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SUMMARY

This master thesis has been made at ORTEC in Zoetermeer. ORTEC is one of the world’s leaders in opti-
mization software and analytics solutions. The research study is conducted at ORTEC Routing and is one of
the domains of the planning and scheduling software. ORTEC Routing aims to develop software that opti-
mizes route planning in order to reduce transportation cost. This optimization also include the accuracy of
the travel time predictions from point A to B. If there is a too tight schedule, then the schedule would lead
to pressure to the driver, late fees and reputation damage, but a too loose schedule would result in wasted
capacity.

To calculate the travel time, first the shortest path has to be found. From the shortest path, the travel time can
be derived. This is the sum of the length, divided by the speed, of each road that is included in the shortest
path. To calculate the shortest path, detailed map data provided by the company HERE Technologies is used.
This map data includes road networks of different countries and many properties of each road, such as lane
width, speed limit, whether it is a bridge, etc. To find a correct shortest path and to obtain accurate travel time
predictions, it is important that the assigned speed to each road in the road network is predicted accurately.
Currently, each road in the map belongs to one of the 20 road types, where each road type has a speed that
is assigned by the customer. These speeds are based on the experience of the implementation consultant
(customer). However, dividing the roads in the map into 20 road types, is quite a rough road classification.
Also, the speeds that are assigned to each road type is based on the experience from the customer. This
reduces the accuracy of the travel time predictions.

To improve the travel time predictions at ORTEC, den Heijer [1] introduced a new method. This method
learns from realized GPS data, which was obtained from a customer that operates with trucks. The coordi-
nates of the GPS data are used to match each GPS point to a road in the map. In this way, the corresponding
road properties (speed limit, lane width, tunnel, ramp, region, etc.) of the matched road can be looked up and
linked to the driven speed of the GPS point. This results in point-based data. By finding relations between
the road properties (independent variables) and the driven speed (dependent variable), the speed of each
road in the map can be predicted more accurately. Besides the point-based data, den Heijer also introduced
trip-based data, for training the model and to predict the speed of each road in the map. Trip-based data is
based on the average road properties and travel time between two GPS points.

Different models were developed by den Heijer and were either based on linear regression or random forest.
The random forest model, which was trained on point-based data with dependent variable logspeed, had the
best travel time prediction accuracy. This accuracy is sMdAPETT 13.8% compared to sMdAPETT 18.4% of the
current method (20 road types). This is an enormous improvement. However, the shortcoming of the random
forest method is that it is not able to learn from trip-based data, which could have improved the travel time
prediction accuracy further. The linear regression model can be trained on both point- and trip-based data,
but can only model linear relationships. This limits the prediction accuracy. Therefore, this research focuses
on developing a model with a higher prediction accuracy than linear regression and random forest that can
be used for both point- and trip-based data.

The travel time prediction methods in literature, except the method from den Heijer, focus on improving the
travel time predictions for one route or road. This research study focuses on improving travel time predictions
for an entire road network. Therefore, the travel time prediction method, developed by den Heijer, is the only
method that is applicable to this research. However, to improve the method of den Heijer, prediction methods
that are used by the travel time prediction methods in literature, can be adapted to this research problem. The
prediction methods that can be used are linear regression, random forest, support vector regression, gradient
boosting and neural networks. These methods are able to predict a continuous output (speed) and are able
to learn from a data set, to generalize this to an entire road network. Subsequently, a method trade-off was
performed to find the best prediction method that overcomes the shortcomings of the linear and random
forest models. After performing the method trade-off and a sensitivity analysis, it was found that the neural
network is the most suitable prediction method, for both point- and trip-based data.
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vi 0. SUMMARY

The factors that influence the travel time can be categorized into five classes: vehicle classification, temporal
factors, weather factors, road engineering factors and unpredictable factors. The weather and unpredictable
factors were considered to be out of scope for this research. The vehicle classification is trucks, and is fixed
because the GPS data is collected from trucks. The road engineering factors (road properties) are firstly used
to find relationships between the road properties and speeds. At the end of this research, the influence of
the temporal factor was researched by splitting the data set into rush and non-rush hours. This is because
the temporal factor could not be used as independent variable, since only one speed can be assigned to each
road in the digital map.

