other schemes are used and therefore given for reference. For a
detailed description, see the doctoral thesis of Jasak [16].

In a finite volume method, terms in a partial differential equation are converted to integrals
over a volume. To facilitate the numerical evaluation of, for example, convection of a
variable φ by a velocity U, one would write:∫

V

∇ · (Uφ)dV =
∑
faces

UfφfSf . (3.28)

Since our variables are defined at the cell center of a volume, a certain (interpolation)
strategy is needed to determine the value at the cell’s faces. The situation is sketched in
Fig. 3.4.

O Nf

Φ

Φ

o

f

N

Φ

Figure 3.4: Face interpolation. O = owner, f = face, N = neighbour.

With the central scheme the face value is determined according to:

φf = fxφO + (1− fx)φN , (3.29)

where fx = fN

ON
is a ratio of distances.

The linear upwind scheme is given by:

φf =

{
φO + (xf − xO)(∇φ)O if S ·Uf ≥ 0,
φN + (xf − xN )(∇φ)N if S ·Uf < 0,

(3.30)

with (∇φ)N = 1
VN

∑
faces φfS and S again being the surface.

The limited linear scheme consists of a lower order scheme (upwind) and a higer order
correction limited by a Sweby limiter:

φf = (φ)LO + Ψ[(φ)HO − (φ)LO], (3.31)

where (φ)HO is the face value of φ evaluated with the higher order scheme and Ψ is the
flux limiter.
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Chapter 4

Verification

In this chapter the aim is to compare the performance of the standard and Riemann-
based solver and to verify the order and the dissipative and dispersive character of the
implementation.

First these properties of the numerical schemes are investigated using a simple wave con-
vection problem. Next the solver is verified using benchmark studies for which analytical
solutions are available. For these problems the source data is known and thus no flow
calculation is needed. The cases that are investigated are: the propagation of an acous-
tic pulse, the fundamental acoustic sources, acoustic scattering from a wall and source
radiation in non-uniform flow.

4.1 One-dimensional wave propagation

The dissipative and dispersive properties of OpenFOAM’s built-in numerical schemes
and the implemented method can be assessed with an initial value problem for the linear
advection equation:

dp′

dt
+ c

dp′

dx
= 0, (4.1)

where p′(x, 0) = f(x) is an initial disturbance that is convected with a non-dimensional
speed c, which is set equal to 1. The solution at later times is p′ = f(x− t). We consider
the following disturbances:

• A Gaussian function:
f(x) = e−(ln(2)x

3
)2 . (4.2)

• A sine function:
f(x) = sin(2πx/λ), 0 ≤ x ≤ λ. (4.3)

The wavelength is set equal to 10.

21
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Hence both a symmetric aperiodic signal and a periodic signal is tested. A domain of non-
dimensional length 200 is selected, so that at the end of the simulation the disturbance
is still far enough away from the boundary and thus no boundary influence is noticed.

To evaluate the dp′

dx term we have selected the standard Gauss linear and Gauss limited-
Linear methods to compare with the new implementation. In this case the “Riemann”
scheme should reduce the code to a second order reconstruction (with limiter) of the left
and right variables at the face, after which the upwind value is taken to determine the
flux. Gauss linear is a second order central discretization, which is fine as long as it does
not results in any numerical instability. The limitedLinear scheme is a TVNI scheme that
combines upwind with central, see Sec. 3.3.

The pulse is initially located at x = 0. For each of the schemes we vary the number of
points per wavelength - or in the case of the pulse, the number of points per pulse-width
- as follows: 10, 12, 15, 20 and 25. From initial tests it was found that the temporal
error is eliminated when the Courant number is lower than 0.1, hence the timestep is set
according to this criterion. In Fig. 4.1 the convection of the pulse is shown for the three
schemes at three time instances.
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Limited linear
Riemann
Analytical

t = 0 t = 75 t = 150

Figure 4.1: Convection of a pulse. Three instances are shown: t = 0, t = 75 and t = 150.
PPW = 20.

As can be seen, large trailing waves are formed behind the pulse when the central scheme
is used. This is a dispersion error, which originates from a variation in the group velocity
inherit to the scheme. From Fig. 2.4 it was found that waves with a large wavelength
(low wavenumber) travel at the same group speed. At a certain higher wavenumber, the
group velocity for a scheme becomes less than one. Thus, shorter waves will propagate
at a lower speed than the long waves. The spatial Fourier transform of a Gaussian pulse
contains mainly low frequency content, but it is the high frequency part that forms the
observed trailing waves. The waves are absent when the scheme limitedLinear is used.
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Figure 4.2: Convection of a sinusoidal function. Three instances are shown: t = 0, t = 75
and t = 150. PPW = 20.

This scheme is however too diffusive. The Riemann method adds a moderate amount of
diffusion, while preserving the dispersion relation. No oscillations are present, not even
on coarse meshes. On coarse meshes the diffusion error becomes increasingly apparent
for the Riemann scheme. A similar behaviour can be seen from the sinusoid testcase,
see Fig. 4.2. At the beginning and the end of the sinusoid a discontinuity occurs. This
gives a lot of high frequency waves to represent the discontinuity. Another explanation:
When the sinusoid is properly resolved, the spatial Fourier transform will yield a two-
sided frequency spectrum of two Dirac pulses. When the wave becomes under-resolved,
the frequency spectrum will contain spurious waves that form trailing waves.

Case Scheme Order

Central 1.1 (1.2)
Pulse Limited linear 1.1 (1.3)

Riemann 1.9 (1.8)

Central 0.8 (0.8)
Sine Limited linear 0.8 (0.9)

Riemann 2.0 (1.8)

Table 4.1: Order of the tested schemes for the two cases. Since there are slight kinks in the
lines on the interval 10 PPW - 25 PPW, the order was calculated on the straight
part 12 PPW - 20 PPW. In brackets the order according to the slope from 10
PPW - 25 PPW is given.

In Fig. 4.3 log-log plots of the root-mean-square error are shown. The order of the methods
are extracted from these figures and summarized in Tab. 4.1.
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Figure 4.3: loglog plot for the pulse case (left) and sine function case (right).

The influence of disabling the Barth-Jespersen limiter is shown in Fig. 4.4. Clearly, the
solution deteriorates. Lastly, we numerically determine the exact k vs numerical k plot
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Figure 4.4: Comparison of the solution obtained with and without Barth-Jepsersen limiter
at t = 100.

for the Riemann scheme, as was shown for other schemes in Fig. 2.4. The set-up is similar
to the previous two cases. We give an initial sinusoidal signal of 7 wavelengths long. Since
the convection speed is equal to unity, the period T is equal to the wavelength λ. The
dispersion error has a local nature, i.e. it is generated over a single wavelength. Thus, we
may sample the time history at a fixed point in space, e.g. x = 5λ and then the period
of the first wave that passes this observation point is equal to the numerical wavelength.
For a fixed mesh the wavelength is then varied from λ = 20 to λ = 4. The result of this
approach is shown in Fig. 4.5 for both the central scheme and the Riemann scheme. The
numerically determined central scheme is given to show the accuracy of the approach.
The numerically determined data points (fitted by a cubic interpolant) for the central
scheme are very close to the analytical line when λ ≤ 4 (k∆x ≤ π). For lower PPW
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resolutions, it is no longer possible to determine the numerical wavelength accurately.
The obtained line for the Riemann scheme is very close to the analytical relation for the
fourth order central scheme.
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Figure 4.5: Exact versus numerical wavenumber. Cubic interpolants (dashed lines) are fitted
to the data for the central and Riemann schemes.

We conclude from the discussed 1D testcases that the new implementation shows good
results regarding dispersion and a reasonable amount of diffusion.
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4.2 Gaussian pulse in uniform flow

This model problem is used to study the convection effect and to assess the quality of the
imposed boundary conditions. The following initial disturbance is given:

p′(x, t0) = εe−α(x2+y2+z2). (4.4)

The corresponding solution is [6]:

p′(x, t) =
ε

β

∫ ∞
0

ξ2e−ξ
2/(4α) cos(tξ)j0(ξη)dξ, (4.5)

where ξ is a dummy variable. The other parameters are listed in Tab. 4.2.

Parameter Symbol Value

Amplitude ε 1
Pulse half-width b 9

- α ln(2)/b2

- η
√

(x−M · t)2 + y2 + z2

- β 2α
√
πα

- j0 sin(ξη)/ξη

Table 4.2: Gaussian pulse parameters. M is the Mach number and j0 is the spherical Bessel
function of the first kind and zeroth order.

A uniform grid of N = 100 cells in all three directions on a domain of L = 100 was used.
The Mach number is set at 0.2. In Fig. 4.6 the numerical solution is compared with the
exact solution. The pulse is correctly convected, although a slight boundary influence is
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Figure 4.6: Left: Acoustic pressure contours of the pulse in the xy plane at t = 60. Right:
Comparison with the analytical solution along the x-axis.

observed around x = 50.

A grid refinement study was conducted on a two-dimensional larger domain of 200 x 200,
varying the number of cells from N = 252 up to N = 4002 for both the standard im-
plementation and the Riemann based solver. The root-mean-square error was computed
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Figure 4.7: Left: Comparison between the standard solver (with central discretization) and
the Riemann based solver. Right: Convergence of the solution obtained with
the Riemann solver along the x-axis (close-up).

along the x-axis and is shown in Fig 4.7. It can be seen that the standard solver has an
order of around 1.6, while the Riemann based solver shows truly second order accuracy
in space. On coarse grids it was observed that dispersive errors occur when the standard
implementation is used, while the Riemann based solver was able to preserve the prop-
agation pattern. In this test case, the Riemann solver gives on a grid of 50 x 50 almost
the same error as the standard solver with four times as much cells.

