
Decision-Focused
Learning for
Scheduling Problems
with Uncertainty in
the Constraints
Atanas Marinov

Decision-Focused
Learning for

Scheduling Problems
with Uncertainty in

the Constraints
by

Atanas Marinov
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday June 28, 2024 at 9:00 AM.

Student number: 4946251
Project duration: November 13, 2023 – June 28, 2024
Thesis supervisor: Prof. Dr. M. M. de Weerdt
Daily supervisor: K. C. van den Houten
Thesis Committee Member: Dr. D. M. J. Tax

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis represents the final step in my journey toward obtaining a Master of Science degree in
Computer Science at Delft University of Technology. A journey that began six years ago in 2018 when
I moved to the Netherlands to pursue my studies. A journey that is sadly nearing its end.

I am deeply grateful to my thesis coordinator, Prof. Dr. Mathijs de Weerdt, and my daily supervisor,
Kim van den Houten, for their unwavering support and invaluable guidance throughout this process.
Their insights and feedback have been instrumental in shaping this thesis, and their encouragement
has been a constant source of motivation. I sincerely appreciate the time and effort they dedicated to
guiding me through my research.

I also want to thank everyone who participated in the P+O meetings and the Decision-Focused
Learning workshop organized by Kim and Noah. These events provided exceptional opportunities to
deepen my understanding of the subject by hearing diverse perspectives from various researchers. Pre-
senting my work during these occasions was not only a chance to receive invaluable feedback but also
an opportunity to experience being a part of an inspiring research community.

Last but not least, I express my profound gratitude to my family. I was able to feel their support
despite the fact that we were so far apart. It was vital for me to be able to cope with the challenges
and stresses I faced. Their encouragement and belief in my abilities have been crucial in achieving this
milestone. Thank you again for your unwavering love and support! I love you all!

Atanas Marinov
Delft, June 2024

i

Abstract
When addressing combinatorial optimization problems, the focus is predominantly on their computa-
tional complexity, and it is often forgotten to look at the bigger picture. As a result, it is common
to miss critical details which could play a major role in the overall process. One such detail is the
presence of uncertainty in the real world. A naive approach might directly predict values for the un-
certain parameters, without taking into account that the ultimate goal is to obtain sound decisions.
Consequently, in many cases, the resulting solutions are suboptimal. This challenge is precisely the
premise behind Decision-Focused Learning (DFL) framework, which is a core of this work. This study
pioneers the application of the DFL framework to scheduling problems with uncertain processing times,
utilizing contextual features to predict these uncertainties. By employing the promising Score Function
Gradient Estimation method, the research tackles the issue of non-differentiable regret loss functions in
DFL. Key contributions include the development of techniques to enhance the performance of the Score
Function, an in-depth analysis of DFL’s applicability to complex scheduling scenarios, and a detailed
evaluation of its strengths and weaknesses. This work not only demonstrates the potential of DFL
in this new context but also lays the groundwork for future research and improvements in handling
uncertainty in combinatorial optimization.

ii

Contents

Preface i

Abstract ii

1 Introduction 1

2 Background 5
2.1 Combinatorial Optimization . 5
2.2 Resource-Constrained Project Scheduling Problem . 6
2.3 Uncertainty in Scheduling . 7
2.4 Prediction-Focused Learning . 8
2.5 Decision-Focused Learning . 9

3 Research Questions: Formulation and Motivation 12
3.1 Research Question 1: Impact of the Sampling Distribution 12
3.2 Research Question 2: RL-Inspired Extensions . 12
3.3 Research Question 3: Impact of the Added Penalty . 13
3.4 Research Question 4: Effect of Uncertainty . 13

4 Methodology 14
4.1 Method Overview . 14
4.2 Prediction Step and the Score Function Method . 15
4.3 Solving Step . 17
4.4 Correction Step . 17
4.5 Update Step . 18
4.6 Extensions to the Base SFGE Methodology . 19

4.6.1 Baseline Post-Hoc Regret . 19
4.6.2 Proximal Policy Optimization Updates . 20

5 Evaluation 22
5.1 Data and Instance Generation . 22

5.1.1 Data Generation Process . 23
5.1.2 Hyperparameters of the Data Generation . 23
5.1.3 Scaling . 23

5.2 Research Question 1: Sampling Distribution and Warm-starting 24
5.3 Research Question 2: RL-Inspired Extensions . 27

5.3.1 Sub-question 1: Baseline Post-Hoc Regret . 27
5.3.2 Sub-question 2: PPO Updates . 28

5.4 Research Question 3: Impact of the Added Penalty . 29
5.5 Research Question 4: Effect of Uncertainty . 32

6 Influence of the Solving Technology 36
6.1 Solving Technology and Its Effects on the Pipeline . 36
6.2 Evaluation of the Solver . 37

6.2.1 Speed and Accuracy . 37
6.2.2 Consistency . 37

6.3 Aftermath . 38

7 Conclusion and Future Work 39
7.1 DFL in Scheduling . 39
7.2 SFGE Methodology . 41

iii

1
Introduction

The combinatorial optimization class encompasses a broad spectrum of problems, many of which have
practical real-world applications. For instance, the traveling salesman problem (TSP) is employed in
logistics, the minimum spanning tree is utilized in networking, and scheduling is crucial in manufacturing.
A key distinction between their theoretical descriptions and real-world implementations is the presence
of uncertainties in real-world scenarios (Arora et al., 2023; Sarin et al., 2010). In the textbook version of
TSP, the time distances between the cities are predetermined and fixed. However, in reality, factors such
as time of day, traffic, and road conditions can significantly affect travel times. Similarly, in scheduling,
the processing times of tasks in a factory can be heavily influenced by operational issues such as machine
malfunction and human error, as well as environmental factors like temperature and humidity.

We should acknowledge that we live in a world filled with uncertainties, and we cannot know the exact
values that the parameters of a problem will take. Nevertheless, we still need to plan how to make
our decisions efficiently when facing such uncertain situations. To better understand how to tackle
uncertainty and the associated challenges, consider a slight variation of the knapsack problem where
a mother needs to pack the suitcase of her child before an international flight. She needs to choose
between a set of toys to put in the suitcase, where each toy has a weight and a value associated with
it. The goal is to maximize the value of the toys picked while adhering to the maximum weight of
the suitcase allowed by the flight operator. Assuming that the child is asleep while she is packing, she
cannot know exactly which toys it would want, i.e., the value of each item is uncertain to her. This is
an example of a knapsack problem where each item has an uncertain value. The problem might seem
intricate from an optimization point of view, but it is definitely manageable if we consider it from the
perspective of the mother. What she does in practice is to use her knowledge of her child, gathered from
observing it playing with its toys or from their past trips, to decide which toys to put in the suitcase.
Formally, the decision-maker (the mother) uses feature data and historical realizations available (her
past interaction with the child) to approximate the values of the uncertain parameters (the value of each
toy) in order to compute the optimal solution (which toys to take). Such methodology is often used in
practice because of the commonplace occurrence of such contextual features. If we look at the example
with concrete values as illustrated in Figure 1.1a, because of the maximum weight constraint the mother
can select to take either the car or the robot, but not both. The decision is based on whether the child
would prefer one or the other. If she incorrectly predicts the values of the toys, her choice would lead
to a suboptimal selection with a lower objective value, i.e., the child will be unhappy because it would
have preferred the other toy.

The knapsack problem with uncertain values is an example of an optimization problem where the
uncertainty appears only in the objective function. As illustrated in the previous example, in such
problems the uncertainty only impacts the objective value of the computed solution. An additional level
of complexity is added if the uncertainty also appears in the constraints. Returning to the knapsack

1

2

(a) Knapsack with uncertain values (b) Knapsack with uncertain weights

Figure 1.1: Knapsack examples. In Figure 1.1a, an example knapsack problem is presented where the values of the
items are uncertain while the weights are known. Conversely, in Figure 1.1b, the weights are uncertain while the values

are given. In the latter case, the mother can use the provided contextual features (size and material) to estimate the
weights of the items. However, these estimates are NOT the actual true weights.

example from before, assume that now the child is awake and thus the value of each toy is known.
However, this time the weighing scale is broken, and there is no way to know the exact weight of each
item. Similar to before, an approach to tackle uncertainty could be the utilization of contextual features.
This time, the mother could observe the items and use some of their features such as their size and the
material they are made of to approximate their weight. An example of such an instance is presented in
Figure 1.1b. However, these estimates are not the actual true values. Relying blindly on her estimates
would mean that the optimal choice is to take both toys as their combined weight is 9.8 kg, which is
just below the maximum allowed weight of 10 kg. Selecting both toys achieves an objective value of
8. However, estimating the exact weight of an item without a scale is practically impossible. In this
example, if the mother is off by just 0.2 kg, or about 2% of the total weight, this would mean that the
items are overweight. Then, depending on the policy of the flight operator, the mother would need to
discard an item from the suitcase, consequently losing it, or would need to pay an additional charge. If
we assume this additional penalty to have an objective value of -10, then the total objective value would
be -2, meaning that a better decision could have been to select none of the toys or just one if she is
sure that it is lighter than the maximum weight allowed. Ultimately, the presence of uncertainty in the
constraints led to an infeasible solution (the overweight suitcase), which might not only be suboptimal
but also incur an additional penalty because of the constraint violation (the lost item or paying further
charges).

Fortunately, in most cases where uncertainty appears in practice, there are such feature data and
historical realizations that can be utilized to estimate the uncertain parameter values. Such problems,
which require first making predictions about the uncertain values and then solving, are commonly
referred to as ”predict-then-optimize” problems. The earlier examples were simplified by assuming that
predicting parameter values from features was straightforward. Actually, achieving good predictions is
far from simple and is, in fact, the core challenge addressed in this work. Traditionally, machine learning
models are used to predict the uncertain values, and these predicted values are then fed directly into an
optimization algorithm to obtain a solution. The learning models are typically trained to minimize the
prediction error based on historical realizations of the uncertain process, for example, by utilizing loss
functions such as mean squared error, which measure the difference between the estimated values and
the actual values. The issue with this approach is that the predictions from these models will never be
perfectly accurate. When discrepancies between the predicted and the actual values arise, the outcome
can be a suboptimal solution, resembling the knapsack examples mentioned earlier. While accurate
predictions are important for the decision-making pipeline, the most critical aspect is making sound
decisions. This is precisely the premise behind Decision-Focused Learning (DFL) (Elmachtoub and
Grigas, 2022; Wilder et al., 2019; Mandi et al., 2023; Demirović et al., 2019). Instead of training models
to make predictions that are merely close to the actual values, DFL focuses on making predictions
that lead to good decisions by incorporating the decision error into the training process. In DFL, the
parameters of the machine learning model are updated not based on the difference between predictions
and actual values, but rather by using an optimization oracle (most commonly an optimization solver)
to determine the difference between the true optimal solution and the optimal solution obtained using

3

the predicted values. This difference, known as regret, serves as a loss function in DFL that is used
to update the parameters of the predictive model during training. By incorporating the decision error
into the training process, DFL aims to produce models that facilitate effective decision-making. This
approach addresses the shortcomings of traditional methods, where even minor prediction inaccuracies
can lead to suboptimal or infeasible decisions. In essence, DFL shifts the focus from merely minimizing
prediction error to enhancing the overall decision quality.

As mentioned above, the calculation of DFL’s loss function relies on the optimal solutions obtained
from an optimization oracle. This optimization oracle can be viewed as a black box that maps the
input optimization parameters to the resulting optimal solutions. An important aspect of this process
is that the mapping is discrete, leading to abrupt changes in the objective function of the optimization.
Consequently, since the loss function in DFL incorporates the outputs of such non-continuous objective
functions, it is inherently non-continuous and, therefore, non-differentiable. This non-differentiability
is the primary challenge in DFL research because it prevents the direct computation of the gradients
needed to update the parameters of the predictive models. As reviewed in the survey by Mandi et al.
(2023), various methods have been developed to address this issue. A common approach is to use
smoothing techniques through stochastic perturbations. One promising method in this regard is the
Score Function Gradient Estimation (SFGE). The log trick, upon which SFGE is based, provides the
necessary flexibility to be applied to problems with uncertainty in both the objective and the constraints.
While SFGE has been previously applied to address uncertainty in constraints, its applications have
either been on overly simplistic problems (Silvestri et al., 2023) or in settings that deviate from the
standard DFL format (van den Houten et al., 2024).

This research aims to extend the application of Decision-Focused Learning to more complex optimization
problems, specifically scheduling problems, in the presence of contextual features. The concrete problem
selected for evaluating the applicability of DFL is the Resource-Constrained Project Scheduling Problem
(RCPSP). The use of this problem is motivated by the additional layer of complexity added by the
resource and the precedence constraints, which are prone to violations that can trigger a cascade of
further constraint violations. Additionally, RCPSP is widely utilized not only for research purposes
(Kolisch and Sprecher, 1997), but also in practice (Klein, 2001).

This new application necessitated more complicated recourse actions, where the process of transforming
an infeasible solution into a feasible one often involved multiple adjustments to the original infeasible
solution. This added complexity introduced a new challenge: in instances with multiple distinct op-
timal solutions, which is common in scheduling, these solutions can require different recourse actions.
Since the recourse action and the transformed solution are components of the decision loss, different
optimal solutions can result in different decision losses. The major consequence of this discovery is a
reconsideration of the solving technology’s role—it should not be treated merely as a black box that
can be easily swapped out. Instead, the choice of solution output by the solver now directly impacts
the training process, as different solutions correspond to different losses. Solving this issue completely
is beyond the scope of this thesis; however, this work aims to shed light on the problem and justify the
decisions made regarding how to advance while taking into account this challenge and the limitations
of the thesis.

The contributions of this research can be summarized as follows:

1. Proposing extensions to improve the performance of the currently used SFGE methodology.
2. Applying for the first time the traditional DFL framework with contextual features to a scheduling

problem.
3. Conducting an in-depth evaluation of the suitability of DFL and the specific methodology for

more complex problems.

By addressing these points, this study aims to advance the application of Decision-Focused Learning in
more complex and realistic scheduling scenarios, potentially paving the way for more effective solutions
in practical settings.

4

The remainder of this thesis is organized as follows: firstly, Chapter 2 provides the necessary foundation
needed to understand the theoretical intricacies behind the rest of the thesis. This chapter can be divided
into two parts: Section 2.1, 2.2 and 2.3 formally introduce the concepts of combinatorial optimization,
scheduling, and the causes of uncertainty in scheduling; then, Section 2.4 and 2.5 explain DFL and
the use of SFGE in DFL. Next, Chapter 3 formalizes the explicit research goals of the thesis. Then,
Chapter 4 explains in detail the concrete implementation of the SFGE-based DFL methodology used
in this study to solve the scheduling problem. Furthermore, it puts forward extensions to the standard
SFGE method. Chapter 5 presents the experiments that are conducted to answer the research questions
and their results. Chapter 6 discusses the discoveries about the inner workings of the solver and how
they influence this thesis and the general DFL pipeline. The thesis concludes with Chapter 7, which
summarizes the work that has been done, provides suggestions for future research, and outlines a vision
for the future of the DFL framework.

