
Delft Center for Systems and Control

Reinforcement Learning of
Potential Fields to achieve
Limit-Cycle Walking

Denise Feirstein - 4325842

M
as

te
ro

fS
cie

nc
e

Th
es

is

Reinforcement Learning of
Potential Fields to achieve

Limit-Cycle Walking

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at
Delft University of Technology

Denise Feirstein - 4325842

April 4, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© BioMechanical Engineering
All rights reserved.

Delft University of Technology
Department of

BioMechanical Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Reinforcement Learning of
Potential Fields to achieve

Limit-Cycle Walking
by

Denise Feirstein - 4325842
in partial fulfillment of the requirements for the degree of

Master of Science Mechanical Engineering

Dated: April 4, 2016

Supervisor(s):
Dr.-Ing. H. Vallery

Reader(s):
Prof.dr.ir. M. Wisse

Dr.-Ing. J. Kober

Ir. I. Koryakovskiy

Preface

This thesis, titled “Reinforcement Learning of Potential Fields to achieve Limit-Cycle Walking”
is a small piece of a much larger idea that was inspired by Heike Vallery’s work “Generalized
Elasticities improve patient-cooperative control of rehabilitation robots.” I was curious if the
virtual potential fields used to control a rehabilitation exoskeleton and guide patients while they
relearn to walk could similarly be used to control and guide biped robots. If you have ever worked
with TUlip robot, you will understand why I immediately drew a parallel here. This is how my
idea of combining potential fields with reinforcement learning was born.

Master of Science Thesis Denise Feirstein - 4325842

ii

Denise Feirstein - 4325842 Master of Science Thesis

Acknowledgements

This work would not have been possible without the contributions, guidance and support from
several people to whom I would like to extend my deepest gratitude.

I would like to thank Heike Vallery for her supervision and guidance. Thank you for sharing in my
vision and supporting me throughout this challenging project. My thanks to Jens Kober and Ivan
Koryakovskiy for their contribution and guidance in the field of reinforcement learning. Next, I
would like to thank Martijn Wisse for helping define the direction and scope of this work. I would
also like to thank Joost O. van der Weijde for contributing his knowledge of limit-cycle walking
and providing me with his Simplest Walking Model simulation as a foundation for my simulations.

I am grateful to my study group which grew into an “international family” away from home.
Thank you, Hulda, Tim, Sarvesh, Marina, Marta (just to name a few) for the much-needed coffee
breaks, dinners, conversation, motivation and support.

I am indebted to my parents who have supported me in everything I’ve done throughout my life.
Thank you for instilling in me the work ethic, confidence and sense of adventure that led me to
quit my job and pursue something new and unknown.

Finally, I would like to thank my boyfriend for his unwavering support throughout my Masters.
Thank you, Heiko, for motivating me to step outside of my comfort zone and always being there
for me throughout the challenges.

Master of Science Thesis Denise Feirstein - 4325842

iv

Denise Feirstein - 4325842 Master of Science Thesis

Abstract

Reinforcement learning is a powerful tool to derive controllers for systems where no models are
available. Particularly policy search algorithms are suitable for complex systems, to keep learning
time manageable and account for continuous state and action spaces. However, these algorithms
demand more insight into the system to choose a suitable controller parameterization. This paper
investigates a type of policy parameterization for impedance control that allows energy input to
be implicitly bounded: Potential fields. In this work, a methodology for generating a potential
field-constrained impedance control via approximation of example trajectories, and subsequently
improving the control policy using Reinforcement Learning, is presented. The potential field-
constrained approximation is used as a policy parameterization for policy search reinforcement
learning and is compared to its unconstrained counterpart. Simulations on a simple biped walking
model show the learned controllers are able to surpass the potential field of gravity by generating
a stable limit-cycle gait on flat ground for both parameterizations. The potential field-constrained
controller provides safety with a known energy bound while performing equally well as the uncon-
strained policy.

Master of Science Thesis Denise Feirstein - 4325842

Table of Contents

1 Introduction 1
1-1 Background . 1

1-1-1 Bipedal Robots . 1
1-1-2 Potential Field Control . 2
1-1-3 Reinforcement Learning . 2

1-2 Objective . 3
1-2-1 Research Question . 3
1-2-2 Methodology . 3
1-2-3 Outline . 4

2 Scientific Paper 5
2-1 Introduction . 7
2-2 Impedance Control Initialization . 8

2-2-1 Unconstrained Parameterization . 8
2-2-2 Potential Field-constrained Parameterization 9

2-3 Policy Search Reinforcement Learning . 9
2-3-1 Exploration Strategy . 9
2-3-2 Evaluation Strategy . 9
2-3-3 Update Strategy . 9

2-4 Application to LC Walking . 9
2-4-1 Simplest Walking Model . 9
2-4-2 Inverse dynamics . 10
2-4-3 Reinforcement Learning . 11

2-5 Evaluation Protocol . 11
2-5-1 Implementation . 11
2-5-2 Experiment Setup . 11
2-5-3 Benchmarking Criteria . 11

2-6 Results . 12
2-6-1 Reference Case . 12

Master of Science Thesis Denise Feirstein - 4325842

viii Table of Contents

2-6-2 Slope-modified Case . 12
2-6-3 Mass-modified Case . 14
2-6-4 Results Summary . 14

2-7 Discussion . 15
2-8 Conclusion and Future Work . 15

References . 16

A Lyapunov Stability Theory 17

B Simplest Walking Model 19
B-1 Equations of motion . 19
B-2 Impact equations . 21
B-3 Energy Equations . 22

C Least Squares Optimization 23
C-1 Weighted Recursive Least Squares Method . 23
C-2 Radial Basis Functions . 24

C-2-1 Compactly supported RBFs of minimal degree 24
C-2-2 Potential Function Derivation . 25

D MatLab Code 27
D-1 Main script . 28
D-2 Initialization functions . 31

D-2-1 initialization.m . 31
D-2-2 compact_NRBFs_recursive_Unconstrained_3order.m 32
D-2-3 compact_NRBFs_recursive_PFconstrained_3order.m 35

D-3 Reinforcement Learning script and functions . 36
D-3-1 RL_integration_sequence.m . 36
D-3-2 Batch_exploration.m . 37
D-3-3 PoWER_update.m . 38
D-3-4 RL_integration_sequence.m . 38
D-3-5 Policy_Eval.m . 40

Bibliography 41

Denise Feirstein - 4325842 Master of Science Thesis

Chapter 1

Introduction

1-1 Background

In this section, the fields of bipedal robots, potential field control, and reinforcement learning, are
introduced and presented based on recent literature.

1-1-1 Bipedal Robots

Bipedal robots that can walk like humans are desirable for a number of applications ranging from
art and entertainment [14] to home care and disaster relief. Robots that can move like humans are
well suited to aid humans in their homes and workplaces. In cases of emergency when a human
environment becomes too dangerous for people to operate in, having robots with two legs that can
traverse stairs and obstacles would also be extremely beneficial. Additionally, the study of gait
synthesis on bipedal robots is a way of increasing the understanding of human walking dynamics
[9]. In the field of medicine, this knowledge is used to advance gait rehabilitation devices and
prosthetics. However, the biped robots developed thus far lack the versatility, robustness and
energy efficiency that the human gait possesses [5]. One example of an advanced biped robot
is Honda’s ASIMO. Despite being state of the art, ASIMO, which is representative of joint-
angle controlled robots, has a high energy demand [4] and cannot fully extend its knees due
to mathematical singularities [16].

In response to the high energy demand of the humanoid robot, passive dynamic walkers have
been developed that walk down a shallow slope using only the force of gravity and the robot’s
natural dynamics [15]. These robots possess an extremely energy efficient gait that is remarkably
similar to that of humans. The stable periodic gait of a passive dynamic walker is referred to
as a limit-cycle (LC). Bipedal robots based on this concept are often referred to as limit-cycle
walkers because they exhibit a stable periodic gait without the need for local stability [12]. The
Simplest Walking Model (SWM) developed in [7] has been used as a tool to study this paradigm.
Unfortunately, the gait of the passive dynamic walker is extremely sensitive to initial conditions
and lacks versatility and robustness [8]. Rendering this gait slope invariant and improving it’s
disturbance rejection has been the focus of many publications including [10].

Master of Science Thesis Denise Feirstein - 4325842

2 Introduction

1-1-2 Potential Field Control

Energy-based control methods view dynamical systems from the perspective of energy transfor-
mation. From this view, a control action can be used to add or remove energy from the system, as
well as shape the kinetic or potential energy to the desired form. They are particularly appealing
as they provide stability results that hold over large domain unlike those obtained using linear
design techniques [3]. These methods are fundamentally based on Lyapunov Stability Theory,
which states that if a system is near the minimum of the Lyapunov function, it will stay in the
area of this minimum. For the system to asymptotically converge to the minimum point, the
system must be dissipative, meaning that energy is dissipated from the system.

A universal property of mechanical systems is passivity which is directly related to Lyapunov
methods. A dynamical system with input u, output y and state q is said to be passive if there
exists a continuously differentiable nonnegative definite scalar function S(q), called a storage
function such that

Ṡ ≤ yTu. (1-1)

The storage function is equivalent to the total energy of the system. Equation 1-1 can be written
in integral form as

S(q(t1))− S(q(t0)) ≤
t1∫
t0

yTudt. (1-2)

This means the system satisfies the energy-balance equation

S(q(t1))− S(q(t0))︸ ︷︷ ︸
stored energy

=
t1∫
t0

yTudt

︸ ︷︷ ︸
supplied

− d(t)︸︷︷︸
dissipated

(1-3)

where d(t) is a nonnegative function that captures the dissipation effects. It follows that the energy
of the uncontrolled system (u = 0) is nonincreasing and the total amount of energy that can be
extracted from a passive system is bounded [17].

Potential field control introduces a virtual potential field into the system which can store and
supply energy. Variations and extensions of this methods have been applied to the bipedal walking
problem in [20], [1], and [2] by emulating an artificial slanted gravity field.

The design of generic potential fields remains challenging, particularly for systems that exhibit
modeling uncertainties or that operate in unknown environments. In [6] it is hypothesized that
finding a potential field that results in desired trajectories during the design phase of a robot
can be used to optimize mechanical structure so that desired trajectories are more “natural” to
implement. This is because any virtual potential field (simulated by control torques) could be
transformed into a real potential field using mechanical elements such as springs. In the next
section, the machine learning technique of reinforcement learning is presented, which could be
used to find generic potential fields.

1-1-3 Reinforcement Learning

Reinforcement learning (RL) is a powerful technology to derive controllers for systems where
limited or no models are available. RL is a machine learning technique that allows a robot to
learn through iterative trial-and-error interactions with its environment. The goal of RL is to find
an optimal policy π, a mapping of states to actions, that will maximize the expected return J . The
problem commonly consists of an Exploration Strategy, an Evaluation Strategy, and an Update
Strategy. The Exploration Strategy varies the policy π to determine the trials that a robot takes
to explore its environment. The Evaluation Strategy measures the performance of the policy to

Denise Feirstein - 4325842 Master of Science Thesis

3

determine the expected return J for each trial. Finally, the Update Strategy updates the policy
in a way to increase the expected return.
Policy search RL methods, also known as actor-only methods, have been found effective for robotic
applications due to their ability to handle higher dimensionality and continuous state and action
spaces compared to Value-based RL methods [13]. Furthermore, policy search methods have been
effectively implemented on bipedal robots [21]. Policy search methods require a parameterized
policy, πw, where w is a parameter vector that can be perturbed for exploration and updated to
improve the policy.
An impedance controller where the control torques are a function of the robot’s configuration q,
as defined in [11], can be formulated as τ (q) using parameterized radial basis functions (RBF)
and linear least squares methods. An impedance controller of this form is equivalent to a policy
π. The impedance controller can be constrained to a potential field by defining the torques as the
transposed Jacobian of a potential function. This reduces the number of policy parameters that
need to be explored in a policy search problem.

1-2 Objective

In this section, the research question, methodology and outline of this thesis are presented.

1-2-1 Research Question

In this work, we propose to combine RL and potential field-constrained (PF-constrained) impedance
control to achieve LC walking for robots that operate in uncertain conditions because:
• PF-constraint provides safety by bounding the energy

• RL provides controllers for systems with modeling uncertainty.
The question arises, can policy search RL be combined with potential field control to achieve
LC walking? While the theoretical advantage of a PF-constrained impedance control, specifically
passivity and energy boundedness, are presented in literature, the sub-question arises, are there
advantages/limitations of this constraint when it comes to applying RL due to the reduced number
of policy parameters?
As a first step towards answering these questions, this work presents a methodology for defining a
potential field-constrained (PF-constrained) impedance control via Least Squares (LS) optimiza-
tion and improving it via reinforcement learning.

1-2-2 Methodology

We define an impedance control as a parameterized mapping of configurations to control torques,
which is analogous to a policy in Reinforcement Learning (RL) algorithms. An unconstrained and
a PF-constrained impedance controller are initialized via approximation of the SWM trajectory
and are compared before and after RL for three cases:
• the reference case of the simplest walking model (SWM) on a slope

• the slope-modified case of the SWM on flat ground

• the mass-modified case of the SWM with modified foot mass on flat ground.
While the SWM can only provide limited insight into the capabilities of the method, the method-
ology can be extended to more advanced models with higher degrees of freedom and possibly a
full-scale humanoid robot like TU Delft’s TUlip with series elastic actuation for torque control [9].
A flow chart of the methodology is shown in Figure 1-1 as well as the experimental setup of this
work and potential extensions for future work.

