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ROBUST IMPORTANCE-WEIGHTED CROSS-VALIDATION
UNDER SAMPLE SELECTION BIAS

Wouter M. Kouw 1,3∗, Jesse H. Krijthe 2, Marco Loog 3

1 Department of Electrical Engineering, Eindhoven University of Technology
2 Institute for Computing and Information Sciences, Radboud University Nijmegen

3 Department of Intelligent Systems, Delft University of Technology

ABSTRACT

Cross-validation under sample selection bias can, in principle,
be done by importance-weighting the empirical risk. How-
ever, the importance-weighted risk estimator produces sub-
optimal hyperparameter estimates in problem settings where
large weights arise with high probability. We study its sam-
pling variance as a function of the training data distribution
and introduce a control variate to increase its robustness to
problematically large weights.

Index Terms— Sample selection bias, cross-validation.

1. INTRODUCTION

Classification under sample selection bias refers to settings
where training data is collected locally, but the goal is to gen-
eralize to a larger target population [1, 2, 3]. For example,
data collected in one hospital with the aim of generalizing to
a national population or data collected from a process that is
assumed to be stationary, but in reality drifts slowly over time.
To control for selection bias, each sample is weighted by a
factor that matches its observation probability in the train-
ing data distribution to that in the target population, a process
known as importance-weighting [4, 2]. However, importance-
weighting underperforms and can even fail, if the weights
are too large [2]. The weights directly scale the estimator’s
sampling variance (see Section 3.2) and sampling skewness
[5]. Importance-weighting is therefore not suited to problem
settings where large weights occur with high probability. It
needs to be more robust to be considered a practical solution.

One could consider weight truncation as a means of
avoiding large weights, but that introduces a substantial bias
in the estimator [6]. Alternatively, variance reduction tech-
niques incorporate additional information about the statistic
of interest to avoid introducing a bias. Control variates are
such a technique, requiring an additional function of the
random variable that correlates well with the statistic of in-
terest and whose expected value is known [7]. Because of
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the correlation, the statistic is known to rise – or fall in case
of negative correlation – above its expected value whenever
the control variate does. The deviation of the control variate
from its expected value can be subtracted from the statistic,
thereby reducing the statistic’s deviation from its expectation
(i.e. sampling variance) [7, 8]. In importance-weighting,
the importance weights themselves constitute an additional
function that correlates with the importance-weighted loss
and whose expected value is known [9]. An importance-
weighted control variate can reduce the sampling variance of
an importance-weighted risk estimator, thereby increasing its
robustness to large weights.

We are interested in cross-validation under sample selec-
tion bias. In standard cross-validation, the risk is repeatedly
estimated and averaged to obtain an estimate of the expected
generalization error [10]. With this estimate, optimal hy-
perparameters can be selected. Cross-validation becomes
difficult under sample selection bias, as the estimator essen-
tially over-fits to the distribution from which the training data
is generated [11]. Importance-weighted cross-validation has
been explored as a solution [4], but is known to produce sub-
optimal hyperparameter estimates in problem settings with
large weights [5]. We argue for including the weight-based
control variate in the importance-weighted risk estimator such
that importance-weighted cross-validation is more robust to
large weights.

Our contributions can be summarized as follows:

• We apply a controlled importance-weighted risk esti-
mator to a cross-validation procedure.

• We empirically show that the inclusion of the control
variate increases robustness to large weights.

In the remainder of the paper we present the problem setting
in more detail (Section 2), discuss the importance-weighted
risk estimator (Section 3) and show how the control variate
reduces sampling variance (Section 4). We then run a cross-
validation experiment to demonstrate the effectiveness of the
controlled estimator (Section 5). We briefly discuss conclu-
sions and extensions in Section 6.



2. SAMPLE SELECTION BIAS

Consider an input space X ⊆ R
D, and an output space Y ,

with Y = {−1,+1} for binary classification or Y ⊆ N for
multi-class. The population, or target domain, is a probability
distribution pT defined over this pair of spaces. The distribu-
tion of the training data pS , gathered under sample selection
bias, is referred to as the source domain. Under sample se-
lection bias, the data distributions differ pS(x) �= pT (x) with
pS(x) having a smaller variance than pT (x), but the posterior
distributions remain equal pS(y | x) = pT (y | x). Data points
from the source domain are referred to as xi with labels yi,
while target domain data is referred to as zj with labels uj .
The challenge is to use labeled source data {(xi, yi)}ni=1 and
unlabeled target data {zj}mj=1 to predict target labels uj .

