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Integrated Synchromodal Transport
Planning and Preference Learning

Mingjia He1,2,3 , Yimeng Zhang1,3,4 , and Bilge Atasoy4

Abstract
A comprehensive understanding of shippers’ preferences can help transport freight forwarders create targeted transport ser-
vices and enhance long-term business relationships. This research proposes an integrated approach to learn shippers’ prefer-
ences in synchromodal transport operations and optimize transport services accordingly. A preference learning method was
developed to capture shippers’ preferences through pairwise comparisons of transport plans. To model the underlying com-
plex nonlinear relationships and detect heterogeneity in preferences, artificial neural networks (NNs) were employed to
approximate shippers’ utility for a specific plan. Leveraging the learned preferences, a synchromodal transport planning model
with shippers’ preferences (STPM-SP) was proposed, with the objectives of minimizing the total transportation cost and max-
imizing shippers’ satisfaction. A case study based on the European Rhine-Alpine corridor was conducted to demonstrate the
feasibility and effectiveness of the proposed approach. The results demonstrated that artificial NNs have the capacity to iden-
tify complex (i.e., nonlinear and heterogeneous) relationships in shippers’ preferences. The planning results showed that the
STPM-SP effectively found solutions with a significant satisfaction improvement of 37%. This research contributes to learning
shippers’ preferences in the transport operation process and highlights the importance of incorporating these preferences
into the decision-making process of synchromodal transport planning.

Keywords
freight systems, intermodal freight transport, optimization

Synchromodal transport is an emerging concept in logis-
tics that evolved from intermodal transport (1, 2). It
enables the flexibility to switch between available trans-
port modes or routes (3), and can substantially reduce
transportation costs, increase transportation efficiency,
and promote emissions reductions. As the organizer and
service provider of the transport system, freight forwar-
ders respond to shipment requests, formulate transport
plans, and assign transport tasks to carriers (4). The
objectives of synchromodal transport operation com-
monly stem from the perspective of freight forwarders,
such as minimizing total transport cost (5), total trans-
port time (6), resource use (6), and CO2 emissions (7). As
the customers of the transport system, shippers play a
key role in the real-world operation of transport systems.
Shippers’ expectations in relation to transport operations
may differ from the goals of freight forwarders (8). For
instance, the influence of cost on port choices varies
between shippers and freight forwarders (9, 10). A com-
prehensive understanding of shippers’ preferences would

help freight forwarders create customized and targeted
services that enhance customer satisfaction and loyalty.
This would potentially lead to increased transport
demand, higher revenue, and benefit long-term business
relationships (11). However, only a few researchers have
investigated the incorporation of shippers’ preferences
into the synchromodal transport operation (12, 13).

There are still challenges in relation to the acquisition
and modeling of shippers’ preferences. The traditional
methods for studying shippers’ preferences are based on
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survey data. For example, shippers are asked to rate vari-
ous transport attributes using a predefined scale of
importance. However, this method has its limitations,
including hypothetical bias (14) and challenges associ-
ated with large-scale survey data collection. The hypothe-
tical nature of the survey may lead to responses that do
not accurately reflect shippers’ true preferences in practi-
cal situations. It could also be difficult for shippers to
simultaneously assess various transport attributes and
precisely describe to what extent they value a specific
attribute. In addition, the inherent nonlinearity and het-
erogeneity in preferences call for powerful preference
modeling tools (15–18). In this work, we refer to shipper
preference heterogeneity as the variation in how shippers
value different transport plan attributes. For instance,
some shippers may opt for longer-duration plans for
lower costs, whereas some may prioritize shorter lead
times. Nonlinearity in preferences refers to the nonlinear
relationship between transport attributes and the overall
utility of a transport plan. With the advances in data col-
lection techniques, it is important to design preference
learning methods that can leverage large datasets and
automatically capture complex relationships from data.

To this end, we proposed a preference learning model
to estimate shippers’ preferences from their actual deci-
sions on transport services. A synchromodal transport
planning model with shippers’ preferences (STPM-SP) was
developed, with the two objectives of minimizing the total
cost and maximizing the shippers’ satisfaction. The model
was solved using a modified heuristic algorithm based on
the adaptive large neighborhood search (ALNS), proposed
by Zhang et al. (2). A case study was conducted based on
the European Rhine-Alpine corridor to demonstrate the
feasibility and effectiveness of the proposed method. The
results showed that the proposed model can provide win–
win solutions for both shippers and freight forwarders,
leading to better resource utilization and service quality
for the synchromodal transport system.

Literature Review

We reviewed relevant literature on (i) shippers’ prefer-
ences, (ii) machine learning in transport choice analysis,
and (iii) preference integration in intermodal transport
planning. The research gaps are identified and discussed.

Shippers’ Preferences

Extensive investigations have been conducted to identify
the key attributes that affect shippers’ satisfaction with
transportation services. In general, transport cost, time,
and reliability are considered to be the three core factors
influencing the transport decisions of shippers (19, 20).
Transport cost is listed as the major critical factor in sev-
eral studies (21, 17). Kurtulusx et al. found that reducing
transit time by 50% could increase the share of rail from
11% to 30% considering short-distance inland transport
in Turkey (22). Reliability can be defined as the percent-
age of on-time delivery of freight/goods at the destina-
tion (8, 23–25), and higher reliability appears to result in
higher service quality and customer satisfaction (22).
Other service attributes have been investigated as well,
such as frequency (17, 25), flexibility (24), and risk of
damage (11). A few researchers have investigated the
impacts of gas emissions (26, 27) and transshipment (28–
30). The companies with higher export volumes tend to
be more aware of the impact of greenhouse gases on the
environment (31). Research on transshipment showed
that this option may increase cost-effectiveness by enhan-
cing multimodal transportation and optimizing route
and time scheduling (30). Table 1 presents the summary
of the research on shippers’ preferences. Note that
Khakdaman et al.’s research that examined shippers’ pre-
ferences at the operational level has greater relevance to
our research (24, 32).

For data collection techniques, most of the discussed
literature is based on stated preference data, in which
the experiments involve presenting individuals with

Table 1. Models in the Recent Literature Together with their Considered Attributes

Research Influential factors Model Specification

Nugroho et al. (31) Cost, time, reliability, emissions Mixed logit model Linear
Kim et al. (17) Cost, time, reliability, frequency Latent class logit model Linear
Khakdaman et al. (24) Cost, time, reliability, flexibility Multinomial logit model Linear
Kurtulusx et al. (22) Cost, time, reliability, frequency Mixed logit model Linear
Firdausiyah et al. (33) Cost, time Binary logit model Linear
Nicolet et al. (34) Cost, accessibility Weighted mixed logit model Linear
Román et al. (18) Cost, time, reliability, frequency Latent class logit model Nonlinear
Jensen et al. (16) Cost, time Nested logit model Nonlinear
Jourquin (35) Cost, time, distance Conditional logit model Nonlinear
Feo-Valero and Martı́nez-Moya (8) Cost, reliability, frequency Mixed logit model Nonlinear
Khakdaman et al. (32) Cost, time, reliability, flexibility Mixed logit model Nonlinear
This study Cost, time, delay, emission, transshipment Preference learning Model free

2 Transportation Research Record 00(0)



hypothetical transport scenarios and asking them to
choose from two or more options, such as mode, route,
or departure time (36, 37). However, one major criticism
of stated preferences is hypothetical bias (14), that is, the
decisions made in hypothetical settings may differ from
those made in real-life situations. The sources and evi-
dence of hypothetical bias are examined in detail in the
literature (38, 39). On the contrary, revealed preferences
are observed from actual choices made in real-world set-
tings. Some research has combined revealed preferences
and stated preferences for transport behavior analysis
(40, 37).

