<]
TUDelft

Delft University of Technology

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract

Grishkov, llya; Kromes, Roland; Giannetsos, Thanassis; Liang, Kaitai

DOI
10.1007/978-3-031-31420-9_1

Publication date
2023

Document Version
Final published version

Published in
Blockchain Technology and Emerging Technologies - 2nd EAI International Conference, BlockTEA 2022,
Proceedings

Citation (APA)

Grishkov, I., Kromes, R., Giannetsos, T., & Liang, K. (2023). ID-Based Self-encryption via Hyperledger
Fabric Based Smart Contract. In W. Meng, & W. Li (Eds.), Blockchain Technology and Emerging
Technologies - 2nd EAI International Conference, BlockTEA 2022, Proceedings (pp. 3-18). (Lecture Notes
of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST;
Vol. 498 LNICST). Springer. https://doi.org/10.1007/978-3-031-31420-9_1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-031-31420-9_1
https://doi.org/10.1007/978-3-031-31420-9_1

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

®

Check for
updates

ID-Based Self-encryption via Hyperledger
Fabric Based Smart Contract

Ilya Grishkov', Roland Kromes'®™) Thanassis Giannetsos?, and Kaitai Liang"

L Cyber Security Group, Delft University of Technology, Delft, The Netherlands

I.Grishkov-1@student.tudelft.nl, {R.G.Kromes,Kaitai.Liang}@tudelft.nl

2 Ubitech Ltd., Digital Security and Trusted Computing Group, Athens, Greece
agiannetsosQubitech.eu

Abstract. This paper offers a prototype of a Hyperledger Fabric-IPFS
based network architecture including a smart contract based encryp-
tion scheme that meant to improve the security of user’s data that is
being uploaded to the distributed ledger. A new extension to the self-
encryption scheme was deployed by integrating data owner’s identity
into the encryption process. Such integration allows to permanently pre-
serve ownership of the original file and link it to the person/entity who
originally uploaded it. Moreover, self-encryption provides strong security
guarantees that decryption of a file is computationally not feasible under
the condition that the encrypted file and the key are safely stored.

Keywords: Blockchain + IPFS -+ Self-Encryption + Security -
Hyperledger Fabric

1 Introduction

The modern world is increasingly adopting blockchain technology. The first major
market adoption of blockchain happened in 2009 when Bitcoin was introduced
[12]. Interest in blockchain solutions grew over the years and lead to the invention
of Ethereum - Bitcoin peer but with support for smart contracts which are digital
codes enabling the description of complete business logic [1]. The introduction of
smart contracts leads to further development in the field of blockchain and cre-
ated demand for more industry-friendly solutions that allow to identify users of
the system (Know-Your-Customer, Anti-Money-Laundering). Hyperledger Fab-
ric was then introduced as a highly modular permissioned blockchain that allows
great customization to suit particular industrial needs [3]. Given its customizabil-
ity and modularity, Hyperledger Fabric (HLF) is a perfect platform for extending
it with various trust and privacy preservation solutions.

According to Huang et al. [7] the main component of a blockchain that is
being attack the most is a smart contract. High frequency of attack on a com-
ponent designed to handle user private data suggests a need for an alternative
approach to handling sensitive information other than just sending it raw to the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved

W. Meng and W. Li (Eds.): BlockTEA 2022, LNICST 498, pp. 3-18, 2023.
https://doi.org/10.1007/978-3-031-31420-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31420-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-31420-9_1

4 1. Grishkov et al.

ledger. An local data encryption prior to sending data to the smart contract
could be a solution.

Self-encryption was introduced as a mean of encrypting files that “requires no
user intervention or passwords” [9]. This algorithm can be used for local encryp-
tion of files, encrypted chunks of which will be later uploaded to a cloud-based
storage or to a distributed file system (e.g., IPFS') Pointers to the encrypted
chunks are then sent to the ledger. It can be noted that storing only the hash
values of the encrypted data chunks on blockchain ledger is vital when the data
size is significant. The authors in [5] point out that sending data to a blockchain
frequently, when the data size is large, can cause the entire blockchain network
to crash. Sending only the hash values of the given data is more optimal as a
hash value is usually 32 bytes long. While this solution allows to keep file content
private, the file itself is not linked in any way to its owner. A variant of identity
based encryption can tackle this problem. If a file is self-encrypted with owners
identity used during the encryption process, this file remains linked to the person
who initially uploaded it to the blockchain. This way original ownership can be
preserved.

