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Abstract The use of principal points and principal vectors in the formulation of the equa-
tions of motion of a general 4R planar four-bar linkage is shown with two kinds of methods,
one that opens kinematic loops and one that does not. The opened kinematic loop approach
analyses the moving links as a system with a tree connectivity, introducing reaction forces
for closing the loops. Compared with the conventional Newton–Euler method, this approach
results in fewer equations and constraint forces, whereas the mass matrix entries remain
meaningful, but there is a stronger coupling between the equations. Two equivalent mass
formulations for the closed kinematic loop approach are presented, which need not open
the loop and introduce loop constraint forces in the equations of motion. With the method
of complex joint masses, the mass of the links closing the loops is represented by real and
virtual equivalent masses, defining the principal points. The principle of virtual work with
the inclusion of inertia terms is used to derive the equations of motion. As an example the
dynamic balance conditions of the four-bar linkage are derived. With the method of the
equivalent mass matrix it is shown how a constant mass matrix can be used to describe
the dynamics of binary links with an arbitrary mass distribution. A four-bar linkage could
be modelled with only three truss elements instead of the conventional result with three or
more beam elements, which gives a significant reduction of the computational complexity.

Keywords Linkage · Principal point · Principal vector · Virtual work · Equivalent mass ·
Complex joint mass · Truss element

1 Introduction

This article presents a sequence of three ways to derive the equations of motion of planar
linkages. The planar 4R four-bar mechanism is used as an example. It is intended to find
methods which present the equations of motion in a meaningful and insightful way such that
the influence of varying the individual design parameters on the dynamics can be grasped.
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Such methods are useful for the synthesis of mechanisms with desired dynamic properties
as a starting point in the design process. As a step towards this ultimate goal, the use of
principal points and principal vectors in the derivation of the equations of motion and also
of two equivalent mass descriptions are considered.

Principal points and principal vectors were introduced by Fischer [1, 2] for determining
the equations of motion of articulated bodies. In particular, they were applied for the inverse
dynamics for human gait analysis [3]. Later on, the principal points were also found as
in the Roberson–Wittenburg formulation [4], where they were named barycentres of so-
called augmented bodies, equivalent to the reduced systems introduced by Fischer. It was
shown by the second author [5, 6] how the theory of principal vectors is generalized and
extended to mechanisms with multiple closed loops. For determining the principal points
and principal vectors, a method for equivalent mass modelling was presented, using real and
virtual equivalent masses. The theory was applied to the shaking force and shaking moment
balancing of mechanisms [7], with the benefit that dynamic balance properties could be set
as a starting point in the design process by the synthesis of balanced mechanism solutions
from inherently balanced linkage architectures. The presented method for equivalent mass
modelling can be considered as a graphical interpretation of the method of complex joint
masses by Freudenstein [8, 9].

Another approach for modelling the mass distribution is by the constant mass matrix for
planar rigid bodies as derived by García de Jalón in the context of the natural coordinate
formulation [10]. This description also includes the rotary inertia and initially removes the
velocity-dependent inertia terms from the equations. It is shown that the same mass matrix
can be used to model the dynamics of a truss element with a general mass distribution in the
program SPACAR [11].

The article starts with a kinematic analysis of the four-bar mechanism. Then the tradi-
tional derivation of the equations of motion with an opening of the closed kinematic loop
is given, but principal points and principal vectors are applied. Next, equivalent complex
masses are used for the description of the linear momentum of the links, and it is shown
that the procedure for obtaining principal points and principal vectors with these complex
masses remains unchanged. Then a description with mass matrices is shown. The equivalent
mass matrix as implemented in the multibody program SPACAR is applied to a numerical
example. This article builds on two previously published conference papers [12, 13], which
deal with the same subject.

2 Kinematic relations for a four-bar linkage

A planar 4R four-bar linkage as shown in Fig. 1 is considered. We start by analysing the
configuration, velocities and accelerations of this mechanism.

2.1 Configuration analysis

Some notation is introduced as follows. The four links are numbered 1, 2, 3 and 4. The
length of link k, that is, the distance between its two joints, is denoted by lk . The locations
of the revolute joints are at the points A0, A1, A2, and A3. Link 1 between A0 and A1 is the
crank. In the use of terminology, we assume that the crank can make a continuous rotation,
so the Grashof condition is satisfied, but, except in the singular positions, this condition is
not necessary for the equations to be valid. Link 2 between A1 and A2 is the coupler, link 3
between A2 and A3 is the rocker, and link 4 between A3 and A0 is the frame which is held
fixed to the ground. A fixed coordinate system A0xy has its origin at A0, its x-direction is



Principal vectors and equivalent mass descriptions for the equations

Fig. 1 Planar 4R four-bar mechanism with its parameters

along A0A3, and its y-direction is obtained by rotating the x-direction by a right angle in
the positive direction.

The relative and absolute positions of points will be represented by two-dimensional
vectors, which are indicated by an overbar. They will also be considered complex numbers,
where the absolute value is the length of the vector, denoted by the same symbol without
an overbar, and the argument is the angle of the positive direction of the vector with the
x-axis. For instance, the link lengths and their orientations are denoted by l̄k = lk exp(iθk) =
lk cos θk + ilk sin θk , where θk is the angle of link k with the global x-direction as shown in
Fig. 1. For the fixed link 4, θ4 = π .

The scalar product is defined as the usual inner product of two vectors, for which a
notation with angle brackets is chosen. If x̄ and ȳ are two complex numbers, the inner
product of the corresponding vectors can be expressed as 〈x̄, ȳ〉 = 1

2 (x̄∗ȳ + ȳ∗x̄) = Re(x̄∗ȳ),
where a superscript asterisk denotes a complex conjugate and Re indicates the real part.

With the above notation, the loop-closure conditions can be expressed as

l̄1 + l̄2 + l̄3 + l̄4 = 0̄, (1)

where 0̄ is the zero vector or the complex zero. The angle θ1 is chosen as the independent
coordinate and the angles θ2 and θ3 and all position coordinates of the joints and the centres
of mass of the links are dependent coordinates. Several ways to determine the dependent
coordinates can be found in the literature; see, for instance, [14]. Here, we use a way, similar
to a method presented in [15], that limits the introduction of trigonometric functions and
their inverses in the equations and is numerically stable if the kinematic problem itself is
stable. Furthermore, it makes the choice between the two possible configurations simple.
With the vector l̄23 = l̄2 + l̄3 = −l̄1 − l̄4 having the length

l23 =
√

(l4 − l1 cos θ1)2 + (l1 sin θ1)2 =
√

l2
1 + l2

4 − 2l1l4 cos θ1, (2)
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we introduce the additional lengths d23 and h23 shown in Fig. 1 as

d23 = l2
23 + l2

2 − l2
3

2l23
, h23 = ±

√
l2
2 − d2

23 = ±
√

l2
3 − (l23 − d23)2. (3)

The triangle inequalities |l2 − l3| ≤ l23 ≤ l2 + l3 must be satisfied to give meaningful results.
The combination of signs comes from the two possible configurations: the plus sign corre-
sponds to the case in which A2 is to the left of the directed line A1A3, as drawn in Fig. 1,
and the minus sign corresponds to the case in which this point is to the right of this line.
If it is assumed that the Grashof condition is satisfied and link 1 is the crank, no branching
between these two configurations can occur. The solution becomes inherently sensitive to
perturbations in the data if the length l23 is small or if l23 is close to one of the bounds of
the triangle inequalities given above. The dependent link orientation angles θ2 and θ3 are
obtained from

l̄2 = (d23 + ih23)
l̄23

l23
, l̄3 = l̄23 − l̄2 (4)

as the arguments of l̄2 and l̄3.

