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The International Technology Roadmap for Semiconductors
(ITRS) forecasts that embedded memories will dominate the System-
on-Chip (SoC) area by about 94% in no more than five years. In ad-
dition, the manufacturing process in the nano-era introduces new and
complex failure mechanisms. The detection of such failures requires
at-speed testing. Moreover, the complexity of electronic systems has
reached a level where the accessibility of embedded memories using
external test equipment is getting harder and costly, if not infeasible.
Thus, high quality memory testing is crucial to improve the overall
SoC quality.

Built-in Self-Test (BIST) is the most common method in mem-
ory testing. Many BIST implementations have been proposed; they
are based either on implementing a march element (ME), or on im-
plementing a memory operation. However, these implementations
suffer from a high area overhead and/or low flexibility and/or com-
plex schemes such as prefetching and pipelining in order to perform
at-speed testing. This study proposes a highly flexible and low area
Memory BIST Engine able to perform at-speed testing without com-
plex schemes. It is based on the Generic March Element (GME)
Concept, and allows the specification of any suitable ME with any

stress combination (e.g., address order, data-background) in an orthogonal way. The proposed BIST engine
is capable of the following: (a) implements different test algorithms, both linear and non-linear, (b) uses
different algorithm stresses, (c) easy extendable and/or modifiable, (d) requires a low area overhead, (e)
performs at-speed testing, and (f) is generic for different memory size configurations.

Hardware was synthesized with the Synopsys Design Compiler with the Faraday UMC 90 nm Stan-
dard Process library. The results show an area overhead of 7.2 K (9 %) gates for a 16K x 16-bit memory
at 500 MHz. Whereas, the state-of-the-art implementations reported area overheads varying from 8 K to
14 K gates at frequencies below 333 MHz. Moreover, the area overhead decreases from 9 to 0.01 % with
increasing memory sizes from (16K to 16M) x 16-bit. The proposed BIST has a high coding efficiency; e.g.,
it requires only 36 bits to define March C+ algorithm, whereas previous studies require between 100 to 500
bits. Synthesizing for specific algorithm combinations can further reduce the area overhead and increase
the operation frequency.
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Introduction 1
This chapter introduces some basics about memory testing and justifies its importance.
It further summarize the main contribution of this work and provide an outline of the
thesis.

This chapter is organized as follows. Section 1.1 starts with the background and
motivation behind the Built-In Self-Test (BIST). Section 1.2 mentions the contributions
of this work. Section 1.3 presents a brief outline of the thesis.

1.1 Background and Motivation

Here, the reasonings and increasing importance of memory testing are explained. There-
after, the advantages and drawbacks of previous test approaches will be given.

1.1.1 Importance of memory testing

In relation to Moore’s Laws, CMOS manufacturing process sizes are getting smaller: 65
nm in 2006, 45 nm in 2008 and today 32 nm in 2010, and that stream will further con-
tinue. However, this trend brings to electronic systems three major drawbacks: 1) lower
chip yield, 2) more vulnerability to process, voltage and technology (PVT) variations,
and 3) new fault mechanisms and more faults.

The CMOS scaling down trend brings more computing and processing power at higher
frequencies with a lower area and power overhead. Higher computing power results in
an increase of the data amount to-be processed. Thus electronic systems require larger
memories. According to the International Technology Roadmap for Semiconductors
(ITRS) forecasts [8], 94 % of a chip area will be dominated by the memory area in the
following 4-5 years. In electronics production, system yield depends on the silicon area
occupied by a chip. From the ITRS forecast, one can conclude that overall chip yield
will highly depend on the memory quality.

Scaling down CMOS gate length increases the vulnerability of chip. Previous fault-
free conditions will now start to cause faults such that the number of faults will increase.

In addition, new CMOS sizes will enable the designer to build new memory architec-
tures. New memory architectures will bring their own fault mechanisms.

When those three effects (lower yield, higher vulnerability to PVT variations, new
memory architectures) are combined, memories are most likely to contain more, old/new
fault types with an increased number of appearances. Thus, memory testing is an im-
portant field where overall system quality and test time depend on.

1
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1.1.2 Existing test approaches

Automated Test Equipment (ATE) was common in the testing world. However, as a
result of scaling down CMOS sizes, ATE has the following drawbacks: 1) high cost, 2)
lack of direct access to embedded memories, and 3) low quality testing.

Advances in technology brings a high variety of memory size configurations, number
of input/output ports and signaling schemes (Double, Quad Data rates (DDR, QDR)).
ATE test heads are designed as chip-specific. To be able to support so many different
memory configurations, the cost of a test head is too high. Moreover, ATE requires
periodical maintenance and upgrades to catch up with the scaling down technology
trend.

Today, systems consist of several hundreds of distributed embedded memories in
varying sizes, where a direct access from external to most of them are absent [30]. In
some cases, accessing to those embedded memories is infeasible and uneconomical for an
ATE.

In addition, in case of direct access, the path length from external to the to-be tested
memory is too long to allow for a testing at the operational frequency of the memory
(at-speed testing). In addition to the lack of at-speed testing, external access ports
are generally shared, resulting in discontinuities of memory test operations (full-speed
testing). Without at-speed testing, high quality test results are impossible.

Therefore, Automated Test Equipment (ATE) devices are becoming highly costly to
support many memory configurations, chip specific test head design, and ineffective as
a result of the lack of at-speed and full-speed testing, and lowered tester accuracies.

Those points above mandate a shift from ATEs to a Design-for-Test (DFT) based
testing strategy. Solution is the Built-In Self-Test (BIST) concept.

BIST is a concept that enables a system to test itself. It may be an analog-mixed
signal BIST, a logic BIST as well as a Memory BIST. This thesis focuses on the Memory
BIST.

Compared to ATE, Memory BIST has the following advantages: 1) being low cost, 2)
support of any memory configuration, 3) ease of memory access, and 4) at-speed testing.

BIST is produced as a part of the chip, thus it is a low cost solution. It does not
require any maintenance or upgrade costs. There is no problem with supporting different
memory configuration or memory access. In case of a high-speed BIST implementation,
it operates at the same operational frequency with the memory.

On the other hand, BIST has some shortcomings, too: 1) it causes silicon area
overhead, 2) requires some extra I/O pins to be controlled, 3) its own hardware requires
self-testing, 4) requires an experienced BIST designer.

In addition to the mentioned advantages, BIST is significantly important as being
the fundamental sub-block for a Built-In Self-Repair (BISR) system, too. Regarding to
the reasons mentioned above, Figure 1.1 [124] shows that the yield rapidly decreases
with increasing memory domination on the chip area. Without a proper repair strategy,
it is impossible to catch higher yield levels. Therefore, BISR based yield enhancement
is a rising trend due to its low cost, easy integration and in some cases being the only
repair enabling solution. Before starting to repair, fault locations should be determined
and a diagnosis procedure has to be performed with a BIST module.
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To conclude, mainstream DFT trend is heading towards the Built-In Self-Test, Di-
agnosis and Repair solutions.

1.2 Contribution of this thesis

This study targets a comprehensive and powerful BIST hardware solution with the fol-
lowing features: 1) high flexibility, 2) the algorithm stresses and the ME are in orthogonal
to each other, 3) low area, 4) at-speed testing, 5) easy extend and/or modify, and 6)
generic architecture for different memory configurations.

• High fault coverage: because of a highly flexible support of different memory test
algorithm families (e.g., linear, non-linear), user-programmable and in-the-field
programmable,

• Generic and Orthogonal March element based design: orthogonal generation of
specified ME and algorithm stress combinations (i.e., address order, data value,
addressing scheme, data background),

• Low area overhead: optimized hardware implementation, variable-length com-
mands for an efficient command memory usage,

• At-speed testing: testing at the operational frequency of memory,

• Easily extend and/or modify: ease of adding new commands and stresses to hard-
ware,

• Generic architecture: ease of realization for different memory size configurations,
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1.3 Outline of the thesis

This thesis is organized as follows. Chapter 2 gives background information on memory
architecture in a top down fashion; from behavioral memory to electrical model.

Chapter 3 defines the reduced functional memory model, and introduces the definition
of fault primitives. A classification of the fault space will be presented, and thereafter a
complete set of faults will be described.

Chapter 4 introduces the memory test notation and gives overview of several memory
test algorithms from de-facto ones to fault primitive based developed test algorithms.

Chapter 5 reports the state-of-the-art of Memory BIST; it classifies different BIST
implementations and discusses their advantages and drawbacks.

Chapter 6 proposes a Generic and Orthogonal March element based Memory BIST
(GME MBIST) hardware. Command and register sets will be introduced. Later on, the
implementation of several memory test algorithms written in GME MBIST test assembly
language will be given.

Chapter 7 provides the low level architecture of GME MBIST Engine. RTL coding
examples for address, data and control generations will be shown. Finally, the imple-
mentation results of GME MBIST hardware will be presented, discussed and compared
with the state of the art Memory BISTs.

Chapter 8 is a user guide for the graphical user interface (GUI) of GME MBIST
Engine. It shows an easy and fast utilization of GME MBIST hardware.

And lastly, Chapter 9 concludes the thesis with a summary of each chapter; it presents
the major contributions of this thesis, and suggests a few points for further improvements
and extensions.



Memory architecture 2
This chapter motivates the importance of using memory models. The existing different
levels of abstraction will be briefly discussed in a top to bottom manner.

This chapter is organized as follows. Section 2.1 provides the reasonings behind the
memory modeling. Section 2.2 explains the behavioral memory model; basic properties
(e.g., pin configuration, control signaling) of a typical industrial SRAM will be shown.
Section 2.3 presents the functionality of the memory operations. Section 2.4 explains
the electrical memory level; sub-blocks (e.g., memory unit cell, address decoders) will be
discussed in details.

2.1 Modeling memories

A memory test can be performed in two ways: physical real inspection of the device by
removing the package, or applying some input test signals and checking for the consis-
tency of memory with respect to a well-known system behavior. In physical testing, once
the memory package is removed, the system is disturbed, even if fault-free chip is pack-
aged again, still it might fail because of the latest packaging. Thus, physical inspection
can be applied only for diagnostic purposes, not for testing or commercial marketing.
The remaining option is the mainstream test strategy for semiconductor memories. Ob-
viously, checking consistency is much easier, time and cost saving for mass production
volumes.

For the consistency checking, a test procedure should be systematically developed
and applied. However, developing an algorithm that takes into account all details and
comprises the whole system as monolithic, is too complex, costly, and even if sometimes
result-less; however, partitioning the system into smaller parts in a hierarchy decreasing
from top to bottom, and then developing algorithms per each of them is an easier way.
If an analogy should be given, one could think about the algorithmic complexities of
hierarchical vs. flattened placement-routing steps of a typical ASIC flow. In short, a
memory system is modeled in terms of sub-blocks for the simplification of the problem
of ease of modeling and more precise fault localization. Memory cell arrays, address
decoders, sense amplifiers, etc. are some of the memory sub-blocks, and they will be
investigated in following sections.

One further step to simplify testing is increasing the level of faults. Meaning that
physical faults should be modeled at a higher level. Physical diagnosis is quite hard and
almost impossible due to the limited number of I/O pins for today’s complex billions
of transistor consisting ICs. Generally, there is not any direct connection from external
world into a test candidate wire/gate/layer/physical location. Thus, those real-world
faults should be modeled in such a way that the fault could be detectable/identified by
examining the expected outputs after applying a deterministic input set to the system.

5
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Figure 2.1 shows the levels of abstraction in memory modeling in a top to bottom
manner; from behavioral to layout model. Increasing abstraction level, decreases the
fault localization.

The behavioral model is the highest abstraction level that only gives the informa-
tion on the input/output signals, and hides the internal details. The functional model
is the level where the system is partitioned into specific sub-blocks. Each sub-block is
responsible for a certain function. The logical model represents the system in terms
of logic gates. Since a memory contains not only the logic gates but also the basic elec-
trical components, this model is not commonly applied and will not be explained in this
chapter. The electrical model presents the system in terms of the electrical compo-
nents (e.g., transistors, resistors). It is frequently applied for the fault modeling and test
algorithm development. The layout model is the lowest level where the geometrical
drawings of the physical implementation are given. It visualizes the actual positions of
transistors, wires and vias. This level is mostly applied for the fault diagnosis.

2.2 Behavioral memory model

As in Figure 2.2, this model considers the memory as a black box without supplying any
information about internal memory structure. Sub-blocks, logic gates, wire connections,
read/write circuitry, etc. are cloaked by the black-box, no details are given.

Operating conditions, AC/DC parameters, package information, pin configuration
and names, truth table for control signals, timing diagrams and some application notes
are provided to the end-user, see Figure 2.3, 2.4 and 2.5 [92]. Address, data-in/out,
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Figure 2.3: Hitachi 1 Mb (512 rows, 256 columns, 8-b data) SRAM pin configuration
and description [92]

Figure 2.4: Functional diagram for the SRAM control signals [92]

read/write enabling and several control signals are presented. To be able to operate
a memory correctly, the user should apply the required signal values at the right time
intervals. At the behavioral model, no extra information on the memory internal ar-
chitecture, logic technology (CMOS, TTL, ECL, etc.) or process sizes are required to
operate it.

In Figure 2.4 [92], three main control signals for a SRAM and their logic states
are shown to perform a read/write operation. For a read operation, chip should be
selected by low asserting CS1, output enable should be activated by low asserting OE
and write enable should be deactivated by high asserting WE. For a write operation,
the chip should be selected, write enable is activated by low asserting WE, and output
enable is deactivated by high asserting OE. CS2 is an extra chip select signal for power
standby mode by disabling clock signal. Figure 2.5 shows the above explanation in signal
waveforms.

2.3 Functional memory model

Memory cell array, row and column address decoders, read/write circuitry, input/output
data registers and control logic are the main sub-parts in a functional memory model as
shown in Figure 2.6.

For a read operation, after applying certain control signals, the address of the re-
quested memory bit/word is sent to memory; decoded to select the required row and
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Figure 2.5: SRAM read and write timing diagrams [92]
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Figure 2.6: Functional model of a single-port SRAM

columns. Bit/word data is amplified by the sense amplifiers and finally registered by
the data register module. Reversely, to perform a write operation, data is loaded into
the data register and written into the cells by the write driver. The data lines going
in/out from the data register are generally combined as bidirectional lines to decrease
the number of pins and the cost of production.

Address bits are separated into two parts: lower and higher parts. Generally, lower
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parts go to the column decoder, while higher bits to the row decoder. After decoding, 2R

rows and 2C columns are able to be selected. A memory cell array consists of 2R ∗2C ∗D
memory unit cells. In a memory, the total number of columns, 2C ∗ D is a multiple
integer (1, 2, ... etc.) of D bit data inputs. Whereas, the total number of rows is a
designer’s choice, traditionally chosen as a power of 2, 2R, not to waste the decoding
logic and to avoid unintended selection of any row [88].

The memory array aspect ratio is the ratio of the memory array length to its width.
For example, a 64 Kb array with a 32-bit data words could be designed in possible ways
as in Figure 2.7. The aspect ratio is an indicator of memory dimensions and decoder
sizes. An n-bit memory can be minimized to

√
n in two dimensions. Thus, decoder area

could be decreased from n to 2
√
n [100].

Several sub-modules could vary between memory types, for example refresh logic in
DRAMs does not exist in SRAMs.

2.4 Electrical memory model

In this section, electrical properties of main sub-blocks: memory cell array, row/column
address decoders, read/write circuits from the Figure 2.6 will be explained from an
electrical perspective. It is hoped that memory faults and test algorithms at the following
chapters, will be better understood and mapped to this background information.

2.4.1 Memory cell array

The main building structure of a memory is the memory cell. An SRAM memory cell
has a bistable circuit characteristic. Meaning that it can be driven into one of the two
states and retains its state as the power goes on.

The beta ratio, (β) is an indicator of the cell stability. It is the ratio between the
strengths of pull-down transistor to pass-transistor, [2]:

β =
WeffPullDownFET/LeffPullDownFET

WeffPassFET/LeffPassFET
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Figure 2.8: a) General SRAM unit memory cell and various realizations: b) 4T with
resistor load, c) 6T with depletion mode NMOS load, d) 6T CMOS

Strength implies the effective dimensions, not the drawn ones on layout. Generally, beta
ratio is chosen between 1.5 to 2.0 to have a non-destructive read operation. Otherwise,
when it is below 1.0, read activity disturbs the data stored in the cell [2] such that the
SRAM read operation is not non-destructive, anymore.

The design of a memory cell varies with the memory application area, design choices
(quasi-static, sub-threshold, etc.) or logic technology (CMOS, TTL, ETL, etc.) as in
Figure 2.8. Mainly, a cell consists of two cross-coupled inverting storage elements (ST1
and ST2), two load elements (L1 and L2) and two access elements (P1 and P2) as shown
in Figure 2.8 a). Storage of the information is achieved by a latch which is formed by
two cross-coupled inverters. The data stored at the drains of storage elements (ST1 and
ST2) are read/written through the pass transistors (P1 and P2).

Accessing a memory cell is performed via the Word Line (WL) and bit lines (BL) and
BL. One WL passes through the gates of all pass transistors in a row, and is controlled
by the row address decoder. Similarly, two complementary BLs per cell are connected to
the source/drain of the pass transistors, and controlled by the column address decoder.

To write data, the BLs are loaded with complementary logic values (‘1’ and ‘0’),
afterwards the WL is pulled up to a high logic level to enable transition through the
pass transistors. This signaling order is important, because the storage elements of a
cell are weaker than the driving force of BLs. Finally, the new data value is conserved
bistably at the drains of storage and load elements, see Figure 2.8a).

In a read operation, first both BLs are precharged to logic HIGH, then the WL is
pulled up. Once the cell is accessed, the stored data lowers the voltage value in one of
the BLs, while the other BL is not affected. For example, when a ‘0’ stored cell is read,
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Figure 2.9: a) PMOS-load and b) CMOS styles static row decoders, c) dynamic row
decoder [36]

the true bit line is discharged while the complement bit line remains high. In reverse,
when a ‘1’ stored cell is read, the complement bit line is discharged and the true bit line
stays high. This discharge at one of the bit lines is only a small amount in the range
of 100 mV [2], and is amplified and converted to a logic value by the sense amplifier.
Afterwards, it is registered by data register in Figure 2.6.

As mentioned before, the internal structure of a cell can vary due to the logic technol-
ogy. In Figure 2.8 b), the SRAM cell with resistor (polysilicon) load elements is shown.
This design choice reduces the silicon area, however increases dissipated power due to
the continuous flowing current through resistors. Another choice is using depletion-mode
NMOSs instead of polysilicon resistors. This design occupies a higher silicon area with
a decreased power consumption compared to previous design with polysilicon load but
still higher than the CMOS design style, Figure 2.8 c). Finally, the mostly accepted and
dominating design choice in today’s IC market is 6T CMOS SRAM unit cell, Figure 2.8
d). Static power consumption is minimized and, except for the leakage current, it only
dissipates dynamic power during the switching activity. Obviously, the CMOS process
steps are more complex and costly than the previous design alternative.

2.4.2 Row/Column address decoders

For row decoders, both static or dynamic design styles might be adapted. A static row
decoder can be implemented with a NOR, AND (NAND with a inverter at its output)
or NAND gates. Figure 2.9 b) [36] shows an AND based implementation. Address bits
A0 to An−1 or their complements are applied to the gates to choose the correct word
line. For example, to chose the word line for the row address 13 (00001101) for Figure
2.9 b) AND style, applied addressing signals should be as a7-a0: LLLLHHLH (L: Low,
H: High asserted). In AND style, address inputs at the gates should be low asserted.

Upper network might be implemented with a PMOS-load, see Figure 2.9 a), to de-
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Figure 2.10: Logarithmic tree column decoder

crease the decoder area and speeding up the device due to the halfened capacitance load
at the output. However, this choice causes an increased leakage current and power dis-
sipation that are resulting in a shorter device life. Similarly, NMOS-load could be put
to the bottom network in AND style.

Figure 2.9 c) [36] shows a dynamic row decoder as another design choice. Since it
does not require the complete input set at the upper network, it can be build up with
fewer transistors. A dynamic row decoder uses clocking, thus consumes less power only
while conducting, however clock signal should be routed to the decoders.

For the column decoder, a logarithmic tree decoder example will be given. It is a
single output decoder with log2 n levels and need to route 2.log2 n addressing signals,
however, data-in BLs should propagate several levels to be read/written, resulting in a
slow response. Figure 2.10 shows a logarithmic tree column decoder accessing 8 BLs by
decoding 3-bit column address. Transmission gates could be used to build fast column
decoders. Data only propagate over the transmission gates and arrives to the sense am-
plifier or comes from the write-in circuit. But timing and controlling should be handled
carefully, because several cells could drive the same wire which can cause hazards.

2.4.3 Read/Write circuits

There are different sub-blocks in this part: precharge circuit, isolation circuit, sense
amplifier and write driver.

Precharge Circuit

Charge-up of the BLs before the read operation is done by the Precharge Circuit. Figure
2.11 a) shows the 3 transistor structure. Two bottom PFETs pull up the BLs to Vdd
level. The upper PFET is generally optional and added to equalize the potentials of bit
line couples, see .
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amplifiers [36, 2], c) Current mode read circuit [2]

Isolation Circuit

After the precharge circuit, to speed up the read operation, BLs are isolated from the
sense amplifier by the Isolation Circuit, see Figure 2.11 b). The reason of usage is the
capacitive load due to the connection of lots of cells to BLs and long metalization of
BLs.

Sense Amplifier

The read circuit is called the sense amplifier. There are several implementations for sense
amplifiers varying from single-ended to differential, see Figure 2.12 a) and b) , or voltage
mode (latch) to current mode as in Figure 2.12 c). For the voltage mode read circuits,
differential sense amplifiers are more preferred for a high performance SRAMs due to
their fast switching capability to sense and convert small voltage differences on BLs.
Differential-ended sense amplifiers are faster than their single-ended counterparts due
to their cross-coupled inner structure. The sense amplifier is activated by the Column
Switch (CS) or Set Sense Amplifier (SSA) signal.

A current type sense amplifier, Figure 2.12 c), determines the stored data value in
the unit cell depending on the current flowing in BLs. A current type sense amplifier has
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Figure 2.13: Write drivers: a) pass transistor based [36], b) gated inverter based [2]

a different characteristic than the voltage type sense amplifier. In voltage type, when the
sense amplifier is activated, it is locked into the data stored in cell. Further, changes on
voltage level in BLs do not reflect to the sense amplifier output. However, current type
amplifier corrects its output when signal values change in BLs. For an example case, let
us say: the signals at the beginning conditions were erroneous, and after a while they
changed back to their true value. If a voltage type read circuitry is being applied, then
the output would be the first faulty value.

Write Driver

The transfer elements of an SRAM cell are NFETs which have an effective driving
capability for a logic ‘0’, but not for ‘1’. Thus, the write operation is performed by
writing a ‘0’ either into BL or BL. Then, cross-coupled inverters inside the cell transform
‘0’ to a logic ‘1’ at the other storage node. When the write signal goes high, the data
is delivered to the BLs. Since, loading a ‘0’ into one of the BLs is the main purpose,
PFETs and NFETs may be sized same, not as in traditional way, 2:1, see Figure 2.13 b)
[2].

For further information on SRAM architectures, transistor sizing, unit cell layouts,
BL to WL or BL to BL couplings, power dissipation on memories, SRAM implementation
with new logic technologies, etc. please refer to [88, 69, 83, 61].



Memory faults 3
This chapter introduces the reduced functional memory model and the concept of the fault
primitive. In addition, static and dynamic fault spaces are given.

This chapter is organized as follows. Section 3.1 simplifies the functional memory
model by reducing the number of sub-blocks to three: memory cell array, address decoders
and peripheral circuits. Section 3.2 provides the definition of the fault primitive concept,
and classifies them. Section 3.3 and 3.4 derive the complete set of static and dynamic
fault primitives, and group them under the functional fault models.

3.1 Reduced functional memory model

To derive the functional fault models, a reduced functional memory model is build, see
Figure 3.1. It is the simplified version of the general functional memory model from the
Chapter 2, by leaving behind only those 3 sub-modules:

1. memory cell array,

2. address decoder consisting row/column decoders and address registers,

3. peripheral circuitry consisting rest of the memory such as read/write circuitry
(write driver, sense amplifier, data registers) and pre-charge circuits.

Once, the memory model is simplified, fault modeling will be more straightforward
and time-saving. Furthermore, analyses at the end will be easier, faster, point-specific.

3.2 Concept and classification of fault primitives

To understand whether a memory component is faulty or not, a number of memory
operations should be applied to the memory-under-test, and later on the memory read-
outs should be compared with expected responses. Thus, in a fault model, there should
be two essential elements:

1. a list of memory operations that sensitizes the fault, called as the sensitizing oper-
ation sequence (SOS),

2. a list of mismatches between expected and observed behaviors, called as the faulty
behavior.

Address Decoder Memory Cell Array Read/Write LogicAddress Data

Figure 3.1: Reduced functional memory model [100]
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Fault Primitives

Single-port Multi-port

Simple Linked

Static Dynamic

Figure 3.2: Family of fault primitives [36]

In addition to the two essential elements, the read-out value corresponds to several
read-related faults and also relevant for a fault model. Thus, a Fault Primitive (FP)
consists of three elements in an order, and annotated as < S/F/R > [105]. S is the
sensitizing operation sequence, F is the faulty cell behavior, and R is the read operation
output. When a number of FPs are combined, a functional fault model (FFM) is formed.

Once we have the < S/F/R > definition above, all of the faulty behavior combina-
tions can be generated mathematically by using combinations of them. Figure 3.2 [36]
shows the 6 main FP categories: single-/multi-port, simple/linked and static/dynamic
FPs.

Simple faults do not affect the behavior of any other faults, whereas linked faults can
change each other’s behavior and can cause fault masking. Basically, linked faults consist
of two or more simple faults. A static fault is sensitized by at most one operation; i.e.,
the number of different operations in their SOS should be less or equal than 1, (#O � 1).
Reversely, dynamic faults are only sensitized by more than one sequential operation, (#O
> 1 ). Single-port faults (1PFs) are sensitized by at most one port access, (#P � 1) while
multi-port faults (nPFs) require more than one port operations simultaneously. 1PFs
can exist both in single and multi port memories. Single-cell faults occur in the same
cell where the SOS is applied, whereas in multi-cell faults, the sensitized cell is different
from the effected cell(s). When two cells are involved, it is named a two-cell fault. In
case of more than two cells, it can be generalized as k-cell faults. A brief description will
be given in the coming sections of neighborhood pattern sensitive faults.

The dashed line in Figure 3.2 [36] shows the focus of this chapter: single-port simple
static and dynamic FPs will be discussed in the following sections.

3.3 Static faults

Static faults are classified into 3 main classes: memory cell array, address decoder and
peripheral circuit faults.
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1PF2s 1PF2a 1PF2v
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Figure 3.3: Class of 1PFs [36]

3.3.1 Static memory cell array faults (sMCAFs)

Before describing fault primitives, a short overview of fault types will be given here.
Generally, stuck-at faults (SAF) are common faults in SRAMs. In case of a SAF, a cell
cannot be overwritten with its complementary data. They are generally the result of
shorts between interconnects such as a transistor short to supply voltage or ground level.
A cell in a SAF is named as a SA0 or SA1. In a stuck-open fault (SOF), a cell cannot
be accessed because of an open access line; word line, bit line, etc. In a transition fault
(TF), a cell can perform either a ”0” to ”1” or an ”1” to ”0” transition, but not both of
them. A TF can be caused by an absent access transistor. In a coupling fault (CF), two
or more cells are coupled to each other. It is observed when a performed transition on
an aggressor cell (a-cell ca) affects the contents of a victim cell (v-cell cv). In a bridging
fault (BF), two or more lines are bridged by a physical existence of any material (dust,
circuit process material residues, etc.). Generally, it has a bidirectional behavior. In a
state coupling fault (SCF), the state of the v-cell is affected by the state of an a-cell
rather than its transition. In a data retention fault (DRF), a cell loses its data after a
certain time, although power of memory is still on. It is mainly due to the leakages and
DRFs are becoming a greater issue with the scaling down CMOS process technology.

Single-port faults have two sub-groups: single-cell (1PF1) and multi-cell (1PFn) FPs.
In this chapter, only the single and two-cell FPs will be examined in detail.

As shown in the Figure 3.3 [36], when the sensitized cell and fault appeared cell are
same, then it is a 1PF1. When two cells are involved, it a 1PF2. 1PF2 can be categorized
under one of those 3 groups:

1. 1PF2s: Not an operation but the state of the a-cell sensitizes a fault in the v-cell.
2. 1PF2a: A single-port operation to the a-cell sensitizes a fault in the v-cell.
3. 1PF2v : A single-port operation to v-cell when the a-cell is in an exact state,

sensitizes a fault in v-cell.

3.3.1.1 Single-cell fault primitives

In the c single-cell fault primitive notation, S, sensitizing state or operation, can be an
element of {0, 1, r0, r1, 0w0, 1w1, 0w1, 1w0}. F, faulty cell behavior, can be an element of
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Table 3.1: The complete set of 1PF1 FPs [36]

# S F R < S/F/R > FFM # S F R < S/F/R > FFM

1 0 1 - < 0/1/− > SF 2 0 ? - < 0/?/− > USF

3 1 0 - < 1/0/− > SF 4 1 ? - < 1/?/− > USF

5 0w0 1 - < 0w0/1/− > WDF 6 0w0 ? - < 0w0/?/− > UWF

7 1w1 0 - < 1w1/0/− > WDF 8 1w1 ? - < 1w1/?/− > UWF

9 0w1 0 - < 0w1/0/− > TF 10 0w1 ? - < 0w1/?/− > UWF

11 1w0 1 - < 1w0/1/− > TF 12 1w0 ? - < 1w0/?/− > UWF

13 0r0 0 1 < 0r0/0/1 > IRF 14 0r0 0 ? < 0r0/0/? > RRF

15 0r0 1 0 < 0r0/1/0 > DRDF 16 0r0 1 1 < 0r0/1/1 > RDF

17 0r0 1 ? < 0r0/1/? > RRDF 18 0r0 ? 0 < 0r0/?/0 > URF

19 0r0 ? 1 < 0r0/?/1 > URF 20 0r0 ? ? < 0r0/?/? > URF

21 1r1 1 0 < 1r1/1/0 > IRF 22 1r1 1 ? < 1r1/1/? > RRF

23 1r1 0 0 < 1r1/0/0 > RDF 24 1r1 0 1 < 1r1/0/1 > DRDF

25 1r1 0 ? < 1r1/0/? > RRDF 26 1r1 ? 0 < 1r1/?/0 > URF

27 1r1 ? 1 < 1r1/?/1 > URF 28 1r1 ? ? < 1r1/?/? > URF

{0, 1, ↑, ↓, ?}. ↑ / ↓ are up/down transitions and ? shows that state of the cell is undefined
when the voltage of data storage nodes in the cell are too close. R, read output of SRAM,
can be an element of {0, 1, ?,−}. ? is for a random logic value when the voltage mismatch
between BLs are too small. ’-’ means no read operation is performed and used when S
is an write operation or a state value. Number of S.F.R combinations that are obtained
by those clusters are 36(28 faulty + (2+4+2) non-faulty), however after the elimination
of non-faulty combinations (i.e., < 0/0/− >, < 0w1/1/− >, < r0/0/0 >, etc.), 28 FPs
of 1PF1 are left. The complete set can be seen in Table 3.1 [36].

This complete set is generated as:

• for S ∈ {0, 1}
when S = 0, F ∈ {1, ?} and R = −; as in FP1 and FP2.
when S = 1, F ∈ {0, ?} and R = −; as in FP3 and FP4.

• for S ∈ {0w0, 1w1, 0w1, 1w0}
when S = 0w0, F ∈ {↑, ?} and R = −; as in FP5 and FP6.
when S = 1w1, F ∈ {↓, ?} and R = −; as in FP7 and FP8.
when S = 0w1, F ∈ {0, ?} and R = −; as in FP9 and FP10.
when S = 1w0, F ∈ {1, ?} and R = −; as in FP11 and FP12.

• for S ∈ {r0, r1}
when S = r0

when F = 0 and R ∈ {1, ?}; as in FP13 and FP14.
when F ∈ {↑, ?} and R ∈ {0, 1, ?}; as in FP15 to FP20.

when S = r1
when F = 1 and R ∈ {0, ?}; as in FP21 and FP22.
when F ∈ {↓, ?} and R ∈ {0, 1, ?}; as in FP23 to FP28.
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3.3.1.2 Single-cell functional fault models

In this section, above generated FPs are grouped into FFMs. FFM names and grouping
the FPs have some historical roots.