Master of Science Thesis Denise Feirstein - 4325842

4 Introduction

Setup	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Initialization	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Reinforcement
Learning	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Inverse
Dynamics

PF-constrained
Parameterization

Unconstrained
Parameterization

Exploration
Strategy

Higher DoF
Biped Model

TUlip Robot

EOM
OR

OR
Evaluation

Strategy

Update
Strategy

C
u

rr
en

t
W

o
rk

F

u
tu

re
 W

o
rk

Slope-modified
Case

Mass-modified
Case

Reference Case
(SWM)

Figure 1-1: Flow chart of methodology for combining Potential Fields (PF) and Reinforcement
Learning (RL). The reference trajectory is given by the state vector x = (qd q̇d q̈d)T generated by
the ideal SWM on a slope where the subscript d indicates the desired trajectory. For initialization,
inverse dynamics with different Equation of Motion (EOM) are used to generate a set of training data
(τ d, qd) used by LS optimization to derive an impedance control τ (q), for both the PF-constrained
and unconstrained cases. The impedance control is then improved using RL to find an improved
control policy π? = τ ?(q).

1-2-3 Outline

The core contribution of this thesis is given in the scientific paper in Chapter 2. A previous
version of this paper was accepted to the International Federation of Automatic Control (IFAC)
International Workshop on Periodic Control Systems (PSYCO 2016). This paper was the result
of the effort of not only myself, but the three other authors. Ivan Koryakovskiy contributed
his knowledge of applying reinforcement learning to the bipedal walking problem, specifically
with the reward function and exploration algorithm. Jens Kober contributed his expertise of
policy search reinforcement learning for robotics, specifically providing the MATLAB code for the
PoWER algorithm for reference. Heike Vallery contributed her expertise of bipedal walking and
the method of generalized elasticities that she developed, and she provided the MATLAB code for
the recursive least squares algorithm as a foundation for this work. All of the authors proofread
the paper.

Supplementary material is provided in the Appendix. A formal definition of Lyapunov Stability is
given in Appendix A. The equations of motion, impact equations, and energy calculations for the
simplest walking model are given in Appendix B. Finally, details of the Least Squares optimization
is given in Appendix C, including the recursive algorithm and the radial basis function selection.
Selected MATLAB functions are shown in Appendix D to demonstrate the implementation of the
methodology.

Denise Feirstein - 4325842 Master of Science Thesis

Chapter 2

Scientific Paper

Master of Science Thesis Denise Feirstein - 4325842

6 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

Reinforcement Learning of Potential Fields
to achieve Limit-Cycle Walking

Denise S. Feirstein ∗ Ivan Koryakovskiy ∗ Jens Kober ∗∗

Heike Vallery ∗

∗ TU Delft Department of BioMechanical Engineering
∗∗Delft Center for Systems and Control

Abstract: Reinforcement learning is a powerful tool to derive controllers for systems where no
models are available. Particularly policy search algorithms are suitable for complex systems,
to keep learning time manageable and account for continuous state and action spaces.
However, these algorithms demand more insight into the system to choose a suitable controller
parameterization. This paper investigates a type of policy parameterization for impedance
control that allows energy input to be implicitly bounded: Potential fields. In this work, a
methodology for generating a potential field-constrained impedance control via approximation
of example trajectories, and subsequently improving the control policy using Reinforcement
Learning, is presented. The potential field-constrained approximation is used as a policy
parameterization for policy search reinforcement learning and is compared to its unconstrained
counterpart. Simulations on a simple biped walking model show the learned controllers are able
to surpass the potential field of gravity by generating a stable limit-cycle gait on flat ground for
both parameterizations. The potential field-constrained controller provides safety with a known
energy bound while performing equally well as the unconstrained policy.

Keywords: Machine learning, Energy Control, Limit cycles, Walking, Robot control

1. INTRODUCTION

The demand for robot control that is both safe and energy-
efficient is greater than ever with advances in mobile robots
and robots that interact in human environments. One
such example is the bipedal robot which has applications
ranging from home care to disaster relief. Traditional
position control, common to industrial robotics, is not
suitable for robots that interact in unknown environments
because slight position errors can result in high contact
forces that can damage the robot and its environment.
In the case of humanoid robots which interact in human
environments this poses a human-safety issue.

One possible solution is to employ impedance control,
which attempts to enforce a dynamic relation between
system variables as opposed to controlling them directly
(Hogan (1984)). Specifically, impedance control based on
potential fields, which inherently bounds the energy ex-
changed between the robot and the environment. Potential
fields can modulate natural dynamics of a system and
achieve desired behavior without requiring high-stiffness
trajectory tracking. Potential fields have been developed
for path planning and motion control by reformulating the
objective into a potential function (Koditschek (1987)).
Control torques can be represented as a vector field gen-
erated by the gradient of the potential field, such that the
dimensionality of any number of actuators is essentially
reduced to one, the scalar value of the potential function.

Potential fields can only release energy stored inside them,
such that they can be classified as a passive control
method. Motion control based on passivity generates ro-

bust motions not only in real time but also autonomously,
while allowing simple task objectives, such as walking
speed or reaching targets (Hyon and Cheng (2006)). Con-
trasting the high energy demand of conventional, fully ac-
tuated bipedal robots, passive dynamic walkers have been
developed that walk down shallow slopes using only the
force of gravity and the robot’s natural dynamics (McGeer
(1990)). Thus, these mechanisms exploit the natural po-
tential field of gravity. In consequence, they possess an
extremely energy-efficient gait that is remarkably similar
to that of humans. The stable periodic gait of a passive dy-
namic walker is referred to as a Limit Cycle (LC). Render-
ing this gait slope-invariant and improving its disturbance
rejection has been the focus of many publications including
Hobbelen and Wisse (2007). For example, walking of the
so-called simplest walker on flat terrain can be achieved
by emulating a slanted artificial gravity field via robot
actuators (Asano and Yamakita (2001)). This is a very
special case of a potential field.

The design and parameterization of more generic poten-
tial fields remains challenging, particularly for systems
that exhibit modeling uncertainties or are subjected to
unknown disturbances. Reinforcement learning (RL) is a
powerful technology to derive controllers for systems where
no models are available. Policy search RL methods, also
known as actor-only methods, have been found effective
for robotic applications due to their ability to handle
higher dimensionality and continuous state and action
spaces compared to Value-based RL methods (Kober et al.
(2013)). Furthermore, policy search methods have been

7

Master of Science Thesis Denise Feirstein - 4325842

effectively implemented on bipedal robots (Tedrake et al.
(2004)).

In this work, we propose to combine RL and PF-
constrained impedance control to improve robot safety for
robots that operate in uncertain conditions because:
• PF-constraint provides safety with a known energy

bound
• RL provides controllers for systems with modeling un-

certainty.
The question arises, can policy search RL be combined
with potential fields to achieve LC walking? While the
theoretical advantage of a PF-constrained impedance con-
trol, specifically energy boundedness, are presented in lit-
erature, the sub-question arises, are there limitations when
it comes to RL convergence?

As a first step towards answering these questions, this
paper presents a methodology for defining a potential field-
constrained (PF-constrained) impedance control and im-
proving it via reinforcement learning. To achieve this, we
define an impedance control as a parameterized mapping
of configurations to control torques, which is analogous
to a policy in Reinforcement Learning (RL) algorithms.
A PF-constrained and an unconstrained parameterization
of an impedance controller are compared before and after
RL applied to the bipedal walking problem. These control
methods are compared for three cases: the reference case
of the simplest walking model (SWM), the slope-modified
case of the SWM on flat ground, and the mass-modified
case, of the SWM with modified foot mass on flat ground.

This paper is organized as follows: In Section 2, we describe
the parameter optimization method for deriving an initial
impedance control policy for an unconstrained and a PF-
constrained parameterization. In Section 3, we describe a
policy search reinforcement learning algorithm that uses
the control policies defined in Section 2 as an initial guess.
In Section 4 we describe how this method can be applied
to the LC walking problem. In sections 5, we present
our evaluation protocol for comparing the unconstrained
and PF-constrained impedance control for the bipedal
walking. In Section 6, we present our results followed by
our discussion in Section 7. Finally, in Section 8 we present
our conclusions and suggestions for future work.

2. IMPEDANCE CONTROL INITIALIZATION

As opposed to conventional set-point control approaches
that directly control system variables such as position and
force, impedance control attempts to enforce a dynamic
relation between these variables (Hogan (1984)). In this
section, an open-loop impedance controller is derived for
a fully actuated robot with n Degrees Of Freedom (DOF)
using least squares optimization. The controller is open-
loop in that it does not use feedback to determine if the
output matches a desired value. We assume an accurate
model of the robot as well as the ability to measure
the position and torque at each joint as well as full
collocated actuation. Each configuration of the robot can
be described by a unique vector q = [q1, q2, ..., qn]T where
qn, with index i = 1...n, are the generalized coordinates.

If a desired trajectory, x =
(
qTd , q̇

T
d , q̈

T
d

)T
, is known,

the idealistic control torques, τ 0, required to achieve this
trajectory can be found using inverse dynamics. A function
to approximate the torques applied to the system as a
function of the robot’s configuration, τ (q) ∈ Rn, can be
found by formulating the least squares problem

(
τ 0,k(xk)− τ (qk)

)2

−→ min (1)

where τ 0,k(xk), k = 1...S, is a set of training data with
S samples and τ (qk) can be approximated as normal-
ized radial basis functions (RBF) G(q), parameterized by
weighting vector w such that

τ k = G(qk)w (2)

The choice of G(q) will be discussed the the following
subsections.

Defining vector b = (τ0,1...τ0,S) and matrix A =(
G(q1)...G(qS)

)
, the least squares estimate of w, denoted

ŵ can be formulated as the minimization problem

min
ŵ
‖b−Aŵ‖2Q (3)

which is dependent on the number of training samples,
S. The symmetric positive definite weighting matrix Q
contains weights that reflect the importance of certain
joints or training samples. The parameter vector w can
be found using the pseudoinverse. The solution can also
be found recursively if there is a large amount of training
data. The procedure for recursive least squares given by
Papageorgiou (2012) was modified to include weighting
of various parameters such as training data, joints, and
torque magnitude.

2.1 Unconstrained Parameterization

The vector function τ (q) can be defined in terms of
its components τi(q), i = 1...n, where n is the number
of degrees of freedom, and parameterized as normalized
radial basis functions of the form

τi(q) =

∑N
j=1 wi,jfj [rj(q)]
∑N
j=1 fj [rj(q)]

= g(q)Twi (4)

where N is the number of basis functions, wi,j is the jth

parameter of the ith weighting vector, fj is an RBF, rj is
a radius function and g(q) is a vector function. For the
unconstrained case g(q) is used as G(q) in Equation 2.

Radius functions ri are scalar functions of the distance
vector δi and scaling factor s which defines the size of the
radial basis function:

rj(q) = s ‖δj‖ . (5)

δj describes the distance from the center point cj of the
jth RBF to the joint configurations q:

δj(q) = q − cj . (6)

For the RBF, fj , we choose to use compactly supported
radial basis functions which allow for the use of a minimal
number of center points cj in the neighborhood of the
robot’s position to sufficiently compute the function value
(Vallery et al. (2009a)). This reduces the computational
resources needed during operation.

8 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

2.2 Potential Field-constrained Parameterization

Function τ (q) can be constrained to describe a potential
field by enforcing that its work is zero for any closed-path
trajectory. This implies the control torques are a function
of the joint variables q and can be defined as the negative
gradient of a potential function ψ(q) with respect to q:

τ (q) = −∇qψ(q). (7)

This is similar to the method of Generalized Elasticities
presented in Vallery et al. (2009a) and Vallery et al.
(2009b).

Similar to Equation 4, potential function ψ(q) can be
parameterized as normalized radial basis functions (RBF)
of the form

ψ(q) =

∑N
j=1 wjfj [rj(q)]
∑N
j=1 fj [rj(q)]

= g(q)Tw. (8)

Unlike the unconstrained parameterization, which requires
a unique weighting vector wi for each degree of freedom,
for the PF-constrained parameterization, the torques can
be formulated as the gradient of the potential shown in
Equation (7). This can be estimated as the transposed
Jacobian of g(q):

τ (q) = −
(
∂g(q)

∂q

)T
w. (9)

where G(q) = −
(
∂g(q)
∂q

)T
.

3. POLICY SEARCH REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a machine learning
method which attempts to find a control policy, π(u|x,w),
which maps states x to actions u. For policy search algo-
rithms, the policy is parameterized by a weighting vector
w. The policy is analogous to the impedance control laws
derived in the previous section where generalized coordi-
nates q are states and control torques τ are actions.

3.1 Exploration Strategy

The policy space is explored by randomly perturbing the
weighting vector w. Batch exploration is performed where
the policy is independently perturbed from the initial
policy a set number of times. The perturbed policies are
then evaluated and updated according to the strategies in
the following sections.

