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 A B S T R A C T

The inclusion of PV and heat pumps in residential low-voltage distribution systems is a fundamental component 
of the energy transition. Nevertheless, adoptions below 40% can already cause voltage conditions incompliant 
with the standard EN50160 during winter. Aggregated storage systems have been proposed as a solution; 
however, the literature generally assumes full observability and controllability of the assets, which is unrealistic 
in many cases. This paper evaluates the potential of aggregated single- and multi-carrier storage systems to 
maintain voltage stability in low voltage networks, considering separated controllers for the prosumer and the 
aggregator. We used a real 301-node residential distribution network in the Netherlands as case study. Our 
results demonstrate that aggregated multi-carrier energy storage can ensure the voltage conditions established 
in the standard EN50160 for energy transition adoptions up to 80%, while aggregated single-carrier storage 
can reach 60% and centralized storage only 40%. We concluded that aggregation of storage assets increases 
the utilization of the existing grid infrastructure, reducing reinforcement costs for the DSOs. However, the 
energy storage assets’ high investment costs lead to unattractive conditions for single- and multi-carrier storage, 
compared to a case with only PV and heat pumps. Considering the current market conditions, using storage 
for voltage support would require economic compensations. These findings provide DSOs valuable insight on 
alternative solutions to grid reinforcement and centralized storage to address the challenges of the energy 
transition.
1. Introduction

Traditionally, medium- and high-voltage networks have been the 
centre of attention of system operators, as high-power systems are 
normally connected to such systems. Such connections require de-
tailed planning, and system operators usually demand some degree 
of flexibility from asset owners, either consumers or generators. In 
such a scheme, residential low-voltage distribution networks were con-
sidered to be less risky. They only consume energy with relatively 
low power individual loads, since the most energy-intensive activities 
(transportation and heating) relied on fossil fuels. Nevertheless, the 
energy transition dramatically shifted the paradigm for residential 
consumers.

In the energy transition scheme, residential prosumers are en-
couraged to install distributed generators based on renewable energy 
sources (RES), typically PV systems, to address the fossil-fuel depen-
dence of the energy supply chain [1]. In addition, many existing 
households are replacing their gas boilers with heat pumps (HP), which 
are also becoming the norm for new buildings [2]. Similarly, the 
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electrification of transportation has reached a point where the purchase 
of electric vehicles (EVs) now competes with internal combustion, and 
the number houses installing chargers soared [3]. This way, distri-
bution system operators (DSOs) have seen a drastic change in the 
power exchange behaviour from residential consumers in a short time, 
challenging their traditional reinforcement-based system management 
strategies.

The responses from DSOs can be categorized into regulatory and 
policy, and technical. The first includes administrative actions re-
quested by the DSO to the regulatory authorities to minimize the effect 
of the energy transition in the electrical network. For example, in 
Germany and the United Kingdom there is a limit to how much power 
a residential system can inject into the grid, based on its nominal 
power [4,5]. Also, some authors have demonstrated that flat energy 
and variable demand tariffs are less risky while still being attractive 
for prosumers [6]. The second category includes technical actions so 
that the cyber–physical distribution system can manage the new power 
flow conditions. Among those actions are grid reinforcement and more 
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Nomenclature

(𝑘) Current timestep
(𝑘 ± 𝑖) 𝑖th timestep
Abbreviations

BESS Battery energy storage system
DRES Distributed renewable energy sources
DSO Distribution system operators
EMS Energy management systems
EMS Home energy management systems
EV Electric vehicle
HP Heat pump
MCES Multi-carrier energy system
PV Photovoltaic
TESS Thermal energy storage System
Variables

𝛽 GA population
𝛥𝑡 Time between time steps
𝛿 Specific policy
𝑚̇ Mass flow
𝑄̇ Thermal power
𝜂 Efficiency
𝜆 Energy cost
𝜋 General policy
𝜌 Density
𝐴 Area
𝐶 Cost function
𝑐 Specific thermal capacity
𝐸 Electric energy
𝐺 Solar irradiance
𝑚 Mass
𝑃 Electric power
𝑄 Thermal energy
𝑞 Airflow
𝑇 Temperature
𝑡 GA generation
𝑈 Total heat transfer coefficient
COP Coefficient of performance

robust power flow control mechanisms [7]. Those categories, despite 
fundamentally different, share one common bottleneck, both require 
long realization times; the former due to regulatory, social acceptance 
and institutional barriers, and the second due to required technological 
development, engineering design and commissioning [8] and, more re-
cently, a shortage in workforce [9]. This way, effective solutions require 
using available technologies and the current regulatory frameworks as 
much as possible.

1.1. Relevant literature

There is plenty of literature available about models used to max-
imize profit when participating in the energy market. In general, 
this profit is either from energy arbitrage, or providing ancillary ser-
vices [10]. Although some authors classify energy arbitrage as an 
ancillary service, as prices are set to incentivize certain consumption 
patterns to indirectly support the grid, we will classify them separately 
in this work. Participating in the existing ancillary services markets 
requires the prosumer to follow a set of rules [11], and is limited to 
2 
medium and high voltage networks, with large-scale assets. However, 
there are no major market constraints to profit based on energy 
arbitrage, once the interconnection limit is defined, and it can be 
done at any voltage level. Particularly at low-voltage networks, most 
DSOs cannot enforce power limitations on prosumers, either passively 
by setting a cap below the contracted power, or actively by sending 
signals in real-time for prosumers to adjust their power. For this reason, 
algorithms used to profit using residential assets (e.g., EVs or HPs) focus 
on this mechanism, considering day-ahead pricing [12].

A model predictive control strategy was used by [13] to control a 
residential PV-BESS (battery energy storage system) system, reducing 
energy costs up to 30% compared to a mean nonlinear model predic-
tive control. The same system architecture was approached using the 
long short-term memory algorithm by [14] to predict generation and 
consumption patterns, achieving good accuracy. More complex system 
architectures, forming multi-carrier systems, have also been studied. 
For example, in [12], a system including PV, solar collectors, BESS, 
EV, thermal energy storage (TESS) and heat pumps was optimized to 
minimize the cost of energy purchase and the ageing of the BESS, 
achieving a reduction of 20% to 45% when compared to state-of-the-art 
solutions, but highlighting the high computational cost. Similarly, the 
work in [15] used max–min game theory to control the power flow of a 
system comprised of a PV, a BESS, 30 EV chargers and a hydrogen fuel 
cell-electrolyzer installed in a five-floor office building to minimize the 
degradation of the BESS and the hydrogen system. The results surpassed 
EMSs using mixed-integer linear programming and heuristic methods 
in reducing the degradation between 12.64% and 75.61% for the BESS 
and 23.16% and 82.81% for the fuel cell, respectively. Homer Pro was 
used by [16] to optimally size a microgrid comprised of a centralized 
wind, PV, biomass and BESS system, minimizing the net present cost for 
a case study using the load of the Putrajaya city in Malaysia, reaching 
an overall energy cost of 0.118 $/kWh.

The previous mechanisms can be done without causing major prob-
lems in the distribution grid if the number of participants is low 
enough. Nonetheless, in higher adoption levels (i.e., higher number of 
prosumers in the grid), they pose a risk to the network [6,17]; thus, 
aggregation control is required [18]. Aggregation can be either set 
to support the local network where the assets are connected or the 
upstream network through the substation. For instance, [19] proved 
that aggregating assets in lower voltage networks can create load 
profiles at the substation, so that the aggregator can participate in 
the ancillary services market on behalf of all the individual members 
using the IEEE 33-node test network. This is particularly attractive 
for medium- and high-voltage operators, as the power and voltage 
problems at the substation can be addressed. Still, keeping the limits 
at the substation does not guarantee that power or voltage limitations 
in the conductors and nodes downstream are fulfilled.

To address conductor overloading, the literature offers some strate-
gies used to coordinate the prosumers. Mixed integer linear program-
ming and heuristic methods are compared by [20] in the IEEE 13-node 
and 123-node networks to control BESS to minimize the effect of DRES 
in distribution networks. Using the mixed integer linear programming 
reduced the degradation of the BESS by 34%. A two-stage distribu-
tionally robust optimization model is used by [21] to minimize the 
cost of energy storage investment and distribution network operation 
under extreme conditions for a PV-BESS system. The method was 
tested using the IEEE 33-node network and PV and loads from a 
distribution network in China, resulting in better PV accommodation 
capacity and resilience of the distribution network while minimizing 
costs, when compared to stochastic optimization and robust optimiza-
tion approaches. In [22], the same test network was used, used to 
minimize voltage variations when combining PV and BESS, improving 
the maximum node offset by 4.4%.

The method proposed by [23] identifies and evaluates flexibility 
perimeters in radial distribution networks. Two case studies using the 
IEEE 123-node network with different voltage load areas demonstrating 
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Fig. 1. Causality sequence considered for the analysis.

that increasing the number of areas decreases the flexibility volume 
required for voltage control. A weighted multi-objective optimization 
to minimize power loss and voltage deviations in the lines, energy cost 
and PV energy curtailed was done in [24]. Their results suggest that 
adjusting the optimization weights can maintain the voltage within 
limits in a 15-node medium voltage distribution network in Yangzhou, 
China, with controlled PV, BESS and EVs. Likewise, [25] used a convex 
approximation of the exact nonlinear programming model to minimize 
the energy costs and power losses in the lines for a representative urban 
case using the IEEE 33-node network, and a rural case using a 27-node 
network. The results showed an improvement of around 1.5% com-
pared to continuous genetic algorithm, particle swarm optimization and 
parallel vortex search algorithm, but computation time was reduced up 
to one order of magnitude.