1. State Fault (SF): Without accessing a cell, if the data inside that cell reverses,
then this is called as a state fault. SF does not require any operation, is only related
to the initial value of the cell. It has 2 FPs: < 0/1/− > and < 1/0/− >.

2. Undefined State Fault (USF): Similar to SF, if a cell changes its state from
a defined to an undefined state without any access into, then this is called as an
undefined state fault and has 2 FPs: < 0/?/− > and < 1/?/− >.

3. Write Destructive Fault (WDF): If a non-transition write operation reverses
the data in the cell, than this is called as a write destructive fault and has 2 FPs:
< 0w0/ ↑ /− > and < 1w1/ ↓ /− >.

4. Undefined Write Fault (UWF): If a write operation moves the cell into an
undefined state, than this is called as an undefined write fault and has 4 FPs:
< 0w0/?/− >, < 1w1/?/− >, < 0w1/?/− > and < 1w0/?/− >.

5. Transition Fault (TF): If a cell can not succeed to store the data in a tran-
sition write operation, then this is called as a transition fault and has 2 FPs:
< 0w1/0/− > and < 1w0/1/− >.

6. Incorrect Read Fault (IRF): In a read operation, if the read data returning
from SRAM is wrong, however the data stored in the cell is still correct, then this
is called as an incorrect read fault and has 2 FPs: < r0/0/1 > and < r1/1/0 >.

7. Random Read Fault (RRF): In a read operation, if the read data returning
from SRAM is random, however the data stored in the cell is still correct, then
this is called as a random read fault and has 2 FPs: < r0/0/? > and < r1/1/? >.

8. Deceptive Read Destructive Fault (DRDF): In a read operation, if the read
data returning from SRAM is correct, however the data stored in the cell is reversed,
then this is called as a deceptive read destructive fault and has 2 FPs: < r0/ ↑ /0 >
and < r1/ ↓ /1 >.

9. Read Destructive Fault (RDF): In a read operation, if the read data returning
from SRAM is incorrect, and the data stored in the cell is reversed, then this is
called as a read destructive fault and has 2 FPs: < r0/ ↑ /1 > and < r1/ ↓ /0 >.

10. Random Read Destructive Fault (RRDF): In a read operation, if the read
data returning from SRAM is random and the data stored in the cell is reversed,
then this is called as a random read destructive fault and has 2 FPs: < r0/ ↑ /? >
and < r1/ ↓ /? >.

11. Undefined Read Fault (URF): If a read operation puts the cell into an unde-
fined state, than this is called as an undefined read fault. The data returning from
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SRAM can be either correct, wrong or random. URF has 6 FPs: < r0/?/0 >,
< r0/?/1 >, < r0/?/? >, < r1/?/0 >, < r1/?/1 > and < r1/?/? >.

12. Stuck-at Fault (SAF): Whatever operation is applied to the cell, if it is stuck-at
a logic value, then this is called as a stuck-at fault and has 2 FPs: < ∀/0/− >
and < ∀/1/− >. < ∀/0/− > is equal to any of < 1/0/− >, < 0w1/0/− >,
< 1w1/0/− > and the cell has the faulty behavior of those 3 FPs. Same for the
< ∀/1/− >.

13. No Access Fault (NAF): When a cell does not have any access, the stored data
can not be changed and the read data returns randomly, then this is called as a
no access fault and has 4 FPs: < 0w1/0/− >, < 1w0/1/− >, < r0/0/? > and
< r1/1/? >.

14. Data Retention Fault (DRF): Without any access, if the cell reverses its data
after a certain time T, then this is called as a data retention fault and has 4 FPs:
cell is unable to store the logic 1 and switches to 0 after time T: < 1T / ↓ /− >,
and similarly for the rest: < 0T / ↑ /− >, < 0T /?/− > and < 1T /?/− >.

3.3.1.3 Two-cell fault primitives

< Sa;Sv/F/R > is the notation for 1PF2s [36]. 1PF2s have 3 types as seen in Figure
3.3: 1PF2s, 1PF2a, 1PF2v . Sa and Sv are the states/sensitizing sequences for a-cell and
v-cell, respectively. Set of Si is defined as: Si ∈ {0, 1, 0w0, 1w1, 0w1, 1w0, r0, r1} where
(i ∈ {a, v}), F ∈ {0, 1, ↑, ↓, ?} and R ∈ {0, 1, ?,−}. The complete set has 80 FPs (8
1PF2ss, 48 1PF2vs, 24 1PF2as) and can be seen in Table 3.2 [36].

To refresh, those FPs are caused by simple, static (at most one operation, #O � 1)
and single-port (1P) operations. Then complete set of 1PF2 FPs are generated as:

• for Sa ∈ {0, 1}: Notation is < x;Sv/F/R > where x ∈ {0, 1}. There are 56 FPs in
total, 28 for < 0;Sv/F/R > and 28 for < 1;Sv/F/R >.

– when Sv ∈ {0, 1}: state of the a-cell sensitizes a fault in the v-cell, case 1PF2s;
generates 8 FPs as in FP1 to FP4.

– when Sv ∈ {0w0, 1w1, 0w1, 1w0, r0, r1}: operation on the v-cell with a certain
state in the a-cell sensitizes a fault in the v-cell, case 1PF2v ; generates 48
FPs as in FP5 and FP28.

• for Sa ∈ {0w0, 1w1, 0w1, 1w0, r0, r1}, Sv ∈ {0, 1} and R = −: Notation is in the
form of < Sa;x/F/− > where x ∈ {0, 1}. There are 24 FPs, 12 per each case of
Sv. Operation on the a-cell sensitizes a fault in the v-cell, case 1PF2a.

– when Sv = 0 and F ∈ {↑, ?}; as in FP29 to FP40.

– when Sv = 1 and F ∈ {↓, ?}; as in FP41 to FP52.

3.3.1.4 Two-cell functional fault models

80 1PF2s are grouped in historically determined several FFMs under three main classes:
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Table 3.2: The complete set of 1PF2 FPs; x ∈ {0, 1} [36]
# Sa Sv F R < Sa, Sv/F/R > FFM # Sa Sv F R < Sa, Sv/F/R > FFM

1 x 0 1 - < x; 0/1/− > CFst 2 x 0 ? - < x; 0/?/− > CFus
3 x 1 0 - < x; 1/0/− > CFst 4 x 1 ? - < x; 1/?/− > CFus

5 x 0w0 1 - < x; 0w0/1/− > CFwd 6 x 0w0 ? - < x; 0w0/?/− > CFuw
7 x 1w1 0 - < x; 1w1/0/− > CFwd 8 x 1w1 ? - < x; 1w1/?/− > CFuw
9 x 0w1 0 - < x; 0w1/0/− > CFtr 10 x 0w1 ? - < x; 0w1/?/− > CFuw
11 x 1w0 1 - < x; 1w0/1/− > CFtr 12 x 1w0 ? - < x; 1w0/?/− > CFuw
13 x 0r0 0 1 < x; 0r0/0/1 > CFir 14 x 0r0 0 ? < x; 0r0/0/? > CFrr
15 x 0r0 1 0 < x; 0r0/1/0 > CFdrd 16 x 0r0 1 1 < x; 0r0/1/1 > CFrd
17 x 0r0 1 ? < x; 0r0/1/? > CFrrd 18 x 0r0 ? 0 < x; 0r0/?/0 > CFur
19 x 0r0 ? 1 < x; 0r0/?/1 > CFur 20 x 0r0 ? ? < x; 0r0/?/? > CFur
21 x 1r1 1 0 < x; 1r1/1/0 > CFir 22 x 1r1 1 ? < x; 1r1/1/? > CFrr
23 x 1r1 0 0 < x; 1r1/0/0 > CFrd 24 x 1r1 0 1 < x; 1r1/0/1 > CFdrd
25 x 1r1 0 ? < x; 1r1/0/? > CFrrd 26 x 1r1 ? 0 < x; 1r1/?/0 > CFur
27 x 1r1 ? 1 < x; 1r1/?/1 > CFur 28 x 1r1 ? ? < x; 1r1/?/? > CFur

29 0w0 0 1 - < 0w0; 0/1/− > CFds 30 0w0 0 ? - < 0w0; 0/?/− > CFud
31 1w1 0 1 - < 1w1; 0/1/− > CFds 32 1w1 0 ? - < 1w1; 0/?/− > CFud
33 0w1 0 1 - < 0w1; 0/1/− > CFds 34 0w1 0 ? - < 0w1; 0/?/− > CFud
35 1w0 0 1 - < 1w0; 0/1/− > CFds 36 1w0 0 ? - < 1w0; 0/?/− > CFud
37 0r0 0 1 - < 0r0; 0/1/− > CFds 38 0r0 0 ? - < 0r0; 0/?/− > CFud
39 1r1 0 1 - < 1r1; 0/1/− > CFds 40 1r1 0 ? - < 1r1; 0/?/− > CFud
41 0w0 1 0 - < 0w0; 1/0/− > CFds 42 0w0 1 ? - < 0w0; 1/?/− > CFud
43 1w1 1 0 - < 1w1; 1/0/− > CFds 44 1w1 1 ? - < 1w1; 1/?/− > CFud
45 0w1 1 0 - < 0w1; 1/0/− > CFds 46 0w1 1 ? - < 0w1; 1/?/− > CFud
47 1w0 1 0 - < 1w0; 1/0/− > CFds 48 1w0 1 ? - < 1w0; 1/?/− > CFud
49 0r0 1 0 - < 0r0; 1/0/− > CFds 50 0r0 1 ? - < 0r0; 1/?/− > CFud
51 1r1 1 0 - < 1r1; 1/0/− > CFds 52 1r1 1 ? - < 1r1; 1/?/− > CFud

The 1PF2s FFMs

Without any operation on a- or v-cells, a certain state of the a-cell sensitizes a fault in
the v-cell.

1. State coupling fault (CFst): When a certain state in a-cell, reverses the state
of v-cell, this is called as a state coupling fault. This fault appears due to the
initial values of the cells, not by any operation. CFst has 4 FPs: < 0; 0/1/− >,
< 0; 1/0/− >, < 1; 0/1/− > and < 1; 1/0/− >.

2. Undefined State coupling fault (CFus): When a certain state in a-cell, puts
the v-cell into an undefined state, this is called as an undefined state coupling fault.
CFus has 4 FPs: < 0; 0/?/− >, < 0; 1/?/− >, < 1; 0/?/− > and < 1; 1/?/− >.

The 1PF2a FFMs

An operation on the a-cell sensitizes a fault in v-cell.

1. Disturb coupling fault (CFds): When an operation on the a-cell, reverses the v-
cell, this is called as a disturb coupling fault. CFds has 12 FPs: < 0w0; 0/ ↑ /− >,
< 0w0; 1/ ↓ /− >, < 1w1; 0/ ↑ /− >, < 1w1; 1/ ↓ /− >, < 0w1; 0/ ↑ /− >,
< 0w1; 1/ ↓ /− >, < 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >, < r0; 0/ ↑ /− >,
< r0; 1/ ↓ /− >, < r1; 0/ ↑ /− > and < r1; 1/ ↓ /− >.
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2. Undefined Disturb coupling fault (CFud): When an operation on the a-cell,
puts the v-cell into an undefined state, this is called as a undefined disturb coupling
fault. CFud has 12 FPs: < 0w0; 0/?/− >, < 0w0; 1/?/− >, < 1w1; 0/?/− >,
< 1w1; 1/?/− >, < 0w1; 0/?/− >, < 0w1; 1/?/− >, < 1w0; 0/?/− >, <
1w0; 1/?/− >, < r0; 0/?/− >, < r0; 1/?/− >, < r1; 0/?/− > and < r1; 1/?/− >.

3. Idempotent coupling fault (CFid): When a transition write operation
(0w1and1w0) on the a-cell, sets the v-cell to a non-intended state, 0 or 1 and
erroneous value remains on the v-cell, this is called as an idempotent coupling
fault. CFid has 4 FPs: < 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓ /− >, < 1w0; 0/ ↑ /− >
and < 1w0; 1/ ↓ /− >.

4. Inversion coupling fault (CFin): When a transition write operation (0w1 and
1w0) on the a-cell, inverts the v-cell whenever it is applied, this is called as an
inversion coupling fault. CFin has 2 pairs of FPs: {< 0w1; 0/ ↑ /− >, < 0w1; 1/ ↓
/− >} and {< 1w0; 0/ ↑ /− >, < 1w0; 1/ ↓ /− >}. For example, second FP pair
means, each 1w0 operation to the a-cell inverts the v-cell state.

The 1PF2v FFMs

When the a-cell is in a certain state, an operation on the v-cell sensitizes a fault in the
v-cell.

1. Transition coupling fault (CFtr): When a certain state of the a-cell causes
to the failure of a transition write operation on the v-cell, this is called as a
transition coupling fault. CFtr has 4 FPs: < 0; 0w1/0/− >, < 0; 1w0/1/− >,
< 1; 0w1/0/− > and < 1; 1w0/1/− >.

2. Write Destructive coupling fault (CFwd): When the a-cell is in a certain
state, if a non-transition write operation on the v-cell, causes a transition on v-cell,
this is called as a write destructive coupling fault. CFwd has 4 FPs: < 0; 0w0/ ↑
/− >, < 0; 1w1/ ↓ /− >, < 1; 0w0/ ↑ /− > and < 1; 1w1/ ↓ /− >.

3. Read Destructive coupling fault (CFrd): When the a-cell is in a certain
state, if the v-cell is reversed by a read operation on itself and the read-out data
is incorrect, this is called as a read destructive coupling fault. CFrd has 4 FPs:
< 0; r0/ ↑ /1 >, < 0; r1/ ↓ /0 >, < 1; r0/ ↑ /1 > and < 1; r1/ ↓ /0 >.

4. Deceptive Read Destructive coupling fault (CFdrd): When the a-cell is
in a certain state, if the v-cell is reversed by a read operation on itself, however
the read-out data is correct, this is called as a deceptive read destructive coupling
fault. CFdrd has 4 FPs: < 0; r0/ ↑ /0 >, < 0; r1/ ↓ /1 >, < 1; r0/ ↑ /0 > and
< 1; r1/ ↓ /1 >.

5. Random Read Destructive coupling fault (CFrrd): When the a-cell is in a
certain state, if the v-cell is reversed by a read operation on itself and the read-out
data is random, this is called as a read destructive coupling fault. CFrrd has 4 FPs:
< 0; r0/ ↑ /? >, < 0; r1/ ↓ /? >, < 1; r0/ ↑ /? > and < 1; r1/ ↓ /? >.
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6. Incorrect Read coupling fault (CFir): When a read operation is performed
on the v-cell, with the a-cell is in a certain state, if the read-out data is incorrect,
this is called as an incorrect read coupling fault. CFir has 4 FPs: < 0; r0/0/1 >,
< 0; r1/1/0 >, < 1; r0/0/1 > and < 1; r1/1/0 >.

7. Random Read coupling fault (CFrr): When a read operation is performed
on the v-cell, with the a-cell is in a certain state, if the read-out data is random,
this is called as a random read coupling fault. CFrr has 4 FPs: < 0; r0/0/? >,
< 0; r1/1/? >, < 1; r0/0/? > and < 1; r1/1/? >.

8. Undefined Write coupling fault (CFuw): When a write operation on the v-
cell puts the v-cell into an undefined state with a-cell is in a certain state, this is
called as an undefined write coupling fault. CFuw has 8 FPs: < x; 0w0/?/− >,
< x; 1w1/?/− >, < x; 0w1/?/− > and < x; 1w0/?/− > where x ∈ {0, 1}.

9. Undefined Read coupling fault (CFur): When a read operation on the v-
cell puts the v-cell into an undefined state with a-cell is in a certain state, this is
called as an undefined write coupling fault. Read-out data can be correct, wrong
or random. CFur has 12 FPs: < x; r0/?/0 >, < x; r0/?/1 >, < x; r0/?/? >,
< x; r1/?/0 >, < x; r1/?/1 > and < x; r1/?/? > where x ∈ {0, 1}.

3.3.1.5 Neighborhood pattern sensitive coupling faults

Pattern sensitive fault (PSF) is a generalization of k-coupling faults, where k = n (all
cells of memory array). Cell-under-test is called as base cell. Neighborhood pattern limits
k = n generalization to number of cells surrounding the base cell. Cells remained after
the removal of the base cell are named as deleted neighborhood. There are three types of
NPSFs [100]:

• Static NPSF (SNPSF): A certain pattern of the deleted neighborhood sensitizes
the base cell into a certain state.

• Active (Dynamic) NPSF (ANPSF): A certain transition in the pattern of deleted
neighborhood sensitizes the base cell.

• Passive NPSF (PNPSF): A certain pattern of the deleted neighborhood prevents
the base cell from any change.

3.3.2 Static address decoder faults (sADFs)

To simplify the formulation, it is pre-assumed that an address decoder fault (AF) is same
during both read and write operations. Secondly, AFs will be derived for a bit-oriented
memory where one address accesses to one bit. There are four functional AF fault types
as [100]:

1. A particular address can not access to any cell, Figure 3.5 (1),
2. A particular cell can not be accessed by any address, Figure 3.5 (2),
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Figure 3.5: Address decoder faults [100]

3. A particular address access to multiple cells, Figure 3.5 (3),
4. A particular cell is accessed by multiple addresses, Figure 3.5 (4),

Obviously, only one of those faults in Figure 3.5 can not exist in a memory cell array,
alone. This observation brings us to the fault combinations, shown in Figure 3.6 and
annotated as fault A to D, respectively [100]. Fault 1 exist with either fault 2 or fault
3; fault 2 with at least one of the fault 1 and 4; fault 3 with at least fault 1 and 4; fault
4 with either fault 2 or 3.

3.3.3 Static peripheral circuit faults (sPCFs)

Those faults occur in the read/write circuits (e.g., write driver, sense amplifier, data
register) and precharge circuits. In literature, several proofs are given that read/write
logic and address decoder faults can be mapped on the memory cell array faults [100,
80]. This assumption further simplifies previously defined reduced functional memory
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Figure 3.6: Fault combinations of AFs [100]
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model in Figure 3.1 to memory cell array. However, then the fault source can not be
distinguished anymore; i.e., whether sourced by address decoder, read/write circuit or
indeed memory cell array itself.

Low PPM levels mandate to development of dynamic fault primitive-based test algo-
rithms in addition to the static fault tests. Therefore, the following section investigates
the dynamic fault space.

3.4 Dynamic faults

Dynamic faults are classified into 3 main classes: memory cell array, address decoder
and peripheral circuit faults.

3.4.1 Dynamic memory cell array faults (dMCAFs)

Dynamic faults can be sub-classified as two-operation dynamic FPs (#O = 2), three-
operation dynamic FPs (#O = 3), etc. The possibility to trigger a dynamic fault falls
down with increasing number of operations [6], thus investigation of dynamic fault space
is restricted to the two-operation simple dynamic fault space in literature [46]. A further
restriction is made for the number of cells involved, mostly two-cell dynamic faults are
considered. To sum up, here, the simple two-operation dynamic faults involving single
or two-cells will be explained.

3.4.1.1 Single-cell fault primitives

To generate the whole fault space of two-operation simple dynamic single-cell faults,
firstly, all possibilities for each of the S, F and R should be enlisted. Afterwards, they
can be easily grouped to generate whole combinations.

To start with S as:

• Let x, y, z ∈ {0, 1}. Due to the two-operation restriction, one can have those
operation sequences: write-after-write (xwywz), write-after-read (xwyry), read-
after-read (xrxrx) or read-after-write (xrxwy) which resulted in 8, 4, 2 and 4
sensitizing operation sequences, totally 18 Ss, respectively.

for F :

• there are possibly two values, {0, 1}.

and for R:

• it can take three values, {0, 1,−}; {0, 1} where the last element in sensitizing
sequence is a read operation, and {−} in case of a write operation.

Those possibilities result in 30 combinations and can be grouped under 5 FFMs as
in Table 3.3.
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Table 3.3: List of single-cell dynamic FPs and FFMs [46]

FFM FPs

dRDF < 0r0r0/1/1 >, < 1r1r1/0/0 >,
< 0w0r0/1/1 >, < 1w1r1/0/0 >,
< 0w1r1/0/0 >, < 1w0r0/1/1 >

dDRDF < 0r0r0/1/0 >, < 1r1r1/0/1 >,
< 0w0r0/1/0 >, < 1w1r1/0/1 >,
< 0w1r1/0/1 >, < 1w0r0/1/0 >

dIRF < 0r0r0/0/1 >, < 1r1r1/1/0 >,
< 0w0r0/0/1 >, < 1w1r1/1/0 >,
< 0w1r1/1/0 >, < 1w0r0/0/1 >

dTF < 0w0w1/0/− >, < 1w1w0/1/− >,
< 0w1w0/1/− >, < 1w0w1/0/− >,
< 0r0w1/0/− >, < 1r1w0/1/− >,

dWDF < 0w0w0/1/− >, < 1w1w1/0/− >,
< 0w1w1/0/− >, < 1w0w0/1/− >,
< 0r0w0/1/− >, < 1r1w1/0/− >,

1. Dynamic Read Destructive Fault (dRDF): When the last read operation
(read-after-read or write-after-read) in sensitizing sequence disrupts the data in
the cell and the returned read data on the output is incorrect, then this fault
type is called as a dynamic read destructive fault (dRDF). dRDF has 6 FPs as:
< 0r0r0/1/1 >, < 1r1r1/0/0 >, < 0w0r0/1/1 >, < 0w1r1/0/0 >, < 1w0r0/1/1 >
and < 1w1r1/0/0 >.

2. Dynamic Deceptive Read Destructive Fault (dDRDF): When the last
read operation in sensitizing sequence disrupts the data in the cell, however
the returned read data on the output is correct, then this fault type is called
as a dynamic deceptive read destructive fault (dDRDF). dDRDF has 6 FPs as:
< 0r0r0/1/0 >, < 1r1r1/0/1 >, < 0w0r0/1/0 >, < 0w1r1/0/1 >, < 1w0r0/1/0 >
and < 1w1r1/0/1 >.

3. Dynamic Incorrect Read Fault (dIRF): When the last read operation in
sensitizing sequence does not disrupt the data in the cell, however the returned
read data on the output is incorrect, then this fault type is called as a dynamic
incorrect read fault (dIRF). dIRF has 6 FPs as: < 0r0r0/0/1 >, < 1r1r1/1/0 >,
< 0w0r0/0/1 >, < 0w1r1/1/0 >, < 1w0r0/0/1 > and < 1w1r1/1/0 >.

4. Dynamic Transition Fault (dTF): When a transition write operation (read-
after-write or write-after-write) in sensitizing sequence does not succeed, then
this fault type is called as a dynamic transition fault (dTF). dTF has 6 FPs
as: < 0r0w1/0/− >, < 1r1w0/1/− >, < 0w0w1/0/− >, < 1w0w1/0/− >,
< 0w1w0/1/− > and < 1w1w0/1/− >.

5. Dynamic Write Destructive Fault (dWDF): When a non-transition write
operation (read-after-write or write-after-write) in sensitizing sequence disrupts
the data in the cell, then this fault type is called as a dynamic write destructive
fault (dWDF). dWDF has 6 FPs as: < 0w0w0/1/− >, < 0w1w1/0/− >, <
1w0w0/1/− >, < 1w1w1/0/− >, < 0r0w0/1/− > and < 1r1w1/0/− >.
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Table 3.4: List of two-cell dynamic FPs and FFMs caused by Saa [46]

FFM FPs

dCFdsww < 0w0w0; x/x/− >, < 1w1w1; x/x/− >,
< 0w0w1; x/x/− >, < 1w1w0; x/x/− >,
< 0w1w0; x/x/− >, < 1w0w1; x/x/− >,
< 0w1w1; x/x/− >, < 1w0w0; x/x/− >,

dCFdswr < 0w0r0; x/x/− >, < 1w1r1; x/x/− >,
< 0w1r1; x/x/− >, < 1w0r0; x/x/− >,

dCFdsrw < 0r0w0; x/x/− >, < 1r1w1; x/x/− >,
< 0r0w1; x/x/− >, < 1r1w0; x/x/− >,

dCFdsrr < 0r0r0; x/x/− >, < 1r1r1; x/x/− >,

3.4.1.2 Two-cell fault primitives

As in the two-cell FPs of simple static single-port fault class (see Chapter 3.3.1.3-.4),
again, cells are named as the aggressor a-cell and the victim (v-cell). In this case, since
the number of sequential operations in S is restricted to 2, four possible situations are
resulted:

1. Saa: where both of the operations are applied to the a-cell, while v-cell is in a
certain state.

2. Svv : where both of the operations are applied to the v-cell, while a-cell is in a
certain state.

3. Sav: where the first operation is applied to the a-cell and the second one is to the
v-cell.

4. Sva: where the first operation is applied to the v-cell and the second one is to the
a-cell.

Faults caused by Saa

In Saa class faults, two sequential operations applied to the a-cell, resulting in a state
change (reverse, flip) of the v-cell. Since both of the two operations will be applied
to the a-cell, while the v-cell is in a certain state, < Saa/F/R > will be shown as:
< Sa;Sv/F/R >.

Sa will be shown as: yO1zO2t, where O1 and O2 are the first and second operations.
They can be w or r operations. Sv will be shown as: x. All x, y, z, t ∈ {0, 1}. As a result
of state flip, F will be x. R will be {−}, since no operations are applied to the v-cell.

In result, < Sa;Sv/F/R > have the general form of < yO1zO2t;x/x/− >. yO1zO2t
sequence gives 18 possible Ss as in single-cell FPs (see Chapter 3.4.1.1). Thus, there will
be a total of 36 FPs grouped under a single FFM as shown in Table 3.4.

• Dynamic Disturb Coupling Faults (dCFds): When both operations are applied to
the a-cell while the v-cell in a certain state, results in a state flip of the v-cell.
Due to the read/write combinations of operations O1 and O2, CFds can be further
divided into 4 sub-groups:

1. dCFdsww: When both of O1 and O2 are a write operation. dCFdsww has
16 FPs as: < 0w0w0;x/x/− >, < 0w0w1;x/x/− >, < 0w1w0;x/x/− >,
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Table 3.5: List of two-cell dynamic FPs and FFMs caused by Svv [46]

FFM FPs

dCFrd < x; 0r0r0/1/1 >, < x; 1r1r1/0/0 >,
< x; 0w0r0/1/1 >, < x; 1w1r1/0/0 >,
< x; 0w1r1/0/0 >, < x; 1w0r0/1/1 >

dCFdrd < x; 0r0r0/1/0 >, < x; 1r1r1/0/1 >,
< x; 0w0r0/1/0 >, < x; 1w1r1/0/1 >,
< x; 0w1r1/0/1 >, < x; 1w0r0/1/0 >

dCFir < x; 0r0r0/0/1 >, < x; 1r1r1/1/0 >,
< x; 0w0r0/0/1 >, < x; 1w1r1/1/0 >,
< x; 0w1r1/1/0 >, < x; 1w0r0/0/1 >

dCFtr < x; 0w0w1/0/− >, < x; 1w1w0/1/− >,
< x; 0w1w0/1/− >, < x; 1w0w1/0/− >,
< x; 0r0w1/0/− >, < x; 1r1w0/1/− >,

dCFwd < x; 0w0w0/1/− >, < x; 1w1w1/0/− >,
< x; 0w1w1/0/− >, < x; 1w0w0/1/− >,
< x; 0r0w0/1/− >, < x; 1r1w1/0/− >,

< 0w1w1;x/x/− >, < 1w0w0;x/x/− >, < 1w0w1;x/x/− >, < 1w1w0;x/x/− >
and < 1w1w1;x/x/− >.

2. dCFdswr: When O1 is a write and O2 is a read operation. dCFdswr has 8 FPs as: <
0w0r0;x/x/− >, < 0w1r1;x/x/− >, < 1w0r0;x/x/− > and < 1w1r1;x/x/− >.

3. dCFdsrr: When both of O1 and O2 are a read operation. dCFdsrr has 4 FPs as:
< 0r0r0;x/x/− > and < 1r1r1;x/x/− >.

4. dCFdsrw: When O1 is a read and O2 is a write operation. dCFdsrw has 8 FPs as: <
0r0w0;x/x/− >, < 0r0w1;x/x/− >, < 1r1w0;x/x/− > and < 1r1w1;x/x/− >.

Faults caused by Svv

In Svv class faults, with the a-cell in a certain state, two sequential operations applied
to the v-cell triggers a fault in the v-cell. Since both of the two operations will be
applied to the v-cell while the a-cell is in a certain state, < Svv/F/R > will be shown
as: < Sa;Sv/F/R >.

Sa will be shown as: x. Sv will be shown as: yO1zO2t, where O1 and O2 are the first
and second operations. They can be w or r operations. All x, y, z, t ∈ {0, 1}. F is the
fault appearing in the v-cell and R is the data read-out after a read operation in O2.

In result, < Sa;Sv/F/R > have the general form of < x; yO1zO2t/F/R >. There
will be a total of 60 FPs grouped under five FFMs as shown in Table 3.5.

1. Dynamic Read Destructive Coupling Fault (dCFrd): is observed while the a-cell
in a certain state, if the last operation in the sequence is a read to the v-cell and
flips the data in the v-cell and returns an incorrect data at the read-out. dCFrd
has the forms of < x; ywzrz/z/z > and < x; yryry/y/y > which result in 12 FPs
as: < x; 0w0r0/1/1 >, < x; 0w1r1/0/0 >, < x; 1w0r0/1/1 >, < x; 1w1r1/0/0 >,
< x; 0r0r0/1/1 > and < x; 1r1r1/0/0 >.
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2. Dynamic Deceptive Read Destructive Coupling Fault (dCFdrd): is observed while
the a-cell in a certain state, if the last operation in the sequence is a read to the
v-cell and flips the data in the v-cell, however returns a correct data at the read-
out. dCFdrd has the forms of < x; ywzrz/z/z > and < x; yryry/y/y > which
result in 12 FPs as: < x; 0w0r0/1/0 >, < x; 0w1r1/0/1 >, < x; 1w0r0/1/0 >,
< x; 1w1r1/0/1 >, < x; 0r0r0/1/0 > and < x; 1r1r1/0/1 >.

3. Dynamic Incorrect Read Coupling Fault (dCFir): is observed while the a-cell in a
certain state, if the last operation in the sequence is a read to the v-cell, however
does not flip the data in the v-cell, but returns an incorrect data at the read-
out. dCFir has the forms of < x; ywzrz/z/z > and < x; yryry/y/y > which
result in 12 FPs as: < x; 0w0r0/0/1 >, < x; 0w1r1/1/0 >, < x; 1w0r0/0/1 >,
< x; 1w1r1/1/0 >, < x; 0r0r0/0/1 > and < x; 1r1r1/1/0 >.

4. Dynamic Transition Coupling Fault (dCFtr): is observed while the a-cell in a cer-
tain state, if the last operation in the sequence is a transition write to the v-cell and
does not succeed in the write operation. dCFtr has the forms of < x; ywzwz/z/− >
and < x; yrywy/y/− > which result in 12 FPs as: < x; 0w0w1/0/− >, <
x; 0w1w0/1/− >, < x; 1w0w1/0/− >, < x; 1w1w0/1/− >, < x; 0r0w1/0/− >
and < x; 1r1w0/1/− >.

5. Dynamic Write Destructive Coupling Fault (dCFwd): is observed while the a-
cell in a certain state, if the last operation in the sequence is a non-transition
write to the v-cell and flips the data in the v-cell. dCFwd has the forms
of < x; ywzwz/z/− > and < x; yrywy/y/− > which result in 12 FPs as:
< x; 0w0w0/1/− >, < x; 0w1w1/0/− >, < x; 1w0w0/1/− >, < x; 1w1w1/0/− >,
< x; 0r0w0/1/− > and < x; 1r1w1/0/− >.

Faults caused by Sav

In Sav class faults, the first operation applied to the a-cell, afterwards the second op-
eration to the v-cell triggers a fault in the v-cell. < Sav/F/R > will be shown as:
< Sa;Sv/F/R >av.

Sa will be shown as: xO1y. Sv will be shown as: zO2t, where O1 and O2 are the first
and second operations. They can be w or r operations. All x, y, z, t ∈ {0, 1}. Thus, Sa

and Sv can be one of {0w0, 0w1, 1w0, 1w1, 0r0, 1r1} operations. F is the fault appears
in the v-cell and R is the data read-out after a read operation in O2.

• when Sv is zwt, F becomes {t} and R becomes {−}. In this case, Sav faults have
the form of < Sa; zwt/t/− > which results in 24 FPs.