3.2 Evaluation Strategy

The performance of the policy is numerically evaluated by
computing the expected return J , which is a sum of the
expected reward R. Based on the expected return J the
policy is updated with the objective to find a policy which
maximizes the expected return J . The policy evaluation
strategy determines how to evaluate the performance of an
executed policy by using a reward function, R(x,u). For a
finite-horizon model, this corresponds to maximizing the
expected reward for the horizon H over h steps. The series

of states and actions over H steps is called an episode. The
expected return is calculated

J = E

{
H∑

h=0

Rh

}
. (10)

Episode-based policy evaluation uses the entire episode to
assess the quality of the policy used directly (Deisenroth
et al. (2011)). The episode-based evaluation strategy is
summarized in Algorithm 1.

Algorithm 1 Episode-Based Evaluation for finite-horizon
model

Generate episode using policy π
for h = 1 to H do

Evaluate: Assess step h assigning reward Rh
end for
Compute return J =

∑H
h=0Rh

3.3 Update Strategy

The policy is updated based on the performance of the
previous policy or set of policies. Policy search methods
optimize around an initial policy π(u|x,w0). The pol-
icy is iteratively updated using an update strategy that
computes changes in the policy parameter in a way that
increases the expected return.

Several update strategies for episode-based policy search
have been developed. One method developed in Kober and
Peters (2011) specifically for motor primitives in robotics
is Expectation Maximization Policy learning by Weighted
Exploration with the Returns (PoWER). The iterative
policy search method with episode-based evaluation is
summarized in Algorithm 2.

Algorithm 2 Policy Search using Expectation Maximiza-
tion PoWER

Initialize: Generate initial episode using policy π0

parameterized by w0. Compute return J0.
repeat

Explore: Perform i = 1 : N episodes using
perturbed policy parameters wi = wi−1 + εi with
εi ∼ N (0, σ2)

For each episode compute return Ji
Reweight: Compute importance weights, keep

10 high-importance episodes, discard low-importance
episodes.

Update: Compute updated policy

wk+1 = wk +

〈∑10
i Ji

〉−1〈∑10
i εiJi

〉

until Policy converge

4. APPLICATION TO LC WALKING

4.1 Simplest Walking Model

The simplest walking model (SWM) developed in Garcia
et al. (1998) is often used as a tool to study the paradigm
of Bipedal Limit-Cycle walking and is detailed in the
following sections. A diagram of the SWM is shown in
Figure 1.

9

Master of Science Thesis Denise Feirstein - 4325842

mh

mf mf

g
L

φ θ

γ
ex

ey

Fig. 1. Diagram of the Simplest Walking Model which
consists of two massless links, point mass mh at the
hip and mf at each foot walking on ground of slope
γ. The generalized coordinates θ and φ are the angle
of the stance leg perpendicular to the slope and the
inter-leg (or hip) angle respectively.

The model consists of two massless rigid links of length L
connected at the hip by a frictionless hinge. The mass is
distributed over three point masses at the hip and feet such
that the hip mass mh is much larger than the foot mass
mf. The model is situated on a slope of angle γ and acts
only under the force of gravity with acceleration constant
g. The configuration of the model is given by the ankle
angle θ and hip angle φ. The generalized coordinates are
q = (xc, yc, θ, φ)T where the subscripts “c” denotes the
contact point of the stance foot with the ground. The
model is actuated at the ankle and hip.

4.2 Inverse dynamics

A vector of the global coordinates of the point masses
is p = (xst, yst, xhip, yhip, xsw, ysw)T where subscripts “st”
and “sw” denote the stance leg and swing leg respectively
and subscript “hip” denotes the hip. The generalized
coordinates can be transformed to Cartesian positions
using transfer function p = F (q). The equations of motion
can then be found using the virtual power equation

δṗT [f −Mp̈] = 0. (11)

where M is the global mass matrix defined
M =Diag(mf,mf,mh,mh,mf,mf). The resulting equa-
tions of motion are

[FT,qMF,q]q̈ = FT,q[fg −MF,qqq̇q̇] +Q (12)

where the subscript comma operator followed by q denotes
partial derivative by q, and fg are the applied forces due
to gravity given

fg = M[sin γ,− cos γ, sin γ,− cos γ, sin γ,− cos γ]T (13)

and Q = (Qxc
, Qyc , Qθ, Qφ)T are the generalized forces.

For unactuated cases, Qθ and Qφ both equal zero. The
contact forces at the stance foot Qxc

and Qyc are only
valid for Qyc > 0. In this case Q is known and q̈ can be
found using the ordinary differential equation

q̈ =
FT,q[fg −MF,qqq̇q̇] +Q

[FT,qMF,q]
. (14)

The unactuated model exhibits an LC gait for a limited
set of combinations of initial conditions and slopes, called
the basin of attraction. In the case we would like to
deviate from the original basin of attraction (for example

by modifying the slope and/or model mass) while still
maintaining an LC gait, idealistic actuator torques can
be derived using inverse dynamics of the known LC joint
trajectories to find the generalized forces. Rearranging
Equation 12 and replacing M and fg with Mmod and
fg,mod respectively, gives the inverse dynamics equation

Q0 =[FT,qMmodF,q]q̈d

− FT,q[fg,mod −MmodF,qqq̇dq̇d]
(15)

where training data (q̇d, q̈d) is required, fg,mod corre-
sponds to the applied forces from the modified slope and
Mmod corresponds to the modified global mass matrix.
From this point forward τ 0 = [Qθ,0, Qφ,0]T will be used to
denote the generalized forces at the ankle and hip joints
corresponding to the idealistic applied motor torques.

The training data was found by first, scanning the initial
conditions (q, q̇) for cases in which the SWM converges
to an LC and then the associated accelerations q̈ were
found using Equation 14. The resulting training data

can represented by the vector x =
(
qTd , q̇

T
d , q̈

T
d

)T
=

(
θ, φ, θ̇, φ̇, θ̈, φ̈

)T
.

For scanning the initial conditions, the ankle angle was
varied between 0.1 and 0.2 rad with a step size of 0.005
rad, and the initial hip angle was set to twice that of the
ankle so the model initializes in double support phase. The
initial ankle angular velocity was varied between −0.68
and −0.38 rad/s with a step size of 0.005 rad/s, and the
initial hip angular velocity was set to 0 rad/s. The result
is shown in Figure 2.

3 (in rad)
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

?
(i
n
ra
d
)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Sample joint trjectories of SWM for basin of attraction

Basin of Attraction

Stable Limit Cycle

Fig. 2. Joint trajectories of the basin of attraction for the
simple walking model with γ = 0.004 rad, mh = 1 kg,
mf = 0.001 kg, L = 1 m, and g = 10 m/s2

The torques τ 0 found from training data x can be used
to solve the least-squares problem in Equation (3) using
the recursive least-squares method described in Section 2
resulting in impedance control laws of the form τ (q).

10 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

4.3 Reinforcement Learning

The resulting impedance control laws τ (q) parameterized
by vector w are specific to the simplest walking model case
and will likely not be effective if the model is modified
or more degrees of freedom are added. If this is the case
τ (q) parameterized by vector w0 can be used as the
initial policy for policy search RL. The policy search with
episode-based evaluation strategy described in Section 3
can be used where one episode is H steps of the biped.
For a biped robot, the state transitions from the previous
state x to the next state x′ caused by actions u can be
modeled by solving the equations of motion (14) using

iterative methods where x = (qT , q̇T)T are the states
and the generalized forces Qθ, Qφ are the actions u.

To evaluate the quality of parameter vector wk, the return
for each episode is calculated

Jk =

H∑

h=0

Rh. (16)

The reward function used for each step is

Rh(x,u) = +Rstep −R∆

(
||∆θ||+ ||∆θ̇||

)

−Rt||th − t0|| −Rτ ||τ ||
(17)

where ∆θ = θh − θh−1, and ∆θ̇ = θ̇h − θ̇h−1, and Rstep,
R∆, Rt and Rτ are constants. The first term of the reward
function is given as a reward for successfully completing a
step. The second term penalizes the change in angle and
angular velocity of the stance leg at the beginning of each
step. This is to encourage a limit-cycle is reached where
each step is the same. The third term penalized the change
in time of step h from the time of the reference LC step
t0. The fourth term penalizes the magnitude of the control
torques to minimize the energy added to the system.

5. EVALUATION PROTOCOL

5.1 Implementation

Simulations were performed in MATLAB to assess the
impedance controllers described in the previous section.
The simulations used the ODE45 integration algorithm
with the following settings: absolute tolerance = 10−6,
relative tolerance = 10−3 and initial integration-step size
∆t = 0.02 s. In the case of an “odezero (internal error)” the
ODE45 settings were temporarily set to: absolute tolerance
= 10−8, relative tolerance = 10−5. The event detection
was used to determine when a step occurs using the step
condition: θ − φ/2 = 0 and θ̇ < 0.

The impedance control laws were implemented on a fully-
actuated simple walking model for the three cases: the
reference case of the simplest walking model (SWM) on a
slope, the slope-modified case of the SWM on flat ground,
and the mass-modified case, of the SWM with modified
foot mass on flat ground. For all cases the leg length, hip
mass and gravity remained constant at L = 1 m, mh = 1
kg and g = 10 m/s2 respectively.

For the least squares optimization, 50 RBFs were used.
The center locations were determined using a grid step
size of 0.05 rad for the ankle angle and 0.1 rad for the hip

angle in the area of the ideal trajectory of the SWM as
shown in Figure 3.

3 (in rad)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

?
(i
n
ra
d
)

-0.6

-0.4

-0.2

0

0.2

0.4

RBF Locations

Ideal Trajectory

RBF support base

RBF center

Fig. 3. RBF center locations and support base of 10
degrees.

For the policy search RL, a horizon of H = 10 was used
corresponding to 10 steps of the robot. For the exploration
strategy, a batch size of 100 iterations was used. For the
reward function the constants were set to: Rstep = 1, R∆ =
10, Rt = 1 and Rτ = 5. The time of the reference LC step
was t0 = 1.2180 s. A Gaussian exploration ε ∼ N (0, σ2)
was used which was decrease linearly over episodes.

5.2 Experiment Setup

Initial unconstrained and PF-constrained impedance con-
trollers were found using inverse dynamics for each of the
three cases described below:

Reference case: For the reference case a slope of γ =
0.004 rad and foot mass mf = 0.001 kg was used.

Slope-modified case: For the slope-modified case a slope
of γ = 0 rad and foot mass mf = 0.001 kg was used.

Mass-modified case: For the modified-mass case, a foot
mass of mf = 0.01 kg was used. This is 10 times the value
of the reference case. A slope of γ = 0 rad was used.

For the Slope and Mass-modified cases, RL was used to
attempt to improve the policy for both the unconstrained
and the PF-constrained parameterizations. For the ref-
erence case, the performance of the controllers can not
be improved further using RL based on the evaluation
strategy since the control torques cannot decrease further.

5.3 Benchmarking Criteria

The unconstrained and PF-constrained impedance con-
trollers were compared for each of the three cases based
on the following benchmarking criteria:

11

Master of Science Thesis Denise Feirstein - 4325842

Work and Energy: The energy of the LC of the ideal
SWM (unactuated and on a slope) is bounded by the po-
tential field of gravity. The energy bound can be measured
as the maximum energy, E of the LC, defined E = V + T
where V is the potential energy and T is the kinetic energy.
For the LC of the ideal SWM, the total energy is constant
at 10.0108 J. At each step kinetic energy is dissipated
at impact and an equivalent amount of potential energy
is added by the slope. The change in kinetic energy at
the end of the step can be seen in Figure 4. The energy
added/dissipated at each step is equivalent to 0.0166 J.

9.85

9.9

9.95

10

Energy for two LC step of the
ideal SWM on a slope (. = 0:004 rad)

V
(i
n

J
)

0

0.05

0.1

0.15

T
(i
n

J
)

time (in s)

0 0.5 1 1.5 2
10.005

10.01

10.015

E
(i
n

J
)

Fig. 4. Energy of the SWM on a slope of γ = 0.004 rad.
The total energy is the sum of the potential (V) and
kinetic (T) energy.

Energy consumption can be measured for the actuated
model as the work done by the actuators:

W =

∫ q1

q0

τdθ (18)

where q0 is the configuration at the beginning of the step
and q1 is the configuration at the end of the step.

Robustness: The robustness of an LC gait can be mea-
sured by its velocity disturbance rejection. An angular
velocity disturbance is introduced to the stance leg at the
beginning of the first step and the maximum disturbance
that can be applied without causing the walker to fall is
used as a measure for robustness.

RL Performance: The performance of the RL is assessed
by plotting the mean performance over the episodes, for
several trials, and observing how many episodes it takes
to level off.

6. RESULTS

6.1 Reference case

The trajectory phase plots for the Unconstrained and PF-
constrained policies derived using inverse dynamics for
the reference case are shown in Figures 5 (a) and (b)
respectively. The control torque and total energy for the
Unconstrained and PF-constrained policy derived using

inverse dynamics for the reference case shown in Figure
6 (a) and (b) respectively.

3 (in rad)

-0.2 0 0.2

?
(i
n

ra
d
)

-0.5

0

0.5
(a) Unconstrained

3 (in rad)

-0.2 0 0.2

(b) PF-constrained

Reference Case

Control Torques

Control torques

Trajectory

Ideal Trajectory

PF

Fig. 5. Trajectory phase plot of the (a) Unconstrained and
(b) PF-constrained policies for the Reference Case.
The control policies are represented by a vector field
and for the PF-constrained policy the contour lines of
the potential field are shown.

