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Chapter 3

Space-filling Grid Volumetric
Design



As aforementioned, the design process is divided into two parts:
Space-filling Grid Volumetric Design and Shell Structure Approximation
Algorithm Design. This Chapter elaborates about the first part, to design a
3D interlocking grid system as a base grid for the next part of algorithm
design.

In this Chapter, three types of space-filling grids are designed based on the
concept of Topological Interlocking, a design principal mentioned in Chapter
2. Two of the grids are chosen for structural verifications in Abaqus [30] and
3DEC [31] respectively, with one of the grids selected as the most promising
one for the subsequent algorithm design. It is worth mentioning that
necessary structural verifications are conducted as auxiliary tools to compare
the structural behaviour between the grids. An overview of the design
methodology can be seen in Figure 3.1.

In cooperate with Qinglu Chen, the design of three types of grids are the
cooperation results together as well as the preliminary structural analyses
results of grid comparison in Abaqus. The rest part of the structural
verification process, including grid comparison in 3DEC, proportion
comparison, joint design and self-supporting comparison are finished by the
author individually.
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Figure 3.1 Design Methodology of space-filling grids



3.3.1 Overview of Three Types of Space-filling Grids

To ensure a space-filling volumetric grid, three types of grids are generated
from a base Topological Interlocking Grid described above and developed
from a smaller voxel grid (Figure 3.2). These grids represent the topological
relationship of the modular blocks for the construction of the vaults. The
design started with playing with magnetic voxels representing the smaller
voxel grid of each block. By placing voxels in different positions, different
layering methods and topology of modular blocks can be generated.

Grid 1 Grid 2 Grid 3

Figure 3.2 Overview the three types of space-filling grids (Source from Qinglu Chen
and Baolian Liu)

3.3.2 Developments of Space-filling Grid 1

Grid 1 learns part from the base Topological Interlocking Grid described in
Section 2.2 and also borrowed from the traditional brick layering method
when the upper block stands on half of the lower block. By moving the
upper block horizontally in the other direction, Grid 1 is generated based on
the assumption that the upper block is supported by one-quarter of each of its
lower blocks (Figure 3.3), therefore forming a space-filling system which
ensures a three-dimensional dual graph like a pyramid of the force flow path.
However, this grid results in inadequate interlocking between the elements.

(a) (b)
Figure 3.3 (a) Space-filling Grid 1 (Source from Qinglu Chen and Baolian Liu) (b)
Development of Grid 1 from the traditional brick layering method



3.3.3 Developments of Space-filling Grid 2

Grid 2 (Figure 3.4(a)) starts from the base grid of the second type of
Topological Interlocking Grid (Figure 3.4(b)), this type of interlocking can
prevent the middle block from moving constraint by its six neighbours.
However, it has the drawback of creating voids when a second layer is added
(Figure 3.5).

a2t
.

(a) (b)
Figure 3.4 (a) Space-filling Grid 2 (Source from Qinglu Chen and Baolian Liu) (b)
Base Topological Interlocking Grid

(a) (b) (c)
Figure 3.5 (a) original interlocking grid (b) add a second layer on top (c) voids in
between the layers (Source from Qinglu Chen and Baolian Liu)

In order to solve the problem of the voids, several movements of small
voxels within the blocks are conducted. First, the special parts highlighted in
red colors are the parts need to be reserved, while the opposite parts
highlighted in yellow within each block are the reason causing the gap, thus
are determined to be removed. After removing the yellow voxels, the final
tessellation is able to fulfill the space, then the topology of Grid 2 is thus
determined (Figure 3.6).
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Figure 3.6 Design Process of space-filling Grid 2 (Source from Qinglu Chen and



Baolian Liu)

3.3.4 Developments of Space-filling Grid 3

After the discovery of space-filling Grid 2, some drawbacks appeared. One
obvious problem is the grid of the system. When connecting the center point
of every block, there are obvious stratification causing the incoherent
structural system (Figure 3.8(a)). To deal with this issue, the third type was
explored to solve the problem. By adding another two small blocks on the
bottom to achieve balance within each modular block (Figure 3.7(b)), Grid 3
(Figure 3.7(a)) is able to ensure a space-filling pattern, form a
three-dimensional dual graph when connecting their central point, as well as
ensure topological interlocking (for the monolithic coloured blocks) (Figure
3.8 (b)).

(a) (b)
Figure 3.7 (a) Space-filling Grid 3 (Source from Qinglu Chen and Baolian Liu) (b)
Generation of Grid 3

(a) (b)
Figure 3.8 Dual graph of (a) Grid 2 and (b) Grid 3 (Source from Qinglu Chen and
Baolian Liu)

3.3.5 General Comparison

After the generation of three types of space-filling grids, a general
comparison (Figure 3.9) is conducted to compare these three grids. By
comparing their dual graph and force flow path (a.k.a. a thrust network),
vertical and horizontal performance, load path angle and if they can ensure
interlocking, two grids are selected for the following steps.



Considering the dual graph, the dual graphs of Grid 1 and Grid 3 are
three-dimensional, while the obvious stratification of the dual graph for Grid
2 causing an incoherent structural system, therefore both Grid 1 and Grid 3
are suitable for compression-only structures, while Grid 2 needs cable or
other support to link the system. As for interlocking performance, both Grid
2 and Grid 3 can ensure pre-set interlocking by the geometry of modular
block itself, while no interlocking performance are shown in Grid 1,
resulting in less advantage of Grid 1 under horizontal loads. However, this
drawback can be redesigned afterwards to ensure post-interlocking in the
following step, but the stratification of Grid 2 is not changeable. Therefore,
Grid 1 and Grid 3 are selected for further structural verifications.
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Figure 3.9 General Comparison between three Grids (Source from Qinglu Chen and
Baolian Liu)

3.4.1 Introduction

In order to test the stability of the designed space-filling grids, structural
verifications are conducted to compare which grid performs better for
different hypothetical load cases using FEM and DEM, respectively utilizing
Abaqus [30] and 3DEC [31]. Three kinds of structural analyses are
conducted for grid comparison, proportion comparison, and ability to
self-support during construction. The grid which performs better during
structural verification is then chosen as the foundation for the design of the
algorithm for approximating vault structures.



3.4.2 Workflow for Structural Verification Process

The workflow of structural analyses can be seen in Figure 3.10. The process
for initializing the analysis for both Abaqus and 3DEC began with set limits,
then modular blocks were created within the software. After material
property is assigned to the modular blocks, assembly process started to
combine several modular blocks need to be analyzed together. After that,
interaction properties were assigned to the contact surfaces and different load
cases are applied on corresponding surfaces, then steps are set for running
the analysis. The input property of materials and load cases (Appendix 1) are
based on scientific paper and Eurocode [32].

Figure 3.10 Workflow for Structural Analyses Process (Source from Qinglu Chen
and Baolian Liu)

3.4.3 Grid Comparison

The first set of analyses focuses on comparing the performance of Grid 1 and
Grid 3 under different load cases, with the simulations conducted using both
FEM in Abaqus and DEM in 3DEC. In this phase of simulation, every voxel
has the proportion of 1:1 to ensure the comparability of both grids. The
model of Grid 1 consists of 6 modular blocks (with 8 voxels within each
block) (Figure 3.11(a)), while Grid 3 contains 9 modular blocks (with 8
voxels within each block as well) (Figure 3.11(b)). Two types of load
conditions are applied to the model, one for vertical loads only (5175N/m?),
while the other for both vertical loads (5175N/m?) and horizontal loads
(525N/m?) (Appendix 2), and the results are evaluated in terms of principal
stresses and displacements.