This paper aims at exploring trust and privacy preserving solutions in Hyper-
ledger Fabric blockchain. More specifically the goal is to further investigate the
utility of a combination of identity based encryption and self-encryption as means
of improving security of the data in the HLF'; extend the previously done research
by [13] and implement ID-based self-encryption via Hyperledger Fabric smart
contract. Hence, this work is aimed at finding a possible solution to combining
ownership information with blockchain architecture. Another goal of the paper
is creating a proof of concept solution for integration of ID-based self-encryption
into a blockchain context in a generic way.

Within this paper an approach of integrating ID-based self-encryption is pre-
sented. Moreover a detailed description of prototype implementation is given. In
addition to this implementation of ID-based self-encryption, a practical fully
decentralized network architecture for storing encrypted data has also been
deployed. In this proposed network, the data owner can use ID-based self-
encryption to store encrypted data in a decentralized and secure manner. The
encrypted data chunks are stored in an InterPlanetary File System (IPFS) which
is a decentralized systems for file storage. To store the references (hash values)
of the encrypted data chunks, the Hyperledger Fabric blockchain was used.

This work is structured as follows. Section2 describes related works used
to achieve the goal. Section 3 gives a background about the implementation of
ID-based self-encryption. Section4 discusses the inner workings and the pro-
posed implantation of ID-based self-encryption. The performance analysis and
the overview of benefits of the proposed implementation is presented in Sect. 5.
Finally, the work is discussed in Sect. 6, and concluded in Sect. 7.

! https://ipfs.io/.

https://ipfs.io/

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 5

2 State of the Art

Blockchain is a distributed ledger technology that provides immutability and
transparency of data to members of the blockchain network [19]. The blockchain
is also a peer-to-peer network in which participants are known to each other.
Authentication of participants is ensured using elliptic curve cryptography.
Today’s blockchains enable the deployment of complete business logic in a seam-
less manner. These digital business logic are also known as smart contracts.

Blockchain technology is used in several use cases such as smart city, smart
agriculture, vehicle networks [10] and also healthcare [15]. In the latter two cases,
the privacy and ownership of data transmitted from a driver and medical patient
is particularly important, as this data may contain privacy sensitive information.
It can be noted that in these latter use case using a private blockchain such as
Hyperledger Fabric can be a more optimal choice as they can provide higher
security and privacy level.

The topic of security and privacy of the Hyperledger Fabric has been thor-
oughly studied [4,16,18]. Moreover a research has been conducted this year by a
student of Delft University of Technology [13] addressing similar issue of improv-
ing HLF security using self-encryption.

The concept of self-encryption was introduced by Yu Chen [2]. The approach
of the original paper involves converting a file into a bit stream, extract the key
by randomly selecting bits from the stream and then doing the encryption using
that key. After the encryption the key and the encrypted file should be stored
separetely, e.g. the key can be stored locally, while the encrypted file can be sent
to a server.

The original encryption scheme was also extended by Moch Rezky Debby
Rahardjo [14]. According to the paper, “The modification is located in dividing
the plaintext and ciphertext into 1024-bit chunks at XOR process and using the
date when encryption process starts as a seed. The modification also adds the
database for the key management function”. Storing the key and the encrypted
chunks in separate places makes in computationally not feasible to get the orig-
inal data.

The later industrial adaptation of the self-encryption scheme happened when
a team lead by David Irvine made self-encryption the core of his company’s
(MaidSafe) product - SAFE Network [9]. Irvine’s implementation of the self-
encryption scheme will be the basis of this work, hence a more detailed expla-
nation of the implementation of the algorithm will be given.

Figure 1 shows the encryption process. First, the original file is getting split
into minimum of 3 file chunks. After the file is split into chunks the algorithm
creates a data map, where the key needed for decryption will be stored. Each
chunk is then hashed and those hashes are written to the data map. Parts of
those hashes are used as a key and initialization vector for AES 128 algorithm
that encrypts each file chunk. When encryption is done, each encrypted chunk
is obfuscated with the previously computed hash values by applying a XoR
function. At the end of the process the encryption scheme returns a data map
that is going to be later used for decryption, and the encrypted file chunks.

6 1. Grishkov et al.