• when Sv is zrz,

– if F is {z}, R becomes one of {z, z}. In this case, Sav faults have the form of
< Sa; zrz/z/z >and < Sa; zrz/z/z > which result in totally 24 FPs.

– if F is {z}, R becomes one of {z}. In this case, Sav faults have the form of
< Sa; zrz/z/z > which results in totally 12 FPs.
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Table 3.6: List of two-cell dynamic FPs and FFMs caused by Sav [46]

FFM FPs

dCFrd < xOy; 0r0/1/1 >, < xOy; 1r1/0/0 >

dCFdrd < xOy; 0r0/1/0 >, < xOy; 1r1/0/1 >

dCFir < xOy; 0r0/0/1 >, < xOy; 1r1/1/0 >

dCFtr < xOy; 0w1/0/− >, < xOy; 1w0/1/− >,

dCFwd < xOy; 0w0/1/− >, < xOy; 1w1/0/− >,

There will be a total of 60 FPs grouped under five FFMs as shown in Table 3.6.
Names of the FFMs are same as the FFMs of previous fault class caused by Svv.

1. Dynamic Read Destructive Coupling Fault (dCFrd): is observed when the operation
O2 is a read to the v-cell and flips the data in the v-cell and returns an incorrect
data at the read-out. dCFrd has the forms of < Sa; zrz/z/z > which results in 12
FPs as: < xOy; 0r0/1/1 > and < xOy; 1r1/0/0 >.

2. Dynamic Deceptive Read Destructive Coupling Fault (dCFdrd): is observed when
the operation O2 is a read to the v-cell and flips the data in the v-cell, however
returns a correct data at the read-out. dCFdrd has the forms of < Sa; zrz/z/z >
which results in 12 FPs as: < xOy; 0r0/1/0 > and < xOy; 1r1/0/1 >.

3. Dynamic Incorrect Read Coupling Fault (dCFir): is observed when the operation
O2 is a read to the v-cell, however does not flip the data in the v-cell, but returns
an incorrect data at the read-out. dCFir has the forms of < Sa; zrz/z/z > which
results in 12 FPs as: < xOy; 0r0/0/1 > and < xOy; 1r1/1/0 >.

4. Dynamic Transition Coupling Fault (dCFtr): is observed when the operation O2 is
a transition write to the v-cell and does not succeed in the write operation. dCFtr
has the forms of < Sa; zwz/z/− > which results in 12 FPs as: < xOy; 0w1/0/− >
and < xOy; 1w0/1/− >.

5. Dynamic Write Destructive Coupling Fault (dCFwd): is observed when the opera-
tion O2 is a non-transition write to the v-cell and flips the data in the v-cell. dCFwd
has the forms of < Sa; zwz/z/− > which result in 12 FPs as: < xOy; 0w0/1/− >
and < xOy; 1w1/0/− >.

Faults caused by Sva

In Sva class faults, the first operation applied to the v-cell, afterwards the second op-
eration to the a-cell triggers a fault in the v-cell. < Sva/F/R > will be shown as:
< Sv/F/R;Sa >va. The number of faults and FFMs are the same as the previous fault
class that is caused by Sav, only the access order to the a-cell and the v-cell is reverse in
this case.

Sa will be shown as: xO2y. Sv will be shown as: zO1t, where O1 and O2 are the first
and second operations. They can be w or r operations. All x, y, z, t ∈ {0, 1}. Thus, Sa

and Sv can be one of {0w0, 0w1, 1w0, 1w1, 0r0, 1r1} operations. F is the fault appears
in the v-cell and R is the data read-out after a read operation in O2.
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Table 3.7: List of two-cell dynamic FPs and FFMs caused by Sva [46]

FFM FPs

dCFrd < 0r0/1/1; xOy >, < 1r1/0/0; xOy >

dCFdrd < 0r0/1/0; xOy >, < 1r1/0/1; xOy >

dCFir < 0r0/0/1; xOy >, < 1r1/1/0; xOy >

dCFtr < 0w1/0/−; xOy >, < 1w0/1/−; xOy >,

dCFwd < 0w0/1/−; xOy >, < 1w1/0/−; xOy >,

• when Sv is zwt, F becomes {t} and R becomes {−}. In this case, Sva faults have
the form of < zwt/t/−;Sa > which results in 24 FPs.

• when Sv is zrz,

– if F is {z}, R becomes one of {z, z}. In this case, Sva faults have the form of
< zrz/z/z;Sa >and < zrz/z/z;Sa > which result in totally 24 FPs.

– if F is {z}, R becomes one of {z}. In this case, Sva faults have the form of
< zrz/z/z;Sa > which results in totally 12 FPs.

There will be a total of 60 FPs grouped under five FFMs as shown in Table 3.7.
Names of the FFMs are same as the FFMs of previous fault class caused by Svv and Sav.

1. Dynamic Read Destructive Coupling Fault (dCFrd): is observed when the operation
O1 is a read to the v-cell and flips the data in the v-cell and returns an incorrect
data at the read-out. dCFrd has the forms of < zrz/z/z;Sa > which results in 12
FPs as: < 0r0/1/1;xOy > and < 1r1/0/0;xOy >.

2. Dynamic Deceptive Read Destructive Coupling Fault (dCFdrd): is observed when
the operation O1 is a read to the v-cell and flips the data in the v-cell, however
returns a correct data at the read-out. dCFdrd has the forms of < zrz/z/z;Sa >
which results in 12 FPs as: < 0r0/1/0;xOy > and < 1r1/0/1;xOy >.

3. Dynamic Incorrect Read Coupling Fault (dCFir): is observed when the operation
O1 is a read to the v-cell, however does not flip the data in the v-cell, but returns
an incorrect data at the read-out. dCFir has the forms of < zrz/z/z;Sa > which
results in 12 FPs as: < 0r0/0/1;xOy > and < 1r1/1/0;xOy >.

4. Dynamic Transition Coupling Fault (dCFtr): is observed when the operation O1 is
a transition write to the v-cell and does not succeed in the write operation. dCFtr
has the forms of < zwz/z/−;Sa > which results in 12 FPs as: < 0w1/0/−;xOy >
and < 1w0/1/−;xOy >.

5. Dynamic Write Destructive Coupling Fault (dCFwd): is observed when the opera-
tion O1 is a non-transition write to the v-cell and flips the data in the v-cell. dCFwd
has the forms of < zwz/z/−;Sa > which result in 12 FPs as: < 0w0/1/−;xOy >
and < 1w1/0/−;xOy >.
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Figure 3.7: A typical CMOS address decoder and example of an intergate open [44]

3.4.2 Dynamic address decoder faults (dADFs)

Address decoder delay faults are mainly caused by the resistive opens on the address
decoding logic paths. Resistive opens have two types as [44, 90, 11, 81, 65]:

1. Intergate opens: Those are the opens between the logic gates of an address decoder
as in Figure 3.7.

2. Intragate opens: Those are the opens inside a logic gate as in Figure 3.8 that is
used to implement an address decoder.

[65] proposes that the probability of an intergate open is one order of magnitude
higher than the existence of an intragate open due to the longer global wire connections
instead of short local ones.

The dADFs consists of two faults [44]:

1. Activation Delay Fault (ActD): is a delay-related fault on the rising edge of WL
signal due to resistive defects. ActD can be observed both on inter/intragate open
situations.

2. De-activation Delay Fault (DeactD): is a delay-related fault on the falling edge of
WL signal due to resistive defects and can be observed both on inter/intragate
open situations.

Figure 3.9 shows an example of gradually increasing open defects in the row address
decoder: the defect value has a direct impact on the delay amount.
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Figure 3.8: A 3-input NAND gate and example of an intragate open [44]

Figure 3.9: Timing diagram for a good and bad WL [44]

3.4.3 Dynamic peripheral circuit faults (dPCFs)

This class of faults occur as a speed-related misbehavior or an excessive leakage on
the peripheral circuits. Speed-related faults are presented in the write drivers, sense
amplifiers or pre-charge circuit, whereas excessive leakage is related to the pass transistors
[107]. dPCFs are divided into four types as:

1. Slow Write Driver Fault (SWDF): Due to a defect in the write driver and/or a
resistive defect (i.e., a partial open via) on the path between the write driver and
the cell to be written, voltage difference between the BL and BL is decreased,
resulting in an unsuccessful write operation.

2. Slow Sense Amplifier Fault (SSAF): Due to a slow sense amplifier or an offset
voltage caused by a defect in the sense amplifier and/or a resistive defect on the
path between the sense amplifier and the cell to be read, an incorrect read-out is
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resulted.

3. Slow PRecharge circuit Fault (SPRF): Due to a slow pre-charge circuit or a defect
in the pre-charge circuit and/or a resistive defect on the BLs, BLs can not be
charged up to the same voltage level, resulting in an incorrect read-out [3].

4. Bit Line Imbalance Fault (BLIF): To correctly detect the data in a cell during a
read operation, the voltage difference on the BLs should be higher than a certain
threshold level. With the shrinking process technology sizes, leakage current on
transistors is increasing. In an extreme case, let assume a column has cells all
storing x except one has x. When x-storing cell is accessed for a read operation,
voltage difference that should be generated on BLs due to the x value can be
decreased under to the required threshold level and even if neutralized by the
leaking pass transistors of cells storing x, resulting in an incorrect read data output
[74].

To finalize, this chapter introduced the fault primitives (FPs) and functional fault
models (FFMs). Single-port, simple (unlinked), static and dynamic, single and two-cell
faults that occur in the memory cell array, address decoder and peripheral circuits were
discussed. Next chapter continues with the memory tests to detect those faults.



Memory testing 4
This chapter presents the memory test algorithms. Section 4.1 explains the notation of
the memory test algorithms. Section 4.2. overviews the ad-hoc memory tests. Section 4.3
continues with the March tests introduced before the development of the fault primitive
concept. Section 4.4 discusses the March tests introduced after the development of the
fault primitive concept. Section 4.5 concludes with the repetitive tests.

4.1 Notation of march tests

A march test is a finite sequence of march elements (MEs) which are separated by a ‘;’.
A ME is a finite sequence of operations performed on each cell before proceeding with
a next cell. Each operation is separated by a ‘,’. The whole march test algorithm is
written between brackets ‘{...}’ while a march element is shown between brackets ‘(...)’.
Access order to cell array can follow one of two address orders (AOs); either ⇑ ascending
or ⇓ descending. 
 symbolizes that AO can be chosen freely.

To be more clear, here is the MATS [79] march test written in this notation as:
{
 (w0);
 (r0, w1);
 (r1)}. It has 3 MEs 
 (w0), 
 (r0, w1) and 
 (r1)}. 
 shows AO is
free to choose. Algorithm starts with a w0 operation to each memory cell. Once all cells
are written zero, then the algorithm proceeds with the next march element ⇑ (r0, w1).
Each cell is read for a zero and written with one. Finally, it checks the value of each cell
by a r1 operation. It is a linear test algorithm with a complexity of O(4RC), because
each cell is accessed 4 times.

Some defects can be only detected by certain addressing like fast row (fast X) or fast
column (fast Y) access. Neighboring row and column coupling faults can be detected by
fast X and fast Y with incrementing or decrementing by 1 while by 2 can detect open
faults on the address decoder logic [83].

Fault coverage varies between several march algorithms and also between memory
architectures, etc. Mainly, the complexity of march elements determines the quality of
a march test.

In case of multi-port memory tests, the notation given above should be extended as
[36]:

• Operations are applied to consecutively named ports; i.e., port a, port b,..., port
p, in parallel within same or different AOs.

• Port name for each operation is superscripted and operations are separated by
colons as: (r0a : r0b : ... : r0p).

• Character ‘n’ refers to no operation and character ‘-’ refers to any operation that
does not conflict with the rest of group.

35
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• xpr,c refers to that operation x is applied via the port p to the cell on row r and
column c.

• ⇑n−2
i=0 ⇑n−1

a=j+1 refers to that an operation cell i travels from 0 to n− 2; for each cell
i, cell j travels from j + 1 to n− 1.

Here is an example of the extension of MATS algorithm for 2P memories, 2P-MATS is
derived as: {
 (w0 : n);
 (r0 : r0, w1 : n);
 (r1 : n)}.

Before the systematic development of fault modeling, so called ad-hoc tests were
applied; however after the formalization of fault primitives and fault modeling theory,
fault primitive based marching tests have become popular.

Before starting, a little remark about memory dimensions and addressing should be
noted. In [100], 2N is given as the number of address locations, where N is the number
of address bits. And n is the number of bits, where n = B.2N . For example, a memory
can has 28 words and each word can have 8 bits, then n will be 8x256. It is important
because a single operation can be performed by a single word access. Thus initialization
of memory with a w0 can be speed up to 2N test time instead of B.2N . In [100], single
operations are performed with word access and have a test time of 2N . Thus to convert
the test time from word-oriented to bit-oriented, one should replace 2N with a RC at
the test time formulas of algorithms below.

4.2 Ad-hoc test algorithms

SCAN [1], Checkerboard [18], Walking 1/0 [100], GalPat [18] and Butterfly [100] are well-
known ad-hoc tests. Walking 1/0, GalPat, Butterfly and Sliding Diagonal are also known
as the base cell tests, since they perform ping-pong operations between a base and victim
cells. Although their fault coverage (SCAN, Walking 1/0, Butterfly) or practicality
(GalPat, Walking 1/0) is not high enough, those traditional tests were commonly applied
before the systematic fault primitives were developed. In the case of static simple two-cell
fault coverage, none of them exceeds 61% FC barrier. In the case of static simple single-
cell faults, they still can not exceed 67% FC, where GalPat has a 83.3% FC. However,
still they have the ability to detect some unique faults.

SCAN

{⇑ (w0);⇑ (r0);⇑ (w1);⇑ (r1)}

SCAN is also known as Zero-One [100] or MSCAN (Memory Scan) [1]. As the
name refers, firstly all the memory cells are written with 0, read for 0, then written with
1 and read for 1. SCAN has a 4.2N test time and a complexity of O(n). It has 100%
SAF coverage, however total FC is unacceptable for an industrial test flow. It may be
applied to detect faulty chips at an early stage. In an extreme case, just a correctly
working single cell but not the rest of memory cell array can make the memory pass
from the test. SCAN cannot detect whether each cell is correctly addressed or not.

However, with some modifications in addressing order and data background, its



4.2. AD-HOC TEST ALGORITHMS 37

fault coverage and covered fault types can be extended including some dynamic faults.
For this purpose, H1-Scan and RaW-Scan are proposed at [38].

Checkerboard

{⇑ (w11, w02);⇑ (r11, r02);
⇑ (w01, w12);⇑ (r01, r12)}

Checkerboard [18] divides the memory cells into two groups as black and whites
squares of a checkerboard. It is designed to test leakages between neighboring cells, be-
cause a cell with 1 is encircled by cells with zero, thus leakage is stressed. Checkerboard
has a 4.2N test time and a complexity of O(n).

GalPat

{⇑ (w0);⇑b (w1b,⇑−b (r0, r1b), w0b);
⇑ (w1);⇑b (w0b,⇑−b (r1, r0b), w1b)}; (GalPat)

{⇑ (w0);⇑b (w1b,⇑R−b (r0, r1b), w0b);
⇑ (w1);⇑b (w0b,⇑R−b (r1, r0b), w1b)}; (GalRow)

{⇑ (w0);⇑b (w1b,�(r0, r1b), w0b);
⇑ (w1);⇑b (w0b,�(r1, r0b), w1b)}; (Gal9R)

{⇑ (w0);⇑b (w1b,�(w0, r1b), w0b);
⇑ (w1);⇑b (w0b,�(w1, r0b), w1b)}; (Gal9W)

Galloping Pattern [18] is an address-oriented algorithm, all background cells are
initialized to complement of the base cell. Then one cell from background except base
cell is read, then base cell is read, then one more from the background is read, and
base-cell is read again and this goes till to end of address is reached. This sequence is
a kind of ping-pong game between the base cell and the rest of the memory. Then all
cells are reversed and this sequence is performed again. GalPat has a 2.(2N + 2.(RC)2)
test time and a complexity of O(n2). Because of the high length of GalPat, it is
generally preferred to decrease the complexity by limiting the number of read operations
performed on background cells. If read operation is limited to the column that base-cell
belongs into, algorithm is named as GalCol [100], if to the row, as GalRow [18], if
to the 4 neighbor cells on the directions of south, west, north and east (i.e., �), as
Gal5R or Gal5W [106], if to the 8 neighbor cells around the base (i.e., �), as Gal9R or
Gal9W [106]. Depending on the test is one of GalCol, GalRow, Gal5R/W, Gal9R/W;
the symbol for the address order of operations M1,1 and M3,1 becomes⇑C−b,⇑R−b, �,�,
respectively. Moreover, between Gal9R and Gal9W, there is a read-write operation
difference in the march elements M1,1,0 and M3,1,0. When compared to previous
algorithms, test length of GalPat is still high, thus Sliding Diagonal and Butterfly
tests are developed with shorter test time but with lower fault coverages. GalRow and
GalCol have 2.(2N + 2.RC + 2.RC.

√
RC) test time with a complexity of O(n.

√
n).
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Walking 1/0

(Walking 1/0)
{⇑ (w0);⇑b (w1b,⇑−b (r0), r1b, w0b);
⇑ (w1);⇑b (w0b,⇑−b (r1), r0b, w1b)}

(WalkRow)
{⇑ (w0);⇑b (w1b,⇑R−b (r0), r1b, w0b);
⇑ (w1);⇑b (w0b,⇑R−b (r1), r0b, w1b)}

A walking sequence means that there is a single cell with a complement data re-
spect to the rest of memory at some time point during test. Walking 1/0 [100] has
nearly same test element sequence of GalPat with a slight difference. In GalPat, when
one cell from the rest is read also base cell is read. In Walking 1/0, all cells are read
and lastly the base-cell, thus base cell is read only once. Thus it decreases test time
to 2.(2N + (RC)2 + 2.RC) still with a complexity of O(n2). To further decrease the
complexity, in WalkRow and WalkCol algorithms, read action over all background cells
are limited into only the row or column that base-cell belongs to.

Sliding Diagonal

For each diagonal:
{⇑ (w0−d, w1d);⇑ (r0−d, r1d); shiftdiagonal};
when all cells become base-cell at diagonal, restart with reverse data sequence
{⇑ (w1−d, w0d);⇑ (r1−d, r0d); shiftdiagonal};

In Sliding Diagonal [100] instead of a single base-cell, base-cells located at the
memory diagonal are used. Base-cells are written with the complement of background
cells. Then all cells are read and diagonal is shifted towards the other two corners.
When all cells became base-cell once, data initialization is reversed and sequence is
performed again. Sliding diagonal detects all SAFs and TFs and some AFs and some
CFs (due to the several base-cells at the same time on diagonal). Due to the diagonal
base-cell are spread over to several rows (words), initialization can not be performed by
2N , but it takes RC operation time. Then sliding diagonal has 6n + 2n.

√
n test time

with a complexity of O(n.
√
n).

Butterfly

{⇑ (w0);⇑ (w1b, �(r0, r1b), w0b);
⇑ (w1);⇑ (w0b, �(r1, r0b), w1b)}

In Butterfly [100], memory is initialized as in Walking 1/0. Base-cell is written
with the complement of background and base cell walks as in Walking 1/0. However,
this time, only the background cells at four directions (north, east, south and west) of
the base-cell are read. Depending on the implementation choice, distance of background
cells that are read on south, east, north and west directions can change; 1, 2, 3, 4,
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etc. Butterfly has a 2(2N + (3 + k).RC) test time with a complexity of O(n). k is
the Butterfly maximum distance which is a design specific choice. For example, if k is
chosen as 1, 4 neighboring cells; if k is 2, 8 neighboring cells are accessed during the
internal loop of Butterfly test. In case of k = 1, test time becomes 2(2N + 7.RC).

4.3 March test algorithms

A marching test marches through the memory while data of cells are changed and re-
mained as changed. Then, test further continues with the next victim cell. To be more
clear, after the initialization, all cells have the same state. When marching test is at the
half of memory, half is at one state while other half is at another state.

Marching tests can be classified into two sub-groups: 1) tests before the fault primi-
tive concept, and 2) tests after the fault primitive concept. This sectioon discusses the
March test introduced before the fault primitive concept.

ATS

{
 (w0∏
1
, w0∏

2
);
 (w1∏

0
);
 (r0∏

1
);
 (w1∏

1
);
 (r0∏

2
);


 (r1∏
0
, r1∏

1
);
 (w0∏

0
, r0∏

0
);
 (w1∏

2
, r1∏

2
)}

Algorithmic Test Sequence (ATS) [66] is an optimal algorithm that detects any
single SAF and any combination of SA-0 and SA-1 multiple faults. It divides the
memory into 3 regions as:

∏
0 = {Aµ ≡ 0(modulo3)}∏
1 = {Aµ ≡ 1(modulo3)}∏
2 = {Aµ ≡ 2(modulo3)}, where Aµ is the memory address μ.

then applies the algorithm above. ATS has a 4.2N test time and a complexity of
O(n).

MATS

{
 (w0);
 (r0, w1);
 (r1)}

The Modified ATS (MATS) [79] is obtained by reordering the steps of ATS algo-
rithm. Simply, M6 is moved to M0; M7 is combined after M4. It detects all SAFs in the
memory cell array and Read/Write circuitry. 4.2N test time and complexity of O(n)
of ATS are still valid for MATS. MATS does not deal with 3 distinct memory regions,
thus implementation in a program becomes easier. MATS has the same length as SCAN
algorithm whereas with a higher fault coverage.

MATS+

{
 (w0);⇑ (r0, w1);⇓ (r1, w0)}
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MATS+ [1] is applied instead of MATS when the memory process technology is
not known. M2 in MATS algorithm is modified by adding one extra write operation.
M1 guarantees that each cell can be written and read, thus cells are not at SA-0 or
SA-1; M1 and M2 guarantee that writing into one cell does not affect a cell in higher or
lower address and all over address decoder correctly works. MATS+ is the optimal test
for unlinked SAFs with 5.2N test time and complexity of O(n).

Marching 1/0

{
 (w0);⇑ (r0, w1, r1);⇓ (r1, w0, r0);

 (w1);⇑ (r1, w0, r0);⇓ (r0, w1, r1)}

Marching 1/0 [18] is a complete set detecting AFs, SAFs and TFs. Although it
is a complete set, it is not an irredundant test, because M3, M4 and M5 are not
essential. Only M0 for initialization; M1 for up transition and address decoder faults
and M2 for down transition and address decoder faults are enough and necessary to
be a complete set. Thus, Marching 1/0 is a redundant test with 14.2N test time and
complexity of O(n).

MATS++

{
 (w0);⇑ (r0, w1);⇓ (r1, w0, r0)}

MATS++ [100] is developed by eliminating the redundant M3, M4, M5 and the
last read operation in M1 from Marching 1/0 algorithm. Fault coverage is still same as
Marching 1/0 whereas test is optimized. MATS++ has 6.2N test time and complexity
of O(n).

March A

{
 (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, w1);
⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}

March A [94] is a complete, irredundant test for linked idempotent coupling faults. It
is the shortest test for AFs, SAFs, TFs not linked with CFids, linked CFids, and some
CFins linked with CFids. March A has 15.2N test time and complexity of O(n).

March B

{
 (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}

March B [94] is obtained by the modification of M1 in March A test to catch
AFs, SAFs, TFs linked with CFins or CFids, CFins and linked CFids. It is a complete
and irredundant test, too. March B has 17.2N test time and complexity of O(n).
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March C

{
 (w0);⇑ (r0, w1);⇑ (r1, w0);
 (r0);
⇓ (r0, w1);⇓ (r1, w0);
 (r0)}

March C [73] is developed for unlinked inversion, idempotent two-coupling and
dynamic two-coupling faults. M3 is a redundant element that makes March C not
optimal. March C has 11.2N test time and complexity of O(n).

March C-

{
 (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);
 (r0)}

March C- [100] is obtained by eliminating the redundant element M3 of March C
algorithm. It detects unlinked idempotent, inversion, dynamic and state coupling faults.
March C- is the simplest test that checks for the unique address faults (AFs) in the
address decoder, see Figure 3.5. Since, M1 to M4 perform two operations, it can be
called a two-step unique address test. March C- has 10.2N test time and complexity of
O(n).

March A+, A++, C+, C++

(March C+)
{
 (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0);
 (r0)}

(March C++)
{
 (w0);⇑ (r0, w1);⇑ (r1, w0);
 (r0);⇓ (r0, w1);⇓ (r1, w0);
Del;⇑ (r0, w1, r1);Del;⇑ (r1)}

March A+, A++, C+ and C++ [117] are developed based on the March A and
C with same modifications to be able to detect read destructive and data retention
faults. (+) algorithms (March A+ and C+) have three read operations instead of one
as in their original versions to detect disconnected pull-up/down paths in cells. In (++)
algorithms (March A++ and C++), two Del elements, Del;⇑ (rd, wd, rd);Del;⇑ (rd),
are appended to end of the original algorithms to detect data retention faults.

March G

{
 (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0);
Del;
 (r0, w1, r1);Del;
 (r1, w0, r0)} (Seq.1)

{
 (w0);⇑ (r0, w1, r1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, r1, w0);
Del;
 (r0, w1, r1);Del;
 (r1, w0, r0)} (Seq.2)

March G [99] is designed to detect SOFs and DRFs by extending March B with
the elements Del;
 (r0, w1, r1);Del;
 (r1, w0, r0)}. It has pause elements to catch
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retention faults. Last two march elements have three step unique address pattern. It
covers AFs, TFs and CFs. Test can be made more symmetrical by distributing the
two extra read operations of M1 over M2 and M4 (transform from Seq.1 to Seq.2), and
can be easier for BIST implementations. March G has 23.2N + 2.Del test time and
complexity of O(n).

March X

{
 (w0);⇑ (r0, w1);⇓ (r1, w0);
 (r0)}

March X [100] is designed to detect unlinked inversion coupling faults. X in the
name refers to that algorithm has not been published. It detects AFs, SAFs, unlinked
inversion CFs and TFs unlinked to CFins. March X has 6.2N test time and complexity
of O(n).

March Y

{
 (w0);⇑ (r0, w1, r1);⇓ (r1, w0, r0);
 (r0)}

March Y [100] is another unpublished test algorithm that is designed to detect
linked transition and inversion coupling faults. Y in the name refers to the same
situation as in the case of March X. M1 and M2 of March X algorithm are extended by
adding read operations to the ends. Thus, March Y detects all faults that are detected
by March X (AFs, SAFs, CFins, etc.) and moreover TFs linked to CFins. March Y has
8.2N test time and complexity of O(n).

Algorithm B

{
 (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, r1, w0)}

Similar to March A and B, Algorithm B [73] is also designed to detect linked
faults consisting of any number of simple faults of the same type. Algorithm B has
17.2N test time and complexity of O(n).

IFA-6, IFA-9, IFA-13

(IFA-6)
{
 (w0);⇑ (r0, w1);⇑ (r1, w0, r0)}

(IFA-9)
{
 (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);Del;
 (r0, w1);Del;
 (r1)}

(IFA-13)
{
 (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0);Del;
 (r0, w1);Del;

(r1)}
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The Inductive Fault Analysis (IFA) [72] is a systematic way of fault generation
and detection. IFA can be applied to optimize the geometrical design rules in ICs,
maximization of wafer yield and evaluation of design quality. By applying this method,
in [24, 25], IFA-6, IFA-9 and IFA-13 were presented which targets complete opens and
shorts. Actually, IFA-6N is identical to MATS++ test, where IFA-9N is an extension
of March C- with delay elements for DRFs, and IFA-13N, the first test for SOFs and
DRFs, is identical to extension of MOVI test for DRFs. IFA-9N and 13N are given to
test SRAMs with combinatorial and sequential R/W logic, respectively. Both are works
on bit and word oriented SRAMs. IFA-6, IFA-9 and IFA-13 have 6.2N , 12.2N + 2.Del
and 16.2N + 2.Del test times and complexity of O(n).

Moving Inversions and PMOVI

{⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}

Moving Inversions [23] were traditional patterns designed as a shorter option to
GalPat. The MOVI name is related to written data into the memory: first all is written
with 0, then all is inverted to 1 and goes on. It detects AFs, SAFs, TFs and unlinked
CFins and most of the unlinked CFids. MOVI was designed as functional and AC
parametric tests. AC parametric test part of MOVI tests the access time of memory
which is sum of the address decoder and the read logic delays. AC parametric part
applies two read operations to two distinct addresses with complemented data. For
example, M1 ends with rx and proceeds to a new cell with rx. Thus, M1 through M4
can be used for AC parametric test part. In MOVI, after memory initialization, M1
through M4 are applied as the number of bits in address input (N times). Thus MOVI
has 2N + 12.N.2N test time and complexity of O(n. log2(n)). To remind, for GalPat,
two successive read operations with complemented data are performed between base
cell and each of the background cells, thus causing a highly complexity as O(n2).

The Partial MOVI (PMOVI) [23] is a three-step unique address test and can be
used for the functional test part of MOVI. A unique address pattern guarantees the
addressing of each address uniquely. M1 through M4 consists 3 operations instead of
2. In PMOVI, each cell is read immediately after written which enables the detection
of any write destabilization errors; however in March C-, cells are not immediately read
after write operation which gives a possibility to those faults to be masked, because cells
can be stabilized during the time period to next march element. PMOVI has 13.2N test
time and complexity of O(n).

March U, U-, UD, UD-

(March U)
{
 (w0);⇑ (r0, w1, r1, w0);⇑ (r0, w1);⇓ (r1, w0, r0, w1);⇓ (r1, w0)}

(March U-)
{
 (w0);⇑ (r0, w1, r1, w0);⇑ (r0, w1);⇓ (r1, w0, w1);⇓ (r1, w0)}
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(March UD)
{
 (w0);⇑ (r0, w1, r1, w0);Del;⇑ (r0, w1);Del;⇓ (r1, w0, r0, w1);⇓ (r1, w0)}

(March UD-)
{
 (w0);⇑ (r0, w1, r1, w0);Del;⇑ (r0, w1);Del;⇓ (r1, w0, w1);⇓ (r1, w0)}

March U [102] was developed to detect all simple (unlinked) faults in a very rea-
sonable test time with respect to the current tests. To be more specific, SAFs, AFs,
SOFs, TFs, single or linked with other CFs, and single CFs are detected. Moreover,
homogeneous NPSFs where deleted neighborhood cells have the same value are detected,
too. March UD [102] is the extended version of March U to detect DRFs by adding two
Del elements between M1-M2 and M2-M3. For SRAM testing purposes, March U- [102]
and March UD- [102] are the simplified versions by removing the r0 operation from M3
and M4, respectively. March U, U-, UD and UD- have 13.2N , 12.2N , 13.2N +2.Del and
12.2N + 2.Del test times, respectively and complexities of O(n).

March LR, LRD and LRDD

(March LR)
{
 (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);
 (r0)}

March LR [103] is a test for realistic linked faults. It consists of marching (M0,
M1, M3 and M5) and walking (M2 and M4) elements. It is a combination of March C-,
walking 0 and 1 elements. March LR detects SOFs, SAFs and linked TFs, CFs and linked
CFs consisting two simple CFs. March LR is superior to the previous march tests (March
A, B, Algorithm B, etc.) which consider linked faults consisting any number of simple
faults of same type, while March LR deals realistic linked faults. To note, March LR
also detects homogeneous NPSFs, where deleted neighborhood cells have the same value.

(March LRD)
{
 (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);
 (r0);
Del;
 (r0, w1);Del;
 (r1)}

When this test sequence is extended with the march elements Del;
 (rx,wx);Del;
 (rx)
to the end, linked DRFs are able to be detected and this new sequence is named as
March LRD [103].

(March LRDD)
{
 (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);
 (r0);
Del;
 (r0, w1, r1);Del;
 (r1)}

Moreover, another extension is Del;
 (rx,wx, rx);Del;
 (rx) to catch simple
and double DRFs gives March LRDD [103] that detects single and double DRFs linked
or unlinked with other faults. March LR, LRD and LRDD has 14.2N , 17.2N + 2.Del
and 18.2N + 2.Del test times, respectively and complexity of O(n).
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Figure 4.1: Map of the test algorithms to the fault space

March LA, LA-, LAD, LADD-

(March LA)
{
 (w0);⇑ (r0, w1, w0, w1, r1);⇑ (r1, w0, w1, w0, r0);⇓ (r0, w1, w0, w1, r1);
⇓ (r1, w0, w1, w0, r0);⇓ (r0)}

March LA [104] was designed to detect all simple faults as well as all linked
faults, consisting any number of simple faults that are known at its design days.
However, new fault models have appeared and March LA does not cover all of them,
now. Thus, new algorithms have been developed, see March SL. March LA-, LAD and
LADD- are the extended versions of March LA to detect DRFs. March LA, March LA-,
LAD and LADD- [101] have 22.2N , 19.2N , 24.2N + 2.Del and 26.2N + 2.Del test times,
respectively and complexity of O(n).

