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Abstract 

This thesis aims to evaluate the effect of signal processing techniques related to 
ultrasonic laboratory measurements of shear waves. Compressional and shear wave 
velocities play an important role in static elastic rock deformation behaviour 
estimation. Onsets of compressional and shear wave signal have to be determined 
in order to calculate the corresponding wave propagation velocity. Onset estimation 
by automation is especially problematic in shear wave signals due to noise caused 
by reflections and refractions, which results in inaccurate onset estimations and, 
therefore, requires manual onset picking which is time-inefficient and, hence, 
costly. 

Akaike Information Criterion (AIC) is the automated picking method applied to the 
ultrasonic signals in this thesis. By efficiently processing shear wave signals it was 
tried to optimize the results of the AIC. Ten processing techniques from biomedical 
engineering, statistical signal processing, audio and speech processing and RADAR 
applications were thoroughly researched. Their applicability to ultrasonic signals 
was reasoned based on literature. Six applicable signal processing techniques were 
eventually applied to 30 synthetic and 30 real ultrasonic signals. The mean and 
standard deviation of the error related to onset estimation before and after 
processing was used for evaluation. Visual comparison before and after processing 
was also executed to evaluate the visual impact of the processing techniques. 

Results showed that only a Butterworth high-pass filter visually enhances synthetic 
and real ultrasonic signals and improves the mean and standard deviation with 
respect to onset estimation. A Chebyshev high-pass filter also improved onset 
estimation results, but deteriorated the visual interpretation of the time signals. A 
simple amplitude filter unexpectedly provided the best results with respect to onset 
estimation.  

It is concluded from this studies that onset estimation by AIC can be improved by 
application of related signal processing techniques. This could be beneficial in 
estimation static deformation behaviour. Potential room for improvement is found 
within parameter optimisation and synthetic signal production.  

Keywords  Ultrasonic laboratory measurements – Shear waves – Signal processing 

techniques – Onset estimation - AIC 
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Preface 
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have to thank my advisor MSc R. Kiuru who excellently guided me on a daily basis and 

never missed any detail. My supervisor prof. M. Rinne who provided structural guidance 

and made this signal processing thesis fit into the world of mining. And, lastly, my colleagues 

for on and off the topic discussions and mind-clearing distractions. 

I hope you enjoy your reading. 
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1. Introduction 

This section introduces the reader to the relation between mining, stope design and ultrasonic 

signals. It will then go deeper into rock testing methods, primary and secondary waves and 

ultrasonic laboratory methods. This will provide a sufficient amount of background 

information to understand the problem statement. Then the scope of the thesis is discussed 

where a goal, research questions and hypothesis are defined. The last paragraph is dedicated 

to general background information on signal processing. 

1.1 Mining, stope design and ultrasonic signals 

Stopes are underground cavities created to extract ore from an underground ore zone. 

Purpose of a stope is to extract the optimum amount of valuable material from the subsurface 

and to remain stable at the same time. Stopes designed too large will collapse, diluting 

valuable material with waste. Stopes designed too small leave behind valuable material. 

Stope geometry is dictated by rock mass quality and rock deformation moduli.  

Four main rock deformation moduli are: Shear modulus, bulk modulus, Young’s modulus 

and Poisson’s ratio (see Section 1.2). These moduli can be determined by dynamic or static 

testing. The static approach requires the propagation velocity of primary and secondary 

waves (see Section 1.3) and the density of the examined rock. Waveforms with a frequency 

higher than 20 kHz are categorised as ultrasonic waves (The Gale Enceclopedia of Science, 

2002). Those are measured in the laboratory on rock samples (see Section 1.3). Via 

mathematical relationship between rock moduli and the previously mentioned parameters 

the deformation moduli can be estimated. This thesis will focus on primary and secondary 

wave propagation of ultrasonic signals as part of geophysical measurements on rocks.  

1.2 Rock testing methods 

In general, measurements on rocks can be executed in three different ways. The first type of 

methods are in-situ measurements. Those measurements are performed in a borehole and 

they measure the integrated rock mass. The integrated rock mass is different from the intact 

rock mass, because it includes fractures that are present in the field and affect the 

measurements (Kahraman, 2002; Schoenberg & Sayers, 1995). The second type of methods 

are destructive laboratory methods. They measure rock mechanical properties and are used 

for dynamic deformation moduli estimation (Sabbagh, et al., 2002). Dynamic refers to the 

transient nature of loading (Kaiwen & Wei, 2015). They are labour-intensive, slow, and, 

hence, expensive. The type of methods are is non-destructive laboratory methods. They 

measure geophysical properties which can be used for determination of static deformation 

moduli (Naser, 2004). They are repeatable, relatively less labour-intensive and more rapid 

than destructive methods. Consequently, they are cheaper. Static and dynamic deformation 

moduli describe the same deformational behaviour, but tend to give different results 

(Sabbagh, et al., 2002).  
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1.3 Primary and secondary waves 

Acoustic wave velocities are an important tool for estimating elastic rock properties. There 

is a direct relationship between P- and S-wave velocities and the elastic moduli that express 

the deformability of a rock. The main difference between a P- and S-wave is supported by 

Fig. 1. 

 

 

Fig. 1: P-wave (top) and S-wave (bottom). Red arrow 

indicates direction of propagation. 

A compressional wave has an expansion phase and a compression phase. The particle motion 

and wave propagation direction are in the same direction. A shear wave is a wave due to 

shear movement of a particle. Shear waves can only exist in solids, due to the bond between 

particles in the lattice. Molecules in a fluid follow a random motion and do not have a lattice 

structure and therefore a particle cannot exhibit shear stress on an adjacent particle in the 

lattice. The movement of a particle in a shear wave is perpendicular to the wave propagation 

direction. This is typical for a shear wave. Compression, extension and shearing are all the 

basic deformation possibilities that rock has and therefore a combination of both waves gives 

an indication of the rock elastic properties. For every modulus there is a separate formula. 

The focus of this thesis, however, is not to determine rock elastic properties, but to optimize 

arrival time estimation of a shear wave through a rock sample (See Section 1.4). A 

mathematical notation and description of the elastic moduli is therefore not included. 

1.4 Ultrasonic laboratory measurements 

P-and S-wave velocities are important parameters for static moduli estimation assuming a 

medium to be isotropic, homogeneous and linear. P-and S-wave velocity allow for 

calculation of Lamé’s first and second parameter λ and µ. Using Newton’s second law of 

motion and Hooke’s Law the Young’s Modulus and Poisson’s ratio can be calculated, which 

are two of of the four main elastic deformation moduli. A comprehensive mathematical 

derivation is provided by (Yilmaz, 2001; Langenberg, et al., 2012). This thesis will focus on 

ultrasonic laboratory measurements of primary and secondary ultrasonic waves in rocks.  
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A cylindrical shaped rock sample is placed between two transducers. A transducer converts 

energy from one form to another (Agarwal & Lang, 2005). In perspective of ultrasonic 

measurements a transducer converts an electrical pulse to a mechanical wave and vice versa. 

The transmitting transducer can send a P-wave or a S-wave wave. Particle motion of a S-

wave is perpendicular to the propagation direction. (Poisson, 1831). Two polarizations of S-

waves can be transmitted and recorded. Due to anisotropy velocities of different 

polarizations can differ, see Fig. 2. Even though isotropy is assumed in order to calculate the 

static elastic moduli in reality a rock is anisotropic and heterogeneous due to surface 

boundaries, foliation, density variations, cracks, pore filling etc. The two polarisations 

transmitted in laboratory measurements are named S1 and S2 which is contracted from S-

wave one and S-wave two. S1 is always perpendicular to S2. 

 

 

Fig. 2: Incoming S-wave (left) and two polarisations of the same S-wave in an anisotropic medium (right). (Garnero, 

2010) 

A wave is transmitted by the piezo crystal located in the transducer. It propagates through 

multiple interfaces e.g. piezo crystals-transducer interface, transducer-couplant interface, 

couplant-rock sample interface, and interbedding. See Fig. 3. 
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Fig. 3. Schematic drawing of a laboratory setup for ultrasonic testing of a 

rock sample. Wave propagation highlighted in red. (Idea from: (Alejano, et 

al., 2018)) 

The time it takes for a wave to travel through a medium is called the travel time. Dividing 

the sample length by the travel time gives the propagation velocity and that is the parameter 

required for static elastic moduli calculations. This calculation is easy to execute and quick. 

1.5 Problem statement 

The problem with body wave velocity estiation lays within the physical aspect of wave 

propagation through boundaries. As a wave interacts with an interface it is converted into 

different waveforms. For example, a S-wave encountering the discontinuities converts to a 

P-and S-wave refraction and a S-wave reflection. P-waves always travel faster than S-waves 

and therefore the P-wave onset is easily determined, because it is the first major amplitude 

displacement measured.  

Because shear waves are slower than P-waves, P-waves get ahead of the initial S-wave and 

refract into shear wave polarisations again. Those are of much smaller amplitude than the 

initial S-wave, but arrive before the initial S-wave at the receiver. This causes the initial S-

wave to be buried in noise due to refractions and reflections. An example of a S-wave is 

shown in Fig. 5. 

Akaike Information Criterion (AIC) picking method (Sedlak, et al., 2008; St-Onge, 2011) 

can be applied to find the onset in ultrasonic P-waves and S-waves (See 2.2.2 for more 

information about the AIC). The problem is that the AIC often picks incorrect shear wave 

onsets, because they are buried in noise, see Fig. 6. The challenge is to reduce the noise and 

improve the success rate of the AIC. Unlike the majority of signal processing application 

where the noise source is often known and, hence, noise can be characterised ultrasonic 

acoustic waves in rocks tend to be altered strongly making it difficult to distinguish the 

original signal from noise.  

This AIC method has given fair approximations of S-wave arrival time. Nevertheless, errors 

made on small scale laboratory measurement significantly influence the outcome. It is 

expected that noise reduction in shear wave signals will improve the precision and accuracy 

of the AIC picking method. Every field dealing with signals, regardless of the nature of the 
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signals, encounters noise related problems. There are many signal processing techniques to 

reduce noise, but the question is which processing techniques could improve the quality of 

ultrasonic laboratory signals. 

 

Fig. 4: P-wave signal on 42 mm diameter rock sample. P-wave onset highlighted by the 

blue line. 

 

 

Fig. 5: S-wave signal on 30 mm diameter rock sample. S-wave onset highlighted by 

the blue line. 
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Fig. 6: S-wave signal on 42 mm diameter rock sample. Wrong estimation by AIC 

highlighted by the blue line. Correct manual estimation highlighted by the black line. 

1.6 Scope of the thesis 

1.6.1 Research goal 

The goal is to increase the precision and accuracy of the AIC picking method regarding S-

waves by improving the quality of S-wave signals through noise reduction. Two main 

purposes of signal processing are signal modelling to reduce data size and noise reduction 

to improve signal quality. This thesis will focus on the latter. The potential benefit of 

processing ultrasonic data is to make it more suitable for automated onset picking by the 

AIC.  

1.6.2 Research questions 

The research questions that guide this thesis are defined at listed numbers 1 and 2. The first 

research question aims to make a selection of signal processing methods that can be applied 

to ultrasonic laboratory signal of S-waves. The outcome of research question number one is 

used for evaluation which is stated by research question number two. They are listed below. 

See Section 2.1 for a comprehensive description of the approach to find answers to these 

questions.  

1. Which signal processing methods can be applied to ultrasonic laboratory signals? 

2. How do these methods influence the ultrasonic shear wave onset estimations? 

1.6.3 Hypothesis 

Many applications are expected to deal with signals that are dissimilar to ultrasonic 

laboratory signals or that their processing methods are too complex for implementation. For 

example, in sonar and radar applications signals are received in sensor arrays and moving 
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targets are often the objective to trace. This makes their practical implementation probably 

too complex and their relation to the problem in many cases inadequate, since tracing moving 

objects is not the objective of ultrasonic laboratory measurements. The fields that are 

expected to have potential are biomedical signal processing (Tranquillo, 2014), audio 

processing (Zölzer, 1998), and speech processing (Deller, et al., 2000), because they deal 

with two-dimensional time signals. Frequency filters are expected to provide good results, 

because they can filter out the frequencies of unwanted noise and they allow for automation. 

Furthermore, statistical signal processing techniques are expected to improve the quality of 

the ultrasonic signals. Because they are based on statistical parameters the origin of a signal 

should not matter (Gray & Davisson, 2004; Hayes, 1996). 

1.7 Background information on signal processing 

1.7.1 Signals  

Sound waves, electrical pulses, electromagnetic waves, measurements of populations and 

images are examples of signals. Although they do not share the same nature, they are 

common in the sense that they are the input, output or internal functions that a system 

processes or produces (Jackson, 1991). However, a signal has an intuitive meaning which 

might be better understandable than the exact definition.  

Signals change in nature every infinitely small time steps, they are time-continuous. To 

measure a signal its value at certain time instances is extracted. The signal is now a vector 

of values along a time scale, it has become discrete (Zölzer, 1998). When signal processing 

is applied to a signal it is usually a discrete signal, because it concerns the processing of an 

extraction of a continuous signal. Moreover, the signal of interests has to be stored and 

storing on a computer or electrical device can only happen in data points, which have a 

discrete basis. 