(a) (b)
Figure 3.11 (a) 6 blocks of Grid 1 (48 voxels) (b) 9 blocks of Grid 3 (72 voxels)
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Figure 3.13 Results in Abaqus (a) Principal stresses and (b) displacements for Grid
1 and Grid 3 (Source from Qinglu Chen and Baolian Liu)
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Table in Figure 3.12 shows the simulation results of Grid 1 and Grid 3 under
the same vertical load cases and horizontal load cases. In both results, ten
values are considered for comparison, namely S (maximum principal stress),
S (minimum principal stress), U (total displacement), Uz (displacement in
vertical direction), Ux (displacement in wind direction), Uy (displacement in
another horizontal direction). It can be observed that for both load cases in
both results of Abaqus and 3DEC, Grid 1 experiences smaller principal
stresses than Grid 3 (Figure 3.13(a) and Figure 3.14(a)), but comparable
displacements ((Figure 3.13(b) and Figure 3.14(b)). As is shown in the charts,
two software has some differences regarding the displacements due to some
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settings are basically different inherited in two softwares. For vertical
load-only conditions, Grid 1 has smaller displacements, however, Grid 3
performs better under the influence of horizontal loads in Abaqus. However,
Grid 1 performs better than Grid 3 regarding displacements in 3DEC. Also,
considering the material use, Grid 3 needs more material to achieve the same
height as Grid 1. Therefore, Grid 1 is more efficient for structures
experiencing predominately vertical loading, while Grid 3 might be a good
choice when applied to a location where horizontal loads are high.

3.4.3 Proportion Comparison (First Round)

In the last phase of grid comparison, 1:1 proportion of small voxels is under
assumption of both grids. However, the proportion of block, that is, the ratio
between its width and height is of extreme importance because it determines
the angle of the force flow path, as well as influences the structural behavior
regarding stability, rigidity and spatial geometry in the process of space
formation. Therefore, in the first phase of exploring proportion, 4 different
variations are tested in simulation by 3DEC, respectively proportion 1:2, 1:1,
2:1 and 3:1 (Figure 3.15). These four proportions is aiming at trying as many
variations as possible, but at the same time avoiding extreme proportions
which would result in less rigidity of modular block and difficulty in

manufacturing.

3DEC 450,900mm 450,450mm 450,225mm 450,150mm

Proportion b:h

Grid 3

Figure 3.15 Four Proportions of Grid 1 and Grid 3

Considering that each modular block is consisted of 8 small voxels and it’s
hard to define the proportion under the same circumstances due to the fact
that the heights of two grids are consisted of different number of voxels,
respectively 2 and 3, the proportion exploration is within each small voxel to
test the proportion between the width(b) and the height(h) (Figure 3.16).
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Also, because every upper block relies on one-quarter of the lower block, the
base surface for both grids should keep as square shape to remain isotropic
in both x and y direction, thus only one width(b) is considered in this step.

e

$

— h |
L

b

Figure 3.16 Proportion between width (b) and height (h) of a voxel

In the simulation of first phase, two kinds of vertical load cases are
considered. One is under 30 Pa (N/m?), the other is under 5175 Pa (N/m?).
The aim of doing two kinds of vertical load is to test the stability of both
grids when there is barely load as well as there are live loads on the top. Also,
the two conditions of vertical load only and with vertical and horizontal
loads remains the same with the previous simulations. The table of results
can be seen in Figure 3.17.
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Figure 3.17 Data of Grid 1 for vertical load case (a)30N/ni and (b) 5175N/ nf;

Grid 3 for vertical load case (c)30N/nf and (d) 5175N/nf
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Proportion Comparison for Grid 1 and Grid 3

Proportion Comparison for Grid 1 and Grid 3
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Figure 3.18 (a) Principal Stress and (b)Displacements of four proportions of Grid 1
and Grid 3 under vertical load of 30 Pa

Proportion Comparison for Grid 1 and Grid 3

Proportion Comparison for Grid 1 and Grid 3
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Figure 3.19 (a)Principal Stress and (b)Displacements of four proportions of Grid 1
and Grid 3 under vertical load of 5175 Pa

The chart of results of the first-round simulation are shown in Figure 3.18
and 3.19. Keeping the same with the previous one, principal stresses and
total displacements are the main consideration when comparing results. It
can tell that for both vertical load conditions (under vertical load of 30 N/m?
and 5175 N/m?), Grid 1 has less maximum principal stress and
displacements in most cases of the compared four proportions, though there
are special case in displacements result of proportion b:h = 1:2 when Grid 3
has less displacements than Grid 1. When considering the tendency of
proportion change, it is not hard to tell that when proportion becomes larger
(from b:h = 1:2 (0.5) to b:h = 3:1 (3)), both maximum principal stresses and
displacements have the tendency of becoming smaller, though there are
strange peak points existing at proportion b:h = 1:1 and 2:1. Overall, Grid 1
has better performance regarding both principal stresses and displacements
in most cases under both load conditions and the tendency for proportion
change has a trend to become smaller when the proportion becomes larger.

3.4.4 Ability of Self-Supporting (First Round)

In this sub-section, joints for connection between modular blocks are
designed to test its ability of self-supporting during construction. For both

b:h=31
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Grid 1 and Grid 3, the upper block stands on one-quarter of the lower block,
consequently, the area of the contact surface is not large enough for the
upper block to stand without support. Inspired from a paper regarding
interlocking element design by Nabila Aff.etc [33], two types of interlocking
joints are designed for both grids, namely pin joint and groove joint
respectively. In the paper described, several interlocking joints were
prototyped and tested, and groove joint are the type most suitable for this
project due its advantage of good self-supporting ability and good for
construction [33]. Another type — pin joint- is developed from the Lego
joints, with a pin joint in between the blocks. For Grid 1, two types of joints
are offset from the edge to ensure a safe area when collapse happens, while
both types of joints are at the edge of Grid 3 to ensure the largest contact
surface of between the blocks (Figure 3.20).

Grid 1-Type It
Pin Joint

Grid 2-Type 1:
Pin Joint

Grid 1-Type 2: Grid 2-Type 2:
Groove Joint Groove Joint

Figure 3.20 Two types of interlocking joint for Grid 1 and Grid 3

Type 1: Type 2:
Pin Joint Groove Joint
‘b ﬂ‘
! s
i
Displacement [mm] 3.293E-13 1.587E-13
i 5.769E-14 8.2710E-14
Dis(z)
-3.2590F-14 -1.281E-13
. 7.900E-14 8.223E-14
Dis(x)
-2.528E-13 -1.073E-13
ik 8.7180E-14 9.983F-14
- IS/
Grid 1 i -2.0480E-13 -1.185E-13
(a)
Type 1: Type 2:
Point Joint Groove Joint
5 5
i L
B 83
e | Uy
Displacement [mm] 9.764E-05 6.749E-13
s 6.569E-05 3.3060E-13
Dis(z)
-5.688E-05 -3.1940E-13
. 8.949E-05 1.370E-13
Dis(x)
-2.568E-05 -1.411E-13
DIs( ) 2.634E-05 1.272E-13
Grid 3 ¥ -1.313E-05 -6.410E-13
(b)

Figure 3.21 Displacements of two types of joints for (a) Grid 1 and (b) Grid 3



The simulation results are shown as table in Figure 3.21 and it is worth
noting that this simulation has no applied load, aiming at testing its ability of
self-supporting during construction process. It is not hard to tell that Grid 1
has much less displacements than Grid 3 for both types of joints shown in
Figure 3.22. When comparing between the two types of joints, groove joints
have larger advantage than pin joints for Grid 3, while comparable
displacements for Grid 1 (Figure 3.23). Nevertheless, Grid 1 has better
performance regarding the displacements when in comparison with both
types of joints.