2.2 Velocity and acceleration analysis

The rates of the dependent angles are obtained from the time derivative of the loop-closure
condition (1),

i(l̄1θ̇1 + l̄2θ̇2 + l̄3θ̇3) = 0̄. (5)

The dependent angular velocities are obtained by taking the inner products of this equation
with l̄3 and l̄2, which results in

θ̇2 = Θ2θ̇1, θ̇3 = Θ3θ̇1 (6)

with the first-order kinematic transfer functions

Θ2 = −〈l̄3, il̄1〉
〈l̄3, il̄2〉

= − l1 sin(θ3 − θ1)

l2 sin(θ3 − θ2)
, Θ3 = −〈l̄2, il̄1〉

〈l̄2, il̄3〉
= − l1 sin(θ2 − θ1)

l3 sin(θ2 − θ3)
. (7)

Taking another time derivative of the loop-closure condition yields

i(l̄1θ̈1 + l̄2θ̈2 + l̄3θ̈3) − (
l̄1θ̇

2
1 + l̄2θ̇

2
2 + l̄3θ̇

2
3

) = 0̄. (8)

Again, taking the inner product of this expression with l̄3 and l̄2 yields

θ̈2 = Θ2θ̈1 + 〈l̄3, l̄1〉θ̇2
1 + 〈l̄3, l̄2〉θ̇2

2 + l2
3 θ̇

2
3

〈l̄3, il̄2〉

= Θ2θ̈1 + l1θ̇
2
1 cos(θ3 − θ1) + l2θ̇

2
2 cos(θ3 − θ2) + l3θ̇

2
3

l2 sin(θ3 − θ2)
, (9)

θ̈3 = Θ3θ̈1 + 〈l̄2, l̄1〉θ̇2
1 + l2

2 θ̇
2
2 + 〈l̄2, l̄3〉θ̇2

3

〈l̄2, il̄3〉

= Θ3θ̈1 + l1θ̇
2
1 cos(θ2 − θ1) + l2θ̇

2
2 + l3θ̇

2
3 cos(θ2 − θ3)

l3 sin(θ2 − θ3)
. (10)
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Fig. 2 System of principal vectors which describes the motion of the link masses with respect to the system
centre of mass in S, with principal points P1, P2 and P3

The expressions for the dependent angles and angular velocities can be substituted in the
right-hand sides to obtain explicit results. In most cases, the dependent angles and their time
derivatives will be kept in the equations, where it has to be understood that they are functions
of the independent angle and its time derivatives. Another form to write the angular velocity
and acceleration of link 2 that only contains the angles θ1 and θ3 and their derivatives is

l2
2 θ̇2 = 〈il̄2, ˙̄l2〉 = 〈−i(l̄1 + l̄3 + l̄4),−i(l̄1θ̇1 + l̄3θ̇3)

〉

= l1
[
l1 + l3 cos(θ1 − θ3) − l4 cos θ1

]
θ̇1 + l3

[
l3 + l1 cos(θ1 − θ3) − l4 cos θ3

]
θ̇3,

l2
2 θ̈2 = 〈il̄2, ¨̄l2〉 = 〈−i(l̄1 + l̄3 + l̄4),−i(l̄1θ̈1 + l̄3θ̈3) + (

l̄1θ̇
2
1 + l̄3θ̇

2
3

)〉

= l1
[
l1 + l3 cos(θ1 − θ3) − l4 cos θ1

]
θ̈1 − l1

[
l3 sin(θ1 − θ3) − l4 sin θ1

]
θ̇2

1

+ l3
[
l3 + l1 cos(θ1 − θ3) − l4 cos θ3

]
θ̈3 + l3

[
l1 sin(θ1 − θ3) + l4 sin θ3

]
θ̇2

3 .

(11)

Use has been made of the loop closure condition (1) and its time derivatives (5) and (8).

3 Opened kinematic loop approach

In this section, the dynamics of the four-bar linkage are analysed by the method of principal
vectors in the way Fischer used them [2]. While Fischer used them only for deriving La-
grange’s equations of motion of open trees of links, here the method of principal vectors is
applied in the analysis of a closed-loop linkage, where the principle of virtual work is used
to obtain the equations of motion. The advantage of using the principle of virtual work is
that the equations of motion are often found in a simpler way and it leads to more insight in
how parameters contribute to the equations of motion.

In Fig. 2, the four-bar mechanism is shown with a system of principal vectors ā12, ā21,
ā23 and ā32. These vectors fix the locations of the principal points Pk (k = 1,2,3) within the
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Fig. 3 Moving links as separate system of three links in series with the principal vectors transformed into
links which trace the system centre of mass in S

links as illustrated. These principal points, also known as barycentres [4], are fixed within
the links and are the centres of mass of the reduced systems of the links [1, 2, 5, 6]. In
this case, the reduced system of link 1 has the mass of link 1, m1, in its centre of mass S1,
a moment of inertia I1 about its centre of mass and the mass of link 2, m2, together with
the mass of link 3, m3, placed in A1. The reduced system of link 2 has the mass m2 in its
centre of mass S2, a moment of inertia I2 about its centre of mass, the mass m1 placed in A1

and the mass m3 placed in A2. The reduced system of link 3 has the mass m3 in its centre
of mass S3, a moment of inertia I3 about its centre of mass and a mass m1 together with a
mass m2 placed in A2. The principal point P1 is the centre of mass of the reduced system of
link 1, the principal point P2 is the centre of mass of the reduced system of link 2, and the
principal point P3 is the centre of mass of the reduced system of link 3.

The principal vectors form parallelograms with the linkage and their lengths are constant,
equal to the distances between the principal points and the link joints. This means that the
graphical construction can be regarded as a linkage tracing the system centre of mass S
during its motion along with the four-bar linkage. This is shown in Fig. 3, where the vectors
have been transformed into links with revolute pairs at the principal points, the centre of
mass and the two intermediate points B1 and B2.

In the opened kinematic loop approach, the closed kinematic loop of the mechanism is
opened at one or more joints to form a system with a tree connectivity. In particular, the
mechanism is removed from its supports to form a free system. The constraint forces are
included as additional variables. The number of variables to describe the system and hence
the number of resulting equations can be reduced by reimposing one of the supports. The
free system for the four-bar mechanism is shown in Fig. 3. At the joints A0 and A3 the
constraint forces R̄A0 and R̄A3 are included as additional variables. The positions of the link
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centres of mass Sk with respect to the link coordinate system defined by the vector l̄k and
the first joint as the origin is given by the vector s̄k = sk exp(iσk) (k = 1,2,3), as shown in
Fig. 1. This means that the absolute vector pointing from the first joint to the centre of mass
is expressed as a complex number as s̄k l̄k/ lk .

For this free system of planar bodies interconnected by revolute joints in a tree, the gen-
eralized coordinates can be chosen as the position coordinates of the point S and the three
rotation angles of the links about the principal points. The individual rotations leave the
point S invariant and owing to the definition of the principal points, leave the centre of mass
of the system invariant, which is the point S. This will be confirmed by explicitly calculating
the position of the centre of mass.