The neural network could be used as prediction method by finding relationships between the independent
variables (speed limit, region, lane width, etc.) and the dependent variable (speed). In total, 21 independent
variables were used to find relationships between the road engineering factors and speeds in the data sets.
This is the training process. After the model is trained, the speed of each road in the map can be predicted
individually. In total, 21 different neural network models were developed. These models differ in type of
training data (point- or trip-based data), loss function (MSELF, MAPELF, MAELF, sMAPELF and sMdAPELF)
and dependent variable (speed, logspeed and pace (1/speed)). During hyperparameter tuning, it was found
that the best number of neurons and hidden layers differ between the models. This depends on whether the
dependent variable pace or loss function sMdAPELF was used.

After the best set of hyperparameters was found, 21 different neural network models were trained on old and
new data. The old data was collected and preprocessed by den Heijer, with a frequency of 5 minutes. The
new data was collected and preprocessed during this research, with a frequency of 2 minutes. The data sets
were obtained from different customers that operate with trucks in the Benelux or the Netherlands. It was
expected that with new data, the quality of the trip-based data would improve and as a result the speed and
travel time prediction accuracy of the neural networks.

From the results, it was concluded that the random forest models, from den Heijer, had the best travel time
prediction accuracy with sMdAPETT 13.8% for old data, and sMdAPETT 12.4% for new data. This means that
none of the neural networks did outperform the sMdAPETT of den Heijer’s models. This means that the neural
network is not able to learn and predict the speeds in such a way, that the travel time prediction accuracy is
improved. Furthermore, possible relationships between the speed and travel time prediction accuracy were
investigated. It was found that the speed prediction accuracy in MSESpeed was mostly related to the travel
time prediction accuracy in sMdAPETT. The model with the lowest MSESpeed had the lowest sMdAPETT for
new data, which was not true for the old data. However, the MSESpeed can be used as a first estimation of the
sMdAPETT, but not to find the model with the best sMdAPETT.

It was expected that by increasing the data frequency from 5 to 2 minutes, a relatively higher travel time
prediction accuracy would be achieved, compared to den Heijer’s models. However, from the results, it is
unclear whether a higher frequency of 2 minutes, compared to 5 minutes, improves the travel time prediction
accuracy. Therefore, it is recommended to research the influence of the data frequency on the same data set.
Furthermore, the temporal factor was researched by splitting the new data set into a rush and non-rush hour
data set. The results showed that the travel time prediction accuracy can be improved even further, by taking
the temporal factor into account.

After all, based on the results that were obtained in this research, a new speed prediction model that outper-
forms the current speed prediction models, with respect to sMdAPETT, could not be developed. However, it
could be neither concluded that the neural network does not provide better travel time predictions for other
data sets. Also, it cannot be concluded that neural networks, which are trained on trip-based data, will not
outperform the random forest models with a higher data frequency than 2 minutes.



SAMENVATTING

Deze master thesis is gemaakt bij ORTEC in Zoetermeer. ORTEC is één van de wereldleiders in optimal-
isatie software and analytische oplossingen. Het onderzoek is uitgevoerd bij ORTEC Routing en is één van
de domeinen van de planning- en schedulingsoftware van ORTEC. ORTEC Routing streeft ernaar om soft-
ware te ontwikkelen dat de route planning optimaliseert om zo de transport kosten te verminderen. Deze
optimalisatie bevat ook de nauwkeurigheid van de reistijdvoorspellingen voor voertuigen van punt A naar
B. Als de planning te strak is, kan dit leiden tot druk voor de bestuurder, vertragings kosten en/of reputati-
eschade. Echter, een te ruime planning leidt tot onbenutte capaciteit van het voertuig waardoor mogelijk te
veel voertuigen zijn ingezet.

Om de reistijd te berekenen, moet er eerst het kortste pad worden gevonden. Hierna kan de reistijd worden
berekend aan de hand van het kortste pad. Dit is de som van de lengte, gedeeld door de snelheid, van elke
weg die is opgenomen in het kortste pad. Om het kortste pad te berekenen is er gebruik gemaakt van gede-
tailleerde kaartgegevens. Deze zijn geleverd door het bedrijf HERE Technologies en bevatten wegnetwerken
van verschillende landen en veel eigenschappen van elke weg. Voorbeelden van wegeigenschappen zijn de
breedte van een weg, het snelheidslimiet, of de weg een brug is, enz. Om een correcte kortste pad te vin-
den en om nauwkeurige reistijdvoorspellingen te verkrijgen, is het belangrijk dat de toegewezen snelheid aan
elke weg in het wegennet nauwkeurig wordt voorspeld. Momenteel behoort elke weg op de kaart tot één
van de 20 wegtypen, waarbij elk wegtype een snelheid heeft die kan worden toegewezen door de klant. Deze
snelheden zijn gebaseerd op de ervaring van de klant van ORTEC. Het opdelen van de wegen in de digitale
kaart in 20 wegtypen is echter een vrij groffe verdeling van de wegen. Ook zijn de snelheden die aan elk weg-
type worden toegewezen, gebaseerd op de ervaring van de klant. Deze twee tekortkomingen verminderen de
nauwkeurigheid van de reistijdvoorspellingen.