Type 1: Pin Joint Type 2: Groove Joint
1.200E-04 8.000t-13
5 1.000E-04 A0
:‘ '5 6.000E-13
l:-' R.000F-05 -: 5.0006-13
E E 6.000E-05 n:: — A.000F 13
g= . 5 E 3.000€-13
5 4.000E-05 o= 7 s
o - 2.000-13
a 2.000E-05 b 1 000F 12 I
2 )
0.000E+00 — e — — 0.000C+00 u n .
U Uz Ux Uy U Uz Ux Uy
W lype 1 Iype 1. W ype d: Type 2:
Pin Joint Point Joint Groove Joint Groove Joint
(a) (b)
Figure 3.22 Displacements comparison between Grid 1 and Grid 3 for (a) Pin Joint
and (b) Groove Joint
Two types of Joints for Grid 1 Twa types of Joints for Grid 3
3.500E-13 1.200E-04
_ 3.000E-13 = 1.000E-04
% 2.500E-13 2 STOHETE
€ _  2000E-13 ey
gE E £ 6.000E05
E £ 1500613 g E
| = ] 05
&  1000E13 3 4.000E-05
3 soooews S =] 2.000E-05
0.000E+00 0.000E+00
u Uz Ux Uy U Uz Ux Uy
—Type 1: —Type 2: —Type 1 —Type 2
Pin Joint Groove Joint Point Joint Groove Joint
(a) (b)

Figure 3.23 Displacements comparison between two types of joints for (a) Grid 1
and (b) Grid 3

3.4.5 Conclusion of Chosen Grid

In this section, three types of simulations are conducted to compare the
structural performance between Grid 1 and Grid 3. In all the simulations,
Grid 1 seems to have a better performance regarding grid comparison,
proportion exploration as well as ability of self-supporting. Therefore, Grid 1
is chosen for further exploration.
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3.5.1 Introduction

In previous section, Grid 1 is chosen since it has better structural
performance than Grid 3. To have a more comprehensive exploration
regarding Grid 1, two second-round simulations are thus conducted for more
proportion explorations and to test which proportion performs better with
interlocking joint. In the end, Grid 1 with a proper proportion is chosen as
the base for the algorithm design.

3.5.2 Proportion Exploration (Second Round)

After exploration of four proportions for Grid 1, there exists strange peak
points in the results. Therefore, more proportions are added in the
second-round simulation. In this case, eleven proportions are simulated in
3DEC with the same two load conditions as before (Figure 3.24). The
proportions are varied from b:h=1:2 to b:h=3:1, as the objective is to
comprehensively assess as many proportions as possible. It should be noted
that due to the extreme results of proportion b:h=1:2, the results in the plots
(Figure 3.25) only include the last ten proportions.

POSIN  b:h=2:3  b:h=3:4  b:h=9:10 [ECHSSHEE b:h=5:4  b:h=3:2  b:h=0:5 [EHEHEE bh=5:2 ETES]
(0.5) (0.67) (0.75) (0.9) (1) (1.25) (1.5) (1.8) (2 (2.5) (3)
i b

Grid 1

Figure 3.24 Eleven proportions of Grid 1 for simulation

The results in terms of principal stresses and displacements are shown in
Figure 3.25 and the charts are shown in Figure 3.26 and 3.27 respectively.
They have a similar tendency for the two load conditions, with a big gap for
smaller proportions which gradually reduces as the proportion becomes
larger. For the ‘vertical loads only’ condition, both principal stresses and
displacements slightly decline first, then increase again as the proportion
increases. When the horizontal loads are involved, the trend for the declining
stage is steeper. Nevertheless, larger proportions tend to have a more stable
behaviour with respect to both principal stresses and displacements. To that
end, proportions b:h = 9:5, 2:1, 5:2, and 3:1 are taken into consideration for
further analysis. It must be noted that we have restricted to rational
proportions with integer dimensions as the base grid is a regular and
isotropic voxel grid.



bih=2:3 bih=3:4 bih=9:10
(0.67) (075) (03}

L AR 2L AL 4

(vertical load: 30 Pa; Horizontal Load: 525 Pa)

b:h=3:2 b:h=g:5
(1.5) (18)

3.32e-02 3.43E-02 4.22E02 4.37e02 4.44E-02 4.66E-02 4.55E-02 4.60E-02 4.09€-02 3.73e-02 3.57E-02

Vertical Load Only

Max Pn'ncipa[ -3.46E-02 -3.43E-02 -3.54E-02 -3.48E-02 -3.02E-02 -2.80E-02 -2.55E-02 -2.46E-02 -2.38E-02 -2.19E-02 -2.186-02
145601  LO4E01  9.41E02  7.79E02  6.41F02  5.53F02  479E02  A26E02 43202  3.72E02  3.56E-02
Principal Stress -6.76E-02 -5.08E-02 -4.51E-02 -3.75E-02 -3.47E-02 -2.79E-02 -2.67E-02 -2.43E-02 -2.69E-02 -2.24E-02 -2.096-02
[N/mm?] 128603 276603 | 410603 3.33£-03 7.42603 6.82E-03 635603 7.34E-03 6.026-03 6.80E-03  278E-03
Min Principe] 105601 -9.03E02 | -B.82E-02  -7.89E-02 | -BS6E-02  7.69E02 | -6.75E-02  -6.65E02 | -5.48E-02  -464E-02 | -5.86E-02
247802 1.59E-02 164E-02 124E-02 6.06E-03 771E-03 5.56E-03 8.48E-03 5.88E-03 6.136-03 3.98E-03
-214E01  -136E-01  -129E01  -103E-02  -9.18E-02  -799E-02  -683E02  -627E02  -632602  -574E02  -499E-02
5.16E03 812603 = 9.30E03  1.02E02 | 1.04E-02  1.05E02 | 1.02E-02  9.85E-03  9.59E-03  9.24E-03  8.69E-03
Vertical Load Only
Dis (Total) ) 0 o 0 ) 0 0 0 0 0 0
" . 737602 3.07E02  236E02  1.81E02  159E02 129602 117602 108602  1.0SE02  9.66E03  8.95E-03
Vertical + Horizontal
o 0 o 0 o 0 o o o o 0
Vertical Load Only ) o o 5.21E-04 8.52E-04 1.48E-03 17703 1.98E-03 2.06E-03 21703 2.08E-03
Displacement ] -5.16E-03  -6.52£-03 | -7.28E-05  -B07E-03 | -839E-03  -B.O4E-03 | -807E-03  -B93E-03  -8.85E03  -873E-03 | -B.35E-03
[mm] Diste) Vertical s Horizontal EEEE 379E03 324603 2.69E-03 252603 235603 240603 248603 253603 245603 224603
263602  -180E02  -158E-02 132602 122602 108602  -102602  -983E03  -970E03  -913E03  -861E-03
Vertical Load Only 1.29E-03 3.62E-03 4.21E-03 4.39E-03 4.34E-03 3.98E-03 3.46E-03 2.92E-03 2.65E-03 21203 171E-03
Dis(x) 128603  -362E03 | -421E03  -443£03 | -435E03  -3.98E03 | -3.46E03  -295E03 | -264E-03  -2.14E03 | -172E-03
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(a)
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h bh=2:3 b:h=3:4 b:h=9:10 bih=5:4
(067) (0.75) 039) (125)
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(vertical load: 5175 Pa; Horizontal Load: 525 Pa)