In vector notation, the principal vectors can be calculated from

mtotā12 = l̄1(1 − s̄1/l1)m1,

mtotā21 = −l̄2(m3 + m2s̄2/l2),

mtotā23 = mtot(ā21 + l̄2) = l̄2
[
m1 + m2(1 − s̄2/l2)

]
,

mtotā32 = −l̄3(s̄3/l3)m3,

(12)

with mtot = m1 + m2 + m3. These equations are comparable to the notation without vectors
in [5, 6]. The derived vectors ā′

14 and ā′
34 are calculated as

mtotā
′
14 = mtot(ā12 − l̄1) = −l̄1(m2 + m3 + m1s̄1/l1),

mtotā
′
34 = mtot(ā32 + l̄3) = l̄3

[
m1 + m2 + m3(1 − s̄3/l3)

]
.

(13)

Note that the vectors l̄k can be expressed as the difference of two principal vectors or derived
vectors associated with the same link, so they are fixed in this link.

That S is the centre of mass of the mechanism can also be seen from the expressions for
the positions of the centres of mass of the links in terms of the position vector of S, which is
denoted by r̄S, and the principal vectors. As the positions of the centres of mass in the links
can be expressed in the principal vectors and the derived vectors,

m1s̄1 l̄1/l1 = −m1ā
′
14 − (m2 + m3)ā12,

m2s̄2 l̄2/l2 = −(m1 + m2)ā21 − m3ā23,

m3s̄3 l̄3/l3 = −mtotā32,

(14)

we have

m1r̄1 = m1r̄S − (m2 + m3)ā12 + m1ā21 + m1ā32,

m2r̄2 = m2r̄S + m2ā12 − m1ā21 − m3ā23 + m2ā32,

m3r̄3 = m3r̄S + m3ā12 + m3ā23 − (m1 + m2)ā32.

(15)

Indeed, m1r̄1 + m2r̄2 + m3r̄3 = mtotr̄S. If the constraint for joint A0,

r̄A0 = r̄S + ā′
14 + ā21 + ā32 = 0̄, (16)
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is reimposed and used to eliminate the position of the centre of mass r̄S from the equations,
the position vectors of the centres of mass of the links become

m1r̄1 = −m1ā
′
14 − (m2 + m3)ā12,

m2r̄2 = m2 l̄1 − (m1 + m2)ā21 − m3ā23,

m3r̄3 = m3(l̄1 + l̄2) − mtotā32.

(17)

By taking the time derivatives of these equations two times, the accelerations of the centres
of mass of the links, multiplied by their respective masses, are found to be

m1 ¨̄r1 = −[
m1ā

′
14 + (m2 + m3)ā12

](
iθ̈1 − θ̇2

1

)
,

m2 ¨̄r2 = m2 l̄1
(
iθ̈1 − θ̇2

1

) − [
(m1 + m2)ā21 + m3ā23

](
iθ̈2 − θ̇2

2

)
,

m3 ¨̄r3 = m3 l̄1
(
iθ̈1 − θ̇2

1

) + m3 l̄2
(
iθ̈2 − θ̇2

2

) − mtotā32
(
iθ̈3 − θ̇2

3

)
.

(18)

The virtual displacements of the centres of mass are easily found from

m1δr̄1 = −[
m1ā

′
14 + (m2 + m3)ā12

]
iδθ1,

m2δr̄2 = m2 l̄1iδθ1 − [
(m1 + m2)ā21 + m3ā23

]
iδθ2,

m3δr̄3 = m3 l̄1iδθ1 + m3 l̄2iδθ2 − mtotā32iδθ3,

(19)

and the virtual displacements of the joint A3, considered a point of link 3, as

δr̄A3 = l̄1iδθ1 + l̄2iδθ2 + l̄3iδθ3. (20)

The corresponding reaction force of the linkage on the ground at A3 is R̄A3.
The virtual work of the inertia terms, the applied forces and moments, and the constraint

forces are given by

δW =
3∑

k=1

[
δθk(Mk − Ikθ̈k) + 〈

δr̄k, (F̄k − mk
¨̄rk)

〉] − 〈δr̄A3, R̄A3〉, (21)

where Mk is the resultant applied moment with respect to the centre of mass of link k and
F̄k is the resultant applied force, represented as a complex number, as illustrated in Fig. 1.
Substituting the quantities in this equation, while keeping the link angles provisionally as
independent variables, one obtains three equations of motion for the three orientation angles
of the links of the form

3∑

k=1

(
Mjkθ̈k + Cjkθ̇

2
k

) + DjxRA3x + DjyRA3y = Qj (j = 1,2,3). (22)

In this equation, the coefficients of the symmetric mass matrix, Mjk , are given by

M11 = I1 + m1
(
a′

14

)2 + 2(m2 + m3)
〈
ā′

14, ā12
〉 + (m2 + m3)

2

m1
a2

12 + (m2 + m3)l
2
1

= I1 + m1s
2
1 + (m2 + m3)l

2
1 ,
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M12 = M21 = −mtot〈l̄1, ā21〉,
M13 = M31 = −mtot〈l̄1, ā32〉,

(23)

M22 = I2 + (m1 + m2)
2

m2
a2

21 + 2(m1 + m2)m3

m2
〈ā21, ā23〉 + m2

3

m2
a2

23 + m3l
2
2

= I2 + m2s
2
2 + m3l

2
2 ,

M23 = M32 = −mtot〈l̄2, ā32〉,

M33 = I3 + m2
tot

m3
a2

32 = I3 + m3s
2
3 .

The diagonal terms are the moments of inertia of the reduced systems of the links about
their first joint and, hence, they are constant. The off-diagonal terms Mij (i �= j) have a
simple structure if they are expressed in terms of principal vectors: they are minus the total
mass multiplied by the inner product of the link vector li and the principal vector of link j

pointing towards the link. They are zero if the two vectors are perpendicular to each other.
The skew-symmetric coefficients of the convective inertia terms, Cjk , are given by

C11 = C22 = C33 = 0,

C12 = −C21 = mtot〈il̄1, ā21〉,
C13 = −C31 = mtot〈il̄1, ā32〉,
C23 = −C32 = mtot〈il̄2, ā32〉.

(24)

There are no couplings in the angular velocities in the convective inertia terms because
the absolute rotation angles of the links are taken as coordinates, so the acceleration of
a vector only contains the angular velocity of the link to which this vector belongs. The
skew symmetry comes from the fact that the vectors in the inner products change place,
but the factor i remains at the first term, so, because for general vectors x̄ and ȳ we have
〈ix̄, ȳ〉 = −〈iȳ, x̄〉, the terms change their sign and the matrix becomes skew-symmetric.
The coefficients for the reaction forces, Djx and Djy , are

Djx = −lj sin θj , Djy = lj cos θj (j = 1,2,3). (25)

The generalized applied forces, Qj , are given by

Q1 = M1 − 〈
iā′

14, F̄1

〉 − m2 + m3

m1
〈iā12, F̄1〉 + 〈il̄1, F̄2 + F̄3〉,

Q2 = M2 − m1 + m2

m2
〈iā21, F̄2〉 − m3

m2
〈iā23, F̄2〉 + 〈il̄2, F̄3〉,

Q3 = M3 − mtot

m3
〈iā32, F̄3〉.

(26)

These are the moments on the links about their first joint with the forces on the links con-
nected to the second joint shifted towards this second joint.