2
Background

In this chapter, we discuss the relevant theoretical concepts to provide a solid foundational background
for integrating machine learning and combinatorial optimization into a coherent pipeline, specifically
addressing challenges posed by uncertainty in constraint parameters. The chapter is divided into two
logical parts: first, an exploration of scheduling and its inherent uncertainties, and second, methodolo-
gies for addressing uncertainty in scheduling.

The thesis focuses on the scheduling problem, but it is a useful initial step to begin by introducing the
general notion of combinatorial optimization and relating it to scheduling, which is done in Section 2.1.
Following this, Section 2.2 delves deeper into the specifics of scheduling and touches on the different
types of scheduling problems that appear. Consequently, it introduces the scheduling problem that
the thesis tries to solve, Resource-Constrained Project Scheduling Problem (RCPSP), by describing
the problem along with providing a Constraint Programming (CP) model to solve it. Section 2.3
discusses the important problems that arise when applying combinatorial optimization problems in
practice, namely the inherent uncertainty present in the real world, emphasizing how it could impact
the modeling of the scheduling problem.

The second logical part begins with Section 2.4, which introduces the more direct method for addressing
uncertainty in combinatorial optimization problems, namely Prediction-Focused Learning (PFL). Fol-
lowing this, Section 2.5 presents Decision-Focused Learning (DFL) as a more advanced methodology.
It compares its workflow with Prediction-Focused Learning and introduces the concepts of infeasible
solutions and penalties. Additionally, it describes the zero-valued gradient problem inherent in DFL
and highlights Score Function Gradient Estimation (SFGE) as a potential method to address this issue.

2.1. Combinatorial Optimization

To better explain the focal problem of the thesis, the scheduling problem, this section will take a step
back and first introduce the more general concept of combinatorial optimization problems. ”Combinato-
rial optimization has its roots in combinatorics, operations research, and theoretical computer science”
as stated in the book by Korte and Vygen (2012, p.XIII). It is a subfield of computer science and math-
ematical optimization. Its goal is to find the optimal solution from a finite set of possibilities, where
the set of feasible solutions can be reduced to a discrete set. The term ”combinatorial” refers to the
fact that these problems often involve selecting a combination of elements. Combinatorial optimization
problems can be formulated as:

5

2.2. Resource-Constrained Project Scheduling Problem 6

arg max
X

C ·X (2.1a)

s.t. X ∈ CS (2.1b)

There are three main elements in Equation 2.1. First, the decision variables, which are denoted by X.
Then, the objective function Equation 2.1a, which expresses that the problem tries to find the X such
that the combination (which in this example is linear) of X and its coefficients C takes maximum value.
Lastly, Equation 2.1b states the constraints, i.e., X must satisfy the constraint set CS.

Some example combinatorial optimization problems besides the scheduling problem are:

1. Traveling Salesman Problem: Given a list of cities and the distances between them, find the
shortest possible route (order of cities) that visits each city exactly once and returns to the
original city.

2. Knapsack Problem: Given a set of items, each with a weight and a value, determine which items
to include so that the total weight is less than or equal to a given limit and the total value is
maximized.

3. Graph Coloring: Given a graph, assign colors to its vertices so that no two adjacent vertices have
the same color and the number of colors used is minimized.

4. Minimum Spanning Tree: Given a connected, undirected graph with weighted edges, find a tree
that spans all the vertices of the graph with the minimum possible total edge weight.

Combinatorial optimization problems find broad use. They are especially important in fields such as
Logistics, Supply Chain Optimization, and Operations Research. Combinatorial optimization problems
can be solved using exhaustive searching for the best element from the discrete set of possible solutions.
However, because the number of combinations often increases exponentially with the number of items,
such an approach is computationally infeasible. Therefore, tackling them requires special attention. Dy-
namic programming can efficiently solve the problems by breaking them down into smaller subproblems
and reusing solutions. Linear programming offers a powerful framework for modeling and optimizing
combinatorial problems with linear constraints, while constrained programming extends this capability
to handle more complex constraints, including nonlinear and discrete variables, thus providing versatile
approaches to finding optimal solutions.

2.2. Resource-Constrained Project Scheduling Problem

Now that we have formalized the concept of combinatorial optimizations, we can focus specifically on the
scheduling problem. Scheduling, sometimes also referred to as job scheduling, is a class of combinatorial
optimization problems. The problem involves a provided set of jobs (also commonly referred to as tasks)
and a list of machines (also called processors or workers). The exact settings differ depending on the
specific purpose for which the problem is designed, but there are some common elements that often
appear. A processing time pi (commonly referred to as duration) is associated with each task i, which
is assumed to be integer and positive. In some variations, tasks are also associated with start times and
end times.

The execution of a task is subject to various types of constraints. The most popular constraints con-
sidered are temporal constraints and resource constraints. Common types of temporal constraints are
availability, due date, and precedence constraints. The existence of a precedence constraint for the pair
of tasks (i, j) signifies that the start of the execution of task j must occur after the end of the execution
of task i. Resource constraints limit the availability of resources (e.g., machines, workers) required

2.3. Uncertainty in Scheduling 7

for executing tasks. In such settings, there are M different resource types, a total available resource
RM , and the specific consumption of each task. The resources could be of two types: renewable and
non-renewable. Renewable resources are available on a period-by-period basis, and the total available
resource resets at the start of the next period. On the other hand, non-renewable resources represent a
single value for the entire duration.

There is also a wide variety of objectives associated with scheduling. The most common one is to
minimize the total completion time of all tasks (also known as makespan). Others include: minimize
total (weighted) tardiness – minimize the total (weighted) amount by which tasks are completed after
their due dates, ensuring that tasks are completed on time or as close to their due dates as possible;
minimize total flow time: minimize the sum of the time each task spends in the system, from the
moment it enters the system until it is completed. It is also possible to optimize for multiple objectives
simultaneously or to have no objective, which just presents the satisfaction version of the problem.

The exact scheduling problem in question is the Single-Mode Resource-Constrained Project Scheduling
Problem (RCPSP) as described in (Kolisch and Sprecher, 1997). The objective is to minimize the
makespan in the presence of precedence and renewable resource constraints, while being given only
the processing times of the tasks. A suitable method for solving such a problem is to use Constraint
Programming (CP). In constraint programming, users declaratively state the constraints on the feasible
solutions for a set of decision variables, allowing the definition of complex problems in a clear and
concise way. Additionally, CP allows to efficiently navigate the search space for solutions through
domain reduction and constraint propagation. A CP model for RCPSP can be compiled as shown in
the work by van den Houten et al. (2024): given J , a set of jobs, R, a set of resources, and S, a set of
successors, with nrj indicating the resource need of type r for task j, yj denoting the processing time
of task j, br, the cumulative maximum resource of type r available at each iteration, and Sj , the set of
successors of task j, find the schedule with the minimum total makespan. The decision variable of the
model is xj , which indicates the interval length of task j. The CP model (using IBM CPLEX (Cplex,
2009) function notation) is given by:

arg min
x

Makespan (2.2a)

s.t. max (endOf (xj)) ≤ Makespan j ∈ J, (2.2b)
startOf (xi) ≥ endOf (xj) ∀j ∈ J, ∀i ∈ Sj , (2.2c)∑
j∈J

Pulse (xj, nrj) ≤ br ∀r ∈ R, (2.2d)

xj : IntervalVar (J, yj) ∀j ∈ J (2.2e)

Equation 2.2a gives the objective of the optimization problem – to minimize the total makespan. Con-
straint 2.2b defines the makespan as the end time of the last job. Constraint 2.2c enforces the precedence
relation by requiring each successor of task j to have a starting time greater than or equal to the ending
time of j. The shared resource usage is modeled using the pulse CP constraint (Cplex, 2009) in 2.2d.
The pulse function returns a cumulative expression equal to a certain value over an interval. In this case,
the value is the specific resource usage nrj of task j, and the interval is the interval decision variable
xj . The pulse values are then aggregated and restricted to have a sum less than or equal to the total
available resource br.

2.3. Uncertainty in Scheduling

The provided CP model is generally correct but could be effectively applied on its own only in a
deterministic environment, i.e., where all of the factors are perfectly known beforehand, and the process

2.4. Prediction-Focused Learning 8

always unfolds as intended. However, this scenario is rarely the case in practice, where uncertainty
emerges due to the inherent complexity and dynamic nature of real-world environments. For instance,
when dealing with a manufacturing facility, it is possible that a task takes longer because of human
error, machine malfunction, or just because it includes a process which is inherently stochastic, such
as a complex biochemical reaction. A change in the processing time of a task could easily alter the
optimal schedule that the CP model would have produced if it had known the actual value beforehand.
Moreover, in the presence of tight constraints, such a change could render the remainder of the schedule
infeasible, leading to negative consequences for the production, ranging from just minor disruptions to
severe impacts such as system failure, customer dissatisfaction, and loss of revenue (Sarin et al., 2010).

Before turning our heads to methods dealing with uncertainty, it is useful to quickly introduce the
two types of uncertainty that occur – epistemic uncertainty, derived from a lack of knowledge about
a parameter, and aleatory uncertainty, referring to uncertainty caused by probabilistic variants in a
random event. To build an intuition about them, consider an example from meteorology. Aleatory
uncertainty could arise from the inherent randomness or variability in atmospheric processes, such as
the unpredictable movement of individual raindrops despite perfect knowledge of current conditions.
On the other hand, epistemic uncertainty emerges from gaps in knowledge or understanding, such
as incomplete data or insufficient comprehension of complex atmospheric dynamics. For instance, if
there’s a new phenomenon in atmospheric science that hasn’t been fully understood or incorporated
into forecasting models. Since the CP model is provided only with a single value for the processing
time of the tasks, it inherently favors parameters predominantly characterized by epistemic uncertainty.
Epistemic uncertainty suggests predictability to a single value when information is available. Conversely,
uncertain parameters with substantial aleatory uncertainty may yield greater insights through learning
the underlying distribution of the parameters.

2.4. Prediction-Focused Learning

The presence of uncertain parameters when applying combinatorial optimization problems in the real
world is not a newly discovered phenomenon. Uncertain parameters can be dealt with via different ap-
proaches. Robust optimization (Ben-Tal et al., 2009) aims to minimize the adverse effects of uncertainty
by ensuring that solutions perform well across different realizations of uncertain events. It does so by
considering the worst-case scenarios or optimizing against a range of possible outcomes. A different
alternative is stochastic optimization (Nemhauser et al., 1989) which formulates optimization problems
with probabilistic constraints or objectives and seeks decision rules that are optimal or satisfactory
under various probabilistic scenarios.

Both robust and stochastic optimization rely on historical realizations of the unknown parameters.
However, this work adopts a different approach, which assumes that the provided information is in the
form of contextual features from which uncertain parameter values can be predicted. The survey by
Sadana et al. (2023) provides a broad overview of the different methods that can be used to solve such
contextual optimization problems. A common and direct approach for handling this uncertainty is to
employ machine learning algorithms to estimate the uncertain quantities. The general pipeline of this
approach is depicted on the right in Figure 2.1. Here, the model makes predictions based on contextual
features, which are then fed into the CP solver to optimize the objective and compute the optimal
solution. Traditionally, these two steps, prediction and optimization, were treated as independent
procedures. This approach is known as Prediction-Focused Learning (PFL), also referred to in the
literature as a ”two-stage” approach (Mandi et al., 2023).

The fundamental distinction between PFL and Decision-Focused Learning (DFL) lies in the training
routine, as illustrated on the left in Figure 2.1. PFL focuses solely on predictive error, striving to make
predictions as close as possible to the actual true values of the uncertain parameters. Therefore, the
most commonly used loss function in the PFL setting is the mean squared error (MSE):

2.5. Decision-Focused Learning 9

Figure 2.1: PFL and DFL pipeline. On the left side, the distinction in the training phase between PFL (top) and DFL
(bottom) is illustrated. DFL incorporates an additional component, the Optimization Solver (highlighted in the green

circle), which is not present in PFL. This solver is utilized in DFL to compute its regret loss. On the right side, the
shared pipeline of PFL and DFL is visualized. This common pipeline outlines the standard procedure followed in both

learning approaches, highlighting the integration of machine learning models with optimization solvers to achieve
comprehensive decision-making capabilities.

MSE(y, ŷ) =
∑N−1

i=0 (yi − ŷi)
2

N

where y denotes the true value of the parameter and ŷ denotes the predicted one. Once the MSE is
computed, it is directly used to update the model. Essentially, PFL follows the conventional approach
for training a machine learning model, involving the interaction between two primary components: the
data and the model (as illustrated at the top left of Figure 2.1). Consider machine learning methods
that use gradient-based optimization techniques as an example. In these processes, the model utilizes
the data to make predictions, which are then employed to update the model. This cycle of prediction
and model updating continues iteratively until the process converges or is stopped.

2.5. Decision-Focused Learning

The goal of Decision-Focused Learning (DFL) is to address the main weakness of PFL, namely, the lack
of integration between machine learning training and the quality of the produced decision. As decisions
are realized after the optimization stage, this requires the integration of the optimization component
into the training loop (as depicted in the bottom left of Figure 2.1), resulting in a composite model that
produces comprehensive decisions. This is achieved by incorporating the quality of the decision into
the loss function of the model. The fundamental concept underpinning DFL is exactly the formulation
of this novel loss function called regret, designed to evaluate decision quality. Regret quantifies the
disparity between the objective value obtained from solving the combinatorial optimization problem
using parameter values predicted by the machine learning model, ŷ, and the objective value derived
from solving the optimization problem without uncertainty, i.e., using the true parameter values, y:

Regret(ŷ, y) = f(x∗(ŷ))− f(x∗(y))

where x∗(y) denotes the optimal solution with the true parameters y, x∗(ŷ) denotes the optimal solution
with the predicted parameters ŷ, and f(·) denotes the objective value of a solution.