1.14E-01 3.25€-02 3.11E-02 2.95E-02 2.88E-02 2.93-02 3.08E-02 3.18E-02 3.31E-02 3.45e-02 3.54£-02
Vertical Load Only
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Principal Stress. -152601  -362E-02  -348E-02  -301F-02  -274E02  -250E-02  -216E-02  -204E-02 203602  -192602  -192E-02
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E——— -2.60E-01 | -873E-02  -B15E-02 | -685E-02  -650E02 | -564E-02  -489E-02 | -455E-02 | -428E-02 | -40SE-02 | -391E-02
P vertical s Horizontal TCEY 149E-03 2.00E-03 313603 2.49E-03 242603 207603 243603 210603 206E-03 209603
-374E01 112602  -976E02  -781E-02  -7.82E02  -599E02 502602  -437E-02  -448E-02  -381E02  -3.97E-02
" 4.84E-02 4.17e-03 4.00E-03 4.03E-03 4.08E-03 4.29e-03 4.38E-03 4.40E-03 4.41E-03 4.39E-03 4.42E-03
Vertical Load Only
Dis (Total) 0 o 0 0 o 0 0 o o o 0
. . 6.42E-01 1.26E-02 1.00E-02 7.59€-03 6.63E-03 5.56E-03 5.15E-03 4.82E-03 4.74E-03 4.58E-03 4.56E-03
Vertical + Horizontal
0 o 0 0 0 o o 0 0 0 o
442603 0 0 0 0 o o o o o 115605
" Vertical Load Only
Displacement Distz) -2.60E-02 | -417E-03  -390E-03 | -381E-03  -3.82E-03  -400E-03  -412E-03 | -419E03 | -423E03 | -426E-03 | -432E-03
[mm] . 135601 o [} [ [ [ o [ 2.44E07 3.09E-05 3.83E05
Vertical = Horizontal
143601  -B.49E-03  -7.38E-03  -616E-03  -562E03  -499E-03  -475E03  -454E03  -451E03  -444E-03  -4.45E-03
— 291E-02 9.976-04 1.02€-03 1.09E-03 111603 113603 107603 9.56E-04 8.88E-04 7.26E-04 6.39E-04
Dis(x) -290E-02 | -992E-04  -102E-03  -109E-03  -110E03  -114E-03  -107E-03  -356E-04 | -B.82E-04 | -7.40E04 | -6.44E-04
(wind direction) 1.81E-01 152603 151E-03 1.36E-03 1.19E-03 1.07€-03 9.09E-04 7.90E-04 7.336-04 6.37E-04 5.66E-04

Vertical + Horizontal
-6.28E-01  -1.15E-02  -B.0BE-D3  -4566-03  -3.40E09  -2.19E03  -167E-03  -131E-03  -116E03  -923E04  -7.74E-04

(b)
Figure 3.25 Table of results for under vertical load of (a)30 MPa and (b) 5175 MPa
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under vertical load of 5175 MPa and Horizontal Load 525 MPa



3.5.3 Ability of Self-Supporting (Second Round)

The aim of these additional analyses is to select the most promising
proportion within the modular block. To that end, the same eleven
proportions of Grid 1 are again simulated with the interlocking joints (Figure
3.28). In the previous tests, the groove joints show a significant advantage
with respect to the total displacement, therefore, this type of joint is selected
in these round simulations.

b:h:

Grid 1

Figure 3.28 Eleven proportions of grid 1 with groove joints

The table of results are shown in Figure 3.29. In general, the results of the
maximum principal stresses (Figure 3.30(a)) seem to decrease as the
proportion increases. For displacements (Figure 3.30(b)), there are strange
peak points appearing at proportion 5:4, however, the overall trend is
declining as well and the smallest displacements appear at the last two
proportions of 5:2 and 3:1.

bth=1:2  b:h=2:3  b:h=3:4 bth=1:1  b:h=5:4  b:h=3:2  b:h=9:5

: bth=2:3  b:h=3:4 b:h=3:10 ITLSEE b:h=5:4 b:h=32  b:h=9:5 [ELZH]
(0.5) (0.67) (0.75) (0.9) (1) (1.25) (1.5) (1.8) (2)

b:h=2:1

b:h=5:2
(2.5)

Proportion 0.5 0.67 0.75 0.9 125 15 18 2

Max Principal 6.64E-13 7.19E-13 9.13E-13 6.84E-13 5. !DE 13 4.32E-13 4.76E-13 4.23E-13  4.68E-13

Principal Stress -1.23E-13  -2.55E-14 -1.42E-13 -2.86E-14 -2.24E-15 -5.82E-14 -1.31E-14 -3.62E-14 -2.00E-14
[N/mm?] Min Prinicipal 9.17E-14 8.29E-14 7.97E-14 6.92E-14  2.50E-14 5.97E-14 3.61E-14 5.54E-14 2.99E-14
-4.57E-13  -5.52E-13 -8.20E-13 -4.96E-13 -5.28E-13 -4.75E-13 -5.48E-13 -2.77E-13  -3.09E-13

Dis(Total) 4.18E-13  3.72E-13 1.93E-13 2.56E-13 3.28E-13 4.21E-13 3.15E-13 1.54E-13 1.42E-13
Dis{zjua) 2.20E-13 1.90E-13 1.87E-13 1.74€-13 9.97E-14  2.35E-13 9.31E-14  -1.00E-13  9.53E-14

Displacement -2,03E-13  -1.23E-13 -1.16E-13 -1.63E-13 -1.10E-13 -1.76E-13 -1.25E-13 -1.08E-13 -9.10E-14
[mm] Disfx)iu) 8.13E-14 | 7.11E-14  9.10E-14  2.26E-13  1.15E-13  3.37E-13  3.88E-14  6.49E-14  5.46E-14
-2.91E-13  -2.556-13 -1.05E-13 -2.27E-13 -2.04E-13 -3.34E-13 -1.43E-13 -5.39E-14 -1.10E-13

Disfy)ius) 2.77E-13 | 6.87E-14  1.27E-13  1.33E-13 1.02E-13  2.45E-13  5.28E-14  5.24E-14 1.16E-13

-9.70E-14 = -2.64E-13 | -7.49E-14 -1.74E-13 -2.89E-13 -1.06E-13 -2.66E-13 -1.30E-13 -8.12E-14

Figure 3.29 Table of results of displacements of Grid 1 with groove joints
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Figure 3.30 (a) Principal Stresses and (b) displacements of Grid 1 with groove

joints

(3)

b:h=3:1

3
2.25E-13
-1.47E-14
1.48€-14
-2.60E-13
1.29E-13
8.40E-14
-9.88E-14
9.46E-14
-8.81E-14
5.36E-14
-8.37E-14
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3.5.4 Conclusion of Chosen Proportion for Grid 1

From the conducted analyses, Grid 1 was observed to perform better than
Grid 3. Subsequently, when varying the proportions of Grid 1, proportions
b:h = 9:5, 2:1, 5:2, and 3:1 are found to behave better, while when varying
the grid proportion with groove joints, proportions b:h = 5:2, 3:1 have the
lowest displacements. Therefore, proportion b:h = 5:2 (Figure 3.31) is finally
chosen as a base for the algorithm design.

