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Abstract

A time of flight MIEZE spectrometer, which employs radio frequency spin flippers with
square pole shoes and a magnetic yoke, is presented. These flippers can achieve higher fields
than conventional resonant RF spin flippers, which employ an air core. High fields are crucial
for the construction of a high resolution and compact MIEZE spectrometer. Setups using
conventional flippers and novel flippers are built for comparison and a variety of experiments
to characterize time of flight MIEZE instruments. Evidence is presented, which indicates that
the high field flippers are capable of generating a 100kHz MIEZE signal, with an amplitude
similar to that obtained with a conventional MIEZE setup. Furthermore the need for a fast and
thin detector is demonstrated both experimentally and by the use of Monte-Carlo simulations.
In addition the shape of the MIEZE focal spot has been determined to be Gaussian. Finally
the importance of stable timing for time of flight MIEZE is demonstrated. This research is
relevant for the implementation of MIEZE on the Larmor instrument at ISIS pulsed neutron
source in the UK.
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Index of Standards

Here you will find the mathematical standards used in this report.

Fourier Transform: A non unitary definition of the Fourier transform is used:
F (ω) =

∫∞
−∞ f(t)e−iωtdt

Laplace Transform: The standard definition of the Laplace transform is used:
F (s) =

∫∞
0
f(t)e−stdt

Inverse Laplace Transform: The following definition of the inverse Laplace transform is used:

f(t) = 1
2πi limT→∞

∫ α+iT

α−iT F (t)estds
Sinc functions: The non normalized definition of the sinc function is used:
sinc(x) = sin(x)

x
Matrix Vector Notation: Usually matrix vector notation is used unless indicated otherwise:
~u = A~v. Vectors can be identified by the arrows, while matrices are indicated in the text.
Index notation: In some cases when dealing with 2x2 matrices and vectors containing two ele-
ments a special index notation will be used: vi = Aijvj , where i 6= j. In this case the ith element
of ~v is given by the jth element of ~v multiplied by some scalar given by Aij

v



1 Introduction

The Larmor instrument, situated at ISIS target station 2 in the UK, is a versatile tool for ma-
terials research using polarised neutrons. At ISIS neutrons are generated by firing a high energy
proton pulses onto a high Z target. The collision causes the target nucleus to decompose into a
large number of high energy nuclear fragments, many of which are neutrons. This process is called
spallation [1][2]. The Larmor instrument can operate in a variety of modes, such as (polarised)
Small Angle Neutron Scattering (SANS), used to explore structures on the order of 1 − 100nm,
Spin Echo SANS (SESANS) and Spin Echo Modulated SANS (SEMSANS), both used to look
at larger structures on the order of 0.1− 20µm [3], Larmor Diffraction (LD), a technique for the
study of crystals, Neutron Resonant Spin Echo (NRSE) and Modulation of IntEnsity by Zero
Effort (MIEZE), which are both used to probe the dynamics of a sample (i.e. Magnons) in the
0.001 − 1000ns range [4][5][6]. With the exception of NRSE, LD and MIEZE all of these modes
have been tested and verified to be working with the Larmor instrument. While techniques like
Neutron Spin Echo (NSE) and NRSE have a larger energy resolution than MIEZE [5], MIEZE
has a few advantages over NRSE and NSE, since it can also be used to measure the dynamics of
hydrogenous and magnetic samples whereas NRSE and NSE cannot [7]. These magnetic materials
are interesting in particular since they may have applications in spintronics and quantum com-
puting [8][9], which could increase digital data storage capacity and computation power. These
polarized options for the Larmor instrument are developed by the Delft University of Technology
as part of a grant from NWO.

In this report a MIEZE mode is developed for the Larmor instrument. As the name suggests a
MIEZE instrument modulates the neutron beam intensity in time. The amplitude of the intensity
oscillations is maximal when no sample is placed in the instrument. MIEZE employs two Neutron
Resonant Spin Echo coils (NRSE coils), which induce a longitudinal Stern-Gerlach effect. The
first NRSE coil causes the two neutron spin states to go out of phase, while the second coil over-
compensates the effects of the first coil. As a result the phase difference between the two states
will diminish as the neutrons approach the focus point where they are measured (Figure 1 [5])[3].
This allows one to place the sample after all the spin manipulation instrumentation. When an
inelastic scattering event takes place in the sample the two spin states will arrive at the detector
slightly out of phase. As a result the amplitude of the intensity modulation will be decreased.
Hence this decrease in amplitude is a measure for the energy transfer between the sample and the
neutrons [5].

Figure 1. Schematic of a typical MIEZE setup (top) and the quantum mechanical explanation
of MIEZE (bottom).

Typically MIEZE spectrometers utilize rectangular air cored electromagnets with RF coils (reso-
nant flippers). The RF frequency is tuned such that ωi = γBi. The MIEZE modulation frequency
is twice the frequency difference between the two NRSE coils [4]. However the Larmor instrument
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employs a new type magnet which utilizes square pole shoes and an RF coil. Due to the pole shoes
these novel flippers can achieve higher fields than resonant flippers. In addition these spin flippers
are equipped with a gradient coil, allowing them to operate in a ”gradient mode” [10]. As noted
above, Larmor is situated at ISIS, which is a pulsed neutron source. A consequence of this is that
the neutron wavelength is encoded in the neutron flight time. This is often referred to as Time of
Flight (TOF). While the reactor source at TU Delft is continuous, one can employ a device which
consists of two rotating disks with a pie piece shaped cut in each disk (called a chopper) to create
a virtual pulsed source, which enables one to do TOF measurements.
To demonstrate the feasibility of a MIEZE mode on Larmor, we construct two MIEZE setups at
TU Delft. The first MIEZE setup utilizes conventional resonant flippers and serves as a benchmark
setup, while the second setup will utilize the novel NRSE coils, also used by Larmor. Both setups
employ a chopper, allowing one to do TOF MIEZE measurements [11].
This report explores the theory necessary to describe and understand TOF MIEZE in section
2. In section 3 various experimental methods are discussed and the MIEZE setups are shown.
Next in the section 4 the experimental results are shown. Following this in section 5 these results
are discussed and explained in terms of the theory. Section 6 discusses the future of MIEZE on
Larmor. Finally in section 7 a conclusion of the research shown in this report is given.
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2 Theory

In this section the theoretical basis of MIEZE is discussed, this is done from a quantum mechanical
perspective, where we assume that the incoming neutrons can be described as plane waves. A
similar approach is shown in [4]. In the first subsection the Schroedinger equation for a neutral
spin 1

2 particle in a magnetic field is derived [12]. The next four subsections will discuss the core
components of our MIEZE setups, static magnetic fields [12], resonant radio frequency spin flippers
[13] and the gradient mode of our novel spin flippers. In the following subsection these results
are used to derive the MIEZE focusing condition and the consequences of a poorly aligned setup
are discussed [4]. The subsequent subsection demonstrates, using the focusing condition, how the
MIEZE technique can be used to measure energy transfers between a sample and the neutrons
[14] (also known as inelastic scattering). In addition the resolution of a MIEZE spectrometer is
derived. This resolution turns out to scale with the phase difference of the two neutron spin states
at the sample position. In the final subsection the inelastic scattering function of liquids is derived
in the low energy limit.

2.1 Derivation of the Schroedinger Equation for a Neutral Spin 1
2

Par-
ticle in a Magnetic Field

In the following subsection it will be demonstrated that magnetic fields have an influence on
neutrons. To do so we will derive the Schroedinger equation for any neutral spin 1

2 particle in a
magnetic field. In general the Schroedinger equation is given by:

Hψ = Eψ (1)

with ψ the wavefunction, E the total energy of the system and H the hamiltonian which is given
by

H = T + V (~r) = − ~2

2m
∇2 + V (~r) (2)

With T the particles kinetic energy and V (~r) the potential energy, ~ denotes the reduced planck
constant and m the particles mass. To derive an appropriate expression for the potential energy, we
first look at the force a magnetic field exerts on a magnetic dipole. It turns out this depends on the
model used for the magnetic dipole moment [12]. If one assumes that the magnetic dipole moment,
~µ is created by two oppositely charged magnetic monopoles separated by a certain distance the
force equals:

~F = −∇[~µ · ~B]− ~µ×∇× ~B

On the other hand if the magnetic dipole moment is created only by loop currents the force would
be given by:

~F = −∇[~µ · ~B]

To this date there has been no experimental evidence for the existence of magnetic monopoles,
therefore it is assumed that the second model is correct. As a result the potential is simply given
by:

V = −~µ · ~B (3)

Thus the Schroedinger equation is given by [12]:

− ~2

2m
∇2ψ − ~µ · ~Bψ = Eψ (4)

Note that with the Schroedinger equation we are talking about operators. This means that the
dipole moment used here is the magnetic dipole moment operator, and not simply a vector like in
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classical electrodynamics. This operator shares the property of all quantum mechanical operators
that

~< µ > = 〈ψ| ~µ |ψ〉

Classically we know that the magnetic moment of a loop current is given by

~µ = I ~A =
q~v

2π|r|
π|r|2n̂ = −q~v

2
× ~r (5)

With n̂ the normal vector of the area spanned by the loop current. Using the definition of angular
momentum ~L = m~r× ~v we find

~µ =
q

2m
~L = γ~L (6)

Where γ is the gyromagnetic ratio. Finally we use the relationship between spin and angular
momentum ~L = ~

2~σ, with ~σ = σxx̂+ σy ŷ + σz ẑ, with σi a Pauli matrix.

σx =

(
0 1
1 0

)
σy = i

(
0− 1
1 0

)
σz =

(
1 0
0− 1

)
(7)

Note that the Pauli matrices are part of a special mathematical group called the SU(2) group
(Special Unitary group), this means they are all unitary and that the absolute value of their
determinants are equal to one. Using the definition of the angular momentum operator we can
derive the following equation for the magnetic moment operator [15].

~µ =
γ~
2
~σ (8)

Yielding the final expression for our Schroedinger equation.

− ~2

2m
∇2 ~ψ(~x)− ~γ

2
[~σ · ~B]~ψ(~x) = E~ψ(~x) (9)

One will note ~ψ = ψi with the subscript, i = 1 or 2, indicating the spin state (up or down).
The exact calculation of γ for a neutron is complex, because one must consider the movement

and spins of each quark which create the neutron. γ has been experimentally determined to be
1.8301 ∗ 108 T

s [15]. In the calculation of the gyromagnetic ratio one assumes the quarks to be
in the ground state, however it is also possible to have excited quarks (this is referred to as ∆0

baryon). If this is the case the magnetic moment is different from the normal neutron magnetic
moment.

2.2 Neutrons in Homogeneous Static Magnetic Fields

As described earlier, in this subsection we will explore wavefunctions for neutrons in homogeneous
static magnetic fields (similar calculations can be found in [12][15]). We assume zero field for
x < 0 and a non zero static field pointing in an arbitrary direction for x > 0. The incident
neutron propagates from −∞ to the boundary region at x = 0, where it is partially transmitted
and reflected (Figure 2).
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Figure 2. Schematic of the proposed problem. An incident neutron hits a semi infinite magnetic
field region and is partially reflected and transmitted.

To solve this problem we shall first formulate the time independent schroedinger equation (found
in the previous subsection as equation (9)) and the boundary conditions.

− ~2

2m
∇2 ~ψ(~x)− ~γ

2
[~σ · ~B]~ψ(~x) = E~ψ(~x) (10)

ψi(x = 0, y, z) = cie
ikyy = [1 +Ri]e

ikyy (11)

dψi
dx

(x = 0, y, z) = −ikxdieikyy = −ikx[1−Ri]eikyy (12)

ci and di are arbitrary constants for now and R is the reflection coefficient (we use this later).
This is simply the Schroedinger equation for a step potential, with the added difficulty of the two
spin states being coupled. The problem can be solved by applying the Laplace transform on x
and a Fourier transform on y. Doing so leads to the following set of linear equations.

− ~2

2m
[(s2

x − w2
y +

γm

~
[~σ · ~B])~Ψ− (sxci − ikxdi)δ(ωy − ky)] = E~Ψ (13)

The above set of equations is a matrix vector problem.

A~Ψ = ~K (14)

With

A11 =
~2

2m
[s2
x − w2

y] +
~γ
2

[~σ · ~B]11 + E

A12 =
~γ
2

[~σ · ~B]12

A21 =
~γ
2

[~σ · ~B]21

A22 =
~2

2m
[s2
x − w2

y] +
~γ
2

[~σ · ~B]22 + E

Ki =
~2

2m
(sxci − ikxdi)δ(ωy − ky)

10



Because the matrix vector problem is only 2 by 2 it can easily be inverted:

~Ψ =
1

A11A22 −A12A21

(
A22 −A12

−A21 A11

)
~K (15)

This yields the following decoupled equations, using εi = 2m
~2 (E0 + ~γ

2 [~σ · ~B]ii):

Ψi =
[s2
x − w2

y + εj ][sxci − ikxdi]− mγ
~ [~σ · ~B]ij [sxcj − ikxdj ]

[s2
x − w2

y + εj ][s2
x − w2

y + εi]− m2γ2

~2 [~σ · ~B]ij [~σ · ~B]ji
δ(wy − ky) (16)

with i 6= j. Next we substitute ε0 = ε1 + ε2. We also note that Pauli matrices are hermitian

therefore [~σ · ~B]ij [~σ · ~B]ji =
∣∣∣~σ · ~B∣∣∣2

ij

Ψi =
[s2
x − w2

y + εj ][sxci − ikxdi]− mγ
~ [~σ · ~B]ij [sxcj − ikxdj ]

s4
x + s2

x[ε0 − 2w2
y]− w2

yε0 + εiεj + w4
y −

m2γ2

~2

∣∣∣~σ · ~B∣∣∣2
ij

δ(wy − ky) (17)

We are interested in finding the wavefunction in real space. To achieve this we must apply the
inverse Laplace transform to the above equation.