E Optional E : Optional E : Optional : : Optional :
| Compress | | Compress | | Compress | | Compress |

i Optional E
1 Compress |

AES
128

Encrypted Encrypted Encrypted Encrypted
Chunk n-2 Chunk n-1 Chunk n Chunk n+1

Fig. 1. Self-encryption process, adopted from [11]

3 Background

Original implementation of the self-encryption schema by David Irvine [11] was
modified and used for this research. The use of rayon library (which adds paral-
lelization to the code) was removed from the algorithm, due to the fact that the
compilation target (WebAssembly) only supports single-threaded code. Addi-
tionally the code base was modified to include an interface for communication
with the external code. Changes were also done to the Cargo.toml to make the
code compatible with the target. Modified self-encryption algorithm was com-
piled to WebAssembly and run in a virtual machine (VM) and invoked from the
code of the developed local application (which allows the interaction with the
Hyperledger Fabric Smart Contract). A more detailed description of the pro-
cess will be given in the Sect. 4. The benchmarks of this implementation will be
provided in Sect. 5.

Hyperledger Fabric test network v2.4.3 was used. Test network was deployed
to Docker based on the tutorials provided by Hyperledger Fabric?.

Smart contract was then deployed (detailed in Sect. 4).

Encrypted file storage is handled by the IPF'S, which is a distributed Torrent
database, which uses hashes of files to address its content. IPFS node was also
deployed to Docker. For IPFS deployment two directories (staging and data) were

2 Usage of the command requires navigating to the root directory of the test-network,
provided by the Hyperledger Fabric [8].

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 7

mounted on the host file system to persist the stored data, when the container
is stopped. Hyperledger Fabric provides official software development kit (SDK)
for 3 languages: Go, Java, Javascript. Go was chosen for implementation of the
project, due to ease of integration with both Hyperledger Fabric and the IPFS.
Encryption library is written in Rust and is compiled to WebAssembly, hence
a way to call WebAssembly was needed. Go also provides support for Wasmer
library that allows to call WebAssembly function directly from Go code.

4 ID-Based Self-encryption

4.1 Integrating Identity into the Encryption

This paper offers an extension to the algorithm proposed by Irvine [9]. Encryp-
tion step in the original algorithm is modified to include identity of a person
who is running the algorithm into the encryption process. Instead of using part
of the chunk hash as a key for AES 128, the result of XoR of the hashed iden-
tity and the chunk hash is used as a key. The identity can be any string of any
length. If the length of this string is shorter than the length of the key, then
the cycle function is applied to the string, which repeats the iterator of a string.
The hashing function SipHash 1-3 is used to hash the identity of a user, before
passing it to the XoR function. Figure 2 demonstrates the process of encrypting
a file using the modified version of self-encryption with identity integrated into
the encryption process.

Chunk Chunk Chunk Chunk Chunk
- - n

Optional
i Compress !

SipHash 1-3
— hashofa
public key

x.509 identity
Public Key

Encrypted
Chunk n-2

Encrypted
Chunk n-1

Encrypted
Chunk n

*The key is generated by performing XoR of a chunk hash and SipHash 1-3 of user's public key

Encrypted
Chunk n+1

Fig. 2. ID-based self-encryption process

8 1. Grishkov et al.

Decryption of the file, that was encrypted using ID-based self-encryption,
is similar to that of a regular self-encryption, with the key for AES 128 being
the only different part. The decryption calculates the key the same way the
encryption does it by applying XoR function to the hash of identity and the
chunk hash from the data map.

The implementation of the encryption scheme can be found on GitHub?.

4.2 Connecting the Encryption Algorithm and the Local
Application

The implementation of the identity-based self-encryption is written purely in
Rust, while the client application is written in Go. This creates a demand for a
way to integrate Rust library into Go code. Among the solutions to tackle the
problem are:

1. Use Go tools to assemble the Go code and compile Rust code into a static
library. Then link compiled code using additional assembly “glue-code” [17].

2. Compile Rust to a static library and call it from the Go code using Go build-in
pseudo-library C for interacting with native interfaces.

3. Compile Rust to WebAssembly (WASM) code and call it from Go using
Wasmer library®.

All of the methods have been successfully tried. The first two methods do not
allow cross compilation, because both of them require compiling Rust to a static
library, which is platform-specific. Additionally, the first methods requires the
use of assembly language, which is different on different processor architectures
and operating systems. The second method also uses C pseudo-library, which
does not allow cross-compilation of the Go code. Overall, both methods are very
platform-specific, which makes them less preferable choice.