Figure 3.31 Chosen Grid 1 with Proportion 5:2
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Chapter 4

Algorithm Design
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This section elaborates on the algorithm design for approximating the shell

structure. The algorithm is

inspired by Selina Bitting’s work on

reconfigurable domes [34], and is mostly developed within the COMPAS
framework coupled with GHPython in order to automatically generate the

voussoir geometry for construction. The algorithm design is divided into

four phases: 1) Generating a 3D grid system; 2) Funicular form-finding; 3)

Approximating shell structure [35, 36]; 4) Refining the approximated shell

structure by subdividing and smoothing the block shapes. These four parts

are elaborated in sections 4.3, 4.4, 4.5, and 4.6 respectively, while an

overview of the entire procedure can be found in Figure 4.1.

The methodology is preferably user-oriented, meaning that there are some

decision variables that users can choose (i.e. the size of modular block, the

size of base area, the level of intrados' smoothness. etc). In this case, the

outcome of this methodology could be optimally performed from the user’s

point of view, thus reduce material use and increase structural efficiency to

the largest extent.
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Before the algorithm design, one thing needs to be defined is the size of the
chosen grid. This is a decision variable for the users to determine the size of
block, and the size settled here is under careful consideration to provide as a
reference for the users, however, users can also change the size of block to
their preference.

The first consideration of the size of block is the weight of a modular block.
The aim of this project is to generate voussoir geometry for easy
construction, therefore, the weight of a block can determine if it is easy for a
man to carry, thus influence the extent of convenience during the
construction process. Starting with Grid 1 with a proportion of 5:2, the 3D
grid system can be constructed by first specifying the block size as a
user-defined input. In this case, block dimensions of 150mm in width and
60mm in height are chosen to ensure that the block is light enough (in this
case about 2.43kg considering the hypothetical density of normal masonry
material of 1800kg/m?) to be lifted by a human being (Figure 4.2(a)).

The second consideration is its effect on the size of modular housing unit. By
considering the normal wall thickness of a housing unit as 300-450mm, the
wall thickness can be easily achieved by two to three modular blocks with
the size of 150mm (Figure 4.2(b)).

The third consideration is the staircase for housing unit. In order to create a
comfortable riser for staircase, the common value for a riser of 180mm can
be easily achieved by three of the modular blocks (Figure 4.2(c)).

60mm

150mm

150mm

‘Iread: 300mm
e

o
=
I

[ Riser: |8(m
sy
Wall thickness: 300mm
A B (&
Easy to lift Modular wall thickness /Modular housing unit Suitable size of staircase

Figure 4.2 Size of block and its considerations
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The first part is to construct a 3D grid system from the chosen grid and this
grid system serves as the first input for the third phase of shell structure
approximation. From the chosen Grid 1 with a proportion of 5:2, the 3D grid
system can be constructed by first specifying the block size as a user-defined
input. As decribed in the previous sub-section, the size of a modular block is
settled to be 150mm*150mm*60mm. In this process, a basic voxel grid is
first constructed in GH_CPython by defining the number of grids in three
directions, then by selecting the centre point for each block, the 3D grid
system can be built by constructing vectors at every centre point in
GHPython components in Grasshopper (Figure 4.3).

Visualization of Voxel Grid

Create 3d point grid
Input GH CPython

Number of grid in xyz direction (Odd Number) fa

Xy Size of Block (Even Number)
o150

z Size of Block (Even Number)
=S| o b-

| Generate Block from Center Points

Figure 4.3 Generating a 3D Grid System in Grasshopper Python Component

4.2.1 Generating Voxel Grid

The first step to generate a 3D gird system is to generate a voxel grid. The
voxel grid is a regular grid that can form a block when several of them are
combined together (in this case, 8 voxels can form a modular block).
Therefore, grid of voxel size is created according to the input data of number
of grids in x, y, z direction (in this case, 11 grids in x direction, 13 grids in y
direction, 13 grids in z direction) as well as size of block (in this case,
150mm in x and y direction, 60mm in z direction) (Figure 4.4). The input
data are the variables that the users can define themselves, meaning that they
can change the size of block as well as change the number of grids.
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Figure 4.4 Generating Voxel Grid

4.2.2 Pick Centre Point for Each Block

After generating the voxel grid, an essential step is to find the centre point of
each block. According to the chosen grid in Chapter 3, the upper block relies
on one-quarter of the lower block, therefore, the centre point changes
regularly due to the layer change. By finding the regularity of change of
centre points by layer change, the centre points can be easily selected (Figure
4.5). Assuming that the layering of block start from the left corner of the grid,
the center point in the first layer will locate on every second of even number
grid, while the center point in the second layer will locate on every second of
odd number grid.
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Figure 4.5 Selecting Centre Points for Modular Blocks
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4.2.1 Generating 3D Grid System

After obtaining all the centre points of modular blocks, the 3D grid system
can be thus generated. First, a modular block of size 150mm*150mm*60mm
is generated using COMPAS framework, then the centre point of the
constructed modular block is obtained. Afterward, by constructing vectors
from the centre point of the constructed modular block to every centre point
selected in the previous step (Figure 4.6), the constructed modular block can
be transformed to the grid system, and thus the 3D grid system is generated
(Figure 4.7). An overview of pseudo code for generating the 3D grid system
can be seen in Algorithm 1.

Figure 4.6 Constructing vectors to every centre point of modular blocks

150mum

3D Grid System: Isometric View

150mmma

3D Grid System: Side View

Figure 4.7 Generating 3D Grid System
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Input: 1. ngrid_x, ngrid_y, ngrid_z
2. block_xy, block_z

Output: 3D _grid system

voxel points = [0 to ngrid_x, 0 to ngrid vy, 0 to ngrid_z]

voxel points_with_size = [voxel points x*block xy/2, voxel points y*block xy/2, voxel points_z*block z/2]

cenl = voxel points_with_size [(voxel points_x%2==1) & (voxel_points _y%2==1) & voxel_points _z%4==1)]

cen2 = voxel_points_with_size [(voxel points_x%2==0) & (voxel_points _y%2==0) & (voxel points _z%4==3)]

cen = cenl+cen2

block = Block (block_xy, block xy, block z)
block centroid = block.centroid()

for i in range (cen_number):

trans_vector = Vector(cen_x[i]- block centroid x, cen_y[i]- block centroid y, cen z[i]- block centroid z)

3D grid system = block.transformed(trans_vector)

Algorithm 1 - Pseudo Code for constructing 3D grid system

The second step is to generate a predefined shell shape using form-finding

methods. For the form-finding process, several form-finding methods are

researched in the literature review, namely Force Density Method, Dynamic

Relaxation and Thrust Network Analysis. Among the form-finding methods,

the Force Density Method [37] is chosen due to its multiple advantages: it

requires less prescribed quantities, is easy to control, and can tackle

compression-only structures efficiently.

out

fdm_mesh

gﬁ. 125 ¢ '; loc x fdm_mesh _visual

bounding_x_min

50 & q loc y bounding_x_max
bounding y min

bounding_y_max

Figure 4.8 Generating a Relaxed Mesh in Grasshopper Python Component
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To that end, a base mesh is first created within COMPAS, then by using the
Force Density Method, a relaxed mesh is generated by applying loads to all
the vertices and setting q (force densities, i.e. the ratio of the force/thrust
over the length of each edge, roughly meaning the same thing as the stiffness
of the chosen material) to every edge (Figure 4.9) (Algorithm 2).