-1

0

1
(a) Unconstrained

= 3
(i
n

N
m

)

(b) PF-constrained
Reference Case

-1

0

1

= ?
(i
n

N
m

)

time (in s)

0 0.5 1
10.005

10.01

10.015

E
(i
n

J
)

time (in s)

0 0.5 1

Fig. 6. Control torques and energy of one LC step of the
(a) Unconstrained and (b) PF-constrained policies for
the Reference Case.

The benchmarking criteria for the energy, work and ro-
bustness of the reference case are specified Table 1.

6.2 Slope-modified Case

Initialization The trajectory phase plots for the initial
Unconstrained and PF-constrained policies for the Slope-
modified case are shown in Figures 7 (a) and (b) re-
spectively. The control torques and total energy for the
initial Unconstrained and PF-constrained policies for the
Slope-modified case are shown in Figures 8 (a) and (b)
respectively.

12 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

3 (in rad)

-0.2 0 0.2

?
(i
n
ra
d
)

-0.5

0

0.5
(a) Unconstrained

3 (in rad)

-0.2 0 0.2

(b) PF-constrained

Slope-modi-ed Case after Initialization

Control Torques

Control torques

Trajectory

Ideal Trajectory

PF

Fig. 7. Trajectory phase plot of the initial (a) Uncon-
strained and (b) PF-constrained policies for the Slope-
modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.

0.0392
0.0394
0.0396
0.0398

0.04

(a) Unconstrained

= 3
(i

n
N

m
)

(b) PF-constrained
Slope-modi-ed Case after Initialization

#10!4

-5

0

5

= ?
(i

n
N

m
)

time (in s)

0 0.5 1
10

10.01

10.02

E
(i

n
J
)

time (in s)

0 0.5 1

Fig. 8. Control torques and energy of one LC step of
the initial (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case.

Reinforcement Learning Results The mean performance
of the RL for the Unconstrained and PF-constrained
controllers are shown in Figure 9. The resulting trajec-
tory phase plot for the learned Unconstrained and PF-
constrained policies for the Slope-modified case are shown
in Figures 10 (a) and (b) respectively. The resulting control
torques and energy for the learned Unconstrained and PF-
constrained policies for the Slope-modified case are shown
in Figures 11 (a) and (b) respectively.

Episode

0 500 1000 1500

A
v
er
a
g
e
R
et
u
rn

0

2

4

6

8

10
RL Performance for Slope-modi-ed Case

Unconstrained

PF-constrained

Fig. 9. Mean performance of the RL for the Unconstrained
and PF-constrained policies for the Slope-modified
case averaged over 10 runs with the error bars in-
dicating the standard deviation. For both policies the
exploration variance decreased linearly from 1e-6 to
1e-11 throughout the episodes.

3 (in rad)

-0.2 0 0.2

?
(i
n
ra
d
)

-0.5

0

0.5
(a) Unconstrained

3 (in rad)

-0.2 0 0.2

(b) PF-constrained

Slope-modi-ed Case after RL

Control Torques

PF

RL Trjectory

Control Torques

RL Trjectory

Ideal Trajectory

PF

Fig. 10. Trajectory phase plot of the learned (a) Uncon-
strained and (b) PF-constrained policies for the Slope-
modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.

0.035

0.04

(a) Unconstrained

= 3
(i
n
N
m
)

(b) PF-constrained
Slope-modi-ed Case after RL

#10!3

-6
-4
-2
0
2

= ?
(i
n
N
m
)

time (in s)

0 0.5 1
10

10.01

10.02

E
(i
n
J
)

time (in s)

0 0.5 1

Fig. 11. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case

The benchmarking criteria for the energy, work and ro-
bustness of the Slope-modified case are specified Table 1.

13

Master of Science Thesis Denise Feirstein - 4325842

6.3 Mass-modified Case

Initialization The trajectory phase plot for the initial
Unconstrained and PF-constrained policies for the Mass-
modified case is shown in Figure 12 (a) and (b) respec-
tively.

3 (in rad)

-0.2 0 0.2

?
(i

n
ra

d
)

-0.5

0

0.5
(a) Unconstrained

3 (in rad)

-0.2 0 0.2

(b) PF-constrained

Mass-modi-ed Case after Initialization

Control Torques

Control torques

Trajectory

Ideal Trajectory

PF

Fig. 12. Trajectory phase plot of the initial (a) Uncon-
strained and (b) PF-constrained policies for the Mass-
modified Case.The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.

It can be seen that neither policy leads to a stable limit
cycle so the corresponding control torque and energy plots
are not shown.

Reinforcement Learning The mean performance of the
RL for both the PF-constrained and unconstrained case
are shown in Figure 13. The resulting trajectory phase
plots for the learned Unconstrained and PF-constrained
policies for the Mass-modified case are shown in Figures 14
(a) and (b) respectively. The resulting control torques and
energy for the learned Unconstrained and PF-constrained
policies for the Mass-modified case are shown in Figures
15 (a) and (b) respectively.

Episode

0 500 1000 1500

A
v
er
a
g
e
R
et
u
rn

0

2

4

6

8

10
RL Performance for Mass-modi-ed Case

Unconstrained

PF-constrained

Fig. 13. RL mean performance of the Unconstrained and
PF-constrained policies for the Mass-modified case
averaged over 10 runs with the error bars indicating
the standard deviation. For the Unconstrained policy
the exploration variance decreased from 1e-5 to 1e-
10 and for the PF-constrained policy the variance
decreased from 1e-6 to 1e-10.

3 (in rad)

-0.2 0 0.2

?
(i

n
ra

d
)

-0.5

0

0.5
(a) Unconstrained

3 (in rad)

-0.2 0 0.2

(b) PF-constrained

Mass-modi-ed Case after RL

Control Torques

PF

RL Trjectory

Control Torques

RL Trjectory

Ideal Trajectory

PF

Fig. 14. Trajectory phase plot of the learned (a) Uncon-
strained and (b) PF-constrained policies for the Mass-
modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.

0

0.05

(a) Unconstrained

= 3
(i
n

N
m

)

(b) PF-constrained
Mass-modi-ed Case after RL

-0.02

0

0.02

= ?
(i
n

N
m

)

time (in s)

0 0.5 1
10

10.05

10.1

E
(i
n

J
)

time (in s)

0 0.5 1

Fig. 15. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Mass-modified Case.

The benchmarking criteria for the work, energy and ro-
bustness of the Mass-modified case are specified Table 1.

6.4 Results Summary

The benchmarking criteria for the energy bound, work and
robustness for each case are summarized in Table 1. The
energy bound was determined by the max energy displayed
in Figures 6, 8, 11 and 15. The work was calculated
using Equation 18. The robustness is given by the max
velocity disturbance rejection as described in Section 5.3.
The 7 indicates that an LC was not achieved so there was
no benchmarking criteria.

14 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

Table 1. Summary of Results

Case Parameter- Benchmarking Initial Learned

ization Criteria Policy Policy

R
e
fe

r
e
n
c
e

Energy 10.0107 -

bound (J)

Unconstrained Work (J) 0 -

Max velocity -0.05 -

disturbance (m/s)

Energy 10.0107 -

bound (J)

PF-constrained Work (J) 5e-14 -

Max velocity -0.05 -

disturbance (m/s)

S
lo

p
e
-m

o
d
ifi

e
d

Energy 10.0169 10.0258

bound (J)

Unconstrained Work (J) 1.5074 1.4877

Max velocity -0.05 -0.03

disturbance (m/s)

Energy 10.0168 10.0185

bound (J)

PF-constrained Work (J) 1.4948 1.3321

Max velocity -0.06 0

disturbance (m/s)

M
a
s
s
-m

o
d
ifi

e
d

Energy 7 10.2146

bound (J)

Unconstrained Work (J) 7 1.3110

Max velocity 7 -0.05

disturbance (m/s)

Energy 7 10.0618

bound (J)

PF-constrained Work (J) 7 1.4811

Max velocity 7 -0.02

disturbance (m/s)

7. DISCUSSION

For the reference case, it can be seen in the trajec-
tory phase plots, for both the unconstrained and PF-
constrained parameterization shown in Figure 5, that the
controlled trajectory perfectly follows the ideal trajectory.
It can be seen in the corresponding torque and energy plots
in Figure 6, that no actuator torques are generated and the
energy tracks that of the unactated ideal case, as shown
in Figure 4. It can be seen in Table 1 that both controllers
have the same energy bound and maximum disturbance
rejection as the unactuated ideal case. This serves as a
validation for both the impedance controllers derived using
inverse dynamics and least squares optimization.

For the slope-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
rameterization, allow the biped to achieve an LC gait on
a flat surface (γ = 0) as can be seen in the trajectory
phase plots in Figure 7. It can be seen in Table 1 that the
velocity disturbance rejections are comparable to the ideal
SWM, however, the energy bound is higher than the ideal
case for both controllers. The work done by the actuators
is similar for both controllers, however, it is almost 100
times the work done by gravity in the ideal case.

As can be seen in Table 1, RL of the initial impedance
controllers for the slope-modified case increases the energy
bound for both controllers, while decreasing the work done
by the actuators. RL also leads to decreased disturbance
rejection. As can be seen in Figures 9, the performance of
the unconstrained parameterization levels off before the
PF-constrained parameterization, indicating the uncon-
strained parameterization achieves a higher performance
with less episodes compared to the PF-constrained param-
eterization.

For the mass-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
rameterizations, do not allow the biped to achieve an LC
gait. This can be seen in the trajectory phase plots in
Figure 12. The impedance controllers derived from inverse
dynamics appear not to be able to compensate for the
modified dynamics of the model.

Howerver, RL of these initial policies allows the biped to
achieve an LC gait as shown in Figure 14. This validates
the use of RL for achieving an LC gait. As can be
seen in Table 1, for both controllers the energy bound
and work done is greater than the ideal case. While the
robustness of the unconstrained controller is comparable
to the ideal case, it is reduced for the PF-constrained
controller. As can be seen in Figures 13, the performance
of the unconstrained parameterization levels off before the
PF-constrained parameterization.

For all cases, the energy bound and work done by the
actuators was similar for both the PF-constrained and
unconstrained controllers. As the implementation of the
RL did not converge to a single optimal solution, the
variance in the resulting energy and work was too large
to draw an accurate comparison.

For all cases, there are no improvements to the robustness
of the limit-cycle against velocity disturbances. The reason
for this is that the episode (consisting of H steps of
the limit-cycle) is a black-box from the perspective of
the episode-based RL. Learning is based only on the
inputs and outputs of the episode, therefore any unknown
disturbances throughout the episode are not accounted
for, and consequently the robustness is not improved by
the RL. Exploring and learning throughout the episode
may be one way to improve the robustness. Additionally,
learning could take place in an unknown environment with
unknown disturbances.

The scope of these results is limited by the variables of the
simple walking model used. The only modifications tested
were the ratio of the hip mass to foot mass, and the slope
γ.

An interesting observation is the learned behavior of
“swing-leg retraction” seen in the learned policy for both
cases, as shown in Figures 10 and 14 . This is when
the swing leg retracts at the end of a step until it hits
the ground. It has been shown in Hobbelen and Wisse
(2008) that swing-leg retraction can improve disturbance
rejection.

8. CONCLUSION AND FUTURE WORK

In this work we successfully combined potential field
control and reinforcement learning to achieve limit-cycle
walking for a simple walking model. A limit-cycle was
achieved on flat ground, and for a modified hip to foot
mass ratio. The results demonstrate that a potential field
controller can not only “emulate” the effect of gravity on
the simple walking model, but also improve its perfor-
mance if reinforcement learning is applied. The potential
field-constrained controller provides safety by bounding
the energy while performing equally well compared to
an unconstrained controller. The performance of the RL
leveled off faster for the unconstrained case.

15

Master of Science Thesis Denise Feirstein - 4325842

Achieving a limit cycle gait on a SMW is trivial compared
to more complex models. In future work the method pre-
sented in this paper could be applied to higher degree of
freedom models. A strength of this method is the ability
to bound the energy of the controlled system. In future
work it could be explored how to enforce a desired energy
bound. Improved tuning of the RL exploration and eval-
uation strategy could lead to improved policies and more
conclusive results for the comparison of the unconstrained
and PF-constrained parameterizations. More advanced RL
methods could lead to potential fields that further improve
performance and even increase robustness.

REFERENCES

Asano, F. and Yamakita, M. (2001). Virtual gravity and
coupling control for robotic gait synthesis. Systems,
Man, and Cybernetics Part A: Systems and Humans,
IEEE Transactions on, 31(6), 737–745.

Deisenroth, M.P., Neumann, G., and Peters, J. (2011). A
Survey on Policy Search for Robotics. Foundations and
Trends in Robotics, 2, 1–142.

Garcia, M., Chatterjee, A., Ruina, A., and Coleman,
M. (1998). The Simplest Walking Model: Stability,
Complexity, and Scaling. Journal of Biomechanical
Engineering, 120(2), 281–288.

Hobbelen, D.G.E. and Wisse, M. (2007). Limit Cycle
Walking. In M. Hackel (ed.), Humanoid Robots: Human-
like Machines, June, pages 642–659. Vienna, Austria.

Hobbelen, D.G. and Wisse, M. (2008). Swing-leg retrac-
tion for limit cycle walkers improves disturbance rejec-
tion. Robotics, IEEE Transactions on, 24(2), 377–389.