For preference modeling, the discrete choice model is
one of the most classical methods for capturing shippers’
preferences. Based on the multinomial logit (MNL) model
(41), research on intermodal transport choice modeling
attempted to relax the predetermined structures and linear
characteristics of underlying functions in MNL. This
exploration leveraged the advantages of a mixed MNL
(MMNL) model, a nested logit model, a weighted logit
model, a conditional logit (CL) model, and a latent class
MNL model. Another key approach employs multicriteria
decision-analysis methods (27, 42, 43), which evaluate
multiple criteria in decision-making processes. The
Bayesian approach can be integrated into both discrete
choice models (44) and multicriteria decision-analysis
methods (43). By leveraging prior distributions, it has the
potential to produce more accurate estimations (44). In
addition, some researchers emphasize the model’s capabil-
ity to handle nonlinearity in preference modeling.
Jourquin argued that incorporating nonlinearity in choice
modeling provides more degrees of freedom for model
estimation (35). Jourquin incorporated Box–Cox transfor-
mations in the CL model to overcome multicollinearity.
Jensen et al. examined the marginally decreasing sensitiv-
ity of cost in the freight model and demonstrated the
necessity of taking nonlinearity into account (16).

Machine Learning in Transport Choice Analysis

With the growing availability of data, leveraging data-
driven methodologies has emerged as a promising option
for choice analysis. Data-driven approaches can identify
behavioral patterns directly from the data (45), with
fewer assumptions and predefined specifications com-
pared with traditional statistical-based models. An artifi-
cial neural network (NN) is a type of machine learning
model that uses interconnected layers of nodes to map
from inputs to outputs. The multilayer structure and use
of a nonlinear activation function enable NNs to approx-
imate continuous nonlinear function (46). NNs and NN-
based models have demonstrated notable predictive
capability in travel behavior studies (47–49). Sifringer
et al. proposed hybrid learning-based logit models in

which the systematic utility consists of an interpretable
part and a nonlinear part derived from NNs (48). They
suggested that the proposed model can achieve better
predictive performance and accuracy in parameter esti-
mation, whereas MNLs that ignore these nonlinearities
suffer a severe underfitting problem. Wang et al. pro-
posed a deep NN architecture with alternative-specific
utility functions (50). The results showed that the pro-
posed model appeared to have a lower loss value in pre-
dicting the choice of trip purposes, outperforming several
discrete choice models including binary logit, binary
mixed logit, MNL, and MMNL models. Lee et al. com-
pared the predictive capability of artificial NNs with
MNL models based on a survey dataset with 4,764 obser-
vations (47). The cross-validation results showed that
NN models outperform MNL models, with prediction
accuracies around 80% compared with 70% for MNL
models.

Some researchers have demonstrated the capacity of
NNs to handle large volumes of data and complex model
specifications (49, 51, 50). Wong et al. proposed a
ResLogit model with a residual component to capture
unobserved preference heterogeneity in the choice pro-
cess (49). In contrast to baseline MNL models, the pro-
posed model had smaller standard errors and higher
efficiency in parameter optimization. Hillel found that
owing to utilizing the gradient descent algorithm in opti-
mum searching, the feed-forward NN could be trained
up to 200 times faster than nested logit models (51).
Wang et al. examined the performance of NNs and dis-
crete choice models with sample size variation and indi-
cated that the advantage of using deep NNs would be
amplified when the sample size is large (50). Current lit-
erature has demonstrated the benefits of NNs in the
transport choice modeling field (52), and more investiga-
tions and discussions remain to be conducted. Few
researchers have explored the efficiency of NNs in learn-
ing the underlying heterogeneity in choices.

Preference Integration in Intermodal Transport
Planning

Freight forwarders and shippers are two primary stake-
holders in intermodal transport planning. Numerous
studies have established the goals of intermodal trans-
port systems from the perspective of freight forwarders.
The primary objective of freight forwarders in intermo-
dal transport planning is considered to be minimizing
transport cost, which is typically composed of transit
cost, loading/unloading cost, and storage/inventory cost
(53). Some additional costs might also be included in the
configuration of the total cost, such as delay penalties
(2), emissions-related costs (54), and nonfulfilment penal-
ties (55). Rather than focusing on a single criterion, some
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research models the trade-offs between various objectives
of system operators using multiobjective optimization
(54, 56, 57). Zhang et al. considered the three objectives
of total cost, delivery time, and reliability, and combined
the E-constraint method and the memetic algorithm for
optimum searching (58). Baykasoğlu and Subulan
explored transport solutions that compromised transport
costs, transit times, and carbon emissions and compared
the optimization results using multiobjective optimiza-
tion approaches (59).

All these objectives represent the benefits to system
operators. However, the interests of shippers and opera-
tors can diverge, leading to transport planning outcomes
that may prioritize the operators’ benefits but might not
necessarily align with the preferences of shippers (12).
Some studies have indicated that operators are more cost-
sensitive than shippers (8, 60). Feo-Valero and Martı́nez-
Moya found that the roles of carriers and shippers signifi-
cantly affect the impact of transport cost on port choice
decisions (8). The reason for this could be that transport
operators generally work with a profit margin on the
price to maintain the turnover and acquire new clients
(8). Duan et al. demonstrated that incorporating shippers’
heterogeneous preferences for time and reliability in ser-
vice network design can effectively lower the generalized
cost and enhance the overall service level (61).

Some researchers have incorporated shippers’ prefer-
ences into the operational process. Shao et al. used a
dominance-based rough set approach to derive decision
rules and require shippers to select the most important
one (12). The selected rule was then presented as a new
constraint for the optimization problem. The process of
operators consistently seeking input from shippers during
each planning phase can be time-consuming. Similarly,
shippers may encounter difficulties evaluating and com-
paring multiple transport attributes simultaneously.
Zhang et al. applied fuzzy set theory and obtained prefer-
ence information through shippers’ vague expressions on
the importance of attributes including cost, time, reliabil-
ity, risk, and emissions (13). The preferences of shippers
were set as constraints that ensured the calculated satis-
faction was equal to or higher than the predefined bench-
mark. A potential problem is that the preference data on
the importance of attributes could have a hypothetical
bias, as shippers may behave differently in choosing
transport services. Furthermore, the predefined bench-
mark of shippers’ satisfaction used in constraints needs
to be calibrated when applied in different problem
settings.

Research Gap and Contributions

Shippers’ preferences have been explored in their choices
of transport modes (17, 19, 23, 62), terminals (8, 29, 31),

and service providers (11). The stated preference method
has been widely applied in previous research, although
hypothetical biases may affect preference estimation.
The current research reveals shippers’ preferences by
developing a preference learning method to capture com-
plex preference information. We demonstrate this capa-
bility through synthetic data as a proof of concept.
Furthermore, shippers and freight forwarders may have
different preferences whereas traditional intermodal
transport planning tends to only consider freight forwar-
ders’ objectives. This research bridges this gap by inte-
grating shipper preference learning with synchromodal
transport planning. The developed approach aims to
enhance transport planning decision making, align trans-
port services with actual shippers’ preferences, and foster
stronger, long-term relationships between shippers and
freight forwarders.

Problem Description

The main research problem is the integrated synchromo-
dal transport planning problem considering shippers’
preferences. There are two subproblems: 1) the biobjec-
tive synchromodal transport planning problem with ship-
pers’ preferences, and 2) the shippers’ preference learning
problem.

The transport system was modeled with two types of
stakeholder, a freight forwarder and shippers. The freight
forwarder is the operator of the transport system who
collects requests from shippers and assigns the resources
of carriers to these requests. Note that for the cases in
which shippers directly interact with carriers, the end
user of the proposed model could be the carriers. We
assumed a steady market such that there are no new
shippers entering during each optimization instance. The
synchromodal transport planning problem focuses on
finding Pareto solutions that optimize both the transport
cost and shippers’ satisfaction based on the captured pre-
ferences. Specifically, a request, r 2 R, is to transport
containers from the origin to the destination, meeting the
requirements of shippers. The information of a shipment
request includes the pickup terminal, pr, the delivery ter-
minal, dr, pickup time window, ½apr

, bpr
�, delivery time

window, ½adr
, bdr
�, and the number of containers, qr.

Multiple transport modes can be used and transshipment
is allowed during the transport operation.