However, it is worth noting that the choice of form-finding method is
another decision variable that users can control, meaning that they can
choose the most suitable form-finding method of their preference to generate
a form-active shape themselves. Other decision variables within this step are
the size of the base mesh (in this case, a rectangle with size of
800mm*500mm) and the location of the relaxed mesh in the 3D Grid
System (loc_ x and loc_y in the grasshopper component shown in Figure
4.8).

base _mesh relaxed mesh

Figure 4.9 Generating a Relaxed Mesh in Grasshopper Python Component

Input: base_mesh

Output: relaxed_mesh

vertices, faces = base_mesh. to_vertcices _and_faces()

edges = base_mesn.edges()

boundary vertices = base_mesh.vertices_on_boundary()

loads = [[0,0,30]] * (len(vertices))

gpre = [1] * (Ien(edges))

Xyz, q, f, I, r = compas.numerical.fd_numpy(vertices, edges, boundary_vertices, qpre, loads)

relaxed mesh = compasmesh.from_vertices_and_faces(xyz, faces)

Algorithm 2 — Pseudo Code for generating relaxed mesh
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4.5.1 Intersection between the Generated 3D Grid System and
Predefined Shell Structure

In this phase, the predefined shell shape is approximated using the method of
topological polyhedralization (i.e. finding the minimal set of necessary and
sufficient blocks to represent the topology of the predefined shell shape
obtained in the last step, using its wireframe network as a reference, as
explained in [35] and [38]) with the generated modular blocks by
intersection. The goal of this phase is to roughly obtain the shell with a
combination of interlocking modular blocks so that the structure is
self-supporting during the construction process. Therefore, in the intersection
process, all the modular blocks intersecting with the predefined shell mesh
are selected to achieve the rough approximation.

The intersection algorithm is conducted by using grasshopper component
“mesh | mesh”. When one block is intersected with the relaxed mesh, the
intersection component allows to detect the intersection lines in between.
Afterwards, “list length” component will transfer the lines intersected into a
list which tells how many lines does each block has if it is intersected with
the relaxed mesh. By a component called “Boolean”, which could basically
transfer wherever there is a number in a list into Boolean values like “True”
or “False”, a new list could be obtained with Boolean values representing if
a block is intersect with the relaxed FDM mesh. By deleting the blocks in the
list who has a “False” value, a new list with blocks with “True” values could
be achieved representing blocks that are intersecting with the form-finding
mesh (Figure 4.10).

e Blotk Meshes

Figure 4.10 Shell Structure Approximation in Grasshopper Python Component
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Figure 4.11 3D Grid System and Predefined Shell Structure before intersection
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Figure 4.12 Approximated blocks after Intersection
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4.5.2 Selection of Outer Blocks, Intersected Blocks and Inner Blocks

In the previous step, the modular blocks intersected with the relaxed mesh
were selected. However, outer blocks also need to be retained to ensure a flat
surface on the top of the vault for the construction of the second floor.
Consequently, the outer blocks and inner blocks are respectively selected
within this step. By identifying the blocks within the range of the
form-found/relaxed mesh, blocks within this range can be selected.
Afterward, inner blocks can be obtained by deleting the intersected blocks
and outer blocks can thus be obtained by deleting both inner blocks and
intersected blocks (Algorithm 3). Finally, inner blocks are removed because
they are not conducive to the structure when the vault structure is already
predefined by the form-finding process. Outer blocks and intersected blocks
are reserved for further refinement of the shape of the voussoir components
(Figure 4.14).

Block Scale: Outer Blocks
{without Intersection blocks)

Extract Centroids of Blocks & Intersection Blocks

Block Scale: Inner Blocks
(without Intersection blocks)

il

Intersection Blocks

Figure 4.13 Selection of Outer Blocks, Intersected Blocks, and Inner Blocks in
Grasshopper Python Component

Input: blocks, intersected_blocks

Output: outer blocks, intersected_blocks, inner_blocks

inside block include intersected blocks =[]
for p in blocks:
if relaxed mesh.IsPointInside(p,0,False) = True:

inside block include intersected blocks.append(p)
inner_blocks = np.delete(inside_block include intersected blocks, intersected blocks)
mask = np.ones(len(blocks),bool)
mask[index inner blocks] =0

reserved_block include intersected blocks = blocks [mask]

outer_blocks = np.delete(reserved block include intersected blocks, intersected blocks)

Algorithm 3 — Pseudo Code for selecting outer blocks, intersected blocks, and inner blocks
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Figure 4.14 Outer Blocks, Intersected Blocks, and Inner Blocks

After the process of shell structure approximation, the last step involves the
optimization of the intrados (Figure 4.15) by diversifying block types on a
higher resolution voxel grid. When different shapes of vaults are generated
from topologically different tessellations and the same settings for the
form-finding process as input, the blocks for intrados can be distinct and
diverse.

Section A-A Section B-B
Figure 4.15 Intrados for optimization
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4.6.1 Sub-Tessellation Within Every Intersected Block

\========,( Sub Tessellation
intersection_blacks P e

block xy

. Sub-blocks
()=

Figure 4.16 Sub -Tessellation Process in Grasshopper Python Componenet

Even though a stacking of the rough blocks might be acceptable as an
approximated shell structure, the size of a modular block is usually large and
thus not suitable to achieve an aesthetic and elegant intrados for people to
live in. To break the restriction of the size of the block, the sub-tessellation
process provides the opportunity to refine the intrados at a higher resolution
of the grid. By subdividing each block along every edge into equal number
of segments, each modular block can be sub-tessellated into smaller
sub-blocks (efficiently in a deeper layer of an octree voxelated space). In the
example shown in Figure 4.17, a modular block is respectively
sub-tessellated into 8 sub-blocks in total (i.e. 2 segments along each edge/ a
one level deep octree) and 64 sub-blocks in total (i.e. 4 segments along each
edge/ a two levels deep octree). To achieve sub tessellation within every
single block, a “VolMesh” grid is first created within COMPAS framework,
then sub-blocks can be generated by construct vectors to every intersected
block (Algorithm 4). In the following steps, sub-tessellation of level 2 (64
sub-blocks) are used as an example.