ψi(x, ωy) =
1

2πi
lim
T→∞

∫ α+iT

α−iT
Ψie

sxxdsx (18)

This is calculated by integrating over the so called Bromwich contour (Figure 3).

Figure 3. Schematic of the Bromwich contour. β and T are taken to infinity.
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In this particular case we can apply Jordan’s Lemma, which states that the integral over the
curved part of the Bromwich contour is zero for all x > 0, thus the inverse Laplace transform is
given by Cauchy’s residue theorem.

ψi(x, ωy) =
∑

Res(Ψie
sxx) (19)

To calculate the residues of Ψie
sxx we must first find the poles of said function. In this case the

poles of our function are given by the zeros of the denominator of Ψi:

s4
x + s2

x[ε0 − 2w2
y]− w2

yε0 + εiεj + w4
y −

m2γ2

~2

∣∣∣~σ · ~B∣∣∣2
ij

= 0

[s2
x +

ε0 − 2w2
y

2
]2 −

(ε0 − 2w2
y)2

4
− w2

yε0 + εiεj −
m2γ2

~2

∣∣∣~σ · ~B∣∣∣2
ij

+ w4
y = 0

Thus we find the following poles:

sx = ±

√√√√±√[
εi − εj

2
]2 +

m2γ2

~2

∣∣∣~σ · ~B∣∣∣2
ij
−
ε0 − 2w2

y

2
(20)

And again it is important to note that i 6= j. We can see there are four poles in total. Each pole
is denoted by pk. Note that our function Ψi can be rewritten in terms of its four poles.

Ψi =
[s2
x − w2

y + εj ][sxci − ikxdi]− mγ
~ [~σ · ~B]ij [sxcj − ikxdj ]

[sx − p1][sx − p2][sx − p3][sx − p4]
δ(wy − ky) (21)

Using this information we can work out equation 19:

ψi(x, ωy) =
∑
k

[p2
k − w2

y + εj ][pkci − ikxdi]− mγ
~ [~σ · ~B]ij [pkcj − ikxdj ]∏

n6=k[pk − pn]
δ(wy − ky)eipkx (22)

Finally to go from ωy space back to real space we must do an inverse Fourier transform over ωy

ψi(x, y) =
∑
k

[P 2
k − k2

y + εj ][Pkci − ikxdi]− mγ
~ [~σ · ~B]ij [Pkcj − ikxdj ]∏

n 6=k[Pk − Pn]
eiPkx+ikyy (23)

With

Pk = ±

√√√√±√[
εi − εj

2
]2 +

m2γ2

~2

∣∣∣~σ · ~B∣∣∣2
ij
−
ε0 − 2k2

y

2
(24)

We can see that the solution consists of two forward propagating waves and two backwards prop-
agating waves. Recall that to apply Jordan’s lemma we had to assume x > 0, therefore the
backwards propagating waves are not reflected waves. The kinetic energy of these waves are
shifted with respect to the incident wave. To explore the solution further let us assume that ~B
is parallel to the z-axis. As a result all non diagonal matrix elements are zero. This simplifies
equations 23 and 24 to:

Pk = ±i
√
∓εi − εj

2
+
ε0 − 2k2

y

2
= ±i

√
εi − k2

y or = ±i
√
εj − k2

y (25)

ψi(x, y) =
∑
k

[P 2
k − k2

y + εj ][Pkci − ikxdi]∏
n 6=k[Pk − Pn]

eiPkx+ikyy (26)
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If we look at the forward propagating wave we find:

ψi(x, y) =

√
εi − k2

yci + kxdi

2
√
εi − k2

y

e−i
√
εi−k2

yx+ikyy (27)

Now we fill in our expression for εi while noting E0 =
~2(k2

x+k2
y)

2m

ψi(x, y) =

√
εi − k2

yci + kxdi

2
√
εi − k2

y

e−i
√
k2
x+ γm

~ [~σ· ~B]iix+ikyy (28)

Finally we will find ci and di by applying the proper boundary conditions. To do so we assert
that the incident, reflected and transmitted wave are continuous out the boundary:

1 +Ri = Ti (29)

kx(1−Ri) = ktiTi (30)

with Ri the reflection coefficient, Ti the transmission coefficient and kti = the wavenumber of the
transmitted wave. Applying these conditions results in:

Ri =
kx − kti
kx + kti

(31)

Ti =
2kx

kx + kti
(32)

So the final expression for our transmitted wavefunction is:

ψi(x, y) =
2kx

kx +
√
k2
x + γm

~ [~σ · ~B]ii

e−i
√
k2
x+ γm

~ [~σ· ~B]iix+ikyy (33)

One can see that under high angles (large ky and small kx) and high positive magnetic fields
the i = 1 spin state is transmitted, while the i = 2 spin state can only be reflected, as a result
magnetic interfaces can be used as polarizing neutron optics [16][17][18]. In our case ky is almost
zero and kx >>

γm
h B, thus the transmission amplitude for both spin states is quasi unitary. In

addition from these results we learn that upon entering a magnetic field the two neutron spin
states will begin to move out of phase (Figure 4) [5]. From a classical perspective this means that
one neutron state is slightly faster (due to higher kinetic energy), while the other spin state is
slower (lower kinetic energy). This is the well known Stern-Gerlach effect.
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Figure 4. Illustration of the Stern-Gerlach effect using a wave model. The blue (up) spin state
propagates faster than the green (down) spin state in a magnetic field causing the two to move
out of phase. However due to the monochromicity of the waves they come back into phase every
2π phase shift. This causes patterns of interference.

For small magnetic fields we can linearize the neutron wavenumber:√
k2
x +

γm

~
[~σ · ~B]ii = kx +

γm[~σ · ~B]ii
2~kx

+ ...

And thus the neutron wavefunction simplifies to

ψi(x, y) ≈ e−ikxx−i
γm[~σ·~B]ii

2~kx x+ikyy (34)

Now when we look at the expectation value of the spin in the x-direction we find an interesting
result:

< σx >= 〈ψ| σ̂z |ψ〉 = cos

(
γmBz
~kx

x

)
= cos

(
γBz
vx

x

)
(35)

Fringes which correspond to constructive and destructive interference of the two spin states! This
phenomenon is known as precession [15]. Of course this perfect sinusoidal interference pattern is
only measured for perfectly monochromatic neutrons. In the case of polychromatic neutrons we
will demonstrate in a later subsection that the interference pattern takes on a sinc shape. In the
next subsection a simpler method for explaining this phenomenon is explored.

2.3 Precession: Neutrons in Homogeneous Static Magnetic Fields in
the Time Domain

In this subsection the concept of precession is derived and explained in the time domain [15].
To do so we consider a problem similar the the problem in the previous subsection. Consider a
neutron moving through an infinite (in space) static and homogeneous magnetic field. The time
dependent Schroedinger equation is then given by

i~
∂

∂t
~ψ = − ~2

2m
∇2 ~ψ − ~γ

2
[~σ · ~B]~ψ (36)

To solve this equation we switch from the lab frame to the neutron frame. As a result we must
move at a velocity v with the neutron. In this case ∇2 ~ψ = 0. However a problem arises from the
fact that the two spin states are not moving at the same velocity, this was derived in the previous
subsection. However it turns out that for small fields (up to thousands of Tesla) and realistic

neutron velocities (order 103m
s ) the small contribution from ∇2 ~ψ = 0 can be neglected [19]. In

this case equation (36) simplifies to:

∂

∂t
~ψ = i

γ

2
[~σ · ~B]~ψ (37)
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While the ”classical” solution of dividing by ~ψ and integrating on both sides yields the correct
result, it is not mathematically rigorous since technically one may not divide by a vector. A more
rigorous approach is to use the integrating factor. This results in the following equation:

∂

∂t
[e−i

γ
2 ~σ· ~B ~ψ] = 0 (38)

Which has the following well known solution:

~ψ(t) = ei
γ
2 ~σ· ~Bt ~ψ(t = 0) (39)

The operator

ei
γ
2 ~σ· ~Bt = ei

γB
2 ~σ·n̂

is defined by its Taylor series:

ei
γBt

2 ~σ·n̂ = I + i
γBt

2
~σ · n̂− [

γBt

2
]2I − i[γBt

2
]3~σ · n̂+ ... (40)

Where I is the identity matrix. We used that [~σ · n̂]2 = I, because all Pauli matrices are unitary.
One can recognize a cosine and a sine in the Taylor series. Using this allows us to simplify equation
40 [15]:

ei
γBt

2 ~σ·n̂ = cos

(
γB

2
t

)
I + i sin

(
γB

2

)
~σ · n̂ (41)

Below the operators for n̂ = x̂, n̂ = ŷ and n̂ = ẑ are shown explicitly:

eiασx =

(
cos(α) i sin(α)
i sin(α) cos(α)

)
eiασy =

(
cos(α) sin(α)
− sin(α) cos(α)

)
eiασz =

(
eiα 0

0 e−iα

)
(42)

These operators are an important building block for our mathematical understanding of Spin
Flippers and MIEZE. But what does it mean? When these act upon a 2D vector (e.g. ~ψ(t = 0))
they rotate the vector while preserving its length. This means that in the neutrons frame of
reference its spin is rotated around the n̂ axis, with a frequency of ω = γB (Figure 5). This
phenomenon is known as Larmor Precession [15][19].

Figure 5. Schematic of Larmor precession. The expectation value of the spin vector < ~σ >
precesses with a frequency ω around the magnetic field ( ~B) axis.
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2.4 Resonant Radio Frequency Spin Flippers

In the previous subsections the mathematical buildings blocks for neutrons in magnetic fields were
derived. In this subsection we look at the first application of said building blocks: the resonant
radio frequency spin flipper (or resonant flipper for short). As the name implies this device flips
the neutron spin by 180 degrees [4][13][15]. It will soon become apparent that this operation
increases the total energy of the neutron. To achieve this the resonant flipper employs a static
field B0 perpendicular to the neutron flight path and a linearly polarized RF field Brf parallel to
the the flight path [11]. In mathematical terms the field is given by:

~B = B0ẑ +Brf cos(ωt+ φ)x̂ (43)

We will soon derive that ω = γB0 is required for a spin flip. Note that by flip we mean that the
neutron spin is flipped relative to the static field axis (or the ẑ axis). The linearly oscillating field
can be written as a superposition of two circularly polarized fields (Figure 6) [20].

Figure 6. Illustration of superimposing two oppositely rotating magnetic fields. The result is a
linearly polarized field.

Thus if we solve the Schroedinger equation for a rotating field and a static field we can solve
it for a linearly oscillating field by the principle of superposition. Here we will use an approach
similar to the approach used in [13]. We first formulate the problem using the time dependent
Schroedinger equation:

i~
∂

∂t
~ψ = − ~2

2m
∇2 ~ψ − ~γ

2
[~σ · ~B]~ψ (44)

Like in the previous subsection we switch from the lab frame to the neutron frame where ∇2 ~ψ = 0.
Then the differential equation simplifies to

∂

∂t
~ψ = i

γ

2
[B0σz +

Brf
2

(cos(ωt+ φ)σx + sin(ωt+ φ)σy)]~ψ (45)

The keen observer may notice that the term cos(ωt+ φ)σx + sin(ωt+ φ)σy can be rewritten in
terms of the spin rotation operators which we derived the in previous section. In terms of these
new operators our differential equation reads:

d

dt
~ψ = i

γ

2
[B0σz +

Brf
2
σxe

iσz(ωt+φ)]~ψ (46)

Using some commutation relations between the Pauli operators and our rotation operators we can
derive the next steps.

d

dt
~ψ = i

γ

2
[B0σz +

Brf
2
e−

i
2σz(ωt+φ)σxe

i
2σz(ωt+φ)]~ψ (47)

d

dt
~ψ = i

γ

2
e−

i
2σz(ωt+φ)[B0σz +

Brf
2
σx]e

i
2σz(ωt+φ) ~ψ (48)
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To further simplify the problem we switch to a frame which rotates with the rotating magnetic
field. Such that we can substitute: ~ψ = e−

i
2σz(ωt+φ) ~ψr Using this substitution is equation 48

results in the following equation.

d

dt
[e−

i
2σz(ωt+φ) ~ψr] = i

γ

2
e−

i
2σz(ωt+φ)[B0σz +

Brf
2
σx]~ψr (49)

After applying the product rule for differentiation and doing some simple algebra we are left with:

d

dt
~ψr = i

γ

2
[(B0 +

ω

γ
)σz +

Brf
2
σx]~ψr (50)

Thanks to our work in the previous subsection we know that the solution to this differential
equation is given by equation (39). One can see that if B0 >> Brf the B0 + ω

γ term will dominate.
As a result the neutron spin will not be flipped with respect to the B0 or ẑ axis. Only if ω = −γB0

will the Brf term dominate. As a result if B0 is sufficiently large and ω = −γB0 a linearly
oscillating field is equivalent to a circularly polarized field, which rotates in the same direction as
the Larmor precession. Let us now explore the case where ω = −γB0

d

dt
~ψr = i

γBrf
4

σx ~ψ
r (51)

This differential equation is solved using equation (39).