Om de reistijdvoorspellingen bij ORTEC te verbeteren, introduceerde den Heijer[1] een nieuwe methode die
leert van gerealiseerde GPS-data. De GPS-data werd verkregen van een klant die opereert met vrachtwa-
gens. De coördinaten van de GPS-data kunnen worden gebruikt om elk GPS-punt te matchen met een weg in
de digitale kaart. Op deze manier kunnen de wegeigenschappen (snelheidslimiet, rijstrookbreedte, tunnel,
op/afrit, regio, enz.) van de gematchte weg worden opgezocht en gekoppeld aan de gereden snelheid van
het GPS-punt. Dit resulteert in point-based data. Door relaties te vinden tussen de wegeigenschappen (on-
afhankelijke variabelen) en de gereden snelheid (afhankelijke variabele), kan de snelheid van elk weg op de
kaart hierna nauwkeuriger worden voorspeld. Naast de point-based data, introduceerde den Heijer ook trip-
based data voor het trainen van het model, en om de snelheid van elke weg op de kaart te voorspellen. Trip-
based data is gebaseerd op de gemiddelde wegeigenschappen en de reistijd tussen twee GPS-punten.

Verschillende modellen werden ontwikkeld door den Heijer en waren gebaseerd op lineaire regressie of ran-
dom forest. Het random forest model, dat werd getraind met point-based data en de afhankelijke variabele
logspeed, had de beste nauwkeurigheid van de reistijdvoorspellingen. Deze nauwkeurigheid was sMdAPETT

13,8%, vergeleken met sMdAPETT 18,4% van de huidige methode (20 wegtypen). Dit is een enorme verbe-
tering. Echter, de tekortkoming van de random forest is dat het niet in staat is om te leren van trip-based
data. Dit had de nauwkeurigheid van de reistijdvoorspellingen verder kunnen verbeteren. Het lineaire re-
gressiemodel kan worden getraind op zowel point- als trip-based data, maar kan alleen lineaire relaties mod-
elleren. Dit beperkt de voorspellingsnauwkeurigheid. Daarom richt dit onderzoek op het ontwikkelen van
een model met een hogere voorspellingsnauwkeurigheid dan lineaire regressie en random forest en dat kan
worden gebruikt voor zowel point- als trip-based data.

Uitgezonderd van de methode van den Heijer, zijn alle andere methodes voor reistijdvoorspellingen gericht
op het verbeteren van de reistijdvoorspellingen voor één route of weg. Dit onderzoek richt zich op het ver-
beteren van reistijdvoorspellingen voor een heel wegennet. Daarom is de door den Heijer ontwikkelde reis-
tijdvoorspellingsmethode de enige methode die kan worden toegepast op dit onderzoek. Om de methode
van den Heijer te verbeteren voor dit onderzoek, kunnen voorspellingsmethoden worden gebruikt van de
reistijdvoorspellingsmethoden in de literatuur. De voorspellingsmethoden die kunnen worden gebruikt zijn
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viii 0. SAMENVATTING

lineaire regressie, random forest, support vector regression, gradient boosting and neurale netwerken. Deze
methoden kunnen een continue output (snelheid) voorspellen en zijn in staat om te leren van een dataset en
deze vervolgens te generaliseren voor een heel wegennet. Vervolgens was een methode trade-off uitgevoerd
om de beste voorspellingsmethode te vinden, die niet de tekortkomingen van de lineaire en random forest
modellen heeft. Na het uitvoeren van de methode trade-off en een gevoeligheids analyse, bleek dat de neurale
netwerk de meest geschikte voorspellingsmethode voor zowel point- als trip-based data is.