As a response to the complexity of building the network model, a 
model-free controller was proposed in [26] to keep voltage variations in 
the 1 ± 0.05 pu range using PV and synchronous generator assets. The 
test in a medium voltage 21-node distribution network demonstrated 
correction times in the order of seconds. Alternatively, [27] uses an 
effective grid load limit as indicator for grid stability, controlling it 
using a maximum load threshold and a ramp rate limit to avoid sudden 
changes in the load. When comparing a user centric and a grid centric 
control strategy, the grid centric control showed better peak mitigation, 
reaching an utilization factor of 51.4%, whereas the user centric control 
reached 48.6%. In [28], an EV charging profile was converted into 
an equivalent model using Homer, connected to a PV, a battery and 
a diesel generator systems. The results showed a 76.69% reduction in 
grid dependency for the EV charge.

1.2. Contributions

Based on the literature review, the gaps found include:

• control techniques for single-carrier systems, focusing on mid- 
to large-scale assets in medium voltage distribution networks, 
leaving aside multi-carrier systems and low-voltage residential 
distribution networks,

• dependency on test networks with a small number of connections 
(either DRES and BESS assets, or loads) for case scenarios, instead 
of using data from existing distribution networks,

• aggregators are assumed to have full observability and control 
over the assets, potentially causing privacy challenges for residen-
tial prosumers who would own assets connected to the network, 
and

• the control is usually either consumer-centred or DSO-centred, 
instead of relating one to another.
3 
Therefore, considering a real low-voltage distribution network in the 
Netherlands as case scenario, the contributions of this work are:

1. evaluating the effect of different adoption levels of four differ-
ent single- and multi-carrier system architectures in residential 
buildings in low-voltage distribution networks, as the existing 
literature has focused on single-carrier systems on medium- and 
high-voltage networks,

2. assessing the flexibility potential of aggregated multi-carrier 
systems, comprised of a PV, HP, BESS and TESS systems, in 
residential buildings, compared to a centralized single-carrier 
PV-BESS system, and

3. analysing the trade-off between economic cost and flexibility of a 
residential multi-carrier energy system for three different aggre-
gation schemes, considering separated control for the prosumer 
and aggregator, in contrast with the DSO-centric approach of 
most of the literature.

To realize those contributions, the analysis done follows the flow 
presented in Fig.  1. To understand the changes in energy cost for 
prosumers and voltages in the low-voltage network, we performed 
an analysis on the grid exchange behaviour caused by the change in 
internal power dispatch at the household level for different single- and 
multi-carrier systems.

2. Mathematical descriptions

2.1. Distribution networks

A model of a low-voltage distribution network is required to eval-
uate the aggregation strategy. In this case, we used a voltage-based 
model, as residential loads are unlikely to cause major frequency shifts. 
The network’s topology is then represented as an admittance matrix 
𝐴, the voltages at every node as a vector 𝑉𝑛, and the impedances and 
currents between two interconnected nodes are 𝑍 and 𝐼 , respectively. 
This power-flow problem is solved using an iterative method, following 

𝑉𝑛 (𝑘 + 1) = 𝐴𝑉𝑛 (𝑘) −𝑍 (𝑘) 𝐼 (𝑘) + 𝐵 𝑉0 (𝑘) , (1)

where 𝑉0 is the voltage inputs at the substations and B is a matrix 
indicating to which nodes they are connected. Note that during the 
iteration process, it is assumed that the values for the impedances, 
currents and feeder voltage are constants, as the iterative process is 
done every time step 𝑘. The current estimation has a similar approach, 
following 
𝐼 (𝑘 + 1) = 𝐴T 𝐼 (𝑘) + 𝐼𝑛 (𝑘) , (2)

where 𝐼𝑛 is a vector with the current at every node. The current, 
however, is also a function of the voltage, as 

𝐼𝑛 (𝑘) =
𝑆𝑛 (𝑘)
𝑉𝑛 (𝑘)

(3)

where 𝑆𝑛 is the apparent power at every node [20]. Fig.  2 shows the 
method used to solve the network’s power-flow.

2.2. Multi-carrier energy system

Some buildings in the network were coupled with one or more 
devices to create different scenarios, as will be described in Section 3. 
This gradual inclusion of devices provides information on the indi-
vidual effect at the network level. The more complex system couples 
all the considered devices into a multi-carrier energy system (MCES) 
comprised of a PV, a battery energy storage system, a heat pump 
and an underground thermal energy storage system. The models for 
each device were taken from [29], and a summary of the models is 
provided in Table  1. For the Li-ion battery, we followed the semi-
empirical degradation model proposed in [30] to account for calendar 
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Table 1
Equations used to model the components of the MCES. 
 Parameter Symbol Equation

 PV generation 𝑃PV (𝑘) = 𝐴PV𝐺 (𝑘) 𝜂STC
(

1 − 𝛽
[

𝑇PV (𝑘 − 1) − 𝑇ref
])

(6)  

 BESS energy 𝐸BESS (𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸BESS (𝑘 − 1) + 𝜂cBESS𝑃BESS (𝑘 − 1)𝛥𝑡 − 𝐸SD (𝑘 − 1) ∀𝑃BESS (𝑘 − 1) < 0

𝐸BESS (𝑘 − 1) +
𝑃BESS (𝑘 − 1)

𝜂dBESS
𝛥𝑡 − 𝐸SD (𝑘 − 1) ∀𝑃BESS (𝑘 − 1) > 0

(7)  

 TESS power 𝑄̇TESS (𝑘) = 𝜂TESS𝑚̇𝑓 𝑐𝑓
[

𝑇sup − 𝑇TESS (𝑘 − 1)
]

(8)  

 TESS temperature 𝑇TESS (𝑘) = 𝑇TESS (𝑘 − 1) +

𝛥𝑡

[

𝜂𝑐TESS𝑄̇
TESS
HP (𝑘 − 1) −

𝑄̇TESS (𝑘 − 1)
𝜂𝑑TESS

+ 𝑄̇SD (𝑘 − 1)

]

𝑚𝑐
(9)  

 HP COP COP(𝑘) = 7.90471𝑒−0.024
[

𝑇ret (𝑘−1)−𝑇amb (𝑘−1)
]

(10) 
 HP thermal power 𝑄̇HP (𝑘) = 𝜂HP𝑚̇𝑓 𝑐𝑓

[

𝑇sup − 𝑇ret (𝑘 − 1)
]

(11) 
 Thermal demand 𝑄̇𝐷 (𝑘) =

( 𝑛
∑

𝑖=1
𝑈𝑖 𝐴𝑖 + 𝑐𝑎𝜌𝑎𝑞𝑣 + 𝑐𝑎𝜌𝑎𝑞𝑖

)

[

𝑇in (𝑘 − 1) − 𝑇out (𝑘 − 1)
]

(12) 

 Indoor temperature 𝑇in (𝑘) = 𝑇in (𝑘 − 1) +
𝛥𝑡

[

𝑄̇TESS (𝑘 − 1) + 𝑄̇HP (𝑘 − 1) − 𝑄̇𝐷 (𝑘 − 1)
]

∑𝑛
𝑖=1 𝑚𝑖𝑐𝑖

(13) 

 Return temperature 𝑇ret (𝑘) = 𝑇ret (𝑘 − 1) +
𝑄̇TESS (𝑘 − 1) + 𝑄̇HP (𝑘 − 1) − 𝑄̇𝐷 (𝑘 − 1)

𝑚̇𝑓 𝑐𝑓
(14) 
Fig. 2. Flow diagram used to estimate the nodes’ voltage and current.

and cycling ageing. The thermal energy storage is an underground, 
well-mixed water tank with separated charge and discharge coils. The 
heat loss to the environment of both the TESS and the house was 
modelled following the methods proposed in [29]. The distribution of 
the thermal power in the house is done using a water system that can 
use the TESS and the HP individually or simultaneously. The HP is used 
to charge the tank.

The PV systems used per house are sized to reach as close as possible 
to a net-zero energy building, using 400 W modules, with an area 
𝐴PV of 2 m2, efficiency at standard test conditions 𝜂STC of 18.4%, 
temperature coefficient 𝛽 of −0.3%/◦C. The BESS charge and discharge 
efficiencies are set at 94.3%, with a maximum permitted power of 
±10 kW and a capacity of 10 kWh. The TESS is assumed to be filled 
with 4 m3 of water, and the heat exchangers have an efficiency 𝜂
TESS

4 
and 𝜂HP of 80% with a mass flow of 𝑚̇𝑓  of 0.22 m3/s through the heating 
circuit. The supply temperature of the network 𝑇sup is 50 ◦C. The details 
of the thermal losses can be found in [29].

