The hybrid FRP & glass bridge

Research for a material adapted and optimized hybrid pedestrian bridge design

Student: Arthur Blankenspoor

> First mentor: Ir. Joris Smits

Second mentor: Dr. ir. Fred Veer

Delegate: Prof. dr. Hans Wamelink

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

"New" and innovative materials in the building industry

Especially popular in bridge design

Expanded knowledge leads to improved designs

Further improvement of weaknesses:

Hybrid bridge structures

Ductile breaking with FRP

??

Transparency of glass

??

AIM OF RESEARCH

Find structural advantages & disadvantages

Material adapted

Pedestrian bridge

Medium long span length (about 30m)

MAIN RESEARCH QUESTION

"Can a hybrid pedestrian bridge with a loadbearing structure of FRP and reinforced structural glass be designed while making optimal use of the material properties of both materials?"

METHODOLOGY

11

LOCATION

PROGRAM OF REQUIREMENTS

- Dimensions
 - According to location
 - Wheelchair accessibility
 - Vertical clearance
- Loading
 - According to NEN
- Safety material dependent

REQUIREMENTS

Dimensions

ŤUDelft

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

ŤUDelft

MATERIAL RESEARCH – DESIGN GUIDELINES

What are the (mechanical) properties of fibre reinforced polymers?

What are the (mechanical) properties of reinforced structural glass?

What precedents (structural glass and FRP) have been built and what are their structural characteristics?

What hybrid systems have been built and what are their structural characteristics?

FIBRE REINFORCED POLYMERS

Composite material:

- Fibers strength
- Resin distribution of loads
 - protection
 - prevents buckling

FIBRE REINFORCED POLYMERS

Fibers:

- Aramid
- Carbon
- Glass

FIBRE REINFORCED POLYMERS

Resins:

- Polyester
- Ероху
- Phenol

FIBRE REINFORCED POLYMERS

Predominant production processes:

- Pultrusion
- Vacuum infusion

• Structural shapes with constant cross-sections

• Cheap

- Uniform cross-sections & non-uniform cross-sections
- More expensive

STRUCTURAL GLASS

- Transparent
- Brittle

STRUCTURAL GLASS

Safety concepts:

- ✓ Redundancy
- Ductility
- Pre-stressing

STRUCTURAL GLASS

Safety concepts:

- Redundancy
- ✓ Ductility
- Pre-stressing

STRUCTURAL GLASS

✓ Pre-stressing

STRUCTURAL GLASS

Predominant production process:

• Float glass production

raw material

ŤUDelft

DESIGN GUIDELINES

FRP

Low stiffness (E-modulus) Structural glass

High stiffness (E-modulus)

Design guideline:

Glass can stiffen the FRP structural members

DESIGN GUIDELINES

FRP

Sensitive to stress

Structural glass

Sensitive to stress

Design guideline:

Evade the use of bolted connections, use inserts when impossible Use adhesive or interlocking connections instead

32

DESIGN GUIDELINES

FRP

Easy transportation

Structural glass

Difficult transportation

Design guideline:

Use small glass elements with protected edges, while FRP elements can be larger and unprotected

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

TUDelft

Variant 3 – Hybrid monocoque

Design criteria:

- Strength & stability
- Transparency
- Safety

Secondary criteria:

- Transportation & assembly
- Weight
- Costs
- Sustainability & durability

PRELIMINARY VARIANTS	GRADING					
	Ranking (design criteria)			- Julie		
	Strength & Stability	0000	0	00	000	
	Transparency	000	0000	ο	00	
	Safety	00	0000	000	0	
	Total	9	9	6	6	

PRELIMINARY VARIANTS

GRADING

HYBRID FACETTED SHELL

What is the most efficient type of hybrid facetted shell considering the material properties of the applied materials?