The constraint equations to enforce the connection of the joint A3 to the ground are

l̄1 + l̄2 + l̄3 = −l̄4. (27)
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Differentiating these constraints two times with respect to time yields the constraints on the
accelerations,

l̄1
(
iθ̈1 − θ̇2

1

) + l̄2
(
iθ̈2 − θ̇2

2

) + l̄3
(
iθ̈3 − θ̇2

3

) = 0̄. (28)

The five scalar equations (22) and (28) form a system of differential-algebraic equations that
can be solved for the three unknown accelerations, that is, the three angular accelerations θ̈k

(k = 1,2,3), and the two components of the reaction forces, RA3x and RA3y , as these equa-
tions are linear in these five unknowns. Once the three angles of the links and their velocities
and accelerations are known, together with the reaction force at A3, the reaction force at A0

can be found from the equation of motion of the centre of mass,

mtot ¨̄rS = F̄1 + F̄2 + F̄3 − R̄A0 − R̄A3, (29)

where ¨̄rS follows from Eq. (16) and R̄A0 is the force of the mechanism on the foundation at
A0 as shown in Fig. 1.

Alternatively, a single equation of motion can be obtained by multiplying the second
equation of (22) by Θ2 and the third equation by Θ3 and adding these to the first equation,
which eliminates the constraint forces and yields the equation of motion of the mechanism in
θ1 if the expressions for the dependent quantities are substituted. The reaction forces can then
be found by substituting the accelerations in the original differential-algebraic equations.

4 Closed kinematic loop approach with equivalent mass formulations

In this section, a different way of using the principal vectors is shown and two methods to
represent the mass distribution are presented. In the first method, the linear momentum of
the centre of mass of a link is replaced by two linear momenta at the joints by means of a
complex mass representation, which do not contribute to the moment of inertia. In the second
method, the mass is represented by a mass matrix, which is only related to the translations
of the joints. The methods have in common that the kinematic loop is not opened and no
explicit constraint forces appear in the equations.

4.1 Method of complex joint masses

Let us consider a general binary planar link k, which can be any link of the four-bar linkage
in the present context, with joints p and q having the respective position vectors r̄p and r̄q .
The vector connecting the joints is l̄k = r̄q − r̄p with a length lk and the position of the centre
of mass relative to l̄k and r̄p is given by s̄k , as in Fig. 1, so the absolute position of the centre
of mass can be written as r̄k = r̄p + s̄k l̄k/ lk . If we multiply the position of the centre of mass
with the mass of the link, mk , we obtain an expression for the centre of mass of a link in
terms of the positions of the two joints at its ends,

mkr̄k = mkr̄p + mks̄k l̄k/ lk = mk(1 − s̄k/ lk)r̄p + mk(s̄k/ lk)r̄q . (30)

For convenience, the position of the centre of mass of the link is written in terms of two
distances as s̄k = ek + ifk , where ek is the real part, or the distance along the line connecting
the two joints, and fk from the imaginary part is the distance with the appropriate sign to
the line connecting the two joints of the link, as is shown for link 2 in Fig. 3. The result in
Eq. (30) can be interpreted as the expression for determining the centre of mass from two
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Fig. 4 New method for analysis with a principal vector system about the frame

equivalent complex masses at the joints, m̄kp = mk(1 − s̄k/ lk) = mk(1 − ek/ lk) − imkfk/ lk
and m̄kq = mks̄k/ lk = mkek/ lk + imkfk/ lk , whose sum is mk . This representation by equiv-
alent complex masses was first proposed by Freudenstein [8]. The application to shaking
force balancing was later called the complex mass method [9]. In the case that the centre of
mass of the link is on the line connecting the two revolute joints, so fk = 0, these are the
two usual real equivalent masses, one in each joint. In the general case we have a real mass
ma

k = mk(1 − ek/ lk) and an imaginary mass −imc
k = −imkfk/ lk at node p and a real mass

mb
k = mkek/ lk and an imaginary mass imc

k at node q , as was introduced in [5, 6]. There,
ma

k and mb
k were called real equivalent masses and mc

k a virtual equivalent mass. With these
three equivalent masses, a graphical construction of modelling the masses of open- and
closed-loop kinematic chains was presented and applied for the determination of the prin-
cipal points. The linear momentum can be found by differentiating Eq. (30) with respect
to time and can be interpreted as consisting of two contributions of the equivalent complex
masses at the joints. The real part of the complex mass gives a linear momentum in the same
direction as the velocity vector at the joint, but the imaginary part gives a linear momentum
that is perpendicular to the direction of the velocity vector.

It should be stressed that no equivalence for the angular momentum can exist if fk is not
zero: a velocity v of the centre of mass in the direction of the link vector gives rise to an
angular momentum for the equivalent masses, 2mkfkv, which cannot be compensated for
by adjusting the moment of inertia of the link, so there is no dynamical equivalence. In the
special case that fk = 0, a reduced moment of inertia Ik,red = Ik − mkek(lk − ek) gives a
dynamically equivalent model.

In Fig. 4, a new way to apply the principal vectors for the analysis of the four-bar linkage
is presented. Here the principal vector system is located about the frame, including links 1,
3 and 4, and the graphical construction traces the centre of mass, S, of the combination of
links 1, 2 and 3 for all motions of the four-bar linkage. The principal points in this case are
P1, P3 and P4, of which the first two are not the same as their namesakes in Figs. 2 and 3.
Also the principal vectors ā14, ā41, ā43 and ā34 are a new set.
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Fig. 5 Projections of the real equivalent masses ma
2 and mb

2 and the virtual equivalent mass mc
2 onto the

principal vector system to mass equivalently model the coupler link 2

The locations of the principal points and the principal vectors can be calculated by us-
ing the complex equivalent mass description. As explained, the coupler mass m2 can be
redistributed by an equivalent complex mass m2(1 − s̄2/l2) = ma

2 − imc
2 in A1 and another

equivalent complex mass m2s̄2/l2 = mb
2 + imc

2 in A2. The projection of these masses on
the links 1, 3 and 4 was presented graphically in [5, 6] and is shown in Fig. 5. Here a real
equivalent mass ma

2 is located in A1, a real equivalent mass mb
2 is located in A2 and a virtual

equivalent mass mc
2 is located twice about each principal point as illustrated. With the meth-

ods fully explained in these references, the principal points are found as the centres of mass
of the three resulting reduced mass models in a way that is similar in form to the method
without equivalent masses. The results can be rewritten in terms of complex vectors as

mtotā14 = −[
m1s̄1/l1 + m2(1 − s̄2/l2)

]
l̄1 = −(

m1s̄1/l1 + ma
2 − imc

2

)
l̄1,

mtotā41 = (m2s̄2/l2 + m3)l̄4 = (
mb

2 + imc
2 + m3

)
l̄4,

mtotā43 = −[
m1 + m2(1 − s̄2/l2)

]
l̄4 = −(

m1 + ma
2 − imc

2

)
l̄4,

mtotā34 = [
m2s̄2/l2 + m3(1 − s̄3/l3)

]
l̄3 = (

mb
2 + imc

2 + m3(1 − s̄3/l3)
)
l̄3.

(31)

Clearly, l̄4 = ā41 − ā43. The derived vectors ā′
12 and ā′

32 are obtained from

mtotā
′
12 = mtot(ā14 + l̄1) = [

m1(1 − s̄1/l1) + mb
2 + imc

2 + m3

]
l̄1,

mtotā
′
32 = mtot(ā34 − l̄3) = −[

m1 + ma
2 − imc

2 + m3s̄3/l3
]
l̄3.