Then there are periodic and aperiodic signals. Periodic signals tend to repeat themselves after 

a certain time, the cycle time, which is often denoted by T0 and expressed in seconds 

(Jackson, 1991). The number of cycles a signal goes through per second is called the 

frequency, which is denoted by f with unit Hz or denoted by ω with unit rad/s. The ultrasonic 

shear wave signal used in laboratory measurements performed for this study has a frequency 

of 1 MHz. Aperiodic signals do not repeat themselves and are mostly found as noise. The 

most common type of noise is white noise. 

1.7.2 Systems 

Due to the wide application of signal processing there are many shapes and forms of systems 

(Jackson, 1991). Though, they have analogous properties that can be used to categorise them. 

The main properties are causal vs non-causal, linear vs non-linear, and time-invariant vs 

time-variant, which are explained comprehensively in the next few paragraphs. There are 

more properties used to describe a system being memory, stability or invertibility which are 

not explained into detail (Jackson, 1991). 

A system is called causal when its output only depends on past and/or present inputs and 

does not anticipate future inputs. Most natural systems are causal, because they have the 
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inability to anticipate the future. A signal is not always a function of time, but can also be a 

function of distance, for example (Jackson, 1991). 

A system is categorised as linear when it meets two principles: Additivity and Scaling. When 

an input signal x1(t) produces an output signal y1(t) and a x2(t) produces y2(t), then the input 

signal x1(t)+x2(t) results in output signal y1(t)+y2(t), that is called additivity. Scaling 

indicates that when a certain signal is scaled with a scaling factor a the output of the system 

should be equal to the original outcome multiplied by the same scaling factor a. In proper 

notation it would be described as ax(t)=ay(t) for any x(t) or a (Jackson, 1991). 

Time invariance means that the output of a system is independent on time. A system that is 

time-invariant always produces the same output for the same input regardless of the time of 

input. If an input signal x(t) produces output signal y(t) then the time shifted version x(t-t0) 

produces output signal y(t-t0) for any value of t0 (Jackson, 1991). 

Systems can also have a memory, be stable or instable, and be invertible or noninvertible 

(Jackson, 1991), which are also meaningful properties, but not applicable in the context of 

this thesis. This thesis deals with ultrasonic laboratory measurements that are performed on 

rock samples. The rock functions as the system which has straightforward properties. It is 

assumed to be causal, because there are no measurement recorded before an input is 

generated. It is also assumed to be linear and time invariant, because the input does not 

depend on the time instance of the input and the output is proportional to the input. 
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2. Research approach and methodology 

This section addresses all the methods used in this thesis that can be linked to results 

generation and evaluation. Signal processing methods are not discussed here. Those will be 

discussed in Section 3. The first subsection of this section will cover a detailed plan of the 

research approach. Data generation and evaluation methods named in the research plan are 

discussed in the second and third subsection. How the synthetic data is generated is 

comprehensively explained in the fourth subsection. 

2.1 Research approach 

First a literature study was conducted in which familiarisation with signal processing was 

fundamental. Books and internet were mainly used in this phase of the study. Elementary 

signal processing books (Gray & Davisson, 2004; Hayes, 1996; Jackson, 1991; Tranquillo, 

2014) often introduce the reader to signal processing by giving examples of applications of 

the study. These examples gave a good insight into the most common fields of signal 

processing. Those fields were explored more thoroughly to look for noise reduction methods 

used there. The relation to ultrasonic signals on laboratory scale was assessed and applicable 

methods were considered in the practical implementation. 

The practical part started with implementing the applicable methods. If the methods would 

take more than one week to program in R, an open-source statistical and graphical software 

environment, they were disregarded. This estimation was made consciously, because writing 

a function in R could be too time-consuming, counteracting the goal of this thesis. Methods 

that could be programmed in roughly one week or that were already programmed by others 

were prioritized over computationally time-consuming methods. The methods that required 

no excessive education in programming or that were already provided in R were used for 

evaluation on synthetic data set. This data set was build using characteristics of the real 

ultrasonic signals, such as noise components of different frequencies and onsets and an 

approximation of the clean signal. After processing the synthetic signals with the signal 

processing techniques the performance of the methods was evaluated using the AIC for S-

wave onset picking. The AIC would show the S-wave onset after processing of the signal. 

The main goal during this phase of the practical part was to see how the signal processing 

methods influence the signal. The methods that positively influenced the signal were then 

applied to real ultrasonic signals. This data was measured on rock samples from Olkiluoto 

veined gneiss rock mass. The AIC picking method was applied to the processed and 

unprocessed real signals. The performance of the filters was evaluated by comparing the 

AIC onset after processing to the AIC onset before processing. The exact onset in the real 

data is unknown, therefore, the onset was once picked manually by three individuals and 

once approximated by the theoretical relationship between P- and S-wave velocity (see 

Section 2.2). The mean and standard deviation of the relative difference between the manual 

or theoretical onset and the onset picked by the AIC picking method was used for evaluation. 

A ranking of the best to worst performing filters was generated. The research approach is 

illustrated by a flow chart in Fig. 7. The next subsection will go into more detail about the 

theoretical relationship between P-and S-wave velocities, the AIC and the chosen methods 

for result evaluation. 
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Fig. 7: Research approach flow chart 

2.2 Methods for P-and S-wave velocity estimation 

2.2.1 Theoretical relationship 

A simple way to estimate S-wave velocity is via the theoretical relationship between P-and 

S-waves.  

 
𝑉𝑠 = 𝑉𝑝 ∗

1

√3
 (1) 

where Vs is the S-wave velocity and Vp is P-wave velocity. 

The theoretical relationship is derived by (Yilmaz, 2001) and (Langenberg, et al., 2012). 

They state that 

 𝑉𝑠
𝑉𝑝
= √

(1 − 2𝜎)
(2(1 − 𝜎))⁄   (2) 

where σ is Poisson’s ratio. 

Typical Poisson’s ratio for rocks are found between 1/6 and 1/3 for medium range rocks 

(Gercek, 2007). Plugging in these values in (2) gives a Vs/Vp ratio of between 0.62 and 0.50. 

In general this ratio is accepted as (1). 

The ultrasonic tests that are performed on the rock specimen used for this thesis have a Vs/Vp 

ratio of 0.59 (Alejano, et al., 2018).  The theoretical relationship is stable for a first indication 

of shear wave velocity based upon the easily measurable pressure wave velocity.   
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2.2.2 Akaike Information Criterion 

This AIC, developed by the Japanese Hirotugu Akaike in the early 1970’s (Akaike, 2nd 

International Symposium on Information Theory), treats the signal in the time domain and 

uses a mathematical approach based on the variance (Cavanaugh & Neath, 2019). A pre-

existing code was used for the practical application of AIC created by R. Kiuru in 2017, 

which is appended in Appendix 1 (1/31). 

In practice the AIC aims to select a point in the time domain that coincides with a rapid 

change in tangent and a strong amplitude displacement. Visually checking the chosen S-

wave onsets by the AIC could lead to different interpretations. The first case scenario is 

where the AIC picks the onset at a arrival time in a signal that would be manually fairly easy 

to detect, see Fig. 8. The black line indicates the clear S-wave onset and the blue line 

indicates the onset picked by the AIC.  

See Fig. 9 for a debatable arrival time. There are two sudden declines that could be related 

to the S-wave onset, those are indicated with black lines. The AIC pick is indicated with a 

blue line. In this case the AIC has picked the wrong time instance, but between the manual 

picks is also uncertainty. 

 

Fig. 8: S-wave signal on 42 mm diameter rock sample. Wrong onset estimation by 

AIC is highlighted by the blue line. Correct manual onset estimation is highlighted 

by the black line. 
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Fig. 9: S-wave signal on 50 mm diameter rock sample. Incorrect onset estimation by 

AIC highlighted by the blue line. Two debatable manual onset estimations highlighted 

by the black lines. 

2.3 Methods for evaluation of results 

2.3.1 KS-test 

The Kolmogorov-Smirnov test (KS-test) evaluates the chance that two signals are from the 

same population. Three signals are distinguished between in this matter. The synthetic signal 

(damped sinusoid + noise components), clean signal (damped sinusoid sinusoid only), and 

filtered signal (signal after processing). The ultimate goal of signal processing in this thesis 

is to obtain a signal after processing that exactly matches the clean signal. If this is the case, 

then the filter can be referred to as ideal. Clearly, ideal cases do rarely exist in science and 

therefore the filtered signal, clean signal, and synthetic signal are compared using the KS-

test. The output of the KS-test with inputs synthetic signal and clean signal is the base case. 

After processing the filtered signal is compared to the clean signal and this result the output 

of the KS-test should indicate a stronger relationship between those two signals than between 

the synthetic and clean signal. If that is the case, the filter does improve the quality of the 

signal in terms of similar population probability. If the KS-test output is lower than before 

the filter makes the signal worse.  

The outcomes of the KS-test showed remarkable results. All p-values where in the range 

0.0005-0.0001, which indicates that the chance that two samples are not from the same 

population is very small. Due to the strong similarity in signals, oscillations around zero 

mean with multiple sinusoidal components, the KS-test could point out a severe difference 

between ‘clean vs synthetic’ and ‘clean vs processed’. The measured differences are not 

significant enough to draw a conclusion from. For that reason the KS-test results are not 

taken into account in the filter evaluation. The code for input production for the KS-test in 

attached in Appendix 2 (3/31). Appendix 3 (4/31) contains R code for KS-testing.  
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Other signal comparison tests, such as the t-test, Wilcox-test and Cucconi-test have been 

considered for application to the ultrasonic waves, but those tests do not measure signal 

characteristics that are valuable for this research purpose. 

2.3.2 Onset estimation 

The key feature of the this research is onset estimation. The goal is to improve the precision 

and accuracy of the onset picked by the AIC. It is easy to evaluate the improvement of the 

onset on the synthetic signals, because the true onset is known. The mean and standard 

deviation of the onset of thirty synthetic signals is derived for every filter type. Those values 

are compared to the mean and standard deviation of the picks before processing. The filters 

are than ranked from best to worst based on the mean relative difference. When two mean 

differences are within 1 p.p. of one another the filter having a smaller standard deviation 

shall be ranked higher. 

The real data is evaluated according to the same principle, the only difference being an 

unknown true onset which needs to be approximated by estimation. This approximation is 

carried out in two ways. The first approximation is based on the theoretical relationship 

between Vp and Vs. (See Section 2.2.1.) The subset of the real data used for evaluation 

contains 15 samples. An accurate P-wave onset is available for every sample, which allows 

for S-wave onset estimation based on the following equations: 

 
𝑉𝑝 =

𝑡𝑝 − 𝐹2𝐹𝑝

𝐿𝑠𝑎𝑚𝑝𝑙𝑒
 (3) 

Where Vp is the P-wave velocity, tp is the P-wave onset, F2Fp is the face-to-face time of the 

P-wave component, and Lsample is the sample length.  

The P-wave velocity is then used for theoretical onset estimation by factor 1/√3 using the 

next equation: 

 
𝑡𝑠1,𝑠2 =

𝐿𝑠𝑎𝑚𝑝𝑙𝑒

(𝑉𝑝 √3⁄ )
+ 𝐹2𝐹𝑠1,𝑠2 (4) 

Where ts1,s2 is the theoretical onset of S1 or S2, and F2Fs1,s2 is the face-to-face time of either 

the S1 or S2 component. 

The theoretically obtained onsets are compared to the AIC onsets before and after 

processing. Their mean and standard deviations are compared.  

The second method for estimating the ‘true’ onset is manual picking. For this case the S1 

and S2 onsets of 15 samples were picked by three individuals of whom two experts and one 

beginner. These individuals have chosen their onsets independently of the picks of the others. 

All picks are taken into account with equal weights and an average is calculated. The average 

onset of every sample is used to calculate the relative difference to the onset picked by the 

AIC before and after processing. In Appendix 4 (5/ a code for onset accumulation is 

appended. 
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2.3.3 Visual comparison 

The synthetic and real signals are classified based on a visual basis. This classification 

reflects the manual picking ease of the onset in the time signal. Three classes are defined, 

class one to three. A signal is assigned to class one if the onset is clearly visible and or 

multiple points within a 1 % relative distance from each other are considered as the onset. 

Class two comprises all signals where multiple onsets of more than 1 % relative time 

difference from each other are considered and expertise is needed to select the correct onset. 

Finally, class three comprises all signals where manual picking of the correct onset is 

impossible with certainty. Fig. 10Fig. 12 show one example signal per class. The signals are 

zoomed in on a time window of interest.  

 

 

Fig. 10: Example of a signal assigned to class one 

 

 

Fig. 11: Example of a signal assigned to class two 
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Fig. 12: Example of a signal assigned to class three 

2.4 Synthetic signal production 

An ultrasonic signal has two main components: a clean signal and noise components. The 

clean signal is the signal that is sent in the first place. This is the signal that one looks for 

when searching for the shear wave onset. Due to e.g. reflection and refraction noise is 

induced. In real signals there is a broad bandwidth of noise present. In this thesis 7-8 noise 

components are added to the clean signal for synthetic signal production. In Section 2.4.1 

the methodology for creating a clean signal is explained. In Section 2.4.2 the procedure for 

noise selection and addition is discussed. The code written for synthetic signal production is 

appended in Appendix 5 (8/31). 