4.4 March tests after the fault primitive concept

Those test developed after the introduction of the fault primitive concept. They are
grouped under three sub-classes: static, dynamic and linked fault tests. Figure 4.1
visualizes the classification of test algorithms due to their fault space coverages.
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4.4.0.1 Static fault tests

March SS and SR were developed for the static faults. In addition, for multi-port mem-
ories, March s2PF, d2PF and spPF tests were developed.

March SR, SR+, SRD and SRD+

{⇓ (w0);⇑ (r0, w1, r1, w0);⇓ (r0, r0);
⇑ (w1);⇓ (r1, w0, r0, w1);⇑ (r1, r1)} (March SR)

{⇓ (w0);⇑ (r0, w1, r1, w0);Del;⇓ (r0, r0);
⇑ (w1);⇓ (r1, w0, r0, w1);Del;⇑ (r1, r1)} (March SRD)

{⇓ (w0);⇑ (r0, r0, w1, r1, r1, w0, r0);⇓ (r0);
⇑ (w1);⇓ (r1, r1, w0, r0, r0, w1, r1);⇑ (r1)} (March SR+)

{⇓ (w0);⇑ (r0, r0, w1, r1, r1, w0, r0);Del;⇓ (r0);
⇑ (w1);⇓ (r1, r1, w0, r0, r0, w1, r1);Del;⇑ (r1)} (March SRD+)

To be able to derive new fault models, the method of resistive defect insertion
into the electrical SRAM model was applied as in [109]. Afterwards, observed responses
formulated under new FFMs. This method produces FFMs caused by spot defects
(SDs) which are classified as open, short or bridge. March SR [48] was designed to
detect simple realistic faults. WDF, CFwd and CFdsxwx were not considered as realistic
faults, therefore they are covered by neither March SR nor SRD. March SRD [48] is the
extension of March SR in case of DRFs. March SR+ and SRD+ [37] are reformulated
versions of March SR and SRD for better BIST implementations. March SR, SRD, SR+
and SRD+ have 14.2N , 14.2N +2.Del, 18.2N and 18.2N +2.Del test times, respectively
and complexity of O(n).

March SS and MSS

{
 (w0);⇑ (r0, r0, w0, r0, w1);⇑ (r1, r1, w1, r1, w0);
⇓ (r0, r0, w0, r0, w1);⇓ (r1, r1, w1, r1, w0);
 (r0)} (March SS)

From the empirical observations on memory tests, existence of additional new
FFMs was concluded. Previous tests (i,e. March U, etc.) claiming that all simple static
faults were covered, were not enough any more. Thus, March SS [47] was proposed
to detect all simple static faults in parallel to recently developed FFMs. It detects
all single and two-cell FFMs. March SS has 22.2N test time and complexity of O(n).
Moreover, in case of a BIST implementation, M5 of March SS can be modified as

 (r0, r0, w0, r0, w1) to obtain a regular structure.

{
 (w0);⇑ (r0, r0, w1, w1);⇑ (r1, r1, w0, w0);
⇓ (r0, r0, w1, w1);⇓ (r1, r1, w0, w0);
 (r0)} (March MSS)
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In [53], several minimal tests (i.e. March M1, M2,..., M7a, M7b,... M7h,..., M14a, etc.)
for each simple static FFM class were developed. Last four tests, M14a through M14d,
that all consists the same operation sequence in different address order combinations,
are named as March MSS1 through MSS4, respectively and they are referred as March
MSS. March MSS1 is shown above. March M5 with 9.2N test time is the minimal test
that detects all single-cell faults and test MSS is the minimal one for all single and
two-cell faults. March MSS has 18.2N test time and complexity of O(n).

March s2PF, d2PF and spPF

(March s2PF)
{
 (w0 : n);
 (r0 : r0, r0 : −, w1 : r0, r1 : r1, r1 : −, w0 : r1);
 (r0 : −);

 (w1 : −);
 (r1 : r1, r1 : −, w0 : r1, r0 : r0, r0 : −, w1 : r0);
 (r1 : −)}

(March d2PF)
{
 (w0 : n);⇑C−1

c=0 (⇑R−1
r=0 (w1r,c : r0r+1,c, w0r,c : r0r+1,c));

⇑C−1
c=0 (⇑R−1

r=0 (w1r,c : r0r,c+1, w0r,c : r0r,c+1));

 (w1 : −);⇑C−1

c=0 (⇑R−1
r=0 (w0r,c : r1r+1,c, w1r,c : r1r+1,c));

⇑C−1
c=0 (⇑R−1

r=0 (w0r,c : r1r,c+1, w1r,c : r1r,c+1));

(March spPF)
{
 (w0a : nb : ... : np);

 (r0a : r0b : ... : r0p, r0a : −b : ... : −p, w1a : r0b : ... : r0p,

r1a : r1b : ... : r1p, r1a : −b : ... : −p, w0a : r1b : ... : r1p);

 (r0a : −b : ... : −p);
 (w1a : −b : ... : −p);

 (r1a : r1b : ... : r1p, r1a : −b : ... : −p, w0a : r1b : ... : r1p,

r0a : r0b : ... : r0p, r0a : −b : ... : −p, w1a : r0b : ... : r0p);

 (r1a : −b : ... : −p)}

In case of tests for 2P memories, there are two addressing mechanisms: single-
addressing or double-addressing. In single-addressing, only one cell is accessed at a
certain time, in other words, two of the ports address the same cell. In double-addressing,
each port accesses to a different cell at a certain time. 2P tests are classified due to
their addressing mechanisms. In [37], March s2PF and March d2PF were presented,
where s and d refer to single and double addressing mechanisms. March s2PF is the test
that combines three single addressing tests: March 2PF1, 2PF2as and 2PF2vs. The
double-addressing test, March 2PF2av is referred as March d2PF. Moreover, optimized
versions of those tests were developed: March s2PF- and March d2PF- [37] (March
d2PF has two optimal versions). March s2PF, d2PF, s2PF- and d2PF- have 16.2N ,
10.2N , 14.2N and 9.2N test times with a complexity of O(n). To remark, those test
cover static simple multi-port fault space.

Furthermore, March spPF [37] was developed for single-addressing p-port memo-
ries by combining March pPF1, pPF2a and pPF2v tests. Also March spPF was
optimized to March spPF- [37]. March spPF and spPF- have 16.2N and 14.2N test
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times with a complexity of O(n).

Industrial test results based on Intel caches and STMicroelectronics SRAMs showed the
requirement and necessity for new fault types [50, 39]. To catch low DPM levels in the
emerging technologies, research was focused on exploring the space of dynamic faults
[46] and the design of new test sets.

4.4.0.2 Dynamic fault tests

Those tests were developed for the dynamic faults. In addition, March dADF, dPCFw

and dPCFm were developed for the address decoder and peripheral circuit dynamic
faults.

March RAW1, RAW

(March RAW1)
{
 (w0);
 (w0, r0);
 (r0);
 (w1, r1);
 (r1);
 (w1, r1);
 (r1);
 (w0, r0);
 (r0)}

(March RAW)
{
 (w0);
 (r0, w0, r0, r0, w1, r1);
 (r1, w1, r1, r1, w0, r0);
 (r0, w0, r0, r0, w1, r1);

(r1, w1, r1, r1, w0, r0);
 (r0)}

In [42, 51], March RAW1 and March RAW (‘read-after-write’) tests for single-
port, simple, dynamic faults were proposed. All of the single-cell dynamic faults
introduced in [46, 42, 51] are covered by March RAW1, while both all single and two-cell
dynamic faults are covered by March RAW. To detect only single-cell dynamic faults,
March RAW1 can be applied. March RAW1 and RAW have 13.2N and 26.2N test
times, respectively and complexity of O(n).

March AB1 and AB

(March AB1)
{
 (w0);
 (w1, r1, w1, r1, r1);
 (w0, r0, w0, r0, r0)}

(March AB)
{
 (w1);⇓ (r1, w0, r0, w0, r0);⇓ (r0, w1, r1, w1, r1);⇑ (r1, w0, r0, w0, r0);⇑
(r0, w1, r1, w1, r1);
 (r1)}

March AB1 and AB [14] are the optimized versions of March RAW1 and RAW
with the same FC. To remark, the complexity of March SS that covers all simple static
faults, is same with March AB. Moreover, March AB covers the same set of single-cell
dynamic faults as March RAW, as well. Due to its symmetric sequence and ability to
detect all simple static and dynamic faults (that proposed in [42, 51]) within the same
test complexity, March AB is very attractive for BIST implementations. March AB1
and AB have 11.2N and 22.2N test times, respectively and complexity of O(n).
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March DS1

{
 (w0);
 (w0, w0, r0, r0, r0, w0, r0);
 (w1, r1, r1, w0, w0, r0, w1, r1);

 (w1, w1, r1, r1, r1, w1, r1);
 (w0, r0, r0, w1, w1, r1, w0, r0);

 (w0, w1, r1, w0, w1, r1);
 (w1, w0, r0, w1, w0, r0)}

The set of single-cell dynamic FFMs (dRDF, dIRF, dDRDF) presented in [42]
that used to develop March RAW, have been enlarged to a complete set of two-
operation single-cell dynamic faults (dRDF, dIRF, dDRDF, dTF, dWDF) as in [40].
Then, for single-cell dynamic faults (dRDF, DRDF, TF and WDF), tests that are
capable of diagnosing during DPM screening (i.e. dRDF-Diag, dTF-Diag, etc.) and
optimum versions of those tests in terms of test length (i.e. dRDF-Opt, dTF-Opt, etc.)
were proposed in [40, 39]. March DS1 [40] is the one that covers all of those designed
tests. It detects all developed dynamic single-cell FFMs, but does not cover two-cells
dynamic FFMs. March DS1 has 43.2N test time and complexity of O(n).

March MD1, MD2

(March MD1b)
{
 (w0);
 (w0, w1, w0, w1, r1);
 (w0, w0);
 (w0, w0);
 (r0, w1, r1, w1, r1, r1);
 (r1);


 (w1, w0, w1, w0, r0);
 (w1, w1);
 (w1, w1);
 (r1, w0, r0, w0, r0, r0);
 (r0)}

(March MD2)
{
 (w0);⇑ (r0, w1, w1, r1, w1, w1, r1, w0, w0, r0, w0, w0, r0, w0, w1, w0, w1);

⇑ (r1, w0, w0, r0, w0, w0, r0, w1, w1, r1, w1, w1, r1, w1, w0, w1, w0);
⇓ (r0, w1, r1, w1, r1, r1, r1, w0, r0, w0, r0, r0, r0, w0, w1, w0, w1);
⇓ (r1, w0, r0, w0, r0, r0, r0, w1, r1, w1, r1, r1, r1, w1, w0, w1, w0);
 (r0)}

In [54], two minimal tests for single and two-cell (of Saa and Svv types) two-
operation simple dynamic faults was proposed, March MD1 and MD2, respectively.
The single-cell minimal test have two versions, March MD1a and MD1b. When the last
read operation in M1 and M6 of March MD1b are moved to head of M2 and M7, March
MD1a is obtained. March MD2 is optimized version of March 100N [13] with same
fault coverage. It detects all realistic static simple/linked single-port faults as well as
dynamic faults. March MD1 and MD2 have 33.2N and 70.2N test times and complexity
of O(n).

March dADF, dPCFw and dPCFm

(March dADF)
{
 (w0);⇑H1 (r0, w1);⇑H1 (r1, w0);⇓H1 (r0, w1);⇓H1 (r1, w0)}

(March dPCFw)
{
 (w0);x 
 (w1, r1, w0);
 (w1);x 
 (w0, r0, w1)}

(March dPCFm)
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{
 (w0);x 
 (r0, w1);x 
 (r1, w0)}

Several tests for address decoder and peripheral circuit faults were proposed. March
dADF [44] was developed to detect all dynamic address decoder delay faults (dADFs).
H1 refers to H1 addressing method. In [107], March dPCFw (also known as BLIF,
March BLI or March BLIWDw that detects SWDF and BLIF faults) and dPCFm

(also known as March SAPRm which detects SSAF and SPRF faults) was presented to
target dynamic peripheral circuit faults. x refers to fx address direction. March dPCFw

and dPCFm should be applied together to cover all PCFs. They are explained in [41].
March dADF, dPCFw and dPCFm have 9

2n + 9.n. log2(n), 8.n and 5.n test times with
a complexity of O(n. log2(n)), O(n) and O(n), respectively.

4.4.0.3 Linked fault tests

Those tests were developed for the linked faults.

March SL and MSL

(March SL)
{
 (w0);⇑ (r0, r0, w1, w1, r1, r1, w0, w0, r0, w1);⇑ (r1, r1, w0, w0, r0, r0, w1, w1, r1, w0);

⇓ (r0, r0, w1, w1, r1, r1, w0, w0, r0, w1);⇓ (r1, r1, w0, w0, r0, r0, w1, w1, r1, w0)}

Since March LA, new fault models have appeared. For this purpose, in [43],
linked fault space was investigated in details and classified as linked faults involving
a single (LF1s), two (LF2s: LF2aa, LF2av, LF2va,) and three cells (LF3s). For each
(sub)class, a march algorithm (March LF1, LF2aa, etc.) was developed. When those
distinct tests are evaluated, it was seen that March LF2aa covers all other faults of
(sub)classes and named as March SL [43]. It detects all static linked faults in the
(sub)classes of LF1s, LF2aa, LF2av, LF2va and LF3s. March SL has 41.2N test
time and complexity of O(n). Detailed information on LFs, LF space, developing test
algorithms are also presented in [45], briefly.

{
 (w0);⇑ (r0, w1, w1, r1, r1, w0);⇑ (r0, w0);⇑ (r0);⇑ (r0, w1);
⇑ (r1, w0, w0, r0, r0, w1);⇑ (r1, w1);⇑ (r1);⇓ (r1, w0)} (March MSL)

In [55], LF space of [43] was enlarged with new fault primitives by adding 2-
composite static faults as the set of all ordered pairs of static fault primitives FP1 and
FP2 with the restriction that these FPs can not be sensitized simultaneously. Then,
March MSL [55] was developed as seen above. It is a minimal test for detection of all
2-composite static faults including unlinked and realistic linked static faults. March
MSL has 23.2N test time and complexity of O(n).

4.5 Repetitive tests

Hammer tests perform the same operation on a certain base cell several times.



4.5. REPETITIVE TESTS 51

Hammer

(HamWh)
{⇑ (w0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0)}

(HamRh)
{⇑ (w0);⇑ (r0, w1, r1h, r1);⇑ (r1, w0, r0h, r0);⇑ (r0, w1, r1h, r1);⇑ (r1, w0, r0h, r0)}

(HamWDhrc)
{⇑ (w0);↗ (w1hb ,⇑R−b (r0), r1b,⇑C−b (r0), r1b, w0b);
⇑ (w1);↗ (w0hb ,⇑R−b (r1), r0b,⇑C−b (r1), r0b, w1b)}

(HamWDhc)
{⇑ (w0);↗ (w1hb ,⇑C−b (r0), w0b);
⇑ (w1);↗ (w0hb ,⇑C−b (r1), w1b);

In Hammer tests [106, 98], read/write operations are applied onto the base cell
multiple times to provoke partial faults to be full faults. Hammer operations on
a base cell are shown as rxh or wxh, where h denotes to the number of hammer
operations and ↗ is used in case of increasing address order on main diagonal. HamRh,
HamWDhrc and HamWDhc are referred to HamRd, Hammer and HamWr with h
values of 16, 1000 and 16, respectively [98]. HamWh, has (9 + 4.h).n, (13 + 4.h).n,
2(n +

√
2n(h + R + C + 1)) and (2(n +

√
2n(h + C))) test times with a complex-

ity of O(hn), O(hn) for the first two and, O(
√
2n.max(C, h)) and O(

√
2n.max(h,R,C)).

Still, fault spaces, FFMs and appropriate test developments for single-port linked
dynamic; multi-port simple dynamic; and multi-port linked (both static and dynamic)
fault classes are waiting to be researched.
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Memory Built-In Self-Test 5
As a result of shrinking process technology sizes, memories become more and more
embedded into the systems. This has resulted in the complication of the controllability of
the inputs and observability of the outputs of an embedded memory. Moreover, design
for direct access to deeply embedded memories influences area, placement, routing and
design time of chips. In such conditions, design for testability (DFT) has a significant
importance. This chapter focuses on Memory BIST methods.

This chapter is organized as follows. Section 5.1 lists the advantages and drawbacks
of the Memory BIST compared to DFT. Section 5.2 introduces the types of self-testing.
Then, Section 5.3 presents the architecture of Memory BIST. Section 5.4 explains the
test architecture. Later on, Section 5.5 classifies the implementation types of Memory
BIST. Finally, Section 5.6 concludes by listing the highly appreciated Memory BIST
features.

5.1 DFT and BIST aspects

Design For Testability (DFT) is simply the addition of extra circuitry to simplify the
observability and controllability problems at internal nodes of a design [100, 34]. In
testing, when the test signal generation, and the capture and the analysis of the outputs
are partially or fully embedded into the chip, it is called as Built-In Self-Test (BIST) as
in Figure 5.1. Generally, in DFT, parts in a test with high computational complexity,
are embedded into the chip. Thus, DFT concept acts as a kind of hardware accelerator
where some parts of the algorithm are still applied externally. While DFT decreases the
test time one order of magnitude, BIST decreases 2 to 3 orders of magnitude compared
to a conventional test. On the other hand, since the test algorithm is implemented in
hardware, area overhead of BIST is a factor of 2 times larger than DFT’s [100].

Compared to DFT, Memory BIST is highly favorable due to its advantages as below
[100, 4, 52]:

Advantages of Memory BIST: Memory BIST is a low cost solution, since
it decreases the dependency on the expensive ATE, it does not require any maintenance
as in case of ATE. It simplifies and enables the testing of the highly embedded memories
which do not have any I/O pin access externally. It is reusable since it is a part of the
hardware. Memory BIST is capable of testing any type (e.g., SRAM, DRAM, two-port,
three-port, ..., n-port memory) and any number of memories simultaneously. Moreover,
it shortens the time-to-market by simplifying the test development procedure. Memory
BIST also shortens the overall test time, since the tightly coupled wires speed up the
communication to the memory. Furthermore, Memory BIST provides a high quality
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Figure 5.1: No BIST vs partial BIST vs full BIST [34]

memory test with high fault coverage. It is capable of at-speed testing, since it
operates at the memory frequency. In addition, there are no intermediate connections
(i.e., ATE test header, I/O pins) between the Device-under-Test (DUT) and ATE.
Moreover, on-the-fly field testing can be performed whereby faults that only occur in
a real-time operation are detected. Finally, it further enables the BISR concept when
combined with diagnosis and repair ability.

Drawbacks of Memory BIST: However, there are several drawbacks, too. Memory
BIST has an additional cost, since it occupies a certain amount of the chip area, and
requires extra I/O pins to be controlled and configured. Furthermore, Memory BIST
has to be self-tested, since it is a hardware. In some cases (e.g., multiplexing), it may
degrade the performance. In addition, Memory BIST requires extra design engineers
specialized in memory testing and BIST implementations.

To sum up, the Memory BIST concept makes possible the testing of highly embedded
memories in the system where access to the internal I/O pins of a memory is nearly
impossible, costly, unpractical, degree of observability and controllability are too hard.

5.2 Types of Self-Testing

A memory testing procedure can be performed in 3 ways due to the interruption of
memory operation and change of memory content at the end of test as [100, 19]:

1. Concurrent testing: where the memory is tested simultaneously during its nor-
mal operation time. This mechanism has the advantage to detect and correct on-fly
faults. Since, memory is in its normal operation, data inside the memory should
be preserved and extra error-correcting logic is required. As a result, this feature
brings more hardware overhead to BIST engine. Moreover, due to the read/write
operations on the cells during normal usage, testing can be interrupted.

2. Non-concurrent testing: where the memory is tested in a special test mode.
Thus, BIST algorithm can process faster and more freely without any interrupts
to memory from system. However, once the testing is finished, content of the
memory is lost.
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Test Pattern Generator
(TPG)

Device under Test
(DUT)

Output Response Analyzer
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Figure 5.2: General Architecture of the Memory BIST

3. Transparent testing: where the memory is interrupted during its normal opera-
tion time. Once, the test is finished, content of the memory is loaded back. Thus,
this method also requires extra area for the storage of memory content.

In addition, memory testing has two natures depending on the pattern generator
used: pseudo-random (R) or deterministic (D) [100, 2, 52]. This is determined by the
three sub-modules of TPG (will be mentioned in next Section 5.3.1): address (A), control
(read or write) (W) and data (D).

1. Pseudo-random testing (PR): is the case when at least one of the test signals
of TPG is generated pseudo-randomly as xAyWzD, where x, y and z ∈ {R,D}
except the case xyz is DDD.

2. Deterministic testing (DT): is the case when all test signals of TPG are gen-
erated deterministically as DADWDD.

5.3 General Architecture of Memory BIST

A Memory BIST mainly consists of three parts: Test Pattern Generator (TPG), Device-
under-Test (DUT), and Output Response Analyzer (ORA) as in Figure 5.2. TPG, also
known as Test Data Generator (TDG), generates the test address, data background and
control signals. Those signals are applied to the DUT. DUT is also referred as Circuit-
under-Test (CUT), is the memory to-be tested. Lastly, ORA, also known as Response
Data Evaluator (RDE) or Output Data Evaluator (ODE), is an output data analyzer.
It receives the memory read data, and determines the chip is faulty or not. Here, each
will be explained in detail.

5.3.1 Test Pattern Generator (TPG)

TPG consists of three sub-blocks: address, data and control generators. In case of
pseudo-random address generator, linear feedback shift registers (LFSRs) are applied
to generate pseudo-random address and data sequences [100]. An LFSR is basically a
shift register. Certain bits in the sequence are led (tapped) to XOR or XNOR gates
and the output of those gates are used to re-feed to the shift register sequence [100].
A characteristic polynomial can be written to describe the tap positions. When, the
characteristic polynomial is in minimal type, it is called as a primitive polynomial and
maximum-length output sequence from LFSR can be achieved.

Figure 5.3 a) shows the Galois (internal or distributed feedback) style, b) shows
the Fibonacci (external or centralized feedback) style LFSR implementations with the
characteristic polynomial x3 + x+ 1. When XOR gates are used, all-zero pattern, when
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Figure 5.3: LFSR with the characteristic polynomial x3+x+1 in a) Galois, b) Fibonacci,
and c) Galois all-zero pattern styles [100]

Table 5.1: Area comparison of gray-code and binary counters [32]
Address Generator

Width Gray-code.(µm2) Binary(µm2) Difference

8 1350 1853 37.26 %

12 2106 2772 37.26 %

16 2781 3635 30.71 %

20 3448 4614 31.62 %

24 4098 5899 33.82 %

XNOR gates are used, all-one pattern can not be generated. To be more clear, once
all of the registers are locked into all-zero states in XOR implementation, LFSR can
not proceed into a newer state. This problem can be overcame with one extra NOR
and XOR gates as shown in Figure 5.3 c). To obtain the full sequence in PR testing,
maximum-length LFSRs are used [100].

In case of deterministic testing, counter (e.g., binary, gray counters) or microprocessor
(μP ) based address generation can be adapted to TPG. However, those two are not area
efficient as LFSR type implementation. On the other hand, memories are highly regular
structures where memory tests require accessing to certain addresses in an order as
opposed to logic testing [100].

For example, in Table 5.1, an area comparison of gray-code and binary counters is
given. Gray-code counter has around 30 to 40% area advantage [32]. Moreover, gray-
code counter has a lower power dissipation due to its lower switching activity (single-
bit switching) compared to the binary counter. For N -bit counters, binary counter
experiences 2N+1 − N − 2 transitions whereas gray-code does 2N transitions, which is
roughly half of the binary [21].

For the data background generation, a cyclic shift register (CSR) or finite-state ma-
chine (FSM) might be adopted. For CSR, [112] examined 40 industrial march test algo-
rithms, and combined 252 March elements of those algorithms into 7 dominant steps. A
dominant step is capable of generating several March elements; for example, r, rw and
rwr March elements can be easily generated by the dominant step rwr. Other option
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Table 5.2: Area comparison of FSM and CSR based data background generators [32]
Data Background Pattern Generator

Width FSM(µm2) CSR(µm2) Difference

8 382 1273 233.25 %

16 793 2395 202.02 %

32 1102 4622 319.42 %

d0 r3r0 d1 r1 d2 r2 d3

ERROR

d0 d0d1 d2 d3

ERROR
a) b)

Figure 5.4: a) Direct and b) mutual comparison

is the FSM based pattern generation, where for a memory with N -bit word width, all
data background patterns can be realized in log2 N +1 states. Table 5.2 shows the area
comparison of CSR and FSM based implementations [32]. FSM based data background
generation has an area of one third-fourth of CSR based implementation. Moreover, CSR
based design requires extra multiplexing and control logic for state transitions. Thus,
FSM is an area efficient and faster solution compared to the CSR.

5.3.2 Output Response Analyser (ORA)

For the ORA, several methods are available. Output response from the DUT can be
directly or mutually compared with a reference (expected) data; output response can be
compressed; or output response can be compacted [4].

The main difference between compression and compaction is that the compression is
a reversible process. Meaning that the response data of DUT can be obtained back by
decompressing the result of compression, hence it has a lossless characteristic. Whereas,
in compaction, the reverse process from the result of compaction to output response of
DUT may not be possible. Thus the compaction is lossy in its nature. For example, a
faulty and non-faulty DUTs produce different output responses, however final results
from the compaction may be same for both; and this situation is called as aliasing.
On the other hand, compressing huge data, storing the result on-chip, and in case of
diagnosis, decompressing this data is not appreciated and not practical for area limited
VLSI systems. Therefore, comparator and compaction based ORAs will be overviewed
here.

First option for ORA is using a comparator. Figure 5.4 shows deterministic and
mutual comparisons [100]. In deterministic comparison, generated test data in TPG
module, also referred as the reference data, is compared with the data readout by using
a XOR (unequality checker) gate. In case of multiple memory cell arrays, results of
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a)

b)

Figure 5.5: a) Time and b) space compaction [59]

XOR gates are led to an OR gate as shown in Figure 5.4 a). Output of the OR gate
is triggered to logic-1 in case of any mismatch between reference and readout data.
However, for a direct comparison, the reference data generated by TPG, which is closely
located to the inputs of memory, should be transfered to the ORA, which is located
near to the output of memory. This situation may result in placement and routing
difficulties. As shown in Figure 5.4, mutual comparison compares the memory data
with each other, instead of comparing readout data with a reference. Any mismatch
between them means that a faulty situation does exist. While direct comparators can
be used in deterministic not in pseudo-random testing, mutual comparators can be used
both for deterministic and pseudo-random testings [100]. Advantage of a comparator
based ORA is the localization of fault at the time of its occurrence.

A second option for ORA is the compaction. Compaction can be done in two
domains: time or space. In time compaction (TC), a longer bit-stream in the range of
105−6 is compacted into a shorter bit-stream that consists of 16 to 32 bits [59] after
a certain time (some number of clock cycles). To be more clear, Figure 5.5 a) shows
a time compaction scheme; n input test patterns are applied to DUT, then n output
patterns are taken from DUT. Those n output patterns are fed to a time comparator.
Then, q output patterns are generated in the time compactor. Final result of the
compaction is called as the signature. An LFSR is an example of time compactor. In
space compaction (SC), wide bit-streams from memory-under-test are compacted to
a narrower bit-stream. Before the m-bit wide output pattern from DUT is fed to a
time compactor, as an intermediate step, it is shortened into p-bit wide, afterwards,
this shortened output patterns is fed to a time compactor, see Figure 5.5 b). A parity
checker can be given as an example of space compactor.

In [59], BIST compactors were investigated in terms of time (T) vs. space (S), circuit
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Figure 5.6: Programmable Space Compactor (PSC) based ORA of a Memory BIST [59]

function specificity (FS) vs. independence (FI), linearity (L) vs. nonlinearity (NL),
combinational (C) vs. sequential (S). A taxonomy for time and space compactors used
in BISTs was given. In addition, this study contributed to the literature by introducing
a new compactor type: Programmable Space Compactors (PSCs); a function specific,
linear or nonlinear, combinational or sequential space compactor with any compaction
ratio m : p as shown in Figure 5.6.

Here, three well-known examples of compaction will be given [4]: transition counter,
syndrome counter and signature analysis. Transition counting method counts the
number of transitions from 0 to 1 and 1 to 0 in the output response. Syndrome
counting method, also named as 1’s counting, counts the total number of 1s in the whole
output response sequences. For multiple-output DUTs, by giving different weights to
outputs, a weighted compaction is performed for both transition and syndrome counting
methods [91]. Signature analysis is an pplication of the theory of Cyclic Redundancy
Checking (CRC), where the output response is compacted to a relatively shorter form
which is called as the signature. Compaction is performed by an LFSR. LFSR should
have the same-length with the output response. At the end of the test, signature is
compared with a reference signature to check the correctness. Both single-input or
multiple-input signature analysis (MISR) are avaliable. A MISR, also known as multiple-
input linear feedback shift register or parallel signal analyzer(PSA), is both a space and
time compactor that reduces the number of outputs to be compacted [89]. After space
compaction, output is further compacted by LFSR.

Although compaction is simpler than the compression, it has an aliasing probability.
Research has been performed to analyze and decrease the probability of aliasing
[113, 35, 87, 121, 5, 62, 31]. A final remark is that for a system, the compaction
algorithm and compacted result should be simple and efficiently small in terms of area.

Last option for ORA is a microprocessor in case of an on-chip μP-based Memory
BIST implementation where output results are read from the memory and compared
with reference data in ALU of microprocessor.
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5.3.3 Device-under-Test (DUT)

Memory BIST (MBIST) is capable of testing different types of memories. In addition,
Memory BIST may be embedded into the same chip with the memory to-be tested (i.e.,
internal MBIST) or be a separate chip (i.e., external MBIST). Firstly, Memory BIST
for different memory types will be discussed; thereafter internal versus external Memory
BIST will be discussed.

5.3.3.1 Memory Types

This section discusses Memory BIST solutions for different memory types (e.g., SRAM,
DRAM).

SRAM MBIST

As explained in Chapter 2, SRAMs are fast, do not require any refreshing and have a
non-complex peripheral circuitry. Thus, they are an attractive candidate to be cache
memories that are closely positioned to the high computation logic such as processors or
hardware accelerators, and they are used for high-speed data access from several masters
from their multi-ports. Therefore, a Memory BIST for SRAMs should support at-speed,
multi-port, any address configuration testing. There are many MBIST solutions proposed
for SRAMs [28, 82, 29, 17, 117].

DRAM MBIST

DRAMs are relatively slower than SRAMs due to their refreshment nature. They are
cheaper and capable of storing huge amount of data. Hence, they act as the main data
storage. When required, necessary part is captured and transfered to the local cache
memories which are in type of SRAMs. Since DRAM size is high, MBIST area overhead
is lower than the other memory MBISTs. However, due to their refreshment requirement,
DRAMMBIST controller, specifically FSM controller, becomes more complex and slower
which decrease the at-speed testing capability [95, 86]. Figure 5.7 shows an example of
MBIST for DRAM. To speed-up the MBIST, a dual FSM based controller for TPG was
developed. Basically, complex FSM was divided into two FSM levels which are faster
than single FSM level [57].

ROM MBIST

ROMs are very important components since the initialization code of the system is stored
on them. ROMs are in several types related to their programmability feature: i.e., ROMs
are burned-in during the fabrication; EPROMs are electrically programmable, etc. BISTs
for ROMs do not involve any write-data stepper since they are read-only memories. For
ORA part of ROM MBIST, compaction is the mostly applied method (e.g., parity-
based, count-based, polynomial division-based (signature analysis) compaction). Hence,
a ROM is significantly crucial for a system, number of error escapes are tried to be
minimized as low as possible. However, all those methods have error escapes due to the
aliasing, see Section 5.3.2. In [122, 123], a new method Exhaustive Enhanced Output Data
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Figure 5.7: a BIST Architecture for a DRAM [86]

Modification (EEODM) was proposed to further decrease the number of error escapes.
EEODM uses exhaustive address generation (i.e., binary, gray-code counters, maximum-
length LFSR) for testing; it further uses signature analysis (linear) and counter-based
(nonlinear) compaction in addition to ODM. As a result of decreased error escapes, fault
coverage of EEODM is higher than previously proposed compaction methods of Section
5.3.2.