2.3. Local EMS control

For this work, we propose thermal comfort, represented as the 
deviation from a setpoint temperature, energy purchase costs under a 
day-ahead pricing scheme, and the deviation from a power exchange 
setpoint defined by an aggregator as objectives. These policies are 
recalculated for each time step 𝑘, The thermal comfort policy 𝛿𝑇  defines 
whether the HP and the TESS should be available to heat the house or 
not, thus 𝛿𝑇 = [𝛿𝑇HP, 𝛿

𝑇
TESS], with 

𝛿𝑇HP =

⎧

⎪

⎨

⎪

⎩

0 , ∀ 𝑇set ≤ 𝑇in

1 , ∀ 𝑇set > 𝑇in
, (4)

and 

𝛿𝑇TESS =

⎧

⎪

⎨

⎪

⎩

0 , ∀ 𝑇set ≤ 𝑇in

1 , ∀ 𝑇set > 𝑇in
. (5)

The energy purchase cost policy 𝛿𝜆 = [𝛿𝜆HP, 𝛿
𝜆
TESS, 𝛿

𝜆
HP → TESS,

𝛿𝐻𝑃
HP→TESS, 𝛿

SoC
HP→TESS, 𝛿

SoC
TESS] suggests which heating device should be used 

at any given point 𝑘, based on the energy price 𝜆 reported in the 
day-ahead list. To define the prices as high or low and thus increase 
or decrease the power exchanged with the grid, we calculated the 
distribution quartiles of the DA prices. We defined as low prices those 
included in the first quartile, i.e., below 𝜆Q25. Therefore, the policy for 
the activation of the heat pump to heat the house is 

𝛿𝜆HP =

⎧

⎪

⎨

⎪

⎩

1 , ∀ 𝜆 ≤ 𝜆Q25

0 , ∀ 𝜆 > 𝜆Q25
, (15)

the policy for the discharge of the TESS is 

𝛿𝜆TESS =

⎧

⎪

⎨

⎪

⎩

0 , ∀ 𝜆 ≤ 𝜆Q25

1 , ∀ 𝜆 > 𝜆Q25
, (16)

and the policy for charging the TESS is 

𝛿𝜆HP→TESS =

⎧

⎪

⎨

⎪

1 , ∀ 𝜆 ≤ 𝜆Q25

0 , ∀ 𝜆 > 𝜆Q25
. (17)
⎩
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Fig. 3. Control scheme representing the interactions between the aggregator, the low-voltage distribution network, the consumers and the prosumers (the yellow lines represent 
communication flow, the blue lines electric power flow, and the red lines thermal power flow).  (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
Also, as the HP cannot heat the house and charge the TESS simultane-
ously, thus 

𝛿𝐻𝑃
HP→TESS =

⎧

⎪

⎨

⎪

⎩

1 , ∀ 𝛿HP = 0

0 , ∀ 𝛿HP = 1
. (18)

Then, to account for the SoC constraints of the TESS, we considered 

𝛿SoCHP→TESS =

⎧

⎪

⎨

⎪

⎩

1 , ∀ 𝑇TESS < 𝑇maxTESS

0 , ∀ 𝑇TESS ≥ 𝑇maxTESS

(19)

for the charge, and 

𝛿SoCTESS =

⎧

⎪

⎨

⎪

⎩

1 , ∀ 𝑇minTESS ≤ 𝑇TESS

0 , ∀ 𝑇minTESS > 𝑇TESS
(20)

for the discharge. 
Finally, the power from the PV and BESS depend on the grid 

exchange setpoint 𝑃 ∗ defined by the aggregator. To minimize the 
degradation of the BESS and curtailment on the PV, the policy 𝛿P =
[𝑃BESS, 𝑃PV] prioritizes using as much power from the PV as possible. 
However, unlike the TESS, where its primary controller regulates the 
flow so that the output temperature reaches the supply temperature 
(which is a fixed value), the policy for the BESS defines its power – 
delivered or consumed, – which is limited by its current state-of-charge 
and the available PV power. The power boundaries for the BESS are 

𝑃
perm
BESS =

⎧

⎪

⎨

⎪

⎩

𝑃maxBESS , ∀ 𝑃BESS ≥ 𝑃maxBESS

𝐶BESS𝛥𝑆𝑜𝐶maxBESS , ∀ 𝑃BESS < 𝑃maxBESS

(21)

for the maximum and 

𝑃 permBESS =

⎧

⎪

⎨

⎪

⎩

𝐶BESS𝛥𝑆𝑜𝐶minBESS , ∀ 𝑃BESS > −𝑃maxBESS

−𝑃maxBESS , ∀ 𝑃BESS ≤ −𝑃maxBESS

(22)

for the minimum power, with 

𝛥𝑆𝑜𝐶maxBESS =
𝑆𝑜𝐶BESS − 𝑆𝑜𝐶minBESS

𝛥𝑡
(23)

and 

𝛥𝑆𝑜𝐶min =
𝑆𝑜𝐶BESS − 𝑆𝑜𝐶maxBESS , (24)
BESS 𝛥𝑡

5 
as provided in [31]. Then, the boundaries for the BESS, based on the 
available PV power are 
𝑃
set
BESS = 𝑃𝐿 + 𝑃HP + +𝑃HP→TESS − 𝑃 avPV − 𝑃 ∗ (25)

and 
𝑃 setBESS = 𝑃𝐿 + 𝑃HP + 𝑃HP→TESS − 𝑃 ∗ , (26)

Thus, the policies for the PV and BESS are, respectively, 

𝑃BESS =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃 setBESS , ∀
(

𝑃 setBESS ≥ 𝑃 permBESS

)

∧
(

𝑃 setBESS ≤ 𝑃
perm
BESS

)

𝑃 permBESS , ∀
(

𝑃 setBESS ≤ 𝑃 permBESS

)

∧
(

𝑃
set
BESS ≥ 𝑃 permBESS

)

𝑃
perm
BESS , ∀ 𝑃 setBESS ≥ 𝑃

perm
BESS

𝑃 permBESS , else

(27)

and 

𝑃PV =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃 avPV , ∀
(

𝑃 setBESS ≥ 𝑃 permBESS

)

∧
(

𝑃 setBESS ≤ 𝑃
perm
BESS

)

𝑃 permBESS − 𝑃 setBESS , ∀
(

𝑃 setBESS ≤ 𝑃 permBESS

)

∧
(

𝑃
set
BESS ≥ 𝑃 permBESS

)

0 , ∀ 𝑃 setBESS ≥ 𝑃
perm
BESS

𝑃 avPV , else

(28)

prioritizing meeting the thermal load for two reasons: first, thermal 
comfort is deemed more important than charging the TESS. Second, 
and perhaps less obvious, the HP’s coefficient of performance is higher 
when heating the house than when charging the TESS due to the 
required supply temperatures. Therefore, prioritizing the thermal load 
will also reduce the purchase from the grid. 

The general policy 𝜋𝑘 for each timestep 𝑘 is then comprised of the 
individual policies per device 𝑗 and objective 𝑖, resulting in 
𝜋𝑘 = [𝛿𝑇 , 𝛿𝜆, 𝛿𝑃 ] (29)

thus, for each device, the control policy is given by 
𝛿𝑗 =

∏

𝛿𝑖∈𝜋𝑘

𝛿𝑖𝑗 , (30)

2.4. Aggregation control

It is expected that increasing the number of assets in the grid will 
lead to congestion, in particular, if they use the same EMS, which 
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follows the energy price. For this reason, we implemented an aggre-
gator, so that the effect on the network is minimized. Unlike most 
aggregators in the literature that are assumed to have full observability 
over the assets at each node, our aggregator only has information up 
the meter, i.e., can only measure the current and power a particular 
node exchanges with the grid, and the voltage at every node in the 
network. This way, the aggregator would provide a setpoint power to 
each prosumer, and the local EMS would handle the power allocation to 
fulfil such a setpoint (see Fig.  3). Consumers (i.e., households without 
flexibility assets) are excluded from the setpoint assignment. These 
conditions, of course, create challenges for the control strategy in terms 
of asset controllability, but in the view of the authors, provide a more 
realistic approach in terms of short-term implementation and data 
privacy management.

Since the aggregator has no visibility on what are the states of the 
assets behind the meter, it is assumed that the power exchanged with 
the grid at any point k is the optimal value found by the local EMS. 
Based on this assumption, we propose to find the power setpoints 𝑃 ∗

for every prosumer while minimizing the change between the measured 
power and the actual setpoint. This way, the optimization problem is 
formulated as 
min
𝑃 ∗
𝑖

∑

𝑖∈𝑁

(

𝑃 ∗
𝑖 − 𝑃𝑖

)2
(31)

𝑠.𝑡. 𝑃 ∗
𝑖 = 𝑃𝑖 ,∀ 𝑖 ∈ 𝑁𝑐 , (32a)

𝑃 ∗
𝑖 = 0 ,∀ 𝑖 ∈ 𝑁𝑑 . (32b)

𝑉min ≤ 𝑉𝑖 ≤ 𝑉max ,∀ 𝑖 ∈ 𝑁 , (32c)

where, 𝑖 is the node number, the set 𝑁 contains all the nodes in 
the network, 𝑁𝑐 is the subset with the nodes where a consumer is 
connected to the grid, and 𝑁𝑑 the subset with the distribution nodes 
where no loads are connected. The capacity of the conductors was not 
included in the constraints as it was not observed to cause problems. 
Note that, as shown in Section 2.4, the process to calculate 𝑉𝑖 is 
iterative, which might interfere with the optimization process. For that 
reason, we propose using an approximation for the worst voltage in the 
grid (worst defined as the node whose voltage is further from 1 p.u. 
either towards consumption or injection) as a function of the average 
exchanged power with the grid per node 𝑉 (𝑃Grid), as will be detailed 
in Section 4.1. This way (32c) is replaced for 
𝑉min ≤ 𝑉 (𝑃Grid) ≤ 𝑉max ,∀ 𝑖 ∈ 𝑁 . (33)

3. Scenarios description

This work aims to demonstrate the effect of different energy transi-
tion scenarios on a low-voltage residential network. The network used 
is a 400 V, 301-node network with 114 houses with yearly consumption 
information provided by the Dutch DSO Stedin. The yearly consump-
tion of the 114 houses ranged from 500 kWh to 15000 kWh, with 
an average of 3000 kWh. The distribution of energy consumption is 
shown in Fig.  4. As heating consumption was not provided, the houses 
were classified according to their consumption as a 55 m2 apartment, 
a 120 m2 apartment and a 240 m2 house for consumptions between 
0–1000 kWh, 1000–4000 kWh and above 4000 kWh, respectively.