Buffer zone. As described in Section 2.3.2 a buffer zone can be implemented by adding
a source term S = −σq to the right-hand side with σ given by:

σ(r) =

{
σmax

(
r−r0
w

)m
if r ≥ r0,

0 if r < r0.
(4.6)

A two-dimensional circular mesh with a radius of 75 was made with OpenFOAM’s meshing
tool blockMesh. We set σmax = 2, r0 = 50 (radial position where the bufferzone starts),
w = 25 (width of the bufferzone) and m = 2, which determines the gradualness of the
damping. The pulse is initially located in the center of the domain. When the first
wavefronts reach r = 50 the damping starts. In Fig. 4.8 the influence of the damping
zone on the wave propagation is shown at different times. As can be seen, no sudden
reflections occur at the border r = 50. At times t = 50, t = 60 and t = 70 the inner
domain (i.e. the part where the solution is not modified) is not influenced by the presence
of the bufferzone. At t = 80 a bulge becomes visible, but it dies out later. The reason
for the appearance of the bulge at this later time is that the exponent m was set equal
to two. This causes the wavefronts to experience the steeper part of the damping profile
at a further radial position and thus at a later timelevel. When a linear profile (m = 1)
is used, more reflections become visible in an earlier stage. From this test case and other
tests it is found that a buffer zone can produce reasonable results. However, although the
method is easily implemented compared to advanced methods such as PML, there are
also reasons why not to use the technique. A few reasons are:



28 Verification

0 10 20 30 40 50 60 70
−0.1

−0.05

0

0.05

0.1

0.15

r

p

 

 
t = 50
t = 60
t = 70
t = 80

Figure 4.8: Acoustic pressure along a radial line for t = 50, t = 60, t = 70 and t = 80. The
solid lines are the solution when the buffer zone is used, the dashed line is the
solution on a very large domain (no boundary influence). The borders between
the physical domain and the bufferzone are marked by the vertical dash-dotted
line.

• Buffer zones generally work best if the waves are aligned with the bufferzone.

• The optimal setting of the parameters is problem specific.

• The extra layer adds computational cost.

For these reasons, the convective outlet is used in the rest of the project.

4.3 Elementary sources

The solver needs to be able to preserve the radiation patterns of simple acoustic sources.
In this section the wave propagation from a monopole, dipole and quadrupole source is
verified.

4.3.1 Monopole

A monopole represents mass injection and hence source terms in the continuity and energy
equations. Because of the isentropic assumption, in our system this is simplified to only
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a term in the energy equation:

S = sin(ωt) · f(x, y)

0
0
1

 , (4.7)

where f(x, y) = εe−α(x2+y2) with ε as the pulse amplitude and α as a parameter that
determines the source decay. The simulation is carried out with this forcing function
in both a stagnant medium and in presence of a non-zero uniform velocity field. For
a uniform flow with velocity u0 (or on non-dimensional basis, Mach number M) in the
x-direction, the LEE reduce to

Du′

Dt
+

1
ρ0
∇p′ = 1

ρ0
Sm, (4.8a)

Dp′

Dt
+ γp0∇ · u′ = Se, (4.8b)

where D
Dt = ∂

∂t +u0
∂
∂x , Sm the momentum source and Se the energy source. By subtract-

ing γp0 times the divergence of the momentum equation from the substantial derivative
of the energy equation, Eqs. (4.8) can be cast into a convective wave equation:

D2p′

Dt2
− c2

0∇2p′ =
DSe
Dt
− c2

0∇ · Sm. (4.9)

c0 is the speed of sound. For this differential equation, an analytical solution can be found
using a free space Green’s function G(x, y, t). The differential operator remains the same
and on the right hand side we place our harmonic source:

D2G
Dt2

− c2
0∇2G = δ(x, y)e−iωt. (4.10)

For a monopole, the exact solution to this problem follows from the convolution product:

p′(x, y, t) = f(x, y) ∗
(∂G
∂t

+M
∂G
∂x

)
, (4.11)

where G(x, y, t) is the following Green’s function [1]:

G(x, y, t) =
i

4c2
0

√
1−M2

H
(1)
0

(
ω

√
x2 + (1−M2)y2

(1−M2)c0︸ ︷︷ ︸
ξ

)
exp

(
−i M

1−M2
kx− iωt︸ ︷︷ ︸

η

)
.

(4.12)
Here H(1)

0 denotes the zeroth order Hankel function of the first kind (Bessel function of
third kind). The spatial derivative of the Green’s function is thus:

∂G
∂x

=
ω

4c3
0(1−M2)3/2

[
MH

(1)
0 (ξ)− i x√

x2 + (1−M2)y2
H

(1)
1 (ξ)

]
exp(η). (4.13)

ξ and η are used here to denote the same arguments as in Eq. (4.12). In a stagnant
medium Eq. (4.12) simplifies to:

G(x, y, t) =
i

4c2
0

H
(1)
0 (ωr/c0)e−iωt, (4.14)
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with r =
√
x2 + y2 so that:

∂G
∂x

=
−iωx
4c3

0r

(
J1(

ωr

c0
) + iY1(

ωr

c0
)
)
e−iωt. (4.15)

J1 and Y1 are the first order Bessel functions of respectively the first and second kind (note
H

(1)
1 = J1 + iY1). The returned pressure of Eq. (4.11) is complex. Since our harmonic

source was a sinusoid, the requested acoustic pressure is −={p′}.
Now that we know the reduced system of equations and have the exact solution, we turn
to the numerical part. As a first case, we consider a stagnant medium and set ε = 1,
ω = π/15 (λ = 30) and α = ln(2)/9 on a square domain with dimensions 200 x 200. The
following grids are used:

1. An orthogonal grid with 100 x 100 equal sized hexahedra’s, which comes down to
15 points (or cells) per wavelength (PPW).

2. An unstructured grid with an approximately equal amount of cells as for the or-
thogonal grid.

3. A very fine orthogonal grid with 400 x 400 cells.

In all cases the aacFoam solver is used. In Fig. 4.11 a comparison with the exact solution
is shown for the first two medium sized grids and in Fig. 4.12 the exact solution is
compared with the solution on the very fine mesh. For the medium sized meshes the
numerical results are quite close to the exact solution, except near the origin. Excellent
agreement is found with the very fine mesh. An impression of the found pressure field
with this fine mesh can be seen in Fig. 4.9.

Secondly, because of the uniform flow, Eq. (4.9) accounts for two one-way interactions
between flow and acoustics, namely a wavenumber shift (the Doppler effect) and convec-
tive amplification/damping (the Doppler factor). To check these, the monopole is placed
in a Mach 0.5 uniform flow. The obtained pressure contours are shown in Fig. 4.10. The
numerical solution along the x-axis is compared with the analytical solution in Fig. 4.13.
Again good agreement is found. Upstream (left of the x-axis) the wavelength should be
modified to λu = (1 −M)λ = 15 and downstream to λd = (1 + M)λ = 45. This is in
agreement with the simulation result.
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Figure 4.9: Monopole radiation in a stagnant medium. Instantaneous pressure contours at
t = 150.
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Figure 4.10: Monopole radiation in a uniform flow. Instantaneous pressure contours at
t = 270.
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Figure 4.11: Numerical vs. analytical solution along the x-axis at t = 150 for the first two
meshes.
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Figure 4.12: Numerical vs. analytical solution along the x-axis at t = 150. Fine mesh.
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Figure 4.13: Numerical vs. analytical solution along the x-axis at t = 270 for the convected
monopole.

Now that the preservation of the monopole radiation pattern with the aacFoam solver
has been established, we look at the dispersive and dissipative properties of both solvers
with a grid study. We set ω = π/5 in Eq. (4.7), which gives λ = 10 and use a circular
grid with radius 300. In Fig. 4.14 the acoustic pressure along a radial line is shown for a
few refinement levels.

It can be seen that the standard solver shows clear differences in phase (Fig. 4.14(a)).
The solver aacFoam is consistent regarding phase, but gets more dissipative as the grid is
coarsened (Fig. 4.14(b)). From Fig. 4.14(c) it can be seen that during the first 100 meter
no significant dispersion error has been built up and both solvers have the correct phase.
At further distances, the standard solver shows a slightly more dispersive behavior due
to the pollution effect (i.e. the dispersion error is generated over a single wavelength, but
builds up as the wave travels through the computational domain).
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Figure 4.14: Variation of p′ along r for various grids at t = 300. Top: standard solver,
middle: aacFoam, bottom: comparison between standard and aacFoam solver
for the finest mesh. The PPW count is based on the radial direction; 5 to 6
pie slices are used for the circumferential direction.
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4.3.2 Dipole

A dipole corresponds to a unsteady external force. Its source term is

S = sin(ωt)

fxfy
0

 , (4.16)

with fx = ε cos(π/10x)e−αy
2

evaluated where (x, y) ∈ [−5; 5] × [−5; 5] and fy = 0. The
exact solution is [1]:

p′(x, y, t) = −fx(x, y) ∗ ∂G(x, y, t)
∂x

, (4.17)

A fine mesh of 400 x 400 cells on a rectangular domain of 200 x 200 is used. In Fig. 4.15
the obtained pressure contours are shown. A clear dipole pattern is visible. A quantitative
comparison between the numerical and analytical solutions is shown in Fig. 4.16. The
agreement is perfect.
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Figure 4.15: Acoustic pressure contours at t = 150.

4.3.3 Quadrupole

The source term is now given by

S =


∂Txx
∂x + ∂Txy

∂y

∂Tyx
∂x + ∂Tyy

∂y

0

 , (4.18)

where

Tij =

[
− cos(π/20x)e−αy

2
0

0 cos(π/20y)e−αx
2

]
20
π
ε sin(ωt) (4.19)
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Figure 4.16: Numerical vs. analytical solution along the x-axis for the dipole source.

in (x, y) ∈ [−10; 10]× [−10; 10]. The exact solution is:

p(x, y, t) = −∂Txx
∂x
∗ ∂G
∂x
− ∂Tyy

∂y
∗ ∂G
∂y
. (4.20)

∂G
∂x is given by Eq. (4.15) and ∂G

∂y follows analogously by replacing x for y in this expression.
The numerical results are shown in Fig. 4.17 and Fig. 4.18. Again the expected radiation
pattern is found.
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Figure 4.17: Acoustic pressure contours at t = 150. The same domain and discretization
as for the dipole case was used.