~ψr = ei
γBrf t

4 σx ~ψr(t = 0) (52)

Now we return to the non rotating frame.

~ψ = e
i
2σz(γB0t−φ)ei

γBrf t

4 σxe
i
2σzφ ~ψ(t = 0) (53)

Next we use a commutation relation to tidy up the result.

~ψ = e
i
2σz(γB0t−2φ)ei

γBrf t

4 σx ~ψ(t = 0) (54)

If the resonant flipper has length d then the time the neutron exits the flipper will be given by
tf = d

v . Thus upon exiting the flipper the neutron wavefunction will be given by:

~ψ(t =
d

v
) = e

i
2σz(γB0

d
v−2φ)ei

γBrfd

4v σx ~ψ(t = 0) (55)

A π flip occurs when

Brf =
2πv

γd
(56)

Note that at a pulse sourced where the flipper is a distance S from the source Brf can be expressed
in terms of the time t [11].

Brf =
2πS

γdt
(57)

with 0 < t < T , where T is the pulse length. This is an important result for the time of flight
methods which require the use of resonant flippers.
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When the π flip condition for Brf is satisfied the neutron wavefunction is given by:

ψi(t =
d

v
) = e

i
2σ

ii
z (γB0

d
v−2φ)ei

π
2 σxψi(t = 0) = e

i
2σ

ii
z (γB0

d
v−2φ)ψj(t = 0) (58)

with i 6= j (note that off diagonal elements are zero). Let us consider an example. A spin up
neutron enters a resonant spin flipper which has its static magnetic field oriented parallel to the
neutron spin. Upon entering the kinetic energy of this neutron is increased. At the exit of the
flipper the neutron spin has been flipped, but its kinetic energy has not been altered. Thus upon
leaving the flipper the neutrons kinetic energy increases once again (as it now has spin down).
This principle is illustrated in Figure 7 for a neutron which is in a superposition state of both up
and down spin [4].

Figure 7. Illustration of the kinetic energy splitting and flipping of the two neutron spin states
upon interacting with a resonant spin flipper. The horizontal axis denotes the position along the
propagation direction of the neutrons (x-axis), while the vertical axis denotes the kinetic energy.

After having observed Figure 1 in the introduction one should start to recognize various MIEZE
building blocks in for example Figure 4 and Figure 7. At the end of this section all of these
building blocks should come together to form one complete picture.

2.5 Adiabatic Radio Frequency Spin Flippers

Resonant flippers tend to use air cored coils to generate the static fields. As a result these coils
require high currents (20 A in our experiments but can be up to hundreds of amperes [19]). This
problem can be alleviated by using pole shoes with a high permeability. For this reason our new
flippers utilize pure iron (ARMCO pure iron) pole shoes. This allows us to generate high fields
at much lower currents (a few amperes). Thus our novel coils can be used as high field resonant
flippers. However our flippers also have a second mode of operation called adiabatic or gradient
mode. In this mode, in addition to the static and RF field, a gradient field is superimposed on
top of the static field. Furthermore this same gradient field is multiplied with the RF-Field. As a
result the RF field amplitude has a sinusoidal shape across the flipper peaking in the center [10]
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(Figure 8).

Figure 8. Plot of various fields inside of an adiabatic flipper. On the x-axis the position along
the propagation direction is shown, while the y-axis depicts the magnetic flux density in Tesla.
The light blue curve denotes the static field, the dark blue curve shows the superposition of the
static field with the gradient field, the red curve shows the RF field multiplied by the gradient
field and the purple curve depicts the gradient field.

In mathematical terms this field can be described as followed (assuming that the gradient field is
one half in strength compared to the RF field):

~B = [B0 +Brf cos
(πx
d

)
]ẑ + 2Brf sin

(πx
d

)
cos(ωt+ φ)x̂ (59)

Where d is the flipper length. We can apply the same trick as in the previous subsection where
we see the linearly polarized RF field as a superposition of two circularly polarized fields. We can
ignore the field that rotates in the opposite direction of the neutron precession. Once again we
will insert this field into the Schroedinger equation. The solution is very similar as in the previous
subsection, therefore it is inspired by [13].

∂

∂t
~ψ = i

γ

2
[(B0 +Brf cos

(πx
d

)
)σz +Brf sin

(πx
d

)
σxe

iσz(ωt+φ)]~ψ (60)

We use the same commutation relations as in the previous subsection, also note x = vt

∂

∂t
~ψ = i

γ

2
e−

i
2σz(ωt+φ)[(B0 +Brf cos

(
πvt

d

)
)σz +Brf sin

(
πvt

d

)
σx]e

i
2σz(ωt+φ) ~ψ (61)

And we switch to the same rotating frame as in the previous subsection ~ψ = e−
i
2σz(ωt+φ) ~ψr

∂

∂t
[e−

i
2σz(ωt+φ) ~ψr] = i

γ

2
e−

i
2σz(ωt+φ)[(B0 +Brf cos

(
πvt

d

)
)σz +Brf sin

(
πvt

d

)
σx]~ψr (62)
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After application of the product rule and some simple algebra we obtain

∂

∂t
~ψr = i

γ

2
[(B0 +

ω

γ
+Brf cos

(
πvt

d

)
)σz +Brf sin

(
πvt

d

)
σx]~ψr (63)

and we select the resonance condition ω = −γB0

∂

∂t
~ψr = i

γBrf
2

[cos

(
πvt

d

)
)σz + sin

(
πvt

d

)
σx]~ψr (64)

One should recognize yet another circularly polarized field, which rotates from ẑ to x̂ down to −ẑ.
We can also describe this in terms of our rotation operators (note that a commutation relation is
also applied).

d

dt
~ψr = i

γBrf
2

eiσy
πv
2d tσze

−iσy πv2d t ~ψr (65)

Next we enter a second rotating frame such that ~ψr = e
i
2
πv
2d σyt ~ψrr

d

dt
[e
i
2
πv
2d σyt ~ψrr] = i

γBrf
2

eiσy
πv
2d tσz ~ψ

rr (66)

Once again we apply the product rule of differentiation and obtain

d

dt
~ψrr = i[

γBrf
2

σz −
πv

2d
σy]~ψrr (67)

Which is solved by equation (39)

~ψrr = ei[
γBrf

2 σz−πv2d σy ]t ~ψrr(t = 0) (68)

Finally we return to the original frame.

~ψ = e
i
2σz(γB0t−φ)e−

πv
2d σytei[

γBrf
2 σz−πv2d σy ]te−

i
2φσz ~ψ(t = 0) (69)

This wavefunction becomes a lot simpler if we assume that γBrf >>
πv
2d

~ψ = e
i
2σz(γB0t−γBrf t−2φ)e−

πv
2d σyt ~ψ(t = 0) (70)

One can see that the π flip condition is given by t = d
v , which means that any neutron independent

of its velocity will have its spin flipped by the time it leaves an adiabatic flipper. At this point
the wavefunction is given by:

ψi = e
i
2σ

ii
z (γB0

d
v−γBrf

d
v−2φ)ψj(t = 0) (71)

with i 6= j Thus unlike the resonant flippers these adiabatic flippers will flip neutrons of all
wavelengths, without the need to change the RF field during the pulse. This makes these flippers
not only suitable for pulsed sources, but also for continuous sources. As stated above our novel
flippers can be utilized in both adiabatic and resonant mode. Why resonant mode is sometimes
preferable is discussed in the method section. We have now derived all the buildings blocks
necessary to understand MIEZE. Thus in the next section we will take a theoretical look at a
MIEZE setup and describe the evolution of the neutron wavefunction within the instrument.

20



2.6 Evolution of the Neutron Wavefunction Within a MIEZE Instru-
ment and the MIEZE Focusing Condition

In this subsection the MIEZE focusing condition is derived by calculating the evolution of a neu-
tron wavefunction inside of a MIEZE instrument. This so called plane wave approach was first
explored by Golub and Gaehler in 1994 [4]. However since our setup also utilizes a guide field we
must take this into account as well. This guide field concept is not entirely new as it is applied in
a similar manner in the MICE technique [21]. The general setup is shown below in Figure 9.

Figure 9. Side view of our MIEZE setup. The flippers F1 and F2 are contained inside of a guide
field. The guide field is parallel to the static field of the two flippers. The first π

2 rotator prepares
the spin up neutrons coming from the polarizer in a superposition of the up and down spin state.
The second π

2 flipper ensures that we measure in the correct basis.

In these calculations we will ignore the π
2 rotators, as they are not necesarry for our theoreti-

cal understanding of MIEZE. In addition we will assume that the flippers are resonant flippers,
however it turns out that adiabatic flippers yield exactly the same result, if the gradient field in
both flippers are equal. Further more we assume that the neutron will enter the guide field in an
equal superposition of both spin states. Finally we will assume that there are no reflections, that
is the transmission coefficient is equal to one.
When the neutron enters the guide field the wavevector is changed according to equation (33).

ψi(x) = e−i
√
k2
x+ γm

~ σiiz Bgxψ0
i (72)

Where Bg is the magnetic flux density of the guide field and ψ0
i denotes the amplitude of the i-th

spin state. Upon entering the first flipper the wavefunction changes again according to equation
(33)

ψi(x) = e−i
√
k2
x+ γm

~ σiiz BgG1−i
√
k2
x+ γm

~ σiiz B1xψ0
i (73)

with B1 the static field in the first flipper. Next the neutron experiences a spin flip, which is
described by equation 58

ψi(x) = e
i
2σ

ii
z (γB1

d
v−2φ1)e−i

√
k2
x−

γm
~ σiiz BgG1−i

√
k2
x−

γm
~ σiiz B1xψ0

j (74)

The expressions for the various phases will start to get long, so we will shorten them using the
symbol χi. Upon leaving the flipper the kinetic energy contribution from the static magnetic field
is doubled as it was explained in Figure 7. However the guide field slightly perturbs this.

ψi(x) = e
i
2σ

ii
z (γB1

d
v−2φ1)e−iχ1−i

√
k2
x−

γm
~ σiiz [2B1−Bg]xψ0

j (75)

The neutron now traverses the distance D and enters the second spin flipper. At this point the
wavefunction is given by

ψi(x) = e
i
2σ

ii
z (γB1

d
v−2φ1)e−iχ1−i

√
k2
x−

γm
~ σiiz [2B1−Bg ]D−i

√
k2
x+ γm

~ σiiz [B2−2B1]xψ0
j (76)

Once again the neutron spin is flipped by the spin flipper leading to the following wavefunction

ψi(x) = e
i
2σ

ii
z (γ(B2−B1) dv+2[φ1−φ2])e−iχ1−iχ2−i

√
k2
x−

γm
~ σiiz [B2−2B1]xψ0

i (77)
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With

χ1 =

√
k2
x +

γm

~
σiiz BgG1

χ2 =

√
k2
x +

γm

~
σiiz [2B1 −Bg]D

Now the neutron leaves the flipper again

ψi(x) = e
i
2σ

ii
z (γ(B2−B1) dv+2[φ1−φ2])e−iχ1−iχ2−i

√
k2
x−

γm
~ σiiz [2B2−2B1+Bg ]xψ0

i (78)

Finally we reach the end of the guide field and enter a zero field region, where the wavefunction
is given by

ψi(x) = e
i
2σ

ii
z (γ(B2−B1) dv+2[φ1−φ2])e−iχ1−iχ2−iχ3−i

√
k2
x−

γm
~ σiiz [2B2−2B1]xψ0

i (79)

With

χ3 =

√
k2
x −

γm

~
σiiz [2B2 − 2B1 +Bg]G2

The focus is at the point where all kx dependent phase shifts are zero. This can only be obtained
in first order [4]. Thus we will linearize all wavevectors using√

k2
x + κ = kx +

κ

2kx
+ .... (80)

and we will express kx in terms of the neutron velocity:

kx =
mv

~
(81)

Note also that φ1 and φ2 simply denote the phase of the RF field at the time the neutron enters
the respective flipper, thus φ1 = ω1t and φ2 = ω2[t+∆t]. These substitutions lead to the following
first order approximation of the wavefunction

ψi = e
i
2σ

ii
z (∆ω dv+2∆ωt)e−ikx[x+Lt]+σ

ii
z

i
2v [−2∆ωx+(ωg−2∆ω)G2+(2ω1−ωg)D+ωgG1]ψ0

i (82)

Where we used that γB = ω and ω2−ω1 = ∆ω. In addition we ignored the arbitrary and constant
phase ω2∆t. Next it is helpful to calculate the expectation value of the spin in the x-direction.