Despite the details of the network cannot be shared, it must be 
noted that, as it is a low-voltage network, the reactive component 
of the cabling impedance is dominant. Thus, voltage control can be 
achieved by altering the active power, unlike medium- and high-voltage 
systems, whose impedances are dominated by the reactive component. 
Therefore, voltage control should be done through modifications in the 
reactive power. Similarly, detailed data on the consumption cannot be 
provided due to confidentiality, therefore the sizes of the PV systems 
cannot be provided either, as they were sized to achieve a near-zero 
6 
Fig. 4. Distribution of the yearly consumption per household in the network.

consumption per building. However, for all the houses, the BESS con-
sidered has 10 kW/10 kWh, and the TESS was a 200 kWh underground 
water tank.

For each scenario, four adoption percentages were evaluated (20%, 
40%, 60% and 80%) during a week during winter (1 to 7 January) 
and during summer (26 June to 3 July). We considered five different 
random sets of nodes to locate the systems in the network for each 
adoption level to better represent a real case where the DSOs cannot 
control where new prosumers would install their systems. These sets 
were maintained for all the scenarios so that they could be compared.

Seven energy transition scenarios were considered. A base case is 
defined as a reference, considering only the existing electric loads and 
gas heating. Then, the RES inclusion was considered in the form of PV 
systems sized for near-net-zero houses. Heating electrification through 
heat pumps is added to eliminate the dependency on gas boilers in 
the selected nodes. Battery storage systems were added to create a
single-carrier non-aggregated storage system, as these batteries are not 
communicating with each other, and a single-carrier aggregated storage
system where an aggregator sends setpoints to the prosumers, who 
would follow them if possible. A multi-carrier non-aggregated storage
scenario was then created by adding thermal energy storage to the 
previous scenario. With this architecture, two more scenarios were 
constructed, a multi-carrier aggregated storage system, where an aggre-
gator directs the power to be exchanged with the grid at any point, 
and a multi-carrier semi-aggregated storage system, where the aggregator 
suggests a power setpoint, but the local EMS can decide to follow it or 
not, based on its own strategy. Table  2 summarizes the scenarios and 
the variables considered for each.

We used different metrics to compare scenarios 1 to 7 from the 
DSO perspective and from the prosumer perspective. For the former, 
we considered the voltage outside the 1±0.05 p.u. (𝑉0.95 and 𝑉1.05) and 
1± 0.1 p.u. (𝑉0.90 and 𝑉1.10) ranges per node. At the prosumer level, we 
compared for each selected house the change in the energy exchange 
(𝛥𝐸in

𝐺  for consumption and 𝛥𝐸out
𝐺  for injection). Similarly, the change 

in the cost of electricity (𝛥𝐶𝐸), total energy including electricity and 
gas (𝛥𝐶𝐸, 𝑔), the PV energy curtailed (𝛥𝐸PV), the total energy consumed 
by the heat pump (𝛥𝐸HP), the energy stored (𝛥𝐸in

BESS) and degradation 
(𝛥𝐶BESS) of the battery, the thermal energy used by the heat pump to 
charge the TESS (𝛥𝐸TESS

PV ) and the thermal energy used by the TESS 
to heat the house (𝛥𝑄TESS). For the cost analysis, we considered a 
dynamic energy price contract based on day-ahead tariffs, as the only 
other energy market at the residential level would use fixed-priced 
energy costs; unlike higher voltage systems that allow different market 
mechanisms. As each adoption level has multiple cases, we provided 
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Table 2
Scenario description.
 Scenario Architecture EMS objective
 0: Base case – –  
 1: RES inclusion PV –  
 2: Heat electrification PV + HP Thermal comfort  
 3: Single-carrier non-aggregated storage PV + HP + BESS Thermal comfort + minimize costs  
 4: Single-carrier aggregated storage PV + HP + BESS Thermal comfort + grid support  
 5: Multi-carrier non-aggregated storage PV + HP + BESS + TESS Thermal comfort + minimize costs  
 6: Multi-carrier aggregated storage PV + HP + BESS + TESS Thermal comfort + grid support  
 7: Multi-carrier semi-aggregated storage PV + HP + BESS + TESS Thermal comfort + minimize costs + grid support 
 8: Centralized Storagea PV + BESS Grid support  
a The centralized storage is considered to compensate for scenario 2.
the range between the minimum and maximum value among those 
cases per metric.

Scenario 8 will be analysed only from the DSO perspective. This 
is because it is intended to compensate for the prosumer’s behaviour 
without interacting with them for scenarios 1 and 2. This way, we 
only consider the voltage outside the 1 ± 0.05 p.u. (𝑉0.95 and 𝑉1.05) and 
1±0.1 p.u. (𝑉0.90 and 𝑉1.10) ranges per node. However, the location and 
sizing of the BESS (energy and power) and PV must be determined. To 
define the node where the centralized system will be connected, the 
network will be analysed for each case per adoption to determine the 
most critical node, defined as the node with higher accumulated voltage 
deviations outside the permitted range, calculated by

𝛴𝑉 ,𝑖 =

[ 𝑇
∑

𝑘=0
𝑉min − 𝑉 𝑖 (𝑘)

]

+

[ 𝑇
∑

𝑘=1
𝑉 𝑖 (𝑘) − 𝑉max

]

,∀𝑉 𝑖 (𝑘) < 𝑉min,

𝑉 𝑖 (𝑘) > 𝑉max , 𝑖 ∈ 𝑁 . (34)

Once the node is defined, a BESS and PV system was placed on that 
node to evaluate whether a centralized system can ensure voltage 
compliance with the standard EN50160.

4. Results

4.1. Voltage estimation

The iterative nature of the power flow solution method, using 
the node voltages in the network as constraints, might lead to high 
computational costs or, ultimately, unfeasibilities. For that reason, we 
evaluated the unaggregated scenarios to find an alternative to estimate 
the network behaviour. We simulated each scenario for a 100% adop-
tion level and then plotted the minimum and maximum voltages in 
the network against the average grid power per node 𝑃Grid. As shown 
in Figs.  5(a), 5(c), 5(e) and 5(g), two polynomial correlation became 
evident for all scenarios. On the one hand, for the positive average 
grid powers (consumption), the worst voltage in the network is the 
minimum (shown in red), whereas the best voltage is the maximum 
(shown in blue). On the other hand, when the average grid power is 
negative (injection), the correlation is reversed; i.e., the worst voltage 
is the maximum, and the best is the minimum. This behaviour is 
consistent with previous studies in power systems where small incre-
mental changes in power in the network resulted in quasi-lineal voltage 
behaviour [32].

Interestingly, the best and worst voltage points, despite reversing at 
𝑃Grid = 0, complement each other. Using a second-order polynomial 
regression, we were able to estimate the worst voltage curve 𝑉  as a 
function of the average grid power with very high accuracy (black line). 
We then repeated this experiment for 20 different combinations of node 
samplings and adoption levels per scenario (see Fig.  7 for details on the 
sampling distribution) during summer and winter without extrapolat-
ing the average grid power ranges per case, as shown in Figs.  5(b), 5(d),
5(f) and 5(h). As can be seen, there is a strong correlation between the 
average grid power and the worst voltage in the network, which is then 
confirmed plotting the yearly curves per scenario together in Fig.  6. The 
7 
resulting approximation of the worst voltage on the grid that is used for 
(33) is 
𝑉 (𝑃Grid) = −0.00083106𝑃

2
Grid − 0.03378𝑃Grid + 0.9997 (35)

4.2. Scenarios analysis

The analysis was carried out for a representative week during winter 
(1 to 7 January) and summer (26 June to 3 July), as the technical 
standard EN50160 requires that the voltage remain within ±0.1 p.u. 
during 95% of the week. Knowing that the location of the node where 
the system will be placed leads to different results on the network, 
we created five random samples per adoption percentage, uniformly 
distributed throughout the network, as shown in Fig.  7. The network 
was simulated, including the corresponding system architecture per 
scenario in the selected nodes. A summary of the results is shown in 
Tables  3 and 4. The simulations were done using Python in a computer 
with a processor Intel i7-1185G7 and 16 GB of RAM. Simulating one 
week took between 10 and 13 minutes in total, depending on the 
scenario.