Register File MBIST

Register files are commonly highly embedded low-scale data storages. In [118], a case
study was done for a dual port read/write register files with synchronous read capability.
Since, the size of register files are in low-scale, area overhead of BIST implementation
was reported between 4 to 12%, relatively higher than BISTs for RAMs or Flash.

Flash MBIST

Flash memories are becoming widespread in embedded SoCs or as commodity memories;
implying that MBIST concept is inevitable for Flash memories, too. Flash memories have
random-access read or write (w0) operations as RAMs, however they can not perform
a random-access erase (w1), whereas only a block or whole-chip erase. Therefore, erase
and program operations affect the development of March tests for Flash memories, as
well as the Flash MBIST implementation.

March-like testing algorithms for Flash memories (Flash March, March FT andMarch
2-step) were proposed [75, 115, 12], respectively.

[115] presents a MBIST for flash memories. As mentioned before, erase and program
steps dominates the test time; in this case resulting in 44.612 and 13 seconds and 3.2%
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Figure 5.8: Central FSM-based BIST Engine for multiple memories [96]

and 2.28% area overheads for 512 KB embedded SoC and 128 KB commodity Flash
memories, respectively. [12] presents another MBIST implementation that further de-
creases the area overhead, a processor-based BIST was proposed; obtaining 0.71% area
overhead for a 128 KB for an embedded Flash on SoC. To sum up, the erase and program
operations dominate flash memory tests and result in the range of 10 to 40 seconds test
time.

5.3.3.2 Internal versus External MBIST

This section discusses Memory BIST solutions for internal and external MBIST.

Internal MBIST

In case of internal MBIST, BIST hardware may be inserted into a SoC or be a part of
a distinct memory chip.

Embedded on SoC: With the decreasing process technology sizes, a SoC consists
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Figure 5.9: BIST scheme for heterogenous SRAM clusters [111]

of distributed memories in the order of hundreds varying in terms of their capacities,
configurations, types and data widths. For example, in a large networking SoC IXE2000
[16], there are 121 memories (12 single-port, 109 dual-port) varying in size from 32x1 to
8Kx32 bits. This causes sequential testing where memories are combined into groups,
and test procedure is performed in steps. In [96], a centralized FSM-based BIST Engine
was proposed to test embedded memories in microprocessors. Figure 5.8 shows that all
of the address, data and control signal generation were generated on the central BIST
unit, send to distributed memories. This method [70, 96] might cause problems on signal
routing to each memory separately, excessive area overhead and power consumption of
long wires and crosstalk issues. A simplified solution is to move the test signal generation
part of BIST close to the local memories, while a central control unit communicates with
each of them by a less number of wiring or a shared test bus. In [111], a shared BIST
scheme was proposed to handle heterogeneous SRAM clusters varying in memory width,
latency, address space, controlling signals, number of ports, and different clock domains.
Figure 5.9 shows that control and data background pattern generators were moved close
to the local memories. A similar approach was adapted in [71], a BIST architecture for
distributed memories varying in sizes was proposed with the difference of distributed
wrappers per each memory. Figure 5.10 a) shows a central BIST controller implemented
as a processor which reads the instructions from a ROM; wrappers surrounding each
SRAM consisting address, control, background generators and a comparator; communi-
cation signaling between central BIST processor and distributed wrappers; and a scan
chain connecting all wrappers for the diagnosis report. Instruction CONF is used to
select which memories will be tested. Each time, a test primitive (i.e., w0, r1, ...) is read
from central BIST processor memory and sent to all wrappers, and when all of the se-
lected memories finish to perform the test primitive, a new test primitive is sent. After
performing all test primitives, results are read by processor. Figure 5.10 b) shows that
wrappers might be implemented for a single as well as a group of RAM cluster. Although,
each wrapper has its own address (AG), data background pattern (BPG) and control
generators, only a 1.06% total area overhead was reported, see Figure 5.11. Moreover,
linear relations between BPG, AG areas vs. memory word width and addressing space
of memories were graphed.

An important issue related to the testing of distributed memories on an embedded
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a) b)

Figure 5.10: Architecture of a) a distributed MBIST and b) a single wrapper [71]

a) b)

Figure 5.11: Area report for a distributed BIST architecture [71]

SoC, is the excessive power release. During testing mode, power release becomes
higher than the normal system activity, moreover since several memories are being
tested simultaneously, this might result in a system damage. In [119], a central BIST
scheduler that takes into account this issue, was proposed. Also, in [21], rearrangement
of memory test algorithms was suggested based on single bit change counting (SBC)
method, resulting in lower heat dissipations varying from a factor of 2 to 16. For
the distributing memory testing, test scheduling and grouping of memories should be
decided well to decrease area overhead by resource sharing, avoiding hazardous power
rates and shortening the test length.

Commodity: Commodity memories are the distinct external memories having the
capability of high-scale memory capacity. A BIST can be involved in their memory chip
package to test run-time on-field errors. Since they are large scale data storages, area
overhead of MBIST is small. In addition, they are single memories, MBIST implemen-
tation is relatively simpler than embedded SoC or external BISTs.

5.3.3.3 External MBIST

Obviously, all ICs including memory chips are tested during the production process
before sent to customers; they are called known-good dies (KGDs). However, errors can
still appear during run-time operations inside of the memory or on the board level as a
result of wear-out process. In Table 5.3, the second column shows the numbers of I/O
pins for 8 different systems, and the third column shows the numbers of pins per system
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Table 5.3: Interconnection percentages between external memory and system [63]
Total Functional I/Os Interconnections with Ext. Mem % Types of Ext. Mem

Chip 1 539 68 13% SRAM
Chip 2 1382 1290 93% D-DDR,QDR,FCRAM
Chip 3 1398 1047 75% D-DDR,QDR,FCRAM
Chip 4 1448 1288 89% DDR,QDR,FCRAM
Chip 5 1470 1154 79% DDR,QDR,FCRAM
Chip 6 752 75 10% DDR
Chip 7 611 102 17% QDR,RLDRAM
Chip 8 804 301 37% RLDRAM

Figure 5.12: High level External BIST scheme [20]

and memory pairs. As seen in fourth column, a high percentage of system’s I/O pins
are dominated by the memory connections. Moreover, IEEE STD 1149.1 Boundary-scan
standard can not test the interconnections at a high speed. Thus, run-time testing of
both memory and interconnects after assembly step gains more importance. By locating
a MBIST embedded inside of the SoC to test an external memory, and optionally the
interconnections, this problem can be solved. This type of MBIST is called as an External
memory BIST (EBIST). An EBIST is capable of at-speed testing of the content of
memory and the interconnects for DC and AC faults [20]. However, memories highly vary
in terms of their speed, data rates, burst rates, number of clock cycles, size configurations,
etc. Hence, it is not easy to support all of those complex features by the same EBIST.
[20] suggests a novel solution: as shown in Figure 5.12, EBIST uses the existing memory

Figure 5.13: Protocol Handler for external MBIST [63]
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a) b)

Figure 5.14: SoC architecture a) before and b) after external BIST insertion [114]

controller on the system for the memory access. Thus it saves the area overhead of
memory access protocol implementation. Memory controller handles timing and data-
type conversion between system and the external memory. EBIST is configured via
JTAG TAP controller through the standard and low number of pins for configuration.

Due to the different memory types, memory controllers vary, too. Memory controllers
can be classified into three groups as: memory controller with a fixed latency, non-fixed
latency (handshaking), both fixed-latency and handshaking protocols [63]. Figure 5.13
[63] shows a solution with an intermediate configurable protocol handler between EBIST
and the memory controller. Protocol handler is configured regarding to the memory
controller latency, thus all different type of memories are supported.

Figure 5.14 a) [114] shows a typical SoC architecture with CPU, system bus, etc. for
SDRAM and superAND Flash memories on a System-in-Package (SiP). Figure 5.14 b)
[114] shows the SoC after EBIST insertion to the SoC. The difference of this example
with the previous studies is that EBIST does not directly connected to the existing
memory controller, instead it is connected to an optional bus master interface. Through
the bus master interface, BIST Engine has an access to the SoC internal bus and some
specific address registers on the CPU that are controlling clock generator and memory
controller. In configuration mode, TCK; in test mode, high frequency signal from clock
generator is chosen for at-speed test. The area overhead of this design was reported as
1.7% of the SoC logic.

5.4 Test Architecture

Accessing to the memory cell arrays can be done in any combination of single to multiple
arrays and single to multiple bits. A taxonomy was developed to classify the MBIST
architectures [33, 100]; here they are explained briefly.
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Figure 5.15: Memory cell array accessing schemes for a) single-array single-bit, b) single-
array multiple-bit, c) multiple-array single-bit and d) multiple-array multiple-bit [33]

a) b)

Figure 5.16: a) TRAM and b) mutual comparison of multiple bits [60]

Single Array Single Bit (SASB)

Figure 5.15 a) shows that a single bit of a single memory cell array is tested at a time.
Thus, SASB has the longest test time and high fault coverage. SASB is also called as
normal-mode accessing.

Single Array Multiple Bit (SAMB)

Figure 5.15 b) shows that the multiple bits of a single memory cell array are tested
at a time. Generally, same bits on the same row are accessed to be faster instead of
accessing to bits on the same column. Test time is shortened as the number of multiple
bits accessed simultaneously. In case of a word access (whole line), speed-up is equal
to
√
n, where n is the the number of bits in memory cell array under the assumption

of square layout. However, it requires some additional hardware on address decoder for
multiple bit access. SAMB is also called as line-mode (word) accessing. Fault coverage
is not as high as SASB due to the restriction of coupling fault detection from same row.

Multiple Array Single Bit (MASB)

Figure 5.15 c) shows that a single bit of multiple memory cell arrays are accessed at a
time. Test time is shortened as the number of parallel multiple memory arrays. Figure
5.16 a) [60] shows a tree RAM (TRAM) architecture with parallel memories per level.
In addition, instead of a direct comparator, a mutual comparator can be applied where
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Table 5.4: Advantages and drawbacks of the MBIST implementation types
Test Time Area OH Routing OH Flexibility

Hardwired short low high zero
Microcode/(Processor) average high low low
On-chip Processor long zero zero high

the single bits from multiple arrays are compared within each other as shown in Figure
5.16 b) [60]. MASB has a high fault coverage.

Multiple Array Multiple Bit (MAMB)

Figure 5.15 d) shows that the multiple bits of multiple memory cell arrays are accessed
at a time. Test time is shortened as the number of parallel multiple memory arrays times
multiple bits accessed. Fault coverage is limited due to the same reason as SAMB.

5.5 Implementation of MBIST

Design choices for a MBIST implementation will be discussed in terms of MBIST flexi-
bility, insertion, interface to memory, diagnosis and repair capability.

5.5.1 Flexibility

The core of a BIST engine can be realized in two ways:

1. Fixed method: where the test generation capability of MBIST is highly limited
due to the finite state machine implementation,

2. Programmable method: where the test generation capability of MBIST has a higher
flexibility due to the microcode (processor) or on-chip processor implementations.

Table 5.4 shows a brief comparison of the MBIST implementation types. They will
be explained in detail.

Finite state machine MBIST

Required address, data and control signals are generated by a finite state machine (FSM).
March elements are implemented as states. From one March test to several number of
March tests might be implemented. However, FSM based MBIST is not flexible enough.
Once, it is implemented in hardware, reconfiguration can be done between several test
algorithms which are already built-in.

Microcode based MBIST

To solve the flexibility problem, test algorithms are compiled into instructions and then
saved in programmable memories as shown in Figure 5.17 a) [116]. Figure 5.17 b) [116]
shows a March test realization for the proposed MBIST. Each bit position in the mi-
crocode corresponds to a function in the MBIST. When a new algorithm is developed, it
can be loaded into the programmable memory without any change in hardware. However,
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a) b)

Figure 5.17: a) Microcode-based MBIST architecture and b) a March test realization
[116]

Figure 5.18: On-chip 6502 processor-based BIST architecture [97]

microcode based MBIST brings an area overhead of the instruction storage, instruction
decoding logic and the program counter (PC). Thus, occupied area becomes larger com-
pared to the FSM based MBIST. An important remark is that sometimes microcode
based MBIST is called as a processor based MBIST, since this method also has the
instruction memory, decoder and program counter, etc. [27].

On-chip processor based BIST

This is the case where an existing on-chip processor is used for the memory test.
This method has the highest flexibility. Test algorithms are written in assembly-
language program, and then through the system bus, or maybe NoC in future, read-
/write sequences are applied to the memory. Since the commands are sent via the
system bus, on-chip processor based MBIST implementation has a high test time.
For the implementation in Figure 5.18, 9.6 seconds test time was reported in [97],
which consists of a 6502 MOS Technology processor implementing March C- algorithm,
{
 (w0);⇑ (r0w1);⇑ (r1w0);⇓ (r0w1);⇓ (r1w0);
 (r0)}. On the other hand, microcode
based MBIST proposed in [56] reports only 0.4 seconds for the same test algorithm.
Figure 5.19 [93] shows an on-chip ARM processor based BISR architecture. Test signal
generators and output response analyzer are distributed to the memory wrappers. By
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Figure 5.19: On-chip ARM processor-based BIST architecture [93]

programming the central ARM processor, test commands are sent through the system
bus to the memory wrapper.

5.5.2 Insertion

MBIST can be used to test only a single memory (i.e., private MBIST) as well as a group
of memories (i.e., shared MBIST) in a system.

Shared MBIST

Shared BIST is preferred in case of testing several memories to decrease the area over-
head; mostly for the distributed memories on embedded SoCs or for the different type
external memories, see Section 5.3.3.2 and 5.3.3.3. Only control unit or processor; or
all (control, TPG and ORA) sub-blocks in MBIST can be shared by different memories.
To further decrease the area overhead, TPG and ORA might be shared, however that
complicates the wire routing. In shared MBIST implementations, interface connection
between memories and MBIST can be parallel as in Figure 5.9 and 5.8 or can be serial.
Both testing methods (i.e., sequential or parallel) and testing interface (i.e., serial or par-
allel) are orthogonal to each other; meaning that any combination can be chosen, (e.g.,
parallel testing with serial interface, sequential testing with parallel interface). Interface
types between MBIST and memory will be introduced in next section. Here sequential
and parallel testings will be explained. To simplify the test process, memories can be
grouped and tested in two ways in case of shared BIST implementation as [78]:

1. Sequential testing: When the number of memory groups is more than 1 (i.e.,
memories are separated in several groups), all memories in group 1 are tested,
then all memories in group 2, and so on. Number of memories in a group can
vary from 1 to any number. Sequential testing saves the area overhead by sharing
the hardware resources. For example, a same comparator can be used for whole
memories to the extent of test time as shown in Figure 5.20 a) [78]. Number of
comparators is determined by the maximum number of memories in a group. A
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a) b)

Figure 5.20: Shared MBIST schemes for a) sequential and b) parallel testing [78]

remark is that all memories in a group use same algorithm with same operations
and number of bits per word should be same.

2. Parallel testing: When the number of memory groups is 1 (i.e., whole memories
are collected in a single group), ORA can not be shared; resulting in a high area
overhead. Figure 5.20 b) [78] shows that each memory requires its own comparator.
In addition, parallel testing can be applied to speed up the test process of a single
memory. Once the memory cell array is partitioned into subgroups, multiple arrays
can be tested simultaneously [78]. For shared MBIST parallel testing, memories
should be highly similar or extra hardware should be designed to take care of the
addressing of memories in different sizes.

Private MBIST

Private MBIST is preferred to test commodity memories where memory and BIST hard-
ware are combined in the same package. Since only one memory has to be handled,
MBIST architecture is optimized. However, the area overhead is still higher than the
shared MBIST.

5.5.3 Interface to the memory

MBIST can be connected to the memory serially as well as in parallel. Each will be
discussed in detail including advantages and drawbacks.

Serial Interface

In serial interfacing, test data is sent to the memory in a serial way. Serial interfacing
simplifies the interconnection routing, since the amount of wiring between MBIST and
the memory is decreased. In case of high data widths, area saving is high. For serial
interfacing, a serial to parallel converter buffer (i.e, a scan chain) is located at the I/O
ports of the memory.

The serialization process affects the test algorithm development and test time, but
not the fault coverage. Serialized March algorithms are applied such as SMarch, SGalpat,
SWalk [76]. Figure 5.21 [76, 77] shows the proposed serial interfacing architecture. Each
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Figure 5.21: Serial interfacing with unidirectional I/O ports [76]

data input is connected to the previous input’s data output through a multiplexer.
However, pushing test data in and pushing output response out take c clock cycles,
where c is the memory data width. To further speed up this bottleneck, [110] proposes
a novel solution: test data is delivered from the MBIST to the memory serially, then
converted to parallel through the Serial to Parallel Converters (SPCs). Once the test is
performed, the output data is analyzed in parallel by Local Response Analyzer (LRA)
(e.g., comparator). Later on, a single-bit result of LRA per memory is sent to a global
MISR. Finally, the signature is sent to MBIST serially to be evaluated.

An important issue is that serial interfacing might cause to the serial fault masking
problem and only avoided by a bidirectional serial interface [10].

Serial interfacing achieves a low area usage compared to parallel interfacing; especially
in case of high data widths. On the other hand, it sacrifices from the longer testing time,
and the modification of well-known algorithms for serial interfacing and more complex
control unit.

Parallel Interface

Parallel Interfacing uses the original I/O ports of memory. Data patterns are directly
applied without any serialization as shown in Figure 5.22. Thus, the test time is not as
high as serial interfacing. In addition, the nonexistence of serialization process decreases
the complexity of MBIST. Still, depending on the number of data lines between MBIST
and the memory, area overhead might be costly.
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Figure 5.22: Parallel interfacing I/O ports [76]

Figure 5.23: MBIST with only detection capability [84]

5.5.4 Capability

This section discusses the test only, diagnosis and repair capabilities of built-in self-
testing.

Detection Only

When a MBIST engine is only capable of determining whether a memory is fault-free
or not, then it is called as a BIST with detection only. Figure 5.23 shows a MBIST
that generates only the FAIL /FAIL or NoGO /GO signals. BIST is applied with
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Figure 5.24: Memory with redundant rows and columns [120]

the memories without redundant spare memory cell allocations. For example, in case
of small buffers, addition of a redundant memory blocks and repair block hardware are
costly in terms of area. BIST neither reports the location nor repairs the faulty cell.
On the other hand, shrinking process sizes lower the memory yield. Therefore, memory
diagnosis and repair becomes a must.

Diagnosis and Repair

When a BIST engine is capable of diagnosing the fault and handling the repair mech-
anism, it is a called as Built-In Self-Diagnosis (BISD) or Built-In Self-Repair (BISR).
Generally, BISD module detects and stores the address of the faulty cells. Then, the
redundancy allocation (RA) is handled by BISR module. Figure 5.24 shows the extra
elements for BISR such as: redundant memory elements (e.g., rows, columns), repair
logic, address storage of the faulty cell. The basic idea behind the self-repair is map-
ping the faulty cells to the redundant memory rows/columns. To be efficient in BISR
mapping, a redundant row/column should cover the faulty cells as much as possible.
Naturally, BISD or BISR has a higher area overhead than BIST. In case of high number
of memories, addition of a BISR capability to each memory might be high costly.

Generally in BISR, while one register is storing the faulty address, a second one
stores the mapped row/column address of redundant memory, then in case of an access
to the faulty region, addresses are translated. However, [15] proposes that this method is
very expensive in terms of register area and signal routing overhead. Proposed solution
is using the content addressable memories (CAMs) with on-line address remapping. It
has two mode of operations: SR only/BISTAR. In BISTAR mode, both self-testing and
repairing are active, where in SR only mode, only self-repairing is performed and new
faults are not handled.

Another good example is the Self-test and Repair (STAR) processor that is capable
of BIST, BISD and BISR functions [120]. STAR processor is combined with the memory
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a) b)

Figure 5.25: (a) STAR processor and (b) a SoC solution [120]

and called as the smart memory. Figure 5.25 shows the architecture of a smart memory:
distributed memories are grouped depending on their similarities; each group is under
the control of a STAR processor. Electronically programmable fuses (eFUSEs) are used
to reconfigure the faulty cell address to a fault-free redundant memory element. by
programming the .

To note that, mapping of the faulty memory cells to the spare rows/columns is an NP-
hard problem [64], hence the solution requires highly efficient heuristics. Some research
on spare allocation for BISR is done in [68, 67].

5.6 Highly appreciated MBIST features

In general, a state-of-the-art MBIST can be summarized as ”low cost high quality memory
testing”. This section presents the highly appreciated features [29] of a MBIST.

For high quality memory testing, MBIST should be flexible, programmable, orthog-
onal, capable of nested looping and at-speed testing. Flexibility refers to the support
of different memory test families (e.g., linear: March, Scan and nonlinear: Hammer,
GalPat), since they target different fault types. As a result nested loops should be
supported. In addition, a MBIST should be programmable; enabling user-defined test
algorithms and in-the-field programming. Test generator blocks should be orthogonal;
they should generate any combination of memory addressing, data background pattern
and memory operation without limiting each other. In addition, MBIST should be capa-
ble of at-speed testing to detect the faults that only occur at the operational frequency
of the memory.

Furthermore, MBIST should have a low area overhead for low cost and easy rout-
ing. It should have a generic and modular architecture for any memory type, size
configuration and future extensions. Then, the time-to-market is shortened and the
development of new extensions is simplified. Moreover, MBIST should be able to test
distributed memories to manage today’s and tomorrow’s SoC systems with hundreds
of memories. Lastly, without diagnosis and repair capabilities, it is impossible to
catch high memory yield and high profit [124].
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Generic and Orthogonal March
Element based Memory BIST 6
This chapter introduces a new memory BIST based on a generic and orthogonal March
element concept. This chapter is organized as follows. Section 6.1 gives a list of widely
used memory test algorithms in industry. This list will be inspected to derive the mem-
ory BIST requirements in Section 6.2. Section 6.3 provides the concept of the Generic
March Element (GME) and shows how this concept can be used to generate any targeted
algorithm; an optimal list of generic March elements will be derived based on the list of
memory test algorithms of Section 6.1. Section 6.4 provides the high level architecture of
GME based memory BIST, including the BIST register and the command sets. Section
6.5 illustrates how the command set can be used to generate the test algorithms.

6.1 Targeted memory test algorithms

As mentioned in Chapter 4, memory test algorithms can be classified into two groups
[7]. The first group consists of the historically traditional tests that were developed
intuitively, such as Scan, GalPat, Walking 1/0, etc. The second group consists of tests
that are systematically developed based on the fault model or fault primitive concept,
such as March SS, March SL, March RAW, etc. Industrial results [49, 7] show that tests
with high fault coverage (FC) in theory also have high FC in practice. Therefore, in this
study a BIST Engine which is able to support the memory test algorithms with high FC
and unique fault detection was aimed.

Table 6.1 lists a set of the most popular and widely used memory test algorithms
in industry. For March notation and the explanation of each algorithm, see Chapter 4.
Table 6.1 clearly shows that algorithm 1 to 15 require similar addressing (e.g. ⇑ or ⇓).
On the other hand, algorithm 17 to 18 require special addressing and/or operations. For
example GalRow performs operation along rows, GalCol along columns; algorithm 16
applies with the Address Complement (AC) ⇑AC addressing; MOVI requires special 2i

counting method; HamRh applies with the Hamming operations, etc.

6.2 Memory BIST requirements

In order to be able to perform the algorithms listed in Table 6.1, the memory BIST has
to satisfy many requirements and support different features. These are either related to
the operations of the algorithm itself, to the address generation or the data generation.
In this section, we will restrict ourself to the address and the data generations. In Section
6.3 we will provide more about operations.

77
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Table 6.1: Set of candidate algorithms

# Name B(GME#) Description

1 Scan [1] 0(0,1) {⇓ (w0);⇑ (r0); ⇑ (w1);⇓ (r1)}
2 MATS+ [1] 0(0,2) {� (w0);⇑ (r0, w1);⇓ (r1, w0)}
3 March C- [100] 0(0,1,2) {� (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);� (r0)}
4 March C+ [117] 0(0,1,3) {� (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0);⇓ (r0)}
5 PMOVI [23] 0(0,3) {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
6 March B [94] 0(0,4,5,6) {� (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);

⇓ (r0, w1, w0)}
7 Alg. B [73] 0(0,6,7) {� (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0);

⇓ (r0, w1, r1, w0)}
8 March G [99] 0(0,3,4, {� (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);

5,6) ⇓ (r0, w1, w0);Del100;� (r0, w1, r1);Del100;� (r1, w0, r0)}
9 March U [102] 0(0,2,7) {� (w0);⇑ (r0, w1, r1, w0);⇑ (r0, w1);⇓ (r1, w0, r0, w1);⇓ (r1, w0)}
10 March LR [103] 0(0,1,2,7) {� (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);� (r0)}
11 March LA [104] 0(0,1,8) {� (w0);⇑ (r0, w1, w0, w1, r1);⇑ (r1, w0, w1, w0, r0);⇓ (r0, w1, w0, w1, r1);

⇓ (r1, w0, w1, w0, r0);⇓ (r0)}
12 March SS [47] 0(0,1,9) {� (w0);⇑ (r0, r0, w0, r0, w1);⇑ (r1, r1, w1, r1, w0);⇓ (r0, r0, w0, r0, w1);

⇓ (r1, r1, w1, r1, w0);� (r0)}
13 March RAW [42, 51] 0(0,1,10) {� (w0);� (r0, w0, r0, r0, w1, r1);� (r1, w1, r1, r1, w0, r0);

� (r0, w0, r0, r0, w1, r1);� (r1, w1, r1, r1, w0, r0);� (r0)}
14 March SR [48] 0(0,7,13) {⇓ (w0);⇑ (r0, w1, r1, w0);⇑ (r0, r0);⇑ (w1);⇓ (r1, w0, r0, w1);⇑ (r0, r0)}
15 BLIF [107] 0(0,11) {� (w0);⇑ (w1, r1, w0);⇑ (w1);⇑ (w0, r0, w1)}
16 RaW-AC [44] 0(0,2) {� (w0);⇑AC (r0, w1);⇑AC (r1, w0);⇓AC (r0, w1);⇓AC (r1, w0)}
17 GalPat [18] 1(0,2) {� (w0);⇑v (w1v ,⇑−v (r0, r1v), w0v);� (w1);⇑v (w0v,⇑−v (r1, r0v), w1v)}
18 GalRow [18] 1(0,3) {� (w0);⇑v (w1v ,⇑R−v (r0, r1v), w0v);� (w1);⇑v (w0v,⇑R−v (r1, r0v), w1v)}
19 GalCol [100] 1(0,3) {� (w0);⇑v (w1v ,⇑C−v (r0, r1v), w0v);� (w1);⇑v (w0v,⇑C−v (r1, r0v), w1v)}
20 Gal9R [106] 0(0,12) {� (w0);⇑v (w1v ,�(r0, r1v), w0v);� (w1);⇑v (w0v ,�(r1, r0v), w1v)}
21 Butterfly [100] 1(0,4) {� (w0);⇑ (w1v,⇑BF (r0, r1v), w0v);� (w1);⇑ (w0v,⇑BF (r1, r0v), w1v)}
22 Walk 1/0 [100] 1(0,5) {� (w0);⇑v (w1v ,⇑−v (r0), r1v, w0v);� (w1);⇑v (w0v,⇑−v (r1), r0v, w1v)}
23 WalkRow [100] 1(0,6) {� (w0);⇑v (w1v ,⇑R−v (r0), r1v, w0v);� (w1);⇑v (w0v,⇑R−v (r1), r0v, w1v)}
24 WalkCol [100] 1(0,6) {� (w0);⇑v (w1v ,⇑C−v (r0), r1v , w0v);� (w1);⇑v (w0v,⇑C−v (r1), r0v, w1v)}
25 HamWh [106, 98] 1(0,7) {� (w0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0)}
26 HamRh [106, 98] 1(0,8) {� (w0);⇑ (r0, w1, r1h, r1);⇑ (r1, w0, r0h, r0);⇑ (r0, w1, r1h, r1);

⇑ (r1, w0, r0h, r0)}
27 HamWDhrc [106, 98] 1(0,9) {� (w0);↗ (w1hv ,⇑R−v (r0), r1v,⇑C−v (r0), r1v, w0v);

⇑ (w1);↗ (w0hv ,⇑R−v (r1), r0v ,⇑C−v (r1), r0v, w1v)}
28 HamWDhc [106, 98] 1(0,10) {⇑ (w0);↗ (w1hv ,⇑C−v (r0), w0v);⇑ (w1);↗ (w0hv ,⇑C−v (r1), w1v);

29 MOVI [23] 0(0,3) {iN−1
0 [⇓i (w0);⇑i (r0, w1, r1);⇑i (r1, w0, r0);⇓i (r0, w1, r1);⇓i (r1, w0, r0)]}

30 DELAY [1] 0(0,2,14) {� (w0);Del50;⇑ (r0, w1);Del50;⇓ (r1, w0)}

⇑AC : Address Complement addressing �: 8 neighbour cells N : number of memory address bits
⇑i: 2i addressing k: Butterfly maximum distance
⇑v: all cells except the v-cell Del50 and Del100: 50 and 100 ms delay elements
⇑R−v: all cells in the same row as the v-cell, except the v-cell ↗: all cells on the main diagonal
⇑C−v: all cells in the same column as the v-cell, except the v-cell h: number of Hammer operations
⇑BF : cells with a distance of 2k to the North, East, South and West of the v-cell

Address Generation

The memory BIST has to support different address orders (AO), different address direc-
tions (AD), different counting methods (CM); they are explained next.

1. Address Order (AO): determines that the way one proceeds to the next address,
which can be an increasing AO (e.g., increasing from address 0 to n− 1; n = the
# of addresses), denoted by ⇑ symbol, or a decreasing AO, denoted by ⇓ symbol,
and which is the exact inverse of the ⇑ AO. For example, Scan test (see Table 6.1)
requires both ⇑ and ⇓ orders. When the AO is irrelevant, the symbol 
 will be used.
Moreover, an index can be added to the AO symbol such that the addressing range
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can be specified explicitly. For example ’⇑n−1
i=0 ’ denotes: increase the addresses

from cell 0 to cell n− 1. In addition, the address to which the operation is applied
can be specified explicitly by subscripting the operation. For example, w0i means
write 0 into address i.

2. The Address Direction (AD): specifies the direction of the address sequence and
consists of three types: Fast-row, Fast-column and Fast-diagonal, which increments
or decrements the row address (column address, diagonal address) most frequently.
To specify the Fast-row, Fast-column and Fast-diagonal AD, the subscripts r, c and
d are used with the AO respectively; e.g., r ⇑ indicates ⇑ AO with the Fast-row
AD. For example, GalRow requires c ⇑; GalCol requires r ⇑; HamWDhrc requires

d ⇑, see Table 6.1.

3. The Counting Method (CM): determines the address sequence. Many CMs exist;
e.g., there are 3!=6 ways of address counting for a 3-address memory: 012, 021,
102, 120, 201 and 210. It has been shown that the CM is important for detecting
Address Decoder Delay Faults (ADDFs) [85, 65, 44, 26]. The most common CM
is the Linear CM, denoted by the superscript ’L’ of the AO (e.g., L ⇑), where
L specifies the address sequence 0,1,2,3, etc. Because it is the default CM, the
superscript ’L’ is often deleted.

Another CM is the Address Complement (AC) CM. The AC CM specifies an ad-
dress sequence: 000, 111, 001, 110, 010, 101, 011, and 100 [100, 65]; each bold
address is the 1’s complement of the preceding address.

The 2i CM is yet another CM; typically used by the MOVI algorithm [100, 65]. It
requires that the algorithm is repeated N times (N = is the number of memory
address bits) with an address increment/decrement value of 2i; with 0 � i � N−1.

Data Generation

The memory BIST has to provide the commonly used data backgrounds in industry [49];
it also has to generate the inverse of the used data background. They will be explained
next.

1. The Data Background (DB): is the data pattern which is actually in the cells of
the memory cell array. The most common DBs used in industry are given next
[49]:

Solid (sDB): all 0s (i.e., 0000.../0000... ) or all 1s.
Checkerboard (bDB): 0101.../1010.../0101.../1010...
Row Stripes (rDB): 0000.../1111.../0000.../1111...
Column Stripes (cDB): 0101.../0101.../0101.../0101...