Consider a function h, parameterized by θ, that maps a
data point to a real number, hθ : X → R. The real-valued
outputs are predictions of classes and we therefore refer to h
as a classifier. Predictions are evaluated using a loss function
� : R × Y → R, which compares the prediction to the true
label. The expected loss is called the risk of the classifier,
R(hθ) and the average loss is called the empirical risk R̂(hθ).

2.1. An example setting

Throughout the paper, we illustrate the behavior of estima-
tors with a running example of a classification problem under
sample selection bias. The posterior distribution in both do-
mains is a unit cumulative normal distribution, pT (y | x) =
Φ(yx | 0, 1). The target data distribution is taken to be a unit
normal distribution pT (x) = N (0, 1), while the source data
distribution is set to N (−1, γ). Figure 1 plots the data distri-
butions, for γ = 1/

√
2. Note that pS has higher probability

mass between x = −3 and x = −1/2, implying these values
will tend to be observed more often in the source data set than
in the target set.
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Fig. 1. Data distributions in the example setting.

In order to evaluate risk, a choice of loss function and clas-
sifier is needed. For this example, we use a quadratic loss,
�(hθ(x), y) =

(
xθ − y

)2
, with θ = 1/

√
π as coefficient.

3. IMPORTANCE-WEIGHTING

Empirical risk minimization describes a classifier’s perfor-
mance by its expected loss. The risk function R integrates

the loss � over a joint distribution p, and is therefore domain-
specific. We are interested in minimizing the target risk RT :

RT (hθ) =

∫
X

∫
Y
�
(
hθ(x), y

)
pT

(
x, y

)
dydx , (1)

which can be estimated with the sample average over data
drawn from the target domain:

R̂T (hθ) =
1

m

m∑
j=1

�
(
hθ

(
zj
)
, uj

)
. (2)

However, this estimator cannot be used, since we lack target
labels u.

We are interested in estimators that do not depend on u.
One possibility is the importance-weighted risk estimator,
which re-formulates the target risk to include the source dis-
tribution:

∫∫
�
(
hθ(x), y

)
pS(x, y)

[
pT (x, y)/pS(x, y)

]
dydx.

Under sample selection bias, pT (y | x) = pS(y | x), which
simplifies the re-formulation to:

RW(hθ) =

∫
X

∫
Y
�
(
hθ

(
x
)
, y
)pT (x)
pS(x)

pS
(
x, y

)
dydx . (3)

Using samples from the source domain {(xi, yi)}ni=1, this risk
can be estimated through:

R̂W(hθ) =
1

n

n∑
i=1

�(hθ(xi), yi)
pT (xi)

pS(xi)
. (4)

Note that it does not depend on target labels u.

3.1. Weights

The ratio of probability distributions is referred to as the im-
portance weight function w(x) = pT (x)/pS(x). Each weight
corrects the probability of observing a single pair (xi, yi) un-
der the source distribution to its probability under the target
distribution. Higher values indicate higher importance to the
target domain. In the example setting, the weight function is:
w(x) = γ exp

(
[γ−2(−1− x)2 − x2]/2

)
. Its variance has an

analytical solution, VS [w(x)] = γ2/(2γ2−1)·exp (1/(2γ2−
1)
)−1, provided γ > 1/

√
2, shown in Figure 2. Note that the

weights’ variance grows exponentially as γ shrinks. In other
words, as the source domain becomes a more limited view of
the target population, the spread over the importance of each
sample grows sharply.

3.2. Sampling variance

In expectation, the estimators R̂T and R̂W are equivalent.
However, they behave differently for finite sample sizes. The
variance of an estimator with respect to data, is known as its
sampling variance. In the following, we will compare the
sampling variances of R̂W and R̂T .
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Fig. 2. Variance of the importance weights w(x) as a function
of the standard deviation γ of the source data distribution in
the example setting.