De factoren die de reistijd beïnvloeden, kunnen worden onderverdeeld in vijf klassen: voertuigclassificatie,
tijdsfactoren, weersfactoren, wegfactoren en onvoorspelbare factoren. Het weer en onvoorspelbare factoren
werden niet onderzocht in dit onderzoek. De voertuigclassificatie voor dit onderzoek is vrachtwagens, omdat
de GPS-data werden verzameld van vrachtwagens. De wegfactoren (wegeigenschappen) werden gebruikt om
relaties te vinden tussen de wegeigenschappen en snelheden. Aan het einde van dit onderzoek is ook de
invloed van de tijdsfactoren onderzocht door de dataset op te splitsen in spitsuren en niet-spitsuren. De
tijdsfactor is op deze manier onderzocht, omdat het niet als onafhankelijke variabele kon worden gebruikt.
Dit is omdat aan elke weg slechts één snelheid kan worden toegewezen in de digitale kaart.

Het neurale netwerk kan als voorspellingsmethode worden gebruikt door relaties tussen de onafhankelijke
variabelen (snelheidslimiet, regio, rijstrookbreedte, etc.) en de afhankelijke variabele (snelheid) te vinden.
In totaal werden er 21 onafhankelijke variabelen gebruikt om verbanden te vinden tussen de wegfactoren
en snelheden in de datasets. Dit wordt het trainingsproces genoemd. Nadat het model is getraind, kan
de snelheid van elke weg op de kaart individueel worden voorspeld. In totaal zijn er 21 verschillende neu-
rale netwerkmodellen ontwikkeld. Deze modellen verschillen in het type training data (point- or trip-based
data), verliesfunctie (MSELF, MAPELF, MAELF, sMAPELF and sMdAPELF) en afhankelijke variabele (snelheid,
logsnelheid en tempo (1/snelheid)). Tijdens het afstemmen van de hyperparameters van de verschillende
modellen, werd er gevonden dat het beste aantal neuronen en verborgen lagen tussen de modellen ver-
schillen. Dit hangt af of de afhankelijke variabele tempo of verliesfunctie sMdAPELF was gebruikt.

Nadat de beste set hyperparameters was gevonden voor elk model, werden 21 verschillende neurale netwerk
modellen getraind op oude en nieuwe data. De oude data was verzameld en voorverwerkt door den Heijer,
met een frequentie van 5 minuten. De nieuwe data werd verzameld en voorverwerkt tijdens dit onderzoek,
met een frequentie van 2 minuten. De datasets werden verkregen van verschillende klanten die met vracht-
wagens in de Benelux of Nederland rijden. Het werd verwacht dat met de nieuwe data set de kwaliteit van de
trip-based data zou verbeteren, en als gevolg daarvan een verbetering van de nauwkeurigheid van de snelheid
en reistijdvoorspellingen van de neurale netwerken.

Uit de resultaten kan worden geconcludeerd dat de random forest models, van den Heijer, de beste reis-
tijdvoorspellingsnauwkeurigheid. De nauwkeurigheid van de reistijdvoorspelling zijn sMdAPETT 13,8% voor
de oude data en sMdAPETT 12,4% voor de nieuwe data. Dit betekent dat geen van de neurale netwerken de
sMdAPETT van de modellen van den Heijer kon verbeteren. Dit betekent dat de neurale netwerk niet in staat is
om zo van de snelheden te leren en te voorspellen, dat de nauwkeurigheid van de reistijdvoorspellingen werd
verbeterd. Verders werden mogelijke relaties tussen de voorspellings nauwkeurigheid van de snelheden en
reistijden onderzocht. Het bleek dat de nauwkeurigheid van de snelheidsvoorspelling in MSESpeed het meest
gerelateerd was aan de nauwkeurigheid van de reistijdvoorspelling in sMdAPETT. Het model met de laagste
MSESpeed had de laagste sMdAPETT voor de nieuwe data, maar dit was niet waar voor de oude data. Daarom
kan de MSESpeed worden gebruikt als een eerste schatting van de sMdAPETT en niet om de beste sMdAPETT

te vinden.

