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Abstract

To reduce food waste, it is important to know what
strawberries to prioritise for harvesting. Size is an
important quality attribute for strawberry. In or-
der to know the size, the depth of the strawberry
in the image must been known. To estimate the
depth, stereovision gets utilized using binocular im-
ages. Since classic stereovision methods are quite
inaccurate in predicting small areas in images, a
technique by [Mustafah et al., 2013] is used. Us-
ing given segments of the strawberries, the left and
right strawberry images will get matched. With the
matched strawberries, the disparity can be calcu-
lated and thus the depth. Using the depth, the size
can be estimated.

1 Introduction

The shape and size of strawberries are important factors that
influence the quality of strawberries [Vittori et al., 2018]. For
harvesting, it is important to know when strawberries are of
optimal quality. Harvesting strawberries at the wrong time
will increase food waste. We can reduce food waste by pre-
dicting the ripeness of the strawberry.

Currently, most current research uses color values to pre-
dict strawberry ripeness. [Brouwer et al., 2019] However,
shape and size are also important factors that can help indi-
cate quality.

To accurately predict the size of strawberries using photos,
the depth must be known. Stereo vision can give depth in-
formation based on binocular images [Campbell et al., 2018].
With this depth information, the size of objects can be pre-
dicted more accurately [Mustafah et al., 2013].

No research has yet done depth and size estimation in non
laboratory environments using binocular images. The aim of
this work is to test whether size estimation of strawberries
using binocular images is possible and how accurate it is.

To answer this question, the following sub-questions need
to be answered: How can the depth of the strawberry be es-
timated? How can we measure the size of the strawberries
themselves?

First, the methodology will be described. Then, an ex-
ploration of the available data will be done. After this, the
pre-processing of the data is explained. The depth and size
estimation is covered next, followed by the experiment setup
and results. Finally, the results are discussed, a conclusion is
given, and recommendations for future work are given.

2 Methodology

To measure an accurate size of the strawberries using photos,
the depth of the strawberries in the picture must be known.
Depth can be acquired from the binocular view created by
the camera and the near-infrared camera. Using the binocular
view, the depth can be estimated using Stereo Vision.
Passive stereo vision works by calculating the disparity by
matching the same points of the two images. However, to
achieve good accuracy, the textures must be well defined and

Figure 1: Classic Stereovision depth estimation on the binocular im-
ages given. Red indicates a lower depth, blue indicates a higher
depth

Figure 2: An example of the stereo image created by left the OCN
camera and right the RGB camera

unique. Since most pictures will not have this, the results will
be quite noisy. See figure 1.

To counteract this, a technique proposed by [Mustafah
et al., 2013] will be used. Only the depth of the strawber-
ries needs to be known. If the locations of the strawberries
are known, only those locations need to be matched together
from the left and right camera to get the disparity and thus the
depth of the strawberries [Mustafah et al., 2013].

3 Data exploration

Given research by Junhan Wen and Thomas Abeel, stereo im-
ages with detected strawberries are available. The stereo im-
age is formed by an RGB and an OCN camera, which are 10
centimeters apart. The use of an OCN camera is purely logis-
tical. This has no further benefit to the research itself. See the
example of the stereo images in figure 2. For both these im-
ages, the strawberries have been detected and their locations
are known. See figure 3. In total there are 55 strawberries of
which the size label is known and the corresponding left and
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Figure 3: An example of the detected segments given

right images have been found. However, more strawberries
are available without a size label.

4 Pre-processing of camera and segment data

Before the stereovision algorithm can be executed, the images
must first be pre-processed. This is done using the following
pipeline, also shown in Figure 4.

Camera Calibration The lens distortion is corrected by cal-
ibrating the camera. This is usually done by using a di-
rect linear transformation [Xu et al., 2011]. This pro-
cess has already been done for both the RGB and near-
infrared cameras at setup, so the distortion is minimal.

Correction Transform After the camera calibration, an er-
ror in height must still be corrected by a transform. Both
cameras must be aligned on the same height in order to
get good stereovision results. Thus, a transform is used
to correct for this.

Bounds analysis The bounds of the segments is needed to
constrain the stereovision algorithm based on real-life
constrains. In this step, based on the polygon informa-
tion of the segment, the minimal and maximum bounds
of the segment in the images gets calculated.

Polygon Area The area of the segment will be calculated on
the basis of the given polygon. This will be used as a
score to determine how many segments are alike.

UUID Assignment In order to keep track of all segments,
a unique id gets assigned to every segment. This way,
all segments in a pair of images have a unique id for
tracking purposes.