2. The Data Value (DV): determines the normal or inverse data background pattern.
For example, a ’w0’ means that the selected DB is applied; a ’w1’ means that the
inverse of that DB is applied.
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Table 6.2: Generic March Elements
B GME# GME Description Alg.#

0 0 � (wD) 1-30
0 1 � (rD) 1,3-4,10-13

0 2 � (rD,wD) 2-3,9-10,16,30

0 3 � (rD,wD, rD) 4-5,8,29

0 4 � (rD,wD, rD,wD, rD,wD) 6-8

0 5 � (rD,wD,wD) 6,8

0 6 � (rD,wD,wD,wD) 6-8

0 7 � (rD,wD, rD,wD) 7,9-10,14

0 8 � (rD,wD,wD,wD, rD) 11

0 9 � (rD, rD,wD, rD,wD) 12

0 10 � (rD,wD, rD, rD,wD, rD) 13

0 11 � (wD, rD, wD) 15

0 12 �v (wDv,�(rD, rDv), wDv) 20
0 13 � (rD, rD) 14
0 14 Del50 30
0 15 Del100 8

1 0 � (wD) 1-30
1 1 � (rD) 1,3-4,10-13

1 2 ⇑v (wDv,⇑−v (rD, rDv), wDv) 17

1 3 ⇑v (wDv,⇑X−v (rD, rDv), wDv) 18-19

1 4 ⇑ (wDv,⇑BF (rD, rDv), wDv) 21

1 5 ⇑v (wDv,⇑−v (rD), rDv, wDv) 22

1 6 ⇑v (wDv,⇑X−v (rD), rDv , wDv) 23-24

1 7 ⇑ (rD,wD
h
, rD) 25

1 8 ⇑ (rD,wD, rD
h
, rD) 26

1 9 ↗ (wDh
v ,⇑R−v (rD), rDv,⇑C−v (rD), rDv, wDv) 27

1 10 ↗ (wDh
v ,⇑C−v (rD), wDv) 28

x ∈ {R,C}; Data Value D ∈ {0, 1};D = inverse of D

6.3 Generic March Element concept

Inspecting Table 6.1 reveals that many test algorithms use the same March element;
they only differ in the address order and/or data value used by the test. Let’s consider
for example MATS+ and March C- below.

MATS+ [1]: {
 (w0);⇑ (r0, w1);⇓ (r1, w0)}
March C- [100]: {
 (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);
 (r0)}

The first and second March elements of both tests are the same; the third March element
of MATS+ is the same as that of March C- except that the address order is different.
In addition, except the first and the last March elements, all March elements of March
C- have the form of 
 (rD,wD) where D can be either 0 or 1. Hence, MATS+ can be
realized with two Generic March Elements (GMEs), namely 
 (wD) and 
 (rD,wD),
and March C- can be realized with the same GMEs and the GME 
 (rD). Note that
a GME is a typical March element that only specifies the operations and their generic
data values; it is further orthogonal to all other specifications like address order, counting
method, etc.
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Figure 6.1: High level GME MBIST Engine architecture

Table 6.2 gives all GMEs required for the implementation of all memory test algo-
rithms of Table 6.1. Moreover, these GMEs can realize many other algorithms that are
not listed in Table 6.1 like IFA-6 [24, 25], March LRDD [103], March dADF [44], etc.

6.4 GME MBIST Engine architecture

The architecture of the GME MBIST Engine will be described in terms of its registers
and its commands. Figure 6.1 shows a high-level block diagram with the ’Memory under
Test’, controlled by a set of orthogonal signals, which can be combined in any way. For
example, the GME is orthogonal to any of the components of the Stress Combination
(SC), for example the AO and the AD; this allows for the application of any GME with
any SC.

Because of the open-ended architecture, extensions to customize this architecture are
easy to make. Therefore, a subset, sufficiently large to illustrate the capabilities of the
GME MBIST Engine, will be described.

Throughout the remainder of this section, the basic architecture will be covered to-
gether with a set of extensions, in terms of its registers and commands operating on
these registers. The extensions illustrate the ease with which new features and capabil-
ities can be added to the basic architecture. The commands and the registers are used
to implement the tests, as shown in the examples of Section 6.5.

6.4.1 GME MBIST Register Set

The GME MBIST architecture supports registers which can be divided into two classes:
the Basic registers and the Extension registers. The basic registers are part of the
minimal GME MBIST Engine, while the Extension registers support some of the ad-
vanced features of the GME MBIST Engine. The register naming convention is such
that the register name includes its size. For example, ’CC[5..0]’ denotes the 6-bit Com-
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Table 6.3: GME MBIST Engine registers
Register B/E Description

CM[63..0,3..0] B Command Memory

CC[5..0] B Command Counter

CR[7..0] B Command Register

AOR[0] B Address Order Register

DVR[0] B Data Value Register

CMADR[1..0] B Counting Method & Addr. Direction Reg.

DBR[1..0] B Data Background Register

GMER[3..0] B Generic March Element Register

BR[0] E Bank Register

REPR[5..0] E Re-execute Entry Point Register

RCNTR[3..0] E Re-execute CouNT Register

B/E = Basic or Extension

mand Counter, its most significant bit is bit-5, its least significant bit is bit-0; ’AOR[0]’
denotes a 1-bit Address Order Register. Table 6.3 summarizes the description of the reg-
ister set of the GME MBIST Engine, which is described next. First the Basic registers
are addressed, thereafter the Extension registers.

Basic registers

The basic registers are part of the minimal GME-MBIST engine; their presence is manda-
tory.

1. CM[63..0,3..0]: Command Memory
Size depends on size of used test set; default: 64x4-bit nibbles. The CM contains
the commands which specify the to-be-executed tests.

2. CC[5..0]: Command Counter
Size depends on Command Memory (CM) size; default: 6 bits. The CC points to
a location in the CM, which contains the to-be-executed command.

3. CR[7..0]: Command Register
Contains the first 2 nibbles of the command.

4. MESR: March Element Stress Register
The MESR specifies the to-be-applied Stress Combination (SC) which consists of
4 individual components, each described by its own register, as follows:

• AOR[0]: Address Order Register
This is a 1-bit register specifies the AO: ⇑ or ⇓.

• DVR[0]: Data Value Register
Specifies the Data Value (DV) used by the GME operations as follows:
0: The GME operations assume the specified DB (see DBR)
1: Use the inverted DB.

• CMADR[1..0]: Counting Method & Address Direction Register
This register specifies the combination of the to-be-used Counting Method
(CM) and the Address Direction (AD), as follows:
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Lr: Linear CM & Fast-row AD
Lc: Linear CM & Fast-column AD
AC: Address Complement CM; note that AD is not applicable to CM
2i: ith power of 2 CM; note that AD is not applicable to CM.

• DBR[1..0]: Data Background Register
When the algorithm specifies a data value, such as for example in ’w0’, then
the ’0’ value is interpreted as meaning the Data Background (DB) as specified
in the DBR. This allows for the following DBs to be specified:
sDB: solid DB
bDB: checkerboard DB
rDB: row stripes DB
cDB: column stripes DB.

5. GMER[3..0]: Generic March Element Register
The GMER is a 4-bit register which specifies the to-be-applied GME, within the
current bank, as described in Table 6.2. Note that the GMER only contains a num-
ber, rather than a complete specification of a GME. The GME MBIST hardware
uses the GME# to generate the appropriate sequence of read and write operations,
together with their data values.

Extension registers

The extension registers are used to support additional features of the GME MBIST
architecture; they are optional.

1. BR[0]: Bank Register
The GMER allows for the specification of up to 16 GMEs. Some applications may
have a need for a larger number of GMEs. In order to support this requirement, the
set of GMEs is divided into banks, each containing up to 16 GMEs. The GME#
specifies the GME in the bank, while the bank is specified via the BR. In this
paper the size of the BR is 1-bit, because this already allows for up to 32 GMEs;
however, depending on the application, it may have a different size.

2. REPR[5..0]: Re-execute Entry Point Register
The REPR is used by the REP (REPeat) and the POWi commands, which allow
a Block of Commands (BoC) to be re-executed a number of times. The starting
address of this BoC is stored in the REPR, which has the same size as the CC
(Command Counter).

3. RCNTR[3..0]: Re-execute CouNT Register
The RCNT specifies the number of times a BoC has to be re-executed by the REP
command. For the POWi command, the BoC is re-executed ’N − 1’ times; N is
the number of address bits. Note that the size of the RCNT register has to be the
larger one of the following two values: 4, as needed by the REP command, and
�log2(N)� for the POWi command.
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Table 6.4: GME MBIST commands and command bit position assignments
Bit positions in the command

Command BE 7 6 5 4 3 2 1 0 Xtra

INIT B Opc AO DV CM&AD DB –

SGME B Opc AO DV GME# –

END B Opc –

SAODV E Opc AO DV – –

SAODVE E Opc AO DV CM&AD Opc GME#

SBR E Opc B Opc –

SREP E Opc –

REP E Opc AO DV Opc R

POWi E Opc AO DV Opc –

’BE’ = Basic or Extension; ’Xtra’= extra nibbles
’–’= not applicable
’R’ = RCNT#,CM&AD-DBRCNT#−1,...,CM&AD-DB2,CM&AD-DB1

6.4.2 GME MBIST Command Set

The architecture supports commands to control the operations of the GME MBIST
Engine. These commands act like instructions on a traditional computer. However, the
term command is used to avoid confusion with the host architecture of the GME MBIST
Engine, which is likely to have the capability to execute instructions.

Two classes of commands can be recognized: Implicit and Explicit. Implicit com-
mands are issued outside control of the user; typically as a side-effect of a system action
or state (for example Power-On). The only implicit command for the GME MBIST
Engine is the Power-On-Reset (POR) command. When the host system powers on, a
hardwired POR command is given. This causes the following actions in the GMEMBIST
Engine:

• CC[5..0] ← 0. Clear the Command Counter.

• BR[0] ← 0. Clear the Bank Register.

All other commands are Explicit, which means that they have to be issued explicitly
by the user. They are designed in such a way that they have a size (length) which is a
multiple of 4 bits, also called a nibble. The length of the commands is variable in size,
such that the Command Memory size can be minimized; the most frequent commands
are encoded in the smallest number of nibbles. This reflects itself in the number of
bits used for specifying the Opcode; which is also variable in length. Last, similar to
the registers, the set of explicit commands can be divided into two classes: Basic and
Extension. Table 6.4 summarizes the commands together with their bit assignments; the
column ’Xtra’ indicates the meaning of the extra nibbles for commands which require
more than 2 nibbles. Note: the commands will be described in terms of their operations,
which involve the basic and the extension registers. If a feature is not present, then the
extension registers to support that features will not be present. However, the description
of the commands assumes the presence of all features, in order to give a complete picture.
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Basic Commands

The basic command set consists of only three commands; they are mandatory and allow
for an absolute minimal implementation of the GME MBIST Engine (see Table 6.4).

1. INIT: INITialize
The 2-nibble INIT command clears GMER. It establishes the DB values, the
CM&AD, the DV and the AO for the application of the GME#0 specified in
the GMER (which is ’
 (wD)’). Last, it establishes the Re-execute Entry Point by
clearing the RCNTR and loading the start address of the to-be-re-executed Block
of Commands in the REPR.

Table 6.4 shows the INIT command. The entry ’B’, in the column ’BE’ indicates
that it is a Basic command. The columns ’7’ through ’0’ show the bit assignment
of the different fields of the command. For example, the Opc(ode) is assigned to
bits 7 & 6, the AO field to bit 5, the Data Value (DV) field to bit 4, etc.

INIT is a complex command, because it performs the following implicit and explicit
operations, which are typical for the beginning of any test.

• CC ← CC + 1;
Second nibble is fetched for CMAD and DB.

• AOR ← AO; DVR ← DV; CMADR ← CMAD; DBR ← DB;
AOR, DVR, CMADR and DBR are loaded.

• GMER ← 0; RCNTR ← 0;
GMER and RCNTR are reseted.

• CC ← CC + 1;
CC is pointed to the next command.

• REPR ← CC;
REPR is pointed to the next command after the INIT.
Apply GME specified in GMER.

2. SGME: Select GME
This command allows for the execution of a specified GME. It requires the speci-
fication of the GME#, the DV and the AO, as follows:

• CC ← CC + 1;
Second nibble is fetched for GME#.

• AOR ← AO; DVR ← DV; GMER ← GME#;
AOR, DVR and GMER are loaded.

• CC ← CC + 1;
CC is pointed to the next command after the SGME command.
Apply GME specified in GMER.

3. END: END the test program
This command allows for the finalize the overall test program. The operation of
the END command is as follows:

• CC ← CC + 1;
Second nibble is fetched. CC is not incremented anymore for a next command,
since the test is finalized.
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Extension Commands

The extension commands allow for added capabilities of the basic GME MBIST En-
gine. These consist of extra functionality and/or a reduction of the required Command
Memory size to represent tests (see Table 6.4).

1. SAODV: Select AO and DV, for current GME
From inspecting Table 6.1, it can be seen that several algorithms have a sequence
of MEs which only differ in the used AO and DV. For example: MATS+, March C-
and PMOVI. This implies that only the first ME in a sequence has to be specified;
the other MEs in the sequence only require the AO and DV to be specified. The
operation of the SAODV command is as follows:

• AOR ← AO; DVR ← DV;
AOR and DVR are loaded.

• CC ← CC + 1;
CC is pointed to the next command after the SAODV command.
Apply GME specified in GMER. Note: the SAODV command is 1 nibble in
size.
Example 2 in Section 6.5 shows its effectiveness.

2. SAODVE: Select AO, DV, CM&AD and GME#
From inspecting Table 6.1 one can conclude that the selection of the ’CM&AD’
applies to all MEs of the test. However, in some rare cases this does not hold. For
example, the Philips 6n algorithm {r⇑(w0); r⇑(r0, w1); c⇓(r1, w0, r0)} requires the
use of the SAODVE command; this is because in addition to the GME#, the AO
and the DV, the AD of the GME ’c⇓(r1, w0, r0)’ differs from the two preceding
GMEs; see also Example 7 in Section 6.5.

The suffix ’E’ of the SAODVE command denotes an Extension of the ’SAODV’
command, in order to specify the GME# and CM&AD. This command is 3 nibbles
in length; the third nibble specifies the GME#. The operation of SAODVE is as
follows.

• CC ← CC + 1;
Second nibble is fetched for CMAD and second part of the opcode.

• AOR ← AO; DVR ← DV; CMADR ← CMAD;
AOR, DVR and CMDR are loaded.

• CC ← CC + 1;
Third nibble is fetched for GME#.

• GMER ← GME#;
GMER is loaded.

• CC ← CC + 1;
CC is pointed to the next command after the SAODVE command.
Apply GME specified in GMER.

3. SBR: Set Bank Register
The default size of the GMER[3..0] is 4 bits; such that one out of up to 16 GMEs
can be specified. This choice is made to reduce the size of the Command Memory,
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Nibble 2

CM&AD−DV CM&AD−DV CM&AD−DVRCNT#

Nibble RCNT# Nibble RCNT# −1 Nibble 1

Figure 6.2: The ’Xtra’ field of REP command

and because of the fact that commands have a size which is a multiple of a nibble.
Therefore, the set of GMEs is divided into banks with a maximum of 16 GMEs.
Note that if up to 64 GMEs have to be supported, then the BR will be 2 bits; i.e,
BR[1..0], and the SBR has a 2-bit ’B’ parameter. The Bank ’B’ parameter of the
SBR command specifies the bank as follows:

• CC ← CC + 1;
Second nibble is fetched for B and second part of the opcode.

• BR ← B;
BR is loaded.

• CC ← CC + 1;
CC is pointed to the next command after the SBR command.
The next command is fetched, it does not apply any GME.

4. SREP: Set Re-execute Entry Point
Sometimes MEs of a set of tests are put together in a single long test. To save
execution time, the state of the memory after a given test is used as the initial
state for the following test. Then, if a part of the long test has to be re-executed,
the SREP command is required to establish the Entry Point of that part. The
operation of SREP is as follows:

• CC ← CC + 1;
Second nibble is fetched for second part of the opcode.

• RCNTR ← 0;
BR is reseted.

• CC ← CC + 1;
CC is pointed to the next command after the SREP command.

• REPR ← CC;
REPR is pointed to the next command after the SREP.
The next command is fetched, it does not apply any GME.

5. REP: REPeat block of commands
Industrial test sets usually contain tests which are a repeated application of an
algorithm, whereby stress conditions such as the CM&AD are varied. The REPeat
command supports this in a very efficient way. It allows for re-executing a Block
of Commands (BoC). The BoC starts at the location specified by the Re-execute
Entry Point Register (REPR) and ends at the REP command. The BoC may
consist of several algorithms and is repeated a number of times, as specified by the
RCNT# field of the REP command; see Examples 5 and 8 in Section 6.5.

The REP command consists of 2+RCNT# nibbles where the REP command will
be repeated as the number of RCNT#-1 times ; see Table 6.4. The first 2 nibbles
specify the initial AO and the DV. The ’Xtra’ field of REP command with a length
of RCNT# nibbles is shown in Figure 6.2. The first nibble in this field specifies
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the RCNT#. The additional RCNT#-1 nibbles specify the CM&AD and the DB
values for the RCNT#-1 re-executions in reverse order ; i.e., nibble 1 of Figure 6.2
specifies the CM&AD and the DB values for the first re-execution, nibble 2 for
the second re-execution, and nibble RCNT#-1 for the last re-execution. Note that
because the BoC has already been executed once before the REP command was
encountered, the BoC will be re-executed RCNT#-1 times.

The operation of the REP command consists of the following two parts, determined
by the contents of the register ’RCNTR’: an initialization part and a re-execution
part.

• CC ← CC + 1;
Second nibble is fetched for second part of the opcode.

(a) Initialization part
If (RCNTR)=0 then:

• RCNTR ← RCNT# - 1;
RCNTR is loaded.

• CC ← CC + RCNTR;
The last nibble of the variable length command is fetched.

• AOR ← AO; DVR ← DV; CMADR ← CMAD#1; DBR ← DB#1;
AOR, DVR, CMADR and DBR are loaded.

• GMER ← 0;
GMER is reseted.

• CC ← REPR;
CC points to the beginning of BoC.
Re-execute the Block of Commands;

(b) Re-execution part
else if (RCNTR) �= 1 then:

• RCNTR ← RCNTR - 1;
RCNTR is decremented by 1.

• CC← CC + RCNTR; A nibble from the variable length command is fetched.
• AOR ← AO; DVR ← DV; CMADR ← CMAD#(RCNT#-RCNTR); DBR
← DB#(RCNT#-RCNTR);
AOR, DVR, CMADR and DBR are loaded.

• GMER ← 0;
GMER is reseted.

• CC ← REPR;
CC points to the beginning of BoC.
Re-execute the Block of Commands;

else:

• CC ← CC + RCNT#;
The next command is fetched, it does not apply any GME. REP has been
completed;
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6. POWi: Re-execute with POWer of 2i addressing
The POWi command is a special case of the REP command: it re-executes a
Block of Commands a fixed number of N − 1 times; N is the number of address
bits, which is hardwired in the GME BIST Engine. During the ith re-execution, i is
used to generate the address increment/decrement value, which is 2i. The RCNTR
register is used to keep track of the current value of i. The operation of the POWi
command is as follows:

• CC ← CC + 1;
Second nibble is fetched for second part of the opcode.

(a) Initialization part
If (RCNTR)=0 then:

• RCNTR ← N - 1;
RCNTR is loaded.

• AOR ← AO; DVR ← DV;
AOR and DVR are loaded.

• GMER ← 0;
GMER is reseted.

• CC ← REPR;
CC points to the beginning of BoC.
Re-execute the Block of Commands;

(b) Re-execution part
else if (RCNTR �= 1) then:

• RCNTR ← RCNTR - 1;
RCNTR is decremented by 1.

• AOR ← AO; DVR ← DV;
AOR and DVR are loaded.

• GMER ← 0;
GMER is reseted.

• CC ← REPR;
CC points to the beginning of BoC.
Re-execute the Block of Commands;

else:

• CC ← CC + 1;
The next command is fetched, it does not apply any GME. POWi has been
completed;

6.5 Memory test implementations

From the above it may be clear that only a few simple, memory efficient, commands are
needed by the GME MBIST Engine. Their efficiency will be demonstrated with the code
for following test programs:
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1. March C-; it uses the minimal set of two commands.

2. March C-; it uses the extra command ’SAODV’ to save command memory space.

3. GalPat; shows support of complex algorithms.

4. GalRow/GalCol; shows the use of the same GME with different CMAD.

5. Repeat (PMOVI & MATS+); shows the use of REP command.

6. MOVI; shows use of the POWi command.

7. Philip’s 6n algorithm; shows the use of SAODVE command.

8. PMOVI & REPeat (MATS+); shows the use of SREP command.

March C-

Test description: {⇑ (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);⇑ (r0)};
applied with Lr and bDB with minimal command set as. This March C- test is
implemented first by using only the basic commands, as follows:

Code:

• ⇑ (w0). INIT: AO= ⇑, DV=0, CMADR=Lr, DBR=bDB.
Implicit application of GME#0.

• ⇑ (r0, w1). SGME: AO= ⇑, DV= 0, GME#= 2.

• ⇑ (r1, w0). SGME: AO= ⇑, DV= 1, GME#= 2.

• ⇓ (r0, w1). SGME: AO= ⇓, DV= 0, GME#= 2.

• ⇓ (r1, w0). SGME: AO= ⇓, DV= 1, GME#= 2.

• ⇑ (r0)}. SGME: AO= ⇑, DV= 0, GME#= 1.

A total of six commands are required, one per ME; they require: 6 ∗ 2 = 12 nibbles of
command memory.

March C-

Test description: {⇑ (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);⇑ (r0)}. In
this case, the same test as in Example 1 will be applied but then with bDB and Lr, and
by using the extended command ’SAODV’:

Code:

• ⇑ (w0). INIT: AO= ⇑, DV= 0, CMAD= Lr, DB= bDB.
Implicit application of GME#0.

• ⇑ (r0, w1). SGME: AO= ⇑, DV= 0, GME#= 2.

• ⇑ (r1, w0). SAODV: AO= ⇑, DV= 1.
Note: the GME# of the previous command applies.

• ⇓ (r0, w1). SAODV: AO= ⇓, DV= 0.

• ⇓ (r1, w0). SAODV: AO= ⇓, DV= 1.

• ⇑ (r0)}. SGME: AO= ⇑, DV= 0, GME#= 1.

Six commands require 3 ∗ 2 + 3 ∗ 1 = 9 nibbles of command memory. Due to the use of
’SAODV’ command, a saving of 25% is realized as compared with Example 1.
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GalPat

Test description: {⇑ (w0);⇑v (w1v ,⇑−v (r0, r1v), w0v);⇑ (w1);⇑v (w0v ,⇑−v

(r1, r0v), w1v)}; applied with sDB and Lr, as follows:

Code:

• SBR: B= 1.
Note: Bank-1 of the set of GMEs has to be selected.

• ⇑ (w0). INIT: AO= ⇑, DV= 0, CMAD= Lr, DB= sDB.
Implicit application of GME#0.

• ⇑v (w1v ,⇑−v (r0, r1v), w0v). SGME: AO= ⇑, DV= 1, GME#= 2.

• ⇑ (w1). SGME: AO: ⇑, DV: 1, GME#: 0.

• ⇑v (w0v ,⇑−v (r1, r0v), w1v). SGME: AO= ⇑, DV= 0, GME#= 2.

Five commands require 5 ∗ 2 = 10 nibbles of command memory.

GalRow/GalCol

Test description: {⇑ (w0);⇑v (w1v ,⇑X−v (r0, r1v), w0v);⇑ (w1);⇑v (w0v ,⇑X−v

(r1, r0v), w1v)}; applied with sDB and Lc, as follows:

Code:

• SBR: B= 1.
Bank 1 is selected.

• ⇑ (w0). INIT: AO= ⇑, DV= 0, CMAD= Lc/Lr, DB= sDB.
Implicit application of GME#0. Lc for GalRow, Lr for GalCol.

• ⇑v (w1v ,⇑X−v (r0, r1v), w0v). SGME: AO= ⇑, DV= 1, GME#= 3.

• ⇑ (w1). SGME: AO= ⇑, DV= 1, GME#= 0.

• ⇑v (w0v ,⇑X−v (r1, r0v), w1v). SGME: AO= ⇑, DV= 0, GME#= 3.

The required command memory is 5 ∗ 2 = 10 nibbles.

REPeat(PMOVI & MATS+)

Test description:
PMOVI: {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
MATS+: {⇑ (w0);⇑ (r0, w1);⇓ (r1, w0)}.

This example demonstrates the use of the REP command applied to two tests:
PMOVI & MATS+. The first time they are executed using Lr (Linear addressing &
Fast-row), together with sDB (solid DB). Then they will be re-executed for Lr & bDB,
Lr & rDB, Lr & cDB, and for Lc & sDB, Lc & bDB, Lc & rDB and Lc & cDB. This
means that, after the initial execution, they are re-executed 7 times. The following set
of commands will implement the above:
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Code:
PMOVI

• ⇓ (w0). INIT: AO= ⇓, DV= 0, CMAD= Lr, DB= sDB.
Apply implicit GME#0. Note that RCNTR will be implicitly cleared here.

• ⇑ (r0, w1, r1). SGME: AO= ⇑, DV= 0, GME#= 3.

• ⇑ (r1, w0, r0). SAODV: AO= ⇑, DV= 1.

• ⇓ (r0, w1, r1). SAODV: AO= ⇓, DV= 0.

• ⇓ (r1, w0, r0). SAODV: AO= ⇓, DV= 1.

MATS+

• ⇑ (w0). SGME: AO= ⇑, DV= 0, GME#= 0.

• ⇑ (r0, w1). SGME: AO= ⇑, DV= 0, GME#= 2.

• ⇓ (r1, w0). SAODV: AO= ⇓, DV= 1.

• REP: AO= ⇑, DV= 0, RCNT#= 8, CMAD-DB#7= Lc-cDB, CMAD-DB#6= Lc-
rDB, CMAD-DB#5= Lc-bDB, CMAD-DB#4= Lc-sDB, CMAD-DB#3= Lr-cDB,
CMAD-DB#2= Lr-rDB, CMAD-DB#1= Lr-bDB.

Nine commands require 4 ∗ 2 + 4 ∗ 1 + 1 ∗ 10 = 22 nibbles of command memory.

MOVI

Test description: {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)};
apply 2i CM with Lr and bDB. This is a special algorithm, because MOVI is a repeated
application of the PMOVI algorithm, under control of the special 2i CM. The following
set of commands will implement the above:

Code:

• ⇓ (w0). INIT: AO= ⇓, DV= 0, CMAD= Lr, DB= bDB.
Apply implicit GME#0.

• ⇑ (r0, w1, r1). SGME: AO= ⇑, DV= 0, GME#= 3.

• ⇑ (r1, w0, r0). SAODV: AO= ⇑, DV= 1.

• ⇓ (r0, w1, r1). SAODV: AO= ⇓, DV= 0.

• ⇓ (r1, w0, r0). SAODV: AO= ⇓, DV= 1.

• POWi: AO: ⇑, DV: 0.
This will repeat the above set of commands N − 1 times with address increment
/decrements of 2i.

Six commands require 3 ∗ 2 + 3 ∗ 1 = 9 nibbles of command memory.
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Philip’s 6n algorithm

Test description: {r⇑ (w0);r ⇑ (r0, w1);c ⇓ (r1, w0, r0)}; with sDB. Note that the AD
of the first two MEs is Fast-row, while the AD of the last ME is Fast-column. The
implementation uses the command ’SAODVE’ as follows:

Code:

• r ⇑ (w0). INIT: AO= ⇑, DV= 0, CMAD= Lr, DB= sDB.
Apply implicit GME#0.

• r ⇑ (r0, w1). SGME: AO= ⇑, DV= 0, GME#= 2.

• c ⇓ (r1, w0, r0). SAODVE: AO= ⇓, DV= 1, CMAD= Lc, GME#= 3.

Three commands require 2 ∗ 2 + 1 ∗ 3 = 7 nibbles of command memory.

PMOVI & REPeat (MATS+)

Test description: Two tests are joined together to form a single long test. The final
memory state of PMOVI is used as the initial state by MATS+; that way saving the
initializing operation ’⇑ (w0)’ for MATS+. The long test is applied with Lc & sDB; then
the MATS+ part is re-executed with Lr-bDB. This results in the following program,
using the SREP (Set Re-execute Entry Point) command:

Code:

• ⇓ (w0). Begin of PMOVI. INIT: AO= ⇓, DV= 0, CMAD= Lc, DB= sDB.
Apply implicit GME#0.

• ⇑ (r0, w1, r1). SGME: AO= ⇑, DV= 0, GME#= 3.

• ⇑ (r1, w0, r0). SAODV: AO= ⇑, DV= 1.

• ⇓ (r0, w1, r1). SAODV: AO= ⇓, DV= 0.

• ⇓ (r1, w0, r0). End of PMOVI. SAODV: AO= ⇓, DV= 1.

• SREP: Begin of MATS+. This establishes the re-execution entry point!

• ⇑ (r0, w1). SGME: AO= ⇑, DV= 0, GME#= 2.

• ⇓ (r1, w0). SAODV: AO= ⇓, DV= 1.

• REP: AO= ⇑, DV= 0, RCNT#= 2. CMAD#1= Lr, DB= bDB.

The command memory will require 4 ∗ 2 + 4 ∗ 1 + 1 ∗ 4 = 16 nibbles.
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GME MBIST architecture
implementation 7
This chapter covers the implementation and evaluation of the GME MBIST Engine.
Section 7.1 gives the functional model of the MBIST architecture. It consists of two major
parts; the Memory BIST Processor and the Memory Wrapper. Section 7.2 discusses
the Memory BIST Processor. Section 7.3 addresses the Memory Wrapper. Section 7.4
investigates the optimization of address generator. Section 7.5 presents the experimental
results of the GME MBIST Engine. Section 7.6 provides a comparison with the state-
of-the-art. Section 7.7 concludes with the advantages of GME MBIST over previous
state-of-the-art implementations.

7.1 GME MBIST Engine

The GME MBIST Engine is a built-in self-test hardware that performs the user defined
memory tests. Figure 7.1 shows a high level block diagram of GME MBIST Engine
consisting of two main sub-blocks: GME MBIST Processor and GME MBIST Wrapper.
GME MBIST Processor is responsible for the management of test flow, whereas GME
MBIST Wrapper is responsible for the implementation of the test signal generation (i.e.,
address, data and control signal generation) and the analysis of the memory output
response.

GME MBIST has two operation modes: normal and test modes. In the normal mode,
GME MBIST delivers the normal mode signals (e.g., memory address, data, control
signals) incoming from the system to the memory without any interference. In addition,
the test commands are loaded during the normal mode. After commands are loaded,
test flow is initiated and GME MBIST enters the test mode. In test mode, the normal
mode access is bypassed; the test mode signals generated by GME MBIST are delivered
to the memory. In case of a memory fault detection, the address and the readout data of
the faulty cell are delivered out. When the overall test flow ends, GME MBIST returns
to the normal mode and keeps waiting in an idle state for a new test start.

7.2 GME MBIST Processor

GME MBIST Processor is responsible of the test flow and consists of three sub-blocks:
Command Memory (CM), Controller and Registers as shown in Figure 7.2. CM stores
the test commands. Controller selects the to-be fetched command from CM; decodes
it and configures the Registers. In addition, test flow is initiated and finalized by the
Controller. Registers store the configuration parameters for the memory tests.

GME MBIST Processor sends the contents of the Registers to the GME MBIST
Wrapper. Afterwards, it initiates the test flow by activating the GME MBIST Wrapper.

95
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Figure 7.1: High Level architecture of GME MBIST Engine

During a GME is being performed to the memory, GME MBIST Processor waits in an
idle state. When performing a GME ends, GME MBIST Processor continues with the
next command.

7.2.1 Command Memory

CM is the sub-block where the test commands are stored. By default, its size is 64 x
4-bit nibbles as shown in Figure 7.3. The to-be fetched nibble is determined by the Con-
troller. Table 6.4 shows the physical mapping of the commands. Notice that commands
and opcodes are variable-length for an efficient usage of CM. The list below gives the
encodings of the test parameters.

• AO: ’0’ for Up, ’1’ for Down,
• DV: ’0’ for Normal, ’1’ for Inverse,
• CM&AD: ”00” for Lr, ”01” for Lc, ”10” for AC, ”11” for 2i,
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• DB: ”00” for sDB, ”01” for bDB, ”10” for rDB, ”11” for cDB,
• B: ’0’ for Bank 0, ’1’ for Bank 1,
• GME#: from ”0000” (0) to ”1111” (15),
• RCNT#: from ”0010” (2) to ”1111” (15); since, ”REP” command repeats a BoC

as RCNT#-1 times, RCNT# can be minimum 2, whereas due to the 4-bit binary
coding, it can be maximum 15.