Er werd verwacht dat door het verhogen van de datafrequentie, van 5 naar 2 minuten, een relatief hogere
nauwkeurigheid voor de reistijdvoorspellingen zou worden bereikt, vergeleken met de modellen van den
Heijer. Uit de resultaten was het onduidelijk of een hogere frequentie van 2 minuten, vergeleken met 5
minuten, de nauwkeurigheid van de reistijdvoorspellingen verbeterd. Daarom wordt aanbevolen de invloed
van de datafrequentie op een zelfde datast te onderzoeken. Verders werd de tijdsfactor nog onderzocht door
de nieuwe dataset op te splitsen in een spits- en niet-spitsuur dataset. De resultaten toonden aan dat de
nauwkeurigheid van de reistijdvoorspellingen nog verder konden worden verbeterd door de tijdsfactor mee
te nemen in het model.
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1
INTRODUCTION

1.1. BACKGROUND TO ORTEC
ORTEC is one of the world’s leaders in optimization software and analytics solutions. ORTEC makes op-
erations more efficient, more predictable and more effective. The core activities of ORTEC are developing
advanced planning and scheduling software, providing advanced analytics and optimization solutions (con-
sultancy) and developing optimization software for real-time data like in sports. This research study is con-
ducted at ORTEC Routing and is one of the domains of the planning and scheduling software. ORTEC Routing
aims to develop software that optimizes route planning in order to reduce transportation cost.

1.2. PROBLEM STATEMENT
Route planning is a major research focus at ORTEC. To optimize the route planning, it is important that the
travel time-distance calculations come close to reality. If there is a too tight schedule, then this schedule
would lead to pressure to the driver, late fees and reputation damage, but a too loose schedule would result
in wasted capacity.

To calculate the shortest route, detailed map data provided by the company HERE Technologies is used. This
map data includes road networks of different countries and many properties of each road such as lane width,
speed limit, whether it is a bridge, etc. Currently, the travel time prediction of a calculated route for a vehicle
depends on assigned speeds (speed profile) to 20 different road type. These are based on the experience of
the implementation consultant (customer). The problems that can be identified with the current planning
and scheduling process are as follows:

1. Currently, roads in the map are assigned to one of the 20 different road types. After this, an average
speed is assigned to each road type by the implementation consultant. A heuristic is used to assign
each road in the map to a road type, but this heuristic is hard to understand, since it is unclear what
each road type represent. Also, there is never thorough research done whether the classification of the
20 road types is a good approach. Experience has shown that the 20 road types are not a good division
of the roads and seems to be too coarse[1]. Therefore, a better classification of the roads is needed by
taking into account factors that influence the average driven speed on the roads.

2. The average speed that is assigned to each road type for a specific vehicle is hard to estimate by the
implementation consultant. Therefore, it would be more accurate to use data sources that contain the
vehicle’s driven speed on many roads.

The consequence of the two mentioned problems above is that some customer experience two shortcomings
with the current planning and scheduling process: inaccurate travel time predictions and bad calculated
routes. These two shortcomings can be blamed to the inaccurate assignment of the travel speeds to the
roads. This is due to the bad classification of the roads and the assigned speeds by the customer as explained
above. By improving the classification and assigned speeds, the two shortcomings faced by the customers
can be mitigated.

1
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An easy and obvious option to improve the travel time prediction would be to use available routing software
such as Google maps, Bing maps, etc., which can provide accurate travel time predictions. However, these
routing softwares cannot be used by ORTEC, because they do not support many-to-many queries (shortest
paths between all sources s and targets t), which is needed to solve the vehicle routing problem (VRP). Also,
the computational time of these routing software is high and undesired, since the customers have a limited
amount of time for the planning and scheduling process. Lastly, these routing softwares do only route calcu-
lations for cars, while route calculations for trucks are desired due to the majority of customers that operate
with trucks.

At ORTEC, a first attempt was made to improve the travel time predictions based on GPS data and machine
learning (ML) algorithms by den Heijer[1]. GPS data is used, since it contains information about the driven
speed of the vehicles at many roads and plenty of GPS data can be obtained from the customer. During the
research of den Heijer, GPS data from one customer, who is active in the Benelux and operates with trucks,
could be obtained and was used. Two ML algorithms, linear regression and random forest, were used to
handle the big data sets and to find patterns between multiple road properties (independent variables) and
the driven speed (dependent variable). By finding these patterns, the assigned speeds to the roads in the map
can be predicted more accurately and come closer to reality. As a result, the travel time prediction accuracy
can be improved.

This first attempt showed promising results. Den Heijer’s best speed prediction model, based on random for-
est, improved the sMdAPETT (symmetrical median absolute percentage error of the travel time) from 18.4%
(current model) to 13.8%. The predicted speeds from this random forest model have already been imple-
mented in the map of halve of the customers. However, den Heijer concluded that the travel time predictions
may be improved further based on the shortcomings of the used methods as described below.