Starting with the voltage results shown in Tables  3 and 4, on the 
one hand, it can be noted that the inclusion of PV systems does not 
result in overvoltages beyond the regulation. Considering that the PV 
systems for scenario 1 and onwards were sized for a near-net-zero 
building using the base case as reference, the adoption required to 
surpass the 1.05 p.u. limit defined in the standard EN50160 is around 
80% during summer. The low production during winter makes the 
power injection effect in the grid barely noticeable. On the other hand, 
it can be noticed that the inclusion of heat pumps does have a negative 
impact on the grid. Adoptions around 40% causes non-compliance with 
the 0.95 p.u. limit. Fig.  8 shows how the energy consumed from the 
grid changes for a typical week in winter and summer for scenarios 1, 
2 and 5. Adding the PV alone reduces the overall consumption as 
expected; however, the inclusion of heat pumps in scenario 2 and then 
thermal storage in scenario 5 resulted in energy consumption up to two 
orders of magnitude greater than the base case, as the heating comes 
only from electricity. There is also a decay in the change in energy 
consumption proportional to the yearly consumption, but the PV can 
only compensate for prosumers with consumptions above 2 MWh/year 
during summer in scenarios 2 and 3. The reasons are discussed in 
Section 5.

From a cost perspective, however, the PV and the heat pump are 
complimentary, which can be seen in the reduction of energy export 
𝐸out
𝐺  into the grid in scenario 2 when compared with scenario 1. Despite 

the consumption of the heat pump increasing considerably the energy 
consumption from the grid 𝐸in

𝐺  (see Fig.  8), therefore the electricity cost 
𝐶𝐸 , especially during winter, thanks to the dynamic pricing and solar 
generation, the overall energy cost 𝐶𝐸, 𝑔 (electricity plus gas) decreases 
for all houses, as shown in Fig.  9. Particularly during winter, Figs.  9(c)
and 9(e) show that for the different types of houses (studio, apartment 
and detached), the change in energy cost has different slopes when 
adding the heat pump in scenarios 2 and 5, opposite to the smooth 
slope observed in the change in electricity cost. During summer, the 
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Table 3
Result ranges per season for different adoption levels (20%–40%).

0% 20% 40%

1 2 3 4 5 6 7 1 2 3 4 5 6 7

W
in
te
r

𝑉0.95 [%] 3.263 3.263 3.56–3.66 3.53–3.66 3.31–3.59 5.46–8.90 3.20–3.46 3.94–8.07 3.26 6.75–7.99 6.70–7.95 3.24–3.57 24.07–25.26 3.14–3.41 22.64–24.17
𝑉1.05 [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑉0.90 [%] 0.020 0.020 0.107–0.130 0.100–0.127 0.001978–0.1360 0.235–0.298 0.00346–0.0870 0.213–0.290 0.020 0.338–0.367 0.331–0.360 0.0593–0.1276 2.98–4.47 0.0400–0.0727 1.145–2.42
𝑉1.10 [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝛥𝐶𝐸 [%] Ref –(5.48–6.84) 19.09–281 15.80–281.1 30.44–459.6 34.62–831 34.78–675.01 45.23–1026 –(5.35–6.71) 19.09–323 15.80–322.9 39.52–855.5 34.62–955 29.31–1041 45.23–1147
𝛥𝐶𝐸, 𝑔 [%] Ref –(5.48–6.84) –(60.17–78.56) –(61.27–78.56) –(53.51–71.04) –(45.09–65.41) –(55.28–73.84) –(33.81–59.03) –(5.35–6.71) –(60.17–78.85) –(61.27–78.85) –(40.33–76.73) –(44.92–65.67) –(42.36–73.80) –(33.51–59.58)
𝛥𝐸 𝐢𝐧

𝐆  [%] Ref –(4.01–4.94) 59.84–665.1 25.7–665.1 80.57–1624 151.3–3295 76.05–1660 158.97–3676 –(4.08–4.96) 59.84–745.9 25.7–745.9 44.65–1807 151.3–3696 33.43–2685 158.81–4123
𝛥𝐸𝐨𝐮𝐭

𝐆  [%] – Ref –(5.53–13.8) (−13.3)–105.2 683–61468 784.5–40768 598.8–55767 831.0–69643 Ref –(5.39–18.5) (−18.5)–77.5 321–54609 784.5–40768 338.1–45882 820.9–69643
𝛥𝐸𝐏𝐕 [%] – Ref 0 0 –(53.30–75.90) 0 –(60.39–74.21) –(61.57–75.74) Ref 0 0 –(62.10–77.45) 0 –(62.56–77.35) –(61.89–75.74)
𝛥𝐸𝐇𝐏 [%] – – Ref 0 –(4.19–21.06) 102.3–313.2 (−49.06)–101.14 102.3–313.2 – Ref 0 –(2.50–21.08) 102.3–313.2 (−51.71)–151.44 102.3–313.2
𝛥𝐸 𝐢𝐧

𝐁𝐄𝐒𝐒 [%] – – – Ref (−1.674)–102.9 (−5.52)–0 10.99–96.43 61.86–89.74 – – Ref 30.18–125.4 (−5.52)–0 (−7.08)–167.34 61.34–89.97
𝛥𝐶𝐁𝐄𝐒𝐒 [%] – – – Ref –(0.312–1.773) 0–0.240 –(0.610–1.691) –(0.981–1.442) – – Ref (−2.05)–0.0814 0–0.240 –(−2.83)–0.1769 –(0.973–1.454)
𝛥𝐸𝐓𝐄𝐒𝐒

𝐇𝐏  [%] – – – – – Ref –(21.05–97.37) 0 – – – – Ref –(34.87–97.37) 0
𝛥𝑄𝐓𝐄𝐒𝐒 [%] – – – – – Ref (−68.22)–8.33 0 – – – – Ref (−68.22)–24.30 0

Su
m
m
er

𝑉0.95 [%] 3.258 3.11–3.17 3.17–3.24 3.17–3.24 3.10–3.36 3.89–5.21 3.10–3.41 3.36–4.22 2.85–2.94 3.05–3.14 3.05–3.14 2.94–3.16 10.50–11.28 3.06–3.34 8.66-9.52
𝑉1.05 [%] 0 0 0 0 0 0 0 0 0–0.55 0–0.44 0–0.44 0–0.235 0–0.0712 0 0
𝑉0.90 [%] 0.020 0.0044 0.10–0.12 0.10–0.12 0.00692–0.050 0.295–0.392 0.00593–0.0731 0.1978–0.220 0.0044 0.21–0.23 0.21–0.23 0.00742–0.0494 1.165–1.929 0.0249–0.131 0.673-0.918
𝑉1.10 [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝛥𝐶𝐸 [%] Ref –(165.0–242.9) –(49.0–180.8) –(49.0-180.8) –(51.25–182.8) (−149.7)–394.6 (−267.4)–814.0 (−51.14)–636.2 –(164.8–242.9) –(49.0–180.8) –(49.0-180.8) (−251.8)–18.86 (−148.9)–473.6 (−33.69)–1151 (−71.77)–762.3
𝛥𝐶𝐸, 𝑔 [%] Ref –(165.0–242.9) –(93.21–136.5) –(93.21–136.6) –(88.73–111.0) –(34.09–125.7) (−132.5)–13.86 –(1.906–71.75) –(164.8–242.9 –(93.21–137.2) –(93.21–137.3) –(58.19–118.52) –(34.09–125.7) (−70.94)–42.02 –(1.590–81.83)
𝛥𝐸 𝐢𝐧

𝐆  [%] Ref –(30.57–39.64) (−31.0)–107.3 (−31.1)–107.3 3.03–943.67 32.81–1971 20.71–1988 56.14–2188 –(30.57-39.81) (−31.0)–107.3 (−31.1)–107.3 (−17.73)–981.8 32.81–1971 (−13.43)–1861 25.78–2187
𝛥𝐸𝐨𝐮𝐭

𝐆  [%] – Ref –(3.32–9.03) –(3.32–9.03) (−40.34)–359.3 (−15.51)–277.2 (−67.85)–284.6 (−55.66)–325.9 Ref –(3.30–9.52) –(3.30–9.52) (−44.00)–406.5 (−14.83)–291.9 (−79.95)–340.5 (−55.20)–345.9
𝛥𝐸𝐏𝐕 [%] – Ref 0 0 –(40.63–80.01) 0 –(8.95–56.62) –(44.11–50.65) Ref 0 0 –(30.24–52.98) 0 –(9.00–64.39) –(44.14–50.69)
𝛥𝐸𝐇𝐏 [%] – – Ref 0 (−1.631)–1 477.0–941.1 288.9–272.1 477.0–941.1 – Ref 0 (−2.47)–0 477.0–941.1 131.3–737.3 477.0–941.1
𝛥𝐸 𝐢𝐧

𝐁𝐄𝐒𝐒 [%] – – – Ref 37.47–62.12 (−1.631)–0 42.73–102.9 32.08–55.89 – – Ref 37.98–63.52 (−1.631)–0 29.69–97.04 31.76–51.23
𝛥𝐶𝐁𝐄𝐒𝐒 [%] – – – Ref –(0.545–1.020) 0–0.0611 –(0.661–1.770) –(0.461–0.900) – – Ref –(0.558–1.008) 0–0.0611 –(0.431–1.621) –(0.453–0.789)
𝛥𝐸𝐓𝐄𝐒𝐒

𝐇𝐏  [%] – – – – – Ref –(5.21–48.60) 0 – – – – Ref –(13.95–59.56) 0
𝛥𝑄𝐓𝐄𝐒𝐒 [%] – – – – – Ref (−1.612)–6.45 0 – – – – Ref 0–6.45 0
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Table 4
Result ranges per season for different adoption levels (60%–80%). 