Hogan, N. (1984). Impedance control: An approach to
manipulation. In American Control Conference, 1984,
304–313. IEEE.

Hyon, S.H. and Cheng, G. (2006). Passivity-based full-
body force control for humanoids and application to
dynamic balancing and locomotion. IEEE International
Conference on Intelligent Robots and Systems, 1, 4915–
4922.

Kober, J., Bagnell, J.A., and Peters, J. (2013). Reinforce-
ment learning in robotics: A survey. The International
Journal of Robotics Research, 32, 1238–1274.

Kober, J. and Peters, J. (2011). Policy search for motor
primitives in robotics. Machine Learning, 84(1-2), 171–
203.

Koditschek, D.E. (1987). Exact robot navigation by means
of potential functions: Some topological considerations.
In Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, volume 4, 1–6. IEEE.

McGeer, T. (1990). Passive Dynamic Walking. The
International Journal of Robotics Research, 9(2), 62–82.

Papageorgiou, M. (2012). Optimierung: statische, dy-
namische, stochastische Verfahren. Springer-Verlag.

Tedrake, R., Zhang, T., and Seung, H. (2004). Stochastic
policy gradient reinforcement learning on a simple 3D
biped. 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3.

Vallery, H., Duschau-Wicke, A., and Riener, R. (2009a).
Generalized elasticities improve patient-cooperative
control of rehabilitation robots. In Rehabilitation
Robotics, 2009. ICORR 2009. IEEE International Con-
ference on, 535–541. IEEE.

Vallery, H., Duschau-Wicke, A., and Riener, R. (2009b).
Optimized passive dynamics improve transparency of
haptic devices. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, 301–306.
IEEE.

16 Scientific Paper

Denise Feirstein - 4325842 Master of Science Thesis

Appendix A

Lyapunov Stability Theory

Lyapunov stability means that solutions starting “close" to the equilibrium (within a distance
δ) will remain “close" forever. Asymptotic stability means that solutions that start close to the
equilibrium will eventually converge to the equilibrium.

For a nonlinear dynamical system

ẋ = f(x(t)), x(0) = x0, (A-1)

where x(t) ∈ D ⊆ Rn denotes the state vector, D an open set containing the origin, and f : D → Rn
continuous on D. If f has an equilibrium at xe such that f(xe) = 0 then

1. This equilibrium is said to be Lyapunov stable, if, for every ε > 0, there exists a δ > 0 such
that, if ‖x(0)− xe‖ < δ, then for every t ≥ 0 we have‖x(t)− xe‖ < ε.

2. The equilibrium of the above system is said to be asymptotically stable if it is Lyapunov stable
and there exists δ > 0 such that if ‖x(0)− xe‖ < δ, then limt→∞ ‖x(t)− xe‖ = 0.

Lyapunov’s second method for stability, which is universally used, makes use of a Lyapunov func-
tion V (x) which is analogous to the potential function of classical dynamics. For a system having
a point of equilibrium at x = 0. Consider a function V (x) : Rn → R such that

V (x) ≥ 0 with equality if and only if x = 0 (positive definite)
V̇ (x) = d

dtV (x) ≤ 0 with equality not constrained to only x = 0 (negative semidefinite). For
asymptotic stability, V̇ (x) is required to be negative definite.

Then V (x) is called a Lyapunov function candidate and the system is Lyapunov stable.

Master of Science Thesis Denise Feirstein - 4325842

18 Lyapunov Stability Theory

Denise Feirstein - 4325842 Master of Science Thesis

Appendix B

Simplest Walking Model

A diagram of the SWM is shown in Figure D-1.

mh

mf mf

g

L

φ θ

γ

Figure B-1: Diagram of simplest walking model

The model consists of two massless rigid links of length L connected at the hip by a frictionless
hinge. The mass is distributed over three point masses at the hip and feet such that the hip mass
mh is much larger than the foot mass mf . The model is situated on a slope of angle γ and acts
only under the force of gravity g. The configuration of the model is given by the ankle angle θ
and hip angle φ. The equations of motion are derived using the same method presented in [19].

B-1 Equations of motion

The generalized coordinates are

q(t) =
(
xc(t), yc(t), θ(t), φ(t)

)T
(B-1)

where the subscripts “c" denotes the contact point of the stance foot with the ground. A vector
of the global coordinates of the point masses is

p = (xst, yst, xhip, yhip, xsw, ysw)T (B-2)

where subscripts “st" and “sw" denote the stance leg and swing leg respectively and subscript
“hip" denotes the hip.

Master of Science Thesis Denise Feirstein - 4325842

20 Simplest Walking Model

The global mass matrix M is defined

M = Diag(mf,mf,mh,mh,mf,mf). (B-3)

The applied forces are only given by gravity and are therefore defined

fg = M[sin γ,− cos γ, sin γ,− cos γ, sin γ,− cos γ]T . (B-4)

The generalized coordinates can be transformed to Cartesian positions using transfer function F :

p = F (q) =

xc
yc

xc − L sin(θ)
yc + L cos(θ)

xc − L sin(θ)− L sin(φ− θ)
yc + L cos(θ)− L cos(φ− θ)

 . (B-5)

The equations of motion can be found using the virtual power equation

δṗT [f −Mp̈] = 0 (B-6)

where δṗ are kinematically admissible virtual velocities.

Differentiating the transfer function gives

ẋ = F,qq̇, δẋ = F,qδq̇, and ẍ = F,qq̈ + F,qqq̇q̇ (B-7)

where the subscript comma operator followed by q denotes partial derivative by q.

The reduced equations of motion are derived by the virutal power balance by substituting Equa-
tions B-7 into the virtual power equation B-6 and adding the contributions, δq̇TQ, from the
generalized forces

Q = (Qxc
, Qyc

, Qθ, Qφ)T . (B-8)

to the left hand side. This yields

[FT,qMF,q]q̈ = FT,q[fg −MF,qqq̇q̇] +Q. (B-9)

This equation can be written in terms of the reduced mass matrix and force vector

M̄ = [FT,qMF,q], f̄ = FT,q[fg −MF,qqq̇q̇] +Q (B-10)

resulting in
M̄q̈ = f̄ . (B-11)

For the unactuated case, Qθ and Qφ both equal zero. The contact forces at the stance foot Qxc

and Qyc are only valid for Qyc > 0 given the contact condition (xc, yc) = (0, 0) which defines the
boundary condition. The equation of motion can be solved for the unknown accelerations and
contact forces.

Denise Feirstein - 4325842 Master of Science Thesis

21

B-2 Impact equations

When the swing leg makes contact with the ground, referred to as heel strike, it is assumed to
be a fully inelastic impact where no slip or bounce occurs. This corresponds to a coefficient of
restitution of e = 0. In the case of a fully elastic impact, e = 1.

It is also assumed that there is an instantaneous moment of double stance, during which the swing
leg becomes constrained and the the former stance leg becomes the swing leg. This is defined by
the contact function

C(q) =
[
xsw
ysw

]
=
[
xc − L sin(θ)− L sin(φ− θ)
yc + L cos(φ)− L cos(φ− θ)

]
. (B-12)

To account for the contact dynamics the generalized contact forces are introduced into the equa-
tions of motion using the Lagrangian multipliers λ corresponding to the contact velocities Ċ,
yielding

M̄q̈ +CT
,qλ = f̄ . (B-13)

Contact impulses, defined by

ρ = lim
t−→t+

∫ t+

t−
λdt (B-14)

can be introduced into the problem by integrating equations of motion B-13 over the time of
impact and taking the limit case, yielding

lim
t−→t+

∫ t+

t−
(M̄q̈ +CT

,qλ)dt = 0. (B-15)

The reduced force vector f̄ disappears as it does not contain impulsive forces. Because the mass
matrix remains constant during impact, the momentum equations become

M̄q̇+ +CT
,qρ = M̄q̇− (B-16)

where q̇+ and q̇− are the velocities right before and after impact respectively. Newton’s impact
law, defined

C,qq̇
+ = eC,qq̇

− (B-17)

can be used together with Equation B-16 to construct a set of linear equations[
M̄ CT

,q

C,q 0

] [
q̇+

ρ

]
=
[

M̄q̇−

−eC,qq̇
+

]
(B-18)

from which the velocities after impact and the contact impulses can be found.

A mapping is required to change the leg definitions and account for the reduction in velocity that
occurs at impact from step h to step h+1. At double stance the leg angles are related by θh = 2θa.
This results in the mapping

qh+1 =

−1 0 0 0
−2 0 0 0
0 cos(2θ) 0 0
0 cos(2θ)(1− cos(2θ) 0 0

 qn. (B-19)

Master of Science Thesis Denise Feirstein - 4325842

22 Simplest Walking Model

B-3 Energy Equations

The total energy of a mechanical system is the sum of the potential energy, V , and kinetic energy,
T :

E = V + T. (B-20)

For the simple walking model, the potential energy, consisting only of the potential energy due to
gravity, is equal to the object’s mass, m, times the acceleration of gravity times the vertical height
from a arbitrary zero position, h:

V = mgh. (B-21)

V = mfgL
(

cos(θ − γ) + cos(θ − γ)− cos(φ− θ + γ)
)

; (B-22)

Kinetic energy, T (q, q̇), is the energy of an object due to its motion, hence the dependency on q
and q̇. For the SWM described in Cartesian space, the kinetic energy can be found

T = 1
2

(
mh

(
ẋ2
h + ẏ2

h

)
+mf

(
ẋ2
f + ẏ2

f

))
(B-23)

where (xh, yh) is the coordinates of the hip and (xf , yf) are the coordinates of the swing foot and
the velocities are defined

ẋh = −L cos(θ)θ̇ (B-24)
ẏh = −L sin(θ)θ̇ (B-25)
ẋf = −L cos(θ)θ + L cos(φ− θ)θ̇ − L cos(φ− θ)φ̇ (B-26)
ẏf = −L sin(θ)θ̇ − L sin(φ− θ)θ̇ + L sin(φ− θ)φ̇. (B-27)

Denise Feirstein - 4325842 Master of Science Thesis

Appendix C

Least Squares Optimization

C-1 Weighted Recursive Least Squares Method

The procedure for recursive least squares given by [18] was modified to include weighing of various
parameters such as training data, joints, and torque magnitude.

The least squares estimate of w, denoted ŵ can be formulated as the minimization problem

min
ŵ
‖G(qd)ŵ − τ need‖2

Q (C-1)

which is dependent on the number of training samples. The symmetric positive definite weighting
matrix Q contains weights the reflect the importance of certain joints or training points

The recursive procedure for updating the estimate values of w is summarized as follows:

Initialization: The procedure is initialized with pseudo-training points and the parameter vector
is initialized as a zero vector. This dummy initialization provides a regularization set for the LS
problem.

Recursion: Collect the K measurements τ train,i with independent configuration vectors qtrain,i,
for i = 1, ...,K.

Compute with each measurement τ train,i+1 and associated model vector qtrain,i+1 the updated
estimate value ŵi+1 using the recursive update:

hk =
ΠkG(qk+1)

G(qk+1)ΠkG(qk+1)T + (qtrain,k+1)−1 (C-2)

ŵk+1 = ŵk + hk(τ need,k+1 −G(qk+1)ŵk) (C-3)
Πk+1 = Πk − hkG(qtrain,k+1)Πk. (C-4)

The final estimate of w is used to define the potential field control law

τfit(q) = −
(

dg(q)
dq

)T
w (C-5)

The recursive least-squares method is summarized in Algorithm 1.

Master of Science Thesis Denise Feirstein - 4325842

24 Least Squares Optimization

Algorithm 1 Recursive Least-Squares
Initialize: Generate pseudo-training points
λ0 = 0.1 min(qtrain,λ)
ŵ0 = 0
Π0 = 1

λkI
for i = 1 to i = n do
hk = ΠkG(qk+1)

G(qk+1)ΠkG(qk+1)T +(qtrain,k+1)−1

ŵk+1 = ŵk + hk(τ need,k+1 −G(qk+1)ŵk)
Πk+1 = Πk − hkG(qtrain,k+1)Πk

end for
w = ŵn

C-2 Radial Basis Functions

C-2-1 Compactly supported RBFs of minimal degree

The recursive least squares method is a multivariate interpolation using radial basis functions.
Compactly supported radial basis functions are used to minimize the number of centers required.
This results in a more efficient algorithm for computing and evaluating the interpolates. These
functions are of the form:

f(r) =
{
p(r) 0 ≤ r ≤ 1,
0 r > 1,

(C-6)

with a univariate polynomial

p(r) =
N∑
j=1

cjr
j (C-7)

where N is the degree of f , cN 6= 0 and r is the radius function defined

rk(q) = s ‖δ‖ (C-8)

where k = 1 to the number of samples and δ is the distance vector defined

δk = qk − c. (C-9)

A class of functions of this form is given in [22]. For f to be continuous, positive definite on Rd,
then f must have degree l ≥ bd/2c+ 1.

Since the simple walking model has two-degree of freedom (d = 2) the minimal degree of f must
be d = 3. The function must have minimal smoothness of C = 1 because a smooth first derivative
is required for the gradient of the radial basis functions to be used for interpolation. The function
of this class that fits these requirements is

f(r) = (1− r)4(4r + 1). (C-10)

Denise Feirstein - 4325842 Master of Science Thesis

25

C-2-2 Potential Function Derivation

The potential function can be estimated using normalized radial basis functions of the form

ψ(q) =
∑K
i=1 wifi(r)∑K
j=1 fj(r)

= f(r)w∑
f(r) (C-11)

where K is the number or radial basis functions.