Assuming data is drawn independently and is identically
distributed (iid), the sampling variance of the target risk esti-
mator is

VT [R̂T ] = ET
[( 1

m

m∑
j=1

�(hθ(zj), uj)−RT
)2]

=
1

m
ET

[(
�(hθ(x), y)−RT

)2]
=

σ2
T
m

, (5)

where σ2
T is the sampling variance of R̂T with respect to a

single point. Assuming the source data is drawn iid as well,
the sampling variance of the importance-weighted risk esti-
mator follows similarly:

VS [R̂W ] = ES
[( 1
n

n∑
i=1

�(hθ(xi), yi)w(xi)−RW
)2]

=
1

n
ES

[(
�(hθ(x), y)w(x)−RW

)2]
=

σ2
W
n

. (6)

Since RW = RT , Equations (5) and (6) reveal that the sam-
pling variances of R̂T and R̂W only differ by a scaling in-
duced by the importance weights:

σ2
T − σ2

W = ET
[
�(hθ(x), y)

2
(
1− w(x)

) ]
. (7)

Hence, in problem settings where large weights occur often,
the importance-weighted risk estimator has a higher sampling
variance than the target risk estimator. This makes sense: as
the training data distribution provides a more narrow view of
the population, the risk estimate becomes more uncertain.
Figure 4 plots σ2

W and σ2
T for the example setting (σ2

β will be
discussed in Section 4). Note that the shape of the curve of
R̂W reflects the influence of weight variance (see Figure 2).

3.3. Occurrence of large weights

A large sampling variance does not necessarily mean a given
data set will contain a large weight. Drawing a point with a
large weight occurs with some probability. For illustration,
we plot the probability that an importance-weight exceeds a
constant c in the example setting. Figure 3 shows curves for
three choices of γ. For γ = 0.7, the probability of a weight
exceeding the value 10 is about 0.2.

10 0 10 1 10 2

constant (c)

10 -2

10 -1

10 0

P
r[
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Fig. 3. Probability of an importance weight exceeding the
constant c, for different values of source standard deviation γ.

4. REDUCING SAMPLING VARIANCE

4.1. Control variates

A control variate is a function g of a random variable x that
correlates with a particular statistic f(x) of that random vari-
able and whose expected value is known [7, 8]. It reduces
sampling variance as follows: suppose that g(x) is positively
correlated to the statistic f(x). Then, whenever g(xi) rises
above its expected value, g(xi) − E[g(x)] > 0, f(xi) will
also rise above its expected value, f(xi)− E[f(x)] > 0. If g
is negatively correlated, then f will fall below its expectation
whenever g rises above its expectation. By subtracting the
control variate from the statistic, f(xi) − (g(xi) − E[g(x)]),
the statistic’s deviation from its expected value can be manip-
ulated.

It is however important that the control variate is appro-
priately scaled. For this purpose, a parameter β is introduced.
If β is fixed, then the estimator will be unbiased:

E
[ 1
n

n∑
i=1

f(xi)− β
(
g(xi)− E[g(x)]

)]

= E[f(x)]− β(E[g(x)]− E[g(x)]) = E[f(x)] (8)

Our statistic of interest is the weighted loss. For common
choices of loss functions, such as quadratic, logistic or hinge,
the importance weights will generally correlate well with the
weighted loss. The expected value of the importance weights
is always known, since

ES [w(x)] =

∫
X

pT (x)

pS(x)
pS(x)dx =

∫
X
pT (x)dx = 1 . (9)

This means the weights can always be introduced as a control
variate to an importance-weighted estimator. The controlled
importance-weighted risk estimator becomes:

R̂β(hθ)=
1

n

n∑
i=1

�(hθ(xi), yi)w(xi)−β(w(xi)− 1) . (10)

Note that the weights w(xi) have already been computed, im-
plying that additional computational cost is restricted to β.



The effect of the control variate on the sampling variance of
the importance-weighted risk estimator can be seen via [7]:

VS [R̂β ] = ES
[
(R̂β −Rβ)

2
]

=
1

n
ES

[(
�w(x, y)− β(w(x)− 1)−RW

)2]

=
1

n

(
σ2
W−2βCS [�w(x,y),w(x)]+β2

VS [w(x)]
)
=

σ2
β

n
,

(11)

where �w(x, y) = �(hθ(x), y)w(x) is shorthand for the
weighted loss function given a fixed classifier hθ, and CS
refers to covariance. We can minimize this sampling variance
for the scaling parameter β. Taking the derivative of (11) with
respect to β and setting it to 0 yields:

β∗ = CS
[
�w(x, y), w(x)

]
/ VS

[
w(x)

]
. (12)

Plugging β∗ back in simplifies the sampling variance to:

σ2
β = σ2

W−CS
[
�w(x, y), w(x)