Figure 7.4 shows the binary coding of the GME MBIST commands. Less frequently
used commands have the longest opcodes, while the most frequently used ones have the
shortest. ”INIT”, ”SGME” and ”SAODV” commands are encoded as: ”00”, ”01” and
”10”, respectively. Then the 1st ”Opc” area becomes ”11”, and 2nd ”Opc” area follows
as: ”00”, ”01” and ”10” for ”SAODVE”, ”SBR” and ”SREP” commands, respectively.
Then the 2nd ”Opc” area becomes ”11”, and 3rd ”Opc” area follows as: ”00”, ”01”
and ”10” for ”REP”, ”POWi” and ”END” commands, respectively. This coding allows
further extensions on command set.

7.2.2 Controller

Controller directs the test flow. It controls the Command Counter (CC) which contains
the address of the to-be fetched nibble from the CM. Figure 7.5 shows that it consists of a
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Figure 7.4: Binary coding of the GME MBIST commands
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register and a finite state machine. The register stores the fetched nibble. FSM performs
the operations (e.g., reseting/loading of registers, loading CC) for each command as
explained in Chapter 6. For control state details, please see Appendix A.

7.2.3 Registers

Registers store the information of the GME and algorithm stresses that will be per-
formed to the memory. Figure 7.6 shows the 2 registers: MESR (i.e., combination of the
AOR, DVR, CMADR, DBR) and BGMER (i.e., combination of the BR, GMER). Those
registers are reseted and/or loaded by the control signals from the Controller.

7.3 GME MBIST Memory Wrapper

GME MBIST Wrapper generates the test signals (i.e., address, data and control) and
analyzes the memory output response. It is closely located to the Memory-under-Test
to enable at-speed testing. It consists of five sub-blocks: Registers, Address Generator,
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Data & Control Generator, Multiplexing Unit and Output Response Analyzer (ORA)
as shown in Figure 7.7. The registers stores the information of GME and algorithm
stresses; the Address Generator generates the to-be applied test address to the memory;
the Data & Control Generator generates the to-be applied test data and control signals
to the memory; Multiplexing Unit selects between the normal or test mode signals; the
Output Response Analyzer checks the validity of the memory response.

GME MBIST Wrapper is activated by the GME MBIST Processor after the Reg-
isters are loaded. Specified GME#, address, data and control signals are generated in
orthogonal to each other. Multiplexing Unit bypasses the normal mode signals, and it
delivers the test mode signals to the memory. Simultaneously, the reference signals (i.e.,
data and control) are sent to the ORA. Afterwards, ORA compares the reference data
and the response data received from the memory. In case of a faulty behavior, address
and data of the faulty cell are reported to the user back.

7.3.1 Registers

The registers stores the information of GME and algorithm stresses. Figure 7.8 shows
that it consists of the MESR and BGMER registers. They are loaded before the test
signal generation.
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Figure 7.8: Registers of the GME MBIST Wrapper architecture

7.3.2 Address Generator

This module generates the test addresses. Figure 7.9 shows that it consists of several
counters for different memory tests. To minimize the module area overhead, an up-
only counter is chosen. Different counting methods, address orders and directions are
achieved by the Barrel Shifter and MUX Unit at the output of the Up-only Counter.
Barrel Shifter is used for the 2i addressing, whereas MUX Unit is for the Lr, Lc and
AC addressing schemes. For the two-level nested loops of the non-linear algorithms
(e.g., GalPat, Walking 1/0), a register is added. Address Generator stores the base cell
address at the register before it enters to a nested loop. When a nested loop ends, the
base address is loaded back to the Up-only Counter.

For the Butterfly algorithm, one row adder and one column adder are optionally
added. They are also used by the Gal9R test. Similarly for the Hammer and Delay tests,
there are two extra counter, too. For control state details and VHDL code examples,
please see Appendix B and C, respectively.

Since the Address Generator occupies a large area and dominates the GME MBIST
hardware, further study is focused on the optimization of the Address Generator. Tech-
niques and results are presented in Section 7.4.

7.3.3 Data & Control Generator

This module generates the test data and control signals. Figure 7.10 shows the data and
control generation sub-blocks.

Data background pattern is simply generated by AND/XORing the row/column
addresses with each other. For the solid data background, DV value determines the data
value independent from the current address; for the checkerboard, the least significant
bits of the row and column addresses (row addr(0) and column addr(0)) and DV are
XORed; for the row stripe, the least significant bit of the row address and DV are
XORed; for the column stripe, the least significant bit of the column address and DV
are XORed.

Control signals are simply generated depending on the two memory operations: read
and write. In case of a read operation, the chip enable and the output enable are
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LOW, whereas write enable is HIGH; for a write operation, the chip enable and the
write enable are LOW, whereas the output enable is HIGH, since they are low asserted
signals. For control state details and VHDL code examples, please see Appendix B and
C, respectively.

7.3.4 Output Response Analyzer

Output Response Analyzer detects the faults in the Memory-under-Test. It checks the
validity of the memory output response by comparing with the reference data. Figure
7.11 shows that ORA consists of a few registers and a comparator. Since the memory
response is received only for the read operation, comparison is performed only for the
read operation.
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7.4 Optimization of the Address Generator

This section presents a novel concept to optimize the area and power of the Address
Generator. As shown in Figure 7.12 only an Up-counter is used to create the Linear Up-
address sequence; and the multiplexer network builds the required Up/Down Counting
Method.

Rest of the section follows as: Section 7.4.1 explains the concept for the Linear (Li)
and Address complement (Ac) Address Generators (AddrGens). Section 7.4.2 presents
the area and power analysis. Section 7.4.3 discusses the Gray code (Gc) and the Worst-
case gate delay (Wc) AddrGens. Section 7.4.4 presents the 2i (2i) AddrGen. Section
7.4.5 focuses on the Pseudo-random (Pr) AddrGen. Section 7.4.6 continues with the
Next (Ne) AddrGen. Finally, Section 7.4.7 summarizes the results.

7.4.1 Linear and Address complement AddrGens

Table 7.1 show the Address Sequences (AS) of different CMs for a 4-bit address. Column
Li corresponds to the Linear AS, while Ac shows the Address complement AS, etc.

LiUd: Linear AddrGen based on Up-down counter
Figure 7.13(a) shows a J-K flip-flop based Up-down counter (LiUd). Address direction
(’⇑’ or ’⇓’) is controlled by the ’U/D’ (Up/Down) which is ANDed and ORed with the
previous J-K stage outputs to determine the inputs of the next stage.
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Table 7.1: Address Counting Methods(CMs)

Step Li Ac Gc 2i = 4 Pr Wc

0 0000 0000 0000 0000 0000 -
1 0001 1111 0001 0100 0001 0001
2 0010 0001 0011 1000 0011 0000
3 0011 1110 0010 1100 0111 0001
4 0100 0010 0110 0001 1111 -
5 0101 1101 0111 0101 1110 0010
6 0110 0011 0101 1001 1101 0000
7 0111 1100 0100 1101 1010 0010
8 1000 0100 1100 0010 0101 -
9 1001 1011 1101 0110 1011 0100

10 1010 0101 1111 1010 0110 0000
11 1011 1010 1110 1110 1100 0100
12 1100 0110 1010 0011 1001 -
13 1101 1001 1011 0111 0010 1000
14 1110 0111 1001 1011 0100 0000
15 1111 1000 1000 1111 1000 1000

Note: Li= Linear; Ac= Address complement; Gc= Gray code;
Pr= Pseudo-random; Wc= Worst-case gate delay

LiUo: Linear AddrGen based on Up-only counter
Figure 7.13(b) shows an Up-only counter based Up-down counter (LiUo). Output of
the counter is multiplexed depending on the U/D to obtain the ⇑ or the ⇓ AS.

Ac: Address complement AddrGen
Figure 7.13(c) shows an Up-only counter based Ac implementation. The ’U/D’
multiplexes the least significant counter bit C0 to obtain the most-significant address
bit A3. The Q output of C0 multiplexes the rest.

LiAc: Combined LiUo & Ac AddrGen
Figure 7.13(d) shows an Up-only counter based combined Li&Ac implementation. The
CTLR1 and CTRL2 control signals consist of 2 bits. They multiplex the counter output
as shown in the bottom-left of the figure; e.g., CTRL1=2 means LiU, etc.

7.4.2 Area and power analysis of Li and Ac AddrGens

Synthesis was performed with the Synopsys Design Compiler [58], using the Faraday
UMC 90 nm Standard Process library [22]. Table 7.2 presents the normalized area,
in terms of standard 2-input NAND gates, for the the LiUd, the LiUo, the Ac, and
the combined LiAc. Results are taken at three frequencies (555, 833, 1111 MHz) for
increasing counter size (N=8, 12, 16, 20 and 24 bits).

The area increases for higher N and frequency values. ’�Area Freq in %’ corresponds
to the area increase from the frequency of 555 to 1111 MHz. Increasing the frequency
does not increase the number of gates, the design is kept same; however, in order to meet
the required clock frequency, certain gates are resized to get more drive strength; hence,
more area overhead. As shown in the table the LiUd has the largest area increase for
increasing N , which is between 30.7 and 45.3%.
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Figure 7.13: Li & Ac AddrGens

Table 7.2: Area metrics of Li & Ac AddrGens

Cntr Freq N
in MHz 8 12 16 20 24

LiUd 555 123 186 262 344 426
LiUd 833 135 219 305 401 500
LiUd 1111 179 265 360 455 556
�Area Freq in % 45.3 41.9 37.2 32.3 30.7

LiUo 555 107 170 230 286 352
LiUo 833 110 172 234 297 365
LiUo 1111 116 191 274 355 435
�Area Freq in % 8.4 12.6 19.4 24.0 23.6

�Area LiUd-Uo in % 35.2 27.9 23.8 22.0 21.8
Ac 555 108 168 227 289 351
Ac 833 112 171 230 299 362
Ac 1111 114 192 273 353 435
�Area Freq in % 5.3 13.8 20.2 22.3 24.1

LiAc 555 122 182 252 325 388
LiAc 833 134 202 269 341 414
LiAc 1111 139 227 313 396 486
�Area Freq in % 14.1 24.8 24.3 22.0 25.1

Moreover, the table reveals that the LiUd requires the largest area for increasing
frequencies; e.g., LiUd consumes 21.8 to 35.2% more than LiUo; this is given in row
’�Area LiUd-Uo in %’.

Figure 7.14 shows the power analysis of the LiUd and the LiUo at three frequencies;
the LiUd is worse, especially for higher frequencies, by 13 to 23%. The power increases
non-linearly with the frequency, since a higher frequency also demands for a larger circuit
area; see Table 7.2. Considering the advantages the LiUo counter has over the LiUd
counter, the latter will not be considered any more from this point on.
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7.4.3 Minimizing the Gray code and Worst-case gate delay AddrGens

This subsection shows how the Up-only counter is used to generate optimized AddrGens
for Gray code (Gc) and the Worst-case gate delay (Wc) CMs.

Gc: Gray code AddrGen
The column ’Gc’ of Table 7.1 shows a 4-bit address sequence for the Gc CM. This
sequence can be derived from the Linear sequence, as follows: bit0 of the Gc address
can be derived from bit0 of the Linear address by inverting it when bit1 of the linear
address is ’1’. This is shown in Figure 7.15(a): the mux of bit0 is controlled by the
signal ’Q1’. Similar reasoning applies to bit1 and bit2. The mux of bit3 is controlled
by the Up/Down signal, which means that in case of the ⇑ address sequence, the ’0’
input of the mux will select Q3 to generate O3; see Table 7.1. Based on the above,
the implementation of Gc AddrGen is done in a simple and easy way by using linear
Up-only counter.

Wc: Worst-case gate delay AddrGen
The Worst-Case Gate Delay (WCGD) algorithm [108] has been designed as a more
efficient replacement of the MOVI algorithm [23]. It has the property that for each
of the 2N victim addresses (vaddres), the following N address-triplets are generated:
vaddr ⊕ 2j , vaddr , vaddr ⊕ 2j ; for 0 � j � N − 1. The column ’Wc’ of Table 7.1 sketches
part of a 4-bit Wc address sequence; i.e., for vaddr = 0000. For every vaddr of the
register (Q3, Q2, Q1, and Q0), any one of the 4 address bits has to be inverted. This is
accomplished in Figure 7.15(b) by selecting the Qj or the Qj output, under the control
of the corresponding mux with control input ’2ˆ j’. For example, for bit2 the mux
control input is labeled ’2ˆ j’ and (2). Note that of the 4 mux control inputs only one is
active, such that only one address bit is inverted.
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Figure 7.15: Gc, Wc, and 2i AddrGens

7.4.4 2i AddrGen

The 2i CM is important for the MOVI algorithm [65, 100], which is used throughout
the industry. Table 7.3 will be used to explain the AS. The sub-table ’Regular 2i CM’
lists the ’regular’ 2i CM. In the column ’0’ stands for ’i = 0’: aids of 20 = 1 are used;
see column in bold font. In the next column aids of 21 = 2 are used, etc. A barrel
shifter with N muxes, each with N inputs, could be used to transform the Li AS into the
’Regular’ 2i AS. However, this requires a total of: N ∗N = N2 inputs.

The second sub-table of Table 7.3, ’Economical 2i CM’, shows the operation of the eco-
nomical solution. The AS in the column ’i = 0’ is identical to the regular AS. For all
other values of i the muxes interchange coli with col0; see bold columns. Therefore, the
mux for bit0 requires N inputs, while the other muxes only require 2 inputs. Implemen-
tation of the economical solution is shown in Figure 7.15(c); the required number of mux
inputs are reduced to: 2 ∗ (N − 1) +N = 3N − 2.

Table 7.3: Ways of 2i addressing

Regular 2i CM Economical 2i CM
# 0 1 2 3 0 1 2 3
0 0000 0000 0000 0000 0000 0000 0000 0000
1 0001 0010 0100 1000 0001 0010 0100 1000
2 0010 0100 1000 0001 0010 0001 0010 0010
3 0011 0110 1100 1001 0011 0011 0110 1010
4 0100 1000 0001 0010 0100 0100 0001 0100
5 0101 1010 0101 1010 0101 0110 0101 1100
6 0110 1100 1001 0011 0110 0101 0011 0110
7 0111 1110 1101 1011 0111 0111 0111 1110
8 1000 0001 0010 0100 1000 1000 1000 0001
9 1001 0011 0110 1100 1001 1010 1100 1001
10 1010 0101 1010 0101 1010 1001 1010 0011
11 1011 0111 1110 1101 1011 1011 1110 1011
12 1100 1001 0011 0110 1100 1100 1001 0101
13 1101 1011 0111 1110 1101 1110 1101 1101
14 1110 1101 1011 0111 1110 1101 1011 0111
15 1111 1111 1111 1111 1111 1111 1111 1111
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Figure 7.16: Pr AddrGen

7.4.5 Pseudo-random AddrGen

The implementation of Pr AddrGen requires a Linear Feedback Shift Register (LFSR);
see Figure 7.16(a). It can generate the Address Sequence (AS) of the column ’PR’ of
Table 7.1, which we will denote the ⇑AS. For this the LFSR uses the primitive polynomial
’G(x)’: G(x) = x4 + x + 1, such that the maximum-length sequence will be generated
[100]. This polynomial is implemented by XORing the outputs of bit3 and bit0 and
feeding it to the input of LFSR. The LFSR has to shift to the left; i.e., towards the most
significant address bit. The NOR gate allows for the generation of the all-0 address;
when the state of the LFSR is 1000 or 0111, it inserts a ’1’ into the XOR network. That
way it can get out of the state ’0000’.

When the ⇓ AS has to be generated, the LFSR has to shift towards the least-
significant bit, while the XOR network has to implement the reverse polynomial G∗(x),
which satisfies the equation: G∗(x) = xg ∗G(1/x); g is the degree of the polynomial [100].
The reverse polynomial G∗(x) = x4 ∗ (1/x4 + 1/x + 1) = x4 + x + 1 is implemented in
the ’Pseudo-random Down (PrD)’; see Figure 7.16(b).

Figure 7.16(c) shows the 4-bit Pr AG, which can generate the ⇑ and the ⇓ AS; it is
a combination of Figure 7.16(a) and (b). The left and right shift capability is supported
by the muxes located between the LFSR cells; which are controlled by the Up/Down
signal.

7.4.6 Next-address AddrGen

Figure 7.17 shows the Next(Ne) AddrGen. The implementation is based on the idea
that the increment function of the Up-only counter can be separated from the Register
function. This results in two separate units: the ’Register’ and the ’+1 increment logic’
as shown in Figure 7.15(b). To generate the ⇑ and ⇓ sequences, the mux in the figure
can select the Register outputs, which represent the ’Normal Sequence’, via mux inputs
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Figure 7.18: Li, Ac, Ne, Gc, Wc, Pr and 2i (ALL) AddrGen

’2’ and ’3’. Alternatively, the generation of the ’Next Sequence’ in the ⇑ or ⇓ is done via
mux inputs ’0’ and ’1’.

7.4.7 Address generator summary

Finally, the AddrGen capable of generating all considered CMs in this section (Li, Ac, Ne,
Gc, Wc, Pr and 2i CMs) is also included for comparison, and to illustrate the effectiveness
of the new AddrGen implementation method. Figure 7.18 shows its implementation, and
it is referred as ALL AddrGen. It consists of a LFSR which can be configured both as
a Pseudo-random generator and a typical register, with the outputs R3, R2, R1 and R0;
a ’+1 incrementer logic’ which is the combinational Up-only counter, with the outputs
C3, C2, C1 and C0; and a multiplexer network with the outputs O3, O2, O1 and O0.
The multiplexer consists of N = 4 multiplexer, one for each bit. The details of them
are shown at the bottom of the Figure 7.18, while their control signals are listed in the
upper part of the figure.

Figure 7.19 depicts the area required for each of the CMs covered in this section; for
the completeness, the Pseudo-random (Pr) CM (see column ’Pr’ in Table 7.1) is also
included.

The figure shows that the area required by the ’ALL’ AddrGen is 2.42 to 2.95 times
the area of the Li AddrGen, depending on the size of N (the larger N , the smaller the
size of the ALL AddrGen). On the other hand, the ALL AddrGen requires only 40% of
the area required by a brute-force implementation; e.g., for N = 24, the ALL AddrGen
requires 1054 gates, as compared with 3070 gates for the brute-force implementation of
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Figure 7.19: Area for different AddrGens

the Address Generator (see Section 7.3.2).

7.5 Experimental Results

This section presents and discusses the GME MBIST Engine experimental results. As
the synthesis software tool, Synopsys Design Compiler version D-2010.03 for suse32 was
used with its graphical user interface Design Vision. As the technology library, UMC
L90 1P9M Standard Performance Low-K Library (FSD0A A Generic Core) was used.

By default, GME MBIST Engine was synthesized for a 16 K x 16-bits memory config-
uration, with 7-bit row and column addresses, each. Number of Hammer operations and
Butterfly Max Distance were chosen as 1000 [98] and 4, respectively. Size of the Com-
mand Memory is 64 nibbles of 4-bit, and the clock period was taken as 2 ns (500 MHz)
under worst case conditions (WCC). In addition, GME MBIST consists of diagnosis
capability. If it is not said reverse, those are the configurations during experiments.

Seven experiments will be presented:

1. Area vs. flexibility: investigates that how the GME MBIST area is impacted
by the flexibility.

2. Frequency vs. flexibility: investigates that how the GME MBIST maximum
frequency is impacted by the flexibility.

3. Area of sub-blocks: investigates the area percentages of GME MBIST sub-
blocks.

4. Area vs. memory size increase: investigates that how the GME MBIST area
is impacted by the increasing memory size.

5. At-speed testing: investigates the at-speed testing capability of GME MBIST.

6. Area vs. Command Memory size: investigates how the GME MBIST area is
impacted by the Command Memory size.
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Figure 7.20: GME MBIST area vs. flexibility

7. Area vs. Diagnosis capability: investigates how the GME MBIST area is
impacted by the diagnosis capability.

7.5.1 Area vs. flexibility

To investigate the impact of the flexibility on the GME MBIST area overhead, five
memory test groups are considered as:

• Group 1. March test algorithms : This group only consists of the linear March
tests (e.g., March C+, March SS, BLIF).

• Group 2. Galloping/Walking test algorithms: This group only consists of Galloping
and Walking tests (i.e., GalPat, GalRow, GalCol, Gal9R, Walking 1/0, WalkRow,
WalkCol).

• Group 3. Butterfly test algorithm: This group only contains the Butterfly test.

• Group 4. Hammer test algorithms: This group only consists of the Hammer tests
(e.g., HamRh, HamWDhrc).

• Group 5. Delay test algorithms: This group only consist of the GMEs with a delay
time of 50 ms and 100 ms.

By default, each group consists of the 
 (wD) and 
 (rD) GMEs.
Group combination names refer to the group names that they include. For example,

G1 represents the implementation of only Group 1, whereas G1+G2 to combination of
the Group 1 and Group 2. For example, G1 to the implementation for only the Group
1 March algorithms; G1+G2 for the combination of March and Galloping/Walking al-
gorithms, together. ALL is the case where GME MBIST Engine has the full capability.

Table 7.4 shows the area results vs. flexibility. The first column lists the group
combinations; the second column gives the area results in terms of μm2; the third column
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Table 7.4: GME MBIST area vs. flexibility
Group Area Area

Combinations (µm2) (gates)

BASIC G1 18091 4523

EXTENSION
G1 19747 4937

G1+G5 21250 5312
G1+G4 23742 5936

G1+G4+G5 24938 6234
G1+G3 24092 6023

G1+G3+G5 25020 6255
G1+G3+G4 25996 6499

G1+G3+G4+G5 27799 6950
G1+G2 26252 6563

G1+G2+G5 27595 6899
G1+G2+G4 27097 6774

G1+G2+G4+G5 28434 7108
G1+G2+G3 27630 6908

G1+G2+G3+G5 28764 7191
G1+G2+G3+G4 27775 6944

ALL 29121 7280

has the normalized area results in terms of 2-input NAND gate. BASIC G1 corresponds
to the G1 implementation with the basic command set. Rest of the combinations were
built with the extension command set.

From Figure 7.20, we can conclude the followings:

• The BASIC G1 implementation, BAR A, has an area of 4.5 K gates.
• The EXTENSION G1, BAR B, has an area of 4.9 K gates and requires 9% more

area than the BASIC G1.
• The EXTENSION ALL, BAR C, has an area of 7.2 K gates and requires 47.5%

more area than the BASIC G1.

To sum up, the correlation between the area overhead and the flexibility was clearly
shown by this experiment. Increasing flexibility results in a higher area overhead.

7.5.2 Frequency vs. flexibility

To investigate the impact of the flexibility on the GME MBIST maximum frequency,
same memory test groups are used as in the previous experiment.

This experiment concludes the following:

• The EXTENSION G1, BAR B, has a maximum frequency of 714 MHz.
• The EXTENSION ALL, BAR C, has a maximum frequency of 500 MHz which is

about 30% slower than the EXTENSION G1.

To sum up, the correlation between the area overhead and the maximum frequency
was clearly shown by this experiment. Increasing flexibility results in a lower maximum
frequency.
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Table 7.5: Area of each sub-block
Module Area (µm2) Area (gates)

GME MBIST Engine 29121 7280

GME MBIST Processor 11170 2793

Command Memory 8332 2083
Controller 2490 623
Registers 348 87

GME MBIST Wrapper 17951 4488

Registers 392 98
Address Generator 13506 3377

Data & Control Generator 1429 357
ORA 1773 443

Multiplexing Unit 851 213

wo Diagnosis w Diagnosis
CM 8x4 5086 5436
CM 16x4 5274 5709
CM 64x4 6935 7280
CM 8x4 5112 5827
CM 16x4 5509 6088
CM 64x4 7009 7745
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Figure 7.21: Area of each sub-block

7.5.3 Area of each sub-block

To investigate the area overhead of each sub-block in GME MBIST, system was synthe-
sized at 500 MHz for EXTENSION ALL case.

Table 7.5 lists the area for each sub-block. Figure 7.21 visualizes the normalized area
overhead. GME MBIST is shown as the red bar. It has two main sub-blocks: GME
MBIST Processor and GME MBIST Wrapper. They are shown as the orange bars.

Figure 7.22 concludes the followings:

• GME MBIST is shared between the GME MBIST Processor (38%) and GME
MBIST Wrapper (62%).

• GME MBIST Wrapper roughly has an area of 1.6 times of GME MBIST Processor.
• GME MBIST is mainly dominated by the Address Generator (46%) and the Com-

mand Memory (29%).
• GME MBIST Processor is mainly dominated by the Command Memory (75%).
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Table 7.6: GME MBIST area and area overhead for different memory size configurations
Memory Configuration GME MBIST area Memory cell array area Area OH

(x 16-bit) (µm2) (gates) (gates) (%)

16K 28166 7042 76022 9.26
64K 29688 7422 304087 2.44

256K 31283 7821 1216348 0.64
1M 32817 8204 4865393 0.17
4M 34219 8555 19461571 0.04

16M 35943 8986 77846282 0.01

• GME MBIST Wrapper is mainly dominated by the Address Generator (75%).

To sum up, the GME MBIST hardware is dominated by two sub-blocks: the Address
Generator (46%) and the Command Memory (29%). Area overhead percentage of each
sub-block was clearly shown by this experiment. To further optimize the area overhead,
future work should focus on those two sub-blocks.

7.5.4 Area vs. memory size increase

To investigate the impact of memory size increase on the MBIST area overhead, GME
MBIST was synthesized for the a number of memory configurations.

In Table 7.6, the first column lists the memory size configurations from 16K x 16-bit
to 16M x 16-bit. The second column gives the GME MBIST area in terms of μm2. The
third column is the normalized area in terms of 2-input NAND gate. 2-input NAND gate
was chosen since the previous studies used it as an area normalization standard. For a fair
area comparison, FSD0A A SH library was chosen for the memory cell array, since GME
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Figure 7.23: Linear area increase of GME MBIST for the increasing memory size

MBIST was synthesized with the logic core of same library (FSD0A A Generic Core).
FSD0A A SH library is the Faraday 90 nm Synchronous High Density Single-port SRAM
Compiler using UMC 90 nm 6TSRAM1.16SPHVT unit cells. This unit cells have an
area of 1.16 μm2 with an operating speed of 425 MHz (Max.) under the worse case
conditions for 4K x 16-bit memory configuration [22]. Fourth column shows ONLY
the normalized area of the memory cell array (i.e., excluding Row/Column Decoders,
Read/Write Circuitries, etc.). The last column gives the area overhead in terms of
percentages.

For a fair comparison, all of the memory cell arrays and GME MBIST have to be
synthesized at the same clock frequency. Since the 256K x 16-bit memory size does not
meet a frequency of 500 MHz, it was chosen as 455 MHz for this experiment.

From the figures, the followings are concluded:

• Figure 7.23 shows the linear increase of GME MBIST area for the increasing mem-
ory size.

• While the memory size is 4 times larger at each step, GME MBIST area increases
roughly 5% (386 gates).

• Figure 7.24 shows the GME MBIST normalized area and the area overhead in
percentages.

• While the memory size increases from 16K x 16-bit to 16M x 16-bit, the area
overhead falls from 9.26% to 0.01%.

• The memory size goes 4 times high at each step, in parallel GME MBIST area
overhead falls 4 times.

• For the high memory sizes, GME MBIST area overhead becomes negligible.

To sum up, the area increase of the GME MBIST is highly linear for exponentially
increasing memory sizes. The relation between the GME MBIST area/area overhead
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Figure 7.24: GME MBIST area and area overhead for the increasing memory size

Table 7.7: GME MBIST area with/without diagnosis capability for different Command
Memory and memory size

GME MBIST area
(gates)

Command Memory without with
configuration Diagnosis Diagnosis

16K x 16-bit memory
Command Memory 8x4-b 4972 5359
Command Memory 16x4-b 5225 5616
Command Memory 64x4-b 6813 7202

8K x 32-bit memory
Command Memory 8x4-b 5097 5682
Command Memory 16x4-b 5361 5943
Command Memory 64x4-b 6956 7535

and memory size was shown by this experiment.

7.5.5 At-speed testing

To investigate the at-speed testing capability of GME MBIST, it was synthesized and
resulting clock frequency was compared with [22].

The clock frequency of a 4K x 16-bit SRAM was reported as 425 MHz for the
FSD0A A SH library [22]. For a fair comparison, GME MBIST EXTENSION ALL
case was synthesized under the same configuration. Resulting clock frequency of the
GME MBIST was 555 MHz which is higher than the Faraday’s SRAM.

To conclude, this experiment showed that GME MBIST has the at-speed testing
capability.
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7.5.6 Area vs. Command Memory size

This experiment investigates the impact of Command Memory size on the GME MBIST
area.

Since Command Memory has a significant portion (29 %) of the whole hardware,
GME MBIST was synthesized for 8, 16 and 64 nibbles of 4-bits Command Memory
sizes. In addition, for a fair comparison with the previous studies, this experiment was
done for two different Memory-under-Tests: 16K (7-bit row, 7-bit column) x 16-bit and
8K (9-bit row, 4-bit column) x 32-bit.

Table 7.7 concludes the followings:

• Command Memory of 8 nibbles instead of 64 nibbles results in a GME MBIST
area saving of 25%.

• The cost of rising Command Memory size from 16 nibbles to 64 nibbles (1590
gates) is roughly 6 times of the rising from 8 nibbles to 16 nibbles (260 gates).

• Command Memory size is linearly proportional to the area overhead.

To sum up, this experiment showed that the Command Memory size has a significant
impact on the GMEMBIST area. In addition, without changing the MBIST architecture,
a certain Command Memory size may be chosen for the fine tuning of the MBIST area
overhead to meet the targeted design specifications.

7.5.7 Area vs. Diagnosis capability

This experiment investigates the impact of the diagnosis capability on the GME MBIST
area. When the diagnosis feature is added to GME MBIST, the address and data of the
faulty cell are reported out to the user.

Due to the same reason in the previous experiment Area vs. Command Memory size,
this experiment was done for two different Memory-under-Tests: 16K (7-bit row, 7-bit
column) x 16-bit and 8K (9-bit row, 4-bit column) x 32-bit.

Table 7.7 concludes the followings:

• For 16K x 16-bit memory, the diagnosis capability adds around 388 gates to the
GME MBIST area. 30-bit information (i.e., 14-bit address and 16-bit data) is sent
out for diagnosis.

• For 8K x 32-bit memory, the diagnosis capability costs around 580 gates which
is 1.5 times of 16K x 16-bit memory. Reason behind that is in this case 45-bit
information (i.e., 13-bit address and 32-bit data) is sent out.

To sum up, the data and address widths linearly affect the GME MBIST area over-
head.

7.6 Comparison with the previous studies

This section provides a comparison between the GME MBIST and the previous studies
from literature.
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Table 7.8: Comparison among the previous programmable MBIST studies
General [30]

PMBIST [9] FP-MBIST [28] NPMBIST [82] FP-MBIST [29] GME MBIST
(Appello 03) (Du 05) (Park 09) (Du 06) (this work)

March � � � � �
Galloping/ x � � � �
Walking x � � � �
Butterfly x � � � �
Hammer x x x x �
Sliding Diag. x � � � x
AD Open x � x � �
AD Delay x x x x �
Byte WR Enb. x x x � x
Moving Inv. x x x x �
Retention � x x x �
Multi-level x �(2) �(2) �(4) �(2)
nested loop
Data s,cb NA NA s,cb,r/c s,cb,r/c
Background DB Reg Addr. Unq.
Counting U/D fixed NA NA Lr, Lc, Ld Lr, Lc, Ld
Method AC, 2i

Command 43x4-b 22x9-b 64x4-b,
Memory 8x9-b 8x9-b 8x8-b 16x4-b
Total bits for 160 144 126 216 36
March C+
Technology 0.18 µm 0.13 µm 0.13 µm 0.13 µm, 90 nm 90 nm
Freq (MHz) 40 NA 300 NA, 333 [29] 500
AREA 7915 gates 9.2 K 7.2 K gates
16Kx16-b 7.9 K gates 5.6 K gates
AREA 6.4 K gates 5.36 K gates
8Kx32-b wo Diagnosis 13.6 K gates [30] 5.94 K gates

4.9 K gates [29] 3.4 K gates

Table 7.8 lists the GME MBIST and the previous studies on programmable Memory
BISTs. Comparison is based on the main features of a MBIST such as the supported
test algorithms, data backgrounds, counting methods, MBIST area overhead etc.