The control law given by the gradient of the potential function

τfit(q) = −∇qψ(q) (C-12)

can be estimated as the transposed Jacobian

τfit(q) = −1(∑
f [r(q)]

)2

[
∂
∂q1

f [r(q)]
∑
f [r(q)]− f [r(q)]

∑
∂
∂q1

f [r(q)]
∂
∂q2

f [r(q)]
∑
f [r(q)]− f [r(q)]

∑
∂
∂q2

f [r(q)]

]
w. (C-13)

Using C-10 as the radial basis function, it follows that

∂

∂q1
f [r(q)] = −20(1− r(q))3 · r(q) · ∂

∂q1
r(q) (C-14)

∂

∂q2
f [r(q)] = −20(1− r(q))3 · r(q) · ∂

∂q2
r(q) (C-15)

where

∂

∂q1
r(q) = sδ1

‖δ‖
(C-16)

∂

∂q2
r(q) = sδ2

‖δ‖
. (C-17)

Substituting equations C-8 and C-14 - C-17 into C-13 yields:

τfit(q) = 20s2

(
∑
f [r(q)])2

(1− r(q))3δ1
∑
f [r(q)]− f [r(q)]

∑(
(1− r(q))3δ1

)
(1− r(q))3δ2

∑
f [r(q)]− f [r(q)]

∑(
(1− r(q))3δ2

)w. (C-18)

Master of Science Thesis Denise Feirstein - 4325842

26 Least Squares Optimization

Denise Feirstein - 4325842 Master of Science Thesis

Appendix D

MatLab Code

This appendix includes selected MatLab code to show the implementation of this work’s main
contribution.

Initialization	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Reinforcement
Learning	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Inverse
Dynamics

PF constrained
Parameterization

Unconstrained
Parameterization

Exploration
Strategy

x

EOM

(�, q)

�(q) �★ (q)

OR

OR
Evaluation

Strategy

Update
Strategy

Slope-modified
Case

Mass-modified
Case

Reference Case
(SWM)

	
	
	
	
	
	
	
	
	
	
	
	
	

Simulation

Figure D-1: Block diagram of methodology to show implementation

The outer block represents the main script given in Appendix D-1. The mcode relevant to the
implementation of the Initialization block is given in Appendix D-2. The mcode relevant to the
implementation of the Reinforcement Learning block is given in Appendix D-3.

Master of Science Thesis Denise Feirstein - 4325842

28 MatLab Code

D-1 Main script

The main script specifies the simulation, controller and data processing options and calls the
corresponding functions. The main script is shown in the code block below.

1 %%%
2 % Simplest Walking Model Simulation : %
3 % Least squares optimization + Reinforcment Learning Environment %
4 %%%
5 % Created by Denise Feirstein based on SWM_simulation . m by Joost van der
6 % Weijde . Generates initial impedance control (unconstrained and
7 % PF−constrained) for Simplest Walking Model (SWM) using inverse dyanamics
8 % and recursive least squares (LS) . Episode based policy−search
9 % Reinforcement Learning (RL) is used to improve the inital policy .

10
11 clc ; clear all ; clear global ; %close all ;
12
13 addpath (genpath (’ . / EOM ’)) ; addpath (genpath (’ . / Integration ’))
14 addpath (genpath (’ . / Data ’)) ; addpath (genpath (’ . / Data_processing ’))
15 addpath (genpath (’ . / RL ’)) ; addpath (genpath (’ . / Initialization ’)) ;
16 global par control_log RL_log xbasin
17
18 rng (’ default ’) % Initalize random number generator
19 %% Save Options
20 %−−−
21 par . save_workspace = 1 ; % Save Data
22 par . save_location = ’ . / Data/Results ’ ;
23 %−−−
24 %% Simulation options
25 %−−−
26 par . n_steps = 10 ; % number of consecutive steps
27 x0 = [0 . 1 5 3 4 0 .3068 −0.4942 −0 .0231] ; %initial conf .
28 par . x0 = x0 ;
29 par . ts = 0 . 0 1 ; % time step
30 par . t_SWM = 1 . 2 1 8 0 ; % LC step time of ideal SWM for given x0
31 par . suppress_comments = 1 ;
32 % Velcoity disturbance options :
33 par . disturbance . which = 1 ; % choose 1 for stance leg , 2 for swing leg
34 par . disturbance . step = 0 ;
35 par . disturbance . mag = −0.05; % max no control : −0.05
36 %−−−
37 % Set Model parameters :
38 par . modified_SWM = 1 ; % Modify Model
39 par . modified_SWM_mod0 = 1 ; % on flat ground (gamma=0)
40 par . modified_SWM_mod10 = 0 ; % on flat ground , increase leg mass x10
41 par . modified_SWM_mod100 = 0 ; % on flat ground , increase leg mass x100
42 SWM_parameters ;
43 %−−−
44 %% Controller Options
45 %−−−
46 par . controller_Unconstrained = 0 ;
47 par . controller_PFconstrained = 1 ;
48 %−−−
49 % Load controller parameters :
50 par . load_w0 = ’ PF_Mod0_50_w0 ’ ; % must match controller
51 par . n_RBF = 50 ; % specify number of RBFs
52 %−−−
53 % or derive controller parameters :

Denise Feirstein - 4325842 Master of Science Thesis

29

54 par . derive_controller = 0 ;
55 par . n_RBF = 50 ; % choose number of RBFs
56 % Select ideal training data for LS :
57 par . Load_SWM_basin_training = 1 ;
58 par . Load_SWM_training = 0 ;
59 par . Generate_SWM_basin_training = 0 ; % Generate basin of attraction
60 % Set RBF parameters :
61 par . weightings = 0 ;
62 par . support_base = 10 ;
63 RBF_parameters
64 %−−−
65 % check to prevent conflict
66 if par . controller_PFconstrained && par . controller_Unconstrained
67 fprintf (’ Controller conflict found ’) ; return
68 end
69 %−−−
70 % Reinforcement Learning
71 par . RL_PoWER = 0 ; % choose update strategy
72 % Set RL Parameters :
73 if par . RL_PoWER
74 par . prior_knowledge = 0 ; % if O set par . w0 to zeros
75 par . n_average = 1 ; % number of trials
76 par . n_outer = 5 ; % number of learning episodes
77 % Exploration Strategy
78 par . n_batch_iter = 100 ; % exploration batch size
79 par . variance_init = 1 . e−7; % intial exploration variance
80 par . variance_end = 1 . e−8; % end exploratio variance
81 % Evaluation Strategy :
82 % R = max (0 , R_step − R_change ∗(dangle^2+dvelocity ^2) . . .
83 % − R_fallen − R_tau∗RL_log . R_tau) ;
84 par . R_step = 1 ; % reward step
85 par . R_change = 10 ; % penalize change in step angle and velocity
86 par . R_tau_ank = 10 ; % penalize ankle torques
87 par . R_tau_hip = 100 ; % penalize hip torques
88 par . R_t = 1 ; % penalize change in LC step time for ideal
89 par . mimic_SWM = 1 ; % if 0 R_step = −R_step ∗10∗ sin (state (1))
90 end
91 %−−−
92 % Virtual Gravity controller
93 par . controller_vg = 0 ; % choose to implement virtual gravity control
94 if par . controller_vg
95 par . v_gamma = 0 . 0 0 0 ; % virutal slope
96 par . gamma = 0 ;
97 end
98 %−−−
99 run_name % Set Run Name for saving

100 %−−−
101 %% Plot options
102 %−−−
103 par . p_animation = 0 ; par . range = [1 2] ; % show animation for range of steps
104 par . p_RBFs = 0 ; % plot RBF center locations and support base
105 par . p_RL = 1 ; % plot RL performance
106 par . p_energy = 1 ; % plot energy and control
107 par . p_poincare = 0 ; % plot basin of attraction
108 par . p_vector_field = 1 ; % plot control as vector field
109 %−−−
110 %% Calculate equations symbolically
111 %−−−

Master of Science Thesis Denise Feirstein - 4325842

30 MatLab Code

112 % SWM_derivation_eom % (uncomment if necessary)
113 % SWM_derivation_ff
114 %−−−
115 %% Derive or load initial control policy
116 %−−−
117 T_need = [] ;
118 if par . derive_controller % derive controller parameters
119 w = initialization (par) ; % Least squares optimization
120 cd (par . save_location) ; % Save initial policy :
121 save ([par . run_name ’ _w0 ’] , ’ w ’) ; cd (’ . . ’) ; cd (’ . . ’)
122 par . w0 = w ; par . w = w ;
123 else % load controller parameters
124 cd (par . save_location)
125 load (par . load_w0) ; cd (’ . . ’) ; cd (’ . . ’)
126 par . w0 = w ; par . w = w ;
127 end
128 %−−−
129 %% Integration options
130 %−−−
131 par . unidirectional_contact = 1 ; par . detect_faceplant = 1 ; par . refine = 4 ;
132 par . options = odeset (’ AbsTol ’ , 1 e −6 , ’ RelTol ’ , 1 e −3 , ’ Events ’ , . . .
133 @event_leftcontact , ’ InitialStep ’ , par . ts , ’ Refine ’ , par . refine) ;
134 par . dt_I = 1 . 6 ; %[s] maximum integration time to event
135 %−−−
136 %% Simulate steps
137 %−−−
138 if par . RL_PoWER %&& par . controller_PFconstrained
139 RL_integration_sequence
140 elseif ~par . controller_PFconstrained && ~par . controller_Unconstrained
141 w = [] ; % If no control
142 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
143 else % If no RL :
144 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
145 end
146 %−−−
147 %% Process data
148 %−−−
149 if par . RL_PoWER
150 sD = sortrows (RL_log . D) ; % Verify best policy
151 w = sD (end , 2 : end) ’ ;
152 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
153 end
154
155 process_data (tlog , xlog , T_need , x0 , telog , par) ;
156 %−−−
157 %% Save data
158 %−−−
159 if par . save_workspace
160 cd (par . save_location)
161 save (par . run_name) ; cd (’ . . ’) ; cd (’ . . ’) ;%cd (’ . . ’)
162 end

Denise Feirstein - 4325842 Master of Science Thesis

31

D-2 Initialization functions

The initialization is implemented in initialization.m. This function performs inverse dynamics
and calls the least squares optimization through function
compact_NRBFs_recursive_Unconstrained_3order.m or
compact_NRBFs_recursive_PFconstrained_3order.m depending on the desired parameteriza-
tion. The latter two functions are based on code provided by Heike Vallery, which was adapted to
the 2 DoF case and translated from German to English.

D-2-1 initialization.m

1 function [w] = initialization (par)
2 % Created by Denise Feirstein
3 % This funciton generates/loads traing data then calls the recursive least
4 % squares optimization for the PF−constrained controller and outputs the
5 % corresponding parameter vector .
6
7 % Model Parameters
8 L = par . L ;
9 g = par . g ;

10 gamma = par . gamma ;
11 mf = par . mf ;
12 mh = par . mh ;
13 xa = 0 ;
14 ya = 0 ;
15
16 %% Generate/Load Training Data
17 %−−−
18 % Generate Training data
19 %−−−
20 if par . Load_SWM_training
21 load xlog_SWM % load ideal LC trjectory
22 traj = xlog_SWM ;
23 elseif par . Load_SWM_basin_training
24 load xbasin_final % load trajectory of basin of attraction
25 traj = xbasin ;
26 end
27 samples = length (traj) ; % determine number of samples in training data
28
29 %% Inverse dynamics
30 % Generate desired torques
31 %−−−
32 T_need = zeros (samples , 2) ;
33 if par . modified_SWM
34 for i_sample = 1 : samples
35 % Ideal trajectory
36 theta = traj (i_sample , 1) ; % ankle angle
37 phi = traj (i_sample , 2) ; % hip angle
38 theta_d = traj (i_sample , 3) ; % ankle angular velocity
39 phi_d = traj (i_sample , 4) ; % hip angular velocity
40 state = traj (i_sample , :) ’ ;
41 qdd = SWM_qdd (state , 0 , 0 , par . gamma_swm) ; % EOM
42 theta_dd = qdd (1) ; % ankle angular acceleration
43 phi_dd = qdd (2) ; % hip angular acceleration
44 traj (i_sample , 5) = qdd (1) ;
45 traj (i_sample , 6) = qdd (2) ;

Master of Science Thesis Denise Feirstein - 4325842

32 MatLab Code

46 % Compute Torques for modified model using inverse dynamics
47 [Torques] = SWM_Q_ff (L , g , gamma , mf , mh , xa , ya , . . .
48 [theta phi theta_d phi_d theta_dd phi_dd]) ;
49 T_need (i_sample , :) = Torques ’ ;
50 end
51 end
52
53 %% Implements Recursive LS
54 %−−−
55 % Desired Trajectory :
56 q1 = traj (: , 1) ; % ankle angle
57 q2 = traj (: , 2) ; % hip angle
58 % Desired Torques :
59 T_d1 = T_need (: , 1) ; % ankle torque
60 T_d2 = T_need (: , 2) ; % hip torque
61
62 % Calculate weights using weighted recursive LS
63 if par . controller_PFconstrained
64 [w] = compact_NRBFs_recursive_PFconstrained_3order (q1 , q2 , T_d1 , T_d2 , par) ;
65 elseif par . controller_Unconstrained
66 [w1 , w2] = compact_NRBFs_recursive_unconstrained_3order (q1 , q2 , T_d1 , T_d2 ,

par) ;
67 w = [w1 ; w2] ;
68 end
69 end

D-2-2 compact_NRBFs_recursive_Unconstrained_3order.m

1 function [w1 , w2] = compact_NRBFs_recursive_Unconstrained_3order (q1 , q2 , T_ges1
, T_ges2 , par)

2 % Created by Denise Feirstein based on
3 % compact_NRBFs_recursive . m by Heike Vallery .
4 % Solution for tau = G ∗ w is calculated recursively , were w = [w1 ; w2] .
5 % G is the normalized RBF .
6 % The packet length determines how many data points are pushed through .
7 % The higher the value , the faster , but memory problems can occur .
8 % A compactly supported RBF with minimal degree d=3 and smoothness C=1 is
9 % chosen from Wendeland (1995) .