(32)

The centre of mass of the system, S, can be found from the parallelogram construction
shown in Fig. 4. The correctness of this construction can easily be seen by writing the
position of the centre of mass of the system starting from one of the joints or principal
points. The position of the centre of mass of the linkage S in terms of the principal vectors
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is

r̄S = −ā14 − ā41 − ā34. (33)

This can be compared with Eq. (16), where the same vector is expressed in terms of a dif-
ferent set of vectors. The vectors locating the centres of mass multiplied by their respective
masses of the movable links expressed in the principal vectors and the derived vectors be-
come

m1r̄1 = −(
m1 + mb

2 + imc
2 + m3

)
ā14 − (

ma
2 − imc

2

)
ā′

12,

m2r̄2 = l̄1
(
ma

2 − imc
2

) + (−l̄4 − l̄3)
(
mb

2 + imc
2

)
,

m3r̄3 = −m3 l̄4 − (
m1 + ma

2 − imc
2 + m3

)
ā34 − (

mb
2 + imc

2

)
ā′

32.

(34)

From Eq. (34), the virtual displacements are found as

m1δr̄1 = −[(
m1 + mb

2 + imc
2 + m3

)
ā14 + (

ma
2 − imc

2

)
ā′

12

]
iδθ1,

m2δr̄2 = l̄1
(
ma

2 − imc
2

)
iδθ1 − l̄3

(
mb

2 + imc
2

)
iδθ3,

m3δr̄3 = −[(
m1 + ma

2 − imc
2 + m3

)
ā34 + (

mb
2 + imc

2

)
ā′

32

]
iδθ3.

(35)

Two differentiations with respect to time give the accelerations,

m1 ¨̄r1 = −[(
m1 + mb

2 + imc
2 + m3

)
ā14 + (

ma
2 − imc

2

)
ā′

12

](
iθ̈1 − θ̇2

1

)
,

m2 ¨̄r2 = l̄1
(
ma

2 − imc
2

)(
iθ̈1 − θ̇2

1

) − l̄3
(
mb

2 + imc
2

)(
iθ̈3 − θ̇2

3

)
,

m3 ¨̄r3 = −[(
m1 + ma

2 − imc
2 + m3

)
ā34 + (

mb
2 + imc

2

)
ā′

32

](
iθ̈3 − θ̇2

3

)
.

(36)

The equations of motion are again obtained from the virtual work expression (21), with-
out the explicit contribution of the constraint forces, which leads to the equations of motion
having the form

3∑

k=1

(
Mjkθ̈k + Cjkθ̇

2
k

) = Qj + Qc
j (j = 1,2,3), (37)

where Qc
j are the generalized constraint forces, which will be eventually eliminated. The

non-zero entries of the mass matrix now become (s ′
3 is the distance of the centre of mass of

link 3 to the joint A3)

M12 = M21 = M23 = M32 = 0,

M11 = I1 + (
a2

14/m1

)[(
m1 + mb

2 + m3

)2 + (
mc

2

)2]

+ [(
a′

12

)2
/m1 + l2

1/m2

][(
ma

2

)2 + (
mc

2

)2]

+ 2
〈(
m1 + mb

2 + imc
2 + m3

)
ā14,

(
ma

2 − imc
2

)
ā′

12

〉
/m1

= I1 + m1s
2
1 + l2

1

[(
ma

2

)2 + (
mc

2

)2]
/m2,

M13 = M31 = −〈(
ma

2 − imc
2

)
l̄1,

(
mb

2 + imc
2

)
l̄3

〉
/m2

= l1l3
[
mc

2m2 sin(θ3 − θ1) − (
ma

2m
b
2 − mc

2m
c
2

)
cos(θ3 − θ1)

]
/m2,

(38)
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M22 = I2,

M33 = I3 + (
a2

34/m3
)[(

m1 + ma
2 + m3

)2 + (
mc

2

)2]

+ [(
a′

32

)2
/m3 + l2

3/m2

][(
mb

2

)2 + (
mc

2

)2]

+ 2
〈(
m1 + ma

2 − imc
2 + m3

)
ā34,

(
mb

2 + imc
2

)
ā′

32

〉
/m3

= I3 + m3
(
s ′

3

)2 + l2
3

[(
mb

2

)2 + (
mc

2

)2]
/m2.

The only two non-zero terms in Cjk are C13 and C31 = −C13,

C13 = 〈(
ima

2 + mc
2

)
l̄1,

(
mb

2 + imc
2

)
l̄3

〉
/m2

= l1l3
[
mc

2m2 cos(θ3 − θ1) + (
ma

2m
b
2 − mc

2m
c
2

)
sin(θ3 − θ1)

]
/m2. (39)

Note that there are off-diagonal terms in the mass matrix and the convective inertia terms, so
the replacement of the mass of link 2 by complex masses at the nodes does not necessarily
lead to a full dynamic equivalence. The generalized applied forces are given by

Q1 = M1 − 〈
i
[(

m1 + mb
2 + imc

2 + m3

)
ā14 + (

ma
2 − imc

2

)
ā′

12

]
, F̄1/m1

〉

+ 〈
i
(
ma

2 − imc
2

)
l̄1, F̄2/m2

〉

= M1 − s1F1x sin(θ1 + σ1) + s1F1y cos(θ1 + σ1)

− l1
(
ma

2F2x − mc
2F2y

)
sin θ1/m2 + l1

(
ma

2F2y + mc
2F2x

)
cos θ1/m2,

Q2 = M2,

Q3 = M3 + 〈−il̄3
(
mb

2 + imc
2

)
, F̄2/m2

〉

− 〈
i
(
m1 + ma

2 − imc
2 + m3

)
ā34 + (

mb
2 + imc

2

)
ā′

32, F̄3/m3
〉

= M3 − s3F3x sin(θ3 + σ3) + s3F3y cos(θ3 + σ3)

+ l3
[
F3x + (

mb
2F2x + mc

2F2y

)
/m2

]
sin θ3

− l3
[
F3y + (

mb
2F2y − mc

2F2x

)
/m2

]
cos θ3.

(40)

It is seen that Q1 is the moment of the forces on link 1 with respect to the joint A0, including
the force on link 2 that has been distributed over the joints A1 and A2; likewise, Q3 is
the moment of the forces on link 3 about the joint A3, including the contribution of the
distributed force of link 2.

The reduced equation of motion, in which the constraint forces have been eliminated,
are obtained by multiplying the second equation of (37) by Θ2, the third equation of (37)
by Θ3 and adding the resulting equations. Also, the relations (11) can be used to remove
the dependency on θ2 in a first step of the reduction and then to combine the two remaining
equations to a single equation of motion. Finally, the expressions of the dependent angles,
angular velocities and angular accelerations can be substituted to obtain a single second-
order differential equation in θ1, the degree of freedom.

The virtual displacements used for the calculation of the reactions are chosen as a virtual
displacement of the centre of mass, δr̄S, and a rotation of the whole system, without chang-
ing its relative configuration, about the point S, denoted by δθS. The corresponding virtual
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displacements of the centres of mass of the bodies are

m1δr̄1 = m1δr̄S

+ [
m1(ā34 + ā41) − (

mb
2 + imc

2 + m3

)
ā14 − (

ma
2 − imc

2

)
ā′

12

]
iδθS,

m2δr̄2 = m2δr̄S

+ [(
ā34 + ā41 + ā′

12

)(
ma

2 − imc
2

) + (
ā14 + ā43 + ā′

32

)(
mb

2 + imc
2

)]
iδθS,

m3δr̄3 = m3δr̄S

+ [
m3(ā14 + ā43) − (

m1 + ma
2 + imc

2

)
ā34 − (

mb
2 + imc

2

)
ā′

32

]
iδθS.

(41)

The resultant reaction force and moment are now obtained from the virtual work equation
with these variations and the calculated accelerations.