Before starting to the comparison, each of the previous studies will be summarized
here:

PMBIST (Appello 03)

PMBIST [9] was designed only for March and Retention tests without nested looping. It
can generate the solid, checkerboard or any data background defined at Data Background
register during the design step. Counting method is fixed during at the design step (i.e.,
one of the Lr or Lc). Command Memory consists of 43 words of 4-bit instructions.
Implementing March C+ test requires 160 bits of instruction memory. Authors proposes
that PMBIST has at-speed testing with 40 MHz for 0.18 μm technology. Its prominent
feature is owning a P1500-compliant wrapper that enables the execution and diagnosis
of the test from an external ATE through IEEE 1149.1 TAP.

FP-MBIST (Du 05)

FP-MBIST [28], developed by Mentor Graphics, is capable of performing a variety of al-
gorithms (i.e., both linear and non-linear) with two level nested looping. FP-MBIST has
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a modular design that enables the synthesis for the combinations of memory test groups.
Supported data backgrounds, counting methods and clock frequency were not mentioned.
From the supported algorithms, one can conclude it is capable of fast-row/column and
diagonal addressing. Two different Command Memory sizes were reported: 22 words and
8 words of 9-bit instructions. Implementing March C+ test requires 144 bits of instruc-
tion memory. It supports full-speed testing by pre-fetching the instructions, meaning
that it does not lose any cycles between March operations. It provides a wide memory
test menu to the user with diagnosis feature.

NPMBIST (Park 09)

Non-linear PMBIST [82] supports both the linear and non-linear test algorithms. It
is able to 2-levels nested looping. Data background and counting method were not
mentioned. Command Memory has 8 words of 9-bit instructions. Implementing March
C+ algorithm requires 126 bits of instruction memory. Maximum frequency is 300 MHz
with TSMC 0.13 μm.

General FP-MBIST (Du 06)

This work [30] is the generalized version of FP-MBIST (Du 05) [28] for an unlimited level
of nested looping. For the implementation, they limited themselves up to 4 levels nested
looping. General FP-MBIST supports a variety of algorithms. It has solid, checkerboard,
row/column stripes, and address unique data backgrounds with fast-row/column, only
row/column or diagonal addressing methods. Command Memory has 8 words of 8-bit
instructions. Implementing March C+ etst requires is 216 bits of instruction memory.
It was implemented at 0.13 μm technology. Frequency was not mentioned at this study,
however at [29], same architecture for March-only capability (single level) was synthesized
at 90 nm. Resulting frequency was 333 MHz. General FP-MBIST [30] may have the
same frequency or most probably it is slower than that. Number of nested loop level,
data backgrounds, and addressing scheme within a loop are orthogonal to each other.

GME MBIST (this work)

GME MBIST supports a high variety of test algorithms. For the delay tests, it consists of
a programmable delay register enabling up to 100 ms delays at 500 MHz clock frequency.
GME MBIST has a modular design that enables the synthesis for the combinations of
memory test groups. 2-levels nested looping is supported. It orthogonally generates the
address order (Up/Down), data background patterns (solid, checkerboard, row/column
stripes), counting methods (fast-row/column/diagonal, address complement, 2i). By
default, the Command Memory size is 64 nibbles of 4-bit. Instructions have variable-
lengths to further save from the command storage. Implementing March C+ algorithm
requires only to 36 bits. Implementation at 90 nm technology resulted in a frequency of
500 MHz. It has at-speed testing and diagnosis.

Here 7 comparisons between GME MBIST and the previous studies will be presented
as:
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1. Memory test algorithm support: compares in terms of the supported memory
test algorithms.

2. Multi-level nested looping support: compares in terms of the number of nested
loop levels.

3. Data backgrounds and counting methods: compares in terms of the data
backgrounds and counting methods.

4. Instruction size and coding efficiency: compares the in terms of the instruc-
tion size and coding efficiency.

5. Diagnosis capability: compares in terms of the diagnosis capability.

6. Frequency: compares in terms of the achieved frequency.

7. Area overhead: compares in terms of the MBIST area overhead.

7.6.1 Memory test algorithm support

PMBIST supports March-only algorithms and retention tests. It manages the delay
tests by no operation instructions. Therefore, for a long delay time (e.g., a few hun-
dred milliseconds), instruction memory gets too high. Whereas GME MBIST has a
programmable delay register supporting any delay amount. FP-MBIST, NPMBIST and
General FP-MBIST do not support Hammer, AD delay, MOVI or retention tests.

To conclude, GME MBIST is superior than the previous studies in terms of supported
algorithms, since it provides critical memory tests.

7.6.2 Multi-level nested looping support

PMBIST does not have multi-level nested looping capability. FP-MBIST, NPMBIST
and General FP-MBIST have 2, 2 and 4-levels nested loops, respectively. GME MBIST
supports 2-levels nested loops. In fact, more than 2-levels is open to discussion; whether
it is necessary or it is over design.

To conclude, GME MBIST is equal compared to the previous studies in terms of
multi-level nested looping capability.

7.6.3 Data backgrounds and counting methods

For the data backgrounds, PMBIST has solid, checkerboard and a programmable data
background feature. FP-MBIST and NPMBIST do not mention the supported data
backgrounds. General FP-MBIST has an address unique data background in addition to
solid, checkerboard, row/column stripes. It enables to specify a unique data background
only for a specific address location. GME MBIST only does not provide address unique
data background.

For the counting methods, PMBIST has a counter that is fixed during the design
step. FP-MBIST and NPMBIST do not mention the supported addressing schemes.
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General FP-MBIST has fast-row/column and diagonal schemes. Except GME MBIST,
the previous studies do not provide address complement (AC) or 2i counting methods.

To conclude, GME MBIST is superior compared to the previous implementations in
terms of the supported counting methods. In addition, GME MBIST offers critical data
background patterns except the address unique pattern.

7.6.4 Instruction size and coding efficiency

PMBIST, FP-MBIST, NPMBIST and General FP-MBIST have instruction sizes of 4,
9, 9 and 8-bit; they require a total of 160, 144, 126 and 216 bits to implement March
C+ test, respectively. Whereas, GME MBIST has variable-length commands. Meaning
that the opcode length is inversely related to the usage frequency of the command.
Moreover, GME MBIST only requires 36 bits to implement March C+ test. This is due
to that our proposed MBIST hardware is based on the novel concept of GME, whereas
previous studies (i.e., FP-MBIST, NPMBIST and General FP-MBIST) are operation-
based MBISTs. Therefore, they have to define the each memory operation; resulting in
high amount of test code. On the other hand, GME concept compacts the information
of several memory operations into a single GME and saves from the test code.

To conclude, GME MBIST has better coding efficiency and requires less Command
Memory space due to the variable-length commands and the novel concept of GME.

7.6.5 Diagnosis capability

PMBIST has a P1500 compliant wrapper which can communicate with a IEEE 1149.1
TAP controller for diagnosis purposes. NPMBIST does not support diagnosis, whereas
the rest and our GME MBIST have diagnosis feature.

This comparison shows that GME MBIST is equal to the previous studies in terms
of the diagnosis capability.

7.6.6 Frequency

Within the previous studies, only [29] reported a frequency of 333 MHz at 90 nm for a
March-only General FP-MBIST. On the other hand, GME MBIST EXTENSION ALL
case has a frequency of 500 MHz for the same technology node. Furthermore, when
General FP-MBIST is synthesized for more algorithms, its resulting frequency will be
most probably lower than the reported value. Therefore, GME MBIST is superior to
the previous studies in terms of the frequency.

7.6.7 Area overhead

For a fair comparison with the previous studies, GME MBIST was synthesized for two
memory sizes: 16K x 16-b and 8K x 32-b memories. In addition, some of the previous
studies reported MBIST area for a Command Memory size of 43x4-b, 22x9-b, 8x9-b,
8x8-b with or without diagnosis.

PMBIST reported an area of 7951 gates for a 16K x 16-bit memory size with a CM
size of 43x4-b (162 bits). GME MBIST has an area of 7202 gates for the same memory
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size with a CM size of 64x4-b (256 bits). Although our Command Memory is larger and
GME MBIST is at its full capability, we have a lower area of 749 gates.

FP-MBIST reported an area of 9.2 K gates with a CM size of 22x9-b (198 bits);
and 7.9 K with a CM size of 8x9-b (72 bits) for a 16K x 16-bit memory size. For the
comparison, GME MBIST has an area of 7.2 K gates with a CM size of 64x4-b (256
bits); and an area of 5.6 K gates with a CM size of 16x4-b (64 bits) for the same memory
size. The area of GME MBIST is 2.7 K and 2.3 K gates lower than the FP-MBIST.

NPMBIST reported an area of 6.4 K gates for a 8K x 32-bit memory size without
diagnosis. The size of CM was not mentioned, however they apply the dynamic loading
as General FP-MBIST where CM sizes is 8x8-b (64 bits). Thus, GME MBIST configu-
ration was selected for a 8K x 32-bit memory size with a CM size of 16x4-b (64 bits).
GME MBIST has an area of 5.36 K gates which is 1.04 K gates lower than the area of
NPMBIST.

General FP-MBIST reported an area of 13.6 K gates for a 8K x 32-bit memory size
with a CM size of 8x8-b (64 bits). GME MBIST has an area of 5.94 K gates for the
same memory size with a CM size of 16x4-b (64 bits). The area of GME MBIST is 7.66
K gates lower than the General FP-MBIST.

To conclude, this comparison shows that GME MBIST is superior to the previous
studies in terms of area under several configurations (e.g., different memory size, Com-
mand Memory size, diagnosis capability).

7.7 Conclusion

This section concludes the points that GME MBIST is superior to the previous studies.
Experiments results and the comparison with the previous studies shows that GME

MBIST is superior on the followings:

• GME MBIST is more flexible. Meaning that it supports more memory test algo-
rithms.

• GME MBIST is equal in terms of the supported number of nested loop levels.
• GME MBIST is far better in terms of the generated counting methods.
• GME MBIST is equal in terms of the generated data background patterns. Only

the address unique data background pattern is not supported.
• GME MBIST is far better in terms of the instruction coding and Command Mem-

ory usage. This is mainly due to the variable-length commands and the novel GME
concept.

• GME MBIST is equal in terms of the diagnosis capability.
• GME MBIST is better in terms of the area overhead.
• GME MBIST is unique in terms of providing the orthogonal algorithm stresses.

Therefore, we can conclude that the design goals: 1) high flexibility, 2) at-speed
testing, 3) low area overhead, 4) linear area increase with the increasing memory size, 5)
user-programmability, 6) full-speed testing, 7) orthogonal algorithm stresses, 8) diagnosis
capability have been met.
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GME MBIST Test Manager 8
This chapter introduces a graphical user interface (GUI) that simplifies the implementa-
tion of memory tests. Main aim is to guide the user for operating the GME MBIST. This
chapter is organized as follows. Section 8.1 presents the test manager where the memory
tests are programmed. Section 8.2 explains the part where the performance of a test is
checked in high-level. Section 8.3 and 8.4 continue with the generation of test microcode
and the configuration parameters for the hardware synthesis, respectively. Section 8.5
concludes with the file manager system that saves/loads the memory test files.

Figure 8.1 shows that the GUI has five sub-blocks as:

1. Test Manager: generates the memory tests by using the GME MBIST commands.
2. Test Performance: checks the performance of the defined memory test in Test

Manager.
3. Convert to Binary Format: generates the microcode file for the Command Memory.

It converts the defined memory test in Test Manager to the binary format.

Test Manager

File Manager

Test Performance Hardware Configuration

Conversion to
Binary Format

Figure 8.1: Graphical User Interface for GME MBIST; Test Manager, Test Performance,
Conversion to Binary Format, Hardware Configuration, and File Manager
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Figure 8.2: Test Manager

Figure 8.3: Commands pop-up menu showing all commands with their required param-
eters

4. Hardware Configuration: generates the file that contains the synthesis parameters.
5. File Manager: manages the memory test file loading/saving.
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Figure 8.4: GME# pop-up menu showing all GMEs listed in Table 6.2

8.1 Test Manager

Test Manager helps user to build own self-defined memory tests. It consists of two main
objects: pop-up menus and push buttons.

A pop-up menu shows the different options for a certain parameter. A certain pa-
rameter can be selected from the list of a pop-up. Figure 8.2 shows that the user may
select one of the GME MBIST commands with the required parameters (i.e., AO, DV,
CM&AD, DB, B, GME# or RCNT#). For example, when clicked onto the Commands
pop-up, all commands and the parameters required by them appear as in Figure 8.3. In
addition, Figure 8.4 shows that a certain GME listed in Table 6.2 is specified from the
GME# pop-up menu.

Push buttons are used for adding, removing, moving up/down of a selected command.
Push buttons are presented in the following as:

• ADD: adds the selected command with its parameters to the specified position on
the test listbox.

• MODIFY: modifies (overwrites) the selected command with the new parameters.
• DELETE: deletes the selected command from the test listbox.
• CLEAR ALL: clears all of the test listbox.
• /\: moves up the selected command.
• \/: moves down the selected command.

To further simplify the implementation of a memory test, Usage Statistics of the
Command Memory are shown at the bottom of the test listbox. Figure 8.5 shows the
three main usage information:

• Used: shows the number of occupied lines (4-bit nibbles) in the Command Memory.
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Figure 8.5: Usage statistics of the Command Memory

Figure 8.6: Test Performance

• Left: shows the empty lines in the Command Memory.
• Command Memory Usage: gives the usage percentage. For example, Figure 8.5

shows that Used is 5 (2∗2+1∗1) and Left is 59 (64−5). Then, Command Memory
Usage is simply calculated as 7.8125% ((5/64) ∗ 100).

8.2 Test Performance

This module executes the defined memory test in high level and reports the number of
read/write operations back.

Test Performance reads the test commands specified in the listbox, and performs the
test at high-level. Figure 8.6 shows that Test Results reports the number of read and
write operations.

Furthermore, Test Performance enables to view the state of the memory array at each
command step. To do so, the user should open the MemoryTest.m file, find the func-
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Figure 8.7: State of the memory array for Lr, Down addressing with solid DB and DV:0
for an 8 words with 8 columns

Figure 8.8: State of the memory array at next step

tion for the PERFORM TEST push button (function pushbutton13 Callback(hObject,
eventdata, handles)), and put a breakpoint at the line ”while Line <= size(List,1)”.
Then, the variable MEM under the MATLAB Workspace window shows the current
state of the memory array.

Moreover, to see the internal addressing and read/write data to each of the memory
cells, user should get in the function HL GME MBIST(), and put the breakpoint to the
related GME function. For example, Figure 8.7 shows a GME#0: ⇓ (w0) operation for
an 8 x 8 memory array. Lr Down addressing in combination with a solid data background
and zero data value are the specified algorithm stresses. Figure 8.8 shows the one further
step: victim cell at Row 5 & Column 1 is written 0. Finally, Figure 8.9 shows the memory
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Figure 8.9: Final state of the memory array after initialization with DV: 0 and solid DB

Figure 8.10: Binary converted commands

array initialized with the data value of 0.

An important remark is that, Test Performance models the memory array for the
data width of a single bit. For example, an 8 x 8 memory will be an 8x8 2-D array
regardless of the number of data bits, as shown in Figure 8.9.

8.3 Convert to Binary Format

This part converts the specified memory test to microcode to be loaded into the Com-
mand Memory. Conversion to Binary Format reads the commands from the listbox, and
converts them to their binary equivalent in the form of 4-bit nibbles. For example, Figure
8.10 shows that the command ”INIT AO: 0, DV: 1, CMAD: AC, DB: cDB” is converted
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Figure 8.11: Hardware Configuration

as ”0001”, ”1011”; and the command ”SGME AO: 1, DV: 0, G: 12” is converted as
”0110”, ”1100”. Binary codings of the commands and the algorithm stresses are given
at Section 7.2.1.

8.4 Hardware Configuration

This part generates the file that contains the hardware synthesis parameters. Figure
8.11 shows that it consists of the followings:

• Memory Row/Column Size: shows the width of the memory row/column addresses.
• Memory Data Bits Width: shows the memory data width.
• Command Memory Height/Word Width: shows the number of rows and columns

of the Command Memory. By default, it has a size of 64 rows x 4-bit.
• Number of Hammer operations (h): from [98], h is 1000 by default.
• Butterfly Max Distance: is the parameter k of 2k distance for Butterfly test.
• CLK Frequency (MHz): for the GMEs with a delay of 50 and 100 ms, the width

of the delay counter is calculated depending on the clock frequency.

All those configuration parameters are read, converted into binary format, and then
written into the hardware configuration file by the GENERATE CONFIGURATION
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Figure 8.12: File Manager

push button under the File Manager.

8.5 File Manager

File Manager is responsible from the project file management. It can save a specified
memory test to the test library; load a memory test from the test library to the Test
Manager; or delete a file in the test library. In addition, it generates the files that
contain the microcode for the Command Memory, and the parameters for the hardware
synthesis. Figure 8.12 shows that it consists of several edit boxes and push buttons as:

• Path Name: shows the path of the current project folder.
• File Name: Name of the file that will be written, loaded from or be deleted is typed

into this box. For example, ”Scan.txt”.
• GET CURRENT PATH: automatically writes the pathname of the current project

folder into the Path Name box. In further, the content of the current folder is shown
under the ”Files in the Folder” listbox.

• <– UPPER FOLDER: goes up to the folder at one higher level and shows the
content of the folder.

• WRT TO TXT: reads the test commands from the Test Manager. Without con-
verting into binary, specified test commands are written into the specified file at
the ”File Name” box. For example, ”Scan.txt”.

• LOAD FROM FILE: read the file specified at the ”File Name” box, and writes
back to the Test Manager. For example, ”Scan.txt”.

• DELETE FILE: deletes the specified file at the ”File Name” box. For example,
”Scan.txt”.
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Figure 8.13: The area to be pasted from ”... bin.txt” to TB GME MBIST.vhd

Figure 8.14: The area to be pasted from ”... conf.txt” to System Package.vhd

• GENERATE COMMAND MEMORY: reads the binary converted test commands
from the Convert to Binary Format, and writes them into the file ”... bin.txt”. For
”Scan.txt”, the microcode will be generated in the file ”Scan bin.txt”.

• GENERATE CONFIGURATION: reads the parameters under the Hardware Con-
figuration, and writes them into the file ”... conf.txt”. For ”Scan.txt”, synthesis
parameters will be generated in the file ”Scan conf.txt”.

After generating the microcode and synthesis parameters files, the user should
copy and paste the contents of those two files (”... bin.txt” and ”... conf.txt”) to the
”TB GME MBIST.vhd” and ”System Package.vhd” files under the GME MBIST RTL
folder, respectively. Figure 8.13 and 8.14 show the regions inside those two VHDL files,
to where the copied codes should be pasted.
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Conclusion 9
This chapter concludes this thesis study. Section 9.1 mentions the main contributions
of this thesis. Section 9.2 suggests the points that may be further studied/improved for
future work.

9.1 Contributions

This thesis contributes to the field of memory testing. Specifically, a novel Memory
BIST implementation was introduced. The proposed MBIST is based on the concept of
Generic and Orthogonal March Element.

The contributions and prominent features of this study are:

• The novel concept of Generic and Orthogonal March Element enables to perform
any suitable combinations of GMEs with algorithm stresses (i.e., address order,
addressing scheme, data background and data value).

• A memory test assembly language was introduced that enables the user to write
own self-defined memory tests.

• GME MBIST has high flexibility and high fault coverage. Both the linear and
non-linear algorithm classes are supported such as March, Galloping/Walking and
variations, Butterfly, Hammer and variations, Moving Inversion, Address decoder
open/delay related faults and delay test algorithms. In addition, proposed hard-
ware is on-the-field programmable.

• GME MBIST is a low cost and efficient solution for the memory testing. For exam-
ple, the area overhead is around 9% for a 16K x 16-bit memory and it drops below to
0.01% for a 16M x 16-bit memory. Furthermore, the area of GME MBIST logarith-
mically increases with the increasing memory sizes. In addition, the variable-length
commands and opcodes result in an efficient usage of the Command Memory and
further decreases the required area; e.g., it requires only 36 bits to define March
C+ algorithm.

• At-speed testing is supported without any complex schemes such as pre-fetching
and pipelining. All the information to generate the consecutive memory operations
is presented in GMEs. Therefore, there is no cycle loss during a march element.

• Implementation is easily extendable, modifiable and highly modular. Additional
new commands and algorithm stresses can be easily added in future. In addition,
the user may tailor the hardware depending on the application. This results in a
trade-off between the GME MBIST capability, area overhead, maximum frequency
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and power consumption. Besides, GME MBIST hardware is generically modeled
to shorten the design time-to-market.

• Diagnosis is provided. GME MBIST reports the data and address of the faulty cell
out.

9.2 Future Work

Highly modular architecture of GME MBIST with its easily extendable command set
simplifies the addition of new features. Here a few suggestions as the future work:

• Operation frequency may be increased by investigating the critical path of the
design.

• Proposed GMEMBIST may be combined into a BISR system to build a full built-in
system (test, diagnosis and repair).

• GME MBIST Processor may be modified to handle multiple memory testing.
• The number of the levels for nested loops may be increased.
• Regarding to the new research on the memory testing, new algorithm stresses

and/or new GMEs may be included.



State diagrams of the
Controller A
This section presents the FSM state diagrams of the Controller in detail.

Main states of the Controller

Figure A.1 shows that the Controller has 4 main states: ST IDLE, ST START,
ST WAIT GME END and ST DONE. In addition, it consists of many command states.
Here, 4 main states will be explained as:

• ST IDLE: When the system is reseted, GME MBIST enters to this state; and waits
to begin the test procedure.

• ST START: This state decodes the 1st part of the opcode and branches to the valid
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INIT_1

SAODV_1

EXTENSION_1

NIBBLE(3..2): “00"

“01”

“10”

“11”
EXTENSION_2

NIBBLE:

“--00"

“X-01”

“XX10”

“0011”

“0111”“1011”

SAODVE_1

SBR_1

SREP_1

REP_1

POWi_1

. . . ST_WAIT_
GME_END

ST_START. . .

. . . ST_START

. . .

ST_WAIT_
GME_END

ST_START

. . .

ST_WAIT_
GME_END

ST_START

ST_DONE

GME_END
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Figure A.1: Main state diagram of the Controller
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Figure A.2: State diagram for the commands with 2-bit opcode

state. In case of an ”INIT”, ”SGME” or ”SAODV” command, it branches into the
valid state, otherwise it branches into the EXTENSION 1 state and continues with
EXTENSION 2 state. EXTENSION 2 branches into the valid command state by
decoding the 2nd and 3rd parts of the opcode.

• ST WAIT GME END: When GME MBIST Wrapper starts to perform a GME to
the memory, GME MBIST Processor waits at this state for the GME to be finished.

• ST DONE: In case of an ”END” command, GME MBIST enters to this state to
finalize the test flow.

Since the GME MBIST commands have the variable-length opcodes, commands can
be classified depending on their opcode lengths: commands with 2-bit, 4-bit and 6-bit
opcode. Command opcodes are shown in Figure 7.4. Here, they will be discussed.

State diagram for the commands with 2-bit opcode

Figure A.2 shows the state diagram for the commands with 2-bit opcode. When Opc
(i.e., NIBBLE[3..2]) is ”00”, ST START state branches to INIT 1 state; ”01” to SGME 1
state; ”10” to SAODV 1 state. Then certain command operations (e.g., reseting/loading
registers) are done. At the final states of each command, GME MBIST Wrapper is
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Figure A.3: State diagram for the commands with 4-bit opcode

activated by the ”WRAPPER START” signal. Afterwards, GME MBIST Processor
enters to ST WAIT GME END state and waits to receive ”GME END” signal from
Memory Wrapper.

State diagram for the commands with 4-bit opcode

In case of an Opc ”11”, GME MBIST Controller realizes that the command opcode is
longer than 2-bit. For the opcode’s 2nd part, one more word is fetched in EXTENSION 1
state, and is decoded in EXTENSION 2 state, as shown in Figure A.2. Figure A.3 shows
the state diagram for the commands with 4-bit opcode. When the 2nd part of the opcode
(NIBBLE[1..0]) is ”00”, EXTENSION 2 branches to SAODVE 1 state; ”01” to SBR 1
state; ”10” to SREP 1 state. Afterwards, certain command operations are done. At the
final states, SAODVE 2 further proceeds to ST WAIT GME END state; whereas SBR 1
and SREP 1 return to ST START state to fetch a new command. Reason is that they
do not perform any GME operations on the memory (i.e., they only select GME bank
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Figure A.4: State diagram for the commands with 6-bit opcode

or set the Re-execute Entry Point Register (REPR)).

State diagram for the commands with 6-bit opcode

When the 2nd part of the opcode (NIBBLE[1..0]) is ”11”, the 3rd part of the opcode
(NIBBLE[3..2]) is checked. If it is ”00”, EXTENSION 2 branches to REP 1 state; ”01”
to POWi 1 state; ”10” to ST DONE state as shown in Figure A.4. REP 1 or POWi 1
states branch to the REP/POWi initialization, re-execution or end states depending on
the Re-execute CouNT Register (RCNTR) value. At the initialization states, RCNTR is
loaded by RCNT#-1 for REP command; by N-1 for POWi command. At the re-execution
states, RCNTR is decremented by 1. After both the initialization and re-execution states,
FSM further proceeds to the REP 2 or POWi 2 state, and certain command operations
are done (e.g., reseting/loading registers). Afterwards, GME MBIST Processor enters
to ST WAIT GME END state and waits for the Memory Wrapper to finish the specified
GME. At the end states, CC pointer jumps to the next command after the REP/POWi
commands, and system returns back to ST START state to fetch this new command.



State diagram of the Address,
Data & Control Generators B
Figure B.1 shows the FSM for the Address, Data and Control Generators. Here, it is
discussed.

• ST IDLE: When the system is reseted, GME MBIST Wrapper waits to begin the
test procedure.

• ST LOAD: Beginning and end addresses for inner and outer loop address counters
are loaded. Afterwards system branches to the specified GME state by BGMER.

• GME States: GMEs have varying number of memory operations. For example in
Table 6.2, B(GME): 0(0), 
 (wD), has only one write operation; B(GME): 0(3), 

(rD,wD, rD), has totally three: one write and two read operations; B(GME): 1(2),
⇑v (wDv ,⇑−v (rD, rDv), wDv), has totally four: 2 write and 2 read operations.
Therefore, B(GME): 0(0) has one state; B(GME): 0(3) has three states; B(GME):
1(2) has four states.

• GME END: When performing a specified GME finishes, GME MBIST Wrapper
enters to GME END state, and informs the GME MBIST Processor. Afterwards,
it returns back to ST IDLE state.

ST_IDLE

ST_LOAD
GME_END

RST GM
E_

ST
AR

T

GME_0_0

. . ..
.
.

GME_1_10_0

Figure B.1: State diagram for the Address, Data and Control Generators
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VHDL coding for the Address,
Data & Control Generators C
Here, VHDL code examples are given for the implementation of the Address generator.

Listing C.1: VHDL coding of B(GME): 0(0) Address Generator

when GME_0_0 =>
i f ADDR_OUT_REG /= END_ADDR_V_REG then

STATE <= GME_0_0 ;
ADDER_CONTROL <= ”010” ;

e l s e
STATE <= GME_END ;
ADDER_CONTROL <= ”011” ;

end i f ;
BASE_LOAD <= ”00” ;

Listing C.2: VHDL coding of B(GME): 0(3) Address Generator

when GME_0_3_0 =>
STATE <= GME_0_3_1 ;
BASE_LOAD <= ”00” ;
ADDER_CONTROL <= ”000” ;

when GME_0_3_1 =>
STATE <= GME_0_3_2 ;
BASE_LOAD <= ”00” ;
ADDER_CONTROL <= ”000” ;

when GME_0_3_2 =>
i f ADDR_OUT_REG /= END_ADDR_V_REG then

STATE <= GME_0_3_0 ;
ADDER_CONTROL <= ”010” ;

e l s e
STATE <= GME_END ;
ADDER_CONTROL <= ”011” ;

end i f ;
BASE_LOAD <= ”00” ;

Listing C.3: VHDL coding of B(GME): 1(2) Address Generator

when GME_1_2_0 =>
STATE <= GME_1_2_1 ;
BASE_LOAD <= ”10” ;
ADDER_CONTROL <= ”011” ;
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when GME_1_2_1 =>
i f ADDR_OUT_REG /= BASE_ADDR_AFTER then

STATE <= GME_1_2_2 ;
BASE_LOAD <= ”00” ;
ADDER_CONTROL <= ”000” ;

e l s i f ADDR_OUT_REG /= END_ADDR_INNER_REG then
STATE <= GME_1_2_1 ;
BASE_LOAD <= ”00” ;
ADDER_CONTROL <= ”010” ;

e l s e
STATE <= GME_1_2_3 ;
BASE_LOAD <= ”10” ;
ADDER_CONTROL <= ”000” ;

end i f ;
when GME_1_2_2 =>

i f ADDR_OUT_REG /= END_ADDR_INNER_REG then
STATE <= GME_1_2_1 ;
ADDER_CONTROL <= ”010” ;

e l s e
STATE <= GME_1_2_3 ;
ADDER_CONTROL <= ”001” ;

end i f ;
BASE_LOAD <= ”00” ;

when GME_1_2_3 =>
i f ADDR_OUT_REG /= END_ADDR_V_REG then

STATE <= GME_1_2_0 ;
ADDER_CONTROL <= ”010” ;

e l s e
STATE <= GME_END ;
ADDER_CONTROL <= ”011” ;

end i f ;
BASE_LOAD <= ”00” ;

B(GME): 0(0), 0(3) and 1(2) states from the Table 6.2 are chosen in those examples.
Listing C.1, C.2 and C.3 show that how a state further proceeds to the next state. In
addition, they show the control signals for the up-only counter and the base cell register.

Listing C.4: VHDL codings of B(GME): 0(0)-0(3)-1(2) Data & Control Generators

when GME_0_0 =>
Data_V ( DB_IN , DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 1 ’ , N_CE , N_WE , N_OE ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when GME_0_3_0 =>

Data_V ( DB_IN , DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 0 ’ , N_CE , N_WE , N_OE ) ;

when GME_0_3_1 =>
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Data_V ( DB_IN ,NOT DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 1 ’ , N_CE , N_WE , N_OE ) ;

when GME_0_3_2 =>
Data_V ( DB_IN ,NOT DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 0 ’ , N_CE , N_WE , N_OE ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
when GME_1_2_0 =>

Data_V ( DB_IN , DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 1 ’ , N_CE , N_WE , N_OE ) ;

when GME_1_2_1 =>
Data_V ( DB_IN ,NOT DV_IN , ADDR_OUT_REG_IN , DATA ) ;
i f ADDR_OUT_REG_IN /= BASE_ADDR_AFTER_IN then

Read_Write ( ’ 0 ’ , N_CE , N_WE , N_OE ) ;
e l s e

N_CE <= ’1 ’ ;
N_WE <= ’1 ’ ;
N_OE <= ’1 ’ ;

end i f ;
when GME_1_2_2 =>

Data_V ( DB_IN , DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 0 ’ , N_CE , N_WE , N_OE ) ;

when GME_1_2_3 =>
Data_V ( DB_IN ,NOT DV_IN , ADDR_OUT_REG_IN , DATA ) ;
Read_Write ( ’ 1 ’ , N_CE , N_WE , N_OE ) ;

Here, VHDL code examples are given for the implementation of the Data & Control
Generator. B(GME): 0(0), 0(3) and 1(2) states from the Table 6.2 are chosen in those
examples. Listing C.4 shows that the data and control signals are generated by the
procedures.

Listing C.5: VHDL coding of data generation procedure

i f DB = ”00” then −−sDB
DATA_OUT <= ( other s => DV ) ;

e l s i f DB = ”01” then −−bDB
DATA_OUT <= ( other s => DV XOR ROW_ADDR (0 ) XOR COL_ADDR ( 0 ) ) ;

e l s i f DB = ”10” then −−rDB
DATA_OUT <= ( other s => DV XOR ROW_ADDR ( 0 ) ) ;

e l s e −−cDB
DATA_OUT <= ( other s => DV XOR COL_ADDR ( 0 ) ) ;

end i f ;

Listing C.6: VHDL coding of control generation procedure

i f R_W = ’0 ’ then −−Read Operation
N_CE_OUT <= ’0 ’ ;
N_WE_OUT <= ’1 ’ ;
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N_OE_OUT <= ’0 ’ ;
e l s e −−Write Operation

N_CE_OUT <= ’0 ’ ;
N_WE_OUT <= ’0 ’ ;
N_OE_OUT <= ’1 ’ ;

end i f ;

Here, VHDL code examples are given for the the data and control procedures. Listing
C.5 shows that the data is simply generated by AND/XORing the certain row and
column address bits. Listing C.6 shows that the control signals (i.e., chip, write and
output enables) are generated depending on the read/write operations.
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