Sub Tessellation Within Block Remove Unnecessary Sub Blocks

2 Segments
along Each Edge

Modular Block

> 4 Segments
along Each Edge

Intersected Blacks Intersected Blocks After Sub-Tessellation

Figure 4.18 Intersected Blocks after Sub-Tessellation
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Input: 1. intersected_blocks

2. sub_num_xy,sub_num z

Output: outer blocks, intersected_blocks, inner_blocks

sub_mesh = VolMesh (block xy/sub_num_xy,block xy/sub_num_xy, block z/ sub_num_ z)

sub_centro = sub_mesh.centroid()

sub_blocks =[]
for i in range (len(intersected blocks)):
trans_vector = Vector.from_start_end(sub_centro, intersected blocks centrol[i])
T = Translation.from_vector(trans_vector)
M = submeshgrid.transformed(T)
for j in range (sub_num_ xy*sub_num_xy*sub num z):
sub_block = VolMesh.cell_to_mesh(M,j)
sub_blocks.append(sub_block)

Algorithm 4 — Pseudo Code for sub-tessellation process

4.6.2 Intersection between the Sub-blocks and Predefined Shell
Structure

In the previous step, sub-blocks are obtained. These sub-blocks are again
intersected with the same predefined shell shape following the same process
as in the shell structure approximation process in Section 4.5.1, three kinds
of sub-blocks then can be categorized within the intersected blocks,
respectively outer sub-blocks, intersected sub-blocks, and inner sub-blocks.
and the sub-blocks that do not intersect, as well as within the range of
predefined shell shape (inner sub-blocks), are selected to be removed in the
next step.

Pick Reserved Blocks outside FOM Mesh ‘Outer Sub-Blocks
{uith Intersection)
=

e
moﬂmm Sub-Blocks
—i =

Hanging Sub-Blocks
7

Figure 4.19 Intersection process with Sub-blocks in Grasshopper Python Component
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Figure 4.20 Outer Sub-blocks, Intersected Sub-blocks, Inner Sub-blocks,

4.6.3 Trimming of Inner Sub-blocks from Its Original Blocks

From the previous step, the intersected sub-blocks already have a higher
resolution of approximation (Figure 4.21), so the unnecessary sub-blocks
need to be deleted from its original blocks. Therefore, a trimming process
(Figure 4.22) is conducted to cut these sub-blocks from their original blocks,
thus returning a customized block for the intrados while the outer blocks are
kept generic. This process removes the unnecessary sub-blocks, keeping the
same topology, but different geometry of the original blocks.

Section A-A Section B-B

Figure 4.21 Approximated Sub-blocks in a higher resolution
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Trim Sub-blocks from Blocks

Trimmed Blocks

—
Figure 4.22 Trimming Process in Grasshopper Python Component

With the previous step, the inner sub-blocks are obtained. By finding the
index, it is easy to know which inner sub blocks belongs to which blocks.
Next, by first joining the sub-blocks need to be trimmed within every
intersected block, these sub-blocks can be removed from their original
blocks easily within the trimming process (Algorithm 5).

Input: sub_blocks to_trim, intersected_blocks

Output: Trimmed_blocks

# Join sub-blocks need to be trimmed within every intersected blocks
def joined sub(block id):
if len (sub_blocks to_trim[block id])>1:
union_sub = ghc.MeshUnion(sub_blocks to_trim[block id])
if len (sub_blocks to_trim[block id])=1:
union_sub = sub_blocks_to_trim[block id][0]

return union_sub

# Trimming sub-blocks from every intersected blocks
def trimmed_block(block id):
trimmed_block = ghc.MeshDifference(intersected blocks[block id], joined sub(block id))

return trimmed_block

# Trimming Process

trimmed_blocks =[]

for i in range (len(intersected blocks)):
trimmed = trimmed_block(i)

trimmed_blocks.append(trimmed)

Algorithm 5 — Pseudo code for trimming process within each intersected block
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Figure 4.23 Intersected Blocks Before Trimming and After Trimming

Figure 4.24 Intersected Blocks After Trimming Process



4.6.4 Dealing with Hanging Blocks

After the trimming process, a problem still needs to be solved: there are
blocks without feet to stand on, which means they are hanging in the air. To
deal with this issue, these blocks are firstly detected by checking if they have
bottom sub-blocks (if all the bottom sub-blocks within the block are deleted)
and if there is at least one-quarter of contact surface underneath (there is at
least one foot-block below) (Algorithm 6), then these blocks are going to

find their neighbour blocks by choosing their closest block on the same layer.

By joining these hanging blocks and their neighbour blocks, the problem can
be solved.

Find Index of hanging blocks and
their neighbor block

—

p sy = =
A o | Join hanging block and neighbor block

Replaced_blocks
@

Figure 4.25 Dealing with Hanging Blocks in Grasshopper Python Component
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Figure 4.26 Detecting Hanging Blocks and Join them with their neighbour block
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Input: outer_sub_blocks, intersected sub_blocks, inner sub_blocks, intersected blocks

Output: hanging blocks

reserved_sub = outer_sub_blocks + intersected_sub_blocks

for i in range (len(intersected blocks)):

overlapping_sub = set(bottom_layer sub(i)).intersection(reserved sub)

if len(overlapping_sub) = 0:
hanging_blocks.append(i)

else:

range = range0, rangel, range2, range3 # 4 square contact area for a block

if (range0 is not full)&(rangel is not full)&(range?2 is not full)&(range3 is not full):
hanging_blocks.append(i)

else:
index = range [range is full]
range below = range4, range5, range6, range7
if (range_below is full).any() = False:
hanging_blocks.append(i)

Algorithm 6 — Pseudo code for detecting hanging blocks

yd If no sub-blocks exist in bottom laycr

Bottom Layer of Sub-blocks

If there are sub-blocks exists in bottom layer,
then check if any of the the four bottom areas is full

Figure 4.27 Detecting the Hanging Blocks
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(a) (b)

Figure 4.28 (a) Detected Hanging Blocks and (b) Joined Hanging Blocks

4.6.5 Smoothing Intrados for Every Block

Although the process allows obtaining sub-tessellated blocks in a
higher resolution of the grid, the trimmed intrados is not ideal yet. To
make the intrados as smooth as possible for people to live in as well as
to ease the process of manufacturing each block from moulds, a
smoothing process is conducted within this step (effectively using the
Catmull-Clark subdivision of the outer mesh surface of each block).
This process smooths surfaces of intrados within every block facing
inwards in order to provide a comfortable inner space. All the inner
deleted blocks are gathered together for the selection of the intrados.
By detecting if there are overlapping faces between all the deleted
inner blocks and reserved outer blocks, the intrados can be finally
selected (Algorithm 7). Afterward, this intrados can be returned by
every block facing inwards and smoothed (Figure 4.31, 4.32), thus
obtaining the smoothed modular blocks (Figure 4.30). Lastly, by
adding the interlocking joints, the voussoir geometry for each block
can be thus obtained for the construction process.