0% 60% 80%

1 2 3 4 5 6 7 1 2 3 4 5 6 7

W
in
te
r

𝑉0.95 [%] 3.263 3.26 12.84–13.53 12.81–13.50 3.94–4.74 27.26–28.18 3.47–3.85 26.58–27.37 3.26 14.44–14.47 14.38–14.41 5.05–5.62 27.26–28.33 4.18–4.30 26.87–27.15
𝑉1.05 [%] 0 0 0 0 0–0.0465 0–0.0934 0–0.0618 0–0.207 0 0 0 0.229–0.426 0.890–1.212 0.309–0.586 1.580–2.34
𝑉0.90 [%] 0.020 0.020 1.14–1.83 1.13–1.86 0.1622–0.1834 14.89–15.73 0.0524–0.0999 11.62–12.57 0.020 4.45–4.88 4.44–4.88 0.269–0.302 22.32–22.72 0.1305–0.1869 21.52–22.01
𝑉1.10 [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝛥𝐶𝐸 [%] Ref –(5.40–6.84) 10.76–323 5.18–322 55.57–835.2 21.22–954.9 29.35–614 33.27–1183 –(5.35–6.84) 10.76–307.76 5.18–308 39.26–805.4 21.22–910.2 30.02–788.9 45.23–1169
𝛥𝐶𝐸, 𝑔 [%] Ref –(5.40–6.84) –(52.68–78.85) –(55.06–78.56) –(40.01–74.64) –(44.64–65.67) –(55.28–73.84) –(32.43–62.51) –(5.35–6.84) –(52.68–78.66) –(55.06–78.66) –(40.81–77.98) –(44.60–65.96) –(44.52–73.10) –(33.03–62.37)
𝛥𝐸 𝐢𝐧

𝐆  [%] Ref –(3.92–4.87) 41.52–745.9 35.52–746 70.61–1591 99.71–3696 33.99–1460 107.6–4102 –(3.92–4.96) 41.52–737.1 35.52–737 43.85–1686 99.71–3653 34.09–1978 107.6–4079
𝛥𝐸𝐨𝐮𝐭

𝐆  [%] – Ref –(5.40–18.50) (−18.5)–77.51 297.0–31107 458.96–40768 (−39.26)–34987 326.3–69643 Ref –(4.98–19.96) (−20.0)–105.2 (−34.95)–53026 458.96–40768 (−38.37)–43960 326.3-5-3454
𝛥𝐸𝐏𝐕 [%] – Ref 0 0 –(61.86–77.58) 0 –(60.42–81.35) –(61.89–75.74) Ref 0 0 –(53.22–77.72) 0 –(54.16–77.47) –(59.9–75.74)
𝛥𝐸𝐇𝐏 [%] – – Ref 0 –(2.36–21.08) 102.28–313.22 (−52.06)–99.39 102.3–313.2 – Ref 0 –(2.32-24.07) 102.28–313.22 (−54.42)–59.96 102.3–313.2
𝛥𝐸 𝐢𝐧

𝐁𝐄𝐒𝐒 [%] – – – Ref (−4.05)–149.1 (−5.52)–0 (−7.45)–173.2 61.76–90.50 – – Ref (−20.12)–145.7 (−9.58)–0 (−10.37)–164.0 61.76–89.98
𝛥𝐶𝐁𝐄𝐒𝐒 [%] – – – Ref (−2.42)–0.1226 0–0.240 (−2.98)–0.1828 –(0.983–1.453) – – Ref (−2.40)–0.419 0–0.264 (−2.83)–0.233 –(0.989–1.454)
𝛥𝐸𝐓𝐄𝐒𝐒

𝐇𝐏  [%] – – – – – Ref –(48.72–97.90) 0 – – – – Ref –(61.23–97.90) 0
𝛥𝑄𝐓𝐄𝐒𝐒 [%] – – – – – Ref (−69.07)–34.58 0 – – – – Ref (−69.07)–31.78 0

Su
m
m
er

𝑉0.95 [%] 3.258 2.83–2.84 3.37–3.53 3.33–3.53 2.73–2.92 13.39–13.74 3.60–3.89 12.62–12.74 2.82–2.83 4.04–4.12 4.04–4.12 2.68–2.95 15.22–15.57 4.29–4.42 14.22–14.39
𝑉1.05 [%] 0 2.40–3.18 2.03–2.69 2.03–2.69 1.170–2.39 0.466–1.406 0.0168–0.555 0.0420–1.191 5.40–6.16 4.79–5.54 4.79–5.54 5.03–5.75 3.971–4.556 1.412–1.645 3.10–3.47
𝑉0.90 [%] 0.020 0.0044 0.31–0.33 0.31–0.33 0.0178–0.0534 5.33–5.88 0.0623–0.1315 3.31–3.80 0.0044 0.42–0.47 0.42–0.47 0.0588–0.0751 8.80–9.06 0.1696–0.265 6.80–7.17
𝑉1.10 [%] 0 0 0 0 0 0 0 0 0.023–0.314 0.01–0.26 0.01–0.26 0–0.0895 0–0.0351 0 0
𝛥𝐶𝐸 [%] Ref –(158.6–257.5) –(49.02–204.3) –(49.02–204.3) –(719.0)–158.7 (−176.7)–473.6 (−219.6)–949.5 (−39.88)–706.6 –(158.6–257.5) –(49.02–204.3) –(49.02–204.3) (−723.7)–180.7 (−176.7)–473.6 (−342.0)–514.9 (−72.30)–766.4
𝛥𝐶𝐸, 𝑔 [%] Ref –(158.6–257.5) –(93.21–158.5) –(93.21–160.5) –(38.89–180.8) –(34.09–149.4) (−115.6)–8.92 –(1.906–71.75) –(158.6–257.5) –(93.21–158.5) –(93.21–160.5) –(37.23–181.6) –(34.09–149.4) –(154.6–0.475) –(1.619–82.17)
𝛥𝐸 𝐢𝐧

𝐆  [%] Ref –(30.6–39.8) (−34.8)–107.3 (−36.63)–107.3 (−20.04)–973.87 6.83–2049 (−12.77)–1543 61.66–2277 –(30.6–39.6) (−34.8)–107.3 (−36.63)–107.3 3.14–1011 6.83–1971 9.40–1809 25.71–2188
𝛥𝐸𝐨𝐮𝐭

𝐆  [%] – Ref –(3.00–9.52) –(3.00–9.52) (−51.20)–446.2 (−15.80)–291.9 (−89.01)–323.1 (−56.82)–344.4 Ref –(3.00–9.57) –(3.00–9.57) (−47.30)–462.0 (−15.51)–289.8 (−86.1)–373.4 (−56.51)–344.4
𝛥𝐸𝐏𝐕 [%] – Ref 0 0 –(28.23–55.12) 0 –(8.31–82.67) –(43.64–50.69) Ref 0 0 –(26.06–57.84) 0 –(8.31–79.61) –(44.24–50.69)
𝛥𝐸𝐇𝐏 [%] – – Ref 0 (−5.43)–0 477.0–941.1 128.0–716.7 477.0–941.1 – Ref 0 (−5.64)–0.1621 477.0–941.1 151.89–638.0 477.0–941.1
𝛥𝐸 𝐢𝐧

𝐁𝐄𝐒𝐒 [%] – – – Ref 35.57–67.53 (−1.631)–0 24.43–111.3 32.09–53.49 – – Ref 35.12–67.00 (−1.631)–0 35.95–115.2 31.80–52.73
𝛥𝐶𝐁𝐄𝐒𝐒 [%] – – – Ref –(0.511–1.095) 0–0.611 –(0.363–1.882) –(0.456–0.831) – – Ref –(0.500–1.082) 0–0.611 –(0.545–1.941) –(0.455–0.843)
𝛥𝐸𝐓𝐄𝐒𝐒

𝐇𝐏  [%] – – – – – Ref –(15.38–70.94) 0 – – – – Ref –(20.47–69.36) 0
𝛥𝑄𝐓𝐄𝐒𝐒 [%] – – – – – Ref 0–6.45 0 – – – – Ref (−1.613)–9.68 0
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Fig. 5. Relationship between the average power and the minimum and maximum voltage in the network (a, c, e, g), and results for all scenarios and adoption levels during 
winter, summer and yearly (100% adoption) (b, d, f, h) for scenarios 1, 2, 3 and 5 respectively.  (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
distinction between house types is less abrupt for the change in energy 
cost and has the same pattern as the change in electricity cost, as can 
be observed in Figs.  9(d) and 9(f).

Adding a battery did not make a significant change in almost any 
metric, as shown in Tables  3 and 4. Comparing scenarios 2 and 3 shows 
10 
a small decrease in the purchase of energy from the grid and a relatively 
higher increase in energy export during winter. This is explained by the 
nominal difference between the import and export of energy during 
winter. Due to the low irradiance during winter, the export to the grid 
is very low, so a small increase in the consumption from the BESS 
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Fig. 6. Comparison of the yearly correlations between the worst voltage on the network 
and the average grid power for scenarios 0, 1, 2, 3 and 5.

during the low-price timeframes, to then inject it into the grid during 
the high-price timeframes creates a significant relative change in the 
energy exports of several orders of magnitude, particularly in scenario 5 
(see Fig.  10(e)). This phenomenon is not as predominant in summer, as 
the generation exceeds the consumption during most cases, so the role 
of the BESS is neglectable for scenarios 2 and 3 (see Figs.  10(a) and
10(c)). For scenario 5, the more frequent activity of the BESS resulted 
in higher energy injections, as shown in Fig.  10(f).