Preference learning in this case aimed to find out how
transport choices are made by shippers. Knowing the
underlying behavior of the shipper allows the freight for-
warder to provide better services accordingly (13). This
research simulated shippers’ rankings on alternative
plans provided by the freight forwarder and then used
these to infer their preferences. We assumed that the
freight forwarder is aware of the factors in
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transportation plans that influence shippers’ preferences.
The challenges lie in the model’s capacity to learn com-
plex relations between these transport factors and utili-
ties for shippers, and acknowledging that shippers’
preferences can be heterogeneous. It can be difficult to
detect the nonlinear relations between transport attri-
butes and utilities for shippers. Conventional statistical
methods have been widely used to capture shippers’ pre-
ferences, however, prior experiments are required, and
inappropriate model specifications can affect estimation
performance. In addition, shippers may exhibit heteroge-
neous preferences, which can be attributed to variables
such as the type of cargo or the value and scale of the
company. For instance, perishable goods may require a
short shipping duration and high reliability; companies
that prioritize eco-friendly shipping may choose sustain-
able transportation despite the associated higher costs.
The presence of heterogeneous preferences also poses
challenges for preference learning, as the model needs to
discern variations in preferences based on shippers’ deci-
sion making. Furthermore, actual shipping decisions
may involve nonlinear trade-offs. For example, the desir-
ability of transportation plans may experience exponen-
tial growth as transport costs decrease. The preference
learning model should be capable of identifying these
relationships through the training process.

Based on the description above, the assumptions are
summarized as follows:

Assumption 1: It is assumed that the freight forwarder
acts as the decision maker in the transport system. In
situations where shippers directly interact with car-
riers, the shift of the decision-making role from the
freight forwarder to the carriers does not affect the
applicability of the proposed model.
Assumption 2: The freight forwarder is assumed to
have essential transport network data, such as termi-
nal locations, distances, vehicle information, and cost
details, as well as complete information on shipper
requests, covering pickup/delivery terminals, container
quantities, and specified time windows. The freight
forwarder is assumed to accommodate all received
requests.
Assumption 3: It is assumed that shippers’ satisfaction
depends on five factors of the transport plans: trans-
port cost, transport time, emissions, delay, and trans-
shipment. Transport cost, transport time, and delay
(or reliability) have been widely examined in previous
research (8, 17, 21–25). Transshipment and emissions
were additionally explored in some studies (26–30).
Given the growing emphasis on sustainability and
multimodal transport, this work also considers trans-
shipment and emissions. The freight forwarder has no
prior knowledge of the relationship between these

factors and the utility of shippers. When shippers rank
transport plans, they will make rational choices to
maximize their utility.
Assumption 4: It is assumed that there are four char-
acteristics in true shipper preferences to be considered:
linearity/nonlinearity and homogeneity/heterogeneity.
Linearity/nonlinearity implies a linear/nonlinear rela-
tion between attributes and utility. Homogeneity
denotes uniform utility functions among shippers
(Equations 42 and 43), whereas heterogeneity indi-
cates varied attribute weights (i.e., coefficients) in the
utility for different types of shippers (Equations 45
and 46).

As shown in Figure 1, this research proposes a general
approach to integrating synchromodal transport plan-
ning and shippers’ preferences. A mathematical planning
model was developed to support synchromodal transport
decision making considering the benefits to both freight
forwarders and shippers. The preference learning model
employs artificial NNs to estimate the utility function,
which is then used to calculate the objective of the ship-
pers’ satisfaction. The proposed approach could be
applied to intermodal transport systems involving multi-
ple transport modes (i.e., air transport, maritime ship-
ping, rail, and road freight). Freight forwarders should
be able to generate alternative transport plans for ship-
pers to evaluate, collect the choice data with shippers’
consent, and utilize these data for preference learning.
This approach allows freight forwarders to gain insights
into shippers’ preferences and propose tailored transport
solutions, resulting in mutually beneficial outcomes for
both freight forwarders and shippers.

Methodology

This section presents the mathematical models and algo-
rithms for synchromodal transport planning and shipper
preference learning. This study expands and builds on
the authors’ prior research (63). The notation is presented
in Table 2. The values of parameters, such as the unit
transport and loading cost for each mode, are listed in
Table A1 in the Appendix.

Synchromodal Transport Planning

The proposed STPM-SP model had two objectives, mini-
mizing the total cost and maximizing the shippers’ satis-
faction. The total transport cost (Zc) consists of transit
cost (Ctransit), transfer cost (Ctransfer), storage cost
(Cstorage), carbon tax (Cemission), waiting cost (Cwaiting),
and delay penalty (Cdelay). Transfer cost is the sum of ter-
minal transfer cost and pickup/dropoff transfer cost.
Storage cost includes the storage time at pickup and
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Figure 1. Research framework.

Table 2. Notation

Symbol Description

Sets
R Set of requests indexed by r
S Set of shippers indexed by s
K Set of vehicles indexed by k and l
Kr Set of vehicles serving request r
Kb Set of barges indexed by k
Kt Set of trains indexed by k
N Set of terminals indexed by i
T Set of transshipment terminals indexed by i

Parameters
ct
k Unit transport cost using vehicle k; unit: euro/km/TEU

cl
k

Unit loading (or unloading) cost using vehicle k; unit: euro/TEU
cs
k Unit storage cost using vehicle k; unit: euro/h/TUE

cw
k Unit cost of waiting time using vehicle k; unit: euro/h/TEU

ce
k Unit cost of emission tax using vehicle k; unit: euro/kg

cd
r

Unit delay penalty for request r; unit: euro/h/TEU
disijk Distance between terminal i and j using vehicle k; unit: km
disr Distance traveled for the request r; unit: km
vk Speed of vehicle k; unit: km/h
sk Starting depots of vehicle k
ek Ending depots of vehicle k
uk Capacity of vehicle k; unit: TEU
emk Emissions of vehicle k; unit: kg/(km � TEU)
qr Transport load of request r; unit: TEU
pr Pickup terminal of request r
dr Delivery terminal of request r;
½apr

, bpr
� Pickup time window of request r

½adr
, bdr
� Delivery time window of request r

trs Parameter for scaling trr , trs =10
Xr Attributes of the transport plan for request r

(continued)
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transshipment terminals. The emissions calculation fol-
lows an activity-based approach introduced by Demir
et al., which considers factors such as vehicle type, dis-
tance traveled, and the number of containers (54). The
delay penalty is associated with the load and delay time.

minZc =Ctransit +Ctransfer+Cstorage+Cemission+Cwaiting +Cdelay

ð1Þ

Ctransit =
X
k2K

X
r2R

X
i, j2N

ct
kqrdisijkxijk ð2Þ

Ctransfer =
X

k, l2K

X
r2R

X
i2N

cl
k + cl

l

� �
qrfiklr

+
X
k2K

X
r2R

X
i2N

cl
kqr yprikr + yidrkr

� �
ð3Þ

Cstorage =
X

k, l2K

X
r2R

X
i2N

cs
kqrfiklr tss

ilr � tse
ik

� �

+
X
k2k

X
r2R

X
i2N

cs
kqryprikr tss

prkr � apr

� �
ð4Þ

Cemission =
X
k2k

X
r2R

X
i2N

ce
kemkqrdisijkyijkr ð5Þ

Cwaiting =
X

k2Kb [ Kt

X
i2N

cw
k twait

ik ð6Þ

Cdelay =
X
r2R

cd
r qrt

d
r ð7Þ

The optimization model is designed to enhance the
overall service performance by improving the aggregated

satisfaction of shippers. Therefore, the second objective
is to maximize the total satisfaction across all shippers.
As shown in Equation 8, the total shippers’ satisfaction
(Zs) is the sum of the satisfaction of each shipper. The
estimated satisfaction of shipper r, denoted by g Xr, urð Þ,
is determined by the attributes of transport plan
xr = cr, tr, dtr, er, trrð Þ and the parameters ur in the utility
function. A transport plan, xr, is characterized by trans-
port cost, cr, transport time, tr, delay time, dtr, emissions,
er, and transshipment, trr, which can be calculated in
unit terms by Equations 9 to 13. The transport cost, cr,
is the sum of transit cost, transfer cost, and storage cost
for the request, r. In Equation 10, the transport time, tr,
is determined by the difference between the service end
time of the request, r, at the delivery terminal and the
service start time at the pickup terminal. When there is a
delay, it is calculated by the difference between the ser-
vice end time at the delivery terminal and the end of the
time window, divided by the expected transport time. In
Equation 13, trr measures the number of transshipments
with a scale parameter, trs.