2.4.1 Clean signal 

Every signal has a frequency spectrum. The highest peak in that spectrum is referred to as 

the dominant frequency of that signal. This frequency is accepted as the frequency of clean 

signal. Therefore, it is also used as the base for the clean signal in synthetic signal production. 

In order to find the dominant frequency for the synthetic signal the face-to-face (F2F) signal 

is used. This signal is shown in Fig. 13. It is obtained by ultrasonic wave propagation through 

the transducers only. This is the cleanest form of the shear wave that can be obtained.  

The first large amplitude displacement which indicates the arrival of the target shear wave 

is analysed in the frequency domain to obtain a better understanding of the dominant 

frequency in the F2F signal. This is displayed in Fig. 14. 

The dominant frequency is known to be approximately 1 MHz. Fig. 13 shows that the 

measured frequency is around 875 kHz. The measured frequency is strongly dependent on 

the chosen window. It is not of great importance for synthetic clean signal deviate from the 

known and measured frequency. As it can be seen in Fig. 13 the first dominant shear wave 

arrival is of high amplitude. The strength of the signal decays over time and therefore a 

damping factor is added to the synthetic signal to account for this phenomena. The time 

domain signal is cut off until the first shear wave arrival. From there a damped sine curve is 

manually fitted to the rest of the signal. It is not necessary to have a minimum least square 
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solution for the fitting process, because the goal of the synthetic signal is not to make an 

exact replica of the real signal, but rather a similar signal with known parameters.  

 

Fig. 13: Time (top) and frequency (bottom) plot of F2F signal of S1. Dashed line indicates 1 

MHz. 

 

 

Fig. 14: Dominant peak in time (top) and frequency (bottom) domain of F2F signal S1. 

Dashed line indicates 1 MHz. 
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Fig. 15: Damped sinusoid fitted to the clean signal in F2Fsignal of S1. Original signal in 

blue and fitted signal in red. Fitted curve following the clean signal (top) and missing the 

noise at later time instances (bottom) 

In Fig. 15 a damped sine curve (in red) is illustrated versus the original signal (in blue). The 

general notation of a damped sine wave is:  

 𝑦(𝑡) = 𝐴𝑒−𝛾𝑡 sin(2𝜋𝑓𝑡) (5) 

where A is amplitude in mV, γ is decay constant in the reciprocal of time units of the x-axis, 

and f is frequency in Hz. 

The optimal parameters for the clean signal are set to A=-8.5 mV, γ=1/3, and f=0.1 MHz for 

the purpose of this research. At the start of the shear wave the synthetic and the real signal 

coincide quite well, whereas time evolves the difference becomes greater. Probably 

reflection induced noise is causing the oscillations later in time. A single damped sine wave 

cannot match the original signal, therefore noise components are introduced. 

2.4.2 Noise components 

Noise components were added to the clean signal to make the signal statistically more 

realistic. In Fig. 13 it is shown that the F2F signal has a wide range of frequency components. 

The same applies to the ultrasonic signals from rocks. Based upon the frequency spectra of 

the rock samples the main frequency components per sample length were selected. In total 

there were 22 frequency components selected. Those were gathered in a histogram which 

indicated the main frequency components. This histogram is shown in Fig. 16. 
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Fig. 16: Histogram of noise components selected for synthetic signal production. On the x-axis bin range is expressed in 

MHz. On the left-hand-side the frequency of appearance of a frequency is plotted and on the right-hand-side the 

cumulative percentage of the frequencies is plotted.  

On the x-axis the bin range is defined in MHz. The six largest bins were selected as noise 

components. However, six different noise components are not sufficient to build synthetic 

signals in tenfold. Also, the noise components are never exactly the same, there is always a 

slight deviation in either frequency, amplitude and/or phase. Therefore, every selected noise 

components out of the six noise components has eight variations. This concludes to a total 

of 48 noise components.  

For the synthetic signal production a random selection from the 48 noise components was 

added to the clean signal. The shape of the noise components is also a damped sinusoid. The 

onset of the noise components was chosen to start at the first time instance. The onset of the 

clean signal depends upon the sample length. Breaking down, this means that the longer the 

sample the later the clean signal onset and the more obvious its arrival time becomes due to 

the damping of the noise signals.  

The number of noise components was varied from 1-12 and eventually set to a random 

number in the sequence 6-8. Applying the AIC picking method to 35 signals with 6-8 noise 

components per signal resulted in a partially correct and partially incorrect estimation of the 

shear wave onset. That was the goal of the synthetic signals, because it enabled the 

evaluation of the effect of the filters on formerly correctly estimated onset and formerly 

incorrectly estimated onsets. The short sample lengths (14 mm and 20 mm diameter) were 

almost all incorrectly estimated, due to the small influence of damping on the noise 

components during the shear wave onset. The large sample sizes (60 mm and 100 mm 

diameter) had very accurate estimations, because the noise components were already 

damped strongly making the shear wave arrival obvious. Interesting were the medium 

sample sizes (30 mm, 42 mm, and 50 mm diameter), here the ratio correct/incorrect onset 

estimations was roughly 50/50, so the influence of filters could be tested well on those 

signals. Fig. 17 shows a synthetic signal of length 30 mm and Fig. 18 shows a real signal of 

30 mm diameter. Fig. 19 and Fig. 20 show the onset arrival on a short window of a synthetic 

and real signal, respectively, from which the difference in onset becomes clear. 



 

19 

 

 

Fig. 17: Synthetic S-wave signal of 30 mm diameter sample 

 

Fig. 18: Real S-wave signal of 30 mm diameter sample 

 

Fig. 19: Synthetic S-wave signal of 30 mm sample zoomed in around the onset 
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Fig. 20: Real S-wave signal of 30 mm sample zoomed in around the onset 
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3. Signal processing methods 

This section contains all the signal processing methods that were considered for application 

on the synthetic and real ultrasonic data. The filters are categorised per field of application. 

Four main fields were researched, those are stated in the name of the first level subsections. 

The considered filters in those fields are the names of the second level subsections. The 

functionality of every filter is addressed followed by an explanation of its applicability to 

ultrasonic signals. 

3.1 Statistical signal processing 

3.1.1 Kalman filter 

The Kalman filter is a live state predictor that predicts the current state of a system, xk, on 

the previous state, xk-1, and on related uncertainties (Kalman, 1960). It is logically reasoned 

to be a computationally light filter, because it only remembers the previous state of a system 

to predict the current one. The Kalman filter is mainly used in real-time estimation of moving 

object.  

The Kalman filter takes into account the current state of a system, which is described by a 

Gaussian distribution, the measurable external influences that affect the state of the system, 

and, external uncertainties that affect the system that are not directly measurable, but that 

are accounted for by a Gaussian distribution. Due to combining multiple Gaussian 

distributions the overlapping provides a new Gaussian distribution with a lower standard 

deviation and therefore more accurate predictions. This is explained in the next paragraphs 

supported by simple mathematical notations (Kalman, 1960; Brown & Hwang, 2012). 

The state variable of the current state is denoted by xk-1. This variable can be for example, 

temperature, velocity, height, position, amplitude, etc. Also, multiple variables can be stored 

in the state vector. The state variables in the state vector are measured at every time instance 

and they are known value. However, in many cases the measured values follow a Gaussian 

distribution function. Therefore, the state vector contains the mean value of this Gaussian 

distribution, but the all values in the function are used for the prediction of the best estimate. 

 𝑥̂𝑘−1 = [
𝑉𝑎𝑟1
𝑉𝑎𝑟2

] 

𝑃𝑘−1 = [
𝛴11 𝛴12
𝛴21 𝛴22

] 

(6) 

where x̂k-1 is the best estimate of the current state, Var1 and Var2 are state variables one and 

two, respectively, Pk-1 is the current state covariance matrix of the covariance between Var1 

and Var2, and Σxx is the covariance between the variables denoted by the subscript. 

The next step is to predict the next state xk by using the current state and its covariance 

matrix. A prediction matrix is defined, denoted by Fk, that uses physical relationship between 

the current and next time step of the chosen parameters.  
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 𝑥 𝑘 = 𝐹𝑘 ∗ 𝑥̂𝑘−1 (7) 

where Fk is the prediction matrix.  

So, the next state is estimated based on the prediction matrix. The covariance matrix of the 

current state is also modified by the same prediction matrix by: 

 𝑃𝑘 = 𝐹𝑘 ∗ 𝑃𝑘−1 ∗ 𝐹𝑘
𝑇 (8) 

where Pk is the next state covariance matrix and Fk is the prediction matrix. 

At this stage the next state estimate and its covariance matrix are generated. There are 

external influences acting upon the system as well. Those are factored into the estimation.  

 𝑥 𝑘 = 𝐹𝑘 ∗ 𝑥̂𝑘−1 + 𝐵𝑘 ∗ 𝜇𝑘 (9) 

where Bk is the control matrix and μk is the control vector. The control matrix contains the 

modification factors that are applied on the control vector to eventually change the state 

variables. 

The last step is to add the external uncertainty that cannot be measured. For example, the 

velocity and position of a drone are measured, but due to wind influences the velocity 

parameter is not the only parameter influencing the position of the drone. The new position 

is a distribution around the next state position which is already a distribution due to imperfect 

measurement accuracy. The extra distribution caused by external influences that are not 

measured are denoted by Qk. This influences the covariance matrix of the next state by: 

 𝑃𝑘 = 𝐹𝑘 ∗ 𝑃𝑘−1 ∗ 𝐹𝑘
𝑇 + 𝑄𝑘 (10) 

After consideration it was concluded that the Kalman filter does not apply to ultrasonic 

laboratory signals measured on rocks. Those signals do not benefit from real live state 

prediction by taken into account uncertainties of the measurement device, because that 

would not filter out the noise. Therefore, the Kalman filter does not contribute to the goal of 

this thesis. 

3.1.2 Kolmogorov-Zurbenko Adaptive 

The Kolmogorov-Zurbenko (KZ) filter is a moving average filter proposed by A.N. 

Kolmogorov  and defined by I. Zurbenko (Zurbenko, 1986). The moving average filter has 

two clearly interpretable parameters which make its application easy. The first parameter is 

the moving average window defined by m. The second is the iteration parameter defined by 

k. The nature of the filter, namely a moving average one, makes it especially applicable in 

missing data environments (Yang & Zurbenko, 2010).  

The input of the filter is a real-valued time series. The moving average window progresses 

per time unit over the time series and produces a new time signal. The iteration parameter k 

represents the number of iterations. The first iteration is defined in (11). 
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𝐾𝑍𝑚,𝑘=1[𝑋(𝑡)] = ∑ 𝑋(𝑡 + 𝑠) ∗
1

𝑚

(𝑚−1)/2

𝑠=−(𝑚−1)/2

 (11) 

Where X(t) is real-valued time series, m is the moving average window, and k is the iteration. 

The output KZm,k=1[X(t)] is a real-valued times series and is used for the next iteration. The 

second iteration is defined in (12). 

 

𝐾𝑍𝑚,𝑘=2[𝑋(𝑡)] = ∑ 𝐾𝑍𝑚,𝑘=1[𝑋(𝑡 + 𝑠)] ∗
1

𝑚

(𝑚−1)/2

𝑠=−(𝑚−1)/2

 

= ∑ 𝑋(𝑡 + 𝑠) ∗ 𝑎𝑠
𝑚,𝑘=2

2(𝑚−1)/2

𝑠=−2(𝑚−1)/2

 

(12) 

Where as
m,k=2 is a Chebyshev polynomial. 

This sequence continues until the last iteration is completed. The eventual outcome remains 

a real-valued time signal. The filter is expected to be applicable to ultrasonic laboratory 

signals and to have a smoothing effect. Low amplitude noise will be average to zero quicker 

than the high amplitude onset. Therefore, potentially it smoothens out the first noise and 

leave the S-wave onset as the first visible peak in the time-domain. Iterating too often might 

decrease the sharpness of the onset, which could lead to imprecise estimations of the onset.  

There are multiple variants based on the standard KZ filter. The Kolmogorov-Zurbenko 

adaptive (KZA) filter is a variation on the KZ filter that aims to detect a breakpoint in the 

mean. The effect of this filter could be very positive if it manages to connect a difference in 

mean with the onset. However, it could also be possible that arrival of the target signal does 

not cause a breakpoint in the mean or that there are multiple breakpoints. Concluding, the 

KZ and KZA are both considered as applicable. 

3.2 Radar 

The acronym RADAR stands for ‘radio detection and ranging’. The main purposes of radar 

is detecting stationary and moving objects. In a radar system a transmitter emits a radio 

signal, which is an electromagnetic (EM) wave, in a predetermined direction (Translation 

Bureau, 2013; McGraw-Hill & Parker, 2002). If the wave encounters an object part of the 

wave is reflected back to the receiver. The time between transmission and reception of a 

signal is called the two-way-travel-time. The distance between object and receiver can now 

be calculated via the EM wave velocity in air and the two-way travel time. See Fig. 21 for a 

schematic explanation of the radar principle. 