Unlike the other components, the effects of the TESS are more no-
torious throughout the metrics shown in Tables  3 and 4. The increased 
energy consumption by the heat pumps to charge the TESS is reflected 
in the spike of both the change in energy consumption (see Figs. 
8(e) and 8(f)) and voltages below 0.95 p.u. from scenarios 1–3 to 5, 
causing non-compliances even in adoptions below 20%. Nevertheless, 
the flexibility in the sources of thermal energy resulted in an increased 
energy export directly from the PV during the high-price timeframes, 
reducing the usage of the BESS (lower 𝐸in

BESS and therefore its degra-
dation 𝛥𝐶BESS) in scenario 5. The effect of adding a thermal storage 
system on energy costs is also not an improvement when compared 
with scenarios 2 and 3. Despite outperforming scenario 1 during winter, 
scenario 5 is the least economically attractive during summer (see Fig. 
9).

The role of the aggregator had significant changes in the metrics. 
From the network perspective, when the prosumers follow the setpoint 
provided by the aggregator always (scenarios 4 and 6), the voltage in 
the network remains within the ±0.05 p.u. during 95% of the time for 
adoptions up to 80% in scenario 6, and 60% in scenario 4, and very 
rarely below 0.9 p.u. (maximum 0.302% of the time in scenario 4 and 
maximum 0.1869% of the time in scenario 6). This is accomplished 
by drastic changes in the internal power dispatch from the EMS. 
Comparing scenarios 3 and 4 shows a noticeable decrease in the usage 
of the heat pump. Similarly, the amount of energy consumed decreased 
considerably when comparing scenarios 6 and 5. To minimize the 
injection of energy, the BESS was used more often – thus degraded 
–, mostly from energy purchased from the grid as the PV curtailment 
increased, and less energy was used to charge the TESS 𝐸TESS

HP , reducing 
its availability for thermal power dispatch 𝑄TESS.

For most of the households, this reduction in consumption was 
translated into a reduction of costs, particularly in winter, by the mere 
fact that less energy was purchased. Nonetheless, this reduction also 
led to lower indoor temperatures, as shown in Fig.  11, particularly 
during winter. When the setpoint was not enforced in scenario 7 
(semi-aggregated), small differences are noticed with scenario 5 (no 
aggregation), most notably on the usage of the BESS, charged from 
11 
the grid, and the curtailment of PV generation. Interestingly, Fig.  11 
also shows that scenarios 2 and 3 tend to have lower temperatures 
than the others without an aggregator. This is due to the operation 
strategy for the heat pump; it is not used in high-price timeframes 
that might coincide with higher setpoint temperatures, and in low-
price timeframes (during the night), the setpoint is lower. This way, 
the TESS provides flexibility to the heat generation so that the indoor 
temperature remains higher without considerably changing the energy 
cost.

Provided that there is a benefit in the MCES for both the prosumer 
and the DSO, we estimated the minimum compensation each prosumer 
would require to make it profitable to support the DSO (scenario 6). 
We used scenario 2 (PV+HP) as a reference since previous work rec-
ommended such a combination for Dutch houses to eliminate the 
dependency on gas [29]. To define the capital expenses of the MCES per 
house, we used 1.15 €/W for the PV (sized per house) with a minimum 
value of €2500, €6500 for the heat pump, €10000 for the BESS and 
€25000 for the underground TESS and run scenarios 2 and 6 for one 
year considering a 100% adoption to estimate their revenue for each 
household on the worse case for the grid. The revenue considers the 
profit earned by the normal operation of the system under the existing 
market conditions for each scenario compared to the base scenario.

For the support scenarios to be attractive to prosumers, they should 
be, at least, as profitable as the case without supporting the grid. In 
this case, scenario 2 was selected as the reference, based on a fully-
electrified heating condition. Fig.  12 shows the minimum requirements 
for scenarios 4 and 6 to have the same ROI as scenario 2. Scenarios 4 
and 6 had similar changes in energy cost (see Tables  3 and 4), however, 
the capital expenses for scenario 4 are considerably lower due to the 
high cost of the TESS. Fig.  12(a) shows that the average energy cost is 
higher than the monthly compensation required for scenario 4 to have 
the same ROI as scenario 2, and Fig.  12(b) shows, per household, the 
difference between the cost and the required compensation. Fig.  12(c) 
compares the compensation required per household for scenario 6, so 
that the ROI is the same as scenario 2. The results indicate that the 
compensation and costs behave fairly similar, and the compensation 
is mostly greater until consumption is around 7 MWh/year, where the 
energy cost is higher than the compensation required. Then, Fig.  12(d) 
shows the difference per household.

4.3. Centralized storage

Following (34), we estimated the accumulated voltage incompliance 
per node for each case, grouped per adoption level, during winter 
and summer. Fig.  13 shows the results. For scenario 1, the adoption 
does not greatly affect the incompliance during winter because there is 
little generation, and the incompliances are due to the base congestion 
in the grid (see Fig.  13(a)). During summer, however, increasing the 
adoption does increase the incompliance due to energy injection, as 
indicated in Table  4 (see Fig.  13(b)). The summer in compliance for 
scenario 2 is fairly similar to scenario 1, as the higher temperatures 
require lower usage of the heat pumps (see Fig.  13(d)), but during 
winter, the incompliances increase considerably, and proportionally to 
the adoption, due to the energy used by the heat pumps, as mentioned 
in Tables  3 and 4 (see Fig.  13(c)). For three of the four cases (winter 
and summer in scenario 1, and summer in scenario 2), the most critical 
node was 270. For winter in scenario 2, the most critical node was 238, 
but node 270 still remained critical. For this reason, we chose node 270 
to place the centralized system.

Initially, a 1 MWh/1 MW BESS system coupled with a 200 kW 
PV system is considered. However, it was insufficient for adoptions 
above 60%. Thus, the capacity of the BESS was increased to 2 MWh 
for the 60% adoption and to 10 MWh for the 80% adoption. No 
improvements were observed above those values. Similarly, increasing 
the PV system did not show any major benefit as, during winter, the 
generation is almost neglectable in comparison with the demanded 
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Fig. 7. Distribution of nodes selected per case, per adoption percentage (20%, 40%, 60% and 80%, respectively).
Table 5
BESS and PV system sizes per adoption level of PV+HP for case 8. 
 Adoption BESS PV  
 20% 1 MWh, 1 MW 200 kW 
 40% 1 MWh, 1 MW 200 kW 
 60% 2 MWh, 1 MW 200 kW 
 80% 10 MWh, 1 MW 200 kW 

power, and during summer, most of the generation above that threshold 
was curtailed to avoid overvoltages. Table  5 lists the sizes considered 
per adoption level for the assets, and Table  6 summarizes the voltage 
results per adoption level per season. During summer, the network 
does not require external assistance to comply with the voltage limits 
(see Table  4). Still, the BESS is capable of improving the network 
behaviour for adoptions up to 60%. At 80%, the BESS can compensate 
for the overvoltages by consuming power from the grid, at the cost of 
increasing the undervoltages. In winter, however, the central system 
cannot ensure compliance with the standard EN50160. Despite the 
worse node being compensated, other nodes remained with little or no 
change before and after including the centralized storage, as shown in 
Fig.  14, and the BESS have to consume almost all the energy used to 
compensate the grid from the grid itself, as the PV generation is almost 
neglectable in comparison with the energy required to compensate for 
the grid.

5. Discussion

After presenting the results in Section 4, some correlations became 
notorious, leading to consequences both for the prosumer and the DSO. 
12 
In both cases, changing the system architecture would result in different 
power dispatches. Removing the gas boiler naturally would transfer all 
the thermal load to the electrical network through the heat pumps, 
however, adding storage devices might shift or shave the consumption 
peaks. In this work, we used the same EMS strategy for every house. 
Even though each house has different electric and thermal load con-
ditions, the day-ahead prices for all will be the same. Particularly for 
scenarios 2–5 and 7, which are very heavily dependent on prices to 
minimize the cost for the prosumer, an unconscious synchronization 
of peaks is to be expected. The effect is consistent with the results 
in [6], where the local EMSs react to the changes in energy price 
simultaneously, consuming or injecting energy accordingly. As a result, 
the prosumers would use controllable high-power appliances, such as 
the BESS or the HP, during low-price periods, creating congestion. 
This phenomenon will increase with the adoption, as shown in Tables 
3 and 4, where the voltages for scenarios 2, 3, 5 and 7 consistently drop 
in the absence of an aggregated control.