maxZs =
X
r2R

g xr, urð Þ ð8Þ

cr =
ctransit

r + ctransfer
r + cstorage

r

disrqr

ð9Þ

tr =

P
k2Kr

tse
drkr � tss

prrk

� �
disr

ð10Þ

Table 2. (continued)

Symbol Description

ur Parameters of the preference learning model
Variables

xijk Binary variable; 1 if vehicle k uses the route between terminal i and j
yijkr Binary variable; 1 if request r transported by vehicle k uses the route

between terminal i and j
zijk Binary variable; 1 if terminal i precedes terminal j in the route of vehicle k.
fiklr Binary variable; 1 if request r is transferred from vehicle k to vehicle l

at transshipment terminal i
tdr The delay time for request r; unit: h

tlikr
Loading time for request r to vehicle k at the terminal i; unit: h

tarr
ikr Arrival time of request r served by vehicle k at terminal i; unit: h
tssikr Service start time of request r served by vehicle k at terminal i; unit: h
tseikr Service finish time of request r served by vehicle k at terminal i; unit: h
tarr
ik Arrival time of vehicle k at terminal i; unit: h

t
dep
ik

Departure time of vehicle k at terminal i; unit: h

twait
ik Waiting time of vehicle k at terminal i; unit: h

ctransit
r Transit cost of request r; unit: euro

ctransfer
r

Transfer cost of request r; unit: euro
cstorage
r Storage cost of request r; unit: euro

Note: TEU = 20-ft equivalent unit.
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dtr =
max 0, t se

drr
�bdr

� �
P

k2Kr
bdr
� apr

� � ð11Þ

er =

P
k2Kr

P
i, j2N ekyijkrqrdisijk

disrqr

ð12Þ

trr =
X

k, l2Kr

X
i2T

fiklrqr

trs

ð13Þ

Constraints were formulated for vehicle routing,
transshipment operations, subtour elimination, and
operation time restrictions. Constraints 14 to 18 are the
routing constraints. Constraints 14 and 15 ensure that
vehicles and requests start/end at designated starting/
ending depots and pickup/dropoff locations. Constraints
16 to 18 ensure the flow conservation for both vehicles
and containers. Constraint 19 is the capacity constraint.
Constraint 20 indicates that vehicle k is marked as
‘‘used’’ when there is at least one request transported by
vehicle k between terminals i and j.

X
i2N

xsk ik =
X
i2N

xiek k ł 1 8k 2 Kb [Kt ð14Þ

X
k2K

X
i2N

yprikr =
X
k2K

X
i2N

yidrkr ł 1 8k 2 K, 8r 2 R ð15Þ

X
j2N

xijk =
X
j2N

xjik 8k 2 Kb [ Kt, 8i 2 N n sk [ekð Þð Þ ð16Þ

X
j2N

yijkr =
X
j2N

yjikr8k 2 K, 8r 2 R, 8i 2 N n T [ sk [ ekð Þð Þ

ð17ÞX
k2K

X
j2N

yijkr =
X
k2K

X
j2N

yjikr 8r 2 R, 8i 2 T ð18Þ

X
r2R

qryijkr ł ukxijk 8k 2 K, 8 i, jð Þ 2 N ð19Þ

yijkr ł xijk 8k 2 K, 8r 2 R, 8 i, jð Þ 2 N ð20Þ

Constraint 21 ensures that transshipments take place
only once per transshipment terminal. Constraint 22 pro-
hibits transshipment between the same vehicle.

filkr ł 1 8 l, kð Þ 2 K, 8r 2 R, 8i 2 T ð21Þ
fikkr = 0 8k 2 K, 8r 2 R, 8i 2 T ð22Þ

Constraints 23 to 26 are the subtour elimination
constraints.

xijk ł zijk 8k 2 Kb [ Kt, 8 i, jð Þ 2 N ð23Þ

zijk + zjik = 1 8k 2 Kb [ Kt, 8 i, jð Þ 2 N ð24Þ

zijk + zjpk + zpik ł 2 ð25Þ

8k 2 Kb [ Kt, 8 i, jð Þ, p 2 N ð26Þ

Constraints 27 to 32 are the temporal constraints.
Constraints 27 to 31 depict the relations of the arrival
time, the service start time, and the service end time of
requests, and the arrival time and departure time of vehi-
cles. M is an extremely large positive value. Constraint 32
sets the time constraints for transshipment. Constraints
33 and 34 define the binary variables.

tarr
ikr ł tss

ikr ł tse
ikr 8k 2 K, 8r 2 R, 8 i, jð Þ 2 N ð27Þ

tss
ikr + tl

ikr

X
j2N

yijkr ł tse
ikr

8k 2 K, 8r 2 R, 8 i, jð Þ 2 N

ð28Þ

tarr
ik ł tarr

rik 8k 2 K, 8r 2 R, 8 i, jð Þ 2 N ð29Þ

tse
ikr ł t

dep
ik 8k 2 K, 8r 2 R, 8 i, jð Þ 2 N ð30Þ

M xijk � 1
� �

ł t
dep
ik + tijk + tarr

jk ł M 1� xijk

� �
8k 2 K, 8 i, jð Þ 2 N

ð31Þ

t
dep
ikr � tse

ilr ł M 1� xiklrð Þ
8 k, lð Þ 2 K, k 6¼ l, 8r 2 R, 8i 2 T

ð32Þ

xijk 2 f0, 1g 8k 2 K, 8 i, jð Þ 2 N ð33Þ

yijkr 2 f0, 1g 8k 2 K, 8r 2 R, 8 i, jð Þ 2 N ð34Þ

This research used a synchromodal transport planning
model without shippers’ preferences (STPM) as the
benchmark model. The difference between the STPM-SP
and STPM is that the latter is a single-objective optimi-
zation model not requiring knowledge of shippers’ pre-
ferences (2). The objective of the STPM was to minimize
the total cost (in Equation 2), and the constraints were
the same as those of the STPM-SP.

Preference Learning

The preference learning model, denoted as
g x, uð Þ : X ! Û , maps transport- and shipper-related
inputs, X , to the estimated utility, Û , associated with a
given transport plan, where u represents the model para-
meters. Specifically, we used a five-layer artificial NN
with the dimension 64 3 3 64 in the hidden layers (in
Equation 35). Rectified linear units were employed as
the activation function, c, which can be written as
Equation 36. The ultimate output of the network is the
estimated utility.

xi =c wixi�1 + bið Þ, i� 1, ið Þ 2 I ð35Þ
c xð Þ=max 0, xð Þ ð36Þ

where xi and xi�1 represent the output and the input of
layer i, respectively. The model input is the input of the
first layer x0; wi, bið Þ are the learned weights and learned
bias term of layer i; and I represents the set of layers.
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We developed two learning models for shippers’ pre-
ference learning: artificial NNs for homogeneous prefer-
ence learning and artificial NNs with preference matrix
(NN-PM) for heterogeneous preference learning. As
shown in Figure 2, both models utilized the artificial NN
structure, the output being the utility of specific transport
plans. The inputs of the NNs were the attributes associ-
ated with the transport plans. NN-PM incorporates both
the transport plan attributes and the preference matrix of
the shipper. The preference matrix was constructed based
on shippers’ previous choices and the comparison of
transport attributes in these choices (in Equation 37),
which can reflect the preferences of different shippers
and enable more personalized utility estimation.