4.2 Method of the equivalent mass matrix

Instead of expressing the positions of the centres of mass of the links in terms of the principal
vectors, in this section equivalent mass matrices for the links are derived. For this purpose,
the constraint that the distance between the two joints of a link is constant is released. This
means that the links are considered to be pseudorigid bodies [16], which are allowed to un-
dergo a uniform dilatation in the plane. A body of this kind can be approximately realized
in so-called auxetic metamaterials with a negative value of Poisson’s ratio close to −1 [17].
The joints of the binary link as described above p and q have coordinates r̄p and r̄q , re-
spectively, and define local coordinate axes directed from p to q and in the perpendicular
direction with their origin at p. The position of a material point of the link is described
by the dimensionless coordinates ξ and η, scaled with the distance l between the points p

and q . In a way similar to Eq. (30), the position of a point in the plane of the link can be
expressed as (the index k for a specific link is omitted here)

r̄(ξ + iη) = (1 − ξ − iη)r̄p + (ξ + iη)r̄q . (42)

The position of the centre of mass of the link is given by ξ = e/l, η = f/l, its mass is m,
and its moment of inertia with respect to its centre of mass is I . The mass is independent of
the deformation, but the moment of inertia scales with the square of l, so I/ l2 is constant.
The velocity and acceleration of the point, as well as its virtual displacement, are given by

˙̄r(ξ + iη) = (1 − ξ − iη) ˙̄rp + (ξ + iη) ˙̄rq, (43)

¨̄r(ξ + iη) = (1 − ξ − iη) ¨̄rp + (ξ + iη) ¨̄rq, (44)

δr̄(ξ + iη) = (1 − ξ − iη)δr̄p + (ξ + iη)δr̄q . (45)

The virtual work due to the inertia terms can be determined by evaluating the integral
− ∫ 〈δr̄ , ¨̄r〉dm, which yields

− Re[δrpx,δrpy,δrqx,δrqy]
∫

⎡

⎢⎢
⎣

1 − ξ + iη

η − i(1 − ξ)

ξ − iη

−η − iξ

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 − ξ − iη

η + i(1 − ξ)

ξ + iη

−η + iξ

⎤

⎥⎥
⎦

T

dm

⎡

⎢⎢
⎣

r̈px

r̈py

r̈qx

r̈qy

⎤

⎥⎥
⎦
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= −[δrpx,δrpy,δrqx,δrqy]

⎡

⎢⎢⎢⎢
⎣

Iq

l2
0 − Ired

l2
−m

f

l

0 Iq

l2
m

f

l
− Ired

l2

− Ired
l2

m
f

l

Ip

l2
0

−m
f

l
− Ired

l2
0 Ip

l2

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

r̈px

r̈py

r̈qx

r̈qy

⎤

⎥⎥
⎦

= −[δrpx,δrpy,δrqx,δrqy]Me

⎡

⎢⎢
⎣

r̈px

r̈py

r̈qx

r̈qy

⎤

⎥⎥
⎦ , (46)

where rpx , rpy , rqx and rqy are the components of the coordinates of the joints in the global
x- and y-directions, Ip = I +m(e2 +f 2) and Iq = I +m((l − e)2 +f 2) are the moments of
inertia with respect to the joints p and q and Ired = I −me(l−e)+mf 2 is a reduced moment
of inertia. The mass matrix Me in Eq. (46) is constant, even when the link can deform, and
no terms quadratic in the velocities appear. It is the same mass matrix as the one derived
in [10]. The applied forces can be reduced to equivalent forces at the joints. For the case in
which the link is rigid, the applied forces in the directions of the global coordinate axes, Fx

and Fy , and the moment about the centre of mass, M , can be replaced as

⎡

⎢⎢
⎣

Fpx

Fpy

Fqx

Fqy

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢⎢
⎣

(1 − e
l
)Fx − f

l
Fy + rqy−rpy

l2
M

(1 − e
l
)Fy + f

l
Fx − rqx−rpx

l2
M

e
l
Fx + f

l
Fy − rqy−rpy

l2
M

e
l
Fy − f

l
Fx + rqx−rpx

l2
M

⎤

⎥⎥⎥⎥
⎦

. (47)

Note that a constant moment gives rise to time-dependent equivalent forces if the orientation
of the link changes.

By collecting the terms from the three moving links of the four-bar mechanism, one gets
the virtual work equation

[δrA1x δrA1y δrA2x δrA2y]

⎧
⎪⎪⎨

⎪⎪⎩
M

⎡

⎢⎢
⎣

r̈A1x

r̈A1y

r̈A2x

r̈A2y

⎤

⎥⎥
⎦ − F

⎫
⎪⎪⎬

⎪⎪⎭
= 0, (48)

where the non-zero coefficients of the 4 × 4 mass matrix M are given by

M11 = M22 = I1 + m1s
2
1

l2
1

+ I2 + m2((l2 − e2)
2 + f 2

2 )

l2
2

,

M13 = M24 = M31 = M42 = m2e2(l2 − e2) − m2f
2
2 − I2

l2
2

,

M14 = −M23 = −M32 = M41 = −m2f2

l2
,

M33 = M44 = I2 + m2s
2
2

l2
2

+ I3 + m3((l3 − e3)
2 + f 2

3 )

l2
3

,

(49)
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and the components of the force vector F are given by

F1 = e1

l1
F1x + f1

l1
F1y − rA1y − rA0y

l2
1

M1 +
(

1 − e2

l2

)
F2x − f2

l2
F2y + rA2y − rA1y

l2
2

M2,

F2 = e1

l1
F1y − f1

l1
F1x + rA1x − rA0x

l2
1

M1 +
(

1 − e2

l2

)
F2y + f2

l2
F2x − rA2x − rA1x

l2
2

M2,

F3 = e2

l2
F2x + f2

l2
F2y − rA2y − rA1y

l2
2

M2 +
(

1 − e3

l3

)
F3x − f3

l3
F3y + rA3y − rA2y

l2
3

M3,

F4 = e2

l2
F2y − f2

l2
F2x + rA2x − rA1x

l2
2

M2 +
(

1 − e3

l3

)
F3y + f3

l3
F3x − rA3x − rA2x

l2
3

M3.

(50)

The position coordinates of the movable joints and their virtual variations are
⎡

⎢⎢
⎣

rA1x

rA1y

rA2x

rA2y

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

l1 cos θ1

l1 sin θ1

l4 − l3 cos θ3

−l3 sin θ3

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

δrA1x

δrA1y

δrA2x

δrA2y

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−l1δθ1 sin θ1

l1δθ1 cos θ1

l3Θ3δθ1 sin θ3

−l3Θ3δθ1 cos θ3

⎤

⎥⎥
⎦ , (51)

and the accelerations are given by

⎡

⎢⎢
⎣

r̈A1x

r̈A1y

r̈A2x

r̈A2y

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎣

−l1θ̈1 sin θ1 − l1θ̇
2
1 cos θ1

l1θ̈1 cos θ1 − l1θ̇
2
1 sin θ1

l3θ̈3 sin θ3 + l3θ̇
2
3 cos θ3

−l3θ̈3 cos θ3 + l3θ̇
2
3 sin θ3

⎤

⎥⎥⎥
⎦

, (52)

where the expression for θ̇3 from Eqs. (6) and (7) and the expression for θ̈3 from Eq. (10)
have to be substituted. The equation of motion can be obtained by substituting these expres-
sions into the virtual work equation (48). The angular acceleration θ̈1 can be obtained from
this and all dependent accelerations can be calculated.