2.5. Decision-Focused Learning 10

A significant shortcoming of regret is that it can deal with problems that have uncertainty only in the
objective function. If uncertainty appears in the constraints, it is possible that the solution calculated
with the estimated parameters is infeasible under the true parameters. To generalize it for problems
where uncertainty may also appear in the constraints, Hu et al. (2022) propose an extension of regret
called post-hoc regret, formulated as:

Post-Hoc Regret(y, ŷ) = f(x∗(ŷ))− f(x∗(y)) + Pen(x∗(ŷ) → x∗
corr(ŷ, y))

In the formula above, x∗
corr(ŷ, y) represents the correction function that transforms ŷ into a feasible

solution given the true parameters y. The Pen(·) function serves as a penalty function, assigning a non-
negative penalty value to the transformation from the estimated solution to the corrected one. The use
of correction and penalty functions offers a significant advantage in practical applications by allowing
infeasible solutions to be transformed into feasible ones when the true parameters are revealed, rather
than discarding them outright. The specific choice of these functions depends on the particular problem.
In the context of scheduling with uncertainty, as discussed in Section 2.3, the correction function adjusts
the schedule based on the actual processing times of the tasks. As noted earlier, the consequences of
these adjustments can vary widely. Therefore, the penalty function can be customized to assign higher
penalties to more impactful changes, thereby increasing post-hoc regret proportionally.

A notable drawback of DFL is its reliance on solvers to compute regret. This dependency results in
significant computational overhead, as regret calculations are required for each example and during
each epoch of the training process. Moreover, the computational cost escalates with the complexity
of the optimization problem, which typically grows exponentially for most combinatorial optimization
problems. While DFL excels in generating optimal decisions, its reliance on solving backends highlights
a limitation that should be carefully considered when implementing the framework.

Figure 2.2: Regret as a function of ŷ. The graph shows that regret is a step function and is thus non-differentiable.

The primary challenge in DFL arises from the non-differentiability of its regret loss function, which
prevents the application of gradient-based learning methods. This issue originates from the regret
definition itself, which depends on the outcome of a combinatorial optimization procedure, which entails
a discrete mapping. Figure 2.2 visually depicts the regret as a function of ŷ, illustrating its characteristic
abrupt changes. This figure provides insight into the zero-gradient problem, highlighting that small
changes in the optimization input ŷ do not necessarily result in a new optimal solution with a different
objective value. The scheduling problem can serve as a good example: most small changes in the
processing times ŷ lead to the same solution, with only a few points causing non-continuous, step-like
changes. Consequently, the entire loss function may exhibit undefined or zero-valued gradients with
respect to the predictive model’s parameters. This limitation also becomes evident when deriving the
gradient:

∂L (x⋆(ŷ), y)

∂ω
=

∂L (x⋆(ŷ), y)

∂x⋆(ŷ)
· ∂x

⋆(ŷ)

∂ŷ
· ∂ŷ
∂ω

2.5. Decision-Focused Learning 11

Here, ω represents the parameters of the predictive model. The term, ∂x⋆(ŷ)
∂ŷ , measures the sensitivity

of the optimal solution x⋆(ŷ) to changes in ŷ. In combinatorial problems like scheduling, this term is
nearly zero across most points, as depicted in Figure 2.2. Consequently, the gradient is effectively zero
across most points and undefined at the points where the jumps occur, rendering it uninformative and
unsuitable for gradient-based learning.

To address this challenge, various methods have been proposed. Mandi et al. (2023) provides a compre-
hensive survey categorizing these methods into four groups based on how they handle the differentiation
issue: 1) analytical differentiation of optimization mappings, 2) analytical smoothing of optimization
mappings, 3) smoothing using random perturbations, and 4) differentiation of surrogate loss functions.
One notable method from the third category is Score Function Gradient Estimation (SFGE), also known
as the REINFORCE algorithm in the context of reinforcement learning (Sutton et al., 1999). SFGE
finds applications in reinforcement learning and other areas requiring gradient-based optimization where
direct computation of gradients is not feasible. Recently, SFGE has been adapted to DFL in the works
of Silvestri et al. (2023) and van den Houten et al. (2024). SFGE estimates gradients using Monte
Carlo sampling and the log-derivative trick. The method provides a high level of flexibility because it
does not make any assumptions about the structure of the problem or the loss function used. As a
consequence, it is compatible with post-hoc regret, which makes it promising for addressing problems
involving uncertainty in constraints. If successful in scheduling, SFGE could be easily applied to other
optimization problems with minimal modifications. Following the recommendations from the survey
and after reviewing the works that adapt it for DFL, we decided to base our approach on SFGE. Further
details about the strengths of SFGE and our specific implementation are discussed in Section 4.2.

3
Research Questions: Formulation and

Motivation

This research aims to extend the Decision-Focused Learning (DFL) framework to address more complex
optimization problems, specifically focusing on scheduling problems. To assess the suitability of DFL
for such problems, it is essential to first design an effective method to deal with them. As foreshadowed
in Section 2.5, we have chosen to base our DFL method on the Score Function Gradient Estimation
(SFGE) approach. Given that SFGE is a relatively new and unexplored method, the first two research
questions (Section 3.1 and Section 3.2) focus on investigating potential improvements to SFGE. After
refining the method, the next two research questions take a step back and shift the focus to the general
DFL framework itself, evaluating the impact of environmental factors – specifically, the penalty added
for infeasible solutions (Section 3.3) and the level of uncertainty (Section 3.4). This evaluation aims
to identify the strengths and weaknesses of the DFL framework and to determine which problems are
most suitable for it.

3.1. Research Question 1: Impact of the Sampling Distribution

Formulation: How does the choice of sampling distribution in the Score Function Gradient Estimation
method impact the training performance of the overall algorithm?

Motivation: SFGE-based DFL methods have shown to be a prominent solution for the problems
with uncertainty in the constraints. However, both the works of Silvestri et al. (2023) and van den
Houten et al. (2024) directly assume Normal distribution because of its popularity in stochastic policy
gradient without considering alternatives. This question aims to investigate the impact of the sam-
pling distribution more thoroughly. Specifically, it will try to derive which is the optimal configuration
when using Normal distribution in the scheduling setting, i.e., using a single standard deviation for all
jobs or separate ones. Additionally, it will assess how alternative options such as Beta, Poisson, and
Half-Normal distributions match up.

3.2. Research Question 2: RL-Inspired Extensions

Formulation: Would the addition of reinforcement learning-based techniques improve the convergence
speed of the Score Function Gradient Estimation method when applied to DFL?

12

3.3. Research Question 3: Impact of the Added Penalty 13

Sub-question 1: Would the incorporation of a baseline term in the post-hoc regret improve the
convergence of the SFGE algorithm?

Motivation: In reinforcement learning, adding a baseline term to the loss function is a standard
practice in the REINFORCE algorithm to reduce variance in gradient estimates (Sutton and Barto,
2018; Mohamed et al., 2019). However, currently, there is no method that applies this extension in the
DFL context. This sub-question aims to analyze whether such an improvement would also be beneficial
in the context of DFL.

Sub-question 2: Would the integration of Proximal Policy Optimization updates improve the conver-
gence of the SFGE algorithm?

Motivation: The traditional REINFORCE algorithm is often criticized for its sample inefficiency,
making it computationally demanding, particularly in high complexity search spaces. This inefficiency
would be a significant bottleneck in the DFL pipeline, especially due to the computational time needed
by the solver. Employing a PPO-inspired approach could address this issue by facilitating multiple
model updates with a single solver call, thereby potentially enhancing the algorithm’s convergence
speed and overall efficiency in the context of DFL.

3.3. Research Question 3: Impact of the Added Penalty

Formulation: What is the impact of the penalty incurred due to constraint violations on the Decision-
Focused Learning algorithm?

Sub-question 1: Does there exist a difference in the performance of Decision-Focused Learning rela-
tive to Prediction-Focused Learning for the different penalty settings?

Motivation: Previous research (van den Houten et al., 2024) has indicated that the amount of added
penalty influences the difference in normalized regret between PFL and DFL. This sub-question aims
to explore whether this trend holds true when using contextual features instead of historical realizations.

Sub-question 2: What is the effect of the penalty setting on the structure of the predictions made by
Decision-Focused Learning?

Motivation: If there is a difference between the predictions made by PFL and DFL, is it because
DFL can learn a structure within the problem? If so, what specific structure does DFL learn, and how
does the penalty setting influence this learning process?

3.4. Research Question 4: Effect of Uncertainty

Formulation: How does uncertainty affect the performance of the Decision-Focused Learning method
for scheduling with uncertain processing times?

Motivation: As discussed in Section 2.3, the scheduling problem involves two types of uncertainty:
epistemic and aleatory. These uncertainties vary across different scheduling environments. The objec-
tive of this research question is to investigate the extent to which the algorithm is effectively applicable
in environments characterized by each type of uncertainty, aiming to determine in which environments
the algorithm performs better.

4
Methodology

The goal of this study is to assess the applicability of Decision-Focused Learning in addressing schedul-
ing problems, specifically RCPSP. This chapter provides a detailed explanation of the method designed
to achieve this goal. The method is tailored to fit within the classical DFL framework with contextual
features. Given these features, the objective is to train a DFL model capable of predicting uncer-
tain processing times while minimizing the decision error. Notably, addressing uncertainty in problem
constraints is crucial in method design.

This chapter is structured as follows: first, Section 4.1 gives a high-level overview of the proposed DFL
method. Subsequently, the next four sections (Section 4.2 - Section 4.5) each detail one of the four core
stages of the method. These sections follow a consistent structure: introduction of input, description
of output, and specifics of the transformation within each stage. Additionally, Section 4.2 includes an
explanation of the Score Function method. The chapter concludes with Section 4.6, which presents the
novel extensions proposed for the general methodology of applying SFGE in DFL.

4.1. Method Overview

The problem addressed involves scheduling with uncertainty in the constraints. As discussed in Sec-
tion 2.5, managing uncertainty in the constraints requires special attention and the development of a
new loss function to handle potential infeasible solutions due to constraint violations. Post-hoc regret
is particularly well-suited for this task. However, it exhibits the zero-gradient problem. To address this
challenge, Score Function Gradient Estimation emerges as a promising solution. SFGE is suitable due to
its inherent flexibility – it does not impose specific assumptions about problem structures (e.g., convex
or linear problems) and operates independently of the solver used. Moreover, SFGE can accommodate
various loss functions, including post-hoc regret.

A schematic of the workflow for the proposed DFL training routine is depicted in Figure 4.1. This
workflow is structured into four stages: prediction, solving, correction, and update. The underlying ma-
chine learning model is linear regression, trained through gradient-based model updates. The presence
of prediction and update stages is not unique to our approach but fundamental to all gradient-based
methods. In the prediction stage, the input is the observed contextual features of the training example,
and the goal is to arrive at predicted values for the uncertain processing times. Rather than directly
using the output of the predictive model, this stage employs SFGE, discussed further in Section 4.2.

Consistent with DFL principles, the method integrates an optimization component into the training

14

4.2. Prediction Step and the Score Function Method 15

Figure 4.1: Workflow of the SFGE method. It has four steps: prediction, solving, correction, and update, which
continuously interact with each other during training. Note: The chart shows that the prediction step uses Normal

distribution for the sampling. However, this is not a hard requirement and is used here for illustrative purposes. The
optimal choice for the sampling distribution is subject to evaluation and is discussed in Section 5.2.

process. This optimization occurs during the solving stage, where the predicted processing times are
used to compute a deterministic schedule. Due to potential constraint violations, schedules may require
correction. Hence, the correction stage ensures that the schedule aligns with the constraints of the
optimization problem, producing feasible solutions. The last remaining stage is the update stage. It
consolidates all components of the loss and performs gradient descent. Once the model gets updated,
all of the steps repeat iteratively.

4.2. Prediction Step and the Score Function Method

Input: Contextual features

Output: Predicted deterministic processing times for each task

Workflow: The prediction step serves as the initial stage of the algorithm, where the predictive model
plays the central role. In this study, linear regression has been chosen as the predictive model. This
selection is motivated by the need to operate in an environment where uncertain processing times cannot
be perfectly predicted. If perfect predictions were achievable, DFL would be redundant, as the problem
would reduce to a standard deterministic problem. Moreover, the inability to achieve perfect predictions
more accurately mirrors real-world conditions where noise is always present. A lower-complexity model
like linear regression accommodates some prediction inaccuracies. This setup enables the evaluation

4.2. Prediction Step and the Score Function Method 16

of the framework’s objective: assessing whether DFL makes predictions that result in sound decisions,
rather than focusing on developing a complex model that is able to perfectly fit the specific training
data.

Figure 4.2: Stochastic smoothing applied to the non-continuous regret loss. The left side shows regret as a function of
ŷ, which is non-differentiable. The right side illustrates the result of the stochastic smoothing transformation. The blue

distributions depict stochastic estimators for ŷ, while the expected regret is represented by the smoothed red curve.

The prediction step can be viewed as a black box that takes the contextual features as input and
outputs predictions for the uncertain processing times ŷ. What this black box hides is the fact that
the predictions are not just the output of the predictive model. Instead, the method incorporates
SFGE as an intermediary layer that transforms the model output into predicted values. Starting from
the beginning, contextual features are fed into the predictive model. Rather than generating point
predictions, the model predicts distributional parameters, which initialize a probability distribution.
The actual output of the whole predictive step (predicted processing times) is obtained by sampling from
this distribution. By using samples instead of the point predictions, the approach performs stochastic
smoothing to the non-continuous post-hoc regret, as illustrated in Figure 4.2.

Since the predictions are stochastic during training, the loss function becomes an expectation (Equa-
tion 4.1a). This approach aims to ensure that by predicting distributions, the gradient of the loss is
non-zero. Computing the gradient of this expectation is non-trivial, and this is where Score Function
becomes instrumental. SFGE estimates Equation 4.1a by:

∇θL(ŷ, y) = ∇θEŷ∼pθ(y)[L(ŷ, y)] (4.1a)

= ∇θ

∫
pθ(y)L(ŷ, y)dŷ (4.1b)

=

∫
L(ŷ, y)∇θpθ(ŷ)dŷ (4.1c)

=

∫
L(ŷ, y)pθ(ŷ)∇θ log pθ(ŷ)dŷ (4.1d)

= Eŷ∼pθ(y) [L(ŷ, y)∇θ log pθ(ŷ)] (4.1e)

≈ 1

S

S∑
i=1

L
(
ŷ(i), y

)
∇θ log pθ

(
ŷ(i)

)
(4.1f)

Here, Equation 4.1b is the result of applying the definition of expected value for continuous random
variables. In Equation 4.1c, the gradient is brought inside the integral. This operation is valid because
of the Leibniz rule (L’Ecuyer, 1995; Mohamed et al., 2019). The log-derivative trick is applied in
Equation 4.1d: first, we apply the chain rule to differentiate the logarithm, ∇θ log pθ(ŷ) = ∇θpθ(ŷ)

pθ(ŷ)
.

Then, we rearrange the terms to get ∇θpθ(ŷ) = pθ(ŷ)∇θ log pθ(ŷ). Monte Carlo sampling is then used
in Equation 4.1e to estimate the gradient, resulting in Equation 4.1f. This estimate of the gradient can
now effectively be used in training. Note that it is not specific to any loss function and thus the method
can be easily combined with different loss functions, including post-hoc regret.