 

24 

 

 

Fig. 21: Principle of radar detection (Created by author, idea from (Kirlf, 2019)) 

Objects of high electric conductivity reflect EM waves well. This means that also rain, wet 

ground and the sea reflect EM waves. They might appear as noise when they are not the 

target object and are called clutter (Golbon-Haghighi, et al., 2016; Richards, 2014). Clutter 

can be counteracted by Pulse-Doppler processing, which is the first radar signal processing 

technique considered for application on ultrasonic laboratory S-waves.  The second signal 

processing technique considered in this section is the constant false alarm rate (CFAR), 

which is based on the assumption that there is a constant rate of false alarms disturbing the 

receiver (Rohling, 1983; Richards, 2014). 

3.2.1 Pulse-Doppler processing 

Clutter, as stated in the previous section, is the reflection of a radio wave on usually large 

objects with a natural background that do not have a single reflection but many small ones. 

For example, wet ground, sea, precipitation, birds swarms, and sand storms. Target objects 

could be located in clutter, which makes them difficult to detect. If there is a difference in 

velocity between clutter and target object the frequency of the emitted EM wave will be 

altered by both object differently (Richards, 2014). This is called the Doppler-Effect 

(O'Donnel, 2009; Scensor, 1973).  

Pulse-Doppler is signal processing technique applied to the frequency domain. A pulse with 

a certain frequency is transmitted. When two object are hiding in the same direction, for 

simplicity’s sake let’s say exactly towards the transmitter, than the faster moving object 

creates a frequency higher than the slower moving object and the slower moving object 

creates a frequency higher than the frequency of the original signal. In the frequency domain 

the objects can be distinguished. 

In Fig. 22 the Doppler effect is schematically visualized. The pink circle represents a moving 

object in direction of the orange arrow. The frequency of the reflected wave in direction of 

the moving object is higher than the reflected wave in opposite direction. Rock samples do 

not contain moving object and therefore this method will not be applicable to ultrasonic 

laboratory measurements.  
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Fig. 22: Doppler effect. Moving target indicated by pink circle. Direction of the moving target indicated by the orange 

arrow. Sound emitted in same direction as movement has higher frequency than sound emitted in the pposite direction. 

(Tkarcher, 2006) 

3.2.2 Constant false alarm rate 

The strength of a received signal is strongly related to the electrical conductivity of the 

medium the wave reflects upon. Water surfaces and metal objects are good reflectors. When 

an EM wave hits an object the wave scatters.  

A transmitted wave encounters many object and the receivers receive many reflections. Not 

all reflections have a significant meaning in radar detection. The reflections of unimportant 

objects should be denied and the reflections of target object should be raised. 

An amplitude filter only shows signals with an amplitude higher than a certain amplitude 

threshold. If this threshold is set too low than too many targets are detected of which many 

are unimportant. Those are called false alarms. If the threshold is set too high fewer false 

alarms are detected, but at the expense of not noticing targets. In radar the background noise 

due to clutter and interference changes through time and space and therefore the threshold 

should be changing throughout those dimensions. This type of adaptive filter is called the 

constant false alarm rate (Rohling, 1983). Its name refers to the assumption that there is a 

constant rate of false alarms coming in represented by a Gaussian distribution. In ultrasonic 

laboratory measurements the amplitude of the amplitude signal is always equal and the 

background noise is independent of time therefore a fixed threshold can be used. In this case 

a simple amplitude filter will be sufficient. 

3.3 Biomedical engineering 

Biomedical devices massively incorporate digital signal processing techniques. Devices that 

measure muscular contractions, for example those from the hart or lungs or devices that 

measure brain activity or the pH-level of blood over time (Tranquillo, 2014). 

For example (Tranquillo, 2014), an electromyogram is recorded from muscles on the torso. 

Its main purpose is to evaluate muscle contraction during breathing. The muscles contract 

approximately 20 times per minute. However, the electrodes measure voltage in general and 

therefore also pick up other signals from the body. A beating heart is normally the main 

component of noise in these types of measurements. It beats at a rate of approximately 70 

Hz. This means that the time domain contains two main signals. Transforming this signal to 

the frequency domain results in a clear distinction between the two main frequencies. To 
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filter out one of the frequencies a frequency filter is commonly used in biomedical devices. 

According to (Tranquillo, 2014), two common frequency filters used in biomedical 

engineering are the Butterworth filter and the Chebyshev type 1 filter. Those are discussed 

in the next two subsections. 

3.3.1 Butterworth filter 

Butterworth filter is a frequency domain filter designed by Stephen Butterworth 

(Butterworth, 1930). The frequency response of the filter is characterised by a maximally 

flat pass band. The order of the filter determines the steepness of the roll-off and the amount 

of poles present in the filter (Panagos, 2014). A frequency filter cannot cut-off directly all 

frequencies above or below the cut-off frequencies. The frequencies that are to be eliminated 

are ‘rolled off’ gradually. An ideal filter has a 90˚ roll-off and zero poles. However, the 

steepness of the roll-off comes with the price of poles. This will be shown in the first two 

subsections. Butterworth filters are standardly designed as low-pass filters, but can be 

modified to a high-pass, band-pass or band-stop filters. Scaling of a normalised filter to a 

filter that can be applied to a specific frequency spectrum is derived in the third subsection. 

The frequency response of a Butterworth filter is defined by: 

 
|𝐻(𝑗𝜔)| =  

1

√1 + (
𝜔
𝜔𝑐
)
2𝑛

 
(13) 

Where H(jω) is the frequency response, ωc is the filter cutoff frequency and n is the order of 

the filter.  

In order to apply the Butterworth filter to a frequency domain that belongs to an ultrasonic 

signal it is first shown what the influence of the order is on the frequency response, because 

the order should be defined before application of the Butterworth filter. The code for 

Butterworth filtering already exists in R and requires the filter order as input. To represent 

the relationship between order and poles the normalised Butterworth filter equation is first 

derived. A normalization of the filter states that the cut-off frequency is equal to one and 

therefore the (13) becomes: 

 
|𝐻(𝑗𝜔)| =  

1

√1 + 𝜔2𝑛
 (14) 

The frequency respons of nth order normalised Butterworth filter is shown in the figure 

below. The ideal ‘brick wall’ response is approached by increasing the order of the filter. 

The higher the filter order the steeper the roll-off of the frequency response. The ideal ‘brick 

wall’ response is ideal but cannot be reached, because there the order must be a finite 

number.  
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Fig. 23: Progression of the frequency response of a Butterworth 

filter with increasing order (Storr, 2014) 

The relation between filter order and poles will be established in this section. The transfer 

function of the normalized Butterworth filter respons is denoted as H(s) where s=σ+jω, so 

the frequency response H(jω) can be obtained from H(s) by evaluating it as s=jω (σ=0). And 

vice versa, H(s) can be obtained from H(jω) by ω=s/j. Resulting in: 

From this formula the poles of the filter can be determined. Whenever (s/j)2n=-1 the 

denominator equals zero and the response blows up. Rewriting (s/j)2n=-1 to s2n=-(j)2n and 

substituting for -1=ejπ(2k-1) and j=ejπ/2 results in: 

 𝑠2𝑛 = 𝑒𝑗𝜋(2𝑘−1+𝑛) (16) 

both sides of the equation yield: 

 
𝑠𝑘 = 𝑒

𝑗𝜋
2𝑛
(2𝑘+𝑛−1)

  

 
= cos (

𝜋

2𝑛
(2𝑘 + 𝑛 − 1)) + 𝑗𝑠𝑖𝑛 (

𝜋

2𝑛
(2𝑘 + 𝑛 − 1))   

𝑓𝑜𝑟 𝑘 = 1, 2, … , 2𝑛 

(17) 

The poles can now be determined. Fig. 24 represents the poles of a Butterworth filter of order 

n in the s-plane. The s-plane is a mathematical domain where the x-axis is real and the y-

axis is imaginary in order to plot complex numbers (Calderon, 2011). 

 |𝐻(𝑗𝜔)|2 =  𝐻(𝑗𝜔)𝐻(−𝑗𝜔)  

 =  𝐻(𝑠)𝐻(−𝑠)  

 
=

1

1 + (𝑠 𝑗⁄ )2𝑛
 (15) 
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Fig. 24: Pole locations of n-th order Butterworth filter (Wang, 2019) 

The poles in the left hand plane correspond to H(s). Those poles belong to a stable and causal 

filter and correspond to k=1, 2, …, n. The poles in the right hand plane correspond to H(-s). 

The transfer function of the normalised Butterworth filter is now developed. It can be written 

as: 

 
𝐻𝑛(𝑠) =

1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)… (𝑠 − 𝑠𝑛)
 (18) 

It is now shown that increasing the order of the Butterworth filter is directly proportional to 

the number of poles. The higher the order of the filter, the more poles disturb the frequency 

response. It is therefore necessary to find the correct balance between the required filter order 

and the amount of poles present in the filter. 

In most filter designs the cut-off frequency is not equal to 1, but is rather related to noise 

frequencies. Therefore, the filter needs to be scaled. In general there are four parameters that 

need to be determined to design a filter. The pass-band gain and pass-band frequency and 

the stop-band gain and stop-band frequency.  

The units of gain are dB and the units of ω are rad/s. To define the gain at a certain frequency 

ωx the (19) is used: 

 𝐺𝑥 = 20 log10|𝐻(𝑗𝜔𝑥)|  

 

= 20 log10

(

 
1

√1 + (
𝜔𝑥
𝜔𝑐
)
2𝑛

)

   

 

= 0 − 20 log10√1 + (
𝜔𝑥
𝜔𝑐
)
2𝑛

  

 
= −10 log10 [1 + (

𝜔𝑥
𝜔𝑐
)
2𝑛

] (19) 

Filling in (19) for the gain at the pass-band and stop-band frequencies, ωp and ωs results in: 



 

29 

 

 
𝐺𝑝,𝑑𝐵 = −10 log10 [1 + (

𝜔𝑝

𝜔𝑐
)
2𝑛

] (20) 

and 

 
𝐺𝑠,𝑑𝐵 = −10 log10 [1 + (

𝜔𝑠
𝜔𝑐
)
2𝑛

] (21) 

which can be rewritten to a form where the pass-and stop-band frequencies are divided by 

the cut-off frequency. 

 
(
𝜔𝑝

𝜔𝑐
)
2𝑛

= 10−𝐺𝑝,𝑑𝐵/10 − 1 (22) 

and 

 
(
𝜔𝑠
𝜔𝑐
)
2𝑛

= 10−𝐺𝑠,𝑑𝐵/10 − 1 (23) 

Dividing (22) by (23) yields: 

 
(
𝜔𝑠
𝜔𝑝
)

2𝑛

=
10−𝐺𝑠,𝑑𝐵/10 − 1

10−𝐺𝑝,𝑑𝐵/10 − 1
 (24) 

(24) can be solved for the filter order n.  

 
𝑛 =

log10[(10
−𝐺𝑠,𝑑𝐵 10⁄ − 1) (10−𝐺𝑝,𝑑𝐵 10⁄ − 1⁄ )]

2 log10(𝜔𝑠 𝜔𝑝⁄ )
 (25) 

(25) connects the filter order to the stopband and passband frequency and stopband and 

passband gain. This allows to define four parameters and obtain the fifth by filling in the 

equations.  

3.3.2 Chebyshev filter 

A Chebyshev filter is a digital low-pass filter, similarly to a Butterworth filter. The advantage 

of a Chebyshev filter is its sharper transition between pass-band and stop-band (Elprocus, 

2016). The steep transition is made possible by introducing equiripple in the pass-band. The 

effect of ripple itself in the pass-band is negative, because it alters the power of the wanted 

frequencies, which would be ideally flat. However, the absolute error of the filter becomes 

smaller and its execution speed increases. See Fig. 25 for the difference in equiripple in 

Chebyshev type I and II filters. The trade-off made in a Chebyshev filter is between the 

steepness of the roll-off and the amplitude of the ripple. The higher the ripple factor the 

steeper the roll-off, but also the less stable the function becomes (Elprocus, 2016; Butzer & 

Jongmans, 1999). 
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Fig. 25: Normalised Chebyshev type I and II frequency response curve (Geek3, 2016) 

There are two types of Chebyshev filters. Type 1 filters have equiripple in the pass-band, 

this is the most commonly used type of Chebyshev filter. Type 2 includes equiripple in the 

stop-band. This type of filter is seldom used, because it includes unwanted frequencies. This 

section is therefore focused on Chebyshev type 1 filters.  

The transfer function of a Chebyshev type 1 filter is very similar to the one of a Butterworth 

filter. The difference is within the introduction of equiripple, denoted by ϵ. The transfer 

functions and mathematical derivations are derived by (Elprocus, 2016). The transfer 

function is: 

 
|𝐻(𝑗𝜔)| =

1

√1 + 𝜀2𝑇𝑛2 (
𝜔
𝜔𝑐
)

 
(26) 

where ϵ is the ripple factor, ωc is the cutoff frequency and Tn is a Chebyshev polynomial of 

order n.  

The poles of this filter can be determined by normalizing the transfer function, substituting 

ω for -js (using the equality: s=jω), and then setting the denominator equal to zero. 