10
11 %% RBF parameters :
12 c1_res = par . c1_res ; % center point coordinates in dimension 1
13 c2_res = par . c2_res ; % center point coordinates in dimension 2
14 radiusscale = par . radiusscale ; % determines size of RBF support
15 packet_length = par . packet_length ;
16 % For weighted recursive LS
17 weightings = par . weightings ;
18 if weightings
19 samples_p = par . samples_p ; % indicate sample p in training data
20 samples_e = par . samples_e ; % indicate sample e in training data
21 lambda_p = par . lambda_p ; % sample p weight
22 lambda_e = par . lambda_e ; % sample e weight
23 lambda_a = par . lambda_a ; % ankle weight
24 lambda_h = par . lambda_h ; % hip weight
25 lambda_w = par . lambda_w ; % control torque magnitude weight
26 end
27 n_q = par . n_q ; % DoF (number of generalize coordinates)

Denise Feirstein - 4325842 Master of Science Thesis

33

28 samples = length (q1) ; % number of training samples
29 support_num = length (c1_res) ; % number of RBFs
30 C = [c1_res , c2_res] ; % RBF center locations
31
32 %% build q−vector , with or without weights :
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 if weightings==1 % With various weights :
35 % 1) weighting samples p versus samples e :
36 weigh_p_e_vector=[ones (samples_p , 1) ∗lambda_p ;
37 ones (samples_e , 1) ∗lambda_e] ;
38 % 2) Condition for definiteness missing since only gradient information
39 % available . Arbitrarilly select Sum (w_i) = support number .
40 sumw = support_num ;
41 % 3) Give higher weight to lower torques : w = 1 for tau = 0 ,
42 % w = 1−lambda_w ∗ tau / taumax
43 q_vector = [lambda_a∗weigh_p_e_vector .∗(1 − lambda_w∗abs (T_ges1) . . .
44 . / max (abs (T_ges1))) ;
45 lambda_h∗weigh_p_e_vector .∗(1 − lambda_w∗abs (T_ges2) . . .
46 . / max (abs (T_ges2))) ;
47 1] ;
48 else % No weights
49 sumw = support_num ; % only need equation (2) for definitiveness
50 q_vector = ones (samples ∗2+1 ,1) ; % Initialize with equal weights
51 end
52
53 %% Recursive LS :
54 % Based on Gemaess Papageorgiou , " Optimierung " , S . 6 3 :
55 %−−−
56 % Initialization :
57 %−−−
58 % Generate pseudo−training points on support points that have the value 0 :
59 lambda_init = .1∗ min (q_vector) ;
60 C_n = eye (support_num) ;
61 Y_n = zeros (support_num , 1) ;
62 Q_n = lambda_init∗eye (support_num) ;
63 xhat_n = zeros (support_num , 1) ; % equivalent to pinvQ (C_n , Q_n) ∗Y_n ;
64 Pi_n = 1/ lambda_init∗eye (support_num) ;% equivalent to : inv (C_n ’ ∗ Q_n∗C_n) ;
65 % set : k = n . n in this case is 0 , since no training data initialized .
66 xdach_k_1 = xhat_n ;
67 Pi_k_1 = Pi_n ;
68 xdach_k_2 = xhat_n ;
69 Pi_k_2 = Pi_n ;
70 % To undo the influence of the initialization , make −lambda_init=q at end .
71
72 %% Recursion including data point calculation . :
73 %−−−
74 disp (’ start Data Loop ’)
75
76 for index_data = 1 : packet_length : samples
77 fprintf (’ Processing samples %d − %d of %d\n ’ , . . .
78 index_data , index_data+packet_length , samples) ;
79 % determine indicies of datapoints in new packet :
80 kdata = index_data : min (index_data+packet_length −1,samples) ;
81 act_packet_length = length (kdata) ;
82 %−−
83 % Calculate the distances of all the data points to all RBF centers :
84 %−−
85 delta = [] ; % intialize delta vector

Master of Science Thesis Denise Feirstein - 4325842

34 MatLab Code

86 radius = zeros (act_packet_length , support_num) ; % initialize radius
87 for sample = kdata
88 for centerpoint = 1 : support_num
89 delta = [q1 (sample) , q2 (sample)]−C (centerpoint , :) ;
90 radius (sample−index_data+1,centerpoint) = . . .
91 radiusscale∗norm (delta) ;
92 end
93 end
94 R_sat = min (radius , 1) ; % Saturate radius to size of radiusscale
95 %−−
96 % Unconstrained parameterization :
97 %−−
98 fR = (1−R_sat) . ^ 4 . ∗ (4 ∗ R_sat+1) ; % Compactly supported RBF
99 sum_fR = (repmat (sum (fR , 2) ,1 , support_num)) ; % sum across rows

100
101 % It then applies : tau = G ∗ w
102 G = fR . / sum_fR ; % normalized radial basis function
103 %−−
104 % prevent memory problems
105 clear R_sat fR sum_fR
106
107 % For Tau1 :
108 tau_1 = T_ges1 (kdata) ;
109 c_kplus1_1 = G ;
110 y_kplus1_1 = tau_1 ;
111 q_kplus1_1 = diag (q_vector ([kdata])) ;
112 % For Tau2 :
113 tau_2 = T_ges2 (kdata) ;
114 c_kplus1_2 = G ;
115 y_kplus1_2 = tau_2 ;
116 q_kplus1_2 = diag (q_vector ([kdata+samples])) ;
117
118 %−−
119 %Update LEAST SQUARES :
120 %−−
121 % For Tau1 :
122 [xdach_kplus1_1 , Pi_kplus1_1] = recursiveLS_update (xdach_k_1 , Pi_k_1 , . . .
123 y_kplus1_1 , q_kplus1_1 , c_kplus1_1) ;
124 xdach_k_1 = xdach_kplus1_1 ; % set next estimate
125 Pi_k_1 = Pi_kplus1_1 ;
126 % For Tau2 :
127 [xdach_kplus1_2 , Pi_kplus1_2] = recursiveLS_update (xdach_k_2 , Pi_k_2 , . . .
128 y_kplus1_2 , q_kplus1_2 , c_kplus1_2) ;
129 xdach_k_2 = xdach_kplus1_2 ; % set next estimate
130 Pi_k_2 = Pi_kplus1_2 ;
131 end
132 disp (’ stop loop ’)
133
134 %% Undo the effect of initialization by adding q = −lambda_init :
135 % If not sufficient training points , to produce a stable mesh ,
136 % uncomment lines :
137 % c_kplus1 = C_n ;
138 % y_kplus1 = Y_n ;
139 % q_kplus1 = −lambda_init∗diag (ones (anzahlstuetzen , 1)) ;
140 % % Last Update :
141 % [xdach_kplus1 , Pi_kplus1]=recursiveLS_update (xdach_k , Pi_k , y_kplus1 , . . .
142 % q_kplus1 , c_kplus1) ;
143

Denise Feirstein - 4325842 Master of Science Thesis

35

144 %% Solution :
145 w1 = xdach_kplus1_1 ;
146 w2 = xdach_kplus1_2 ;
147 end

D-2-3 compact_NRBFs_recursive_PFconstrained_3order.m

The function compact_NRBFs_recursive_PFconstrained_3order.m is similar to function
compact_NRBFs_recursive_Unconstrained_3order.m above with the exceptions of lines 95 though
116. Instead, they are given as:

1 %−−
2 % PF−constrained Parameterization :
3 %−−
4 fR = (1−R_sat) . ^ 4 . ∗ (4 ∗ R_sat+1) ; % minimal degree d=3, smoothness C=3
5 % Potential Funciton : PF = sum (w∗fR) /sum (fR)
6 % Gradient PF : nabla_PF = G∗w_vector , where
7 % G = 20∗ radiusscale^2 . / sum_fR .^2 . ∗ . . .
8 % [Delta_k_R13 . ∗ sum_fR − fR . ∗ repmat (sum (Delta_k_R13 , 2) ,1 , support_num)]
9 Delta_1 = repmat (q1 (kdata) ,1 , support_num) . . .

10 −repmat (c1_res ’ , act_packet_length , 1) ;
11 Delta_2 = repmat (q2 (kdata) ,1 , support_num) . . .
12 −repmat (c2_res ’ , act_packet_length , 1) ;
13 sum_fR = (repmat (sum (fR , 2) ,1 , support_num)) ; % sum across rows
14 R1_3 = (1−R_sat) . ^ 3 ;
15 Delta_1_R13 = Delta_1 . ∗ R1_3 ;
16 Delta_2_R13 = Delta_2 . ∗ R1_3 ;
17 radiusscale20sumfr2 = 20∗ radiusscale^2 . / sum_fR . ^ 2 ;
18 % Therefore :
19 G=[radiusscale20sumfr2 . ∗ (Delta_1_R13 . ∗ sum_fR − . . .
20 fR . ∗ repmat (sum (Delta_1_R13 , 2) ,1 , support_num)) ;
21 radiusscale20sumfr2 . ∗ (Delta_2_R13 . ∗ sum_fR − . . .
22 fR . ∗ repmat (sum (Delta_2_R13 , 2) ,1 , support_num))] ;
23 %−−

Master of Science Thesis Denise Feirstein - 4325842

36 MatLab Code

D-3 Reinforcement Learning script and functions

The RL is performed though script RL_integration_sequence.m. This script iteratively calls
the exploration strategy (Batch_exploration.m), update strategy (PoWER_update.m) and walk-
ing simulation integration (RL_integration_sequence.m). The evaluation strategy given in
Policy_Eval.m is called from the integration function. The MATLAB function of the PoWER
update algorithm is based on code from Jens Kober.

D-3-1 RL_integration_sequence.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % RL Integration Sequence %
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Created by Denise Feirstein
5
6 global par RL_log
7
8 % Initialize RL storage variables :
9 RL_log . D = [] ;

10 RL_log . mean_performance = [] ;
11
12 % Define RL Performance plot :
13 hf_performance = figure () ;
14 ha_performance = axis () ;
15 xlabel (’ episode (x 10) ’)
16 ylabel (’ average return ’)
17 title (’ Mean Performance ’)
18
19 for i_average = 1 : par . n_average ; % RL trials for calculating mean

performance
20 % set intial parameters :
21 if par . prior_knowledge
22 w = par . w0 ;
23 else
24 w = zeros (length (par . w0) , 1) ;
25 end
26 % if par . controller_PFconstrained
27 % w = par . w0 ;
28 % elseif par . controller_Unconstrained
29 % w = [par . w1_0 ; par . w2_0] ;
30 % end
31
32 % Run initial policy
33 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
34
35 % Evaluate initial policy
36 Return_0 = sum (R_log) ;
37 RL_log . performance = Return_0 ; % Log initial performance
38 RL_log . episode {1} . xlog = xlog ; % Log initial trajectory
39
40 for i_outer = 1 : par . n_outer % RL episodes
41 current_param = w ;
42
43 % Exploration strategy :
44 [s_Return , Return , param] = Batch_exploration (current_param , x0 , i_outer

, par) ;

Denise Feirstein - 4325842 Master of Science Thesis

37

45 s_Return = sortrows (s_Return) ;
46
47 % Updated strategy :
48 [current_param_plus1] = PoWER_Update (s_Return , Return , param ,

current_param , par) ;
49 w = current_param_plus1 ;
50
51 % Run updated policy without exploration
52 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
53 performance = sum (R_log) ; % Evaluate performance
54
55 % Log performance
56 RL_log . performance = [RL_log . performance ; performance] ;
57 RL_log . D = [RL_log . D ; performance w ’] ; % log parameters
58
59 % Plot performance
60 plot (RL_log . performance)
61 xlabel (’ episode ’)
62 ylabel (’ average return ’)
63 title (’ Mean Performance : PF−constrained Policy ’)
64 drawnow
65
66 % disp ([’ Outer loop ’ num2str (i_outer)])
67 end
68 % Log performance and final trajecgory of last trial :
69 RL_log . mean_performance = [RL_log . mean_performance RL_log . performance] ;
70 RL_log . episode{i_outer +1}. xlog = xlog ;
71 end
72
73 %% Save final policy parameters :
74 if par . save_workspace
75 cd (par . save_location)
76 save ([par . run_name ’ _w ’] , ’ w ’)
77 cd (’ . . ’) ; cd (’ . . ’)
78 end