]2
/VS

[
w(x)

]
. (13)

Considering that both the squared covariance term and the
variance term are non-negative, the sampling variance of R̂β

is never larger than that of R̂W [9]. In particular, σ2
β can be

alternatively formulated as σ2
W(1− ρ2), where ρ denotes the

correlation between the weighted loss and the weights [8]. Es-
sentially, the more the weights correlate – positively or neg-
atively – with the weighted loss, the larger the reduction in
variance.
We computed σ2

β for the example setting and show it along-
side σ2

W and σ2
T in Figure 4. Note that σ2

β also diverges as γ
shrinks, like σ2

W , but does so at a slower rate.

4.2. Regression estimator

In practice, β will need to be estimated. Both the weight vari-
ance and the covariance between the weighted loss and the
weights can be estimated from data. In that case, Equation 12
becomes the solution to a least-squares problem [8]:

β̂=

∑n
i=1

(
�w(xi,yi)−

∑n
i=1 �w(xi,yi)

)(
w(xi)−1

)
∑n

i=1

(
w(xi)− 1

)2 . (14)

However, β now depends on the same observed variable as
the weighted loss and the weights, which is somewhat prob-
lematic. It can be shown that the deviation of β̂ from β∗ drops
off on the order of O(n−1/2) (see Theorem 1 from [9]). This
estimation error in β causes a bias in the risk estimator on the
order of O(n−1) [9].

5. IMPORTANCE-WEIGHTED CROSS-VALIDATION

Standard cross-validation will not yield optimal regular-
ization parameter estimates under sample selection bias.
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Fig. 4. Sampling variance of the target (yellow, σ2
T ),

the importance-weighted (blue, σ2
W ) and the controlled

importance-weighted (green, σ2
β) risk estimators as a function

of γ in the example setting.

Importance-weighted cross-validation is a potential solu-
tion [4], but is not robust to large weights. The following
subsections describe experiments that compare risk estima-
tors during k-fold cross-validation, and evaluate their ability
to find appropriate regularization parameters.

5.1. Data

We consider a synthetic and a natural data set. In the synthetic
setting, the target data distribution is a unit bivariate normal
N ([0, 0] | I), while the source data distribution consists of
a bivariate normal with a shifted mean and a scaled identity
covariance matrix, N ([−1, 0] |γI). The posterior distribution
is of the form: p(y = −1 | x1, x2) = 1 − Φ(−[x1, x2])
and p(y = 1 | x1, x2) = Φ(−[x1, x2]). Figure 5 visualizes
the class-conditional distributions p(x | y) for γ = 1/

√
2.

Note that the source domain is a local sampling of the larger
target domain and that the nonlinear nature of the underlying
decision boundary is not apparent. We draw data sets using
rejection sampling, with 50 source samples and 1000 target
samples.
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Fig. 5. Synthetic problem, with γ = 1/
√
2. Class-conditional

distributions for source (left) and target domain (right).

The natural setting is derived from the ozone level de-
tection data set from the UCI machine learning repository1.
The task is to predict ozone days versus normal weather days,
given various weather station measurements. All samples
with missing values are removed, the data has been z-scored,

1https://archive.ics.uci.edu/ml/datasets



and it has been projected onto its first 10 principal compo-
nents. The source domain is a local sampling in time: a
Gaussian centered at the start date with a standard deviation
that is a proportion γ of the total number of samples. For
small values of γ, the source domain contains only samples
close to the start date. For large values, the source domain is
roughly equally spread over time. We draw 80 samples with-
out replacement from both classes to form the source data set.
These 80 samples are also included in the target data, so as
not to form a ’hole’ in feature space.

For each setting, we perform 100 000 repetitions of sam-
pling a data set. The top 10% of repetitions with the largest
weight variance are considered the data sets with problemati-
cally large weights.

5.2. Experimental setup

The source set is split into k = 5 folds, a classifier is trained
using a particular value for the regularization parameter λ
and its loss is computed on each data point in the held-out
validation set. That loss is stored, along with those points’
estimated weights. An importance-weighted L2-regularized
linear least-squares classifier is taken. Its parameters are esti-
mated through θλ = (XtWtX

�
t + λI)−1(X�

t Wtyt) where t
indicates training indices and W is a diagonal matrix with the
estimated weights as its entries. For λ, we considered a range
from 10−3 to 106 over 200 logarithmic steps.