PMn = ½pcn, ptn, pdn, pen, ptrn� ð37Þ

where PMn represents the preference vector for shipper n;
and pcn, ptn, pdn, pen, ptrn are the count number for the
five transport attributes, respectively. Using the histori-
cal choice data, when the chosen transport plans have a
lower value for a specific attribute, the corresponding
count number will increase by 1, otherwise, it will
decrease by 1.

The binary logit (BL) model was used as the baseline
model. In a pairwise comparison between transport plan
i and transport plan j, the utility of shippers toward each
plan can be determined based on relevant factors
(Equation 38), including cost, time, delay, emissions, and
transshipment involved in the transportation process.
Additionally, a random error was considered, following

the Gumbel distribution. The probability of choosing
transport plan i over transport plan j can be determined
by Equation 39. BL models were established and trained
using Biogeme 3.11 on Python.

ui =bcci +btti +beei +bddi +btrtri + Ei ð38Þ

p ið Þ= eui

eui + euj
ð39Þ

Synthetic Preferences. This research used synthetic prefer-
ences to simulate shippers’ ranking on alternative
transport plans. Synthetic data offer flexibility for experi-
ments, enabling the simulation of ‘‘what if’’ scenarios for
shippers’ preferences. This allowed for the evaluation of
the proposed models across various preference settings,
including homogeneity, heterogeneity, linearity, and non-
linearity. The relation in Equation 40 was used for the
justification of their choices on two alternative transport
plans li, lj

� �
. It was assumed that shippers would choose

the transport plan with a higher utility value (8, 23).

li � lj , U lið Þ.U lj

� �
, ð40Þ

where U lið Þ and U lj

� �
represent the utilities of alterna-

tives i and j, respectively.
The utility of each alternative, i, was composed of a

systematic utility, Vi, and a random utility, Ei (in
Equation 41). Systematic utility functions can be cate-
gorized into linear and nonlinear forms. The linear form
has been extensively utilized in previous research (23). As

Figure 2. Structure of the proposed models: (a) neural networks, and (b) neural networks with preference matrix.
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the impacts of transport cost and time on the utility may
not be continuous and may exhibit a damping effect, pie-
cewise and logarithmic specifications can be an option to
capture varying or diminishing sensitivity at different lev-
els of these attributes. We refer to the work of Jensen
et al., as shown in Equation 43 (16).

Both linear and nonlinear utility functions in
Equations 42 and 43 were used (separately) to generate
the synthetic preferences to simulate shippers’ choices.

Ui =Vi + Ei ð41Þ

V 1
i =bcci +btti +beei +bddi +btrtri ð42Þ

V 2
i =bcF cið Þ+btF tið Þ+beei +bddi +btrtri ð43Þ

F xð Þ=
ln xð Þ3 if 0\x ł c1

a1ln xð Þ2 + b1 if c1\x ł c2

a2ln xð Þ+ b2 if c2\x

8<
: ð44Þ

In Equation 44, the values of c1, c2, a1, b1, b2 align with
those in the research of Jensen et al. (16). The connectiv-
ity and continuity of the cost curve were demonstrated in
the work of Rich (64).

Shippers’ preferences can exhibit heterogeneity in real
life, that is, shippers typically have different prioritiza-
tions for transport attributes. To represent the prioritiza-
tion, we assumed different shipper classes with different
weights assigned to transport attributes (i.e., ac, at, ae,
ad , atr). The heterogeneous systematic utility in linear
functions and nonlinear functions can be written as
follows:

V h1
i =acbcci +atbtti

+aebeei +adbddi +atrbtrtri

ð45Þ

V h2
i =acbcF cið Þ+atbtF tið Þ

+aebeei +adbddi +atrbtrtri

ð46Þ

Evaluation Criteria. To evaluate the predictive performance
of the model, we applied the model to the test dataset
and used the prediction accuracy (in Equation 47) and
the log loss (in Equation 48) as the evaluation criteria.
Prediction accuracy was represented by the proportion
of pairwise comparisons that were correctly predicted.
The log-loss metric quantified the divergence between
the predicted probability and the actual value. A higher
log-loss value indicates a greater deviation between the
predicted probabilities and the actual labels.

acc= 1� 1

N

XN

i= 1

yi � ŷij j, ð47Þ

L= � 1

N

XN

i= 1

yilog pð Þ+ 1� yið Þlog 1� pð Þð Þ, ð48Þ

where
ŷi and yi are predicted and true labels of shippers’

choices, respectively;
N represents total number of tested pairwise compari-

sons; and
p is predicted probability that yi = 1.

Solution Algorithms

Algorithm 1 was designed for preference learning based
on shippers’ feedback. The inputs of preference learning
include shippers’ ranking results, F, shippers’ ID, S,
transport plans, X , with attributes and the learning
model with initialized parameters, g u0ð Þ. Parameters
included the epochs, ep, batch size, b, and learning rate,
lr, for the training of NNs. The output is the trained
parameters of the NN, ucurrent. Before the model-training
process, shippers’ ranking feedback, F, is transformed
into pairwise comparisons.

The task of training was to optimize parameters such
that the preference learning model could accurately

Algorithm 1 Preference learning algorithm

Require: F, S,X, lr, ep, b, g x, u0ð Þ
1: Initialize u0

2: for i 1, n do
3: ½xi, xj, y�  transformation X, F, S, ið Þ � Transform to pairwise comparison

4: bui  g xi, unð Þ, buj  g xj, un

� �
5: if bui.buj then: ŷ 1 � Choose xi over xj

6: else: ŷ  0 � Choose xj over xi

7: end if
8: Ln = loss funtion y, ŷ, bui , buj

� �
; � Calculate the loss

9: ∂Ln

∂un
= backpropagate g x, unð Þ, Lnð Þ; � Calculate the gradient

10: un+ 1 = update parameters un,
∂Ln

∂un
, lr

� �
� Update the utility predictor

11: end for
12: ucurrent  un
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estimate the shippers’ utility of a specific transport plan.
The utility estimations were expected to generate trans-
port plan comparison results that would be consistent
with the true comparison outcomes. The optimization of
model parameters can be divided into three main steps:
1) estimating the utilities of transport plans (Line 4); 2)
predicting choices and computing the loss (Lines 5 to 8);
and 3) backpropagating and updating parameters (Lines
9 to 10). The transport attributes were the inputs of NNs
for the utility estimation. In cases where there was het-
erogeneity, the preference matrix was used as an addi-
tional input to NN-PM. In each comparison between
two transport plans, the learning model first computed
the utility of each plan separately. Subsequently, the plan
with the higher utility value was selected. The pairwise
comparison results provided by shippers were then used
to supervise the comparisons conducted based on the
preference learning model. Considering the probabilistic
nature of individual decision making (65–67), the cross-
entropy loss was used to estimate the population error
between the estimated shippers’ choices and the true
shippers’ choices.

ALNS is a powerful heuristic algorithm to produce
(near) optimal solutions for vehicle routing problems (2,
7, 13). In this research, Algorithm 2 was proposed for
STPM-SP, which was extended from earlier research (2)
and the differences were: 1) incorporating the shippers’
satisfaction, g uð Þ, into the objective function; 2) assign-
ing a higher acceptance probability to the solutions with
better performance in relation to shipper satisfaction;
and 3) searching for Pareto solutions considering ship-
pers’ preferences. The inputs of Algorithm 2 included
vehicles (K), requests (R), terminals (N ), iteration num-
ber (I) and the satisfaction estimator, g urð Þ. The outputs
consisted of the Pareto solutions for STPM-SP (Xp). In
the search for Pareto solutions, np denotes the label of
the Pareto solutions: np = 1 means the current solution
is a nondominated one and will be included in the Pareto
set; X�x represents the solution set excluding the solution,
x. Details of operators used and the adaptive mechanism
can be found in our previous research (2, 7, 13, 68).