4.3. Solving Step 17

4.3. Solving Step

Input: Predicted processing times for each task

Output: Optimal schedule given the predicted processing times

Workflow: The solving step integrates the solver into the training loop. This step is straightforward:
it takes the predicted processing times from the prediction step and inputs them into a deterministic
optimization solver, which uses an underlying Constraint Programming model (as described in Sec-
tion 2.2). The output is the optimal schedule produced by the solver. Notably, this stage is the most
computationally expensive part of the training loop, as depicted in Figure 4.3. This is due to the
NP-Hard nature of the scheduling problem and the requirement to solve a scheduling problem for each
training example.

Figure 4.3: Time taken by each of the four steps during the training routine. The solving step (in orange) takes
significantly more time compared to the other steps.

4.4. Correction Step

Input: Optimal schedule for the predicted processing times

Output: The components of the post-hoc regret – makespan difference and penalty term

Workflow: The main objective of this step is to repair the potentially infeasible solutions in order
to compute the post-hoc regret. It takes as input the optimal solution for the predicted processing
times computed by the solver in the solving step and outputs a feasible version of the initially proposed
schedule. Each correction procedure, regardless of the problem, follows a consistent outline:

1. The true values for the uncertain parameters are revealed.
2. A draft solution is created, which follows the decisions made in the optimal solution for the

predicted values but uses the true values.
3. This draft solution is then cleared of all infeasibilities using the repair method.

As discussed in Section 2.5, the repair method is problem-specific. For our scheduling problem, the

4.5. Update Step 18

repair works as follows: each task is initially attempted to be started at the earliest time calculated by
the optimal solution. Tasks that cannot start without violating constraints under the true processing
times are shifted to a later time until all jobs can start without constraint violations. The process then
repeats until all jobs can be started.

A simple example of the correction process is visualized in the correction step of Figure 4.1. Focus on
the three numbered tasks in blue, green, and pink. Assume these tasks follow a precedence constraint
and that only this order of execution is correct. The prediction step predicted processing times of 2
for all tasks, leading the solver to start them consecutively at times 0, 2, and 4, respectively. This
schedule is labeled as ”Predict.” During the correction step, the true processing times are revealed
(labeled as ”True”). The ”Before” schedule presents the schedule that uses the starting times computed
by the solver in the ”Predict” schedule but applies them to the true values. This version has a collision
between the green and pink tasks due to the green task taking longer than predicted. To repair it, the
pink task is delayed to start after the green task finishes. Note that no repair is needed for the blue
and the green tasks. The ”After” schedule is the corrected version of the ”Before” schedule, where all
infeasibilities have been resolved. Despite the true processing times having the same total of 6 as the
predicted values, the overlapping task required a repair, resulting in the ”After” schedule having a larger
makespan than the ”True” schedule. The difference between these two makespans is later referred to
as makespan difference.

4.5. Update Step

Input: The components of the post-hoc regret – makespan difference and penalty term

Output: Updated version of the predictive model

Workflow: The goal of this stage is to update the weights of the machine learning model. To achieve
this, we first calculate the loss, which in our case is the post-hoc regret. As described in Section 2.5,
post-hoc regret is defined as:

phr(y, ŷ) = f(x∗(ŷ))− f(x∗(y))︸ ︷︷ ︸
Makespan difference

+λPen(x∗(ŷ) → x∗
corr(ŷ, y))︸ ︷︷ ︸

Penalty from the repairs

The first component of the loss conveys the difference between the true optimal objective value and the
corrected objective value. It is also referred to as the makespan difference in the previous scheduling
example. The second component is the penalty term, which increases by one for each move a task
makes while fixing the infeasibility. The λ coefficient in the penalty term is the penalty factor, which
models the impact of the correction. A higher penalty factor implies a higher cost for the correction,
making the penalty term more significant in the post-hoc regret.

After computing the post-hoc regret, SFGE can be employed as described in Section 4.2 to approximate
the gradient of the loss. Once the gradient is computed, it can be used to update the model parameters
using gradient descent, represented by ω = ω−α ·∇L(ŷ, y). Various types of gradient descent exist, and
the one used in this study is mini-batch gradient descent. After updating the weights of the predictive
model, the training loop returns to the prediction step and repeats until all epochs are completed or
the process times out. The pseudocode of the algorithm is presented in Algorithm 1.

4.6. Extensions to the Base SFGE Methodology 19

Algorithm 1 DFL with SFGE Training
1: for epoch = 1, 2, . . . do
2: for batch ∈ Training Set do
3: Predict the distributional parameters µ and σ from the contextual features ▷ Prediction

step
4: Sample the predicted processing times ŷ ∼ N(µ, σ)
5: Compute the log probability of ŷ, log pµ,σ(ŷ)
6: Determine x∗(ŷ), the optimal solution using ŷ ▷ Solving step
7: Correct potential infeasibilities in x∗(ŷ) and calculate the penalty ▷ Correction step
8: Compute the post-hoc regret, PHR(y, ŷ) = f(x∗(ŷ))−f(x∗(y))+λ ·Pen(x∗(ŷ) → x∗

corr(ŷ, y))
9: L = PHR× log pµ,σ(ŷ)

10: Update the parameters of the predictive model using ∇L ▷ Update step
11: end for
12: end for

4.6. Extensions to the Base SFGE Methodology

The application of SFGE within the DFL framework is a novel technique, having been investigated
only in the works of Silvestri et al. (2023) and van den Houten et al. (2024). As a result, there remains
significant potential for further refinement and enhancement of this method. A notable issue with SFGE
is the high variance in the gradient estimates, which can destabilize the learning process (Mandi et al.,
2023). In the course of our research, we identified two promising extensions to improve SFGE. The first
extension aims to reduce the variance in gradient estimates by introducing a baseline term into the loss
function, further detailed in Subsection 4.6.1. The second extension draws inspiration from Proximal
Policy Optimization (PPO) (Schulman et al., 2017), aiming to enhance computational efficiency and
training stability by employing multiple updates per sample, as later discussed in Subsection 4.6.2.

4.6.1. Baseline Post-Hoc Regret

The gradients computed using SFGE are Monte Carlo estimates rather than exact values, leading to
potentially high variance and instability in the learning process. When applying SFGE in reinforcement
learning, specifically the REINFORCE algorithm, it is common practice to introduce a baseline term
to reduce this variance (Sutton and Barto, 2018). The baseline should ideally be a reliable estimate of
the expected return for a given example. By subtracting this baseline from the loss, the variance in
gradient estimates can be reduced, resulting in more stable and efficient learning. This technique helps
to focus updates on the discrepancy between observed and expected returns, rather than the observed
returns alone. In reinforcement learning, this concept is often referred to as advantage.

The baseline is a value that does not depend on the current prediction and is subtracted from the
loss prior to gradient computation. In reinforcement learning, the state-value function often serves as
the baseline. However, as there is no state-value function in our context, we propose an alternative
approach that follows a similar principle. This approach involves recording the loss for each example
in the training set over past epochs to build a loss history. The mean of this loss history serves as
the baseline. This method aims to determine if the performance on the example is improving relative
to its past performance, i.e., whether the advantage is positive, indicating better predictions. This
method introduces a hyperparameter, which determines the number of historical steps to consider. For
instance, setting this parameter to 10 means that only the last 10 loss values are used in the baseline
calculation. Another variation could involve using a weighted average, where more recent samples have
greater influence as they more accurately reflect the current model state.

This extension is incorporated into the initial part of the revised update step, as depicted in Figure 4.4.
Instead of using the raw post-hoc regret, we use its baseline-adjusted version. The baseline post-hoc
regret (BPHR) is calculated by subtracting the baseline value from the computed post-hoc regret. It is

4.6. Extensions to the Base SFGE Methodology 20

defined as:

Baseline Post-Hoc Regret(y, ŷ) = Post-Hoc Regret(y, ŷ)− mean(Post-Hoc Regret History(xtrue))

Figure 4.4: Extended version of DFL SFGE. The chart highlights the modifications necessary to implement the two
proposed extensions.

4.6.2. Proximal Policy Optimization Updates

The second extension also involves a modification in the update step. Rather than employing the con-
ventional gradient descent approach, we opt for Proximal Policy Optimization (PPO) updates. PPO
(Schulman et al., 2017) is a well-known reinforcement learning algorithm designed to mitigate some draw-
backs of traditional policy gradient methods, such as slow convergence, high variance, and instability.
The fundamental idea behind PPO is to collect multiple batches of experiences and perform several
optimization epochs on each batch. This approach is particularly relevant for our DFL framework,
where solving each optimization problem constitutes a significant computational burden (as shown in
Figure 4.3), especially for complex problems like scheduling. By leveraging PPO, we can execute mul-
tiple model updates per training example while only requiring a single solver call and correction step,
potentially reducing training time and improving convergence speed.

One challenge that arises from performing multiple updates on a single sample is the risk of large,
destabilizing updates to the model. PPO addresses this by employing a clipped surrogate objective
function that bounds the update magnitude within a controlled range. The clipped objective is defined
as:

LPPO(ŷ) = Ê [min (ratio(ŷ), clip (ratio(ŷ), 1− ϵ, 1 + ϵ)) ·BPHR(y, ŷ)]

where:
ratio(ŷ) =

log pθnew(ŷ)

log pθold(ŷ)

Here, pθnew(ŷ) and pθold(ŷ) denote the likelihoods of the example given the new and old sampling dis-
tributions predicted by the updated and initial model states, respectively. The ratio ratio(ŷ) measures
the change in policy likelihoods and regulates a smooth update to the policy parameters. The clipping
operation ensures that the ratio is kept within the interval [1−ϵ, 1 + ϵ], so that the final objective is a
lower bound (i.e., a pessimistic bound) on the unclipped objective, thus maintaining stability during
training.

4.6. Extensions to the Base SFGE Methodology 21

The implementation of the PPO update is integrated into our algorithm as depicted in Algorithm 2.
Initially, all necessary components (xtrue, ŷ, log pµ,σ(ŷ), BPHR) are computed as in the standard SFGE
algorithm. These components are then collected into a buffer B, which is subsequently used to perform
multiple epochs of PPO updates. During each buffer epoch, the updated model predicts new distribu-
tional parameters µnew and σnew. The updated log probability log pµnew,σnew(ŷ) is computed and then
used to calculate the ratio r. Then, the ratio and baseline-adjusted post-hoc regret BPHR are used to
obtain the PPO loss L. Finally, the model parameters are updated using the gradient of L.

Algorithm 2 DFL SFGE with PPO Updates and Baseline Post-Hoc Regret
1: for epoch = 1, 2, . . . do
2: for training example = 1, 2, . . . , N do
3: Predict distributional parameters µ and σ from true labels ▷ Prediction step
4: Sample predicted processing times ŷ ∼ N(µ, σ)
5: Compute log probability of ŷ, log pµ,σ(ŷ)
6: Determine x∗(ŷ), optimal solution using ŷ ▷ Solving step
7: Correct infeasibilities in x∗(ŷ) ▷ Correction step
8: Compute baseline post-hoc regret BPHR ▷ Update step - Extended version
9: Collect xtrue, ŷ, log pµ,σ(ŷ), BPHR into buffer B

10: end for
11: for buffer epoch = 1, 2, . . . do
12: for batch ∈ B do
13: Predict µnew, σnew from xtrue
14: Compute updated log probability of ŷ, log pµnew,σnew(ŷ)

15: Compute ratio r =
log pµnew,σnew (ŷ)

log pµ,σ(ŷ)

16: Clip ratio r
17: Standardize BPHR of batch
18: L = r ·BPHR
19: Update model parameters using ∇L
20: end for
21: end for
22: end for

5
Evaluation

The goal of this chapter is to describe the evaluation carried out to answer the research questions
specified in Chapter 3. It begins with Section 5.1, which delves into the process of generating evaluation
instances. This involves combining the instances from PSPLIB (Kolisch and Sprecher, 1997) with
artificially created contextual features (Tang and Khalil, 2022). Firstly, it describes the structure
of each PSPLIB scheduling instance and then introduces in detail the process of generating artificial
contextual data, including the hyperparameters involved and how the data is adapted to suit our context.
Subsequently, the next four sections address each specific research question. Section 5.2 focuses on
the basic score function implementation by evaluating different sampling distributions. Section 5.3
is dedicated to the two reinforcement learning-based extensions: baseline post-hoc regret and PPO
updates. In Section 5.4, different problem settings are explored, examining the impact of instance and
penalty settings. Finally, Section 5.5 investigates the influence of uncertainty on the method. These
sections follow a consistent structure, beginning with an explanation of the experimental approach
adopted to address each research question. Subsequently, the results of the experiments are presented,
followed by a synthesized conclusion summarizing the outcomes.

5.1. Data and Instance Generation

The benchmark dataset utilized in this study is PSPLIB, which contains instances of the RCPSP
problem. Each data instance follows a specific structure. All instances have a predetermined number of
tasks. For the purposes of this research, only instances with 30 and 90 tasks are utilized. Subsequently,
the data about each task is described. This includes the processing time, the list of successors, and the
resource usage of each type. Notably, there are four different types of resources available. Apart from
the data about the tasks, the dataset provides information on the total renewable resource availability
of each type.

The settings this work aims to explore involve training a predictive model to estimate the processing
times of the tasks based on a set of input contextual features. However, the PSPLIB dataset does not
include these necessary input features. To address this limitation, it has been decided to disregard the
provided task durations and instead generate new durations that incorporate contextual features. This
approach allows for the exploration of the desired setting within the constraints of the available dataset.

22

5.1. Data and Instance Generation 23

5.1.1. Data Generation Process

The need for artificial contextual features is a common challenge within the domain of DFL, primarily
because many of the commonly used problem instances lack such features. The data generation process
mimics the one used in the works of Elmachtoub and Grigas (2022) and Silvestri et al. (2023). For each
scheduling instance, a set of p input features, denoted by the vector xi, is sampled from a multivariate
Gaussian distribution with a zero mean and unit variance, i.e., xi ∼ N (0, Ip). Subsequently, the
durations of the q tasks in the problem instance, denoted as di, are computed (where q could be either
30 or 90 tasks depending the configuration investigated by the experiment). The duration of the jth

task in the ith scheduling instance, dji , is calculated using the formula:

dji = [(
1
√
p
(Bxi)j + 3)deg + 1] · ϵji

Here, B ∈ Rm×p is a random matrix where each entry is a Bernoulli random variable that equals 1
with a probability of 0.5. The deg parameter is a positive integer that determines the degree of the
polynomial relationship between the input features and the output durations. The term ϵji introduces
multiplicative noise into the computation.

This data generation process was chosen for two main reasons. First, it allows control over the amount
of uncertainty introduced through its hyperparameters, which facilitates its evaluation. Second, it is
the most common method used to generate artificial features for DFL tasks (Tang and Khalil, 2022;
Elmachtoub and Grigas, 2022; Silvestri et al., 2023).