Optimizing a plate shell bridge

SHELLS

Three-dimensional curved surface with small thickness that resists load predominantly through membrane stresses

Features of a shell:

- Continuity
- Curvature
- Small thickness

FACETTED SHELLS

Three types of facetted shells:

- Grid shell
- Lattice structure
- Plate shell

GRIDSHELL

Approximates smooth shell

Continuous curved elements

Can only resist forces in the direction of the element

LATTICE STRUCTURE

Approximates smooth shell

Discrete straight elements connected in nodes

Can only resist forces in the direction of the element

More bending moments

PLATE SHELL

Approximates smooth shell

Discrete straight plate elements

Will resist loading through in-plane forces

More bending moments (plate bending)

CONCLUSION

Glass stiffening FRP main loadbearing structure:

- Large bending and torsional moments in glass
- Stress concentrations in glass

Glass as main loadbearing structure with FRP connections:

- Force transfer in FRP
- More transparency

Plate shell is the best type of facetted shell

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

ŤUDelft

FORM-FINDING

FORM-FINDING

GEOMETRIC OPTIMIZATION

TESSELLATION

Hexagonal tessellation for least concentrated nodal forces

Connections shortened:

- Minimal stress concentrations in corner
- Water drainage

GEOMETRIC OPTIMIZATION

TESSELLATION

1.9 Vev Diglay Solutor Talp Hehod I welliancen mei analyski" 200 000-🙀 📻 129% - 🖸 - 🎯 - 💋 CONCEPTS. Taxance 1009.0 Noneslate Damana Camping 0111 Dist at on Toug a Artrale - -C recolabjurs < U2 beat C N K D4 Threshold with C. 5 Interes -0 01 10

GEOMETRIC OPTIMIZATION

TESSELLATION

Complications during hexagonal tessellation

GEOMETRIC OPTIMIZATION

Regular triangular tessellation

GEOMETRIC OPTIMIZATION

Dimensions plate should be optimized

??

Embedded FRP sheet:

- Better distribution forces
- Higher axial stiffness

ANALYSIS & OPTIMIZATION	PLATE SHAPE		Linear supports
	Variant 1		
	Protruding - Princkhess Thickhess Thickhess Fillet - Variant 3 - Thickness - Fillet - Fillet -	16mm 3201111 16124Mm 16124Mm 114mm 16MM 16MM 10mm 38mm	000 000 000 000 000 000 000 000 000 00
	Varoantding - Thickness - Fillet -	32mm 10mm 114mm	
ŤU Delft			60

ANALYSIS & OPTIMIZATION

RESULTS

No significant influence rounding corners & length of connected edge

Larger protruding length

Larger thickness embedded sheet

ŤUDelft

RESULTS

Variant 2 shows the least deformation & stresses

High concentrated stresses at supports

1.

ANALYSIS & OPTIMIZATION

CURVATURE AT SUPPORTS

Introducing curvature for better shell behaviour

Limited to requirements

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

TUDelft

CONNECTIONS

CONNECTIONS

Transfer loads between plates:

- Bending moments
- In-plane loads
- Shear forces
- Torsional moments

Depending on:

- Overall shell behaviour
- Stiffness plates
- Stiffness connection detail

CONNECTIONS **PROPOSED CONNECTION 1**

- Stresses around bolts •

CONNECTIONS PROPOSED CONNECTION 2

- No stress concentrations
- Less axial stiffness

CONNECTIONS

FABRICATION

Quasi-isotropic:

• Non-linear loading

Glassfibre reinforced polymers:

- Cheapest, most sustainable & widely used
- Translucent

Epoxy resin:

- High corrosion resistance
- Good thermal properties
- High strength

STRUCTURE:

- 1) Introducing the subject
- 2) Theoretical framework
- 3) Preliminary variants of design
- 4) Form-finding & optimization of design
- 5) Connections
- 6) Final design

THEORETICAL FRAMEWORK

STRUCTURAL GLASS

Material characteristics:

- High stiffness
- High compressive strength
- High chemical resistance
- High density

- Brittle
- Low toughness
- Low thermal shock resistance
- Highly sensitive to stress concentrations

THEORETICAL FRAMEWORK

FIBRE REINFORCED POLYMERS

Material characteristics:

- Composite material
- An-isotropic to quasi-isotropic
- Low density
- High specific strength
- High durability

- High freedom of form (mouldability)
- Brittle
- High (initial) material costs
- Sensitive to heat