< σx >= cos

(
2∆ωt+

1

v
[−2∆ωx+ 2ω1D + ∆ωd− 2∆ωG2 + ωg[G1 +G2 −D]]

)
(83)

Thus to have no velocity dependent phase shift we must satisfy the following focusing condition

−2∆ωx+ 2ω1D + ∆ωd− 2∆ωG2 + ωg[G1 +G2 −D] = 0 (84)

Therefore the focusing condition is given by

x = L =
2ω1D + ωg[G1 +G2 −D]

2∆ω
+
d

2
−G2 (85)

This distance is measured from the edge of the guide field. If we wish to know the focusing
condition from the edge of the last flipper we must add G2

L =
2ω1D + ωg[G1 +G2 −D]

2∆ω
+
d

2
(86)

We can check a special case where ωg = 0

L =
D

ω2

ω1
− 1

+
d

2
(87)
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Which is in agreement with the focusing condition for zero guide field found in 1994 [4]. Once the
focusing condition is satisfied equation (83) becomes a simple cosine.

< σx >= cos(2∆ωt) (88)

Thus at the focal point the neutron polarization along the x-direction is modulated in time, with
a modulation frequency of

ωm = 2∆ω = 2(ω2 − ω1) (89)

A final point of discussion is the poorly aligned setup, that is, what happens if the detector is
moved a distance ∆L out of focus. In this case < σx > will be given by

< σx >= cos

(
2∆ω[t− ∆L

v
]

)
= cos

(
2∆ω(t− mλ∆L

h
)

)
(90)

Which would be fine if the neutrons are perfectly monochromatic, but this is never the case, thus
we must average over the bandwidth ∆λ (in first order this is a good approximation).

< σx >=

∫ λ0+ ∆λ
2

λ0−∆λ
2

cos

(
2∆ω(t− mλ∆L

h
)

)
dλ (91)

Which is really just a phase shifted cosine transform. The result is given by a sinc function.

< σx >= sinc(
∆ω∆Lm∆λ

h
) cos

(
2∆ω[t− m∆Lλ0

h
]

)
(92)

In time of flight λ0 = h
mL t, thus our cosine experiences a frequency shift [22].

< σx >= sinc(
∆ω∆Lm∆λ

h
) cos

(
2∆ω[1− ∆L

L
]t

)
(93)

This is a very useful tool as the MIEZE frequency we measure will tell us exactly how far out of
focus we are and in which direction we must move the detector. One can also see the importance
of a good wavelength resolution, as a bad wavelength resolution increases the sensitivity of the
MIEZE instrument to misalignment.

2.7 MIEZE Measurements and Resolution

MIEZE measurements are discussed and the resolution of MIEZE spectrometers is derived in this
subsection. A MIEZE spectrometer measures energy transfers between the sample and the incident
neutrons. When such an inelastic scattering event takes place the neutron velocity is changed. As
a result the two spin states will not arrive at the detector at the same time, causing the amplitude
of the polarization modulation to drop. Thus this drop in polarization is a measure for the
energy transfer between sample and neutron. This amplitude drop and the resolution of a MIEZE
spectrometer can be derived using the expectation value for the neutron spin in the x-direction.
We will regard this modulated polarization as a quantum mechanical quasi particle which scatters
on the sample at a distance Ls from the detector. This quasi particle splits into two partial waves.
One partial wave experiences a positive energy transfer, while the other experiences the opposite
energy transfer. This method is motivated by a method used for grating interferometers [23]. The
expectation value of the neutron spin in the x-direction after an inelastic scattering event is given
by:

< σx >=
1

2
cos(2∆ωt+ φ(dv)) +

1

2
cos(2∆ωt+ φ(−dv)) (94)
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Where the time independent phase φ(dv) is given by;

φ =
1

v
[−2∆ω[L− Ls] + 2ω1D + ∆ωd− 2∆ωG2 + ωg[G1 +G2 −D]]− 2∆ωLs

v + dv
(95)

Which we can simplify using the focusing condition

φ =
2∆ωLs
v

− 2∆ωLs
v + dv

=
2∆ωLsdv

v2 + vdv
(96)

Thus the neutron spin in the x-direction is given by

< σx >=
1

2
cos

(
2∆ω[t+

Lsdv

v2 + vdv
]

)
+

1

2
cos

(
2∆ω[t− Lsdv

v2 − vdv
]

)
(97)

To further simplify this expression we must first do some algebra:

< σx >=
1

2
cos

(
2∆ω[t+

Ls(v − dv)

v2 − dv2

dv

v
]

)
+

1

2
cos

(
2∆ω[t− Ls(v + dv)

v2 − dv2

dv

v
]

)
(98)

Which can be simplified by using the following trigonometric relation

cos(ωt+ φ+ θ) + cos(ωt+ φ− θ) = 2 cos(θ) cos(ωt+ φ) (99)

giving us

< σx >= cos(2∆ω
Lsdv

(v2 − dv2)
) cos

(
2∆ω[t+

Lsdv
2

v(v2 − dv2)
]

)
(100)

This is the exact solution which holds for all energy transfers. One can see that high energy
transfers will shift the MIEZE frequency slightly (as v is dependent on t at a pulsed source).
However MIEZE is limited at high energy transfers due to aliasing effects: the MIEZE amplitude
will drop for small energy transfers but will start to rise again for very large energy transfers.
Usually MIEZE is pitched as a high resolution interferometer [5][24], so let us simplify equation
(100) for the case where v >> dv

< σx >= cos

(
2∆ω

Lsdv

v2

)
cos(2∆ωt) (101)

Now we would like to express dv in terms of the energy transfer ~ω. Let us first express ~ω as the
difference between the final neutron energy and the incident neutron energy.

~ω =
1

2
m[(v1 ± dv)2 − v2

1 ] =
m

2
[±2dvv1 + dv2]

Since we are looking at small changes in neutron velocity first order effects will dominate, hence
dv2 ≈ 0

dv = ± ~ω
mv1

If we apply this finding to equation (101) and use v = ~k
m we find the following:

< σx >= cos

(
2∆ω

m2Lsω

~2k3

)
cos(2∆ωt) (102)

Thus the amplitude reduction is dependent on the energy transfer and an instrument parameter,
which is called the spin echo time or Fourier time:

τ =
2∆ωm2

~2k3
Ls (103)

24



Due to the periodic nature of the cosine, the argument of the cosine ωτ , should also be smaller
than or equal to π. This means that the maximum τ determines the energy resolution as followed:

∆Emin =
h

2τmax
(104)

which is equivalent to the well known Nyquist criterion. In the high energy limit where dv → v we
must be careful, with how we choose ∆ω, but in principle, measuring such higher energy transfers
should be possible.

We looked at the amplitude drop for a single symmetric energy transfer. If we have multiple
such energy transfers, we must average over each transfer. This yields a cosine transform [14]. Thus
the ratio between the beam polarization with and without sample yields the following amplitude
term:

P

P0
=

∫
S(q, ω) cos(ωτ)dω = ŝ(q, τ) (105)

Where S(q, ω) is the scattering function, or dynamic structure factor. It is a distribution function
which describes the relative occurrence of a certain energy transfer at a certain scattering vector q.
ŝ(q, τ) is called the intermediate scattering function and is the cosine transform of the scattering
function [14]. One should not forget to average over the velocity v in a real experiment, as the
beam is never truly monochromatic.

2.8 The Intermediate Scattering Function for Liquids in the Low Energy
Limit

To derive the so called scattering function we will make use of Fermi’s golden rule which is valid for
weak scattering, since it is based on the first order Born approximation. The scattering function
simply scales with the transition rate given by Fermi’s golden rule [25][26]:

Γif =
2π

~
| 〈f | V̂ |i〉 |2δ(Ei − Ef + ~ω) (106)

Where i denotes the initial state and f denotes the final state (note that these states are a tensor
product of the sample s and neutron states ψ). To solve this we must find the scattering potential
V̂ . For V̂ we usually pick the Fermi pseudo potential.

V̂ =
∑
j

Cjδ(r −Rj) (107)

Thus we can calculate the matrix elements, assuming that the initial and final neutron states can
be described as plane waves

|
∑
j

Cj 〈sf | 〈ψf | δ(r −Rj) |ψi〉 |si〉 |2 = |
∑
j

Cj 〈sf |
∫
ei~q·~rδ(~r − ~Rj)dr |si〉 |2 (108)

with ~q = ~kf − ~ki the scattering vector. This can be further simplified using the properties of the
delta function

|
∑
j

Cj 〈sf | ei~q·
~Rj |si〉 |2 =

∑
j,j′

CjCj′ 〈sf | ei~q·
~Rj |si〉 〈si| e−i~q·

~Rj′ |sf 〉 (109)

We are now ready to insert this expression into equation 106. We will also use the Fourier transform
to express the delta function (ignoring normalization)

Γif ∝
∫ ∑

j,j′

CjCj′ 〈sf | ei~q·
~Rj |si〉 〈si| e−i~q·

~Rj′ |sf 〉 ei
(Ef−Ei)t

~ e−iωtdt (110)
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We will now use the following equivalence

eiĤt |s〉 = |s〉 eiEt

If we assume that Ĥ is constant in time we can use the above relation as the time evolution
operators, such that

R(t) = e
i
~ ĤtRe−

i
~ Ĥt

With R(0) = R Using these relationships we can simplify equation (110) to the following

Γif ∝
∫ ∑

j,j′

CjCj′ 〈sf | ei~q·
~Rj(t) |si〉 〈si| e−i~q·

~Rj′ (0) |sf 〉 e−iωtdt (111)

Finally we sum over all final states using
∑
|sf 〉 〈sf | = 1 and we must sum over all initial states

and weigh them appropriately. This results in the so called thermal average of an operator∑
i pi 〈si| Â |si〉 =< A >. In our case that leads to a correlation function [25].

S(q, ω) ∝
∫ ∑

j,j′

CjCj′ < ei~q·
~Rj(t)e−i~q·

~Rj′ (0) > e−iωtdt (112)

Recall that with MIEZE we measure the cosine transform of the scattering function, which is
also the real part of the Fourier transform. This is rather convenient because equation (112) is a
Fourier transform. Thus the intermediate scattering function measured by MIEZE is given by:

S(q, τ) ∝ Re[
∑
j,j′

CjCj′ < ei~q·[
~Rj(t)−~Rj′ (0)] >] (113)

As a next simplification we may assume that correlations between various particles are very small,
therefore we say i = j

S(q, τ) ∝ Re[
∑
j

C2
j < ei~q·[

~Rj(t)−~Rj(0)] >] (114)

When we look at a single particle we may drop the summation, also for convenience we will set
Cj to one. We also regard only small angles such that ~q · ~r = qr

S(q, τ) ∝ Re[〈si| eiq[R(t)−R(0)] |si〉] (115)

Recall that 〈si|si〉 is simply the probability density function of finding the particle at a certain
position at a time t. In thermal equilibrium in the diffusive limit this PDF is well described by a
Gaussian function. Thus we find that our intermediate scattering function is the Fourier transform
of a Gaussian [27].

S(q, τ) ∝ Re[
∫ ∞
−∞

G(r, τ)eiqrdr] = G(q, τ) (116)

Where G(q, τ) can be derived from the heat equation [27] yielding

S(q, τ) = e−Dq
2τ (117)

with D the diffusion coefficient. Recall that this is only valid in the case where scattering angles
are small and we disregard particle particle interaction. Our result has been confirmed for liquids
such as water numerous times in literature [27][28][29]. A correction can be found in [28][30] called
the random jump model, which is valid also for slightly larger angles. The correction is given by:

S(q, τ) = e
− Dq2

1+Dq2τ0
τ

(118)

with τ0 a material constant.
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3 Method

As mentioned in the introduction we wish to demonstrate the feasibility of applying our high field
spin flippers to MIEZE. To achieve this we construct a conventional MIEZE setup which utilizes
two bootstrapped resonant spin flippers contained inside of a zero field chamber and an exper-
imental MIEZE setup which employs our novel spin flippers inside of a guide field. Finally the
results from each setup are compared. In the first subsection of this chapter a few experimental
concepts are explained. In the following two subsections our resonant and novel spin flippers are
described and characterized. In the next subsection the utilized detector technology is discussed
and its limitations explored. In the following two subsections the conventional setup (using reso-
nant flippers) and the experimental setup are shown. In the final subsection we take a look at the
data extraction and processing methods.

3.1 Experimental Concepts

In this subsection a few experimental concepts are explained, which were not necessary to un-
derstand the theory. In particular we will explore Time of Flight (ToF), visibility and v-coils/π2
rotators.