Boundary of Outer Faces

Boundary of Inner Faces

Extract Intrados

Figure 4.29 Smoothing Intrados in Grasshopper Python Component
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Input: outer_blocks, trimmed_blocks, inner blocks, outer sub_blocks, intersected_sub_blocks,

inner_sub_blocks

Output: smoothed blocks

inner_deleted blocks = inner_blocks + inner_sub_blocks

final blocks = outer_blocks + trimmed_blocks

face touched = [x[(x == inner_deleted blocks faces).all(2).any(0)] for x in final blocks faces]

smoothed blocks =[]

for i in range (len(final blocks):

if len(final _blocks[i].faces_to_smooth) == 0:

smoothed blocks.append(final blocks][i])

else:
faces to _smooth within_block = face touched [i]
faces_to_smooth joined = ghc.MeshJoin(faces to_smooth within_block)
catmull = wb.Common.Subdivision.CatmullClark(faces to smooth_joined,3,0)
face replaced = ghc.MeshJoin(catmull, rest faces within block)

smoothed blocks.append(face replaced)

Algorithm 7 — Pseudo code for extracting and smoothing intrados

Example of Smoothed Modular Blocks

Figure 4.30 Example of Smoothed Modular Blocks
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Figure 4.32 The Smoothed Intrados
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4.6.6 Verification

This sub-section evaluates the results of the algorithm design using
physical models by 3D printing. Five layers of a corner of the final
structure are printed as shown in Figure 4.33. The pictures show a smooth
process of interlocking mechanisms and ensures self-supporting ability,
thus verify the results to some extent. However, the 3D printing results
doesn’t represent the practical model, therefore, a practical verifications
process is still needed for the further development of the algorithm.

Figure 4.33 — A corner of 3D printed results
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Chapter 5

Conclusion
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In this paper, a new methodology was presented for automatically generating
modular voussoir geometries with interlocking mechanisms for the
fabrication of stackable structures, which are also self-supporting during
construction, thereby eliminating the need for expensive and temporary
formworks and falseworks.

Three types of space-filling grids are firstly designed, then by a general
comparison, two grids (Grid 1 and Grid 3) are chosen for structural analyses.
Three types of structural analyses are conducted between the chosen two
grids, respectively grid comparison, proportion comparison and ability of
self-supporting (two types of interlocking joints are tested). In all the
analyses, Grid 1 has a better performance regarding the results of principal
stresses and displacements. Next, two more analyses are conducted in Grid 1
for exploration of proportions and ability to self-support. In the end,
proportion 5:2 is chosen as the most suitable proportion for Grid 1 to
continue as a base for the algorithm design.

In the process of the four-step algorithm design, a 3D Grid System is firstly
constructed based on the chosen Gird 1 with proportion 5:2, while the
proportion and size of block in this step is defined as user input, meaning
that users can choose their preferred block size and proportions themselves.
In the second step, a shell structure is obtained by a form-finding process (in
this case, using Force Density Method). However, the method for
form-finding is another user-define choice that users can choose their
preferred form-finding methods as well. The first two steps provide as inputs
for the following steps. By obtaining the 3D Gird System and the predefined
shell structure, an approximated shell structure can be gained in the third
step. Last but not least, a refining process is conducted in the fourth step.
The last step is aiming at smoothing the Intrados to provide a comfortable
spatial space for people to live in. Therefore, a sub-tessellation process is
conducted within the approximated blocks, then by removing the
unnecessary sub-blocks within every modular block and smooth the intrados
for each block, final voussoir geometry are obtained, with the blocks facing
inwards customized and other blocks generic.

In the final results, the designed interlocking mechanisms make it possible
for the structures to be easily demounted, while reconfigurability is
facilitated by keeping the voussoir geometries, for the most part, generic.
The main exceptions are the inward-facing blocks, which are customized in
order to better approximate the geometry of the shell shape obtained from
the form-finding process. Users applying the methodology can also
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determine the levels of sub-tessellation and thus determine the degree of
smoothness of intrados (and thus the degree of customization of inner
blocks). However, it should be pointed out that these customized blocks are
expected to comprise only a small part (24% in this case) of the total
structure, meaning that most of the structure can still be reused, but this
fraction are to be reduced in the future work.

Additional limitations include: 1) the base mesh for the form-finding process
is assumed as a rectangle to ensure the successful selection of inner blocks
and outer blocks; 2) the degree of sub-tessellation is identified through an
even number to ensure full contact when unnecessary sub-blocks are
removed. Further developments are therefore needed to improve and validate
the method, and develop a practical tool to be used by designers. 3) Although
the current customized blocks occupied a small fragment of all the blocks,
this number still needs to be reduced in the future work to increase the
efficiency of mass production (in the example case, the total number of
blocks are 250, and the customised blocks are 54, takes 21.6% of the total
blocks).
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Appendix 1: Input Data for Structural Analyses

1. Material Property

Density [kg/m?]

Young's Modulus [kN/m?]
Passion Ratio [-]

Angle of Friction [°]
Flowstress Ratio [-]
Dilation Angle [°]

Hardening behavior type

Drucker
Prager
Data
Contact Tangential Behavior
Property

Normal Behavior

2. Basic Units in Abaqus and 3DEC

1) Units in Abaqus

Table 1. Consistent units.

Material Property
1800
1.55E407
0.2
31.79
0.8
2.85
Drucker Prager Hardening
Compression
Yield Stress [MPa] Abs Plastic Strain [-]
7.26 0
7.03 0.00043
6.58 0.0029
5.9 0.0044
4.83 0.005
Friction formulation Penalty
Friction Directionality Isotropic
Friction Coefficient Slip Rate  Contact Pressure [kPa]
1.504 0 0:5
0.91 0 1
6116 0 2

Pressure Overclosure "Hard" Contact

Abdulla, K. F., Cunningham, L. S., &amp; Gillie, M. (2017). Simulating masonry wall behaviour using a
simplified micro-model approach. Engineering Structures, 151, 349-365.
https://dot.org/10.1016/}.engstruct.2017.08.021

Quantity SI SI (mm) US Unit (ft) US Unit (inch)
Length m mm ft in
Force N N Ibf Ibf
Mass kg  |tonne (103 kq) slug Ibf 52/in
Time s s s s
Stress |pa (N/m2) MPa (N/mm?2)| Ibf/ft2 psi (Ibf/in?)
Energy ] ml (1073 J) ft Ibf in Ibf
Density | kg/m3 | tonne/mm3 | slug/ft3 Ibf 52/in*
2) Units in 3DEC
Property Sl Imperial
Length m m m cm ft in
Density | kg/m> |10%kg/m® 10%kg/m® 108g/em®  slugs/ft®  snails/in®
Force N kN MN Mdynes lbf Ibf
Stress Pa kPa MPa bar Ib /ft2 psi
Gravity m/sec? | m/sec? m/sec? cm/sec? ft/sec? in/sec?
Ball N/m kN/m MN/m  Mdynes/cm Ibg/ft Ibg/in

stiffness




Appendix 2: Applied Load Cases for Structural Analyses

.
1. Applied Load Cases
Block & applied loads
Voxel unit dimension
HeightxWeightxLength 0.45x0.45x0.45
[mxmxm]
Number of voxels for single 8
brick [-]
Self-weight per brick [kg] m=pV 7.3728
Characteristic value of snow load 0.45
Snow load [kN/m?] (sg) EN 1991-1-3 (zone Al) 0.675KN/m?
safety factor 1.5
= 3 kN/m?
2 4.5KN/m?
Livelond [KNfme] safety factor 1.5 fm
Basic velocity pressure 0.35
Horizontal ‘Wind load [kN/m?] (q) EN 1991-1-4 (zone 2) 0.525kN/m?
safety factor 1.5

2. Applied Load Cases in 3DEC and Abaqus respectively

G1:5.175%0.45%0.45*%1000
5175N/m? =1048N
G2: 1048/2=524N

0.525kN/m? 525N/m? 0.000525kN/mm?