Implementing the trigonometric definition of –js=cos(ϴ) the equality becomes: 

 1 + 𝜀2𝑇𝑛
2(cos(𝜃)) = 0 (27) 

The Chebyshev polynomial, Tn, follows the rule Tn*cos(ϴ)=cos(nϴ) which rearranges the 

equation to: 

 1 + 𝜀2 cos2 𝑛𝜃 = 0 (28) 

Rewriting for ϴ: 

 
𝜃 =

1

𝑛
arccos (

±𝑗

𝜀
) +

𝑚𝜋

𝑛
 (29) 

where n is the filter order, and m is the integer index. 

 𝑠𝑝𝑚 = 𝑗 cos(𝜃) (30) 
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= 𝑗 cos (
1

𝑛
arccos (

±𝑗

𝜀
) +

𝑚𝜋

𝑛
) 

This can be rewritten to explicit complex form as: 

 
𝑠𝑝𝑚
± = ±sinh (

1

𝑛
arsinh (

1

𝜀
)) sin(𝜃𝑚)

+ 𝑗 cosh (
1

𝑛
arsinh (

1

𝜀
)) cos(𝜃𝑚) 

(31) 

(31) implies that all poles of a Chebyshev filter are located on an ellipse in the s-plane. The 

poles of an 8th order Chebyshev type I filter are represented by the white dots in Fig. 26. 

 

Fig. 26: Pole locations of an 8th order Chebyshev 

filter (InductiveLoad, 2009) 

3.4 Speech processing 

There are two main reasons for speech processing. The first objective is to model speech in 

order to minimise the amount of transferable data. A model of a signal describes a signal in 

a few parameters instead of a series of data points over time. If  only the characteristics of a 

data series can be transmitted such as the frequency, phase and amplitude it would save on 

the amount of data transmittance. Secondly, and more important in the scope of this research, 

is the removal of noise, which is commonly referred to as speech enhancement. There are 

several methods developed for this purpose, spectral subtraction, adaptive noise cancelling, 

Wiener filtering and time domain harmonic scaling are the ones discussed in this section 

(Deller, et al., 2000). 

3.4.1 Spectral subtraction  

The first method of discussion is spectral subtraction. Frequencies with a large contribution 

to the overall signal have high power in the frequency domain. This domain is obtained using 

the Fourier transform or, in practice, the Fast Fourier Transform (fft). The principle of 

spectral subtraction (Boll, 1979; Deller, et al., 2000) is described in the next section, 

supported by equations (Loizou, 2013; Lyons, 2012).  
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Let y, d and n be the signal, noise, and clean speech, respectively. Then: 

 𝑦(𝑛) = 𝑠(𝑛) + 𝑑(𝑛) (32) 

By assuming that noise, d, is an uncorrelated process and speech and, hence, the signal are 

stationary it follows that: 

 Γ𝑦(𝜔) = Γ𝑠(𝜔) + Γ𝑑(𝜔) (33) 

where Γx(ω) is the power spectrum of the subscripted process.  

By estimating the power density spectrum (PDS) of the noise, Γ̂d(ω), it is possible to estimate 

the cleaned speech signal by: 

 Γ̂𝑠(𝜔) = Γ𝑦(𝜔) − Γ̂𝑑(𝜔) ( 34) 

This states that the method would work if speech was stationary throughout the complete 

signal. What characterises speech are the short-time intervals on which signals are created 

and the short periods of silence within the signals. Those silent periods are key for spectral 

subtraction. The goal is to model the noise from the silent periods, and subtract its power 

spectrum from the noisy signal. This is called single-channel filtering. Another method is 

double-channel filtering where a separate receiver is used to record noise, so that a clean 

noise spectrum can be measured which is then subtracted from the noisy speech signal that 

occurred simultaneously.  

The ultrasonic signals that are measured in the laboratory are comparable to single-channel 

measurements and the only possibility to implement spectral subtraction is to characterise 

the noisy period before the S-wave onset. This power spectrum will then be subtracted from 

the signal’s power spectrum. It is assumed here that the noise is stationary throughout the 

complete signal, which is an not true. From Fig. 10 it can be derived that the amplitude of 

and tangent to the noise change constantly. Those changes are not periodically prove that the 

noise is not stationary.  

However, if the noise is measured shortly before the S-wave onset in a small window then 

local stationarity can be assumed. The spectral subtraction method is now rewritten as: 

 𝑓𝑦(𝑛;𝑚) = 𝑓𝑠(𝑛;𝑚) + 𝑓𝑑(𝑛;𝑚) (35) 

where fy(n;m)=y(n)w(m-n) in which w(m-n) represents the time window.  

Transforming this equation to PDS notation.  

 Γ̂𝑠(𝜔;𝑚) = Γ𝑦(𝜔;𝑚) − Γ̂𝑑(𝜔;𝑚) (36) 

where Γ̂x(ω; m) is the estimated spectrum of x with window size m.  
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3.4.2 Wiener filter 

The Wiener filter is a linear filter that aims to produce an optimal estimation of the clean 

speech signal by means of the mean square estimate (MSE). Equal representations are used 

for speech, noise, and noisy speech as in spectral subtraction just as the local stationarity 

assumption (Deller, et al., 2000; Wiener, 1964). The goal of Wiener filtering is to obtain a 

filter with impulse response h†(n) such that the output is an estimator ŝ(n) given an input s(n) 

which minimizes (Deller, et al., 2000): 

 𝜉 = ℒ{[𝑠(𝑛) − 𝑠 (𝑛)]2} (37) 

Resulting in a frequency response of: 

 
𝐻(𝜔) =

Γ𝑠(𝜔)

Γ𝑠(𝜔) + Γ𝑑(𝜔)
 (38) 

where Γs(ω) and Γd(ω) are the power spectra of the processes s and d, respectively. 

Just as in spectral subtraction, (38) cannot be applied yet, because it refers to complete signal 

and, hence, the stationarity requirement is not fulfilled. (38) has to be manipulated to a frame-

by-frame basis by using the short-term power density spectra (stPDS). 

 
𝐻(𝜔;𝑚) =

Γ̂𝑠(𝜔;𝑚)

Γ̂𝑠(𝜔;𝑚) + Γ̂𝑑(𝜔;𝑚)
 (39) 

Besides the addition of the window, denoted  by m, hats are applied. The hats indicate that 

the stPDS are estimators. Noise is estimated during silent periods in speech, but should be 

estimated before S-wave arrival in ultrasonic signals. This estimation is fairly easy for 

ultrasonic signals, because there is a clear period of solely noise. Estimation of the speech 

signal is more problematic, because it is always buried in the noise.  

Since H(ω;m) is now obtained in (40) it is possible to estimate the short-term speech 

spectrum from the noisy speech spectrum from its time or frequency domain by: 

 𝑆̂ 𝑠(𝜔;𝑚) = 𝐻(𝜔;𝑚)𝑆̂𝑦(𝜔;𝑚) (40) 

This filter is a spectral magnitude modifier which uses the stPDS of noisy speech to estimate 

clean speech. It, however, does not change the phase resulting in a clean speech estimation 

with the noisy speech phase.  

3.4.3 Adaptive comb filtering 

Adaptive comb filtering is a commonly used method whenever a signal is degraded by an 

aperiodic noise process. Adaptive comb filtering can be applied in either the time or 

frequency domain. It is also often referred to as the addition of a delayed version of the signal 

to itself. In audio recordings (time-domain) or in closed spaces this can cause unwanted 

cancelling of the signal, but for noise reduction purposes it can be beneficial. Comb filtering 

can also be applied in the frequency domain. In this case the noisy signal should have 

multiple fundamental frequencies that follow a harmonic structure. The frequency spectrum 

of the signal would show evenly distributed peaks of fundamental frequencies and a white 
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noise band. By constructing a typical comb filter the spacing between the ‘teeth’ corresponds 

to the fundamental frequencies. As a result, the filter passes fundamental frequencies and 

rejects the noise between the peaks (Deller, et al., 2000; Nehorai & Porat, 1986; Lim, et al., 

1978). 

Although the noise in the ultrasonic measurements is due to refraction and scattering and, 

thus, has a periodic fundament, since it is derived from the original signal which is a sinusoid 

it is still possible to use a comb filter. The frequency spectra of the ultrasonic signals have 

multiple peaks which could correspond with adjusted ‘tooth’-spacing of a comb filter and, 

hence, have a noise reduced output. 

3.4.4 Time domain harmonic scaling 

Time domain harmonic scaling is a noise reduction method applied in the time-domain. The 

value of TDHS lies within its ability to mask background noise (Deller, et al., 2000). A signal 

with a clear fundamental frequency is divided into windows, each covering an integer 

amount of fundamental periods. The windows are scaled giving one side of the window a 

relatively high scaling factor and the opposite side a relatively low scaling factor having a 

linear degradation (Malah, 1979). The windows are either decimated (compressed) or 

interpolated (expanded). In Fig. 27 an example is shown of the compression cycle. 

 

 

Fig. 27: Compression cycle of TDHS: (a) Original signal with the 

scaling factors, (b) Left hand scaled window, (c) Right hand scaled 

window, (d) sum of both. (Np=60, α=0.75, Nc=180) (Burazerovic, 2000) 

THDS is controlled by three parameters. Np is the local pitch period, the length of the 

fundamental period. α is the time stretch factor meaning the measure of compression or 

expansion. If α<1 compression takes place and if α>1 expansion takes place. Nc is the cross-

fade length referring to the window length of one scaling window. Fig. 10. shows that there 
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is no fundamental period which could be used for compression. Consequently, the local pitch 

period cannot be expressed and TDHS cannot be applied. 
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4. Results 

In this section the methods for data generation, data evaluation and signal processing come 

together and provide results. Every filter is assigned its own subsection. Per filter the onset 

estimation and visual comparison are assigned a second level subsection as well. The results 

are listed comprehensively and briefly commented. The final subsection contains a summary 

of the results and a short comparison of the filters. A more detailed discussion about the 

results can be found in Section 5. 

4.1 Kolmogorov-Zurbenko filter 

4.1.1 Onset estimation 

The averaging window of the Kolmogorov-Zurbenko filter was set to 1 µs and the number 

of iterations to 20. These settings produced the best results regarding the AIC onset for the 

KZ-filter. Next, the KZA filter was applied. The KZA smoothens the KZ results even more. 

The KZA is an adaptive filter which adapts to a changing mean. However, the ultrasonic 

time signals are standardised and have a zero mean. Therefore, the adaptive part does not 

have an effect on the ultrasonic signals. The KZA uses the time signal output of the KZ as 

its input. The optimal AIC results after KZA smoothing were obtained with a 3 µs averaging 

window and 20 iterations. R code related to KZ and KZA filtering is appended in Appendix 

6 (10/31). The onset estimation of the KZ and the KZA filter presented in Appendix 7 

(11/31). 

The AIC picking method estimates the onset more accurate after KZ and KZA filtering than 

before filtering. The onset in the synthetic data is characterised by a strong displacement in 

the amplitude. Smoothening over the set number of iterations using the defined averaging 

window the signal is smoothened enough to eliminate any abrupt displacements in the noise. 

Due to the large amplitude of the onset it remains visible after smoothing and allows the AIC 

method to pick the onset more accurately.  

The smallest relative differences to the manual onset and the theoretical onset was obtained 

with a KZ averaging window of 1 µs and three iterations. The KZA was set to 1 µs and two 

iterations for optimal results. The results are plotted in in figure and Appendix 7 (11/31). 

From the figures it is clear that there is no big improvement in the relative differences to the 

manual and theoretical onset. The mean and standard deviations are calculated and denoted 

in Table 1. 

Table 1: Mean and standard deviation of relative differences before and after KZ and KZA filtering 

  Synthetic Theoretical Manual 

Mean (%) St. dev. Mean (%) St. dev. Mean (%) St. dev 

KZ 7.3 5.3 11 11 7.8 7.7 

KZA 4.9 1.9 13 10 8.9 7.7 

No.filter 12 6.8 10 9.7 9.0 9.2 
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The KZ and KZA filter improve the mean and standard deviation of the relative difference 

to the theoretical onset. The accuracy of the onset estimation based on manual picking has 

decreased. The data obtained from the synthetic signal evaluation does not coincide with 

the findings in the real signals. It can be speculated that the noise periods in the real 

ultrasonic signals are to variable to smooth it out. Noise in 30 mm diameter samples has a 

significantly lower amplitude than 42 mm and 50 mm diameter samples. Smoothening is 

based on amplitude difference between noise and onset. If the amplitude of the noisy 

period is relatively high compared to the onset the KZ and KZA are unable to solely target 

rapid changes in the noise. 

4.1.2 Visual comparison 

In Appendix 8 (12/31) an overview of the signal classification per sample is listed. A 

summary of the visual classification on the processed and unprocessed real ultrasonic signals 

was made as well. Those results are listed in Table 2. 

Table 2: Summary of the visual classification results before and after KZ and KZA filtering 

  

Synthetic data Real data 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

KZ 0 11 19 5 10 15 

KZA 0 0 30 0 2 28 

No filter 24 6 0 15 11 4 

 

After KZA filtering the signal always got worse. Due to smoothening it was manually not 

possible to point out any rapid changes in the signal. The amplitude still indicated a window 

in which the onset should be located, but the signal was too smooth to point out the exact 

time instance. KZ filtering gave in the majority of signals worse visual results too. For 

manual picking of the onset the KZ and KZA filters are bad performers. However, 

mathematically they allow for slightly better results compared to manual picking and slightly 

worse results compared to theoretical onset estimation.  