The third method was chosen for connecting Rust library to Go code. Com-
piling Rust to WASM to use as a standalone application or a library, can be
done using the following command:

$ cargo build —target=[chosen_target]

where chosen_target is a WebAssembly target that can be either wasm32-
unknown-unknown or wasm32-wasi. The latter was used, because it compile
using WASI API®, which is a system API that provides access to multiple oper-
ating system functionalities, such as access to the file system.

The resulting WASM file is then placed in a hidden folder in the home direc-
tory of a user, so it can later be loaded by the Go code. As the WASM code is
used within a virtual machine (VM), it’s independent from the operating system
it will run on, so requires compiling only for one target.

3 https://github.com/ilyagrishkov /ib-self-encryption-rust.
* https://wasmer.io/.
5 https://wasi.dev/.

https://github.com/ilyagrishkov/ib-self-encryption-rust
https://wasmer.io/
https://wasi.dev/

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 9

Calling WASM from Go Using Wasmer. In order to call WASM code
a VM needs to be used. Wasmer library provides such VM, that can also be
initialized from within Go code. The process of calling WASM code from the Go
application is demonstrated in the Fig. 3. This process consists of the following
steps:

1. Loading WASM code into a Wasmer VM
(a) A directory on the host operating system, that will be accessible in the
VM, need to be specified
(b) Optionally, standard output of the WASM library can be inherited.
2. Invoking a function by specifying its name and the return type and passing
arguments to it

Copy pointers (\
Host memory

ﬁl Wasmer VM alues to the
host memory ‘)L

VM memory M WASM library = |
Allocate

B Local ot

API
N i\l Wasmer wrapper
Encrypt rﬁ

Compile to —— 3! — Invoke L
-wasi g)
Rust library wasms32-wasi Decrypt
® Close

Fig. 3. Connection of the WASM encryption library to the client application via the
Wasmer library and the developed wrapper

The communication between the Go code and WASM library and passing
arguments for function invocation is happening using C types, which means
that types like strings are not supported directly and need to be converted to
corresponding C types. In case of a string being passed as an argument, it needs
to be written to memory and end with a zero byte. The pointer to the first byte
of this string is then passed to the invoked function as an argument.

As the host operating system memory is inaccessible for the VM, alloca-
tion and deallocation of memory need to happen within the VM itself. In order
to facilitate the allocation and deallocation two dedicated Rust functions were
developed as a part of id-based encryption library interface: allocate and deal-
locate.

In case the called function requires a string as an argument, the allocation
needs to be performed before passing the pointer to that string. The allocate
function has to be called to allocate memory inside the VM. The memory is
then accessed from the Go code and each byte of the string argument is written
to the newly allocated memory. The pointer to the memory and the length

10 1. Grishkov et al.

need to be preserved in order to deallocate the memory, before the program
terminates. The pointer to the first memory cell containing the string argument
is then passed as an argument to the function that is being called.

Wrapper Code for Wasmer Calls. A wrapper code has been written to
simplify invocation of WASM functions. The major simplification that this code
provides is the ability to pass Go native-type argument to the wrapper, which
then performs all the necessary processing and allocation, if needed. The pointers
to string or array types as well as their lengths are stored, so when the program
terminates, the memory is getting deallocated.

Moreover, the developed wrapper code allows to pass simple numerical Go
types (integers, floats, bytes, etc.) as pointers to the WASM library, so the
changes that are happening to them when WASM functions run are also reflected
in Go code, without the need to return anything.

Additionally, the wrapper requires return type parameter argument (which
is represented as an enumerator), when calling the invocation function through
the wrapper. It uses the return type to case the return of WASM function to
corresponding Go type. In cases when a pointer to a string is returned, the
wrapper reads bytes from the VM memory until the zero byte and creates a
Go string from it. The return type of the wrapper’s invocation function is a
generic interface{}, which requires additional type casting. For example, in case
the called function returned a pointer to a string, a Go string will be built from
the pointer, but a user will still have to dynamically convert the returned value
as it will be interface{}.