Case Study

The European Gateway Services (EGS) network, shown
in Figure 3, was used to conduct the experiments for
model evaluation. The EGS network is located along
the Rhine-Alpine corridor, providing connections
between the ports of Rotterdam, Antwerp, and the pro-
minent economic hubs in Western and Central Europe.
The instances comprised a total of 116 vehicles, includ-
ing 49 barges, 33 trains, and 34 trucks. The specific
parameters related to vehicles were set to those in the
previous research (13). Note that for this case study, we
considered three transportation modes (i.e., barge,
train, truck). However, if additional transport modes
are available, they could also be incorporated into the
proposed model. Before transport planning, requests
were generalized by randomly selecting the origin ter-
minal, pr, destination terminal, dr, pickup window,
½apr

, bpr
�, dropoff window, ½adr

, bdr
�, and the load of

Algorithm 2 ALNS algorithm with shippers’ preferences

Require: K, R,N, I, g urð Þ
Ensure: Xpareto

1: obtain the initial solution Xinitial ; Xlast  Xinitial ; initialize
Tem, Rpool,Xp

2: for i 1, I do
3: Refresh weights and choose operators based on weights;

Xcurrent  Xlast

4: while Rpool is not empty do

5: ½Xcurrent, Rpool�= RemovalOperator Xcurrent, Rpool

� �
;

(continued)

Algorithm 2 (continued)

6: ½Xcurrent, Rpool�= InsertionOperator Xcurrent, Rpool

� �
7: end while
8: if c Xcurrentð Þ\c Xlastð Þ and U Xcurrent, g urð Þð Þ.U Xlast, g urð Þð Þ

then
9: Xlast  Xcurrent

10: else if c Xcurrentð Þ\c Xlastð Þ and U Xcurrent, g urð Þð Þ
\U Xlast, g urð Þð Þ then

11: if c Xlastð Þ�c Xcurrentð Þ
c Xcurrentð Þ \U Xlast, g urð Þð Þ�U Xcurrent , g urð Þð Þ

U Xlast, g urð Þð Þ then

12: Xlast  Xcurrent

13: else if c Xcurrentð Þ.c Xlastð Þ and U Xcurrent, g urð Þð Þ
.U Xlast, g urð Þð Þ then

14: if c Xcurrentð Þ�c Xlastð Þ
c Xcurrentð Þ .

U Xcurrent, g urð Þð Þ�U Xlast, g urð Þð Þ
U Xlast, g urð Þð Þ then

15: Xlast  Xcurrent

16: else
17: Xlast  Xcurrent with the probability

p= exp U Xlast, g urð Þð Þ
U Xcurrent, g urð Þð Þ =Tem
� �

18: end if
19: end if
20: end if
21: X =X [Xlast

22: end for
23: for x 2 X do
24: np = 1

25: for x
0 2 X�xð Þ do

26: if c x
0� �
\c xð Þ and U x

0
, g urð Þ

� �
.U x, g urð Þð Þ then

27: np = 0; break;
28: end if
29: end for
30: if np = 1 then
31: Xp =Xp [ x

32: end if
33: end for

Note: ALNS = adaptive large neighborhood search.
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containers, qr. The requests’ origins and destinations
were randomly distributed among deep-sea terminals
and inland terminals, respectively. The container
volumes of the requests were independently drawn
from a uniform distribution with a range of 10 to 30
TEUs (20-ft equivalent units). Additionally, the earliest
pickup time for the requests was independently drawn
from a uniform distribution ranging from 1 to 120. The
latest delivery time was determined by the earliest
pickup time and the lead time, bdr

= apr
+ LBr, with LBr

independently drawn from a uniform distribution with
a range of 20 to 80 h.

Considering the characteristics of shippers’‘‘true’’ pre-
ferences, four ‘‘what if’’ scenarios were designed with the
specific utility functions (see Tables A2 and A3 in the
Appendix):

� Homogeneous linear preferences scenario (HoS1):
all shippers follow the linear utility functions;

� Homogeneous nonlinear preferences scenario
(HoS2): all shippers follow the nonlinear piecewise
specifications;

� Heterogeneous linear preferences scenario (HeS1):
four shipper classes with different linear utility
specifications;

� Heterogeneous nonlinear preferences scenario
(HeS2): four shipper classes follow different non-
linear piecewise utility specifications.

For heterogeneous scenarios, Khakdaman et al. identi-
fied four shipper classes through latent class analysis, uti-
lizing data obtained from an extensive survey conducted
among global shippers (24). According to their findings,
‘‘high service-level shippers’’ make up 35.9% of the total,
and ‘‘cost-sensitive shippers’’ account for 32.3%. In our
study, we incorporated these two shipper classes and
adapted the remaining two based on the transport attri-
butes that are used in our study.

� Class 1: High service-level shippers (35.9%): the
shippers look for improvements in service levels,
particularly in minimizing time and delay;

� Class 2: Cost-sensitive shippers (32.3%): the ship-
pers are sensitive to the cost. They are willing to
take risks and more time for the cost reduction in
return;

� Class 3: Eco-conscious shippers (18.4%): the ship-
pers tend to minimize the environmental impact of
their shipping activities;

� Class 4: Cost-efficient shippers (13.4%): the ship-
pers tend to simultaneously minimize delays and
costs in their shipping operations.

To collect the shippers’ feedback data from preference
learning, this research conducted 30 instances of synchro-
modal transport operations and simulated the ranking
process of shippers using utility functions predefined with
synthetic preferences. It was assumed there were 100 ship-
pers in the system. In a single instance of planning, a
shipper could have one or multiple requests or none. The
freight forwarder received 100 to 200 requests. After
receiving shipment requests, the freight forwarder used
the STPM to propose transport plans (assigning vehicles
and routes) for each request without consideration of
shippers’ preferences. To collect ranking information
from the shippers, the freight forwarder selected several
low-cost solutions. The transport plans within each solu-
tion were assigned to corresponding shippers with calcu-
lated transport attributes. Then, the freight forwarder
asked shippers to rank the provided alternatives accord-
ing to their preferences. The choices were simulated based
on synthetic preferences and ranking transport alterna-
tives based on respective utility values. As a result, the
transport planning operations generated 4,777 transport
plans after removing duplicates. After the simulation of
shippers ranking the assigned transport plans, the rank-
ing outcomes were structured into pairwise comparisons,
resulting in over 100,000 pairs. We divided these data
into training and testing datasets, comprising 70,000 and
30,000 samples, respectively. Across each scenario of
shippers’ preferences, experiments were conducted with
varying training sample sizes.

Discussion

In the case study, we adopted both real-life intermodal
transport information and synthetic shippers’ preferences.
We constructed the synthetic preferences in a way that
informed the current understanding of shippers’ prefer-
ences in the research field and ensured that the simulated
scenario closely reflected real-world conditions. For the
operational side, we adopted the operational scope and
transport network of the real-world intermodal transport

Figure 3. European Gateway Services network (5).
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system, EGS (now Hutchison Ports Europe Intermodal)
(69). The operational parameters (see Table A1 in the
Appendix) were based on previous research (2, 5, 70). For
the shipping demand, shippers’ choices were simulated
using synthetic preferences. We first assumed specific
transportation attributes that influence shippers’ prefer-
ences, as outlined in Assumption 3. Then the shippers’
utility functions were constructed for the homogeneous
scenarios. In the heterogeneous scenarios, we assumed
there were four distinct groups of shippers, each with spe-
cific proportions, based on prior research (24). The pre-
ference matrix was directly derived from the observed
choices of the shippers. It is important to note that if real
preference data become available, it will be crucial to
incorporate these into the model for further evaluation.

Results for Preference Learning

First, we will discuss the performance of preference learn-
ing methods under the above-mentioned scenarios.