The reaction forces can be obtained if variations of the coordinates of the fixed joints are
taken and the reaction forces are introduced as

[δrA0x δrA0y δrA3x δrA3y]

⎧
⎪⎪⎨

⎪⎪⎩
M r

⎡

⎢⎢
⎣

r̈A1x

r̈A1y

r̈A2x

r̈A2y

⎤

⎥⎥
⎦ − F r

⎫
⎪⎪⎬

⎪⎪⎭
= 0, (53)

where the non-zero coefficients of the 4 × 4 mass matrix M r are given by

Mr,11 = Mr,22 = m1e1(l1 − e1) − m1f
2

1 − I1

l2
1

,

Mr,12 = −Mr,21 = −m1f1

l1
,

Mr,33 = Mr,44 = m3e3(l3 − e3) − m3f
2

3 − I3

l2
3

,

Mr,34 = −Mr,43 = m3f3

l3
,

(54)
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Fig. 6 Single truss element (a) and the example four-bar mechanism (b)

and the components of the force vector F r are given by

Fr,1 =
(

1 − e1

l1

)
F1x − f1

l1
F1y + rA1y − rA0y

l2
1

M1 − RA0x,

Fr,2 =
(

1 − e1

l1

)
F1y + f1

l1
F1x − rA1x − rA0x

l2
1

M1 − RA0y,

Fr,3 = e3

l3
F3x + f3

l3
F3y − rA3y − rA2y

l2
3

M3 − RA3x,

Fr,4 = e3

l3
F3y − f3

l3
F3x + rA3x − rA2x

l2
3

M3 − RA3y .

(55)

By taking appropriate combinations of variations, the reaction forces, or their resultant force
and moment, can be obtained.

5 Application to multibody system dynamics

5.1 Truss element

The mass matrix in Eq. (46) can be used to specify the mass properties of a planar truss
element. This element as illustrated in Fig. 6(a) has two nodal points, p and q , with their
Cartesian positions as the nodal coordinates, x = [rpx, rpy, rqx, rqy]T, and its elongation as
its only generalized strain, ε1 = l − l0 = √

(rqx − rpx)2 + (rqy − rpy)2 − l0, where l0 is the
reference length. This truss element was applied in the context of multibody system dynam-
ics by van der Werff [18]. This element with the present extended mass matrix allows us to
model the four-bar system with only three truss elements instead of three (or more) beam
elements, which improves the efficiency of the calculations. However, the applied forces
and moments have to be replaced by nodal forces as described in Eq. (47). The equations of
motion are fully equivalent to Eq. (48). The rotation angles θ are not directly available as
results of calculations, but they can be extracted from the nodal coordinates of the element
by noting

cos θ = (rqx − rpx)/ l, sin θ = (rqy − rpy)/ l (56)

and using the two-argument arctangent function. However, in the modelling, a massless rigid
beam element is laid over the truss element representing the crank to be able to choose the
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Fig. 7 Angles of the links of the
example four-bar mechanism

crank angle as the degree of freedom. This adds one coordinate and two generalized strains
to the model. In total, there are nine coordinates (the eight Cartesian coordinates of the joints
and the rotation angle of the beam), of which four are fixed to the ground, five generalized
strains (one for each truss element and two for the beam element of which one is dependent
and can be ignored), and one degree of freedom. For a model with rigid beams only, six
rigid beam elements are needed, one for each movable link and one for connecting the centre
of mass to each link with mass. This leads to a system with 17 coordinates (14 Cartesian
coordinates and three angles), of which four are fixed, twelve generalized strains (two for
each beam element) and one degree of freedom. It is seen that the model with the truss
elements is smaller and simpler.

As an example to verify the equations, dimensions and masses of a four-bar mechanism
are chosen as (see Fig. 6(b))

l1 = 1.0 m, l2 = 3.0 m, l3 = 2.0 m, l4 = 3.2 m,

s1 = 0.6 m, σ1 = 0.3 rad, m1 = 2.1 kg, I1 = 1.1 kg m2,

s2 = 1.45 m, σ2 = 0.4 rad, m2 = 3.0 kg, I2 = 3.1 kg m2,

s3 = 1.66 m, σ3 = −0.4 rad, m3 = 2.2 kg, I3 = 2.1 kg m2,

F1x = 1.1 N, F1y = 1.2 N, M1 = 0.37 N m,

F2x = 1.3 N, F2y = −1.4 N, M2 = 0.28 N m,

F3x = 1.5 N, F3y = 1.6 N, M3 = 0.19 N m.

(57)

There is no gravity.
The system was modelled in the multibody dynamics program SPACAR [11] and the

motion was simulated, starting from a rest position with θ1 = 1 rad over 5 s. The results for
the link angles are shown in Fig. 7 and the reaction forces at the support points are given
in Fig. 8. For 501 values of the crank angle and the crank angular velocity obtained by the
simulation, the accelerations and reaction forces as obtained by the different methods were
checked. All results were in agreement up to truncation errors in the numerics. The initial
and final values of the link angles, angular velocities and angular accelerations are given in
Table 1.
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Fig. 8 Components of the
reaction forces at the support
points for the example four-bar
mechanism

Table 1 Initial and final values
of the link angles, angular
velocities and angular
accelerations

Variable Initial value at t = 0 s Final value at t = 5 s

θ1 1 rad −0.164143028498 rad

θ2 0.395412477125 rad 0.803387760489 rad

θ3 −1.625231000527 rad −1.505437908932 rad

θ̇1 0 rad/s 0.282625741349 rad/s

θ̇2 0 rad/s −0.124005044330 rad/s

θ̇3 0 rad/s −0.157299276751 rad/s

θ̈1 −0.494982843920 rad/s2 0.269991393862 rad/s2

θ̈2 0.090460471115 rad/s2 −0.134961046282 rad/s2

θ̈3 −0.156221696196 rad/s2 −0.110963980093 rad/s2

5.2 Shaking force balance and shaking moment balance conditions

The conditions for dynamic force balance can be found from the open-loop approach and
the principal vectors obtained in it [5], but they become almost trivial if the parallelogram
construction for the system with equivalent complex masses in Fig. 4 is considered. The
centre of mass S of the linkage remains stationary with respect to the ground link 4 if the
principal vectors ā14 and ā34 are zero. This gives the conditions

m1s̄1/l1 + m2(1 − s̄2/l2) = 0, m2s̄2/l2 + m3(1 − s̄3/l3) = 0, (58)

or written out in scalar form,

m1e1/l1 + m2(l2 − e2)/ l2 = 0, m1f1/l1 − m2f2/l2 = 0,

m2e2/l2 + m3(l3 − e3)/ l3 = 0, m2f2/l2 − m3f3/l3 = 0.
(59)

If the masses of all links are replaced by equivalent masses, these conditions mean that the
total equivalent mass at the moving joints must be zero.

On the other hand, the resultant reaction forces or shaking forces can be found from the
equations with equivalent mass matrices by taking the same virtual displacements for all
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joints in Eqs. (48) and (53), which leads, for virtual displacements in the x- and y-direction,
respectively, to

RA0x + RA3x = F1x + F2x + F3x

−
[

m1e1

l1
+ m2(l2 − e2)

l2

]
r̈A1x −

[
−m1f1

l1
+ m2f2

l2

]
r̈A1y

−
[

m2e2

l2
+ m3(l3 − e3)

l3

]
r̈A2x −

[
−m2f2

l2
+ m3f3

l3

]
r̈A2y,

RA0y + RA3y = F1y + F2y + F3y

−
[

m1f1

l1
− m2f2

l2

]
r̈A1x −

[
m1e1

l1
+ m2(l2 − e2)

l2

]
r̈A1y

−
[

m2f2

l2
− m3f3

l3

]
r̈A2x −

[
m2e2

l2
+ m3(l3 − e3)

l3

]
r̈A2y .