4.2 Amplitude filter 

4.2.1 Onset estimation 

The onset in an ultrasonic signal can be recognised by a sudden change in the tangent paired 

with a strong amplitude displacement. An amplitude filter targets the latter by setting a 

threshold for the amplitude. Optimal results were obtained with a threshold of 50 % of the 

maximum amplitude. All the data points below that threshold were set to zero. The onset 

was estimated based on the resulting signal. That is a piecewise signal and therefore the onset 

was chosen at the first time instance this threshold was exceeded. R code related to amplitude 

can be found in Appendix 9 (13/31). The onset estimations per sample for the real and 

synthetic data are plotted in Appendix 10 (14/31). 
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The results show that amplitude is a clear indicator for the onset regarding the synthetic data 

and the real data. Except for one value the relative differences to the true onset are smaller 

than 5 % reflecting a relatively low standard deviation. The optimal results for the real data 

were obtained with an amplitude threshold of 33 % of the maximum amplitude. An 

amplitude filtered signal increases the accuracy and precision of the AIC results with respect 

to both manual and theoretical onsets. The mean and standard deviation decrease 

significantly. See Table 3. 

Table 3: Mean and standard deviation of relative differences before and after amplitude filtering 

  

Synthetic Theoretical Manual 

Mean (%) St. dev. Mean (%) St. dev. Mean (%) St. dev 

Amplitude 2.4 2.8 6.0 5.9 7.4 8.7 

No filter 12 6.8 9.0 9.2 10 9.7 

 

The mean of the relative differences has decreased by 3.0 p.p. on the theoretical onset case 

and by 2.6 p.p. on the manual onset case. This is increase in precision of roughly 25 %. Also 

the standard deviation has decreased 1 p.p. for the manual case and 3.3 p.p. for the theoretical 

case. This proves that amplitude filtering provides better results even though the signal loses 

information. 

4.2.2 Visual comparison 

In Appendix 11 (15/31) an overview of the signal classification per synthetic sample is listed. 

Even though the AIC results have improved significantly, due to the loss of information in 

the time domain it is not possible to recover the exact onset. The onset is always within a 

zero-part of the time signal. The only indication is the first exceeding of the threshold. 

Therefore all signals were assigned to class two. The real ultrasonic signals were also 

visually classified. The results are also shown in Appendix 11 (15/31). The summary of the 

visual classifications is shown in Table 4. 

Table 4: Summary of the visual classification results before and after amplitude filtering 

  

Synthetic data Real data 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Amplitude 0 30 0 1 18 11 

No filter 24 6 0 15 11 4 

 

The real signals are, in contrast to the synthetic signals, assigned to all classes instead of to 

class two only. If the first amplitude exceeding coincided with the manual or theoretical 

onset, the signals was assigned to class one. If the first amplitude exceeding deviated more 

than one percent from the manual or theoretical onset, but if the peak was still part of the 

original shear wave signal it was assigned to class two. All other cases were assigned class 

three. The majority of the signals has decreased in the visual picking ease. This can be 

connected to the loss of information in the time domain.  
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4.3 Butterworth filter 

4.3.1 Onset estimation 

Four types of Butterworth filters are applied, the low-pass, high-pass, band-pass and band-

stop. The cut-off frequency of the low-pass filter was set to 1.5 times the dominant frequency 

which was measured in the frequency spectrum. The high pass filter was set to 0.55 times 

the dominant frequency. The first cut-off frequency of band-pass filter was set to 0.7 times 

the dominant frequency and the second cut-off was set to 2 times the dominant frequency. 

The band-stop filter’s lower and upper cut-off frequencies were set to 0.55 and 1.2 times the 

dominant frequency, respectively. Those settings were found by frequency spectrum 

analysis and trial and error. They provided near optimal results regarding the AIC onset 

estimation. R code related to Butterworth filtering is appended in Appendix 12 (16/31). Of 

every Butterworth filter type a scatterplot was generated with respect to the synthetic data, 

see Appendix 13 (17/31). 

The Butterworth filters decreased the mean of the relative difference slightly. This was 

calculated based on the results represented in the scatterplots of the Butterworth filters. The 

means and standard deviations are shown in Table 5.  

The results obtained from the real ultrasonic data are also plotted in Appendix 13 (17/31). 

The cut-off frequencies of the high pass and low-pass filter were both set the dominant 

frequency. The band-stop and band-pass filter’s cut-off frequencies provided optimal results 

with a bandwidth from 0.7 up to 2 times the dominant frequency. The mean and standard 

deviations of the synthetic and real data are summarised in Table 5. 

Table 5: Mean and standard deviation of relative differences before and after Butterworth filtering 

  Synthetic Theoretical Manual 

Mean (%) St. dev Mean (%) St. dev Mean (%) St. dev 

Butter.PB 10 5.1 12 8.0 16 10 

Butter.SB 10 7.3 6.0 6.5 9.1 9.3 

Butter.HP 11 6.3 8.0 7.0 10 8.5 

Butter.LP 11 5.9 14 8.2 18 9.1 

No.filter 12 6.8 9.0 9.2 10 9.7 

 

The standard deviation also slightly decreased for the low-pass, high-pass, and pass-band 

filter. The stop-band filter increased in standard deviation. This can be connected to the 

resulting frequency spectra of the signals. The former three filters maintain the dominant 

frequency after filtering whereas the stop-band filter filters out the dominant frequency. It 

can be speculated that the dominant frequency is a requirement for the AIC to be accurate. 

On the contrary, the difference in standard deviation between the Butterworth stopband and 

No-filter case is only 0.5 p.p. which also shows that even after eliminating the dominant 

frequency a time signal was reproduced that allowed for onset estimation by AIC even better 

than when the dominant frequency is maintained. This is an interesting point of discussion. 
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4.3.2 Visual comparison 

In Appendix 14 (20/31) a visual classification of all synthetic samples before and after 

Butterworth filtering is listed. Signals after Butterworth high-pass processing were mostly 

assigned to class one. The signals after Butterworth low-pass and band-stop were mainly 

assigned to class two and three. The band-pass signals were roughly divided over class one 

and two. A short overview of the results is given in Table 6. 

Table 6. Summary of the visual classification results before and after Butterworth filtering 

  

Synthetic Real 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Butterworth HP 25 5 0 25 5 0 

Butterworth BP 11 16 3 11 16 3 

Butterworth BS 5 6 19 5 6 19 

Butterworth LP 2 15 13 2 15 13 

No filter 24 6 0 24 6 0 

 

These results allow for speculation that frequency components below the dominant 

frequency do not have a strong impact on the manual picking ease of the signal. Filtering out 

the dominant frequency or the frequencies above the dominant frequency provides time 

signals that decreased the manual picking ease.  

Combining the onset estimation results and the visual classification results showed that high-

pass filtering improved the visual picking ease of the signal and increased the accuracy of 

the AIC picking method. However, band-pass, band-stop, and low-pass filters performed 

better with respect to onset estimation by AIC rather than manual picking.  

4.4 Chebyshev1 filter 

4.4.1 Onset estimation 

The Chebyshev type 1 filter was applied as a low-pass, high-pass, band-pass and band-stop 

filter. The Chebyshev filters were designed using a pass-cut-off-frequency (Fpc) and stop-

cut-off frequency (Fcs). Fpc is the frequency where the roll-off starts and Fsc is the frequency 

where the roll-off stops. This was required by the function for Chebyshev filtering in R. The 

equiripple was set to 0.5 dB and the gain to 29 dB for the synthetic and real data.  

The Chebyshev1 filter settings applied to the synthetic data were as follows: The Fpc and Fsc 

were set to 0.3 and 1 times the dominant frequency, respectively, for the low-pass variant. 

The high-pass variant had a Fpc of 1 and a Fsc of 0.7 times the dominant frequency. The 

Chebyshev1 band-pass filter had a passband interval from 1 times the dominant frequency 

until 1.4 times the dominant frequency. The filter settings were optimised by trial and error 

with respect to the AIC mean and standard deviation. The low-pass, high-pass and band-pass 

filter provided useful results. By combining the results of the low-pass and high-pass filter 

in the roll-off area it was tried to approach the results of a band-stop filter. The results of this 

experiment were not useful for evaluation. R code related to the Chebyshev filter is appended 
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in Appendix 15 (21/31). In Appendix 16 (22/31) the results of the synthetic data onset 

estimation before and after Chebyshev1 are plotted per sample.  

The Chebyshev1 low-pass parameters applied to the real data were 0.3 times the dominant 

frequency and 0.7 times the dominant frequency for the Fsc and Fpc, respectively. The high-

pass filter provided optimal results with a Fsc of 0.5 times the dominant frequency and a Fpc 

of 1 times the dominant frequency. The band-pass filter was reconstructed by applying the 

Chebyshev1 high-pass filter over the output of the Chebyshev1 low-pass filter. The low-pass 

filter was set to Fpc=4 and Fsc=5 times the dominant frequency. The high-pass filter was set 

to Fsc=1 and Fpc=1.2 times the dominant frequency. The results of the three filter types 

applied to the real data are shown in Appendix 16 (22/31). A summary of the results of the 

synthetic and real data is shown in Table 7. They are expressed in the mean and standard 

deviation of the relative differences. 

Table 7: Mean and standard deviation of relative differences before and after Chebyshev1 filtering 

  

Synthetic Manual Theoretical 

Mean (%) St. dev Mean (%) St. dev Mean (%) St. dev 

Cheby1 LP 7.4 1.8 19 3.4 20 8.7 

Cheby1 HP 11 6.3 6.8 6.1 8.0 8.8 

Cheby1 BP 11 7.0 12 5.6 13 8.8 

No filter 12 6.8 9.0 9.2 10 9.7 

 

All filters have a positive influence on the synthetic data. The low-pass filter performs best 

in the synthetic case, but worst in both real data cases. It can be speculated that the AIC does 

not function on a signal with a low number of frequency components in the same range. This 

can be enlightened from the other side as well. The AIC requires, besides the dominant 

frequency, also frequencies that are related to noise of much higher frequency, because that 

is what creates the rapid change in tangent in the time domain. When the frequencies are too 

close together the change in tangent in the time signal might become unrecognisable. 

4.4.2 Visual classification 

In Appendix 17 (25/31) the visual classifications of all synthetic and real signals before and 

after Chebyshev1 filtering are listed. The results reflect that none of the Chebyshev1 filters 

improved the visual classification of the synthetic signals. In the majority of cases the visual 

classification became worse. 

The visual classification of the real ultrasonic signals reflects exactly the same results as the 

synthetic data. In general the time signals decreased a lot regarding the manual picking ease. 

It can, therefore, be stated that in the synthetic nor real signal case none of the three filters 

improved the manual picking ease. A brief overview of the results shown in Table 8 supports 

that statement. 
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Table 8: Summary of the visual classification results before and after Chebyshev1 filtering 

  

Synthetic data Real data 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Cheby1HP 2 2 26 10 9 11 

Cheby1 LP 1 8 21 0 0 30 

Cheby1 BP 0 1 29 0 4 26 

No filter 24 6 0 15 11 4 

 

4.5 Spectral subtraction 

4.5.1 Onset estimation 

Two parameters were determined for spectral subtraction. The first one was the frame length 

expressed in microseconds, the second one was the number of frames used for the noise 

average. The frame length was varied from 0.5 µs to 10 µs and the number of frames for 

averaging from 1 to 10. The best synthetic data results were obtained when the noise was 

averaged over 5 frames of 1 µs per frame. R code related to spectral subtraction is appended 

in Appendix 18 (26/31). The onset estimation results are visualised in Appendix 19 (27/31). 

The number of estimations above 15 % relative difference decreased and the number of 

estimation below 5 % relative difference increased, especially with the 30 mm and 50 mm 

diameter samples.  

The optimal results for the real data onset estimation were obtained using 5 frames for noise 

averaging of 2 µs length per frame. The results clearly show more AIC onsets picked at a 

relative difference higher than 20 % after spectral subtraction compared to before spectral 

subtraction with respect to the real data. The same applies to the theoretical onset case. In 

theory, spectral subtraction could perform better than it did here. However, due to a standard 

frame length and an equal number of frames for every sample it does not always capture a 

complete noise period. In Table 9 the mean and standard deviations of all cases after spectral 

subtraction are summarised.  

Table 9: Mean and standard deviation of relative difference before and after spectral subtraction 

  

Synthetic Manual Theoretical 

Mean (%) St. dev Mean (%) St. dev Mean (%) St. dev 

Spectral sub. 7.5 6.5 19 14 18 17 

No filter 12 6.8 9.0 9.2 10 9.7 

 

The synthetic data has 6-8 noise components which start at the first time instance of the data 

series. Therefore, the noise period was fairly easy to capture and hence, the synthetic results 

improved by spectral subtraction. In the real data cases the noise components started at 

different unknown time instances and therefore it became difficult to capture a complete 

noise period with a standard frame length and number of frames for noise averaging. 
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4.5.2 Visual classification 

A visual classification of the processed synthetic signals is given in Appendix 20 (28/31). 