D-3-2 Batch_exploration.m

1 function [s_Return , Return , param] = Batch_exploration (current_param , x0 ,
i_outer , par)

2 % Created by Denise Feirstein
3 % Perturn policy parameter vector independintly n_iter times
4
5 n_iter = par . n_batch_iter ;
6 n_RBF = numel (current_param) ; % number of basis functions
7 n_outer = par . n_outer ;
8
9 % set the exploration variance

10 variance_init = par . variance_init ; % initial varience
11 variance_end = par . variance_end ; % end varience
12 variance = variance_init + (variance_end−variance_init) ∗i_outer/n_outer ;
13 variance = variance . ∗ ones (n_RBF , 1) ;
14
15 % Initialize RL storage variables
16 Return = zeros (1 , n_iter+1) ;
17 param = zeros (n_RBF , n_iter+1) ;

Master of Science Thesis Denise Feirstein - 4325842

38 MatLab Code

18 s_Return = −1∗ones (n_iter+1, 2) ;
19 param (: , 1) = current_param ;
20
21 parfor iter = 1 : n_iter ;
22 % Explore around current parameter vector :
23 w = current_param + variance . ^ (. 5) . ∗ randn (n_RBF , 1) ;
24
25 param (: , iter) = w ; % log exploration parameter vectors
26 % Run exploraiton policy :
27 [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w) ;
28 Return (iter) = sum (R_log) ; % Calculate return of episode
29 s_Return (iter , :) = [Return (iter) iter] ; % store return and iteration
30 end
31 % s_Return = sortrows (s_Return) ; % sort exploration iterations by return
32 end

D-3-3 PoWER_update.m

1 function [current_param_plus1] = PoWER_Update (s_Return , Return , param ,
current_param , par)

2 % Created by Denise Feirstein based on PoWER Algorithm (Kober 2011)
3 % Inputs :
4 % s_Return = top 10 peturbed interations with highest return
5 % param = matrix of peterubed parameter vectors for all iterations
6 % current_param = last updated parameter vector
7
8 % update the policy parameters
9 param_nom = zeros (numel (current_param) , 1) ;

10 param_dnom = 0 ;
11
12 % Take the 10 best episodes as importance sampling
13 for i = 1:10
14 % get the episode number for the 10 best episodes
15 j = s_Return (end+1−i , 2) ;
16 % calculate the exploration with respect to the current parameters
17 temp_explore = (param (: , j)−current_param) ;
18 % weight the exploration by the return :
19 param_nom = param_nom + temp_explore∗Return (j) ;
20 param_dnom = param_dnom + Return (j) ; % sum returns
21 end
22 % Update (the normalization is taken care of by the division) :
23 param = current_param + param_nom . / (param_dnom +1.e−10) ;
24 current_param_plus1 = param ; % set the new mean of the parameters
25 end

D-3-4 RL_integration_sequence.m

1 function [R_log , xlog , tlog , xelog , telog] = integration_sequence_fun (par , x0 , w)
2 % Created by Denise Feirstein
3 % based on integration_sequence . m by Joost van der Weijde
4
5 clear fallen % clear logs
6 if par . controller_PFconstrained
7 par . w = w ;

Denise Feirstein - 4325842 Master of Science Thesis

39

8 else
9 par . w1 = w (1 : length (w) /2) ;

10 par . w2 = w (length (w) /2+1: end) ;
11 end
12
13 % Initialize logs
14 tlog = [] ; xlog = [] ;
15 telog = [] ; xelog = [] ;
16 par . t_step_log = 0 ; par . x_step_log = zeros (1 , size (par . x0 , 2)) ;
17 R_log = [] ;
18 x0_internal = par . x0 ;
19 xalog = x0 ;
20 t0 = 0 ; %[s] starting time
21
22 for ii = 1 : par . n_steps % simulate steps
23 par . n_s = ii ;
24 par . x0_curr = x0_internal (ii , :) ;
25
26 % disturbance at start of step
27 nr_disturbances = length (par . disturbance . step) ;
28 for ii_dist = 1 : nr_disturbances
29 if ~isempty (par . disturbance . step (ii == par . disturbance . step)) . . .
30 && par . disturbance . which == 1
31 x0_internal (ii , 3) = x0_internal (ii , 3) ∗(1−par . disturbance . mag) ;
32 elseif ~isempty (par . disturbance . step (ii==par . disturbance . step)) . . .
33 && par . disturbance . which == 4
34 x0_internal (ii , 4) = x0_internal (ii , 4) ∗(1−par . disturbance . mag) ;
35 end
36 end
37
38 % integrate single step :
39 [te , xe , t , x , xa , ie , fallen , par] = body_rightstep_fun (t0 , . . .
40 x0_internal (ii , :) , par) ;
41 % log state , time and events :
42 telog = [telog ; te] ;
43 xelog = [xelog ; xe] ;
44 tlog = [tlog ; t] ;
45 xlog = [xlog ; x] ;
46 t0 = te (end) ;
47 par . t_step_log = [par . t_step_log ; te (end)] ;
48 par . x_step_log = [par . x_step_log ; xe (end , :)] ;
49 % set next initial state :
50 x0_internal (ii +1 , :) = set_init_state (xa (: , end) . ’ , par) ;
51
52 if par . RL_PoWER % Evalute step
53 xalog = [xalog ; xa ’] ;
54 par . fallen = fallen ;
55 [R] = Policy_Eval (x , xalog , x0 , telog , ii , par) ;
56 R_log = [R_log ; R] ;
57 end
58
59 if fallen % check for fall
60 if ~par . suppress_comments
61 fprintf (’ Model has fallen . \ n ’) ;
62 end
63 par . fallen = 1 ;
64 par . range (2) = min (par . range (2) , ii+1) ; % adjust animation
65 break

Master of Science Thesis Denise Feirstein - 4325842

40 MatLab Code

66 else
67 par . fallen = 0 ;
68 end
69 end
70 end

D-3-5 Policy_Eval.m

1 function [R] = Policy_Eval (state , xa_log , x0 , telog , ii , par)
2 % Created by Denise Feirstein
3 % Evaluate policy using reward function
4
5 fallen = par . fallen ;
6 R_step = par . R_step ;
7 R_tau_hip = par . R_tau_hip ;
8 R_tau_ank = par . R_tau_ank ;
9 R_change = par . R_change ;

10 R_t = par . R_t ;
11
12 tstep = [telog (1) ; telog (2 : end)−telog (1 : end −1)] ;
13 dtstep = norm (par . t_SWM∗ones (length (tstep) , 1)−tstep) ;
14
15 R_fallen = 0 ;
16 % if fallen % (Uncomment to penalize fall)
17 % R_fallen = par . R_fallen ;
18 % end
19
20 if par . controller_PFconstrained
21 [T_hip , T_ank] = PFconstrained_controller (state , par) ;
22 elseif par . controller_Unconstrained
23 [T_hip , T_ank] = Unconstrained_controller (state , par) ;
24 end
25 Tau = sqrt (T_hip^2 + T_ank^2) ;
26 Tau_hip = sqrt (T_hip^2) ;
27 Tau_ank = sqrt (T_ank^2) ;
28
29 if par . mimic_SWM
30 % Calculate change in angle and angular velocity from SWM LC
31 dangle = xa_log (end , 1) − par . x0 (1) ;
32 dvelocity = xa_log (end , 3) − par . x0 (3) ;
33 par . R_change_implement = 0 ;
34 else
35 % Calculate change in angle and angular velocity from previous step
36 dangle = xa_log (end , 1) − xa_log (end −1 ,1) ;
37 dvelocity = xa_log (end , 3) − xa_log (end −1 ,3) ;
38 end
39
40 if par . RL_PoWER % PoWER update cannot handle negative rewards
41 R = max (0 , R_step − R_change ∗(dangle^2+dvelocity ^2) − R_t∗dtstep . . .
42 − R_fallen − R_tau_hip∗Tau_hip − R_tau_ank∗Tau_ank) ;
43 else
44 R = R_step − R_change ∗(dangle^2+dvelocity ^2) . . .
45 − R_fallen − R_tau∗Tau ;
46 end
47 end

Denise Feirstein - 4325842 Master of Science Thesis

Bibliography

[1] F. Asano and M. Yamakita. Virtual gravity and coupling control for robotic gait synthe-
sis. Systems, Man, and Cybernetics Part A: Systems and Humans, IEEE Transactions on,
31(6):737–745, 2001.

[2] F. Asano, M. Yamakita, N. Kamamichi, and Z. W. Luo. A novel gait generation for biped
walking robots based on mechanical energy constraint. IEEE Transactions on Robotics and
Automation, 20(3):565–573, 2004.

[3] K. R. Chevva. Practical challenges in the method of controlled Lagrangians. PhD thesis,
Virginia Polytechnic Institute and State University, 2005.

[4] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passive-
dynamic walkers. Science (New York, N.Y.), 307(5712):1082–1085, 2005.

[5] T. De Boer. Foot placement in robotic bipedal locomotion. TU Delft, Delft University of
Technology, 2012.

[6] V. Duindam, S. Stramigioli, and J. Scherpen. Passive compensation of nonlinear robot dy-
namics. Robotics and Automation, IEEE Transactions on, 20(3):480–488, 2004.

[7] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman. The Simplest Walking Model: Stability,
Complexity, and Scaling. Journal of Biomechanical Engineering, 120(2):281–288, 1998.

[8] A. Goswami, B. Thuilot, and B. Espiau. A Study of the Passive Gait of a Compass-Like Biped
Robot: Symmetry and Chaos. The International Journal of Robotics Research, 17(12):1282–
1301, 1998.

[9] D. Hobbelen, T. De Boer, and M. Wisse. System overview of bipedal robots Flame and
TUlip: Tailor-made for Limit Cycle Walking. 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2486–2491, 2008.

[10] D. G. E. Hobbelen and M. Wisse. Limit Cycle Walking. In M. Hackel, editor, Humanoid
Robots: Human-like Machines, number June, pages pages 642–659. Vienna, Austria, 2007.

[11] N. Hogan. Impedance control: An approach to manipulation. In American Control Confer-
ence, 1984, pages 304–313. IEEE, 1984.

[12] R. Katoh and M. Mori. Control method of biped locomotion giving asymptotic stability of
trajectory. Automatica, 20(4):405–414, 1984.

Master of Science Thesis Denise Feirstein - 4325842

42 BIBLIOGRAPHY

[13] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32:1238–1274, 2013.

[14] M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, and P.-Y. Oudeyer.
Poppy project: Open-source fabrication of 3d printed humanoid robot for science, education
and art. In Digital Intelligence 2014, page 6, 2014.

[15] T. McGeer. Passive Dynamic Walking. The International Journal of Robotics Research,
9(2):62–82, 1990.

[16] Y. Ogura, H. Aikawa, H.-o. Lim, and A. Takanishi. Development of a human-like walking
robot having two 7-dof legs and a 2-dof waist. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 1, pages 134–139. IEEE, 2004.

[17] R. Ortega, A. J. van der Schaft, I. Mareels, and B. Maschke. Putting energy back in control.
IEEE Control Systems Magazine, 21(2):18–33, 2001.

[18] M. Papageorgiou. Optimierung: statische, dynamische, stochastische Verfahren. Springer-
Verlag, 2012.

[19] A. Schwab and M. Wisse. Basin of attraction of the simplest walking model. In Proceedings
of the ASME design engineering technical conference, volume 6, pages 531–539, 2001.

[20] M. W. Spong. Passivity based control of the compass gait biped. Proc. of IFAC World
Congress, Beijing, China, pages 19–24, 1999.

[21] R. Tedrake, T. Zhang, and H. Seung. Stochastic policy gradient reinforcement learning on a
simple 3D biped. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 3, 2004.

[22] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial func-
tions of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995.

Denise Feirstein - 4325842 Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents

	Main Matter
	Introduction
	Background
	Bipedal Robots
	Potential Field Control
	Reinforcement Learning

	Objective
	Research Question
	Methodology
	Outline

	Scientific Paper
	Introduction
	Impedance Control Initialization
	Unconstrained Parameterization
	Potential Field-constrained Parameterization

	Policy Search Reinforcement Learning
	Exploration Strategy
	Evaluation Strategy
	Update Strategy

	Application to LC Walking
	Simplest Walking Model
	Inverse dynamics
	Reinforcement Learning

	Evaluation Protocol
	Implementation
	Experiment Setup
	Benchmarking Criteria

	Results
	Reference Case
	Slope-modified Case
	Mass-modified Case
	Results Summary

	Discussion
	Conclusion and Future Work
	References

	Appendices
	Lyapunov Stability Theory
	Simplest Walking Model
	Equations of motion
	Impact equations
	Energy Equations

	Least Squares Optimization
	Weighted Recursive Least Squares Method
	Radial Basis Functions
	Compactly supported RBFs of minimal degree
	Potential Function Derivation

	MatLab Code
	Main script
	Initialization functions
	initialization.m
	compact_NRBFs_recursive_Unconstrained_3order.m
	compact_NRBFs_recursive_PFconstrained_3order.m

	Reinforcement Learning script and functions
	RL_integration_sequence.m
	Batch_exploration.m
	PoWER_update.m
	RL_integration_sequence.m
	Policy_Eval.m

	Back Matter
	Bibliography