Weights are estimated by fitting a normal distribution to
data from each domain, and computing the ratio of the target
probability over the source probability of each source data
point ŵ(xi) = p̂T (xi)/p̂S(xi). We compare the importance-
weighted risk estimator (R̂ŵ) with its control variate coun-
terpart (R̂β̂). We average their estimated risks over all data
sets and specifically over the 10% of data sets with the largest
weight variance (indicated with ”>” in the legend of Figures
6, 7 and 8). We also include validation on the labeled target
samples (R̂T ) as the oracle solution. After risk estimation,
the λ is selected that minimized risk. The classifier is then re-
trained using all source data and the selected λ, and evaluated
using the target risk based on the true target labels as the final
measure. This process is repeated for each data set and we
report the final average as R̄T .

Repeating the above procedure for each data set allows
us to perform non-parametric hypothesis tests for statistically
significant differences between the final risks of the estima-
tors. Since the data is paired and the estimators’ sampling
distributions are skewed beyond normality, we employ a
Wilcoxon signed-rank test [12].

5.3. Results

Figure 6 presents the final target risks for each risk estimator
on the synthetic problem setting. Note that the errorbars in
the plot are too small to see. When looking at all data sets,

there is nearly no difference between R̂ŵ and R̂β̂ . This indi-
cates that the addition of the control variate does not deterio-
rate importance-weighted cross-validation in general. When
looking at the sets with large weight variance, it can be seen
that R̂ŵ deteriorates strongly, while R̂β̂ does not. This shows
that the addition of the control variate makes the importance-
weighted risk estimator more robust to large weights. The
difference between R̂ŵ and R̂β̂ for the data sets with large
weight variance (dotted lines) is statistically significant for
each value of γ, with the largest p-value on the order of 10−30.
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Fig. 6. Mean target risks for the synthetic problem setting, as
a function of source variance γ.

Figure 7 presents the mean target risks in the Ozone prob-
lem setting. Note that the controlled estimator R̂β̂ is essen-
tially unaffected by the large weights since it produces the
same final risks in both the case of all data sets and the top
10% of largest weight variance. Both sets of risks are below
that of the uncontrolled estimator R̂ŵ, which still deteriorates
in the data sets with large weight variance. All differences
between R̂ŵ and R̂β̂ are statistically significant for all values
of γ, with the largest p-value on the order of 10−50. Lastly,
all risks increase slightly as γ grows, which is due to less data
outliers around the start date.
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Fig. 7. Mean target risks for Ozone level detection setting, as
a function of the relative scale of the source domain γ.

5.4. Weight estimators

The effect of the control variate is independent of the choice
of importance-weight estimator. We illustrate this point by
performing the same experiment on the synthetic setting us-
ing Kernel Mean Matching (KMM) [13] and the Kullback-



Leibler Importance Estimation Procedure (KLIEP) [14]. Fig-
ure 8 shows similar results as in Figure 6, except that the
control variate even leads to better final target risks for the
average over all data sets (green lines are below blue lines).
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Fig. 8. Mean target risks for the synthetic problem setting, as
a function of γ. (Top) KMM, (bottom) KLIEP.

Some non-parametric weight estimators are formulated such
that they naturally avoid large weights. However, this be-
havior depends on one or more hyperparameters, such as a
kernel bandwidth parameter. Unfortunately, finding an op-
timal bandwidth parameter would require cross-validation,
and consequently, such estimators are not suited to cross-
validation procedures. One has to resort to heuristics, such
as Silverman’s rule or the average distance to k-nearest-
neighbours. In the above experiment, we set the kernel band-
width in KMM and KLIEP to the average Euclidean distance
from the source points to their five nearest neighbours of the
target points.

6. CONCLUSION & DISCUSSION

We introduced a control variate to reduce the sampling vari-
ance of the importance-weighted risk estimator. With its
inclusion, the importance-weighted risk estimator is more
robust large weight variance. Consequently, during k-fold
cross-validation, it selects better hyperparameters than the
uncontrolled importance-weighted risk estimator.

We have studied an additive linear control variate. Alter-
natively, one could consider more complex control variates,
such as higher-order moments of the weights, or multiplica-
tive control variates [8]. If these have a stronger correlation
with the weighted loss, they could lead to larger reductions
in variance. However, there are a wide variety of possible
alternatives, and it is unclear how to search over these.
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