1. The linear regression model can only model linear relationships between the independent and depen-
dent variables. Many independent variables are not linear related to the speed, which limits the speed
prediction accuracy. This can also be concluded from the research of den Heijer [1]. It was concluded
that the travel time prediction accuracy of the random forest models outperformed the linear regres-
sion models due to a higher speed prediction accuracy of the random forest models.

2. Random forest is a more accurate prediction method than linear regression, since it allows to model
non-linearities. However, random forest models are bad at predicting new data that differs from the
trained data. This is the case when the model learns from data that is based on combinations of mul-
tiple roads (trip-based data) and predicts the speed of single roads in the map. Therefore, the random
forest can only learn from point-based data. The linear regression model is able to learn from trip-
based data, however it is unclear whether a more accurate prediction method than linear regression is
able to outperform the random forest model with trip-based data.

1.3. RESEARCH OBJECTIVE
The aim of the research is to develop a new speed prediction model for trucks that outperforms the travel
time prediction accuracy of the current speed prediction models for a given road network. These current
speed prediction models are the models developed by den Heijer [1] based on historical GPS data.

In order to achieve the research objective, main and sub research questions were formulated to provide guid-
ance during the research. The main research question that will be answered in this research assignment is as
following:

Can a new speed prediction model be developed for trucks that outperforms the travel time prediction ac-
curacy of the current speed prediction models for a given road network?

The sub research questions that will support the answering of the main research question are the follow-
ing:

1. How are travel times currently estimated at ORTEC and what are the shortcomings?

2. Which related literature and researches are available, including available travel time prediction meth-
ods and influential travel time factors?

3. Which prediction method is most suitable to predict the speeds?
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4. How can a prediction method be developed for this problem?

5. How does the new model compare to the current models?

1.4. SCOPE
The scope of this research is described by the following:

• For this research, there is access to two GPS data sets. These data sets are obtained from two different
customers of ORTEC. Both data sets will be used for this research. The first GPS data set has already
been collected and preprocessed by den Heijer and has a data frequency of 5 minutes. The second GPS
data set, that will be collected and preprocessed during this research, has a data frequency of 2 minutes.

• The GPS data that is obtained, comes from two customers of ORTEC that operate in the Benelux and
the Netherlands. This means that the given road network for this problem is limited to the Benelux and
the Netherlands.

• The collected GPS data is obtained from customers that operate with trucks. This means that this re-
search will focus on improving the travel time predictions for trucks.

• Real-time information that might be available during route planning will not be included such as non-
recurrent congestions, road accidents etc. This is because the routing software is used offline by the
customer. This means that ORTEC is not able to update the speeds in the map frequently to improve
the travel times throughout the day.

• Furthermore, the GPS data, that will be obtained from ORTEC’s customers, is collected during their
working hours. These working hours are mainly between 5:00 and 16:00 during the midweek. This
means that the travel time predictions are applicable for these working hours.

• The travel times will be predicted by ORTEC’s routing software. It calculates the shortest path from the
first to the last GPS point for each travel, including the travel time. Therefore, the calculation of the
shortest path and travel time is considered to be out of scope for this research.

1.5. REPORT OUTLINE
After the introduction, a problem description will be provided in chapter 2. First, the current process for the
travel time predictions at ORTEC is analyzed. Secondly, the improved process proposed by den Heijer[1] is
analyzed. After this, a comparison of the travel time prediction accuracy, between these two processes, will
be shown. Lastly, the focus of this research will be discussed. This is based on the recommendations by den
Heijer to improve the travel time prediction accuracy further.

In chapter 3, the prediction method and methodology for this research will be discussed. First, available
travel time prediction methods from literature are researched. This will be done to find out whether another
method, than developed by den Heijer, can be used for this research problem. After this, a method trade-off
will be performed between suitable prediction methods. Subsequently, an literature review will be conducted
for the neural network. Lastly, the methodology for this research will be discussed.

In chapter 4, the data used in this research will be discussed. First, a description will be provided of the used
GPS data. Secondly, the data cleaning steps and map matching process will be discussed. Thirdly, the feature
extraction of the GPS data will be discussed. This includes the process of deriving values (features) that are
informative to facilitate the learning and predicting process of the model. Lastly, the data will be sampled
into a training and test data set.

In chapter 5, the model design will be discussed. First, the model objective will be determined. Secondly,
the independent (input) and dependent (output) variables of the model are provided. Subsequently, model
design choices will be made. After this, the implementation of the model will be discussed. Lastly, the hyper-
parameters of the neural network model will be tuned to obtain the best model performance.