There is one case where spectral subtraction provided a visually better time signal to extract 

the onset from than before filtering. In the rest of the cases the time signals remained in the 

same class or got worse. The reconstructed time signal were never continuous. This was 

caused by the magnitude of the average noise spectrum. This magnitude is subtracted from 

every frame in the signal. In any two adjacent frames different frequencies and amplitudes 

were present and, therefore, they all have a different phase spectra. Subtraction of the 

average noise spectrum adjacent frames to be end up with non-connecting magnitude and 

resulted in a discontinuous reconstruction of the time frame. 

A visual classification was also produced regarding the real signals, see Appendix 20 

(28/31). Except for a single sample spectral subtraction could not improve the visual 

classification of the real data. The reason for this is identical to the one for the synthetic data. 

Discontinuous time signals make it more difficult to recognise the onset. The results of the 

visual comparison of synthetic and real signals are summarised in Table 10. 

Table 10: Visual classification overview of spectral subtraction 

  

Synthetic data Real data 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Spectral sub. 9 11 10 6 8 16 

No filter 24 6 0 15 11 4 

 

4.6 Comb filter 

4.6.1 Onset estimation 

The comb filter adds a delayed version of a time signal to itself. The delay in units was set 

to 3 µs for the synthetic data. This value was estimated based on the distance between the 

local maxima and minima in the noise in the time domain. It was tried to shift a local 

maximum exactly over a nearby minimum in order to cancel out the noise period. The 

distance was visually determined and optimized by trial and error. R code related to comb 

filtering is appended in Appendix 21 (29/31). The results are shown in Appendix 22 (30/31). 

The synthetic onset could be estimated accurately after comb filtering. Most relative 

differences were within a 2.5 % range and 2 out of 30 samples were higher than 10 % relative 

difference. This could point out uniformity in the noise period in the synthetic data, which 

would be a reasonable assumption since it was created with 6-8 noise components only.  

For the real data the optimal time shift for the comb filter was also set by trial and error. AIC 

results obtained from a time shift of 0.75 µs, 1 µs, and 2 µs were evaluated, but not did differ 

significantly. It was chosen that optimal results were obtained with a 0.75 µs time shift 

regarding the mean and relative difference. Those results are also plotted in Appendix 22 

(30/31) 
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More onsets were estimated above the 20 % line in the manual case after filtering than 

before. The same applied to the theoretical case. The reason for this could be the non-

uniformity of the real data noise. There were tens of frequency components which all start 

at different times, in contrast with the synthetic data where all noise started at the first time 

instance. A generalised time shift does not work for all signals. In Table 11 the comb filter 

statistics are listed. 

Table 11: Mean and standard deviation of the relative differences before and after comb filtering 

  

Synthetic Manual Theoretical 

Mean (%) St. dev Mean (%) St. dev Mean (%) St. dev 

Comb  2.3 4.4 11 8.4 13 12 

No filter 12 6.8 9.0 9.2 10 9.7 

 

4.6.2 Visual classification 

The signals after comb filtering were visually classified. The results of the synthetic signal 

classification are shown in Appendix 23 (31/31). Comb filtered signals only rarely scored a 

three in the visual classification system. The important part of the signal, the onset, remained 

visible most of the time and was located at the same time instance as before filtering.  

Real signals after comb filtering often appeared as good as before filtering. The noise periods 

looked more uniform, amplitudes got smaller, and the number of small oscillations 

increased. If the onset could be manually estimated with decent certainty before processing 

than it would be very likely that the onsets were to be manually determined with decent 

certainty after processing. A summary of the visual evaluation results is denoted in Table 

12. 

Table 12: Summary of the visual classification results before and after comb filtering 

  

Synthetic data Real data 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Comb 17 11 2 10 15 5 

No filter 24 6 0 15 11 4 

 

Referring to the classification criteria of class one the onset should be clearly recognisable 

and no uncertainty can exist between two points in the time domain further away than 1 % 

of their time instance. The second class was defined as signals where expertise is required 

to pick between two possible onsets which are further apart than 1 % of their time instance. 

Table 12 shows that the onset of a comb filtered signal is almost as likely to be found as in 

an original signal, but more signals require expertise. Two samples in the synthetic data and 

one sample in the real data were assigned to class three more than before filtering. 

Concluding that the comb filter still provides acceptable time domain signals.  
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4.7 Summary of results 

4.7.1 Onset estimation 

The mean relative difference and standard deviation were calculated for every filter. The 

filters were ranked with respect to mean relative difference. The standard deviation was 

taken into account when the means of two or more filters were closer to each other than 1 

%. 

In Fig. 28 the mean and standard deviation of the relative differences to the true onset before 

filtering are highlighted with a dashed line and a shaded area, respectively. All filters have a 

positive effect on the synthetic signals regarding the onset estimation by AIC. The ranking 

of the filter with respect to the synthetic data can be found in Table 13. 

Table 14 and Fig 29 show that, in contrast with the synthetic data results, not all filters 

performed better than the no-filter case. Six filters have a lower mean and standard deviation.  

Table 15 and Fig 30 show that four signal processing techniques improve the mean and 

standard deviation of the real signals with respect to the manual onset. That is two filters less 

than the theoretical case.  

Table 13: Ranking of signal processing techniques with 

respect to the true onset 

Rank Filter type 

Mean  St. dev 

(%) (p.p.) 

1 Amplitude 2.4 2.8 

2 Comb 2.3 4.4 

3 KZA 4.9 1.9 

4 Cheby1.LP 7.4 1.8 

5 KZ 7.3 5.3 

6 Cheby1.HP 7.2 5.4 

7 Spectral.sub. 7.5 6.5 

8 Butter.PB 10 5.1 

9 Butter.SB 10 7.3 

10 Butter.HP 11 6.3 

11 Butter.LP 11 5.9 

12 Cheby1.PB 11 7.0 

13 No.filter 12 6.8 

 

 

 

Fig. 28:Mean and standard deviation of the synthetic signals 

per filter. Dashed line and shaded area are mean and standard 

deviation of no-filter case, respectively. 
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Table 14: Ranking of signal processing techniques with 

respect to the manual onset 

Rank Filter type 

Mean St.dev 

(%) p.p 

1 Amplitude 6.0 5.9 

2 Butter SB 6.0 6.5 

3 Cheby1 HP 6.8 6.1 

4 Butter HP 8.0 7.0 

5 KZ 7.8 7.7 

6 KZA 8.9 7.7 

7 No filter 9.0 9.2 

8 Cheby1 PB 12 5.6 

9 Butter PB 12 8.0 

10 Comb 11 8.4 

11 Butter LP 14 8.2 

12 Cheby1 LP 19 3.4 

13 Spectral sub. 19 14 

 

 

Table 15: Ranking of signal processing techniques with 

respect to the theoretical onset 

Rank Filter type 

Mean St. dev 

(%) p.p. 

1 Amplitude 7.4 8.7 

2 Cheby1 HP 8.0 8.8 

3 Butter SB 9.1 9.3 

4 Butter HP 10 8.5 

5 No filter 10 9.7 

6 KZ 11 11 

7 KZA 13 10 

8 Cheby1 PB 13 8.8 

9 Comb 13 12 

10 Butter PB 16 10 

11 Spectral sub. 18 17 

12 Butter LP 18 9.1 

13 Cheby1 LP 20 8.7 

  

All filters provided better onset estimation results with respect to mean and standard 

deviation than the no-filter case regarding the synthetic data. The synthetic data was created 

to verify the performance of the filters which could then be reflected in the filters applied to 

the real ultrasonic data. In the filter performance with respect to the theoretical onset there 

Fig. 29: Mean and standard deviation of the real signals per 

filter with respect to the manual onset. Dashed line and shaded 

area are mean and standard deviation of no-filter case, 

respectively. 

Fig. 30: Mean and standard deviation of the real signals per 

filter with respect to the theoretical onset. Dashed line and 

shaded area are mean and standard deviation of no-filter case, 

respectively. 
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are six filters ranked higher than the no-filter case. In the manual onset case there are four. 

This is a sign that the synthetic data is either not 100 % representative or that the picking 

methods based on the theoretical and manual onset were inaccurate and cause the deviations. 

The former would be more plausible and of higher impact than the latter, because the 

simplicity of the synthetic signals made signal enhancement by filter parameter 

generalisation easier. Due to the complexity of the real signals the generalised filter 

parameters did often deteriorate the signal, because every signal is unique, especially 

between sample sizes signals are not alike. The theoretical relationship between P- and S-

waves was mathematically proven (see Section 2.2.1) and the manual picking was carried 

out by two professionals and one novice, which in both cases could lead to small deviations 

in the filter performance, but not as large as they are shown in the results.  

4.7.2 Visual comparison 

In order to rank the filters on visual classification results two ranking systems were 

considered. The first system was based on the fact that expertise could lead to correct 

estimations of class one and two. The number of filters in those classes were added up and 

the highest number was assigned rank one. When two filters obtained an equal score the 

filter with the largest number of signals in class one would be ranked higher. The second 

system was purely based on the number of filters per class individually. The filters were 

ordered based on the number of signals in class one. Signals in class two would be decisive 

if an equal score would be obtained in class one. Neither of the systems is wrong. It was 

chosen to use the first ranking system for evaluation. 

Visual comparison indicates that only a Butterworth high-pass filter improves the manual 

picking ease of the synthetic signals, see Table 16. All other filters deteriorate the time 

domain signal. The visual comparison test of the real data shows the same behaviour as the 

synthetic data results, see Table 17. Only a Butterworth high-pass filter could improve the 

manual picking ease of the signals. All other filters have a negative effect on the manual 

picking ease. 

Table 16: Ranking of filters with respect to the visual classification results of the real data 

Rank Filter type Class 1 Class 2 Class 3 

1 Butterworth HP 25 5 0 

2 No filter 24 6 0 

3 Amplitude 0 30 0 

4 Comb 17 11 2 

5 Butterworth BP 11 16 3 

6 Spectral sub. 9 11 10 

7 Butterworth LP 2 15 13 

8 Butterworth BS 5 6 19 

9 KZ 0 11 19 

10 Cheby1 LP 1 8 21 

11 Cheby1HP 2 2 26 

12 Cheby1 BP 0 1 29 

13 KZA 0 0 30 
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Table 17: Ranking of filters with respect to the visual classification results of the real data  

Rank Filter type Class 1 Class 2 Class 3 

1 Butterworth HP 17 9 4 

2 No filter 15 11 4 

3 Comb 10 15 5 

4 Butterworth BS 12 9 9 

5 Cheby1 HP 10 9 11 

6 Amplitude 1 18 11 

7 KZ 5 10 15 

8 Spectral sub. 6 8 16 

9 Cheby1 BP 0 4 26 

10 Butterworth BP 0 4 26 

11 KZA 0 2 28 

12 Butterworth LP 0 0 30 

13 Cheby1 LP 0 0 30 
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5. Discussion 

5.1 Interpretation and implications 

Four main findings are interpreted from the results. The first main finding indicates that an 

amplitude filter decreases the mean and standard deviation of the relative differences to the 

S-wave onset the most of all filters. The results prove that solely looking for a change in 

amplitude, disregarding variance, gives a better approximations of the S-wave onset than 

traditional onset estimation by AIC. 

The second important finding is that a high-pass filter of Chebyshev1 or Butterworth 

increases the performance of the AIC picking method. It is speculated that if the dominant 

frequency indeed contains information about the initial shear wave signal the frequencies 

just below the dominant frequency make the onset less recognizable for the AIC picking 

method. And, that frequencies higher than the dominant frequency are required, because they 

make a change in tangent in the time domain signal visible. 

The third main finding is the correlation between the performance of the Chebyshev type 1 

filter and the Butterworth filter, based on the real data results. The high-pass, low-pass, and 

band-pass variants of both filters appear as couples in the ranking, concluding that the steeper 

roll-off of the Chebyshev filter or the maximally flat pass band of the Butterworth filter does 

not have an advantage over the other. It could also imply that the Chebyshev band-stop filter 

would provide better results than the no-filter case, because the Butterworth band-stop filter 

provides better results than the no-filter case. On the contrary, it can also be speculated that 

the results will be approximately the same as the Butterworth band-stop filter and are, 

therefore, not necessarily worth testing. 

The fourth and most unexpected result is the performance of the Butterworth band-stop filter. 

Even though the dominant frequency is filtered out the mean and standard deviation of the 

relative difference decreased. This implies that the dominant frequency does not contain 

relevant information about the target signal. If that is true then the fundament of this thesis 

is endangered, because all frequency filter parameters are automated with respect to the 

dominant frequency. 

5.2 Limitations 

5.2.1 Subsetting the data 

A subset of the synthetic and real data was taken. The subsets only contained 30 mm, 42 mm 

and 50 mm diameter samples. The effectiveness of the filters was not tested on 14 mm, 20 

mm, 60 mm, and 100 mm diameter samples. Time signals appear different per sample length 

with respect to noise, amplitude, and onset. Therefore, the filter ranking might not be 

generalizable for all sample length.  
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5.2.2 Accuracy of the manual onset 

The manual pick was performed by three individuals whom independently picked the S-

wave onsets. The estimated onsets were in most cases aligned between the three individuals, 

but in multiple samples two out of three individuals picked the same onset and the third one 

picked a different one. Sometimes there were even three different picks. It was decided to 

average the onsets per sample. For the cases where the three picks were nearly equal this 

gave representative values, but for the cases where three different picks were chosen it does 

not take into account which picks are correct and incorrect. The average value from those 

signals is not representative. Eliminating picks based on one’s interpretation would bias the 

results, therefore it was chosen to average them. The liability of the manual onset dataset is 

controversial. 