4.4 Sound reflection from a solid wall

On solid surfaces acoustic scattering takes place. The boundary conditions on a solid
surface are:

∂p′

∂n
= 0, u′ · n̂ = 0. (4.21)
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Figure 4.18: Numerical vs. analytical solution along the x-axis for the quadrupole source.

Note that since the acoustic equations are inviscid, only a condition for the normal com-
ponent of the velocity is needed while the tangential component may slip at the wall. To
study acoustic scattering, a two-dimensional Gaussian pulse is placed somewhere in the
domain, which has along the x-axis a solid wall. The medium is stagnant. The initial
pressure disturbance when the pulse is placed at x = 0 and y = 25 is

p′(x, t0) = e−α(x2+(y−25)2), (4.22)

where α is now chosen as ln(2)/25. The initial velocity perturbations are - like in the
previous cases - set equal to zero. The analytical solution is [14]:

p′(x, t) =
1

2α

∫ ∞
0

e−
ξ2

4α cos(ξt)[J0(ξη) + J0(ξζ)]ξdξ (4.23)

J0 is a Bessel function of the first kind and zeroth order, η =
√
x2 + (y − 25)2, and

ζ =
√
x2 + (y + 25)2. Eq. (4.23) is compared with the numerical solution along the wall

at t = 40 in Fig. 4.19. The agreement is perfect.
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Figure 4.19: Left: Numerical vs. analytical solution for p′ at t = 40. Right: Isocontours of
p′ at t = 40. A uniform grid of 200 x 200 cells was used on a domain of 100
x 100.
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4.5 Source radiation in non-uniform flow

When the background flow is non-uniform refraction effects occur. To check whether the
solver can correctly represent refraction, the radiation of a monopole source in two flows
with non-zero vorticity are considered: a shear flow and a jet. Instability waves are absent
in the first case, but can be formed in the latter case. Although no analytical solutions
exist, reference solutions are available.
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Figure 4.20: Velocity profiles of a shear flow (left) and a jet (right).

4.5.1 Monopole radiation in a shear flow

A monopole is placed in a two-dimensional shear flow of which the profile is given by:

u =
1
2

tanh(2y/δw). (4.24)

Here δw is the shear layer thickness, here set equal to 50. The convection velocity is 0
at y = 0 and has a maximum of 0.5 (this is also the Mach number). The y-component
of the velocity is zero. The monopole is located in the center of a rectangular domain of
size 200 x 200 and is governed by a source term in the energy equation:

S(x, t) = cos(ωt)e−α(x2+y2), (4.25)

with α = ln(2)/9 and ω = 0.5, i.e. identical to the set-up of Ewert and Schröder in [11].
In this reference the fourth-order dispersion relation preserving (DRP) scheme of Tam
and Webb [27] is used for the space discretization, while for the temporal discretization
the fourth-order low-dissipation and low-dispersion Runge-Kutta scheme (LDDRK 5-6)
by Hu is used. They used a uniform mesh with 201 x 201 points. Initially, this meshsize
was also used here, but it was found that the wave amplitudes are then underpredicted.
For the next results, the mesh size is double of that of Ewert and Schröder, which comes
down to 25 PPW1. In Fig 4.21 the solution with aacFoam is shown and the reference
solution is shown in Fig 4.22.

At a first glance, the patterns look very similar. However, a difference in phase can be
observed. Even with a very fine mesh (the maximum resolution that was tested was 50

1The PPW count is based on the original wavelength.



4.5 Source radiation in non-uniform flow 39

x

y

 

 

−100 −50 0 50 100
−100

−50

0

50

100

−4

−3

−2

−1

0

1

2

x

y

 

 

−100 −50 0 50 100
−100

−50

0

50

100

−4

−3

−2

−1

0

1

2

Figure 4.21: Acoustic pressure contours obtained with aacFoam. Time instant t = 180
with original source term (left) and with the source term that has a phaseshift
(right).

Figure 4.22: Acoustic pressure contours of the reference solution. Time instant t = 180.

PPW), this difference remained. It was however realized from testcases in a stagnant
medium that it is impossible to have the phase shown in the reference with the present
source term f(x, y) cos(ωt) at t = 180. Setting the source term as f(x, y) cos(ωt+1/2π) =
−f(x, y) sin(ωt) gives qualitatively nearly exact agreement (compare Fig. 4.21 (right) with
Fig. 4.22) and we therefore think that observed phase difference is not due to the solver,
but due to a typo in the definition of the source term in the reference.

In Fig. 4.23(a) the distribution of p′ along y = 70 of the reference solution is shown. To
enable a comparison with Fig. 4.23(a), the next results we obtained with the modified
source term.

From Fig. 4.24 it can be seen that when the number of points per wavelength is increased
and aacFoam is used, the phase of the waves remains the same, but the amplitude in-
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(a) Reference.
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Figure 4.23: Reference solution along the line y = 70 at t = 180 and the OpenFOAM
solution on a very fine grid.
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Figure 4.24: Grid refinement with the aacFoam solver.

creases. The amplitude with the standard solver is larger in most of the domain. However,
from Fig. 4.25 it is revealed that the amplitudes are overpredicted with the standard solver
and that for a reasonable amount of PPW (20, 25) the standard solver is also out of phase.
Again the central differencing scheme was used for the standard solver. It was tested that
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Figure 4.25: Grid refinement with the standard solver. Note that the y-axis has different
limits than in Fig. 4.24.

with 25 PPW the results are quite similar when the limited linear or linear upwind scheme
is used. With 50 PPW the standard solver and aacFoam become nearly coherent, which
indicates that aacFoam performs better regarding dispersion. A rough quantitative indi-
cation is given in Tab. 4.3, where the amplitude and phase errors at x = 50 are determined
with respect to a very fine solution using aacFoam (50 PPW). Overall, the aacFoam solver
shows good quantitative agreement with the reference figure, Fig. 4.23(a).

Central aacFoam

PPW εA [%] εφ[◦] εA [%]

15 +25 110 -45
20 +10 60 -26
25 +9 40 -11
38 +6 20 -2
50 +6 14 reference value

Table 4.3: Errors in amplitude (εA) and phase for the PPW range around the x = −50
position. Since for aacFoam the phase is relatively consistent on the various
refinements, it has been omitted here.

To strengthen the verification for non-uniform flows, a second non-uniform flow case is
considered.
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4.5.2 Monopole radiation in a jet flow

In this section the influence of a jet flow on the wave propagation is studied. The velocity
field of the jet is governed by:

u =
M

cosh2[(1 +
√

2)y/b]
, (4.26)

where M is the axial Mach number and b the jet half-width, here taken as respectively 0.5
and 10. A monopole source is placed along the center-line of the jet in (x, y) = (−100, 0)
and governed by a source term in the energy equation:

S(x, t) = 0.01 cos(2πt/9)e−ln(2)/9·(x2+y2). (4.27)

The angular frequency is set such that λ ≈ b. The resulting radiation pattern should be
altered by the mean flow such that the maximum acoustic level occurs in the downstream
direction at an angle θ = cos−1( 1

1+M ) ≈ 47◦, and forming a shadow zone for smaller
angles [1].

In Fig. 4.26 the results obtained with the two solvers are shown at time level t = 400.
Both figures are very similar: the peak acoustic level occurs at roughly 45◦, upstream
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Figure 4.26: Pressure contours 0.001 to 0.01 (increment 0.001) and 1 ·10−4. Left: Original
solver. Right: aacFoam. Snapshot at t = 400.

small waves are trapped in the jet and in the downstream direction waves are starting
to detach near the shadow zone. The lobes of the original solver are slightly longer and
more divergent. A uniform mesh with 1 million cells was used. In Fig. 4.27 the result
with aacFoam at t = 900 is compared with the solution obtained by Bailly and Juvé [1].
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Figure 4.27: Iso-contours of p′. Contours from 0.001 to 0.01 (increment 0.001) and 1·10−4.
Top: aacFoam. Bottom: Reference. Snapshots at t = 900 (100 wave periods).
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The reference solution was obtained using a fourth-order 7-point dispersion relation pre-
serving scheme as well as an artificial selective damping technique that filters out high
frequency waves by adding damping terms. The obtained result shows good agreement
with the reference solution. As can be seen from the aacFoam solution, at t = 900 some
rearward waves have detached, a process that could be observed in an early stage in
Fig. 4.26. As they move downstream they are damped out. To damp instability waves, in
the reference an artificial damping technique is used. Nevertheless, the general features
strongly resemble that of the reference.

To show the effect of decreasing the meshsize, the acoustic pressure is extracted along a
line that passes through the main lobe, see the schematic in Fig. 4.28. The previously
discussed results obtained with aacFoam are used as reference solution, since the original
solver showed at t = 900 an overprediction of the lobesizes (i.e. an overprediction in
wave amplitudes) as well as a slightly bigger dispersion error and stronger downstream
instability waves. Repeating the case on a quarter million point mesh, yields the results
shown in Fig. 4.29.

A 

B 

u(y)

Figure 4.28: Line from point A(-200,100) to point B(100,-200), passing through the
monopole source and one of the main lobes.

Based on the cases of the previous paragraphs, the results are as expected. The acoustic
pressure obtained with aacFoam with N = 500 (≈ 11 PPW) follows the same trend as
with N = 1000, but is more dissipative. The original solver performs better regarding
the amplitude, but shows large oscillations in the upstream region and a phase error. In
the reference already 14 PPW in the downstream direction were used, while the method
is fourth-order accurate method in both space and time. It is thus hardly a surprise that
the result with 11 PPW are no longer close to that of the reference.
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Figure 4.29: Acoustic pressure versus the radial coordinate r measured along the line. A
close-up p′ in the far-field (towards point B) is shown in 4.29(b). t = 900.