5.1.2. Hyperparameters of the Data Generation

As mentioned earlier, the data generation procedure has two main hyperparameters - deg, and ϵji . Their
impact will be experimentally evaluated in Section 5.5. deg increases the complexity of the input-output
relation, making it more challenging for the underlying linear predictive model to capture. Thus, the
deg parameter controls the extent of model misspecification. ϵji is sampled from a uniform distribution
in the interval [1− ν, 1 + ν], where ν ∈ [0, 1] is a parameter controlling the width of the distribution of
multiplicative noise.

5.1.3. Scaling

The data generation process, as described in Subsection 5.1.1, produces values that might be negative
or fractions. However, the aim is to adhere to the format of durations in the original PSPLIB, where
they can only take integer values ranging from 1 to 10. Therefore, the values generated by the data
process are also rescaled. The rescaling works as follows: initially, the smallest value is mapped to 1,
and the largest to 10. Subsequently, the remaining N − 2 values are mapped to the range [1, 10] while
maintaining their relative distances. Finally, they are rounded to the nearest integer.

Important Note: In the original PSPLIB instances, the number of occurrences of the 10 possible
values for duration is uniformly distributed, i.e., the number of tasks in the dataset with a duration of
1 is approximately equal to the number of tasks with durations of 2, 3, 4, and so on. However, when
using synthetic data generation with scaled durations, the processing times no longer exhibit a uniform
distribution. Instead, they seem to follow a distribution similar to Poisson. For smaller values of deg,
the distribution is fairly balanced. However, as the value of deg increases, the distribution becomes
highly imbalanced with a long tail. For example, when deg = 8, approximately 60% of the values are
either 1 or 2, 20% are 3 or 4, and only 20% are greater or equal to 5.

In Section 5.2, Section 5.3, and Section 5.4, the evaluation primarily focuses on the model and the

5.2. Research Question 1: Sampling Distribution and Warm-starting 24

framework rather than the data itself. Therefore, the parameters deg and ϵji will remain fixed. Specif-
ically, we have set deg = 4 and ϵji = 0.5. These values have been deliberately chosen to retain a
level of uncertainty in the data generation process without overwhelming the evaluation. Higher values
could potentially introduce bias towards a specific type of uncertainty, thereby affecting the overall
assessment. The impact of uncertainty is then evaluated in Section 5.5.

5.2. Research Question 1: Sampling Distribution and Warm-starting

Formulation: How does the choice of sampling distribution in the Score Function Gradient Estimation
method impact the training performance of the overall algorithm?

As discussed in Section 4.2, rather than generating point predictions, SFGE operates under the as-
sumption that the predicted processing times adhere to specific probability distributions. In this study,
four distinct distributions were selected in order to evaluate the impact of the sampling distribution on
SFGE.

The first distribution chosen is Normal distribution, widely adopted in SFGE applications (van den
Houten et al., 2024; Silvestri et al., 2023). Two different settings of Normal distribution have been
chosen. Both of them have an N -dimensional mean vector µ, where N refers to the number of tasks in
the scheduling instance. However, in one of them, all tasks share a single scalar standard deviation (σ),
and another where each task has its own σ, forming an N -dimensional vector.

The second selected distribution is Half-Normal. The motivation behind its choice is that DFL-trained
models generally predict more conservatively because they are trained using post-hoc regret, and in
order to minimize it, they try to avoid accumulating penalty. As a consequence, they tend to predict
higher values compared to PFL methods. As samples from Normal distribution may have a value lower
than its mean, it is possible that Half-Normal converges faster as it always predicts on the ”correct”
side of the mean to avoid penalty. Similarly to Normal distribution, Half-Normal is used in two settings,
with σ as a scalar and a vector.

The third distribution used is Beta. It is another common choice when applying SFGE. It is defined
using two parameters α and β, which we have chosen to be N -dimensional vectors. Generally speaking,
Beta distributions come in more diverse shapes compared to the Normal. The values of the samples
from Beta distribution are always between 0 and 1. Thus, they need to be rescaled to fit the general
convention that we decided to adhere to, that the values for the processing times range between 1 and
10. We do that by multiplying the value of the samples by nine and adding one.

The fourth one is Poisson. Typically, SFGE is applied with continuous distributions, but if the underly-
ing data follows a discrete distribution, it is also feasible to use such. As described in Subsection 5.1.3,
the shape of the distribution of the rescaled processing times closely resembles that of Poisson; thus, it
is also sensible to try to apply SFGE using it.

To evaluate the efficacy of each distribution, we train the model while using each of the distributions on
two instances: one with 30 tasks and one with 90 tasks. We set a time limit of one hour for the 30-task
instance and of one hour and a half for the 90-task instance. The penalty factors of the post-hoc regret
are set to 1

3 for the instance with 30 tasks and 1
9 for the instance with 90. The results are shown in

Figure 5.1.

Examining Figure 5.1a, it is evident that Beta distribution achieves the quickest convergence to a post-
hoc regret value of under 20. Both versions of Normal distribution also reach this threshold but at a
slower pace. Meanwhile, both variants of Half-Normal distribution converge rapidly but to a higher
regret value, whereas Poisson distribution fails to converge within the time limit. This trend appears
consistent when analyzing the instance with 90 tasks in Figure 5.1b. Once more, Beta distribution

5.2. Research Question 1: Sampling Distribution and Warm-starting 25

(a) Instance with 30 tasks (b) Instance with 90 tasks

Figure 5.1: Training curves for the different distributions. The results reveal distinct convergence behaviors. In the
30-task instance, Beta distribution converges most rapidly, followed closely by the two Normal distributions. Conversely,

other distributions lag behind in convergence speed. In the 90-task instance, Beta distribution demonstrates superior
performance from the outset, maintaining the lowest regret throughout the training process.

exhibits the fastest convergence to the lowest regret value, with a notably wider gap compared to the
other distributions.

A noteworthy observation is that even the initial value for Beta distribution outperforms the final values
of the other distributions in Figure 5.1b. This observation indicates the significance of the predictive
model’s initialization. Due to the rescaling needed by Beta distribution, its initial predictions, as
depicted in Figure 5.2a, encompass a broader range of values for the processing times. In contrast,
the distribution of initial predictions made using Normal distribution, as illustrated in Figure 5.2b,
predominantly centers around ones and rarely extends to twos.

(a) Beta Distribution (b) Normal Distribution with scalar σ

Figure 5.2: Distributions of the predictions made during the first epoch of training. The graphs reveal notable
differences among the initial distributions. Figure 5.2a clearly shows that Beta distribution starts with promising initial

predictions. In contrast, Figure 5.2b demonstrates that the initialization of the Normal distribution yields initial
predictions mainly centered around 1, which inadequately models the underlying problem.

To mitigate this disparity and ensure a more equitable comparison, one could improve the initialization
of the other models. This involves employing warm-starting of the predictive models when utilizing
Normal and Half-Normal distributions. A suitable starting point for these models is to use the model
checkpoint obtained when performing PFL, which not only can be quickly obtained but also generates
predictions close to the true values. Subsequently, the experiment for the 90-task instance was repeated
with warm-starting. The results, depicted in Figure 5.3, reveal a significant shift in the outcomes when
warm-starting is employed. Under these conditions, Beta distribution performs the poorest among all.
In contrast, the Half-Normal distributions emerge as the top performers. Normal distribution with a

5.2. Research Question 1: Sampling Distribution and Warm-starting 26

scalar σ also achieves a similar regret level, but it requires a longer time to do so.

Figure 5.3: Training curves when using warm-starting for the Normal distributions on the instance with 90 tasks. The
graph depicts a reversed scenario compared to the previous experiment. Following warm-starting, Normal now exhibits

significantly improved performance compared to Beta. Additionally, Half-Normal demonstrates the quickest convergence
due to it being able to better exploit its favorable initialization.

The performance changes observed can be attributed to two factors: post-hoc regret and exploration
of the solution space by SFGE using different distributions. Post-hoc regret is comprised of two main
components: the difference between predicted and true makespan (f(x∗(ŷ))−f(x∗(y))) and the penalty
term (Pen(x∗(ŷ))). Increasing the predicted durations reduces the likelihood of incurring penalties but
leads to a larger discrepancy in makespan. Thus, DFL aims to find a balance in the trade-off between
these two components. Penalizing corrections more strictly amplifies the influence of the penalty term,
prompting the algorithm to predict larger values.

Understanding that DFL tends to predict larger processing times, we can examine how Normal and
Half-Normal distributions explore the solution space. The warm-start initialization gives both versions
a good starting point. Half-Normal always samples values greater than the mean, efficiently exploring
the direction favorable for DFL. Consequently, it converges quickly to a favorable value. Conversely,
the Normal distribution samples both larger and smaller values, taking more time to converge. This
observation aligns with the movement of the value of σ throughout epochs in Figure 5.4. In the case
of Half-Normal distribution (Figure 5.4a), σ quickly declines as sampling values a lot bigger than the
PFL could quickly have an opposite effect on the makespan difference component. When the σ is low,
the exploration is limited, and the post-hoc regret stays within the 24 to 30 range. Conversely, the
smoother decline in σ for Normal distribution (Figure 5.4b) leads to a slower decrease in regret.

While the limited exploration benefits the Half-Normal in this scenario, it may hinder convergence to
an optimal value in environments with higher uncertainty. In such cases, the PFL warm-start would not
be as beneficial, and Half-Normal would have suffered. Conversely, despite taking more time to explore,
Normal distribution provides more reliable results, even without warm-start initialization, enabling it
to reach a relatively good final value.

Research Question 1 Conclusion: The initialization of the sampling distribution is pivotal for SFGE,
and warm-starting can severely enhance its performance. Notably, Half-Normal distribution exhibits
commendable performance when the warm-start is favorable. Conversely, Normal distribution may be
slower but offers greater reliability.

5.3. Research Question 2: RL-Inspired Extensions 27

(a) Half-Normal Distribution with scalar σ (b) Normal Distribution with scalar σ

Figure 5.4: Movement of σ (in blue) and post-hoc regret (in red) over the epochs. Figure 5.4a shows that the value of
σ quickly decreases, indicating that Half-Normal relies more on exploitation. On the flipside, Figure 5.4b illustrates that

Normal distribution spends more time exploring the solution space.

5.3. Research Question 2: RL-Inspired Extensions

Formulation: Would the addition of reinforcement learning-based techniques improve the convergence
speed of the Score Function Gradient Estimation method when applied to DFL?

5.3.1. Sub-question 1: Baseline Post-Hoc Regret

This section is dedicated to evaluating the baseline post-hoc regret extension introduced in Subsec-
tion 4.6.1. Initially, we optimize its hyperparameters, followed by a comparative analysis against other
methods.

The baseline extension has one hyperparameter – the number of historical steps considered (hereafter
referred to as history length). To assess its efficacy, we conduct an experiment examining algorithms
differing solely by their history lengths. The selected values for evaluation are: 1, 5, 10, and 20,
encompassing a spectrum from the smallest possible value to a longer history length. This experiment
is conducted exclusively on the instance with 90 tasks, because of its greater complexity compared to
the 30-task instance. The penalty factor remains at 1

9 .

(a) History length of the baseline extension (b) Comparison between the different methods

Figure 5.5: Evaluation of the baseline extension. Figure 5.5a shows that the length of the baseline history is not that
impactful on the training process, with a length of 10 performing the best. Figure 5.5b illustrates the benefits of the

baseline extension – there is no non-baseline version that outperforms its baseline counterpart.

5.3. Research Question 2: RL-Inspired Extensions 28

In Figure 5.5a, training curves for varying history lengths are plotted. It is evident that longer his-
tory lengths result in slightly better performance, with the optimal length identified as 10. With this
determined, we proceed to compare different versions of the algorithm, as depicted in Figure 5.5. It
is noteworthy that the baseline version of regret outperforms the standard non-baseline version across
both Normal and Half-Normal distributions. Specifically, the non-baseline SFGE with Normal distribu-
tion achieves a training post-hoc regret value of 25.06, whereas the baseline version reduces it to 22.47.
Similarly, in the case of Half-Normal distribution, the achieved values are 23.18 and 22.18, respectively.
Additionally, we evaluate a weighted version of the baseline. In this form, rather than treating each ele-
ment in the baseline history with equal weight, we prioritize the more recent observations. Remarkably,
this enhancement yields even better results, reducing the achieved post-hoc regret to 22.13.

5.3.2. Sub-question 2: PPO Updates

Proximal Policy Optimization represents a novel approach yet to be explored within the context of
DFL. Mirroring the previous section, the evaluation begins by optimizing the hyperparameters before
conducting comparative analyses with the other DFL algorithms. For this experiment, we maintain
consistency with previous settings, focusing solely on the instance with 90 tasks and a penalty factor of
1
9 .

The implementation of PPO in DFL proposed in Subsection 4.6.2 incorporates two primary hyperpa-
rameters: the clipping rate and the number of epochs in the PPO update loop. The first parameter
to be evaluated is the number of epochs. The values that we are going to test are 3, 5, and 10. In
order to do this, we are going to fix the value of the clipping rate to 0.2, which is a rule of thumb value
for the clipping value in the PPO literature (Schulman et al., 2017). Results presented in Figure 5.6a
reveal that lower epoch values perform better, with 3 epochs achieving a training post-hoc regret of
24.38. With the optimal epoch number determined, attention turns to assessing clipping rates, with
values of 0.1, 0.2, and 0.3 being under consideration. Notably, larger values are uncommon due to their
tendency to diminish update sizes. Although differences are marginal, a recommended clipping rate of
0.2 demonstrates slightly better performance overall (refer to Figure 5.6b).

(a) Number of epochs of the PPO update loop (b) Clipping rate of PPO

Figure 5.6: PPO hyperparameter evaluation. The figures show that the best hyperparameters for PPO are to use 3
epochs and a clipping rate of 0.2.

Subsequently, our focus shifts to evaluating whether the optimized PPO configuration translates to
tangible gains in the training process relative to non-PPO methods. For this, we compare 3 methods.
The first one does not use PPO – it is the weighted baseline described in the previous section. The
other two are PPOs – the first one is without a baseline, and the other uses a weighted baseline. As
depicted in Figure 5.7, the non-PPO method exhibits the fastest convergence and attains the most
favorable regret value. While the discrepancy with PPO methods is relatively small (less than 10%),
this experiment suggests that PPO fails to provide notable benefits to DFL training. Nonetheless, given
the novelty of the method and the minor differences from the others, PPO should be considered further

5.4. Research Question 3: Impact of the Added Penalty 29

as future work.

Figure 5.7: Comparison between the different versions of PPO and baseline. The plot shows that the non-PPO version
of the algorithm outperforms both PPO versions, rendering the PPO extension not beneficial.