5 Depth and size estimation

To measure the size of the strawberry, the depth must be
known in order to obtain accurate measurements. Therefore,
the depth estimation will be done first. After this, the size can
be estimated. An overview of the algorithm as a whole can
be found in figure 5
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Figure 4: The pre-processing pipeline
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Figure 5: An overview of the depth and size estimation
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Figure 6: A blue print of the green house setup

5.1 Depth Estimation

After the pre-processing, the depth estimation will start.
Here, the goal is to measure the depth of all segments. To
do this, the segments of the left image must first be paired
to those of the right image. This is done in 3 steps: variable
constrains, cost analysis and Min-Cost Network Flow match-
ing. After this step, the disparity between the left and right
segments can be calculated to measure the depth of the straw-
berries.

Variable Constrains

Based on the green house setup given, segment matching
can be constrained by real-life constraints. First of all, all
segments that can be possible matches must be on the same
epipolar line. So only segments on the same horizontal line
can be a potential match. Further, in the setup, it is shown
that the maximum depth is no more than 103 cm and the min-
imum depth is 73 cm. Since there is 10 cm between both
cameras, the maximum and minimum disparities can be cal-
culated. Using this information, potential matches can only
be on the same horizontal line and must be offset between
the minimum and maximum disparity. These values can be
calculated using the green house setup shown in Figure 6. A
result of the variable constrains can be found in figure 7.

Matching Cost Function

After constraining potential matches, more similar segments
make better matches. To prefer matches that are more similar,
a cost function is chosen. It is important for this cost function
to be fast, as many potential matches must be compared. The
polygon area is a good function since it is quick and gives
meaningful data on how much the segments are similar. The
cost is calculated as the percentage of difference between the
segments.

cost = abs(area; — area,)/ W

(area; + area,) * 100
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Figure 7: Potential Matches. Red segments are strawberries from the
right camera. Blue segments are strawberries from the left camera.
A white line indicates a potential match after variable constrains

Min-Cost Network Flow

To match the segments as best as possible, the Min-Cost Net-
work Flow is used to make as many matches as possible with
the least total cost. Segment matching is a maximum bipar-
tite problem. A segment can only be matched with one other
segment of the other camera and is restricted by potential
matches.

However, some matches might be better than others. That
is why the minimum cost is also important, since this will give
us the most and best matches possible. As a cost function, the
polygon area is used.

This problem can be modeled in the Min-Cost Network
Flow in the following way:

First, a source and sink node is created. For the source and
sink, supply and demand will be set to the maximum pos-
sible matches that can be acquired. The maximum possible
matches that can be acquired is the minimum number of seg-
ments of both cameras.

After this, a node is made for all segments from the left
camera and connected to the source. The capacity of these
connections is 1, since a segment can only be matched once.
The same process is done for all segments from the right cam-
era, however these will be connected to the sink.

Now, for all potential matches between the left and right, an
edge is made with a capacity of 1, since a segment can only be
matched once. On this edge, a cost is added. This cost is the
count of pixels as discussed in Matching Cost Function 5.1.
However, if the cost is higher than 70%, the edge is removed,
as matches that are very different are not desirable. For an
overview, see Figure 8

Finally, the Min-Cost Network Flow is solved and returns
the most number of matches with the minimum amount of
cost.

Depth Measurement
Now that the segments have been matched, the depth can
be measured by the disparity between the left and right seg-
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Figure 8: An example network model for matching the left and right
segments

ments. The disparity is calculated by taking the center of both
segments and calculating the disparity in pixels. Using the
field of view and the image width in pixels of the camera, the
depth is calculated using the following formulas:

focal Pizel = (imageWidth = 0.5)/

tan(FOV % 0.5 x w/180) @

depth = baseline x focal Pixel /disparity 3)

Where in the current setup, the FOV is 41 degrees, the image
width in pixels is 4000 pixels and the baseline is 10 cm.

5.2 Size Estimation

After knowing the depth of each strawberry, we can estimate
its size. Sizing measurements are done using three categories:
tiny (< 25mm) , small (25 — 30 mm) and coarse (> 30 mm).
So, the exact size itself is not important. The strawberries
must only be categorized correctly in those categories. With
a known depth, the real world distance covered by one pixel
can be calculated. This is done using geometric similarity
and a calibration point. Based on the setup, it is known that
at 93 cm, the 4000 pixels cover 68.895 cm in real life. Using
these measurements, the distance per pixel can be calculated
for any depth.

constant = depth/length )]

lengthPer Pizel = (depth/constant)/imageWidth (5)

Now that the length per pixel is known, the number of pix-
els has to be measured. Since strawberries sometimes are
occluded from view, the longest width from both segments
is used. The hypothesis is that this measurement is accurate
enough to assign the right category to the strawberry.