4.6 Interim conclusion

From the test cases of the previous paragraphs it can be concluded that, given the correct
description of mean flow and source data, both the standard LEE and Riemann-based
LEE implementation are able to correctly account for convection and refraction effects.
The aacFoam solver has as advantage that it propagates waves in a less dispersive manner
than the standard LEE implementation. The aacFoam solver has as disadvantage that
it is more diffusive than the standard implementation. When the overall performance is
expressed in terms of the root-mean-square error, the new implementation is better.
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Chapter 5

Validation of the hybrid method

An often used academic test case for validating an aeroacoustic code is the sound pro-
duction by a pair of co-rotating vortices. This is a laminar, two-dimensional case. The
chapter is structured as follows. In Sec. 5.1 the Direct Noise Simulation is described. Here
the flow simulation results and the directly calculated acoustic field are discussed. Next,
in Sec. 5.2 the results of the flow simulation are used to construct the acoustic source
and injected in the acoustic solver. The acoustic field obtained with the hybrid method
is compared with that of the direct simulation. Efficiency matters of the hybrid method
are adressed.

5.1 Direct Noise Simulation

Before we test the hybrid method, the correctness of the flow simulation needs to be
ensured. Moreover, the direct simulation is compressible and thus includes acoustic per-
turbations. The acoustic field found with the direct simulation will be used to compare
with the results from the hybrid method.

5.1.1 Flow description

The noise generation from two co-rotating vortices in a stagnant medium is studied, see
Fig. 5.1. Each vortex is given the following initial tangential velocity profile:

Vθ(r) = − Γr
2π(r2

c + r2)
, (5.1)

where Γ is the circulation strength, rc the vortex core radius and r the radial distance
from the vortex core. OpenFOAM requires the x and y-components of the velocity, which
follow from Eq. (5.1) after some simple algebraic manipulations. The case parameters are
summarized in Tab. 5.1. The other fluid properties are set as follows: γ = 1.4 (ratio of
specific heats), p0 = 1.0125 · 105 Pa (ambient pressure), Pr = 0.7 (Prandtl number) and
c0 = 340 m/s (speed of sound).

47
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Parameter Formula Value

Half separation distance, r0 - 3.6 · 10−3 m

Core radius, rc 2
9r0 8 · 10−4 m

Circulation intensity, Γ - 1.71 m2s−1

Angular frequency, ω Γ
4πr20

1.05 · 104 s−1

Period, T 8π2r20
Γ 5.98 · 10−4 s

Acoustic wavelength, λa 1
2c0T 28.3r0

Reynolds number, Re Γ
ν 1.14 · 105

Tangential Mach number, Mt
Γ

4πrcc0
0.5

Rotational Mach number, Mr
Γ

4πr0c0
1
9

Table 5.1: Summary of the case parameters and relations.
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Figure 5.1: Schematic of two vortices rotating around the origin of a two-dimensional plane.
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5.1.2 Flow solver

OpenFOAM’s compressible flow solver rhoPimpleFoam is used. It uses the PISO-SIMPLE
(“PIMPLE”) algorithm for the pressure-velocity coupling. The PIMPLE algorithm is the
PISO algorithm with two possible extensions, namely an outer correction loop and under-
relaxation of variables. The goal of the algorithm is to circumvent the Co < 1 limitation
by stabilizing the simulation in this way, allowing for larger timesteps to be taken. A
rough lay-out of the algorithm for the rhoPimpleFoam code is shown in Fig. 5.2. A
detailed description of the steps can be found in chapter 3 of the thesis of Jasak [16],
where also the same notation is used as in the OpenFOAM code.

Pressure Eq. 

      Relax pressure

pnew = pold + α (pp + pold)

Momentum
corrector 

ρ from
Eq. of state

PISO 

PIMPLE Time loop

End
PISO

End
PIMPLE

End

Momentum
predictor: 

Energy Eq. 

pnew, U → Unew 

→ pp 

Use pnew & Unew  for 
next correction 

Guess U with pold

Figure 5.2: PIMPLE algorithm. The pressure equation is corrected for non-orthogonality
during each PISO iteration. The energy equation is solved outside the PISO
loop. One might expect it inside the PISO loop when a strong pressure-
temperature coupling exists.
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I noticed that when the solver operated in PISO mode (only 1 corrector) at an initial
Courant number of 0.5, the simulation would diverge. Early tests indicated that three
outer correctors, one pressure correction and one non-orthogonality correction would yield
satisfactory results, so these settings were kept.

5.1.3 Mesh design

As mentioned in the introductory chapter, there is a large length scale separation between
flow and acoustic. In this case the characteristic length scale for the flow is r0 and for
acoustic λ = 28.3r0. For the flow simulation we therefore need a much finer grid. The
velocity field of the co-rotating vortices is only non-zero in a small part of the domain.
To resolve the flow field a uniform grid with dimensions 8r0 x 8r0 is used. The cellsize in
this region is ∆ = 1/36r0, which is about twice as small as in other studies [7, 22] where
higher order schemes are used. Initial tests showed that ∆ = 1/18r0 and ∆ = 1/27r0

also work fairly well, but lead to a slightly different rotation period and earlier merging.
Since an entirely uniform mesh leads to a very high cell count, a certain mesh strategy is
needed to couple this central region and the farfield. Several types of meshes were tested,
see the sketches in Fig. 5.3.

(a) Zonal. (b) Cross.

(c) Circular.

Figure 5.3: Mesh types.

Since all meshes have the same center region, the results of the flow simulation (flow only)
are the same; we will discuss the influence of the above mesh types on the acoustic in
Sec. 5.1.5.

5.1.4 Flow results

From theory [22, 24] the evolution of the vortices is known to be as follows. Initially
the vortices are well separated and rotate with a nearly constant angular velocity around
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their common center. This phase extends for approximately six periods. After this, the
vortices start to merge, while ejecting vorticity filaments. The combined structure is an
elliptically shaped vortex, which after some time becomes a single circular vortex. The
simulated stages of the vortex system are shown in Fig. 5.4.
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(a) Rotation, t = 2.2 · 10−3 s.
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(b) Acceleration, t = 3.9 · 10−3 s.
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(c) Merging, t = 4.1 · 10−3 s.
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(d) Axissymmetrization/diffusion, t = 5.0 · 10−3 s.

Figure 5.4: Evolution of the vortex system. Six vorticity iso-contours from 104 to 1.22 ·
105 s−1 with a geometrical ratio of 1.65.
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For validating the hybrid method, only the phase of co-rotation with a constant angular
speed is of interest. The rotation period directly influences the sound frequency, which is
due to symmetry expected to be twice the rotation frequency of the vortices. As noted
before by other authors [18], the numerically simulated number of periods of co-rotation
is strongly dependent on the order of the discretization in space and time. Indeed, in this
research several numerical schemes were tested and confirmation of this statement was
found. In Fig. 5.5 the recorded pressure fluctuation versus time at the point (50r0, 0) is
shown for a few schemes. With a central discretization the vortices start their merging
remarkably early. Oscillations in the velocity field and the reconstructed acoustic source
were found with this scheme. This is due to the odd-even decoupling of cells and the lack
of dissipation. On the other hand, with a first-order upwind scheme the vortices merge far
too early due to too much numerical diffusion. The best results were obtained using the
second order upwind scheme for the convective terms. With this set-up, smooth acoustic
source contours were obtained (as will be presented in Sec. 5.2.1) and a roughly constant
rotation period of 5.9 · 10−3 s was found during the first six rotations.1 At the seventh
rotation, when the vortices suddenly get closer, the rotation period is reduced.
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Figure 5.5: Static pressure history (in Pa) at the point x = 50r0, y = 0 as function of time
for several discretizations of the convective terms.

For time integration the backward scheme was used. The influence of the time step is
shown in Fig. 5.6. Clearly, the evolution of the vortices is far less dependent on the
Courant number than on the spatial discretization. This is because of the three outer
correctors, which greatly increase the stability of simulation. Operating the solver in
PISO mode causes the solver to quickly blow up, even at low Courant numbers. The

1Relaxation factors were found to strongly influence the rotation period. The common choices of 0.7
and 0.3 for U and p respectively increased it by roughly 20 percent. Without relaxation factors the
rotation speed was 3 to 5 percent faster than according to theory.
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reference pressure history is shown in Fig. 5.7. It is similar to the presented results.
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Figure 5.6: Static pressure history (in Pa) at the point x = 50r0, y = 0 as function of time
for different initial Courant numbers.
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Figure 5.7: Reference pressure history.

Prior to the clearly distinguishable co-rotation phase and merging/merged phases (dimin-
ished radiation), a very high peak is visible in the pressure history. This initial transient
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is due to the initial conditions. The wave is not of importance for the hydrodynamic
field, but it has a profound impact on the acoustic field. The transient poses not only a
large problem for the boundary conditions, it is also the culprit behind reflections in the
internal domain.

5.1.5 Acoustic results

To view the acoustic field, in the reference as acoustic variable the dilatation is used:

Θ = ∇ · u = − 1
ρ0

∂ρ′

∂t
. (5.2)

Thus the divergence of the direct simulation may be compared to the time derivative of
the normalized acoustic density fluctuations (of a hybrid method). The reason why the
dilatation is used is because in one of the applications in the reference paper there is a
pressure drift, i.e. in p − p̄, p̄ is not constant. For the stagnant medium case, this does
not occur and we will also use p− p̄ as acoustic pressure for the direct simulation to later
compare it with the acoustic pressure obtained from the LEE simulation. This prevents
an additional dependence of the results on the numerical scheme.