Under the existing residential energy market and energy storage 
costs, investing in energy storage is not attractive. Nevertheless, the 
previous analysis suggests that there is an opportunity for a energy 
market mechanism based on supporting the network using BESS at 
the residential level. This is because the total energy cost is still 
above the compensation (see Fig.  12(a)), thus, both the DSO and the 
prosumer have room for profit. However, TESS high costs make it more 
challenging. The required compensation goes above the energy costs, 
meaning that the prosumer must be paid to consume energy, as shown 
in Fig.  12(b). For both cases, external funding could accelerate the 
market towards decreasing energy storage costs. For instance, subsidies 
for purchase or operation could reduce costs, making the business case 
more attractive for prosumers and the DSO.
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Fig. 8. Distribution of the change in energy consumed from the grid per household for scenarios 1,2 and 5 during a week in winter (a), (c), (e) and summer (b), (d), (f), 
respectively.
Table 6
Result ranges per season for different adoption levels of PV+HP for case 8. 
 Adoption [%] Winter Summer

𝑉0.95 [%] 𝑉1.05 [%] 𝑉0.90 [%] 𝑉1.1 [%] 𝑉0.95 [%] 𝑉1.05 [%] 𝑉0.90 [%] 𝑉1.1 [%]  
20 0.1898–1.150 0 0–0.0717 0 0.200–0.236 0 0 0  
40 4.18–5.28 0 0.240–0.267 0 0.259–0.402 0.00005–0.438 0 0  
60 8.87–9.25 0.0005 0.621–1.156 0 0.475–0.617 1.981–2.59 0–0.0252 0  
80 10.96–11.18 0.007–0.01 1.902–2.08 0 6.87–6.92 4.71–5.45 0.293–0.311 0.0089–0.257 
13 
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Fig. 9. Distribution of the change in energy cost from the grid per household for scenarios 1,2 and 5 during a week in winter (a), (c), (e) and summer (b), (d), (f), respectively.
The same logic can be applied in reverse order if an aggregator has 
observability over the network’s voltages and powers. In that case, the 
aggregator can define a power setpoint to minimize those violations. 
As shown in scenario 6, when the setpoint defined by the aggregator is 
enforced, there is a clear drop in undervoltages, consistent with [33]. 
Nevertheless, the prosumers require flexible loads and energy sources 
to be able to meet the setpoint. In this sense, both the BESS and the 
TESS play a key role. On the one hand, the BESS can store or dispatch 
electric power, either to supply the local demand or to directly support 
the grid. Similarly, the thermal storage could provide thermal power 
in a restrictive event when the heat pump would contribute to high 
congestion. Both effects are shown in our simulations, but cannot be 
generalized. Instead, our results suggest that this would depend on the 
14 
load conditions. From an electrical point of view, in some cases, the 
load would match with the PV generation, and the electrical storage 
is less critical, leading to different patterns of energy supplied by the 
BESS, as shown in Tables  3 and 4. For the thermal storage, smaller 
spaces, characterized by lower electric and thermal demand, benefit 
from the thermal storage, as the thermal demand can be met with the 
TESS, whereas bigger houses have larger thermal demands and would 
require a larger TESS to reduce their dependency on the heat pump.

From a cost perspective, the more devices comprise the system, 
the higher the revenue is required to justify the system acquisition. 
The change in cost presented in Section 4 demonstrated that, in fact, 
more complex systems do not guarantee lower relative costs compared 
to the base scenario. During summer, only a PV system (scenario 1) 
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Fig. 10. Distribution of the change in energy injected to the grid per household for scenarios 2, 3 and 5 during a week in winter (a), (c), (e) and summer (b), (d), (f), respectively.
results in the most profitable since the higher temperatures require 
lower usage of the thermal elements (i.e., heat pump and TESS). During 
winter, combining the PV with a heat pump is the most profitable 
architecture, as it eliminates the dependence on gas for heating. Adding 
storage elements like BESS or TESS did not demonstrate any economic 
benefit for either of the three aggregation scenarios given the current 
market mechanism (day-ahead pricing considering feed-in tariff and 
no compensation for supporting the grid) and would require higher 
investments, making them unattractive for prosumers, despite their 
benefits for the DSO. However, previous works suggest that new mar-
kets could make such investments attractive [34,35]. In this sense, Fig. 
12 shows that given compensation, the ROI of scenarios 4 and 6 can be 
reduced to the ROI of scenario 2. Scenario 4 might be an interesting 
15 
business case, as the compensation prosumers require is below the 
overall energy cost (see Fig.  12(a)). However, scenario 6 might not be 
attractive to DSOs, as the compensation would go beyond the energy 
costs for low- to mid-consumption prosumers (see Fig.  12(c)). Instead, 
additional schemes can be considered. For example, providing not a 
total but a partial compensation to the prosumer below the energy cost 
or involving governmental institutions to provide subsidies in this kind 
of investment under the condition of collaboration with the DSO.

DSOs are required to ensure voltage conditions on the grid, as stated 
in the standard EN50160. Each scenario requires different levels of 
involvement from the DSOs to ensure the voltage conditions, based 
on the adoption percentage, as shown in Table  7. On the one hand, 
it is not expected that the adoption increases linearly with time, but 
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Fig. 11. Indoor temperature distribution in the houses during (a) winter, and (b) summer for each scenario.
Fig. 12. Investment comparison of scenario 2 with scenarios 4 and 6, considering (a), (c) the required monthly compensation to ensure the ROIs for both scenarios are the same 
and (b), (d) the difference between the required compensation and the average monthly energy cost, respectively.
instead saturates at some point, from where the increase in the adoption 
is slower. That being said, knowing that the approach allows a later 
deployment of reinforcement reduces the time pressure to commission 
the project; the higher the adoption, the more time the DSO would 
have to come up with the best approach, including execution time. On 
the other hand, the fact that the grid can withhold larger adoptions, 
without changes, would also imply that the reinforcement required is 
smaller (to ensure minimum compliance), gaining more value from the 
same system, either before or after reinforcement. As can be seen, the 
16 
aggregated scenarios (4 and 6) result in more reliable systems, whereas 
the cases without aggregation require reinforcements on the grid more 
urgently.

Using a centralized PV+BESS system (scenario 8) could not outper-
form single- nor multi-carrier aggregated storage. The results of the 
centralized system to compensate for the inclusion of PV and heat 
pumps in households shown in Table  6 demonstrate a single unit can 
support the network in low adoptions. However, adoptions above 60% 
during winter and 80% during summer show incompliance with the 
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Fig. 13. Accumulated voltage incompliance per node for scenarios 1 and 2 during (a), (c) winter and (b), (d) summer, respectively.
Fig. 14. Accumulated voltage incompliance per node for scenarios 8 during (a) winter and (b) summer.
standard EN50160. The reason is the distribution of power throughout 
the radial grid. If there are loads in branches whose nodes are far from 
both the substation and the centralized system, their voltage drops will 
not be compensated effectively, as they would in a distributed case, 
such as scenarios 4 and 6. In addition, the storage capacity required for 
17 
a centralized system largely exceeds the sum of the household storage 
units. For instance, for a adoption of 40%, a system of 1 MWh is 
required for the centralized system, compared to 28 systems of 10 kWh 
used in scenarios 4 and 6 (280 kWh in total). Yet, the grid shows 
better behaviour with the aggregated storage during winter, as shown 
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Table 7
Maximum adoption ranges per scenario without violating voltage limits.
 Scenario Winter [%] Summer [%] 
 1: RES inclusion >80 >80  
 2: Heat electrification 20–40 >80  
 3: Single-carrier non-aggregated storage 20–40 >80  
 4: Single-carrier aggregated storage 60–80 >80%  
 5: Multi-carrier non-aggregated storage 0–20 0–20  
 6: Multi-carrier aggregated storage >80 >80  
 7: Multi-carrier semi-aggregated storage 0–20 20–40  
 8: Centralized Storage1 20–40 60–80  

in Table  3, where the voltage is below 0.95 p.u. during up to 3.57% 
of the time with the aggregated single-carrier storage and 3.46% with 
the aggregated multi-carrier storage, compared to the 5.28% with the 
central system. For higher adoptions, the central system cannot satisfy 
the standard EN50160, regardless of the capacity of the battery, as 
some nodes saw almost no change before (see Fig.  13) and after (see 
Fig.  14) including the central BESS.

Also, it is worth mentioning the physical capacity of the distribution 
system. Normally, the cabling towards the end of the distribution 
systems is thinner than close to the substation. This is due to the 
traditional, uni-directional, power flow considered for the design of 
those systems in the past. Thus, placing a centralized system in nodes 
far from the substation might require reinforcement regardless, as the 
cables cannot transport the current needed to compensate the voltage 
drop, making the centralized solution unsuitable.

6. Conclusions

This paper provided an in-depth analysis of the effects of including 
four architectures of residential single- and multi-carrier energy systems 
in a real low-voltage distribution network in the Netherlands. From 
the prosumer perspective, adding BESS or TESS resulted in energy 
cost savings between 45–66% and 34–149% in winter and summer, 
respectively, compared with a base case without any addition. Nev-
ertheless, a PV+HP system results in savings between 55–79% and 
93–161% during winter and summer, respectively. When considering 
the prosumer yearly consumption, lower consumption prosumers have 
worse ROIs and require compensations beyond their actual energy cost 
to make a profit from a multi-carrier energy storage system.

From the DSO perspective, including PV systems sized for near-net-
zero buildings did not violate the minimum voltage regulations of the 
standard EN50160 for adoptions below 80%. Nevertheless, including 
heat pumps causes the voltage to be below 0.95 p.u. up to 8% of 
the week in winter for adoptions above 40%. Single-carrier aggrega-
tion (only batteries) provided satisfactory voltage behaviours (voltage 
below 0.95 p.u. during 5.62% of the time in winter) at the cost of 
lower indoor temperatures and higher curtailments on the prosumer 
side. Multi-carrier aggregation provided a significant benefit for the 
DSO, in such conditions, the network was able to accommodate over 
80% adoption with voltages below 0.95 p.u. only 4.3% the time. A 
centralized PV-BESS system was incapable of ensure compliance with 
the standard EN50160 for adoptions above 20%, independently of the 
capacity of the system due to current limitations of the cabling, urging 
grid reinforcement prior its installation.
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