3.1.1 Time of Flight

Time of Flight (ToF) refers to the fact that the neutron flight time encodes the neutron wavelength
at pulsed sources [20]. This is due to the fact that wavelength and velocity are related in quantum
mechanics.

v =
h

mλ
(119)

Thus the wavelength is given by

λ =
ht

mL
(120)

with L the distance from the pulsed source and 0 < t < T where T is the pulse length. A TU Delft
we have a continuous source, however one can turn the continuous beam into a pulsed beam by
employing a double disk chopper [31] (Figure 10). The chopper used in these experiments consists
of two disks on an axis. Each disk has two small cuts cut into them, which are slightly phase
shifted. The maximum rotation speed of our chopper is 25Hz which leads to a pulse frequency of
50Hz. The disks can be moved closer together to increase the wavelength resolution of the device
at the cost of a decreased neutron flux. This resolution is given by [32]

∆λ

λ
=

∆t

t
=
D

L
(121)

where D is the distance between the two disks and L the distance from the center of the chopper to
the detector. The chopper emits an optical pulse 90 degrees before the openings pass in front of the
beam. This optical pulse can be used as a reference to start the detector and other components.
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Figure 10. Picture of the chopper used for our experiments. This picture was taken by Demo at
TU Delft.

3.1.2 Visibility

In the theory section we often referred to the expectation value of σx, however it was never
addressed how one measures this quantity. One does this by measuring the intensity of the
projection of the neutron spins on the +x axis, I+ and the projection on the −x axis, I−. This
allows one to calculate the polarization along the x-axis < σx > or the Visibility [15][20].

P =
I+ − I−
I+ + I−

(122)

We define I− as the neutron intensity measured by the MIEZE instrument when a beam flipper is
placed in front of the instrument. Therefore I+ is the intensity measured when the beam flipper
is disabled. The definition is arbitrary, but once chosen one must be consistent.

3.1.3 π
2 Rotators and V-Coils

Previously π
2 rotators were introduced as a means to prepare a neutron in a superposition between

up and down state and a way to measure the polarization in the x-basis. To facilitate this we
employ steel tubes lined with magnets. These magnets are displaced with respect to each other
along the circumference and the length of the tube. As a result the magnetic field inside the tube
rotates adiabatically from the z direction at one side of the tube to the x direction at the other
side of the tube. On the side where the field points in the x direction we place a v-coil. This
device consists out of a mu-metal box and a specially wound coil. This results in a progressively
increasing field in the x-direction as one moves along the v-coil. At the end of the coil there is a
current sheet which causes the field to drop to zero diabaticaly [33] (Figure 11). The combination
of v-coil and the steel tube results in a spin flipped by π

2 with respect to the z-axis.
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Figure 11. A picture of a v-coil without shielding (top left) a graph of the magnetic field inside
of the device (bottom left) (the y-axis denotes the field strength in Tesla and the x-axis denotes
the neutron position along the beamline) and a picture of a v-coil with mu-metal shielding (right).

3.2 Resonant Radio Frequency Spin Flippers

The resonant flippers used for our experiments (Figure 12) were originally constructed for the
FLEXX instrument at Helmholtz-Zentrum-Berlin (HZB) [34]. These flippers are in a bootstrapped
pair configuration. This means that each flipper actually consists of two flippers with anti-parallel
static fields. As a result the energy splitting effect demonstrated in section 2.4 is doubled. Thus
we can treat a bootstrapped resonant flipper as a single flipper running at twice the frequency
and field [35].
Each flipper has a total of 5 electrical connections, one for the static coils (the coils are placed in
series), two for the resonant coils and two for pickup coils which measure the oscillating RF field.
Each flipper also has 3 cooling connections, one for compressed air and the other two for water
(inlet and outlet). The compressed air exits around the neutron entry and exit windows. Each
flipper within the bootstrap pair has a length of 4cm.
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Figure 12. Picture of the bootstrap pair resonant flippers mounted in a zero field chamber.

By removing the top piece of a resonant flipper one can insert a Gauss probe to measure the
static magnetic field strength as a function of the current in the coil. The following linear I-B
response was measured.

B = 3.1 · 10−4I (123)

As described in section 2.4 resonant flippers will only perform a π flip for one neutron wavelength
if the amplitude of the RF field is constant, equation (56). However equation (57) demonstrates
that one can modulate the RF field using a 1/t function in time of flight (section 3.1.1) to obtain
a π flip for all wavelengths. This can create problems at small t because 1/t functions are not
bounded. To resolve this we pick a starting wavelengths (in our case 1.8Å) and set the RF field
to zero for times smaller than the time when the 1.8Å neutrons arrive [11]. Figure 13 shows a
typical RF waveform which is fed to the flipper. This waveform is generated using a Matlab script
(see appendix) and a function generator, it is then amplified by an RF amplifier and sent into the
RF coil. The function generator generates the waveform as soon as it receives a pulse from the
chopper. Said waveform is only generated once per chopper pulse.

Figure 13. Graph of the waveform which is sent to the RF coil of a spin flipper.
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The flipper is operated by selecting a certain static field and frequency (ω = γB) and tuning
the RF field such that the flipped beam polarization is as close as possible to the non flipped
beam polarization is magnitude. Recall that our resonant flippers are a bootstrapped pair. This
means we must disabled one of the flippers in the pair to do a π flip, or we must op to do a 2π
flip with both flippers running (thus both flippers flip by π). Figure 14 shows the non flipped
beam polarization, the flipped beam polarization and the flipper efficiency, for a single flipper in
the bootstrapped pair, thus for the total efficiency of one pair the results must be squared. The
mean flipping efficiency of a single resonant flipper (non bootstrapped) was 96.6%. As a result the
largest obtainable visibility using our two bootstrapped resonant coils is 87.1% (assuming a base
visibility of 100%).

Figure 14. Graphs of the unflipped beam polarization (top left), flipped beam polarization (top
right) and flipper efficiency (bottom).
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3.3 High Field Radio Frequency Spin Flippers

Our novel flippers (Figure 15) were originally developed at TU Delft for spin echo techniques [36].
These flippers are capable of reaching higher fields and precession frequencies than conventional
resonant flippers, due to the fact that they use magnetic poleshoes instead of an air core [10].
These poleshoes are made out of a high purity iron made by ARMCO. In addition these flippers
are equipped with a gradient coil, which allows them to function as adiabatic flippers. When the
gradient coil is disabled the flippers are basically just high field resonant flippers.

Figure 15. Picture of a high field radio frequency spin flipper at TU Delft.

Each flipper has one connection for compressed air to cool down the resonant coil and 5 elec-
trical connections: one for the static field, another for the RF coil, one pickup coil to measure
current in the RF coil, one for the gradient coil and the final one for a smaller coil which is wound
around the magnetic yoke. This smaller coil is in place to compensate for the effects of hysteresis
in the magnetic poleshoes. Furthermore these flippers are equipped with a Guass probe which
is inserted between the two poleshoes. This Gauss probe is connected to a feedback loop which
regulates the voltage across the static field coil, such that the field measured by the probe reaches
a certain user defined setpoint.
When the gradient coils of these flippers are active and thus the flipper is operating as an adiabatic
flipper, the resonant field amplitude can be set to a constant value, as was demonstrated in the
theory section. In this case for a good π flip to occur the matching between the static field and
the frequency of the RF field is not very sensitive (also demonstrated in the theory section) and
one can trust that the actual static field is close enough to the user defined setpoint. However
when this flipper is used as a resonant flipper the gradient field must be disabled and the RF field
is modulated by a 1/t function like in the previous subsection, in addition the π flip is much more
sensitive to the matching of the static field and the RF frequency, due to its long length (12cm)
compared to our conventional resonant flippers. The feedback loop can no longer be trusted to
set the correct field when the high field flippers are used as resonant flippers. This is because the
Gauss probes are slightly displaced from the center of the flipper where the static field is slightly
lower (Figure 16). Thus some manual adjustment on the side of the user is required to get a good
π flip.
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Figure 16. Normalized magnetic field strength as a function of distance (in mm) from the center
of the flipper. The Gauss probe position is marked with a red dot.

The flip efficiency of our novel flippers during these experiments was 95%, however these flip-
pers were not tuned as extensively as our resonant flippers due to time constraints. Keep in mind
that due to the high field nature of our novel flippers they do not need to be bootstrapped, thus
only two flippers are required for MIEZE, leading to a maximum polarization of 90%.

3.4 Detector Technology

Neutron detection plays a crucial role in a MIEZE instrument. In particular the time resolution
of the detector is of critical importance when attempting to measure high frequency modulation.
This time resolution is determined by two factors: the sampling frequency and the thickness of
the detection interface. If neutrons are detected across the detector interface with equal frequency
this time resolution is given by:

∆t =
d

v
(124)

where d is the size of the interface and v the neutron velocity. Monte-Carlo simulations show that
the time resolution is a bit higher due to the fact that neutrons are slightly more likely to be
detected in the front of the detector than in the back of the detector. These simulations assume
an exponential distribution type absorption pattern to calculate the expected visibility and Figure
of Merit (FoM) [38] (see appendix and results).

FoM = P 2I (125)

Where P is the visibility and I the count rate. The calculations also take the focal shape (equa-
tion 93) into account, by averaging over it using an exponential probability distribution function.
These simulations are conducted using C++, the results are saved to a binary file and imported
into Matlab. Using Matlab the results can be analyzed and plotted into a graph.
Nonetheless measurement of high frequency MIEZE signals will require thin detectors. CASCADE
is a detector which employs thin boron sheets and an ionization chamber. The boron sheets con-
vert the neutrons into ionizing radiation, which is detected in the ionization chamber [37]. The
fact that the boron sheets are so thin lends the detector a very high time resolution.
For the experiments shown in this report 1cm thick helium tubes were used (Figure 17). Using
the neutron imaging setup at TU Delft the macroscopic absorption cross-section of the tubes was
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determined, this was critical for the Monte-Carlo simulations described above. We attempt to
increase the time resolution of the tubes by placing 8mm cadmium strips in front of the detector.
This reduces the effective thickness of the detector, thus increasing the time resolution.

Figure 17. Picture of a 1cm helium tube taped to a beamstop.

Figure 18. Picture of the position sensitive detector consisting out of 16 helium tubes.
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To measure the focal spot size (equation 93) a position sensitive detector is employed, which
consists out of 16 1cm thick helium tubes placed behind each other on an incline (Figure 18). Due
to the incline each tube ”sees” a small part of the neutron beam at a different distance from the
MIEZE instrument. We note that each tube produces a ”neutron shadow” on the tubes behind it,
thus reducing the effective diameter of said tubes. As a result the time resolution of these tubes
is slightly higher than that of a single 3He tube.

3.5 Conventional Setup

Our conventional setup (Figure 19) is a MIEZE instrument constructed using two bootstrapped
resonant flippers, separated by a distance of 67cm, inside of a zero field chamber. The zero field
chamber prevents stray external fields from entering, which mitigates depolarization effects. π

2
rotators are placed at the entrance and exit of the zero field chamber. An adiabatic spin flipper,
which functions as our beam flipper, is placed between the polarizer and the zero field chamber.
The analyzer is placed closely after the last π

2 rotator. Finally the detector is placed 4.2m from the
second resonant flipper. The goals of this setup are to measure the shape of the focal spot, demon-
strate the out of focus time of flight MIEZE frequency shift, demonstrate the importance of the
detectors thickness and to build a foundation which can be ”compared” to our experimental setup.

Figure 19. A picture of the entire setup: from left to right one can see the beam flipper, π
2 ro-

tation element, the zero field chamber containing the two resonant flippers, another π
2 rotation

element and finally the analyzer.

The highest well detectable MIEZE frequency of our setup should be around 100kHz (based
on Monte Carlo simulations), therefore the difference between the two frequencies of the second
and first flipper is set to 25kHz (recall that these are bootstrapped flippers). In this case the
frequency of the first flipper must be set to 156.6kHz and the frequency of the second flipper
to 181.6kHz. This means that the static fields must be set to 5.4mT (17.2A) and 6.2mT (20A)
respectively. Due to the high currents required to maintain these static fields both water and air
cooling are used. The chopper is 9.3m from the detector and is set to spin at 25Hz, which leads
to an effective pulse frequency of 50Hz. Furthermore the chopper disks are placed 0.4m apart to
ensure a sufficiently high count rate. Two experiments are conducted using this configuration; the
first utilizes the position sensitive detector to measure the focal spot and demonstrate the MIEZE
frequency shift in time of flight. The second experiment utilizes a 10mm helium tube covered with
an 8mm cadmium strip to test the thesis presented in section 3.4. A final experiment is conducted
using a tube with an effective diameter of 8mm. In addition the chopper disks are placed close
together (17cm) to increase wavelength resolution. The goal of this experiment is to maximize
polarization. Table 1 shows all relevant instrument parameters.
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D L f1 f2 fm
∆λ
λ S F

Experimental Parameters 0.67m 4.2m 156.6kHz 181.6kHz 100kHz 1.8%− 4.3% 9.3m 50Hz
Table 1. Table containing all instrument parameters. D denotes the flipper separation, L the
distance between the last flipper and the detector, f1 the RF frequency of the first flipper, f2 the
RF frequency of the second flipper, fm the expected in focus MIEZE frequency, ∆λ

λ the wavelength
resolution, S the distance between the source and the detector and F the pulse frequency.