5.2.3 Filter parameter optimization 

The automation of most filters is not fully optimized. The KZ and KZA filter have a set 

averaging window and number of iterations. The filter would potentially perform better if 

the number of iterations is adaptable to amplitude of the noise. Plausibly, low amplitude 

noise does not need an equal number of iterations as high amplitude noise. The amplitude of 

the noise increases as sample size increases and, therefore, the results of the KZ and KZA 

could be improve if the parameters were sample specific. 

Spectral subtraction was expected to produce better results, because it aims to capture 

exactly one noise period. The biggest problem encountered in spectral subtraction was 

capturing noise right before the onset, because the onset is unknown. It was, therefore, 

chosen to start the noise selection from the first time instance any amplitude displacement 

larger than 0.01 mV occurred. The selected noise might not have been sufficiently 

representative for noise at the onset. A solution for this problem was not found, but an 

improvement of noise selection could be made by using the theoretical relationship between 

P- and S-waves for an estimation of the S-wave onset. Noise could be captured right before 

the theoretical S-wave onset. This must be executed with caution to avoid capturing the S-

wave onset in the noise selection. The second problem related to spectral subtraction is the 

discontinuous reproduced signal. Discontinuity makes it difficult to visually determine the 

onset and it causes jumps in the variance which is bad automated onset picking by AIC 

The last filter that could produce better results after automation optimization is the comb 

filter. The time shift is now set to a specific time based on visual judgement and trial and 

error. When local maxima and minima are not coinciding the noise has no chance to cancel 

out. A time shift based on local maxima and minima would most likely increase the 

performance of the comb filter. An attempt to implement this was made, but the selected 

local optima were not the correct ones and therefore the automation gave bad results.  
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5.3 Future research 

5.3.1 Signal analysis 

In being able to modify the ultrasonic signals in order to produce a new signal that contains 

enough information to detect the onset by automation and little enough information to reject 

noise a solid understanding of the system is required. In this case the system is a rock sample. 

Since only the in- and output are known and the system is unknown this future study could 

be referred to as an inverse problem (Tarantola, 1987). Research questions that could be 

asked include “Which part of the frequency spectrum contains indispensable information?”, 

“What causes the initial dominant frequency of 1 MHz to decrease to roughly 100 kHz in all 

samples larger than 14 mm diameter?”, “How can a system be mathematically described?”, 

and “Is there a trend in the mathematical description of the system that uncovers essential 

information regarding the S-wave onset?”. Further studies, which take these questions into 

account, will need to be undertaken to develop a complete understanding of the influence of 

the rock on the signal. 

Frequency analysis was carried out in this studies to acquire information about the noise and 

target signal. The signals were cut right before the onset and a frequency spectrum of either 

part of the signal was calculated. The frequency spectra were compared in the hope that it 

would reveal information about the target signal. Despite the expectation the separate parts 

did not show useful differences. 

5.3.2 Quality of synthetic data 

In further investigations it might be possible to use a more sophisticated synthetic signal. 

Reflections and refractions could be represented by different noise onsets depending on the 

sample length and diameter. This would allow for more realistic testing of the processing 

techniques. Throughout this research it was chosen to start all noise components at t=0. Due 

to the damped characteristic of the noise component the onset was easy to detect in large 

samples where the onset appeared when all the noise was damped, but difficult to detect in 

short samples where the noise was not damped as much at onset arrival. Further research 

would require deep analysis of reflections and refractions and possibly numeric modelling 

of reflections and refractions in a rock sample. 
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6. Conclusions 

The aim of this study was to evaluate signal processing techniques with respect to ultrasonic 

shear wave signals in rocks. The overarching objective was to improve the precision and 

accuracy of onset estimation by the AIC picking criterion. The main research question to 

answer was: “How do signal processing methods influence the ultrasonic shear wave onset 

estimations?” This question is answered by: “Of all methods tested during this study the 

amplitude filter, Butterworth high-pass filter, Chebyshev type 1 high-pass filter, and 

Butterworth stop-band filter positively influence the shear wave onset estimation by AIC.” 

The filters parameters are not fully optimized and could possibly improve the results even 

more. Also, the understanding that the dominant frequency contains essential information 

about the onset is called into question and should be further investigated.  

The generalisability of the results are subject to a certain limitations, namely, the processing 

techniques were only tested on 30 mm, 42 mm, and 50 mm diameter samples. Also, the 

synthetic data was not fully representative. Notwithstanding these limitations , the study 

suggests that there is potential benefit in the application of signal processing techniques to 

ultrasonic shear wave signals measured on rocks in order to detect the S-wave onset.  
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Appendices 

Appendix 1 (1/31) 

Code for AIC picking method in R (R. Kiuru, 2017) 
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Appendix 2 (3/31)  

Code for cumulative distribution function in R  
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Appendix 3 (4/31) 

Code for KS-testing in R 
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Appendix 4 (5/31) 

Code for onset accumulation in R 
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Appendix 5 (8/31) 

Code for synthetic signal production in R 
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Appendix 6 (10/31) 

Code for KZ and KZA filtering in R 
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Appendix 7 (11/31) 

Overview of the onset per signal before and after KZ and KZA filtering 

 

Red: No filter, Blue: KZ, Green: KZA 

 

Red: No filter, Blue: KZ, Green: KZA 

 

Red: No filter, Blue: KZ, Green: KZA 
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Appendix 8 (12/31) 

Visual signal classification before and after KZ and KZA filtering 

Diameter (in mm) 30 42 50 

Sample nr. No filter KZ KZA No filter KZ KZA No filter KZ KZA 

1 2 2 3 2 2 3 1 3 3 

2 2 3 3 1 3 3 1 3 3 

3 1 2 3 1 3 3 1 2 3 

4 1 3 3 1 2 3 1 3 3 

5 2 2 3 1 3 3 1 3 3 

6 1 2 3 1 3 3 1 2 3 

7 1 3 3 1 3 3 1 3 3 

8 2 3 3 1 3 3 2 2 3 

9 1 2 3 1 3 3 1 3 3 

10 1 3 3 1 3 3 1 2 3 
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Appendix 9 (13/31)  

Code for amplitude filtering in R 
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Appendix 10 (14/31) 

Overview of the onset per signal before and after amplitude filtering 

 

Red: No filter, Blue Amplitude filter 

 

Red: No filter, Blue Amplitude filter 

 

Red: No filter, Blue Amplitude filter 
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Appendix 11 (15/31) 

Visual signal classification before and after amplitude filtering 

Diameter (in mm) 30 42 50 

Sample nr. No filter Amplitude No filter Amplitude No filter Amplitude 

1 2 2 2 2 1 2 

2 2 2 1 2 1 2 

3 1 2 1 2 1 2 

4 1 2 1 2 1 2 

5 2 2 1 2 1 2 

6 1 2 1 2 1 2 

7 1 2 1 2 1 2 

8 2 2 1 2 2 2 

9 1 2 1 2 1 2 

10 1 2 1 2 1 2 
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Appendix 12 (16/31) 

Code for Butterworth filtering in R 
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Appendix 13 (17/31) 

Overview of the onset per signal before and after Butterworth filtering 

 

Red: No filter, Blue: Butterworth low-pass 

 

Red: No filter, Blue: Butterworth high-pass 

 

Red: No filter, Blue: Butterworth band-pass 

 

Red: No filter, Blue: Butterworth band-stop 
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Red: No filter, Blue: Butterworth low-pass 

 

Red: No filter, Blue: Butterworth high-pass 

 

Red: No filter, Blue: Butterworth band-pass 

 

Red: No filter, Blue: Butterworth band-stop 
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Red: No filter, Blue: Butterworth low-pass 

 

Red: No filter, Blue: Butterworth high-pass 

 

Red: No filter, Blue: Butterworth band-pass 

 

Red: No filter, Blue: Butterworth band-stop 
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Appendix 14 (20/31) 

Visual signal classification before and after Butterworth filtering 

Diameter (in mm) 30 

Sample nr. No filter Low-pass High-pass Band-pass Band-stop 

1 2 2 2 1 3 

2 2 1 1 3 3 

3 1 1 1 1 1 

4 1 2 1 2 2 

5 2 2 2 2 3 

6 1 3 1 1 3 

7 1 2 1 2 1 

8 2 3 2 2 2 

9 1 2 1 2 3 

10 1 3 1 2 3 

 

Diameter (in mm) 42 

Sample nr. No filter Low-pass High-pass Band-pass Band-stop 

1 2 2 2 2 3 

2 1 3 1 2 3 

3 1 2 1 2 3 

4 1 2 1 1 3 

5 1 3 1 3 1 

6 1 2 1 2 3 

7 1 2 1 1 2 

8 1 3 1 2 1 

9 1 3 1 3 3 

10 1 2 1 2 1 

 

Diameter (in mm) 
50 

Sample nr. No filter Low-pass High-pass Band-pass Band-stop 

1 1 3 1 1 3 

2 1 3 1 1 3 

3 1 2 2 1 3 

4 1 3 1 2 2 

5 1 3 1 2 2 

6 1 2 1 1 3 

7 1 3 1 2 3 

8 2 2 1 2 3 

9 1 3 1 1 3 

10 1 2 1 1 2 
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Appendix 15 (21/31) 

Code for Chebyshev1 filtering in R 
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Appendix 16 (22/31) 

Overview of the onset per signal before and after Chebyshev filtering 

 

Red: No filter, Blue: Chebyshev1 low-pass 

 

Red: No filter, Blue: Chebyshev1 high-pass 

 

Red: No filter, Blue: Chebyshev1 band-pass 
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Red: No filter, Blue: Chebyshev1 low-pass 

 

Red: No filter, Blue: Chebyshev1 high-pass 

 

Red: No filter, Blue: Chebyshev1 band-pass 

 

Red: No filter, Blue: Chebyshev1 low-pass 
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Red: No filter, Blue: Chebyshev1 high-pass 

 

Red: No filter, Blue: Chebyshev1 band-pass 
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Appendix 17 (25/31) 

Visual signal classification before and after Chebyshev1 filtering 

Diameter (in mm) 30 

Sample nr. No filter Cheby1 HP Cheby1 LP Cheby1 BP 

1 2 3 2 3 

2 2 3 2 3 

3 1 3 3 2 

4 1 3 3 3 

5 2 3 3 3 

6 1 3 3 3 

7 1 3 2 3 

8 2 3 3 3 

9 1 3 3 3 

10 1 3 3 3 

 

Diameter (in mm) 42 

Sample nr. No filter Cheby1 HP Cheby1 LP Cheby1 BP 

1 2 3 3 3 

2 1 3 2 3 

3 1 3 3 3 

4 1 1 2 3 

5 1 3 3 3 

6 1 3 2 3 

7 1 1 3 3 

8 1 3 3 3 

9 1 3 3 3 

10 1 3 3 3 

 

Diameter (in mm) 50 

Sample nr. No filter Cheby1 HP Cheby1 LP Cheby1 BP 

1 1 2 3 3 

2 1 3 3 3 

3 1 3 3 3 

4 1 3 2 3 

5 1 3 3 3 

6 1 2 3 3 

7 1 3 3 3 

8 2 3 3 3 

9 1 3 1 3 

10 1 3 2 3 
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Appendix 18 (26/31) 

Code for spectral subtraction in R 
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Appendix 19 (27/31) 

Overview of the onset per signal before and after spectral subtraction 

 

Red: No filter, Blue: spectral subtraction 

 

 

Red: No filter, Blue: spectral subtraction 

 

Red: No filter, Blue: spectral subtraction 
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Appendix 20 (28/31) 

Visual signal classification before and after spectral subtraction 

Diameter (in mm) 30 42 

Sample nr. No filter Spectral sub. No filter Spectral sub. 

1 2 3 2 1 

2 2 2 1 3 

3 1 2 1 3 

4 1 1 1 3 

5 2 3 1 3 

6 1 2 1 2 

7 1 1 1 1 

8 2 2 1 2 

9 1 3 1 1 

10 1 3 1 1 

 

Diameter (in mm) 50 

Sample nr. No filter Spectral sub. 

1 1 1 

2 1 2 

3 1 2 

4 1 3 

5 1 1 

6 1 2 

7 1 1 

8 2 3 

9 1 2 

10 1 2 
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Appendix 21 (29/31) 

Code for comb filtering in R 
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Appendix 22 (30/31) 

Overview of the onset per signal before and after comb filtering 

 

Red: No filter, Blue: comb filter 

 

 

Red: No filter, Blue: comb filter 

 

Red: No filter, Blue: comb filter 
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Appendix 23 (31/31) 

Visual signal classification before and after comb filter  

Diameter (in mm) 30 42 50 

Sample nr. No filter Comb No filter Comb No filter Comb 

1 2 3 2 1 1 1 

2 2 2 1 2 1 2 

3 1 1 1 2 1 1 

4 1 1 1 2 1 1 

5 2 2 1 1 1 1 

6 1 2 1 1 1 2 

7 1 1 1 1 1 1 

8 2 1 1 2 2 3 

9 1 1 1 1 1 1 

10 1 1 1 2 1 2 

 