In chapter 6, the experiments and results are discussed. First, an overview of the experiments will be provided.
Then, the speed and travel time prediction accuracy of the new developed and current models will be shown.
Lastly, the results of the influence of the temporal factor, on the travel time prediction accuracy, will be shown
and discussed.
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PROBLEM DESCRIPTION

In this chapter, the problem of this research study will be described. Firstly, the current steps for route calcu-
lation are discussed. After this, the current steps that can be improved to improve the travel time prediction
accuracy are identified. Then a process developed by den Heijer[1] is explained, which uses GPS data to im-
prove the travel time predictions. After this, the travel time prediction accuracies of the Current and den
Heijer’s models are provided and compared. Lastly, the motivation for this research will be discussed, to
develop a new model that improve the travel time prediction accuracy even further.

2.1. DESCRIPTION OF THE CURRENT PROCESS
In Figure 2.1, an illustration of the currently followed steps, to calculate a route and subsequently the travel
time, is shown. The process consists of four steps where the two first steps are executed at ORTEC and the
last two at the customer itself. Step 1 to 3 are executed once and basically form the foundation for the route
calculation in step 4. This last step is repeated as many times as needed by the customer to calculate the
shortest route from point A to B. After this, the predicted travel time is used as input for the route planning. A
description of each step can be found below[1]:

• Step 1. Get map data: To calculate routes, a map of the road network is required to know all existing
roads which can be used by the route optimizer. This map is obtained from the company HERE Tech-
nologies and also contains properties of each road segment such as length, advisory speed, speed limit,
speed bumps, etc. This map data is the underlying foundation for the route calculation.

• Step 2. Convert, add types: After access is permitted to the map data by HERE, this raw data can be
adjusted to a format that is understandable by ORTEC’s logistics planning software. After this, a simple
heuristic is used to assign each road segment to a ’road type’. There are 20 ’road types’ to which each
road segment can be assigned and is based on a few properties of the road segment. These properties
are obtained from the map data. This means that all road segments from the entire road network have
a speed that corresponds to the speed of the assigned ’road type’.

• Step 3. Configure speeds: Now all road segments are assigned to a ’road type’, the implementation con-
sultant can easily adjust the speed of all road segments that are categorized by the 20 ’road types’. The
assignment of the speeds to the ’road types’ is based on experience of the implementation consultant.

• Step 4. Calculate route: The last step is performed by the customer and can be executed after the pre-
vious steps are completed. Here, the ORTEC’s logistics planning software calculates the optimal route
based on an improved Dijkstra algorithm called Highway Node Routing [2]. This algorithm preserves
the same optimal route as Dijkstra’s algorithm, but with an improved computational time.

5
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Figure 2.1: Current process to calculate a route[1].

The Highway Node Routing algorithm can be applied statically and dynamically to incorporate for example
congestions by updating individual edge weights. ORTEC’s logistics planning software uses the static version,
since this results in considerably faster computation time, which is beneficial for the customer. This means
that all edges are static and cannot be changed to incorporate time-dependent variables such as congestions,
road incidents, etc.

Other routing softwares such as Google maps, Bing maps, etc. provide accurate route calculations and travel
time predictions. This would be an easy and obvious solution to improve the travel time predictions by OR-
TEC. However, they are not used by ORTEC because:

• The routing software does not support many-to-many queries. This is needed to know all routes be-
tween all origins s and destinations t and is required to solve the VRP.

• The computational time of the routing software is significantly higher. For example, the calculation
of 2314 trips in Google maps, with an average travel time of 18 minutes in the city Baton Rouge (US),
takes about 15 minutes[3]. ORTEC’s customer have many-to-many query sizes up to 2800x2800, which
means that this would lead to unacceptable computational times.

• The routing software does only calculate routes and travel times for cars and not other vehicle types.
Since many customers of ORTEC operate with trucks, the route calculation and travel time prediction
may not be accurate. This is due to a different driving behavior of trucks compared to cars. For example,
trucks have a different speed limit than cars on highways due to regulations. Also, the time to pass a
roundabout is higher due to the relatively large length and high weight, which makes insertion more
difficult.