4.3 Smart Contract

The smart contract in Hyperledger Fabric allows to define assets that will be on
the ledger. This paper defines an asset containing three fields: ID, Owner and
CID. The code below shows the definition of an asset written in Go.

type Asset struct {

ID string “json:”ID” ¢
Owner string ‘json:” Owner” *
CID [] string ‘json:”CID” ¢

Listing 1.1. The struct representing an asset on the Hyperledger Fabric ledger

The ID is a universally unique identifier (UUID) that is generated, when the
new asset is created. The Owner is a string of hexadecimal numbers representing
a public key of a user, who created the asset. The CID is an array if unique
identifier that reference encrypted file chunks saved in IPFS. The references to
the encrypted data chunks remain immutable, and can also be used for verifying
if encrypted data chunks were manipulated (the hash of an encrypted data chunk
is a unique value).

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 11

Additionally, the smart contract defines a list of functions for creating, delet-
ing and updating assets. The implementation can be found on GitHub®.

4.4 Self-encryption Work Flow in a Blockchain-IPFS Based
Network

The encryption and decryption process as well as interactions with the IPFS
and the Hyperledger Fabric are orchestrated by a local application, which is a
command line interface (CLI) tool written in Go. The prototype of the tool is
accessible from GitHub’

Execution of any command starts with creating a new instance of a WASM
wrapper and loading of the encryption library. When the command requires inter-
action with the Hyperledger Fabric, presence of the wallet, containing identity
(which is necessary to enable interaction with the smart contract), is being checked.
If the wallet is missing it’s getting populated based on the certificates and keys of
a user. When this preparation is done, the execution of the command starts.

At the end of the program execution the wrapper iterates over all allocated
memory pointers and individually deallocates them.

Decryptio

o) 5

8. Decrypt with il 7. Get data chunks from
(hash(PK) XOR chunk hash) Deciypted file IPFS based on CID

Data map
File chunks

Data map

6. Get CIDs and PK from the block
based on block id

Local environemnt X
5. Decrypt (block id, data map)

9. Return
8 «——1—4.3 Return data map — decrypted file
to the user iger
Local app
1. Encrypt (data)]
Typt (data) / 2. Get public key 4.2 Create an asset
f with CIDs of chunks,
of a user to use as the identity (PK) and UUID
an identity o identity an
Encryption
ﬁDma
4.1 Upload individually
zipped data @
chunks
Original file 3. Encrypt each chunk using AES Data map IPFS
with (hash(PK) XOR chunk hash) File chunks

as a key and IV derived from
chunk hash

Fig. 4. Work flow in the blockchain-IPFS based network when using self-encryption

5 https://github.com/ilyagrishkov /ib-self-encryption-smart-contract.
" https://github.com /ilyagrishkov /ib-self-encryption.

https://github.com/ilyagrishkov/ib-self-encryption-smart-contract
https://github.com/ilyagrishkov/ib-self-encryption

12 1. Grishkov et al.

There are two major parts of the system - encryption and decryption. Figure 3
demonstrates the workflow of both of them.

Encryption. The first part, encryption, that deals with encrypting a file and
uploading data to the Hyperledger Fabric starts when the following command is
called:

$ ibse add [file] [key_output_path]

where ibse is the name of the local app, file is the absolute path to the file
that needs to be encrypted, and key_output_path is the absolute path to location
where the key will be stored.

The original file is getting uploaded to the directory that was mapped dur-
ing the VM initialization. From there it can be read by the WASM code. The
encryption function is then called and the output is written to a new directory
inside the mapped one. The output consists of multiple encrypted file chunks
and a data map. The data map is moved to the location specified by the user
and can later be shared via a secure channel. Each encrypted file chunk is being
put into a zip archive to preserve their names, when uploading to the IPFS, and
sent to the IPFS. The unique identifier, corresponding to each chunk (Content
Identifiers or CIDs which are the hash values of the files) is returned. A smart
contract function is then called that creates a new asset with all CIDs.

Decryption. The second part of the system, decryption, is invoked using the
following command:

$ ibse get [block] [key] [destination]

where block is the UUID of an asset in HLF blockchain that contains CIDs
of encrypted chunks, key is the absolute path to the data map, and destination
is the absolute path to location where decrypted file should be written.

The UUID allows to identify an asset containing CIDs of encrypted file
chunks. Each of the chunks is downloaded from the IPFS, unarchived, and writ-
ten to the directory that is accessible from the VM. The data map is then copied
to the same directory. After collecting all the necessary files for decryption, the
decryption function is called and the restored file is written to a user-specified
destination.

5 Results

5.1 Performance Analysis

Benchmarking of the system was done on the iMac 2019, 3,6 GHz 8-Core Intel
Core i9 with 32 GB of memory running on MacOS 12.3.1.