As mentioned before, several meshes were tested. The first mesh that was considered was
the zonal-type of mesh made using OpenFOAM’s blockMesh and refineMesh utilities. A
row of triangular cells is formed at the border of each zone transition, after which the
rectangular cell size is doubled. The acoustic field with this type of mesh was found to
be of poor quality. Although the expected pattern for the acoustic field could be seen
(a spiral), the presence of each zone caused reflections (predominantly from the strong
initial wave) and high frequency noise was formed near the corners of each transition, see
Fig. 5.8(a). Next, cross shaped meshes as illustrated in Fig. 5.3(b) were tested, in the
hope that carefully stretching the cells would solve the problem of internal reflections.
The meshes of this type were programmed in blockMesh using the codeStream library.
A stretching ratio of 4% was initially used and later reduced to 1.5% resulting in a mesh
with roughly 0.7 million cells for a domain that extends 100r0 from the center. However,
even with this stretching ratio numerical noise was present. The simulation was also
performed on an unstructured mesh build around the uniform, structured box in the
center of the domain. At the boundary of these two regions, the triangles were given
the same characteristic length as the uniform cells in the square. This mesh yielded
- perhaps not surprisingly - results where one could only vaguely distinguish a spiral
pattern underneath a lot of numerical noise. Extracts of p− p0 along the x-axis for these
meshes are plotted in Fig. 5.8(b). The large oscillations starting from x = 70r0 are due to
the reflection of the strong initial wave with the domain boundary. Note that the average
pressure is not equal to p0. This is again due to the initial wave, which has lowered the
pressure of the region through which it has passed.

From the above observations it was concluded that for this particular direct simulation the
mesh needs to be as perpendicular as possible to the wavefront. The final mesh therefore
has circular rings that are stretched (with a growth rate of 1 percent from one cell to
another) in the radial direction around the central box.

For the boundaries, OpenFOAM’s characteristic based boundary condition “waveTrans-
missive” was used. For the earlier described meshes it was found to be insufficient to deal



5.1 Direct Noise Simulation 55

(a)

0 20 40 60 80 100
−100

−75

−50

−25

0

25

50

75

x/r0

p
-

p 0

 

 
Cross
Zonal
Unstructured

(b)

Figure 5.8: Illustration of the problems encountered with some of the early meshes. a)
Close-up of the pressure fluctuation w.r.t. the ambient for the zonal mesh and
b) pressure fluctuation along the x-axis at t = 1 · 10−3 s.

with the initial wave, see Fig. 5.8(b). In particular the corners lead to strong reflections.
A slightly better performance was visible on the circular mesh, which is likely due to
the one-dimensional (orthogonal) assumption of the boundary condition. The boundary
condition was nonetheless found to be not good enough for simulating the acoustic field
after the wave has reached the boundary. Therefore an extra region where the cells are
stretched was added to the circular mesh. In order to compare with the reference and to
later make a comparison with the results from the hybrid method, the direct simulation
was carried out on an enlarged domain with radius 300r0.

The qualitative result for the simulated dilatation field is shown in Fig. 5.9. The expected
acoustic field originating from a rotating quadrupole is found. In the near field thin
lines can be seen at the angles 45◦, 135◦, 225◦ and 315◦, exactly at the borders of the
separate blocks that together build up the mesh. The lines can be attributed to the
dilatation calculation and do not occur when the acoustic pressure is determined with
p − p̄. The dilatation along the line y = x is plotted in Fig. 5.10 together with the
reference solution [7]. The reference solution was obtained using fourth order schemes
for space and time and a coarser mesh (about 80,000 cells) that extends to 104r0 from
the center. It was not reported whether their solution is the grid-independent solution.
The first notable difference with the reference is the first peak, which is much lower.
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The amplitude of the other peaks are in reasonable agreement with the reference and
the amplitude decay follows that of the two-dimensional wave equation. Looking at the
position 50r0, the wave runs in phase with the reference, but at 150r0 a clear phase
difference can be seen. The reference solution is better, keeping a relatively constant
wavelength of around 25r0.

Based on the extract along the 45◦ line, the wavelength is underpredicted by the direct
method, being at first around 24.5r0. The result is a bit different along a line drawn at
43◦, see Fig. 5.11. Along this axis, the x-axis and the y-axis the wavelength is initially
predicted to be around 26.4r0.

Figure 5.9: Close-up of the OpenFOAM DNS result for the dilatation field. t = 2.82·10−3 s.
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Figure 5.10: Comparison between the DNS and the reference for the dilatation. Extracts
along the line y = x at t = 2.82 · 10−3 s.

The influence of the grid resolution on the present result is investigated by coarsening the
mesh. The mesh is changed by altering the stretching ratio - and therefore the number of
cells - of the circular part of the mesh. The obtained dilatation profiles with stretching
ratios of 2% and 4% are shown along with the previously discussed result with 1% in
Fig. 5.12. The behavior is as expected. As the mesh is coarsened, the waves are damped
out faster and dispersion errors become more obvious. Even the strong initial wave is
completely negated, without visible reflections. In the present set-up, applying the same
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Figure 5.11: Dilatation as function of distance for several axes. t = 2.82 · 10−3 s.
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Figure 5.12: Dilatation profiles for various mesh stretching ratios (SR). Extracts along the
radial line y = x at t = 2.82 · 10−3 s.

stretching ratio of 1% for a domain of 500r0 yields only a 13% higher cell count than a
domain with an extend of 250r0.
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5.2 Hybrid Method

In this section the hybrid methodology is discussed. The reconstruction of the acoustic
source from the flow simulation is described in section 5.2.1. In section 5.2.2 the results
from the LEE simulation are presented. For the validation tests shown here we have
initially used the same mesh for flow and acoustic. At the end of the chapter it is shown
how source data from a flow simulation done at a relatively small domain can be coupled
with an acoustic simulation on a large domain.

5.2.1 Source reconstruction

In case of isentropic flow, entropic sound sources are not taken into account so that
the noise generation is provided by the source terms in the momentum equation. For a
two-dimensional case the source term as given by Bogey et al. [7] is:

S =

S1 − S1

S2 − S2

0

 (5.3)

with

Si = −∂ρu
′
iu
′
j

∂xj
, Si = −∂ρu

′
iu
′
j

∂xj
. (5.4)

As can be seen, the source term formulation for the LEE is expressed in terms of fluc-
tuating velocity components. This is in contrast to the acoustic analogy of Lighthill,
which uses the total velocity. This difference is due to the linear operator on the left
hand side. The LEE already account for the convection effect in the operator and thus
- unlike in Lighthill’s analogy - does not need to include this in the source term. Note
that in Eq. (5.4) the instantaneous density is used, meaning that for this case acous-
tic perturbations are also included. This has however a negligible influence on the LEE
calculation.

As described earlier, a strong initial wave is emitted at the start up of the simulation.
For the hybrid simulation this transient is not included, since the sources are recorded
once the flow is fully developed. From Fig. 5.5 the source reconstruction period can be
determined. Here we have chosen the time interval from 1 · 10−3 s until 3 · 10−3 s.

Iso-contours of the reconstructed acoustic sources are shown in Fig 5.13. These may be
compared with those of the reference solution, shown in Fig. 5.14. Since our rotation
speed is slightly faster than theoretically prescribed, the iso-contours would have rotated
a bit further clockwise with respect to the reference contours. For comparison reasons,
the instantaneous contours are instead shown at the position and time at which they
theoretically should be.

Both qualitatively and quantitatively good agreement is found.2

2In the original paper it is written that the solid and dashed lines correspond to positive and negative
iso-contours respectively. This is a mistake. In the PhD thesis of one of the authors [5] the minus sign in
the definition of the source (Eq. (5.4)) has been taken outside of S, so that the LEE system is defined as
“left hand side = -S”. The results of the source contours are then in agreement with the present results.
Note the (incorrect) small asymmetric deviation in the average source.
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Figure 5.13: Iso-contours of the acoustic source terms obtained at t = 1.28·10−3 s using the
solver rhoPimpleFoam. Shown are: S1 (a), S2 (b), S̄1 (c) and S̄2 (d). Negative
values are indicated by the solid line and positive values by the dashed line.
Contours from 6 · 105 to 1.1 · 107 kg ·m2s−2 with a geometrical ratio of 1.8.

For an efficient application of a source-equivalent hybrid method it is necessary to know
how large the source region is. It was found that at x = 4r0 the magnitude of the source
|S| has decayed to less than one percent of its maximum value. This means that the
flow simulation can be done on a square domain with sides of 8r0 and then the source is
later propagated with the acoustic solver on a larger domain. In practice, performing the
flow simulation on such a small domain results in too much boundary influence. Instead
a circular region with stretched cells is added. We will later elaborate on this splitted
domain approach. In order to prevent the initial wave to be included in the source
term, the source is multiplied with a dummy parameter that is 1 within the central box
(plus some extra margin) and 0 outside. This is important when the cross mesh is used.
Otherwise a sudden reflection becomes visible when the wave hits the boundaries, which
later causes small ripples in the acoustic field.
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Figure 5.14: Source terms obtained by Bogey et al. [7] at t = 1.32 · 10−3 s. Contours
from 6 · 105 to 1.1 · 107 kg ·m2s−2 with a geometrical ratio of 1.8 (the same
contours as in Fig. 5.13).

5.2.2 LEE simulation

As described in section 3.2, the acoustic solver does not account for large density jumps.
Although the present case concerns compressible flow, the compressibility effects are re-
stricted to the source region. Practically the entire propagation domain is stagnant with
uniform density and pressure. Effectively the following is thus solved:

∂u′i
∂t

+
∂p′norm
∂xi

=
Si
ρ0
, (5.5a)

∂p′norm
∂t

+
∂

∂xi
(γp0,normu

′
i) = 0, (5.5b)

with the normalized pressures pnorm = p0
ρ0

and p′norm = p′

ρ0
with ρ0 = 1.225 kg ·m−3. As

mentioned before, the source term includes small variations in the density with an acoustic
nature. Although this is strictly not preferred, it does not matter since the fluctuations
are so small. Using incorrectly the density ρ0 for the source term yields an overprediction
of roughly 8% of the wave amplitudes. The mean flow is zero, hence solving the LEE is
on the differential level equivalent to solving Lighthill’s analogy.