3.6 Experimental Setup

The purpose of the experimental setup (Figure 20) is to demonstrate that our high field flippers
are applicable to MIEZE and yield results which are similar to those of a conventional setup. In
addition we wish to confirm the theory derived in section 2.6 for the MIEZE focusing condition
when using a guide field. Furthermore this setup demonstrates the ”MIEZE start up procedure”
which will be required when doing MIEZE at Larmor with high modulation frequencies.
The setup consists of two high field flippers (70cm separation) contained inside of a guide field.
The guide field replaces the zero field chamber of a conventional setup by preventing depolarization
of the beam due to stray fields. π

2 rotators are located at the edges of the guide field. An adiabatic
flipper placed between the polarizer and the first rotator functions as a beam flipper. The analyzer
is placed as close to the last rotator as possible. Finally the detector (a 1cm helium tube) is located
roughly 4.2m from the last flipper. This distance is fine tuned by measuring the MIEZE frequency
and using equation (93). The pulse frequency is once again set to 50Hz and the wavelength
resolution is maximized by putting the chopper blades close together (∆λ

λ = 1.8%). Feedback
loops, with user defined set-points are used to control the field strength.

Figure 20. Picture of the experimental MIEZE setup. From left to right one can see the edge of
the beam flipper, a π

2 rotator, the two flippers and the final rotator. In addition one can see the
guide field coil placed around the flipper setup.

3.6.1 MIEZE Startup Procedure

Due to the small focal spot size at high modulation frequencies a procedure is required to ensure
that the detector is placed exactly in focus. To achieve this we start at low frequencies and
preferably in a situation where D ≈ G1 + G2. However the latter becomes less critical as the
modulation frequency increases. At low frequencies the focal spot is large according to equation
(93) and using the frequency shift one can determine the exact location of the focal point. Once
the detector has been placed in the exact focal point the frequency of each flipper can be doubled.
If the condition D = G1 +G2 is met the focal point should not move. After doubling the flipper
frequencies one checks the frequency shift again and moves the detector (if necessary) to the correct
focus. Once this step is completed one can double the frequencies once more. One can repeat the
previous steps until one reaches the desired modulation frequency. In the experiments shown here
the modulation frequencies 20kHz 40kHz and 100kHz are chosen for demonstration purposes.
The relevant instrument parameters are listed below in table 2.
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f1 f2 D ∆λ
λ S F Bg G1 +G2

20kHz 61.49kHz 71.49kHz 0.70m 1.8% 9.3m 50Hz 0.6mT 1.0m
40kHz 122.98kHz 142.98kHz 0.70m 1.8% 9.3m 50Hz 0.6mT 1.0m
100kHz 307.45kHz 357.45kHz 0.70m 1.8% 9.3m 50Hz 0.6mT 1.0m

Table 2. Table containing relevant experimental parameters for each modulation frequency. f1

denotes the RF frequency of the first flipper, f2 the frequency of the second flipper, D the distance
between the two flippers, ∆λ

λ the wavelength resolution, S the distance between the source and
the detector, F the pulse frequency, BG the guide field strength and G1 + G2 the distance from
the first rotator to the first flipper plus the distance from the second flipper to the second rotator.

3.7 Data Acquisition and Processing

The final steps towards generating useful results are data acquisition and processing. This sub-
section describes the steps taken to generate raw data and interpret said data in a meaningful
way. The first part of this subsection is about the acquisition, while the last part is about data
processing.

3.7.1 Acquisition

Data is acquired digitally using A/D converters and a LabView software interface. In addition
this software gives control over a variety of experimental parameters such as the detector sampling
frequency, total number of samples, chopper rotation speed, turning on and off the beam flipper
and in the case of our experimental setup the static magnetic field strength of both flippers. The
software will acquire time of flight data with the beam flipper off (e.g. I+) for a user defined
amount of time and then collect data with the beam flipper on (e.g. I−) for a user defined amount
of time. This data is written into a .jpl file. A custom Matlab script (see appendix) is utilized to
import the .jpl data and start the first processing steps.
Due to hardware limitations the total number of samples may not exceed 4000, which means that
it is not always possible to capture the entire 20ms pulse if the sampling frequency is very large.
In addition due to said limitations it is not possible to do measurements of different parts of the
pulse and stitch them together like a mosaic image. This is because the user defined delay is
misinterpreted by the software under these conditions. As a result the user does not know at
which point in the pulse the hardware starts and stops measuring. A possible remedy for this is to
mark the signal at certain points, either by changing the MIEZE frequency for certain wavelengths
or just turning off the flippers for a specific amount of time at specific wavelengths (thus encoding
the wavelength in the ”dead time”).

3.7.2 Processing

As described above the raw data is imported into Matlab using a script. This script takes the I+
and I− data and calculates the statistical errors according to the well known formula

σI =
√
I (126)

Using equation (122) the visibility is determined and the error is calculated by another well known
formula in statistics.

σP = P

√
1

I+
+

1

I−
(127)

The data comes in simply numbered by bins. The script must convert the bin number to a time
by multiplying it by the sampling time and adding any user defined delays. In addition this time
is converted to a wavelength using equation (120). Finally the I+ and I− data are plotted against
wavelength with errorbars in one graph and the Visibility is plotted against time with errors in
another graph.
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Upon completion of these initial processing steps we wish to determine the frequency and amplitude
of our signals. Two custom Matlab scripts (see appendix) are at our disposal for this purpose. The
first script performs a fast Fourier transform and plots the resulting spectral amplitude against
frequency. The user can then determine the exact frequency of the signal and adjust the position
of the detector if necessary according to equation (93). In addition the spectral amplitude at the
MIEZE frequency should be equal to the contrast. These numbers can be used for example in
the focal shape determination experiment. The second Matlab script is useful for calculating the
intermediate scattering function of a sample. In addition to importing the data (both empty beam
and sample in beam) and calculating errors it uses Matlabs curve fitting tool to fit sine waves to
the signal. Each signal (empty beam and with sample) is cut up into a user defined amount of
segments, the spin echo time is calculated for each segment and a sine wave is fit to each segment.
The script then extracts the amplitude/visibility and the respective error from each fit. Finally the
sample in beam amplitudes are divided by the empty beam amplitudes yielding the intermediate
scattering function. The result is plotted with errors against the spin echo time.
The keen observer may have noticed that the conventional setup and the experimental setup do
not use exactly the same detector. The conventional setup uses cadmium strips in front of the 1cm
tube while the experimental setup does not. Using monte-carlo simulations a correction factor is
derived and applied to the data to help better compare the two setups.
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4 Results

Results from the various experiments are presented in this section. First the results from Monte-
Carlo results are shown, followed by the various results from the conventional MIEZE experiment
including the MIEZE signal seen by an 8mm helium tube, the cadmium covered 1cm tube and
the position sensitive detector. The latter experiment also shows the focal spot size and frequency
shifting. Next results from the experimental setup are shown including a comparison between the
expected focal point position (equation 85) and the measured position. These experiments also
demonstrate the MIEZE start up procedure. Following this the singals from the conventional setup
are compared to the signals from the experimental setup, with and without the Monte Carlo based
correction. Finally the results from an experiment demonstrating wavelength marking (discussed
in section 3.7.1) are shown.

4.1 Monte Carlo Simulations

The Monte Carlo methods simulate the statistical absorption of neutrons, with a cosine like po-
larization, in helium 3 detectors of different sizes, assuming an exponential absorption probability
distribution function. A random number, which indicates the position at which a neutron is ab-
sorbed, is ”pulled” out of this exponential PDF. Using the neutron velocity a time of absorption
is calculated. Finally the polarization of said neutron is put into the appropriate time bin. This
process is repeated for one to ten million neutrons, to obtain a final figure for the polarization
and figure of merit. Thus mathematically speaking the simulations average over a cosine using
an exponential probability distribution function and calculate the absorption coefficient of various
tubes. The simulations also take into account other factors which reduce visibility, such as focal
shape and time averaging. Below the results from the Monte Carlo simulations are shown. Figures
21 22 and 23 are plots of the expected Figure of Merit and the visibility against the detector thick-
ness. These simulations assume realistic settings comparable to the actual setups at TU Delft.
Figure 24 shows the expected Figure of merit and visibility assuming similar conditions seen on
the Larmor instrument at ISIS neutron source.

Figure 21. Results from the Monte Carlo simulations assuming a 20kHz MIEZE signal, a wave-
length of 2.17Å, a wavelength resolution of 4.3% and a sampling time of 5µs. The Figure of
merit (left) and the visibility (right) are plotted against the detector thickness in meters with the
respective statistical errors
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Figure 22. Results from the Monte Carlo simulations assuming a 40kHz MIEZE signal, a wave-
length of 2.17Å, a wavelength resolution of 4.3% and a sampling time of 2.6µs. The Figure of
merit (left) and the visibility (right) are plotted against the detector thickness in meters with the
respective statistical errors

Figure 23. Results from the Monte Carlo simulations assuming a 100kHz MIEZE signal, a wave-
length of 2.17Å, a wavelength resolution of 4.3% and a sampling time of 1.2µs. The Figure of
merit (left) and the visibility (right) are plotted against the detector thickness in meters with the
respective statistical errors.
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Figure 24. Results from the Monte Carlo Simulations assuming 1MHz MIEZE signal, a wave-
length of 10Å, a wavelength resolution of 1% and a sampling of 10ns. The Figure of merit (left) and
the visibility (right) are plotted against the detector thickness in micrometers with the respective
statistical errors.
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4.2 Conventional MIEZE Results

In this section MIEZE signals are shown that were generated using the conventional setup. In
addition the focal shape and frequency shifting is shown. Figure 25 shows a 100kHz MIEZE signal
as seen by the 8mm helium tube. Figure 26 shows the same signal as seen by a 10mm tube covered
by an 8mm cadmium strip. Figure 27 and 26 show results using the position sensitive detector,
the first one shows FFTs of the MIEZE signal detected by each tube and the latter shows the
maximum visibility observed by each tube (the focal shape).

Figure 25. A 100kHz TOF MIEZE signal generated by the conventional setup as seen by an
8mm detector taking 1 sample every 1.2µs. The top plot shows the full signal against the wave-
length in Angstrom, the oscillations are not visible due to the high frequency compared to the
pulse time. The lower left plot shows a small part of the MIEZE signal against wavelength and
the lower right plot shows an FFT of the full MIEZE signal (top).
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Figure 26. A 100kHz TOF MIEZE signal generated by the conventional setup as seen by a 1cm
detector covered with an 8mm cadmium strip taking one sample every 1.2µs. The left plot shows
a small part of the MIEZE signal against the wavelength in Angstrom. The right plot shows the
FFT of the full MIEZE signal.
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Figure 27. FFTs of MIEZE signals seen at different distances from the focal point. The signals
were recorded using the position sensitive detector, which sampled once every 1.2µs. The green
curve is the in focus MIEZE signal, while the red curve is the MIEZE signal recorded 4cm further
away from the second RF flipper and the blue curve is the MIEZE signal recorded 4cm closer to
the second RF flipper.
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Figure 28. Spectral Amplitude as seen by each tube of the position sensitive detector, the x-axis
denotes the helium tubes position with respect to the focus position. The red line represents the
theoretical expectation (equation 93). The errorbars indicate two standard deviations.

4.3 Experimental MIEZE Results

In this subsection the results from the MIEZE startup procedure are shown in Figure 29. In
addition in table 3 the real focal position is shown next to the expected focal position (equation
85).

Frequency Ltheory Lexp
∆L

Ltheory

20kHz 4.62m 4.73m 2.4%
40kHz 4.49m 4.51m 0.5%
100kHz 4.39m 4.36m 0.7%

Table 3. Expected distance from the last flipper to the focal point Ltheory, experimentally de-
termined distance from the last flipper to the focal point Lexp and the relative error for various
MIEZE frequencies.
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Figure 29. MIEZE start up procedure using the experimental MIEZE setup. The top graphs
show a 20kHz signal (left) and its FFT (right), the middle ones show a 40kHz signal with the
respective FFT and the bottom graphs show a 100kHz signal with the respective FFT.
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4.4 Comparisons and Corrections

In this subsection the result from the experimental and conventional setups are put side by side
(Figure 30). In addition the corrections found using Monte-Carlo simulations are applied (Figure
31).

Figure 30. Side by side view of the results from the conventional (left) and the experimental
setup (right). The full time of flight signal is shown at the top, while a small snapshot of the
MIEZE signal is shown in the middle and finally at the bottom the FFT of each signal is shown.
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Figure 31. Side by side view of the results from the conventional (left) and experimental (right)
setup. The results have been corrected using the Monte-Carlo simulations. The top signals are
small snapshots of the MIEZE signals. The bottom graphs show the respective FFTs.
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4.5 Wavelength Marking

In this last subsection the wavelength marking method is shown. Figure 32 shows the marked
MIEZE signal as a function of time, while Figure 33 shows the same signal as a function of wave-
length.