Benchmarking of the implemented id-based self-encryption scheme was done.
As the encryption itself is not implemented in the same language as the rest of
the project (the encryption is implemented in Rust and the rest of the project

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 13

is in Go), the execution time can differ when Rust functions are called from Go
compared to pure Rust execution time.

Files of sizes 100-, 250-, 500-, 750 kilobytes, 1 megabyte, 10-, 25-, 50-, 75-, and
100 megabytes were created for benchmarking both the pure Rust implementa-
tion as well as the WASM + Go implementations. Moreover, for this benchmark
both the Rust code and the WASM library were optimized using maximum level
of optimization provided by the Rust compiler.

Time (Sec)
o o o o o 4
N w E= (] ()] ~
N) L)) R

o
=
L

<
o
L

0 20000 40000 60000 80000 100000
Size (Byte)

Fig. 5. Dependence of the execution time of id-based self-encryption algorithm in pure
Rust from the file size

The initial benchmark was performed on the encryption function only and
was measuring execution time of the pure Rust implementation. Figure 4 shows
the results of the benchmarking.

The chart show near-linear dependence between the size of the file and the
time it takes to encrypt it. This dependence can be explained by the fact that the
most demanding computational is the AES 128 encryption process and with the
increase of the file size, then number of chunks it is split to increases. Each chunk
of the original file needs to be individually encrypted, hence the computation
time grows linearly with the size of the file.

As the encryption function execution time grows linearly due to the com-
putational demand of the AES 128 and the hashing algorithms, the decryption
process will be identical, because it uses the same algorithms for decryption.

In order to achieve more objective benchmark results, file of each size has been
encrypted 100 times and the average calculated. In order to visualize execution
time a chart in Python using MatPlotLib® was created. The chart contains a 25-
bin histogram, each representing density of a particular measurement. Following

8 https://matplotlib.org/.

https://matplotlib.org/

14 1. Grishkov et al.

central limit theorem the distribution of the execution time measurements was
assumed normal, so the mean and the standard deviation were calculated and the
distribution plotted over the histogram. Figure 5 shows an example of combined
charts for pure Rust and WASM + Go execution times, when encrypting 50
megabytes file. The blue histogram on the left-hand side shows results of the
100 measurements of the execution time of the Rust implementation; on the
right-hand side - of the WASM + Go implementation.

Rust: 0.3686 WASM: 0.5644 | Overhead: 53.15%

120 1

100 1

80 1

60 1

Density

40 1

20 1

0- T T T T
0.35 0.40 0.45 0.50 0.55 0.60

Time (Sec)

Fig.6. Run time distribution for 50 MB file encryption using pure Rust and
WebAssembly + Go implementations (Color figure online)

The results of execution time measurements have for various file sizes are
summarized in Table 1. The execution time shown in the table is the average
number of seconds it takes a corresponding implementation to encrypt a file of
a corresponding size. In addition to the average execution time, the overhead of
the WASM + Go implementation is calculated for every pair of measurements.

It is visible from the table that the overhead has a clear downwards trend
(except the spike, when encrypting 250 KB file). When the execution time of a
WASM + Go encryption implementation is less than 0.01s, the overhead falls in
the range between 70% and 85%. When the execution time is longer than 0.1s,
the overhead goes down to 50%-55% and stays in that range when the file size
increases. Figure 6 demonstrates the overhead of WASM + Go encryption of file
of different sizes.

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 15

Table 1. Average execution time and overhead when encrypting files of different sizes
using id-based self-encryption

File size (Byte) | Average execution time (Sec) | Overhead (%)
Rust | WASM + Go

100KB 0.0024 | 0.0042 75.89
250 KB 0.0038 | 0.007 84.51
500 KB 0.005 | 0.0088 75.48
750 KB 0.0069 | 0.0117 71.4
1MB 0.0081 | 0.0139 71.29
10MB 0.0747 1 0.117 56.55
25MB 0.1885 1 0.2851 51.22
50 MB 0.3686 | 0.5644 53.15
75MB 0.5492 | 0.8447 53.81
100 MB 0.7317]1.1201 53.08

Such decrease in the overhead, when the execution time becomes longer is
explained by the presence of the Wasmer library invocation overhead, which
occurs every time a call is made to the Wasmer VM. When execution time itself
is less than 0.01 s the invocation overhead is significant compared to the execution
time. At the same time, when the execution time becomes longer, the overhead
from invocation becomes insignificant, and measurements start to approximate
real WASM VM overhead, which is around 50%-55%.