(60)

This, again, leads to the conditions (59) for which the shaking forces are zero and the mech-
anism is shaking force balanced.

Also a sufficient condition for the shaking moment balance if the shaking force bal-
ance conditions are fulfilled can easily be derived by considering the mass matrix in
Eq. (49), which becomes diagonal for the conditions that f2 = 0 and I2 = m2e2(l2 − e2).
Then also f1 = f3 = 0, and this results in a reduced moment of inertia of I1 + m1e

2
1 +

m2l
2
1(1 − e2/l2) = I1 − m1e1(l1 − e1) on the crank and a reduced moment of inertia of

m2l
2
3e2/l2 + I3 + m3(e3 − l3)

2 = I3 + m3e3(e3 − l3) on the rocker, of which the shaking
moments can be compensated by connecting the crank and the rocker to additional coun-
terrotating masses. The moment balance can be checked by giving the whole linkage a
virtual rotation δθ0 about the origin, A0. This gives virtual displacements δrA3y = l4δθ0,
δrA1x = −l1δθ0 sin θ1, δrA1y = l1δθ0 cos θ1, δrA2x = l3δθ0 sin θ3, δrA2y = (l4 − l3 cos θ3)δθ0.
The terms with l1 and l3 give no contribution because of the counterrotating masses. The
terms with l4 give a contribution which has a factor M44 + Mr,44, which is equal to zero for
the considered case. So there are no forces on the supports in the y-direction and there is no
shaking moment. This could be expected from the exact dynamic equivalence of the mass
distribution of the coupler with two point masses at the links. These conditions were derived
by Berkof [19].

For a force balanced case, the values of s1, s3, σ1, and σ3 in Eq. (57) are adjusted to
fulfil the force balancing conditions. The applied forces and moments are set to zero and the
initial conditions are chosen as θ1 = 1 rad, θ̇1 = 1 rad/s. The simulations with the program
SPACAR gave the reaction forces at the supports as shown in Fig. 9. The sum of the forces
in the x-direction as well as the sum of the forces in the y-direction is zero up to truncation
errors in the numerics.

6 Discussion

If we compare the opened kinematic loop approach in Sect. 3 with the conventional Newton–
Euler method, we see that it is almost as simple, but fewer constraint forces have to be
introduced. The entries in the mass matrix still have a clear meaning. However, there is
stronger coupling between the equations, as the mass matrix is no longer a diagonal matrix.
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Fig. 9 Components of the
reaction forces at the support
points for the example balanced
four-bar mechanism

The centre of gravity can easily be found, and hence the linear momentum of the linkage as
a whole and of the individual links. Also the sum of the reaction forces on the ground can be
easily obtained, which is advantageous for shaking force balancing. A possible disadvantage
is that there are still more equations than degrees of freedom, which leads to a system of
differential-algebraic equations.

If the mass of one or more links is represented by equivalent complex masses at the joints
as explained in Sect. 4.1, the centre of mass and hence the linear momentum of the system
can easily be found; the conditions of shaking force balancing (58) for the four-bar linkage
become almost trivial. The mass description remains relatively simple. A disadvantage is
that the equivalent masses are not fully dynamically equivalent, so the equations of motion
cannot be derived by applying standard techniques to the equivalent masses only.

Principal points and principal vectors are useful for the opened kinematic loop approach,
as the off-diagonal terms of the mass matrix and the convective inertia terms are easily
obtained. To a lesser extent, this applies also for the method with equivalent complex masses,
although this is not so obvious in the considered simple example. In both approaches, the
motion of the centre of mass of the system is easily found with the principal vectors, which
yields conditions for shaking force balance.

The description with equivalent mass matrices in Sect. 4.2 includes the complete dy-
namics, although the mass matrix is filled and does not have a block diagonal structure.
The equations of motion can initially be described in terms of the joint coordinates, without
making use of the angles of the links. The independent coordinate can be chosen as one of
the angles or one of the position coordinates of the joints. This mass description can be used
for the finite truss element, leading to simpler models in terms of the kind of element used
and the number of coordinates and constraints.

The methods presented can be applied to other linkages, with similar advantages and
disadvantages, although the equations can become more complicated. General planar mech-
anisms with links interconnected by pin joints can be directly treated by the methods shown
here. An example is the seven-body mechanism form [20], which was modelled by truss
elements and simulated in another publication [21].

Principal points and principal vectors can also be defined for systems of spatial bodies
interconnected with spherical joints [2, 4] and they can be used to obtain the equations of
motion. Some other types of joints, such as a revolute joint, a universal joint or a homoki-
netic coupling, can be described by adding constraints on the relative motion in a spherical
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joint. The method of equivalent masses can be extended to some special spatial systems. In
general, a binary link between spherical joints cannot be modelled in this way, as the ori-
entation of this link is not determined by the positions of two its joints and even the linear
momentum is generally not determined by the velocities of these two joints. Six classical
spatial truss elements which interconnect four points can be used to describe the dynamic
properties of a rigid body [21].

7 Conclusions

This article has led us from a familiar approach with opened kinematic loops via a method
with equivalent complex masses to a method using a constant mass matrix, which were all
applied to formulate the equations of motion of a general 4R planar four-bar mechanism. In
the first two methods, the use of principal vectors has been shown. The principle of virtual
work with the inclusion of inertia terms was used to derive the equations of motion.

The opened kinematic loop approach, compared with the conventional Newton–Euler
method, results in fewer equations and constraint forces, while the mass matrix entries re-
main meaningful, but there is a stronger coupling between the equations. For the closed
kinematic loop approach with equivalent complex masses, no explicit loop constraint forces
are introduced in the equations. The mass of the coupler link could be modelled onto the
other links of the four-bar linkage by using real and virtual equivalent masses, defining the
principal points. The complex masses give a correct representation of the linear momentum,
but they do not give a full dynamic equivalence if the centre of mass of the link is not on the
line connecting the two joint positions. This makes this approach useful in problems mainly
involving linear momentum, such as shaking force analysis.

With the method of the equivalent mass matrix, it was shown how a constant mass matrix
can be used to describe the dynamics of binary links with an arbitrary mass distribution. This
seems to lead to the simplest form of the equations of motion, but has as a disadvantage that
the link angles appear as derived quantities and are no longer directly present in the equations
of motion.

The constant mass matrix, which makes use of the joint coordinates only, can describe the
mass properties of a truss element in a finite element formulation, which is fully dynamically
equivalent to that of a rigid link. In addition, a body which is allowed to undergo a uniform
dilatation, as is approximately the case in some auxetic metamaterials, can be described by
this element. As an example, the general 4R four-bar linkage was modelled with only three
truss elements instead of three or more beam elements, which is a significant reduction in
the complexity of the model.

Although all three presented methods can be used to obtain the equations of motion and
the reaction forces of the four-bar linkage, the equations remain complicated for all meth-
ods if an explicit form is aimed at. For different purposes, different methods to derive the
equation can be useful. In particular, the methods which use principal points and principal
vectors have advantages if the main interest is in the linear momentum and the resultant
reaction forces, which can be used to obtain conditions for dynamic force balance.

The described methods are a step towards obtaining insight into the dynamic equations
such that they can direct the synthesis process towards desired dynamic conditions.
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