6 Experimental Setup and Results

To measure whether the method works, some experiments
will be performed. Sadly, the only verification data that is

available is the sizing categories itself. Thus, the depth esti-
mation cannot be checked against absolute values. Instead,
the matching algorithm and the relative depth estimation will
be tested.

The algorithm gets tested on data from a real strawberry
farm. Here, the camera setup has been created and over the
course of a few months data have been collected. For 55
strawberries, we have the true size label data and both left
and right segments.

6.1 Segment Matching Accuracy

In order to get good depth estimation, the matching of the left
and right segments must be accurate. To test this, a human
will annotate which segments from the left and right camera
match with each other. Then, the algorithm will predict which
segments belong together. The accuracy will be determined
by the percentage of correctly matched segments. If a seg-
ment is not matched or is incorrectly matched, this is counted
as an incorrect match.

Of the 172 pairs, 150 pairs have been matched correctly.
This means that the pair matching algorithm has an accuracy
of 87%.

6.2 Relative Depth Accuracy

Since there is no absolute data on the depth is available, the
depth estimation will be tested using a ground truth of the
relative depth created by humans. This ground truth will
tell which strawberries are perceived to be closer than oth-
ers. Then the prediction of the depth estimate will be checked
against this. Every strawberry that has an incorrect relative
depth will be marked as an error. An incorrect relative depth
means that, the strawberry is wrongfully marked as in front or
behind another strawberry. An accuracy score will be given
on the basis of the percentage of correct matches.

Of the 173 segments reviewed of 11 images, 52 errors were
found in relative depth. This means the relative depth estima-
tion is 70% accurate.

6.3 Size Prediction Accuracy

Finally, the overall accuracy of the algorithm will be mea-
sured using the ground truth size labels. For 55 strawberries,
the size category is known. The algorithm will be run on the
segments and test whether it will give the correct size cate-
gory. On the basis of the number of correct category labels
given, an accuracy score is calculated as a percentage.

To see whether the depth estimation has a positive effect
on the results, the algorithm will also be run with a constant
depth of 900mm (an average depth for the strawberries) to see
whether the depth estimation improves the accuracy.

Running the result on 55 strawberries that have been given
a size category, 40 will be size labeled by the algorithm.
Some strawberries cannot be labeled because there are no
matching left and right segments for depth prediction. It
could be that this segment is missing or not visible on both
cameras. Some segments have been missing on one of the
two cameras causing the size estimation to fail. Other seg-
ments were not visible from either camera.
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Figure 9: A confusion matrix showing the predicted and actual val-
ues of the size labeling with a constant depth of 900mm
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Figure 10: A confusion matrix showing the predicted and actual
values of the size labeling using depth estimation

The baseline result with constant depth has matched 30 of
the 40 strawberries correctly. A confusion matrix of these
results can be found in figure 9.

Of the 40 strawberries that have been size-labeled, 30 have
received the correct label. A confusion matrix of these results
can be found in Figure 10.

7 Responsible Research

Based on the research topic, no ethical aspects are to be dis-
cussed. The research does not influence ethical values. The
research can easily be reproduced using the code and images
data from the TU Delft. However, as of now, it is not known
whether all data can be published.

8 Discussion

The results might not be really accurate, as only a few data
points were available to properly test the algorithm. This
could be improved by collecting more data to test on, such
as depth.

Furthermore, the data only consisted of one set of cameras
in a green house in The Netherlands. Differences in results
might occur when using other cameras or green houses.

Finally, the matching of pairs works well if all segments are
given correctly. Missing or wrong segments could decrease
the overall performance of this algorithm.

9 Conclusions

Based on the results, measuring the size of strawberries using
binocular photos is possible with an accuracy of 70% percent
if given a size label. 27% of the strawberries have not re-
ceived a size label due to incomplete left and right segments.
This can be the result of strawberries not being visible on both
cameras, not being recognized, or segments being incorrectly
matched.

However, comparing the size labeling to the base line, it
seems the depth estimation has no real effect in improving
the results.

The size prediction based on the three categories has a pos-
sible side effect that the absolute size prediction could be
quite inaccurate. However, in the results, in general it is ac-
curate enough to distinguish the three size categories.

10 Future work

From the conclusion, it is clear that more research and testing
is needed to provide more accurate data on algorithm perfor-
mance. Especially depth data and more sizing data is needed
to further test and increase the performance of the algorithm.
The depth data could function as the ground truth for the
depth estimation algorithm. In this way, the depth estimation
can be tested separately.

More sizing data and more accurate sizing data could fully
test the algorithm as a whole. At the moment, only size labels
are available. More meaningful results can be acquired by
having absolute measures in millimeters. In this way, the real
accuracy of the size estimation can be given.
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