5.2 Benefits Overview

The designed app has multiple surfaces of attack. The IPFS nodes, where the
encrypted file chunks are stored can attacked. Also, an adversary can be gain
unauthorized access to the ledger with references to file on the IPFS. Both of
those possibilities are analyzed below.

The security of IPFS nodes (assuming the encrypted file chunks were stored
individually on multiple nodes) can be compromised, in which case encrypted
files will be leaked to the malicious user. As encrypted file chunks have been
stored on different nodes, the probability that all of them being compromised is
negligible and should not be considered. Additionally, individual files do not have
any link to each other, so matching multiple encrypted chunks, that are needed
for successful decryption, is not computationally feasible. The data map contain-
ing the keys for the decryption, was stored locally by the user, who encrypted
the file. Without the original keys, the decryption of the self-encrypted data is
computationally not feasible [9]. Moreover, as the proposed self-encryption is
also related to the data owner or user identity, the decryption cannot be done
until the identity is not provided. Thus the data ownership is also provided by
the id-based implantation.

16 1. Grishkov et al.

85 1

Overhead (%)
()] ()} ~ ~ [ee]
o w o w o

w
w
L

50

0 20000 40000 60000 80000 100000
Size (Byte)

Fig. 7. WebAssembly + Go implementation overhead measurements over for files of
different sizes compared to pure Rust implementation

6 Discussion

The results show high security guarantees of the id-based self-encryption scheme,
when used for encrypting data, stored on the Hyperledger Fabric blockchain.
This allows to use the implemented prototype as a secure medium for saving a
retrieving information from the ledger.

In future works full Go implementation of self-encryption should be compared
with the design proposed in this paper.

It was also beyond the scope of this study to create a standardized bench-
marking for WASM and Rust libraries. It can be done by using multiple sample
programs that test specific properties of the programming language (e.g. effi-
cacy of memory allocation and deallocation) or very computationally intensive
programs [6]. The objective could be running a containerized version of both
libraries against a set of such programs and analyzing the run time.

Moreover, the study can be expanded by analyzing and comparing CPU and
memory load of WASM and Rust libraries. Such benchmark could be also done
using sample programs mentioned in the previous paragraph (Fig. 7).

7 Conclusion

In this study a new approach to storage of files on the Hyperledger Fabric
blockchain was presented. The demonstrated approach allows for secure storage
of data in a decentralized way, with ability to preserve the original file ownership
and also information about the person, who encrypted it. This approach can be
used where high security and trust in the integrity of data stored on the ledger is
need. The prototype uses Rust implementation of id-based self-encryption that
is compiled to WebAssembly and invoked from Go code.

ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract 17

Additionally, the study demonstrates the generic way of integrating ID-based
self-encryption into the blockchain context with a relatively low overhead (the
overhead is around 55%) and high performance level of WebAssembly library
integration with the Go code base, compared to the pure Rust implementation.
Relatively low overhead of WASM creates possibilities for developers to use
WASM integration with Go and other languages that support Wasmer library
as a cross-platform solution that allows to achieve high degrees of performance,
while also being deterministic.

The wrapper proposed in this work can also be used in Golang-based back-
end applications that aim to use the cryptographic libraries deployed in Rust
providing a more memory-safe execution.

Acknowledgements. This research is supported by European Union’s Horizon 2020
researchand innovation programme under grant agreement No. 952697 (ASSURED),
No. 101021727 (IRIS), and No. 101070052 (TANGO).

References

1. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper.
Accessed 22 Aug 2016

2. Chen, Y., Ku, W.S.: Self-encryption scheme for data security in mobile devices. In:
2009 6th IEEE Consumer Communications and Networking Conference, pp. 1-5.
IEEE (2009)

3. Christian, C.: Architecture of the hyperledger blockchain fabric (2016). https://
www.zurich.ibm.com/dccl/papers/cachin$_/$dccl.pdf. Accessed 10 Aug 2016

4. Dabholkar, A., Saraswat, V.: Ripping the fabric: attacks and mitigations on hyper-
ledger fabric. In: Shankar Sriram, V.S., Subramaniyaswamy, V., Sasikaladevi, N.,
Zhang, L., Batten, L., Li, G. (eds.) ATIS 2019. CCIS, vol. 1116, pp. 300-311.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0871-4_24