Research Question 2 Conclusion: The baseline post-hoc regret extension boosts the convergence
speed and reduces the achieved post-hoc regret of the algorithm. Optimal settings for the baseline
include a history length of 10 and prioritization of the most recent observations.
Unfortunately, PPO did not improve the convergence of the Decision-Focused Learning pipeline. Still,
its performance remains respectable, and the method deserves further consideration in the future.

5.4. Research Question 3: Impact of the Added Penalty

Formulation: What is the impact of the penalty incurred due to constraint violations on the Decision-
Focused Learning algorithm?

The penalty factor could be interpreted as part of the problem. It plays a crucial role in the DFL
framework, reflecting the decision-maker’s perspective on the significance of each correction. In real-
world applications, this penalty factor should ideally mirror the true impact of corrections. Thus far,
our experiments have utilized a moderate penalty factor of 1

9 , striking a balance in the significance of
the penalizing. In this section, we delve into the performance implications of varying penalty factors.

We assess three penalty factors: a smaller penalty of 1
90 , labeled as ”small,” the existing penalty of 1

9
referred to as ”medium”, and a larger penalty of 1, denoted as ”large.” Considering the penalty as an
integral aspect of the problem, we evaluate its effects across three distinct 90-task instances using both
DFL and PFL. The DFL method under evaluation is the most effective approach identified thus far: the
weighted baseline SFGE with warm-started Normal distribution using a scalar σ. For this evaluation,
nine distinct versions of this model have been trained, each corresponding to a specific combination
of instance and penalty factor. Conversely, the PFL method entails a linear regression minimizing
mean squared error trained on the same dataset as the DFL methods. Our evaluation entails a test
set comprised of 100 scenarios per instance, where each scenario could be looked at as a pair of input
contextual features and 90 processing times. The main metric used is the mean post-hoc regret across
the 100 scenarios. Additionally, the two components of the post-hoc regret, makespan difference and
penalty, are also presented separately.

The experimental results, detailed in Table 5.1, reveal notable trends. Firstly, a consistent finding
across all three instances is the significant influence of the penalty factor used during training on the

5.4. Research Question 3: Impact of the Added Penalty 30

Penalty large medium small
Instances Metric DFL PFL DFL PFL DFL PFL

Instance 1

Post-hoc Regret 45.84 325.89 25.11 46.23 13.88 14.77
Makespan 23.74 11.27 14.15 11.27 10.65 11.27
Penalty 22.10 314.62 10.96 34.96 3.23 3.50

MSE 5.74 1.88 3.84 1.88 3.20 1.88

Instance 2

Post-hoc Regret 47.35 355.12 26.29 49.37 15.32 14.97
Makespan diff 27.99 11.15 14.56 11.15 11.53 11.15

Penalty 19.36 343.97 11.73 38.22 3.79 3.82
MSE 9.96 1.88 7.42 1.88 6.96 1.88

Instance 3

Post-hoc Regret 46.09 274.76 24.94 39.31 12.98 12.82
Makespan diff 22.18 9.88 14.07 9.88 10.12 9.88

Penalty 23.91 264.88 10.87 29.43 2.86 2.94
MSE 6.16 1.88 4.44 1.88 3.30 1.88

Table 5.1: Comparison between DFL and PFL for the three different penalty factors across three different instances.
The table illustrates that DFL is able to outperform PFL for all three instances when the penalty factor is large or

medium. The main reason for this difference is that DFL manages to avoid accumulating large penalties.

convergence of the DFL model. Higher penalties lead to larger MSE, indicating a greater deviation
from the warm-starting initialization compared to instances with smaller penalties. This observation
is further supported by examining the makespan difference component of the post-hoc regret, which
registers the highest values for the large penalty factor. This occurs because the model prioritizes
reducing the impact of the penalty on the post-hoc regret. Conversely, instances trained using a small
penalty factor exhibit lower makespan differences, close to that of PFL, as the penalty’s influence is less
pronounced under these settings. With this in mind, let’s proceed to compare the results between DFL
and PFL. The disparity in post-hoc regret between DFL and PFL is most pronounced when the penalty
is large. Across all three instances, DFL demonstrates a post-hoc regret at least six times smaller than
PFL. Similarly, with a medium-sized penalty factor, DFL still outperforms PFL significantly, albeit
with a relative difference of under two-fold. This discrepancy arises from PFL’s tendency to maintain a
small MSE and make predictions closer to the true values, thus incurring a high penalty. However, the
dynamics shift when considering the small penalty factor, where the strict penalization is not present,
emphasizing the significance of makespan differences. Consequently, PFL manages to gain a slight
advantage over DFL in instances 2 and 3.

Method Added Constant lag
Penalty large medium
Amount of lag 1 2 3 1 2 3
Post-hoc Regret 89.12 38.03 39.16 21.72 24.55 35.67
Makespan diff 13.29 22.87 35.23 13.29 22.87 35.23
Penalty 75.83 15.16 3.93 8.43 1.68 0.44

Table 5.2: Evaluation of the constant lag PFL method. The table shows the efficacy of the extension, which is able to
outperform DFL for both large and medium penalties.

Inspired by the trade-off between the makespan difference and the penalty components of the post-hoc
regret, we introduce an extension to the basic PFL method. Referred to as constant lag PFL, this
variant adds a constant lag to the processing times for each task. The motivation behind this extension
is to explore the possibility of sacrificing a portion of the makespan difference to alleviate some of the
penalty incurred, particularly in cases with large and medium penalty factors. The performance of the
constant lag PFL method on Instance 1 is illustrated in Table 5.2. Notably, this extension surpasses
DFL for both large and medium penalty factors. With an added lag of 1, the post-hoc regret for the

5.4. Research Question 3: Impact of the Added Penalty 31

medium penalty factor decreases from 46.23 to 21.72, outperforming DFL by approximately 3.5 regret.
Similarly, for the large penalty, a constant lag of 2 significantly reduces the penalty component of the
post-hoc regret from 314.62 to 15.16, resulting in an overall post-hoc regret of 38.03, also superior to
the DFL counterpart.

Despite the fact that DFL performed worse than constant lag PFL, it still outperforms the general
PFL for instances with a large penalty by a long shot. An interesting observation regarding DFL is its
high MSE. This prompted an examination of the quality of DFL predictions. Figure 5.8a presents a
histogram of predicted values by DFL, revealing predictions exceeding the feasible range, i.e., predicted
processing times with values greater than 10. Moreover, Figure 5.8b demonstrates that certain tasks
exhibit higher average values than others, suggesting that DFL not only predicts higher values on
average, but that it also makes those high predictions for some specific targeted tasks and this way
learning a complex underlying structure for the problem.

(a) Distribution of the predicted processing times when using
DFL with large penalty factor (b) Heat map of the mean predicted processing time per task

Figure 5.8: Predictions made by DFL when the penalty factor is large. Figure 5.8a shows that the predictions made by
DFL are higher than the actual true values. Figure 5.8b displays that DFL makes these high predictions for specific

tasks, indicating that it learns an underlying structure within the problem.

Motivated by DFL’s incorporation of complex structures, we explore a hybrid approach combining
structural insights with constant lag PFL. This method, termed progressive lag PFL, leverages the
precedence constraint present in the RCPSP problem. It does so by using the following observation: if
a task that has numerous successors is corrected, then its immediate successors might also need to be
corrected. If the immediate successors get corrected, then their successors might also get corrected and
so on. Therefore, it is logical to give a higher lag to the tasks that have a lot of layers of successors in
order to dodge a penalty avalanche and lower lags to those with no successors as they could not lead
to penalty. As the tasks that are early in the predecessor tree are the tasks that have low index, the
method divides the 90 tasks into three groups of 30 tasks. Then, each task within a group receives
the same lag, with differing lags assigned to each group. The results of this method are shown in
Table 5.3. Progressive lag PFL achieves the lowest post-hoc regret of methods for instances with large
penalty factors by applying a lag of 3 to the first 60 tasks and a lag of 2 to the remaining 30. Still, its
performance for instances with medium penalty factors is inferior to that of a constant lag of 1.

Overall, constant and progressive lag PFL offer promising alternatives to DFL, demonstrating quicker
training times and easy explainability. However, their applicability may be challenged in more complex
contexts. Furthermore, caution is advised when adjusting the lag, as it may lead to overfitting to the
specific instance. More about the impact of the PFL extensions and how they affect the general DFL
horizon is present in Section 7.1.

5.5. Research Question 4: Effect of Uncertainty 32

Method Progressive lag
Penalty large medium
Amount of lag 2-1-0 3-2-1 3-2-2 3-3-2 2-1-0 3-2-1 3-2-2 3-3-2
Post-hoc Regret 91.13 41.61 37.89 36.82 24.09 25.16 28.27 30.94
Makespan diff 15.71 23.10 27.07 30.20 15.71 23.10 27.07 30.20
Penalty 75.42 18.51 10.82 6.62 8.38 2.06 1.20 0.74

Table 5.3: Evaluation of the progressive lag PFL method. In the ”Amount of lag” row, ”2-1-0” indicates that the first
30 tasks will receive an increase of 2, the second 30 an increase of 1, and the last 30 an increase of 0. The ”3-3-2”
configuration performs the best among all the models evaluated for large penalties. Its performance for medium

penalties is good but not better than that of the constant lag PFL.

Research Question 3 Conclusion: The penalty factor plays an important role in the DFL pipeline,
shaping the characteristics of the resulting DFL models. Notably, DFL demonstrates superior perfor-
mance compared to PFL under scenarios with medium and large penalties. However, incorporating lag
into the conventional PFL framework could substantially enhance its performance, surpassing that of
DFL. Additionally, observations suggest that DFL exploits an inherent structure in its predictions.

5.5. Research Question 4: Effect of Uncertainty

Formulation: How does uncertainty affect the performance of the Decision-Focused Learning method
for scheduling with uncertain processing times?

Next to the penalty factor, the amount of uncertainty is another critical component of the problem,
which models the environment. As discussed in Section 2.3, there are two types of uncertainty: aleatory
uncertainty, which arises from inherent randomness in the processes, and epistemic uncertainty, which
conveys incomplete knowledge about the process. The amount of uncertainty can be controlled through
the hyperparameters of data generation. Epistemic uncertainty can be varied by changing the polyno-
mial degree of the relationship (deg). Similarly, aleatory uncertainty is influenced by the noise parameter
(ϵ).

To evaluate the impact of each type of uncertainty in isolation, we fix the value of one hyperparameter
and vary the other. In the first experiment, we assess the effect of aleatory uncertainty by fixing the
polynomial degree to 4 and testing on five different datasets with noise levels: ϵ = {0, 0.1, 0.3, 0.5, 0.7}.
In this part, we compare the performance of four methods: DFL (weighted baseline SFGE with warm-
started Normal distribution), PFL, Added Lag 1 PFL, and Added Lag 2 PFL (Added Lag 1/2 PFL refers
to the added constant lag extension of PFL where a constant lag of 1/2 is added to each prediction).
We keep the penalty factor fixed at the previously used moderate value of 1

9 .

The results, presented in Table 5.4, show that increasing noise levels correspondingly increase the post-
hoc regret across all methods. The performance of the first three methods (DFL, PFL, and Added Lag
1 PFL) is similar. Each of them exhibits a similar relative increase in regret with higher noise levels,
resulting in an approximate 50% rise when comparing no noise to the highest noise level of 0.7. This
increase is primarily driven by changes in the penalty term of the post-hoc regret, while the makespan
term remains relatively constant. Among these, Added Lag 1 PFL performs the best, closely followed
by DFL, with a consistent difference of about one post-hoc regret unit at each noise level. PFL lags
behind due to a higher penalty accumulation. The fourth method, Added Lag 2 PFL, shows minimal
variation and appears more robust. However, this does not necessarily mean that it always performs the
best. In fact, its performance is poor at low noise levels because it tends to be over-conservative. Based
on these results, we conclude that for low noise levels, either Added Lag 1 PFL or DFL is preferable, as
they maintain a balance between the penalty and makespan terms of the regret. For noise levels above
0.5, the more robust Added Lag 2 PFL is likely the better choice, as it minimizes accumulated penalties

5.5. Research Question 4: Effect of Uncertainty 33

Noise Metric DFL PFL Added 1 Added 2

0
PHR 18.62 30.47 17.23 24.51
Makespan 11.56 8.55 13.08 23.95
Penalty 7.06 21.92 4.15 0.56

0.1
PHR 19.41 31.16 18.70 24.10
Makespan 12.25 8.52 12.87 23.55
Penalty 7.16 22.64 3.83 0.55

0.3
PHR 22.22 38.98 19.38 24.14
Makespan 13.39 9.92 12.95 23.12
Penalty 8.83 29.06 6.43 1.02

0.5
PHR 25.11 46.23 21.72 24.55
Makespan 14.15 11.27 13.29 22.87
Penalty 10.96 34.96 8.43 1.68

0.7
PHR 26.65 45.77 25.55 25.53
Makespan 15.39 10.36 14.60 22.97
Penalty 11.26 35.41 10.95 2.56

Table 5.4: Post-hoc regret (PHR) for the different noise levels. The table shows that increasing the noise results in
higher regret. DFL and Added Lag 1 maintain similar levels, while PFL performs worse. Added Lag 2 PFL

demonstrates robust performance, maintaining consistency across noise levels.

and manages to keep the regret at a controlled level.

The second experiment focuses on epistemic uncertainty. In this experiment, we fix the noise value at
0.5 and evaluate four different polynomial degrees deg = {2, 4, 6, 8}. We use the same four methods
as in the previous experiment: DFL (weighted baseline SFGE with warm-started Normal distribution),
PFL, Added Lag 1 PFL, and Added Lag 2 PFL.

Degree Metric DFL PFL Added 1 Added 2

2
PHR 27.60 53.34 24.91 25.42
Makespan 15.44 13.15 14.48 23.25
Penalty 12.16 40.19 10.43 2.17

4
PHR 25.11 46.19 21.71 24.55
Makespan 14.15 11.27 13.29 22.87
Penalty 10.96 34.92 8.42 1.68

6
PHR 23.32 38.29 22.03 24.56
Makespan 13.28 9.03 13.39 22.82
Penalty 10.04 29.26 8.64 1.74

8
PHR 22.28 35.75 21.83 25.46
Makespan 12.83 8.47 13.25 23.01
Penalty 9.45 27.28 8.58 2.45

Table 5.5: Post-hoc regret (PHR) for the different polynomial degrees. The table indicates that higher polynomial
degrees result in lower regret. DFL and Added Lag 1 consistently perform better across various degrees. Added Lag 2

shows stable but slightly higher regret.