Figure 32. A 100kHz MIEZE signal generated with the conventional setup. The flippers are
turned off and on again as to mark certain wavelengths. The y-axis denotes the visibility, while
the x-axis denotes the time in seconds.
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Figure 33. A 100kHz MIEZE signal generated with the conventional setup. The flippers are
turned off and on again as to mark certain wavelengths. The y-axis denotes the visibility, while
the x-axis denotes the wavelength in Angstroms.
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5 Discussion

We attempt to interpret the results shown in the previous section and explain discrepancies be-
tween theoretical prediction and experimental reality. In addition some of the results have lead
to the development of new methods, which are also explained in this section. However first of all
we will note the most important results which concern the main goal of this thesis. It has been
demonstrated that the new high field flippers, which are also used by the Larmor instrument are
capable of producing a MIEZE signal with a frequency of up to 100kHz (i.e. Figure 29). In fact
the MIEZE signal produced by these flippers seems to be competitive with conventional resonant
flippers at 100kHz modulation frequency after corrections for detector thickness are applied (i.e.
Figure 31). When these corrections are not applied the conventional flippers outperform our high
field flippers (as expected), though the total visibility is still similar (i.e. Figure 30). Furthermore
table 3 shows that our theoretical predictions of the location of the focus agrees quite well with
the experimental results, especially for higher MIEZE frequencies.
In the next subsection we take a closer look at the Monte Carlo simulations and the effects of
detector thickness on the MIEZE signal. Followed by this, in the second subsection, the frequency
shift of a defocused MIEZE signal in time of flight is discussed. The third subsection further
discusses the comparison of the two MIEZE signals and the validity of the applied corrections.
The fifth subsection evaluates the wavelength marking method. In the fifth subsection we will
take a second look at the MIEZE focal shape. Finally in the last subsection we attempt to explain
why the visibility of our MIEZE signals is lower than expected.

5.1 Monte Carlo Simulations and the Effects of Detector Thickness

Monte Carlo simulations (Figures 21-24) clearly demonstrate that the detector thickness makes
the time resolution of said detector worse, however it appears that the time resolution remains
much better than the simple prediction made in the method section (equation 124). The actual
measured visibility (i.e. Figure 30 and 31) does differ from the predicted visibility (Figure 23),
which implies that other factors are at play which result in a lowered total visibility. When we
calculate the ratio between the visibilities at two different MIEZE frequencies (Figure 29) and
compare this to the expected ratio using Monte Carlo, we find a discrepancy, which implies that
there are other factors which are reducing the visibility. These other factors are probably depen-
dent on the MIEZE frequency. These ratios have been calculated explicitly below in table 4.

Ratio Monte Carlo Experiment
P100

P40
0.80 0.37

P100

P20
0.78 0.30

P40

P20
0.97 0.82

Table 4. Ratio of visibilities, P , at various MIEZE frequencies of 100kHz 40kHz and 20kHz.
The ratio is calculated using the results from the Monte Carlo Simulations (left) and the results
from the experimental MIEZE setup (right).

One can also see that the visibility as seen by the 8mm tube (Figure 25) is higher than the
visibility as seen by the 1cm tube covered by an 8mm cadmium strip (Figure 26), which goes
against expectations. However one cannot simply compare the two because the filling pressure
and therefore the macroscopic capture cross section of the 8mm tube is unknown. The tubes used
in the position sensitive detector are the same tubes as in the cadmium experiment. However in
the position sensitive detector each tube creates a shadow across the tubes behind it. As a result
the effective diameter of each tube in the detector is reduced. The positive effect this has on the
visibility can be seen in Figure 27.
The Monte Carlo simulations do show a possible explanation for the discrepancy between the
visibility as seen by the cadmium covered helium tube (conventional setup) and the amplitude
seen by the uncovered tube (experimental setup).
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5.2 Time of Flight MIEZE Frequency Shift

In section 2.6 a shift of the MIEZE frequency was predicted due to defocusing. Figure 27 appears
to confirm this frequency shift qualitatively, however in this subsection we wish to confirm the
quantitative reliability of our prediction. The frequency uncertainty is roughly 200Hz and is equal
to the reciprocal of the signal length. The in focus MIEZE signal has a frequency of 99.7±0.2kHz,
the forward focus signal has a frequency of 100.1 ± 0.2kHz and the backfocus signal has a fre-
quency of 99.3± 0.2kHz. The predicted frequencies (using equation 93) are 100.0kHz ± 0.4kHz,
100.9kHz ± 0.4kHz and 99.0kHz ± 0.4kHz respectively. The uncertainties are based on the fact
that the RF waveforms (two in total) which determine the MIEZE frequency each have a finite
length. Thus the in focus and back focus frequency shifts are explained quite well by our model,
while the forward focus deviates slightly from the theoretical prediction. This difference may be
explained by the fact that the ”neutron shadow” seen by one of the tubes close to the front of the
position sensitive detector is different from the shadow seen by a tube closer to the back of the po-
sition sensitive detector. As a result the location within a tube where most neutrons are absorbed
is different in a posterior tube compared to an anterior tube. Thus the actual measurement points
may be further apart or closer together than 4cm. Hence it is sensible to add an uncertainty to
our positions of 1cm, which results in an additional frequency uncertainty of 240Hz. This added
uncertainty would explain the discrepancy between our model and the experiment.
From a methodology standpoint the frequency shift due to defocusing was a helpful tool in deter-
mining where to put the detector in the MIEZE startup procedure demonstration experiment. If
the detector is placed on top of a translation stage the focusing procedure could be completely au-
tomatized, using this method. In addition this method only requires a single measurement of the
MIEZE signal to determine the location of the real focus, where as an amplitude based approach,
which simply looks for the location where the amplitude of the MIEZE signal is maximal, would
require a large number of measurements.

5.3 Comparison of the Conventional and Experimental Setups

In this subsection we attempt to compare the conventional MIEZE setup to our novel setup, which
utilizes high field flippers. First we note that the neutron windows on the conventional flippers
are larger than on the novel flippers, which allows the to work at greater intensities (given a large
detector). However practical MIEZE setups are likely to be limited to smaller beam sizes, due to
limitations on sample geometry, which become increasingly crucial for large angle scattering [39].
In addition the conventional coils require high currents and water cooling to run properly, while
the high field coils function at currents an order of magnitude lower and only require air cooling.
On the other hand the conventional coils are much shorter, as a result the RF field has a higher
amplitude, which makes the flip less sensitive to mismatching between the static field and the RF
frequency. However the high field flippers can be used as adiabatic flippers (still to be tested for
MIEZE), which produce an even more stable flip.
Visibility wise the conventional setup outperforms the experimental setup, at a modulation fre-
quency of 100kHz by roughly 20%, when we do not correct for detector differences. Yet once
the correction has been performed the experimental setup produces the same visibility as the
conventional setup. However the validity of the Monte-Carlo based corrections should be con-
firmed experimentally. In addition detector tilt relative to the incident beam should be taken
into account in these corrections, as this tilt changes the effective detector thickness. Though this
effective thickness scales with the cosine, thus in first order detector tilt is irrelevant.
The theoretical predictions of the location of the focus were spot on for the conventional setup,
while the predictions for the experimental setup, which used a guide field, varied slightly from
the measured focus point. This can be attributed to the fact that the utilized guide field did not
produce is totally homogeneous field. Note that the accuracy of the predictions increases as the
modulation frequency is increased, because the term

ωg
2∆ω , in equation (86), goes to zero.
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5.4 Wavelength Marking

Recall that due to hardware and software limitations it is not possible to look at high frequency
MIEZE signals at longer wavelengths, because the software does not attribute the correct ”time-
stamp” to each bin. To remedy this we mark certain wavelengths by turning off the flipper for a
defined amount of time at the selected wavelengths. The ”off time” thus encodes the wavelength.
Figures 32 and 33 clearly demonstrate that the MIEZE signal can be disabled for short amounts
of time and therefore that wavelengths can be marked. Though more processing tools are required
to automatically recognize the wavelength based on MIEZE ”deadtime”. This problem is specific
to the setup in Delft, therefore further development of this method is not required.

5.5 Focal Shape and Determining the Momentum Distribution of a
Sample

The focal shape was derived theoretically to be a sinc function in section 2.6. Figure 28 shows
slight agreement between the theory and the experiment for very small displacements, however
for larger displacements the experimental results strongly diverge from the predictions. This is
probably due to the fact that we assumed a zeroth order wavelength spread in section 2.6. In
general the integral in equation (91), must be rewritten as:

< σx >=

∫ ∞
−∞

R(λ, λ0,∆λ) cos

(
2∆ω[t− mλ∆L

h
]

)
dλ (128)

Where R(λ, λ0,∆λ) is the distribution function, which has the property
∫
R(λ, λ0,∆λ)dλ = 1.

In literature often times a first order wavelength distribution function is used [31]. However for
simplicity we will assume a Gaussian wave packet such that

R(λ, λ0,∆λ) =
1√

2π(∆λ)2
e−

1
2 [
λ−λ0
∆λ ]2 (129)

We now fill this expression into equation (128) and use that the cosine transform is equal to the
real part of the Fourier Transform

< σx >= Re[

∫ ∞
−∞

1√
2π(∆λ)2

e−
1
2 [
λ−λ0
∆λ ]2e−i(2∆ω[t−mλ∆L

h ])dλ] (130)

Next we use a substitution such that λ′ = λ− λ0, which simplifies the above equation to

< σx >= Re[e−i2∆ω[t−mλ0∆L
h ]

∫ ∞
−∞

1√
2π(∆λ)2

e−
1
2 [ λ

′
∆λ ]2ei2π

2∆ωmλ′∆L
2πh dλ′] (131)

The integral is a simple Fourier transform of a Gaussian which is given by [40][41].

< σx >= e−2( ∆ωm∆L∆λ
h )2

cos

(
2∆ω[t− mλ0∆L

h
]

)
(132)

Figure 34 shows a fit of this Gaussian on top of our experimental data. The left most point was
collected with the frontal tube, which sees a drastically different ”neutron shadow” than the other
tubes, therefore it has a different effective thickness and it does not line up with the fit nicely. By
slightly adjusting the standard deviation of the Gaussian the fit can be improved, however this
cannot be justified theoretically. It is more likely that the discrepancies are due to uncertainty in
the helium tube location (as described in section 5.2).
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Figure 34. Fit of a Gaussian (red) described by equation (132) to experimental data (blue). The
blue points denote the max. amplitude measured by a helium tube at a given distance from the
MIEZE focus.

From equation (128) one can deduce that it is possible to measure the momentum distribution of
nuclei in a sample, using a MIEZE sample, a highly monochromatic beam and by positioning the
sample before the MIEZE instrument. The highly monochromatic beam scatters on the sample
and enters the MIEZE instrument. Then using a position sensitive detector the MIEZE focal
shape is measured. This focal shape should be equal to the real part of the Fourier transform of
the momentum distribution of the sample as per equation (128). However the usefulness of this
method is questionable, as it would require a very large position sensitive detector to measure a
tight momentum distribution.
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5.6 Other Causes for Reduced Visibility

One has likely noticed that the maximum visibility of roughly 35% (Figure 30 Experimental setup
absolute maximum) cannot be solely explained by our Monte-Carlo simulations which take into
account time averaging due to sampling, detector thickness and averaging over the focal spot.
Thus there are other factors at play which affect the visibility in a negative way. There are a set
of visibility reducing factors which are frequency independent which will be discussed in the first
subsection and a set of frequency dependent factors which are discussed in the second subsection.
Most of these factors only contribute a small amount to the total loss, therefore it is believed that
the low visibility is due to cumulative effects.

5.6.1 Frequency Independent Factors

In this subsection frequency independent contributors to the loss of visibility are explored. Figure
14 demonstrates a base polarization of 96.5% at a wavelength of 2.1Å, in addition it was found
that the flipper efficiency (non bootstrapped), was 96.6%. Thus for four flippers in the case of the
conventional setup the total polarization would be reduced to 0.965 ∗ 0.9664 = 84%. In addition
to imperfect flippers we also have losses due to the π

2 rotators. If these rotators do not rotate
the spin perfectly by π

2 , but by some angle π
2 + δθ, the visibility of the MIEZE signal will be

reduced. This loss can be quantified using equation (82) and (83). We note that if our rotators do
not rotate by π

2 we are no longer measuring the expectation value of the spin in the x-basis, but
along some tilted basis n̂ = [cos(δθ), 0, sin(δθ)]T , whose Pauli matrix is given by n̂ · ~σ. In addition
~ψ will no longer be in an equal superposition between up and down state, but will be given by:
~ψ = eiσzarg[cos

(
π
4 + δφ

2

)
, sin

(
π
4 + δφ

2

)
]T . Where arg is simply the argument of the e-function.

Thus the expectation value would be given by〈
~ψ
∣∣∣~σ · n̂ ∣∣∣~ψ〉 = cos(δθ) cos(δφ) cos(2arg)− sin(δφ) sin(δθ) (133)

Note that the right term |sin(δφ) sin(δθ)| can be determined by measuring the mean value of our
MIEZE signal. If in addition to that we assume that δφ and δθ are equal in magnitude, which
is a reasonable assumption, since both π

2 rotators are identical, we can determine the amplitude
reduction. By looking at our data it was determined that δφ = δθ = 0.070 − 0.122Rad. In the
worst case scenario this gives an additional amplitude reduction of cos(0.122)

2
= 0.98%

Another factor which can lower the MIEZE amplitude is background. This can be demonstrated
using equation (122) and by adding a constant relative background B to I+ and I−. Then we find

P =
1 + cos(2∆ωt) +B − 1 + cos(2∆ωt)−B
1 + cos(2∆ωt) +B + 1− cos(2∆ωt) +B

=
cos(2∆ωt)

1 +B
(134)

We can see that if the background amounts to just 2%, which in the case of the experimental
setup amounts to just 1 count per second. The polarization is reduced to 1

1.02 = 98%.
One can see that all of these factors bring down the visibility from 96.5% (base polarization) to
80.6%.