5. Gerrits, L., Kromes, R., Verdier, F.: A true decentralized implementation based on
IoT and blockchain: a vehicle accident use case. In: 2020 International Conference
on Omni-Layer Intelligent Systems (COINS), pp. 1-6 (2020). https://doi.org/10.
1109/COINS49042.2020.9191405

6. Gouy, I.: Toy benchmark programs. https://benchmarksgame-team.pages.debian.
net/benchmarksgame/why-measure-toy-benchmark-programs.html

7. Huang, Y., Bian, Y., Li, R., Zhao, J.L., Shi, P.: Smart contract security: a software
lifecycle perspective. IEEE Access 7, 150184-150202 (2019). https://doi.org/10.
1109/ACCESS.2019.2946988

8. Hyperledger: Using the fabric test network (2020). https://hyperledger-fabric.
readthedocs.io/en/release-2.2 /test$_$network.html. Accessed 19 Mar 2022

9. Irvine, D.: Self encrypting data (2010). Unpublished Manuscript

10. Kromes, R., Gerrits, L., Verdier, F.: Adaptation of an embedded architecture to
run hyperledger sawtooth application. In: 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), pp.
0409-0415 (2019). https://doi.org/10.1109/TEMCON.2019.8936264

11. Maidsafe: self_encryption (2022). https://github.com/maidsafe/self$_/$encryption

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.zurich.ibm.com/dccl/papers/cachin$_/$dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin$_/$dccl.pdf
https://doi.org/10.1007/978-981-15-0871-4_24
https://doi.org/10.1109/COINS49042.2020.9191405
https://doi.org/10.1109/COINS49042.2020.9191405
https://benchmarksgame-team.pages.debian.net/benchmarksgame/why-measure-toy-benchmark-programs.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/why-measure-toy-benchmark-programs.html
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1109/ACCESS.2019.2946988
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test$_$network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test$_$network.html
https://doi.org/10.1109/IEMCON.2019.8936264
https://github.com/maidsafe/self$_/$encryption

18

12.

13.

14.

15.

16.

17.

18.

19.

1. Grishkov et al.

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 01 July 2015

Park, C.:. Using self-encryption to safeguard data security in fabric’s smart
contract. Bachelor’s thesis (2022). https://repository.tudelft.nl/islandora/object/
uuid:15c5eee3-0be6-4d71-bf67-3eabe576aa057collection=education

Rahardjo, M.R.D., Shidik, G.F.: Design and implementation of self encryption
method on file security. In: 2017 International Seminar on Application for Tech-
nology of Information and Communication (iSemantic), pp. 181-186. IEEE (2017)
Ray, P.P., Dash, D., Salah, K., Kumar, N.: Blockchain for IoT-based healthcare:
background, consensus, platforms, and use cases. IEEE Syst. J. 15(1), 85-94
(2021). https://doi.org/10.1109/JSYST.2020.2963840

Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., Buchanan, W.J.: A
privacy-preserving healthcare framework using hyperledger fabric. Sensors 20(22),
6587 (2020)

Valsorda, F.: Rustgo: calling rust from go with near-zero overhead (2022). https://
words.filippo.io/rustgo/

Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of hyperledger
fabric smart contracts. In: 2019 IEEE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 1-10. IEEE (2019)

Zibin, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and oppor-
tunities: a survey. Int. J. Web Grid Serv. 4, 352-375 (2018). https://doi.org/10.
1504/1JWGS.2018.095647

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://repository.tudelft.nl/islandora/object/uuid:15c5eee3-0be6-4d71-bf67-3ea5e576aa05?collection=education
https://repository.tudelft.nl/islandora/object/uuid:15c5eee3-0be6-4d71-bf67-3ea5e576aa05?collection=education
https://doi.org/10.1109/JSYST.2020.2963840
https://words.filippo.io/rustgo/
https://words.filippo.io/rustgo/
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.1504/IJWGS.2018.095647

	ID-Based Self-encryption via Hyperledger Fabric Based Smart Contract
	1 Introduction
	2 State of the Art
	3 Background
	4 ID-Based Self-encryption
	4.1 Integrating Identity into the Encryption
	4.2 Connecting the Encryption Algorithm and the Local Application
	4.3 Smart Contract
	4.4 Self-encryption Work Flow in a Blockchain-IPFS Based Network

	5 Results
	5.1 Performance Analysis
	5.2 Benefits Overview

	6 Discussion
	7 Conclusion
	References