Since the flow solver does not use a Runge-Kutta method for time marching and thus does
not provide the acoustic source at stagelevels, we are forced to disable the Runge-Kutta
loop in the aacFoam solver. It was found that with the standard Euler time integration
methods the simulation diverges when for each flow timestep at a Courant number of 0.2
only one acoustic solve is performed. A solution for this is to solve the acoustic equations
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for every flow timestep at smaller intermediate steps. This can be implemented using
OpenFOAM’s subcycle class. In this way the acoustic system is solved multiple times
with the same source data (0th order interpolation between source levels). Another point
of attention is the start of the simulation. At the very beginning of the source injection,
two strong initial wavefronts propagate from the vortices. To smoothen the start of the
acoustic simulation the source terms were multiplied with a cosine window. The source
term is gradually ramped up from zero to full strength during the time interval 1 · 10−3 s
to 1.1 · 10−3 s.

A snapshot of the acoustic field obtained using the Riemann based LEE solver with
temporal ramping and 3 subcycles for each source data level (that was obtained from the
flow simulation performed at an initial Courant number of 0.2) can be seen in Fig. 5.15.

(a) Large domain simulation. t = 2.82 · 10−3 s. (b) Small domain simulation. t = 1.74 · 10−3 s.

Figure 5.15: Acoustic pressure from the LEE simulation using a) the same (too) large do-
main that was used for the DNS and b) a small domain.
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Figure 5.16: Acoustic variables from the LEE simulation extracted along the radial line
y = x at t = 2.82 · 10−3 s.

The expected spiral pattern is found. A plot of the variables p′ and u′ along a radial line
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is shown in Fig. 5.16. As can be seen, the iso-contours of p′ and the extract along the line
are very smooth.

For the sake of comparing the LEE solution with the reference, it would be necessary
to take the time derivative of the acoustic pressure (Eq. (5.2)). When this is added in
OpenFOAM small wiggles occur in the near field and the wave amplitudes seem very
far off. For the phase of the wave it does not matter whether one considers p − p0 or
the dilatation, because the graphs only differ by an amplification factor. We therefore
compare the LEE results only with our direct simulation. Several simulation settings are
varied so that we at least know how sensitive the presented solution is to the set-up.

In Fig. 5.17 the DNS, LEE (with and without time-averaged source S̄) and Lighthill
solutions are plotted along the x-axis. As can be seen there is a phase difference between
the hybrid methods and the DNS calculation, which remarkably already exists in the
region x < 25r0. The Lighthill simulation is very close to the LEE simulation (without
S̄), which is expected. Since the source data is the same, both methods should yield in
the limit of a very fine space and time discretization the same result. It also means that
the difference with the DNS is less likely due to the wave propagation performance of
the hybrid methods. In fact, it turns out that the difference already exists at the very
beginning of the simulations. It is postulated that the difference has to do with the start-
up phases of the DNS and/or the LEE (we do know though that the late start of the LEE
simulation or the ramping function are not the cause). From Fig. 5.10 is was observed
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Figure 5.17: Direct and hybrid solutions for p′. t = 2.82 · 10−3 s.

that the wavelength predicted by the DNS does not remain constant. For this case, only
a slightly better performance is seen with the LEE. This is most likely because the source
data itself differs per rotation. A 3 percent error in the rotation period for example would
become a 6 percent error in the wavelength. As was already noted in [7], the source term
S̄ produces a steady pressure field that decays much faster than the acoustic waves. This
can also been by looking at the difference between the maxima of the LEE simulations
with and without the average source. The effects of including S̄ in the LEE are that it
centers the source term so that the wave oscillates around zero, it decreases the amplitude
of the initial wave (although temporal ramping is much more effective) and it corrects the
near field solution.
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In the previous result five times as much subcycles were used for Lighthill’s analogy than
for the LEE. The reason why 15 cycles were used for the Lighthill simulation is shown
in Fig. 5.18. The temporal error is very apparent when fewer cycles are used. When six
cycles are used the wave amplitude is twice as large as that of the solution with 15 cycles
and the wave is out of phase. The second derivative with respect to time is only first
order in OpenFOAM. Furthermore, it was observed that when e.g. 12 cycles are used,
the solution is anisotropic. The pressure signal then has a higher amplitude along the
x-axis than along the y-axis. For the LEE and DNS calculations the signals along the x
and y-axes were 90◦ out of phase and had the same amplitude level.
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Figure 5.18: Influence of the number of subcycles on the Lighthill solution. Flow data
obtained at an initial Courant number of 0.2. t = 2.82 · 10−3 s.

The influence of the number of subcycles on the LEE is investigated with saved source
data. The flow simulation was done with an initial Courant number of 1. In Fig. 5.19
the results are shown. When too few cycles are used, large oscillations occur, eventually
leading to a diverged simulation.

A grid study was done with the LEE. From the circular part of the original grid we
removed after every point, one point (2.5% stretching), two points (≈ 4% stretching) and
three points (5.8% stretching). The results are shown in Fig. 5.20 along with the result
obtained with the original mesh. The solution behaves the same as for the verification
cases: as the grid is coarsened, the amplitude is reduced but the phase remains similar.
In addition the solution with a finer mesh (0.5% stretching) is shown. The refined mesh
has around 0.9 million cells, while the baseline mesh has around 0.6 million cells. The
improvement is not worth the extra computational cost. The solution with the cross mesh
is shown in Fig. 5.21. It is nearly identical to the result with the baseline circular mesh.
Unlike with the DNS, the solution is not spoiled by reflections from the corners of the
domain. Moreover, since the initial wave is not present in the hybrid method, internal
reflections no longer occur.

In Fig. 5.22(a) the influence of the timestep of the DNS on the LEE simulation (via
changes in the source data) is shown. There exists a phase difference between the results.
This is most likely due to the small change in the rotation speed of the vortices. The
vortices rotate slower when the simulation is carried out with a Courant number of unity



64 Validation of the hybrid method

20 40 60 80 100
−100

−75

−50

−25

0

25

50

75

100

x/r0

p

 

 
n = 9
n = 10
n = 11

Figure 5.19: Influence of the number of subcycles on the LEE solution for p′. Flow data
obtained at an initial Courant number of 1. t = 2.05 · 10−3 s.
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Figure 5.20: Gridstudy with the LEE (without S̄). t = 2.82 · 10−3 s.

than with a Courant number of 0.2. This results in a phase lag.

The influence of skipping source data is checked. This is relevant for diskspace usage. Here
we saved the acoustic source every timestep, with a timestep corresponding to an initial
Courant number of unity. Early tests were done from skipping one data level up to five
datalevels, while adjusting the number of subcycles accordingly. Practically no influence
was visible, which is not so surprising if one realizes that almost five datalevels are used
for representing a single degree of rotation of the vortices. In Fig. 5.22(b) the results when
skipping 10 steps (1 datalevel per 2 degrees), 25 steps (1 datalevel per 5 degrees) and 100
steps (one source datalevel for every 20 degrees) are shown. As expected, the solution
worsens. When skipping 100 steps, waves are along the x-axis still correctly send to the
far field. However, the contourplot has lost all resemblance of a spiral. Though it appears
that we may safely use an output interval of 10 for the present case. This information
was used in the next test.
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Figure 5.21: Different mesh types. LEE with S̄ at t = 2.82 · 10−3 s.
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(a) Different Courant numbers. t = 2.82 · 10−3 s.
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(b) Skipping source data. t = 2.05 · 10−3 s.

Figure 5.22: Influence of the timestep and skipping source data on p′.

Lastly, it was investigated whether one could do the flow simulation on a smaller domain
than the acoustic simulation. This could make the method more efficient.

Initially the meshToMesh class was used to interpolate the source data from the flow mesh
to the acoustic mesh. This works for single core computations, but it seemed not so easy
to make it work for parallel computations. The present approach is illustrated in Fig. 5.23
for a situation where the domain is decomposed and distributed over 4 processors. We
distinguish between “source” cells (flow mesh) and “target” cells (acoustic mesh). From
each processor, local source cell index and cell center data is extracted. This data is
combined into a “total” cell list, which would correspond to the situation before the
mesh was decomposed. Each processor now loops over this list. If for a given source
cell, the source cell coordinates lie within the boundaries of the local target mesh, then
the corresponding target cell is searched for and the indices are linked. Currently, the
flow mesh needs to be a subset of the acoustic mesh (i.e. cell centers need to coincide),
otherwise a cell can not be found and consequently the source will later not be mapped for
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that cell. This procedure is done once. The actual data mapping is done every timestep
during the time loop. We tested this with a flow domain that extends around 20r0 from
the center (to prevent boundary influence), which reduced the number of cells with 75%.
Identical results were found.
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Figure 5.23: Connecting the flow mesh with the acoustic mesh. This is done outside the
time integration loop, while the mapping is done during the time march.



Chapter 6

Noise from a beveled trailing edge

In this chapter results of a beveled trailing edge noise field are obtained using the solver
presented in this thesis. The aim is to see whether the solver produces sensible results for
such a realistic low Mach number, high Reynolds number flow problem and to identify
possible issues with the method that were not apparent during the validation phase.
Investigations of trailing edge noise currently receive much attention, especially from
wind turbine and aircraft industries, making it a relevant case.

6.1 Flow simulation

An incompressible flow simulation using a Large Eddy Simulation (LES) methodology over
a flat plate with an asymmetric beveled 25◦ trailing edge is conducted, see Fig. 6.1. The
numerical set-up of the flow simulation is based on that of [32], with notable differences
being the freestream velocity (here 35 m/s instead of 10 m/s), the plate length (0.18 m
instead of 0.36 m and the corresponding Reynolds number (4.7 · 105 instead of 2.68 · 105).
Furthermore, the mesh is considerably coarser in the spanwise direction, leading to a flow
mesh of around 1 · 105 cells. The inlet velocity is prescribed using a recycling method to
generate a turbulent boundary layer at the inlet. The reader is refered to [32] for detailed
descriptions.