The results, presented in Table 5.5, show trends similar to the previous experiment. Added Lag 2 again
displays robust performance, with post-hoc regret consistently between 24 and 26, regardless of the
degree. In contrast, the other methods exhibit more fluctuation. PFL is the most impacted method

5.5. Research Question 4: Effect of Uncertainty 34

(a) DFL (b) PFL

(c) Added Lag 1 PFL (d) Added Lag 2 PFL

Figure 5.9: Boxplots illustrating the distributions of the post-hoc regret for the different models. All distributions
exhibit positive skewness, which becomes more pronounced with increasing polynomial degree. The distribution for

Added Lag 2 PFL stands out as less skewed compared to other models, reflecting its conservative approach.

and shows the biggest change, performing best at degree 8 and worst at degree 2, with an increase in
post-hoc regret from degree 8 to degree 2 of about 50%. DFL and Added Lag 1 also experience increases,
but the fluctuations are smaller, at approximately 23% and 15%, respectively. These differences when
evaluating the degree are smaller than those observed when evaluating the noise, suggesting that DFL
and Added Lag 1 adapt more readily to epistemic uncertainty compared to aleatory uncertainty.

An important observation from this experiment is that the post-hoc regret decreases with increasing
polynomial degree, contrary to our initial expectations. We anticipated that higher polynomial degrees
would make the problem more challenging; however, this does not appear to be the case. Nonetheless,
it would be incorrect to directly conclude that increasing the polynomial degree inherently makes the
problem easier without performing further experiments. To investigate this further, we plotted the
distribution of the post-hoc regret for the different methods and degrees. Focusing on Figure 5.9, we
observe that all methods exhibit an increase in their positive skewness as the degree increases, i.e., the
mean increases more relative to the median. This increase in skewness can be attributed to two factors:
a lower mean and a heavier tail. As discussed in Subsection 5.1.3, scaling causes an imbalance in the
distribution of processing times for higher polynomial degrees. Consequently, the average processing
time of the tasks decreases from 4.43 for degree 2 to 2.98 for degree 8. Thus, it is normal that the mean
post-hoc regret is also higher for the instance with degree 2. Regarding the tail, as the data for the
higher degrees contains more tasks with lower processing times, the predictor learns to predict smaller
values on average. The problem arises when an example with high processing times is evaluated. Due
to its inability to predict these high values, the resulting decision will be significantly worse than the
average case in terms of regret. These instances with high-valued processing times are the reason for
the heavy tail. This is most evident in Figure 5.9a, where the mean for degree 2 is notably lower than
that for degree 8, but degree 8 has more outliers and higher skewness.

From these observations, we can conclude that increasing epistemic uncertainty makes the problem
instances easier on average but more complicated if optimizing for the worst-case scenario because of

5.5. Research Question 4: Effect of Uncertainty 35

the model’s inability to predict the outliers. The conclusion on when to use each method is similar to
that for aleatory uncertainty: if the goal is to achieve good performance on average, Added Lag 1 PFL
and DFL are preferable. However, if the environment is characterized by high uncertainty and worst-
case performance is crucial, a more conservative method such as Added Lag 2 PFL is recommended.

Research Question 4 Conclusion: Uncertainty plays a significant role in the problem. Increased
aleatory uncertainty results in higher penalties, leading to worse performance for the models. On the
other hand, epistemic uncertainty simplifies the problem in the average case but complicates it in the
worst-case scenario. Mitigating the impact of high-uncertainty environments for both types can be
achieved by designing a more conservative and robust predictive model. However, if the uncertainty is
negligible, such conservatism is unnecessary and could lead to worse performance.

6
Influence of the Solving Technology

The interaction between the solving technology that computes the optimal solution and the repair
mechanism used to fix the infeasible schedule posed a new challenge for training and evaluating the
DFL framework. Specifically, the existence of multiple optimal schedules for each scenario means that
the solving technology and the specific solution it produces significantly affect decision quality. This
discovery may limit the effectiveness of the training process in this study, potentially impacting the
evaluation and achieved results negatively. The objective of this chapter is to highlight the necessity for
greater attention to be directed towards the solving technology within the DFL domain and to explain
the decisions made to navigate the resulting trade-offs. Firstly, Section 6.1 describes why and how the
solver and the correction mechanism impact the resulting post-hoc regret. Subsequently, Section 6.2
outlines three critical properties that the solver should possess, assessing various solving configurations
to determine their alignment with these criteria. Lastly, Section 6.3 elaborates on the chosen solver
configuration, its potential implications on the study’s outcomes, and how it limits the research.

6.1. Solving Technology and Its Effects on the Pipeline

While conducting the experiments in this study, it was discovered that the solver is far from being
just a black box that outputs solutions, but instead, it has an impact on the computed regret for the
solution. This stems from the realization that not every scheduling problem possesses a singular optimal
solution. Instead, there exist multiple, often numerous, alternative schedules, each achieving the optimal
makespan. However, these optimal schedules may entail varying repair (penalty) costs. In fact, after
conducting the experiments, it became evident that the different optimal solutions have very different
costs. Consequently, the value of the post-hoc regret, defined as phr(y, ŷ) = f(x∗(ŷ)) − f(x∗(y)) +
Pen(x∗(ŷ) → x∗

corr(ŷ, y)), particularly the penalty term, is intricately linked to the optimal schedule
produced by the solver. If we were to change the solver or some of its settings, such as the search
strategy, the solver would arrive at a different optimal schedule, and the post-hoc regret value would
also change, despite using the same predicted processing times. Alternatively, one might characterize
the objective function as a deterministic mapping — given the same processing times, all solvers would
arrive at a solution with the same optimal objective value. In contrast, the post-hoc regret was found
to be non-deterministic: with the same processing times, different solvers produced distinct optimal
solutions based on their internal mechanisms, resulting in different post-hoc regret values.

Having this in mind, the selection of a suitable solver technology emerges as a crucial consideration.
Three key characteristics define an ideal solver for DFL training: speed, accuracy, and consistency.
Firstly, speed pertains to the time required for the solver to reach the optimal solution. Secondly,

36

6.2. Evaluation of the Solver 37

accuracy refers to how closely the regret of the predicted solution aligns with the smallest attainable
regret for a solution under identical weights (e.g., processing times in scheduling). Lastly, consistency
denotes the tendency for minor changes in input durations not to result in significant alterations in the
outputted schedule or the regret associated with it.

6.2. Evaluation of the Solver

To understand whether the solving technology had an impact on the training and the evaluation con-
ducted in Chapter 5 and whether it limits the results, we carried out additional experiments related
to the three properties highlighted earlier. The experiments included the previously used IBM ILOG
CPLEX solver and evaluated all of the possible search configurations within the solver.

6.2.1. Speed and Accuracy

The first experiment focuses on evaluating both speed and accuracy across four distinct solver settings,
each employing different search strategies. Evaluation is conducted on five instances, each consisting of
90 tasks, with ten scenarios per instance. Speed is assessed by counting the number of timeouts within
a fixed time limit of 60 seconds; lower timeouts indicate superior performance. Regarding accuracy,
obtaining the actual smallest regret necessitates computing all optimal solutions, rendering it imprac-
tical. Therefore, comparisons are made relative to the default strategy utilized when computing the
results presented in Chapter 5, aiming to identify potential enhancements through alternative solving
configurations. The results from this experiment are illustrated in Table 6.1. When it comes to the
speed property, the substantial number of timeouts renders the three alternative search strategies (ex-
cluding Default) practically infeasible for most instances. As for accuracy, no single solver configuration
completely dominates the others. What is crucial for this study is the performance of the Default solver
configuration, which outperforms others in the second and third instances and exhibits no more than
an 8% deviation in the remaining instances. The main conclusion from the experiment is that given
the speed advantage of Default, it appears to be the sole viable option among those tested.

Metric Instance Default Solver MultiPoint IterativeDiving DepthFirst

Timeouts

1 0 9 10 9
2 0 2 4 1
3 0 9 10 8
4 0 8 10 8
5 0 6 9 7

Accuracy

1 - 4.79% 2.77% 4.13%
2 - −14.95% −5.91% −1.42%
3 - −8.41% −12.71% 0.06%
4 - 6.95% 1.69% 7.98%
5 - 0.50% 4.89% 1.97%

Table 6.1: Evaluation of Speed and Accuracy. The maximum number of timeouts is 10. Accuracy is measured relative
to the Default Solver. Interpretation: The numerous timeouts make the three alternative search strategies practically

infeasible for training. In terms of accuracy, no solver outperforms all other solvers for all instances.

6.2.2. Consistency

Assessing consistency presents a more challenging task compared to evaluating speed and accuracy,
necessitating a separate experiment. When evaluating it, the objective is to compare the regret values
of solutions generated by the solver using two different sets of durations: ytrue and ymodified. If the

6.3. Aftermath 38

disparity is minimal, it implies that the solver is consistent, remaining indifferent to minor alterations
in the input. ymodified is created by initially using ytrue and then altering the duration of a single task
with no successors. Subsequently, two outcomes emerge for the optimal solution of ymodified: it either
retains the same makespan as before or sees an increase by one. Instances where the former scenario
occurs are disregarded, focusing solely on the latter. This choice is dictated by the notion that in the
latter scenario, the earliest starts of the optimal schedule computed using ytrue also serve as an optimal
solution when solving for ymodified. Consequently, we can compare the repair costs of the two resulting
optimal solutions, derived from ytrue and ymodified, to assess whether the slight modification to obtain
ymodified impacts the penalty term.

For this evaluation, three instances, each comprising 90 tasks, were utilized. Three distinct baseline
models were employed to predict the durations: DFL, warmstarted DFL (which completed its training),
and DFL after 100 epochs, to investigate whether the impact varies throughout different stages of the
training process. Table 6.2 shows that the penalty difference is somewhat significant – mostly varying
between 10% and 20%, while the makespan difference is comparatively smaller. Moreover, it appears
that earlier epochs are more susceptible to inconsistent behavior.

Method Instance MS diff Actual
MS

% diff Penalty
diff

Actual
penalty

% diff

DFL
1 1.00 49.05 2% 8.55 46.23 18%
2 2.44 47.84 5% 20.22 115.74 17%
3 2.44 43.61 6% 23.00 104.06 22%

DFL
after

100 epochs

1 3.89 25.26 15% 45.64 259.56 18%
2 2.76 18.62 15% 51.81 449.10 12%
3 2.75 16.65 17% 42.68 366.77 12%

WS DFL
1 1.08 40.12 3% 6.56 36.23 18%
2 0.57 37.35 2% 1.26 36.74 3%
3 3.83 29.41 13% 10.02 35.37 28%

Table 6.2: Evaluation of Consistency. In the table MS is short for makespan. The penalty difference varies between
10% and 20% which could be impactful, while the makespan difference is negligible.

6.3. Aftermath

The results from these experiments emphasize how difficult the nature of solver selection in decision-
focused optimization could be. Despite the unsatisfactory results obtained from assessing the consistency
of the solver, practical constraints related to speed dictate that the Default solver remains the only viable
option for evaluating the results. Imperfect accuracy and consistency may lead to certain predictions
being erroneously deemed poor, and thus slowing the training of the DFL algorithm. Despite these
shortcomings, the algorithm still managed to converge to an acceptable outcome when answering the
research questions.

This observation illustrates the importance of evaluating the solver in any DFL research involving
uncertainty in constraints and employing CP solvers. Looking ahead, an intriguing opportunity for
future research could prioritize the development of solver configurations that enhance consistency while
maintaining competitive performance in speed and accuracy.

7
Conclusion and Future Work

Combinatorial optimization encompasses a wide class of problems with broad practical applications.
However, their practical use is often hindered by the inherent uncertainties present in real-world scenar-
ios. To address these challenges, Decision-Focused Learning (DFL) emerges as a promising framework.
Previous research on DFL has explored various approaches to modify the framework to handle prob-
lems where uncertainty emerges within the constraints. Yet, a notable limitation of existing research
is the restriction to either simple combinatorial problems (Silvestri et al., 2023; van Steijn, 2022) or
those adhering to specific structures (Hu et al., 2022, 2023). This study aimed to take the next step by
assessing the applicability of the DFL framework to more complex problems, specifically the Resource-
Constrained Project Scheduling Problem. By doing so, it looked to enhance our understanding of how
DFL can be effectively leveraged to tackle complex combinatorial optimization problems, and what are
its strengths and weaknesses. The contributions made in this thesis can be grouped into two groups:
firstly, the study of the application of DFL to the scheduling problem with uncertain processing times,
and secondly, the analysis and extensions related to the SFGE methodology. Section 7.1 summarizes
the first contribution and suggests potential directions for future research that emerged from it. Anal-
ogously, Section 7.2 does the same but for the second contribution.

7.1. DFL in Scheduling

The proposed DFL method demonstrated superior performance compared to the conventional ”two-
stage” approach, as illustrated in Table 5.1. This difference is most clearly pronounced for the high
penalty factor, indicating that DFL is especially effective in instances where making poor decisions
incurs substantial costs. The reason why DFL manages to excel is that it makes the processing times
of the tasks longer, thereby reducing the penalties it accumulates, which constitute the majority of
the post-hoc regret. This increase is particularly noticeable for certain tasks (Figure 5.8b), suggesting
that DFL effectively manages to learn a structure about which processing times should be extended.
However, the PFL-based extension, which adds constant factors to the PFL-predicted processing times
in a predefined structure based on the task’s position, i.e., the progressive lag PFL extension, achieved
better post-hoc regret than DFL (Table 5.3). These results indicate that combinatorial optimization
problems with complex underlying structures, such as the scheduling problem explored in this study,
might be too complicated for the DFL method used in this work. Specifically, the structure learned by
the DFL method performed worse than using a predefined structure based on problem-specific heuristics
on top of PFL. One potential explanation could be that, despite predicting distributional parameters,
DFL relies solely on the mean of the distribution, effectively making it act as a point predictor. This
mean is then input into a simple deterministic solver, causing the loss of information related to the

39

7.1. DFL in Scheduling 40

specific scheduling instance.

An interesting avenue for future research would be to explore the possibility of integrating predefined
heuristic structures into the training process of data-driven approaches. One potential topic could
be to examine whether DFL performs better when it is enforced to adhere to a specific heuristic
structure rather than learning one independently. To achieve this, during training, the model could be
guided to comply with this structure and be penalized for diverging from it, thereby driving the DFL
algorithm to make predictions that align with the heuristic while still learning the optimal setup for
it. This investigation could provide insights into the potential benefits of integrating problem-specific
heuristics within the DFL framework for various combinatorial optimization problems. If successful, this
approach could demonstrate how leveraging domain knowledge and heuristic structures can enhance the
effectiveness of DFL across different applications. This would suggest that a hybrid method, combining
DFL with established heuristics, might be particularly powerful for tackling complex problems with
intricate dependencies and constraints, leading to more efficient and accurate solutions in practical
settings. A different promising area for research could do the opposite and would involve initially
providing the algorithm with a predefined structure based on heuristics, but now allowing it to deviate
during training. By closely examining the changes, valuable insights could be gained into how the
algorithm modifies the structure, which could be used to refine and improve the initial setup, potentially
enhancing performance in handling complex structures.