Homogeneous Preferences. Figure 4, a and b, shows the
accuracy and log-likelihood of the prediction results for
BLs and NNs in the HoS1 scenario. In Figure 4a it can
be observed that both BLs and NNs achieved an above
90% correct prediction, which improved slightly with the
increase in sample size. The reason for the high predic-
tion accuracy is that the BL had the correct model
specification that matched the actual preferences,
and NNs can also capture preferences. In addition, the
NNs had a lower log loss with sample sizes of
7 3 102, 7 3 103, 7 3 104, which is in line with the results
of Wang et al. (50). For the nonlinear case of HoS2,
Figure 4, c and d, shows that as the sample size increased
from 7 3 101 to 7 3 103, the NN prediction accuracy
improved significantly, achieving 85% with 7 3 103 sam-
ples, whereas the BL accuracy remained below 60%.
This was owing to the insufficient model specification of
BL, which could not handle the nonlinearity in the data,
whereas NNs can capture these nonlinear relationships.
It should be noted that a relatively large sample size is
required for NNs to capture nonlinearity, which was
7 3 103 in this case. Similar to HoS1, the NN log loss
was lower than BL when the sample size was small, but
it increased substantially as the sample size grew.

Heterogeneous Preferences. Under HeS1 with a heteroge-
neous yet linear utility specification, we compared three
models where in addition to the BL and NNs, we also
had NN-PM in which the preference matrix was incorpo-
rated. Figure 5, a and b, shows that all three models
achieved an accuracy of over 80%. As the sample size
increased, the accuracy of NN-PM increased to 90%,
whereas the changes in the prediction accuracy of the BL

and NNs were insignificant. This may be because, with
the inputs of the preference matrix, artificial NNs can
capture heterogeneity across shipper classes and con-
struct utility functions that can predict new choices con-
sidering their respective preferences.

When the true preferences were nonlinear and hetero-
geneous under HeS2, Figure 5, c and d, displayed an
accuracy below 60% for BL, as the model specification
was incapable of capturing the nonlinearity and heteroge-
neity from the data. The accuracy of NN-PM was similar
to NN when the sample size was 7 3 101, and it became
higher than NN as the sample size increased. The log loss
of NN and NN-PM had lower values than BL when the
sample size was large (7 3 103, 7 3 104).

Discussion. An increase in sample size can generally
decrease prediction errors, and artificial NNs are partic-
ularly sensitive to changes in sample size. This is because
artificial NNs are designed to learn directly from data,
without relying on predefined model specifications. It is
important to note that the improvement in NNs slows as
the sample size increases beyond a certain threshold.
This threshold is related to various factors, including the
input data and the underlying patterns of the sample
data (50). For instance, in the case of the NN model, the
sample size required to achieve a high performance
would be dependent on the specific scenario and the
shippers’ actual preferences. Specifically, in HoS1 and
HeS1, a high NN performance was achieved with a sam-
ple size of 7 3 102, and further increasing the sample size
did not result in significant performance gains in either
accuracy or log loss. However, in the HoS2 and HeS2
scenarios, the threshold value was found to be 7 3 103.

In addition, Scenario HeS1 revealed that artificial
NNs with different inputs required different sample sizes
to achieve optimal performance. It can be seen in Figure
4, a and b, that NNs achieved the best performance with
a sample size of 7 3 102, whereas NN-PM required a
larger sample size of 7 3 103. This difference can be
explained by the incorporation of the information prefer-
ence matrix making artificial NNs more effective in
leveraging large datasets in scenarios where shippers’
preferences were heterogeneous.

Results of Synchromodal Transport Planning

This section examines the performance of STPM-SP.
The trained utility estimators were utilized during the
planning process to assess the satisfaction of shippers in
relation to transport solutions. The STPM was used as a
benchmark model to compare the impact of integrating
preference information on transport solutions. We con-
ducted experiments in four scenarios (HoS1, HoS2,
HeS1, HeS2) using STPM and STPM-SP. In total, there
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were 80 instances of synchromodal transport operations
conducted by running five repetitions for each combina-
tion of preference scenario, planning model, and number
of requests.

As shown in Table 3, utilizing the preference informa-
tion led to a maximum 37% increase in shipper satisfac-
tion, whereas the total cost experienced an average
increase of 7% across repetitions. By comparing the
solutions with the maximum satisfaction improvement
and the solutions with the most cost-efficient satisfaction
improvement (with the lowest relative cost improve-
ment), it was observed that the most cost-efficient satis-
faction tended to be approximately half the maximum
satisfaction attained, which was about 19%, with only a
1% increase in cost.

In the scenarios in which all shippers shared the same
preferences, the trade-offs between cost and shipper

satisfaction appeared to be less cost-efficient compared
with the scenarios with heterogeneous preferences. This
can be explained as follows: when shippers’ preferences
diverge, freight forwarders have the flexibility to adjust
the resource allocation across shippers instead of requir-
ing additional resources for satisfaction improvement.
By comparing the outcomes of different true model spec-
ifications, a notable trend was that satisfaction improve-
ment was more significant in the nonlinear than the
linear cases. This could be because the attribute changes
in the nonlinear functions had a greater impact on satis-
faction compared with the changes in linear functions.
Therefore, the potential improvement in satisfaction was
closely linked to the relationship between the actual util-
ity and its factors. Nonlinear functions may amplify the
effects of attribute changes, leading to more substantial
improvements in satisfaction.

Figure 4. Evaluations of utility predictions: (a) HoS1 accuracy, (b) HoS1 log loss, (c) HoS2 accuracy, and (d) HoS2 log loss.
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Further Analysis of Planning Results

To more elaborately evaluate the impact of STPM-SP on
the satisfaction of shippers, we provide further results for
the homogeneous and heterogeneous scenarios. For sim-
plicity, we picked the linear utility specification to sup-
port our explanation.

Under homogeneous preferences, Figure 6 compares
the solution attributes between the solution proposed by
STPM (base solution) and the Pareto solution set with
six nondominated solutions of STPM-SP on the same
100 requests. The Pareto set of nondominated solutions
had a satisfaction improvement ranging from 18.72% to
26.98%. All of these nondominated solutions had higher
generalized costs, transport costs, and emissions com-
pared with the base solution. However, they also required
shorter times, suggesting that shippers prioritized faster
delivery over lower costs and emissions. Solution 1 (S1)
had the largest satisfaction improvement (26.98%)

among the nondominated solutions in the Pareto set.
However, it also had the most significant increase in gen-
eralized cost, transport cost, and emissions compared
with the base solution. In addition, trade-offs between
different solution attributes were observed, for example,
S2 and S1 had similar satisfaction ratings, but S2 had a
lower increase in cost and emissions compared with S1,
and reduced time and transshipment. However, the
trade-off for this improvement was an increase in delay.

To better understand the influence of STPM-SP on
the individual shipper, Figure 7 shows the average pro-
portion of shippers with various levels of satisfaction
improvement in the instances with 100 requests. A posi-
tive level (in red) indicates that the STPM-SP model
improved the satisfaction levels of the shipper compared
with the solution generated by the STPM model, other-
wise, the value is negative (shown in blue). Figure 7
shows the performance variability for shippers. About

Figure 5. Evaluations of utility predictions: (a) HeS1 accuracy, (b) HeS1 log loss, (c) HeS2 accuracy, and (d) HeS2 log loss.
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72% of shippers had increased satisfaction whereas
28.1% experienced setbacks. About 66% of the shippers
experienced a satisfaction increase of less than 50%,
whereas 6% of shippers had a satisfaction decrease of
more than 100%.

Under heterogeneous preferences, Figure 8 compares
the base solution generated by STPM and the Pareto
solution proposed by STPM-SP. Among the Pareto solu-
tions, S1 demonstrated the greatest improvement in ship-
pers’ satisfaction, with an increase of around 23%,
followed by S2. The main reasons for such an

improvement included the reduction in delay, transport
time, and transport cost, although this came at the
expense of higher emissions. Another solution, S6, also
exhibited significant reductions in delay and transport
costs while requiring more time and transshipment. Most
Pareto solutions reduced delays, but involved a rise in
emissions and transshipment. This may be the result of
using higher-emission transport modes, such as trucks,
which can offer shorter delivery times. More transship-
ment activities were observed in S1 to S5, which could
facilitate the shifting of cargo from higher-disturbance
routes to lower ones, thus resulting in less delay.,
Transshipment additionally facilitates the integration of
different transport modes and routes, enabling transport
plans that are better aligned with shippers’ expectations
for various transport attribute combinations. For
instance, single-modal transport can only offer mode-
specific trade-offs between time and cost, whereas trans-
shipment allows for leveraging the characteristics of dif-
ferent modes. These findings also align with the assertion
that transshipment can add more flexibility to the operat-
ing plans and leverage the advantages of intermodal
transport (71, 72).