The LES is run for 0.1 s (≈ 10 flow through times) to establish a converged mean flow,
see Fig. 6.2. It can be seen that the flow separates at the kink of the top side. This is
due to the adverse pressure gradient that the boundary layer experiences. Consequently,
a shear layer is formed (a recirculation region is visible close to the slanted surface). On
the bottom side, the flow separates at the trailing edge. The vortex shedding of the
instantaneous velocity field is visualized in Fig. 6.3 by means of the Q-criterion. The
frequency of the shedding is approximated by measuring the streamwise distance in the
wake between two maxima of the sinusoidal wave. This gives f = u∞

∆x = 35
0.08 ≈ 438 Hz,

where it is assumed that the convection speed is close to the freestream value. Based on
the thickness of the plate (h = 20 mm), the Strouhal number becomes St = fh

u∞
≈ 0.25,

which is in good agreement with earlier studies [13, 31].
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Figure 6.1: Schematic of the flow domain. Distances in meter.

Figure 6.2: Time-average of the x-velocity component.

Figure 6.3: Snapshot of the Q = 1·105 iso-surface. Colored by the instantaneous streamwise
velocity component.
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6.2 Acoustic simulation

The acoustic variables are calculated on a larger domain that has a height of 0.63 m w.r.t.
the trailing edge. The mesh is progressively coarsened starting from the x-location 0.18 m
(downstream of the plate), because the convective outlet B.C. alone was not good enough
to fully prevent reflections from the strong pressure fluctuations in the wake.

The acoustic and flow simulation are now done simultaneously, with an one-on-one map-
ping of the acoustic source onto the acoustic mesh. The flow calculation is restarted with
the velocity and pressure solutions obtained at 0.1 s as initial field. The previously ob-
tained mean statistics for velocity and pressure serve as background flow in the acoustic
part of the calculation. For the present case, the acoustic simulation would however di-
verge when the terms collected into H were at the left-hand-side of the LEE (Eq. (3.14)).
In order to still account for part of these refraction effects, H is modeled as a source term.
This approach was also taken in [18] to preserve numerical stability.

An impression of the obtained acoustic field is shown in Fig. 6.4(b). It can be seen
that strong waves are directed upstream. A probe that records the acoustic pressure
history was placed two chords above the trailing edge. The resulting one-sided frequency
spectrum of the acoustic signal is shown in Fig. 6.4(a). The shedding frequency of the
wake is expected to appear as a peak in the frequency spectrum. Although a peak around
430 Hz can be seen, there is a range of important frequencies around this peak. This is
possibly due to the lack of samples as well as insufficient resolution in the flow simulation.
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(a) Frequency spectrum. (b) Snapshot of p′.

Figure 6.4: Acoustic solution.
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Chapter 7

Conclusions and recommendations

The primary objective of the thesis was to develop an open-source tool that can predict
the acoustic field from (incompressible) flow simulations, correctly accounting for one-way
flow-acoustic interactions. With “developing”, implementation, verification and valida-
tion is meant. For this purpose, an aeroacoustic solver based on the linearized Euler
equations (LEE) was implemented in OpenFOAM. The thesis proposal suggested that
a Riemann problem should be set-up for the calculation of the fluxes between cells. In
the next two sections the conclusions and recommendations from the investigation of the
above are given.

7.1 Conclusions

A standard LEE and a Riemann based LEE solver were implemented in OpenFOAM.
The LEE implementations were both verified and the performance of the solvers was
assessed. Compared to the standard implementation, the Riemann based solver performs
better regarding dispersion, but is more diffusive. Good dispersive properties will be
in particular important when noise frequencies need to be identified, but its diffusive
character is mostly a disadvantage. The code works for structured as well as unstructured
meshes.

A thorough investigation of the LEE based hybrid method applied to the motion of two
co-rotating vortices was performed. We have shown that with the developed solver and the
given flow data, the presented acoustic solutions are the solution. The flow simulation was
found to be quite sensitive to the set-up and small differences become directly apparent
in the acoustic results. Although consequently some discrepancies in the wavelength are
present, we may safely say that the hybrid method is validated. One notable aspect for the
LEE simulation is the required number of subcycles per flow timestep. With our explicit
implementation, the simulation diverged when to few cycles were used. The importance
of time integration was also seen with the Lighthill simulations, where seemingly good
results were obtained with a few subcycles, while these were actually completely wrong.
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Although the co-rotating vortices case is purely an academic case, we investigated how
efficiency gains could be made. It was shown that it is possible with OpenFOAM to do
the flow and acoustic calculations on different meshes and then transfer the source data.
This can be done both during the CFD calculation, as well as afterwards if source data
is saved. The data is mapped without interpolation. This was applied to the last case
where trailing edge noise from a beveled flat plate was investigated. Preliminary results
from this case indicate that it is possible to apply the code on such a complex case.

7.2 Recommendations

In this thesis the focus was implementation of the solver and testing it on classical bench-
mark cases. Possible future investigations are the following:

• The solver needs to be tested on progressively more realistic cases. Some suggestions
are a flat plate, forward facing step and NACA 0012 airfoil. The quality of the
acoustic simulation depends greatly on the input of the flow simulation, so it is wise
to start with a case where the flowfield can be determined with confidence (and
preferably without a too large mesh). One could compare the obtained results with
those of e.g. Curle’s analogy.

• The transfer of source data from the flow mesh to the acoustic mesh needs to be
improved. Currently, the flow domain must be a subset of the acoustic domain so
that for low Mach number cases an unnecessary fine grid is used near walls for the
acoustic simulation.

• Further efficiency gains with the hybrid method are possible. When considering a
3D turbulent flow case, often the acoustic is calculated in a 2D plane using spanwise
averaged data. Afterwards the sound pressure levels are then corrected to corre-
spond to 3D wave propagation. This approach greatly increases the efficiency of
the acoustic simulation, because the mesh contains a lot less cells. It would thus be
worth to investigate whether such a spanwise averaging code (that works in parallel)
can be implemented efficiently.
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Appendix A

Green’s function

Since in this thesis multiple times reference is made to a “Green’s function”, a small
clarification is provided here. The concept of a Green’s function for application to an
acoustic analogy is briefly outlined, following the reasoning of Delfs [9].

Consider an inhomogeneous wave equation such as Lighthill’s equation (Eq. (2.1)) in free
field conditions:

L{p′} = S(x, t). (A.1)

L is the linear differential operator (in this case: 1/c2
0(∂2/∂t2)−∇2) and S(x, t) the source

term. In order to solve Eq. (A.1) a simplified problem is considered:

L{G} = δ(x− ξ)δ(t− τ). (A.2)

G is Green’s function and it is defined as the acoustic field generated at an observer’s
location x at time t due to an impulse of Delta functions at position ξ and time τ .
Multiplying Eq. (A.2) with the source term and integrating over a volume and time
yields

∫
V

t′∫
−∞

L{G}S(ξ, τ)dτdV (ξ) =
∫
V

t′∫
−∞

δ(x− ξ)δ(t− τ)S(ξ, τ)dτdV (ξ) (A.3)

= S(x, t).

The upper limit on the time integration t′ indicates that at time t at the observer location
p′ only depends on past information. Therefore

∫∫
L{G}S(ξ, τ)dτdV (ξ) must be equiva-

lent to L{p′}. Since L is linear and acts on x, the operator can be taken outside of the
integral so that

p′ =
∫
V

t′∫
−∞

G(x, t; ξ, τ)S(ξ, τ)dτdV (ξ). (A.4)

For a given source the solution can thus be obtained by convolution of the source term
with the Green’s function over space and time. The Green’s function itself is known from
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the solution to the point source problem given by Eq. (A.2). It turns out that the Green’s
function for a wave equation with an arbitrary source is:

G0(x− ξ, t− τ) =
δ(t− τ − ‖x− ξ‖/c0

4π‖x− ξ‖ . (A.5)

‖x−ξ‖ is the distance of the source to the observer. Since we did not specify any boundary
conditions, the Green’s function is called a free field Green’s function, G0, as opposed to
“tailored” Green’s functions. Different Green’s functions exist for different differential
operators. Upon inserting Eq. (A.5) into the formal solution Eq. (A.4) the following is
found:

p′ =
∫
V

∞∫
−∞

δ(t− τ − ‖x− ξ‖/c0

4π‖x− ξ‖ S(ξ, τ)dτdV (ξ) (A.6)

=
1

4π
∂2

∂xi∂xj

∫
V

Tij(ξ, t− ‖x− ξ‖/c0)
‖x− ξ‖ dV (ξ),

where the latter solution is specific for the Lighthill analogy.



Appendix B

Linearization of the Euler equations

In this appendix one way to derive the linearized Euler equations of [7] is shown. This is
a specific form of the LEE. Various other forms of the LEE exists and are all applicable
to linear aeroacoustics. For a very complete discussion on the linearization of Euler
equations, the reader is referred to the PhD dissertation of Blom [4].

B.1 Governing equations of fluid flow

B.1.1 Navier-Stokes equations

The most general set of equations that govern fluid motion are the Navier-Stokes equa-
tions:

∂ρ

∂t
+

∂

∂xj
(ρuj) = Sc (B.1a)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) = Sm,i (B.1b)

∂ρE

∂t
+

∂

∂xj
(ρHuj − uiτij + qj) = Se, (B.1c)

where ρ is the density, u the velocity, p the pressure, τij the viscous part of the stress
tensor, E the total energy, H the total enthalpy, q the heat flux due to heat conduction
and Sc, Sm and Se are the source terms in the continuity, momentum and energy equation,
respectively.

The total energy E is the sum of the internal energy and specific kinetic energy and the
total enthalpy H is given by:

E = e+
1
2
ukuk, (B.2)

H = E +
p

ρ
. (B.3)
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τij is given by:

τij = µ
(∂ui
∂xj

+
∂uj
∂xi

)
+ δijλdivU. (B.4)

For the last term often Stokes’ hypothesis (2µ + 3λ = 0) is utilized. µ is a function of
temperature. Fourier’s law can be used as constitutive relation for the heat flux q:

qi = −k ∂T
∂xi

, (B.5)

with the thermal conductivity coefficient k = k(T ). Lastly, the source terms: Sc may
represent mass injection, Sm body forces and Se work from forces introduced with Sm or
a heat source.