Another reason why DFL might not be the most suitable method for solving the scheduling problem is
that, to handle uncertainty in the constraints, DFL requires a complete repair of the first-stage solution
(the solution computed using the predicted costs) to determine the penalty term of the post-hoc regret.
DFL assumes that the entire solution needs to be produced in one go and that the true values of the
costs are revealed all at once. However, in scheduling and other complex practical scenarios, these
reveals can happen independently and at different times, allowing for the solution to be computed in
parts. For instance, in scheduling, if the uncertain processing time is caused by a complex biochemical
reaction and multiple such processes are running throughout the day, the true processing time for each
process is revealed upon its completion, not all at once as DFL assumes. Therefore, a potentially more
suitable framework for solving real-world scheduling problems with uncertain processing times could
be multi-stage optimization, where each stage computes only part of the solution, necessitating smaller
recourse actions relevant only to a subset of all tasks. To illustrate the difference between this alternative
approach and traditional DFL, consider a project scheduling problem where a PhD student needs to
select projects to complete during their degree. Initially, it is challenging to precisely determine how
much time each project will take and its value. Based on preliminary insights, the student can craft
an initial plan. Applying DFL to this situation would yield a plan with reasonable time estimates that
minimizes the risk of overlapping unfinished projects. However, in reality, midway through a project,
the student might realize that it is not as valuable as initially thought and decide to stop working on it,
or they might create a new project extending an existing one that was not considered in the preliminary
planning. DFL struggles with such reconsiderations because its goal is to make predictions that obviate
the need for changes. This is impractical in scenarios where changes are almost inevitable. Therefore,
project selection problems are often viewed as sequential decision-making problems. With this in mind, a
possible better fit for DFL when applying it in the real world might be to integrate it as a predictive part
of the sequential decision-making process. The vision of having DFL as a multi-stage approach aligns
with some of the recent work in the field. Hu et al. (2024) suggests that DFL should be implemented
as a two-stage optimization problem, even for simpler problems. Their approach also highlights the
weakness caused by the need for repair and thus envisions DFL functioning as a framework without any
repairs, enhancing its applicability to scenarios with uncertain constraints. Pervsak and Anjos (2024)
introduce a new Decision-Focused Forecasting framework. It is motivated by a similar argument about
the fact that many real-world decision problems are recurrent and information about these problems
unfolds over time, and that modeling them as multi-stage problems, where each set of decisions considers
the most current contextual information, is often more effective. This framework represents the first
application of DFL to multi-stage optimization problems. It achieves this by employing a recurrent
predictive model. The evaluation of this framework demonstrates that it improves on conventional
DFL in multi-stage settings, though it also reveals that the multi-stage approach incurs a considerable
computational burden.

7.2. SFGE Methodology 41

7.2. SFGE Methodology

The evaluation results in Section 5.4 revealed that DFL is generally more conservative in its predictions,
potentially leading to better handling of uncertainty by avoiding penalties. This justified the use of
Half-Normal distribution as a sampling distribution for the score function. An alternative approach
to achieving this could involve employing quantile regression. By focusing on an upper quantile of the
distribution rather than its mean, DFL could be tailored to predict higher values with greater precision.
Quantile regression could be particularly useful in scenarios where the upper bounds of processing times
significantly impact the overall penalty costs. Thus, future research could delve into the application
of quantile regression within the DFL framework, comparing its effectiveness against traditional mean-
based predictions.

Another limitation of the SFGE method is its potential sample inefficiency. This inefficiency can lead
to slower convergence and suboptimal performance, especially in complex scheduling problems where
the solution space is large. A prominent research direction, as outlined in Section 3.1, is to explore
how to optimize the choice and initialization of the sampling distribution. Proper initialization can
significantly impact the quality of the solutions found and the speed at which the algorithm converges.
Additionally, investigating the impact of the number of samples could be highly beneficial. Currently,
only a single sample is used when calculating the loss, which theoretically suffices for differentiation.
However, Monte Carlo sampling with multiple samples could provide better statistical guarantees and
more reliable gradient estimates. This approach could lead to more accurate and stable learning, as
the variability inherent in single-sample estimates would be mitigated. Furthermore, adaptive sampling
strategies, where the number of samples is dynamically adjusted based on the current state of the
learning process, could be explored to balance computational cost and learning efficiency.

While storing and reusing examples in a replay buffer and performing PPO-like updates did not improve
the overall performance or speed up the convergence of the method, the general idea of performing
multiple model updates on a single data example could be revisited. This is motivated by the fact
that the solving step is by far the most expensive one in the training loop, taking significantly more
time than the updates. Inspiration for future ideas on how to reuse samples could come from the field
of reinforcement learning, where replay buffers are a foundational component in many algorithms due
to their ability to enhance data efficiency, stabilize training, and make efficient use of computational
resources.

What is the future of DFL?

As a relatively new field, Decision-Focused Learning research faces a myriad of intriguing open ques-
tions. For instance, which problems are most effectively addressed by DFL, and is there a universal DFL
approach that can be applied across all domains? While this thesis does not aim to definitively answer
these questions, it provides valuable insights into DFL, the situations where it may face challenges,
and how it could be improved. A tentative conclusion from this research is that DFL excels partic-
ularly well in optimization problems with simpler constraints and straightforward repair mechanisms.
This simplicity allows DFL to function more efficiently and accurately. However, the true potential of
DFL extends beyond these current applications. Exploring new avenues such as integrating DFL into
multi-stage pipelines, developing hybrid approaches that combine DFL with structured optimization,
and refining the current methodologies like the Score Function Gradient Estimation signal a promising
evolution. However, these enhancements present new significant hurdles including increased computa-
tional burden, ensuring robustness in diverse scenarios, and effectively leveraging structural insights
without sacrificing generality. If these obstacles are overcome, the advancements could revolutionize
the landscape of decision-making frameworks, offering solutions to increasingly complex optimization
problems and paving the way for broader, more impactful applications across diverse domains.

Bibliography

R. Arora, S. Arora, A.J. Kulkarni, and P. Siarry. Combinatorial Optimization Under Uncertainty:
Real-life Scenarios in Allocation Problems. Advances in metaheuristics. CRC Press, Taylor & Francis
Group, 2023. ISBN 9781003329039. URL https://books.google.nl/books?id=4gCrzwEACAAJ.

Aharon Ben-Tal, Laurent Ghaoui, and Arkadi Nemirovski. Robust Optimization. 08 2009. ISBN
9781400831050. doi: 10.1515/9781400831050.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 46
(53):157, 2009.

Emir Demirović, Peter J. Stuckey, James Bailey, Jeffrey Chan, Chris Leckie, Kotagiri Ramamohanarao,
and Tias Guns. An investigation into prediction + optimisation for the knapsack problem. In Louis-
Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, Lecture Notes in Computer Science, pages 241–257. Springer,
2019. ISBN 9783030192112. doi: 10.1007/978-3-030-19212-9_16. URL https://cpaior2019.uowm.
gr/,https://link.springer.com/book/10.1007/978-3-030-19212-9.

Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Manage. Sci., 68(1):9–26, jan
2022. ISSN 0025-1909. doi: 10.1287/mnsc.2020.3922. URL https://doi.org/10.1287/mnsc.2020.
3922.

Xinyi Hu, Jasper C. H. Lee, and Jimmy Ho man Lee. Predict+optimize for packing and covering
lps with unknown parameters in constraints. ArXiv, abs/2209.03668, 2022. URL https://api.
semanticscholar.org/CorpusID:252118951.

Xinyi Hu, Jasper C. H. Lee, and Jimmy H. M. Lee. Branch & learn with post-hoc correction for
predict+optimize with unknown parameters in constraints. In Andre A. Cire, editor, Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 264–280, Cham,
2023. Springer Nature Switzerland. ISBN 978-3-031-33271-5.

Xinyi Hu, Jasper C.H. Lee, and Jimmy H.M. Lee. Two-stage predict+optimize for mixed integer
linear programs with unknown parameters in constraints. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran
Associates Inc.

Robert Klein. Scheduling of resource constrained projects. Kluwer Academic Publishers, USA, 2001.
ISBN 079238637x.

Rainer Kolisch and Arno Sprecher. Psplib - a project scheduling problem library: Or software - orsep
operations research software exchange program. European Journal of Operational Research, 96(1):
205–216, 1997. ISSN 0377-2217. doi: https://doi.org/10.1016/S0377-2217(96)00170-1. URL https:
//www.sciencedirect.com/science/article/pii/S0377221796001701.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer
Publishing Company, Incorporated, 5th edition, 2012. ISBN 3642244874.

Pierre L’Ecuyer. On the interchange of derivative and expectation for likelihood ratio derivative
estimators. Management Science, 41(4):738–748, 1995. ISSN 00251909, 15265501. URL http:
//www.jstor.org/stable/2632893.

42

https://books.google.nl/books?id=4gCrzwEACAAJ
https://cpaior2019.uowm.gr/, https://link.springer.com/book/10.1007/978-3-030-19212-9
https://cpaior2019.uowm.gr/, https://link.springer.com/book/10.1007/978-3-030-19212-9
https://doi.org/10.1287/mnsc.2020.3922
https://doi.org/10.1287/mnsc.2020.3922
https://api.semanticscholar.org/CorpusID:252118951
https://api.semanticscholar.org/CorpusID:252118951
https://www.sciencedirect.com/science/article/pii/S0377221796001701
https://www.sciencedirect.com/science/article/pii/S0377221796001701
http://www.jstor.org/stable/2632893
http://www.jstor.org/stable/2632893

Bibliography 43

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Víctor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and future
opportunities. ArXiv, abs/2307.13565, 2023. URL https://api.semanticscholar.org/CorpusID:
260155160.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
mation in machine learning. J. Mach. Learn. Res., 21:132:1–132:62, 2019. URL https://api.
semanticscholar.org/CorpusID:195584180.

G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd. Preface. In Optimization, volume 1 of
Handbooks in Operations Research and Management Science, pages v–ix. Elsevier, 1989. doi:
https://doi.org/10.1016/S0927-0507(89)01001-7. URL https://www.sciencedirect.com/science/
article/pii/S0927050789010017.

Egon Pervsak and Miguel F. Anjos. Decision-focused forecasting: Decision losses for multistage optimi-
sation. 2024. URL https://api.semanticscholar.org/CorpusID:269982527.

Utsav Sadana, Abhilash Reddy Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and
Thibaut Vidal. A survey of contextual optimization methods for decision making under uncertainty.
ArXiv, abs/2306.10374, 2023. URL https://api.semanticscholar.org/CorpusID:259203793.

S.C. Sarin, B. Nagarajan, and L. Liao. Stochastic Scheduling: Expectation-Variance Analysis of a
Schedule. Cambridge University Press, 2010. ISBN 9781139486385. URL https://books.google.
nl/books?id=Mfz-V-tKnrEC.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.semanticscholar.org/
CorpusID:28695052.

Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali .Irfan Mahmutougullari, Maxime Mulamba, Al-
legra De Filippo, Tias Guns, and M. Lombardi. Score function gradient estimation to widen
the applicability of decision-focused learning. ArXiv, abs/2307.05213, 2023. URL https://api.
semanticscholar.org/CorpusID:259766730.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Bo Tang and Elias Boutros Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library for
linear and integer programming. ArXiv, abs/2206.14234, 2022. URL https://api.semanticscholar.
org/CorpusID:250113469.

Kim van den Houten, David M. J. Tax, Esteban Freydell, and Mathijs de Weerdt. Learning from
scenarios for repairable stochastic scheduling. In Bistra Dilkina, editor, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 234–242, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-60599-4.

Jeroen van Steijn. Predict+optimize for combinatorial optimization with uncertainty in the
constraints. Master’s thesis, November 2022. URL http://resolver.tudelft.nl/uuid:
2a61bdf4-2899-420e-89fd-cf0f18ebdb25.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: decision-focused
learning for combinatorial optimization. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-
1-57735-809-1. doi: 10.1609/aaai.v33i01.33011658. URL https://doi.org/10.1609/aaai.v33i01.
33011658.

https://api.semanticscholar.org/CorpusID:260155160
https://api.semanticscholar.org/CorpusID:260155160
https://api.semanticscholar.org/CorpusID:195584180
https://api.semanticscholar.org/CorpusID:195584180
https://www.sciencedirect.com/science/article/pii/S0927050789010017
https://www.sciencedirect.com/science/article/pii/S0927050789010017
https://api.semanticscholar.org/CorpusID:269982527
https://api.semanticscholar.org/CorpusID:259203793
https://books.google.nl/books?id=Mfz-V-tKnrEC
https://books.google.nl/books?id=Mfz-V-tKnrEC
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:259766730
https://api.semanticscholar.org/CorpusID:259766730
http://incompleteideas.net/book/the-book-2nd.html
https://api.semanticscholar.org/CorpusID:250113469
https://api.semanticscholar.org/CorpusID:250113469
http://resolver.tudelft.nl/uuid:2a61bdf4-2899-420e-89fd-cf0f18ebdb25
http://resolver.tudelft.nl/uuid:2a61bdf4-2899-420e-89fd-cf0f18ebdb25
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1609/aaai.v33i01.33011658

	Preface
	Abstract
	Introduction
	Background
	Combinatorial Optimization
	Resource-Constrained Project Scheduling Problem
	Uncertainty in Scheduling
	Prediction-Focused Learning
	Decision-Focused Learning

	Research Questions: Formulation and Motivation
	Research Question 1: Impact of the Sampling Distribution
	Research Question 2: RL-Inspired Extensions
	Research Question 3: Impact of the Added Penalty
	Research Question 4: Effect of Uncertainty

	Methodology
	Method Overview
	Prediction Step and the Score Function Method
	Solving Step
	Correction Step
	Update Step
	Extensions to the Base SFGE Methodology
	Baseline Post-Hoc Regret
	Proximal Policy Optimization Updates

	Evaluation
	Data and Instance Generation
	Data Generation Process
	Hyperparameters of the Data Generation
	Scaling

	Research Question 1: Sampling Distribution and Warm-starting
	Research Question 2: RL-Inspired Extensions
	Sub-question 1: Baseline Post-Hoc Regret
	Sub-question 2: PPO Updates

	Research Question 3: Impact of the Added Penalty
	Research Question 4: Effect of Uncertainty

	Influence of the Solving Technology
	Solving Technology and Its Effects on the Pipeline
	Evaluation of the Solver
	Speed and Accuracy
	Consistency

	Aftermath

	Conclusion and Future Work
	DFL in Scheduling
	SFGE Methodology