Figure 9 illustrates the average distribution of ship-
pers based on their satisfaction improvement in instances
with 100 requests. It was observed that the majority of
shippers (68%) experienced a higher level of service, with
60% of the improvement falling within the range of 0%
to 50%. Although some shippers experienced lower satis-
faction, in practice, it will be crucial to investigate the
underlying reasons and take measures to prevent signifi-
cant decreases in satisfaction for these shippers.

Figure 10a shows the distribution of improvements
across shipper classes. The proportions of shippers in
Classes 1, 2, 3, and 4 who experienced satisfaction
improvements are 67%, 76%, 80%, and 43%, respec-
tively. For Class 4, which prioritizes cost and delay, the
lowest proportion of satisfaction improvement suggests

Table 3. Results of STPM and STPM-SP

SI�, % CI�, % SI, % CI, %

HoS1
R10 10.937 14.475 2.699 0.707
R50 21.172 12.735 6.396 20.348
R100 17.445 12.689 13.282 6.176
R150 47.671 8.277 25.087 2.216

HoS2
R10 17.911 1.889 0.023 0.000
R50 27.144 3.770 23.178 1.711
R100 46.575 1.347 32.450 0.542
R150 31.445 3.836 11.017 0.196

HeS1
R10 23.228 11.158 7.508 0.021
R50 32.631 11.378 9.413 1.181
R100 25.533 8.031 15.427 0.616
R150 21.795 9.375 9.275 20.398

HeS2
R10 24.122 4.354 8.363 2.485
R50 43.031 1.401 23.747 0.011
R100 90.970 4.558 49.133 1.808
R150 122.473 9.117 62.540 20.222

Average 37.755 7.399 18.721 1.044

Note: STPM-SP = synchromodal transport planning model with shippers’

preferences. SI� and CI� are the satisfaction improvement and cost

increase for the solutions with maximum satisfaction improvement,

respectively. SI and CI are the satisfaction improvement and cost increase

for the solutions with the most cost-efficient satisfaction.

Figure 6. Comparison of the base solution and the Pareto
solutions in HoS1.

Figure 7. Proportions of shippers based on satisfaction
improvement in HoS1.
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that enhancing satisfaction is more challenging. This
may be attributed to the stronger trade-off between cost
and delay within this class, making it more difficult to
achieve significant improvements through adjustments in
transport plans.

Based on Figure 10b, compared with the solution pro-
duced by STPM, Class 1 was provided with services
involving more shifts of cargo between modes and routes
for fewer disturbances. Despite the potential time
increase from transshipment, the delivery for this class
experienced significantly fewer delays. This outcome was
consistent with the preferences of this class, which placed
a greater emphasis on minimizing delays. In the case of
Class 3, the eco-conscious shipper group, although the
average emission reduction was only 1%, the 21%
decrease in transport time was the key factor contribut-
ing to their satisfaction. This finding highlights the
importance of having a comprehensive understanding of
shippers’ preferences rather than relying on partial
knowledge. It is crucial to recognize that improvements

in attributes that may not be the primary priority for
shippers can still lead to increased satisfaction.

Conclusions

In this section, we conclude this work, offer insights for
transportation service providers and policy makers, and
discuss future research directions.

Summary

This study developed a foundational approach for inte-
grating synchromodal transport planning and preference
learning. The proposed approach could serve as the foun-
dation for user-oriented synchromodal transport services
and could be used by freight forwarders to improve the
services to shippers based on preference learning. A pre-
ference learning method was proposed based on artificial
NNs to capture the preference information from ship-
pers’ ranking data in transport operations. An STPM-SP

Figure 8. Comparison between the base solution and the Pareto
solutions in HeS1.

Figure 9. Proportions of shippers based on satisfaction
improvement in HeS1.

Figure 10. Planning result analysis in HeS1: (a) changes in satisfaction and (b) changes in transport attributes.
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was proposed to support the decision making of freight
forwarders incorporating shippers’ preferences. The
model considered two objectives: minimizing the total
cost and maximizing shippers’ satisfaction. ALNS was
customized to solve the STPM-SP.

The proposed preference learning method effectively
captured both linear and nonlinear relationships between
variables and utilities using large-scale datasets. It also
identified the heterogeneity of preferences with the infor-
mation from historical decisions. In comparison to statis-
tically based discrete choice models, the artificial NN
structure has the potential to simplify the preparatory
work required for model specification, reducing the risk
of inappropriate specifications, yet this comes at the cost
of a large sample size and extra steps to ensure the inter-
pretability of the results. The planning results demon-
strated that the STPM-SP effectively found solutions
with a significant satisfaction improvement of about
37%. The distribution of shippers’ satisfaction indicated
that achieving satisfaction improvement was not only
related to the allocation of extra resources but also
involved a trade-off between the resources assigned to
shippers. The STPM-SP optimized this trade-off to max-
imize overall satisfaction.

Managerial Insights

Based on the conclusions, we can provide several man-
agerial insights for transportation service providers
and policy makers. First, a better understanding of
shippers’ preferences could help freight forwarders to
identify gaps between the current service level and ship-
pers’ expectations. There may be scenarios where
improving attributes that are not the top priority could
nonetheless result in increased shipper satisfaction.
Second, the integrated approach of synchromodal
transport planning and preference learning could be
used in synchromodal transport planning with real-
time information updates. When freight forwarders are
required to make prompt decisions to accommodate
real-time modifications, instead of needing to consult
shippers frequently, freight forwarders could leverage
their knowledge of shippers’ preferences to make
quicker and more informed decisions. Furthermore,
artificial NNs can autonomously capture nonlinear
and heterogeneous relationships between variables
rather than relying on strong hypotheses about model
specifications. However, the potential trade-offs should
also be noted, including model explanation capability,
hyperparameter tuning, and the requirement for a large
sample size. Last, implementation of the proposed
model requires adequate data storage and management
systems for the logistics sector. The systems should be
capable of storing extensive data generated by shippers

and transport activities, and facilitate its retrieval for
preference learning. This information includes ship-
pers’ IDs, their rankings of transport plans, and the
specific attributes associated with alternative plans.

Research Limitations and Future Research

In this section, we discuss the limitations of this work
and offer several suggestions for future research. First,
owing to data unavailability, this work used synthetic
preferences and generated demand data, which may not
have captured the full range of factors and complexity of
real-world scenarios. It will be crucial to incorporate
actual data on shipper choices and requests in future
research, which will better demonstrate the applicability
and effectiveness of the models. Second, the BL model is
a basic form of the discrete choice model and does not
fully represent the capabilities of the entire discrete choice
modeling family. In future research, more advanced
model structures could be explored for comparison, such
as latent class (32) and mixed logit models that handle
heterogeneity in different ways. Furthermore, this
research showcased the shippers’ satisfaction improve-
ment by comparing the solutions of the STPM and
STPM-SP, whereas a comparison between STPM-BL (or
those with other logit models) and STPM-SP would pro-
vide further insights into the efficiency of the proposed
models specifically based on real-data availability.
Moreover, although the proposed model enhanced over-
all satisfaction, it may also result in an uneven distribu-
tion of satisfaction among shippers. To address this,
future research might customize the objective functions
and constraints. For example, minimizing the negative
tail of shipper dissatisfaction and incorporating the con-
straints to guarantee the satisfaction of specific shippers
might help achieve a more balanced and equitable distri-
bution of satisfaction. This would better reflect real-
world transport operations and improve the applicability
of the optimization models. Last but not least, as the
transport system serves shippers over time, the proposed
model could be further developed for online learning of
the system and accommodating real-time changes. This
would further build the capability of freight forwarders
to provide transport plans that adapt to the evolving pre-
ferences of existing shippers and align with the prefer-
ences of new shippers.
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