The system given by Eqs. (B.1) has 7 unknowns (ρ, u, E, p and T ), but only 5 equations.
To close the system, 2 extra thermodynamic relations are used:

ρ = ρ(T, p) e = e(T, p). (B.6)

For a calorically perfect gas these become:

ρ =
p

RT
e = cvT, (B.7)

with R the gas constant and cv the specific heat at a constant volume (being reasonably
constant for T < 1000 K [17]).

B.1.2 Euler equations

Since we are dealing in this thesis with aeroacoustics, the medium of interest is air.
Usually viscous effects and thermal conduction may be neglected for sound propagation
through air. In that case Eqs. (B.1) reduce to the Euler equations:

∂ρ

∂t
+

∂

∂xj
(ρuj) = Sc, (B.8a)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) = Sm,i, (B.8b)

∂ρE

∂t
+

∂

∂xj
(ρHuj) = Se. (B.8c)

B.2 Linearized Euler equations

To quantify the broad range of noise levels sensed by the human ear, a logarithmic scale
is used:

SPL = 10log
(p2

eff

p2
ref

)
. (B.9)

SPL stands for sound pressure level, peff is the effective sound pressure (root-mean-
square of pressure fluctuation) and pref the reference pressure. If the reference pressure
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is 2 · 10−5 Pa (threshold of hearing), then at a SPL of 120 dB (jet aircraft noise), the
effective sound pressure is 20 Pa. This is a fluctuation of only 0.02% of the atmospheric
pressure, which is about 105 Pa. It is therefore justifiable to linearize the Euler equations,
i.e. we consider small perturbations around a steady mean flow:

f(x, t) = f̄(x) + f ′(x, t), f̄ = lim
T→∞

1
T

T+t0∫
t0

f(x, t)dt (B.10)

ρ = ρ0 + ρ′,

ui = ui0 + u′i,

p = p0 + p′.

As already noted in [4], there are various ways to linearize the Euler equations. Here we
start from the conservative form:

∂U
∂t

+
∂F
∂xj

= S, (B.12)

with

U =


ρ
ρu
ρv
ρw
ρE

 , F =


ρuj

ρuuj + δ1jp
ρvuj + δ2jp
ρwuj + δ3jp

ρHuj

 and S =


Sc
Sm,1
Sm,2
Sm,3
Se

 . (B.13)

Perform now the following steps:

• Substitute the decomposition B.11 into the Euler equations. Neglect terms that are
have a multiplication of two or more fluctuating quantities.

• Substitute the mean flow variables into the Euler equations. It is assumed that
the mean flow satisfies the Euler equations. Temporal derivatives of the mean flow
quantities are zero.

• Subtract the equations of step 2 from the obtained equations at step 1. The result
are expressions in terms of the fluctuating variables.

For completeness, we will in addition to the decomposition of the hydrodynamic variables
also decompose the original sources into mean and fluctuating parts. Below the three
steps are shown.

Continuity. Full decomposition:

∂ρ0

∂t
+
∂ρ′

∂t
+

∂

∂xj
(ρ0u0j + ρ0u

′
j + ρ′u0j + ρ′u′j) = Sc,0 + S′c. (B.14)

Mean flow equation:
∂ρ0

∂t
+

∂

∂xj
(ρ0u0j) = Sc,0. (B.15)
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Momentum. Full decomposition:

∂ρ0ui0
∂t

+
∂ρ0u

′
i

∂t
+
∂ρ′ui0
∂t

+
∂ρ′u′i
∂t

+
∂

∂xj

(
ρ0ui0uj0 + ρ0u

′
iuj0 + ρ′ui0uj0

+ ρ′u′iuj0 + ρ0ui0u
′
j + ρ0u

′
iu
′
j + ρ′ui0u

′
j + ρ′u′iu

′
j + (p0 + p′)δij

)
= Sm,i0 + S′m,i. (B.16)

Mean flow equations:

∂ρ0ui0
∂t

+
∂

∂xj
(ρ0ui0uj0 + p0δij) = Sm,i0. (B.17)

Energy. Full decomposition:

∂

∂t

(p0 + p′

γ − 1
+

1
2

(ρ0uk0uk0 + ρ0uk0u
′
k + ρ0u

′
kuk0 + ρ′uk0uk0

)
+

∂

∂xj

(γ(p0 + p′)
γ − 1

)
+

∂

∂xj

(1
2

(ρ0uk0uk0uj0 + ρ0uk0uk0u
′
j + ρ0uk0u

′
kuj0 + ρ0u

′
kuk0uj0 + ρ′uk0uk0uj0)

)
= Se,0 + S′e. (B.18)

Mean flow equation:

∂(γ − 1)−1p0 + 1
2ρ0uk0uk0

∂t
+

∂

∂xj
(
1
2
ρ0uk0uk0uj0) = Se,0. (B.19)

For the energy equation we have omitted the terms of second order and higher orders on
forehand to prevent the expressions from becoming too long. Subtracting now Eq. (B.15)
from Eq. (B.14), Eq. (B.17) from Eq. (B.16) and Eq. (B.19) from Eq. (B.18) and simple-
fying yields:

U =


ρ′

ρ0u
′ + u0ρ

′

ρ0v
′ + v0ρ

′

ρ0w
′ + w0ρ

′

(γ − 1)−1p′ + 1
2uk0uk0ρ

′ + ρ0uk0u
′
k

 , (B.20)

F =


ρ0u
′
j + uj0ρ

′

ρ0uj0u
′ + ρ0u0u

′
j + u0uj0ρ

′ + δ1jp
′

ρ0uj0v
′ + ρ0v0u

′
j + v0uj0ρ

′ + δ2jp
′

ρ0uj0w
′ + ρ0w0u

′
j + w0uj0ρ

′ + δ3jp
′

1
2uk0uk0(uj0ρ′ + ρ0u

′
j) + ρ0uk0uj0u

′
k + γ

γ−1(uj0p′ + p0u
′
j)

 (B.21)

and S = [S′c S
′
m,i S

′
e]
T .

The above is a possible linearization of the Euler equations. Bogey and Bailly [7] use a
different state vector for the LEE. They use e.g. only p′ as state variable for the energy
equation and place part of the gradients of the mean flow into a separate vector H. Their
form can be obtained by cleverly adding and subtracting multiplications of the mean and
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perturbed momentum and continuity equations such that terms cancel when the chain
rule for differentiation is used. The result is:

U =


ρ′

ρ0u
′

ρ0v
′

ρ0w
′

p′

 , F =


ρ′uj0 + ρ0u

′
j

ρ0uj0u
′ + δ1jp

′

ρ0uj0v
′ + δ2jp

′

ρ0uj0w
′ + δ3jp

′

uj0p
′ + γp0u

′
j

 , (B.22)

H =



0
∂u0
∂xj

ρ0u
′
j − δ1i

ρ′

ρ0
∂p0
∂xi

∂v0
∂xj

ρ0u
′
j − δ2i

ρ′

ρ0
∂p0
∂xi

∂w0
∂xj

ρ0u
′
j − δ3i

ρ′

ρ0
∂p0
∂xi

(γ − 1)(p′ ∂uj0∂xj
− u′j ∂p0∂xj

)

 , (B.23)

S =


S′c

S′m,1 − u0Sm,1 − ρ′

ρ0
(Sm,10 − u0Sc,0)

S′m,2 − v0Sm,2 − ρ′

ρ0
(Sm,20 − v0Sc,0)

S′m,3 − w0Sm,3 − ρ′

ρ0
(Sm,30 − w0Sc,0)

S′e − Sm,k0u
′
k − S′m.kuk0 + uk0u

′
kSc,0 + 1

2uk0uk0S
′
c

 . (B.24)

The performed operations can be decoded from the resulting source term (e.g. from the
momentum equations of the LEE given earlier: 1) u0i times the continuity equation of the
LEE was subtracted, 2) ρ′

ρ0
times the continuity equation for the mean flow was subtracted,

and 3) u0i
ρ′

ρ0
times the momentum equation for the mean flow was added). Like in

Eq. (B.23), Lafon [19] also uses for the vector H the term − ρ′

ρ0
∂p0
∂xi

for the momentum
equations. This term may be replaced though for ρ′ui0 ∂u0

∂xj
, since the steady mean flow

satisfies the Euler equations. Then Eqs. (B.22)-(B.23) are the same set of equations that
Bogey and Bailly [7] use. The source term formulation of [7] is however chosen in analogy
to the method of Lilley as possible aerodynamic sound source.
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Appendix C

Inclusion of mean density variations

In case the the Mach number is high enough to make mean density variations of impor-
tance, the following modifications are suggested:

q =


ρ0u
′

ρ0v
′

ρ0w
′

p′

 , (C.1)

W1 +W2 =


(ρru′r − ρlu′l)− nx(ρrU ′r − ρlU ′l )
(ρrv′r − ρlv′l)− ny(ρrU ′r − ρlU ′l )
(ρrw′r − ρlw′l)− nz(ρrU ′r − ρlU ′l )

0

 , (C.2)

W3 =


clnx
cl+cr

(ρrU ′r − ρlU ′l ) + nx
cl+cr

(p′r − p′l)
clny
cl+cr

(ρrU ′r − ρlU ′l ) + ny
cl+cr

(p′r − p′l)
clnz
cl+cr

(ρrU ′r − ρlU ′l ) + nz
cl+cr

(p′r − p′l)
clcr
cl+cr

(ρrU ′r − ρlU ′l ) + cr
cl+cr

(p′r − p′l)

 , (C.3)

W4 =


crnx
cl+cr

(ρrU ′r − ρlU ′l )− nx
cl+cr

(p′r − p′l)
crny
cl+cr

(ρrU ′r − ρlU ′l )− ny
cl+cr

(p′r − p′l)
crnz
cl+cr

(ρrU ′r − ρlU ′l )− nz
cl+cr

(p′r − p′l)
− crcl
cl+cr

(ρrU ′r − ρlU ′l ) + cl
cl+cr

(p′r − p′l)

 , (C.4)

where cl =
√
γpl/ρl and cr =

√
γpr/ρr.
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