5.6.2 Frequency Dependent Factors

In this subsection we will look at frequency dependent visibility losses. It is thought that chopper
jitter is the main cause of visibility loss. The frequency of the chopper varies slightly in time
(jitters), which can cause the RF coils and the detector to be started earlier than when the neutrons
actually arrive (if the disks are slower than expected) or later than when the first neutrons arrive (if
the disks are faster than expected). As a result some unwanted averaging over the MIEZE signal
takes place, which lowers the observed amplitude. From section 2.6 we know that the MIEZE
phase at the detector is given by:

φ = 2∆ωt = 2∆ω(t0 + t′) (135)

55



Where t0 is the time when the RF flippers turn on and t′ is the particular time within the pulse.
If the chopper has some jitter, this MIEZE phase gets a small error, characterized by ∆t

φ = 2∆ω(t0 ±∆t+ t′) (136)

The detector will start to measure at a fixed tdelay after receiving the pulse from the chopper.
However the neutrons may arrive a bit sooner or later (∆t), due to chopper jitter. As a result the
phase of the MIEZE signal at the time when the detector turns on is given by

φ = 2∆ω(t0 ± 2∆t) (137)

Thus due to the fact that both the detector and the RF flippers are triggered by the chopper, the
effect of jitter is doubled. We can determine the effect on the visibility simply by averaging the
MIEZE signal over ∆t, assuming a Gaussian jitter (note we set t0 = 0 for convenience and C is
the normalization factor)

< σx >=

∫ ∞
−∞

Ce−
1
2
t2

dt2 cos(4∆ωt)dt = e−8∆ω2∆t2 (138)

∆t was measured to be on the order of 0.8µs. We find that in this case the visibility is reduced
to 60%. If the jitter is slightly larger, for example 1.2µs, the visibility would be reduced to just
32.1%.
Another, although small, frequency dependent factor could be inelastic scattering of neutrons in
air. Though very few neutrons will scatter along the flightpath and make it to the detector, those
that do will be completely depolarized. This may cost another 1%− 2%.

5.6.3 Summary

The loss of visibility is determined by a variety of frequency independent factors, such as rotator
angle, flipper efficiency and base polarization, but also by frequency dependent factors such as
detector thickness, focal spot size, averaging due to sampling and chopper jitter. When all these
effects are taken into account the maximum achievable visibility at 100kHz (MIEZE frequency)
should be between 39% and 46% (at 2Å wavelength). In reality a maximum visibility of 35%±2%
is observed on the experimental setup. Thus it appears that most, but not all factors which
contribute to visibility loss have been explained.
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6 Outlook

It has been demonstrated that the high field flippers which are also used by the Larmor instrument
are capable of producing a MIEZE signal of 100kHz. The next step is to attempt to generate a
MIEZE signal using the Larmor instrument and to gradually increase the modulation frequency
into the MHz range. Due to the small focus size at these frequencies and the aforementioned
frequency dependent degradation of the visibility it is recommended to use the MIEZE startup
procedure described in the method section. In these initial tests we plan to measure the self
diffusion of water at various temperatures (see section 2.8). If the Larmor instrument functions
at these frequencies one can expect spin echo times of up to 35ns (10Å wavelength) at the sample
position. In addition the MIEZE mode at Larmor should also be tested using the gradient coils
which are integrated into the flippers. This should increase the stability of the flip. It should be
noted that even in this case the RF coils must be triggered by each time of flight pulse or else it will
definitely not work in time of flight (section 5.6.2). Possible pitfalls which could prevent the Larmor
instrument from doing MHz MIEZE are detector thickness (CASCADE detector required), jitter
of the time of flight pulse, vibrations/thermal expansion, which cause the distance between the
two spin flippers to change and scattering of neutrons on molecules in the air (vacuum flight tube
required).
If successful the MIEZE mode of Larmor may be used to explore the dynamics of magnetic
materials [42] and to develop new methods for quasi-elastic neutron scattering like MISANS, a
combination of SANS and MIEZE [42][43][44]. Another possibility would be to attempt SEMSANS
in a MIEZE configuration (SEMSANS with only two flippers), this could potentially also allow
for the combination of both techniques.
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7 Conclusion

The main goal of this research was to demonstrate that resonant RF flippers, which use magnetic
poleshoes to obtain high magnetic fields, are applicable to the MIEZE technique. Evidence has
been provided that these novel high field flippers are indeed capable of producing a MIEZE signal of
up to 100kHz. In addition it was shown that the MIEZE signal obtained has an amplitude similar
to the signals that could be obtained using more conventional spin flippers. Furthermore effects
of detector thickness on the measured MIEZE amplitude were demonstrated both experimentally
and with Monte-Carlo simulations. The results show that a very thin detector (i.e. CASCADE)
is required to measure high frequency MIEZE signals. In addition the shape of the MIEZE focal
spot was modeled to be Gaussian. This was confirmed experimentally using a position sensitive
detector. Finally the importance of a stable pulse frequency and the effects it has on the measured
MIEZE amplitude was derived. This research provides the confidence required to start to test and
implement MIEZE on the Larmor instrument at ISIS neutron source in the UK. In these tests the
instrument will be pushed to its limits possibly achieving MHz modulation and 20ns spin echo
time. This would enable the research of a variety of materials, including magnetic materials which
are critical for quantum computing and improved memory.
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Appendix

RF Waveform generation script.
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First Data Processing Script.
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Second Data Processing Script

63



64



Sinefitter

65



#include "stdafx.h" 
#include <math.h> 
#include <stdio.h> 
#include <iostream> 
#include <string> 
#include <fstream> 
#include <stdlib.h>     /* srand, rand */ 
#include <time.h>  
#include <string> 
#include <random> 
using namespace std; 
 
void main() 
{ 
 ofstream FOMd; 
 ofstream Pd; 
 FOMd.open("FOMd.bin", ios::out | ios::app | ios::binary); 
 Pd.open("Pd.bin", ios::out | ios::app | ios::binary); 
 srand(time(NULL)); 
 double INST_RES = 1; //Instrument Max pol 
 double Sm = 159; //macroscopic xsection 
 double m = 1.675e-27; //neutron mass 
 double h = 6.626e-34; //Planck Constant 
 double lambda; //Wavelength 
 double lres; //wavelength res 
 cout << "Wavelength (Angstrom)? "; 
 cin >> lambda; 
 lambda = lambda*1e-10; 
 cout << "Wavelength Resolution (percentage)?"; 
 cin >> lres; 
 double dlam = 0.01*lres*lambda; 
 double v = h / lambda / m; //Velocity 
 double dm; 
 cout << "Distance Modifier? "; 
 cin >> dm; 
 double D[] = { 1e-3, 2e-3, 3e-3, 4e-3, 5e-3, 6e-3, 7e-3, 8e-3, 9e-3, 10e-3, 11e-3, 12e-3, 13e-
3, 14e-3, 15e-3, 16e-3, 17e-3, 18e-3, 19e-3, 20e-3 }; 
 int L = 20; //Number of elements in D 
 double samp; //sampling time 
 cout << "Sampling time (microseconds)? "; 
 cin >> samp; 
 samp = samp*1e-6; 
 double samp2 = samp; 
 double f; //MIEZE Frequency 
 cout << "MIEZE Frequency (kHz)? "; 
 cin >> f; 
 f = f*1e3; 
 samp = 1 / f / 10; 
 double w = 2 * 3.1415*f; 
 double N; //Number of Runs 
 cout << "Number of Runs? "; 
 cin >> N; 
 double *t; //Time 
 int T = ceil(10 / f / samp); //Length of time signal 
 t = new double[T]; 
 int range_from = 0; 
 int range_to = 1e4; 
 std::random_device                  rand_dev; 
 std::mt19937                        generator(rand_dev()); 
 std::uniform_int_distribution<int>  distr(range_from, range_to); 
 double *s1; //I+ Signal 
 double *s2; //I- Signal 
 s1 = new double[T]; 
 s2 = new double[T]; 
 double *sp1; //I+ Signal 
 double *sp2; //I- Signal 
 sp1 = new double[T]; 
 sp2 = new double[T]; 
 double *S1; 
 S1 = new double[T]; 
 double *S2; 
 S2 = new double[T]; 
 double *F; 
 F = new double[T]; 
 double *P; 
 P = new double[L]; 



 double *FOM; 
 FOM = new double[L]; 
 for (int i = 0; i < T; i++) 
 { 
  t[i] = samp*i; 
  S1[i] = 0; 
  S2[i] = 0; 
 } 
 double Ultimate = 1 / samp2 / w * 2 * sin(w*samp2 / 2); 
 double rn; 
 double tabs; 
 int tabs2; 
 double dumb = 0; 
 for (int i = 0; i < L; i++) 
 { 
  double n = 0; 
  double tmax = dm*D[i] / v; 
  for (int j = 0; j < N; j++) 
  {    
   for (int k = 0; k < T; k++) 
   { 
    rn=distr(generator); 
    //rn = rand() % 10000; 
    tabs = -1 / Sm / v*log(rn/ range_to); 
    double Amp = exp(-3.1415*3.1415*2*(2*w*m*tabs/h/2/3.1415)*(2 * 
w*m*(tabs-1/Sm) / h / 2 / 3.1415)*dlam*dlam); 
    //double Amp = 1; 
    tabs2 = ceil(tabs / samp); 
    for (int jk = 0; jk < T; jk++) 
    { 
     s1[jk] = 1 + Amp*cos(w*t[jk]); 
     s2[jk] = 1 - Amp*cos(w*t[jk]); 
    } 
    if (tabs < tmax) 
    { 
     n = n + 1; 
     if (tabs2 + i <= T) 
     { 
      sp1[k] = s1[tabs2 + k]; 
      sp2[k] = s2[tabs2 + k]; 
     } 
     else { 
      int k2 = tabs2 + k - T; 
      sp1[k] = s1[k2]; 
      sp2[k] = s2[k2]; 
     } 
 
    } 
    else { 
     sp1[k] = 0; 
     sp2[k] = 0; 
    } 
    S1[k] = S1[k] + sp1[k]; 
    S2[k] = S2[k] + sp2[k]; 
   } 
 
  } 
  for (int k = 0; k < (T-ceil(2/f/samp)); k++) 
  { 
   F[k] = INST_RES*(S1[k] - S2[k]) / (S1[k] + S2[k]); 
  } 
  dumb = 0; 
  for (int k = 0; k < (T - ceil(2 / f / samp)); k++) 
  { 
   if (F[k] > dumb) 
   { 
    dumb = F[k]; 
   } 
  } 
  P[i] = Ultimate*dumb; 
  FOM[i] = Ultimate*Ultimate*dumb*dumb*n; 
  FOMd << FOM[i] << endl; 
  Pd << P[i] << endl; 
 } 
 FOMd.close(); 
 Pd.close(); } 



A Time of Flight MIEZE Spectrometer 
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Concept 
• Utilize two resonant flippers to 

introduce Δ𝜙 between two spin states 

• Timescale given by: 
Δ𝜙(𝑥)

𝜔𝑛
= 𝜏𝑒𝑐ℎ𝑜 

• Δ𝜙 = 0 at detector (focus condition) 
• Polarization is modulated in time with 
𝜔 = 2𝛾Δ𝐵 

Motivation 
• Inelastic scattering 
• Magnetic samples (sample can be 

placed after the analyzer) 
• Combination of elastic and inelastic 

measurements (MISANS) 
• Timescales up to 20ns (RESEDA) 

Goals 
We have developed a new spin flipper 
(gradient flipper which are used by 
Larmor). We wish to test how 
applicable these coils are to MIEZE. 
Tests are done in ToF to prove the 
feasibility of MIEZE at pulsed sources. 

Method 
• Build a conventional MIEZE setup 

using resonant flippers 
• Construct a MIEZE setup using the 

novel gradient coils 
• Compare the two resulting MIEZE 

signals 

Benchmark 
• Resonant coils have well defined fields 
• 100kHz ToF MIEZE setup 
• ToF achieved by ramping the RF field 
• Contrast of 40% 
• Using a PSD the focal point was 

imaged and was found to be 6cm wide 

Modeling 
• Gradient MIEZE requires a guide field 

to prevent depolarization 
• Focus is very sensitive to small 

changes in fields and path lengths 
 Therefore it is important to compare 
analytic predictions with FEM 

Gradient MIEZE Tests 
• Focus can be moved by tuning the 

frequency of one of the flippers 
• Until now these flippers have only 

been tested in “1/t resonant mode”  
• Several MIEZE frequencies 

(20kHz,40kHz,100kHz) 

Outlook 
Next we wish to attempt MIEZE using the Larmor 
instrument at ISIS. We believe that we can 
achieve 1-2MHz modulation and spin echo times 
of up to 40ns for 8 Angstrom neutrons 

20 kHz 40 kHz 100 kHz 