SHORTCOMINGS CURRENT PREDICTION MODEL

The current planning and scheduling process designed by ORTEC has, as described in section 1.2, two prob-
lems. The first is rough classification of the roads (20 road types), and the second is inaccurate assigned
speeds by the customer. To mitigate these two problems, the steps shown in Figure 2.1 have to be revised.
This can be done by the following question: how can the average speed assigned to the road segments in the
road network be optimized to improve the travel time predictions? After revision of the steps by den Heijer, it
was concluded that an improvement can be made at step 2 and 3. This means that the classification of the
20 ’road types’ are too rough and the assigned speeds are inaccurate, since it is based on experience. In the
following section, the developed process by den Heijer’s, to improve the travel time prediction accuracy, is
discussed.
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2.2. DESCRIPTION OF DEN HEIJER’S PROCESS
As explained in section 2.1, the accuracy of the travel time predictions can be improved by improving step
2 and 3 as illustrated in Figure 2.1. Den Heijer developed a model, that replaces step 2 and 3. This model
learns from driven speeds obtained from realized GPS data. These speeds are related to the road properties,
obtained from the map data, to predict the speeds in the map more accurately. These road properties can be
found in Appendix B. The predicted speeds from this random forest have already been implemented in the
map of halve of the customers.

2.2.1. GPS DATA
There are different ways to obtain information about the vehicle’s location and speed and are among others:
loop detectors, vehicle identification devices or floating car observers[4]. However, these methods are limited
to one specific location and/or are too expensive. Therefore, GPS equipment is a great solution, because it
is:

• Cheap: Access to GPS is free for public and purchase cost of the GPS equipment are relatively low. This
makes the collection of location and speed data of vehicles through GPS a cheap solution.

• Easy to implement: GPS equipment can be installed in all vehicles and is relatively easy to implement.
This makes the threshold for the installation of GPS equipment lower and results in more data collec-
tion.

• Complete: While data collection through other equipment is restricted to specific locations, GPS equip-
ment is flexible. This allows data collection at all locations in a road network. In this way, factors that
influence the driving speed can be identified and can be used to predict average driven speeds on roads
in the entire road network.

• Available: Since the installation of GPS equipment is relatively easy and has low cost, many companies
are currently using GPS, to track there fleet of vehicles. Therefore, plenty of GPS data is available. This
can be used to learn from the driven routes and to improve the travel time predictions.

Besides the many advantages of using GPS, there is also a disadvantage, which is a poor accuracy. On aver-
age, a GPS data point is obtained within 10 meters accuracy of the real location where the GPS location is
recorded. The accuracy is even worse when the GPS signal is blocked by for example tunnels or reflected in
urban areas and mountainous regions. This adds some inaccuracies to the prediction model. However, these
inaccuracies can be largely mitigated by applying map matching techniques. This will be elaborated in the
next chapter.

2.2.2. SPEED PREDICTION MODEL
To improve the travel time predictions at ORTEC, den Heijer decided to use available GPS data from a cus-
tomer. This contains a lot of useful information about the driven speeds and travel times throughout the
entire road network. A first attempt to improve the travel time predictions for trucks, is described in [1]. This
showed promising results and proved that travel time predictions can be considerably improved by learning
from GPS data.

In Figure 2.2, an illustration of the process of the developed speed prediction model by den Heijer is shown.
This process replaces step 2 and 3 in Figure 2.1 and consists of 2 steps. First the speed prediction model needs
to be trained, which means that the model tries to find correlations between the independent and dependent
variables:

• Independent variables: The independent variables are also called explanatory variables, features, indi-
cators, input and predictor variables. As independent variables, den Heijer used the road properties of
each road such as speed limit, traffic lights, speed bumps, etc. to predict the speed. The road properties
of each road in the road network were obtained from the map data, supplied by HERE.

• Dependent variable: The dependent variable is also known as target, predicted or output variable. The
dependent variable of den Heijer is the speed and is obtained from the collected GPS data.

After the model is trained successfully, the model can be used as prediction model to predict the speed for
each road in the map. For the map of the Netherlands, this is 3,304,031 roads. Then the predicted speeds are
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assigned to each road in the map, after which the shortest paths and travel times from point A to B are cal-
culated. The calculated travel times are compared with the actual travel times, using the symmetric median
absolute percentage error (sMdAPETT).

Figure 2.2: First the speed prediction model is trained based on independent variables and dependent variables. After this, the average
speed for each road in the map based is predicted based on its road properties (independent variables). This speed prediction model

replaces step 2 and 3 in Figure 2.1.

SHORTCOMINGS DEN HEIJER’S SPEED PREDICTION MODELS

Den Heijer identified some shortcomings with the linear regression and random forest models. By over-
coming these shortcomings, the travel time prediction accuracy might be further improved. The identified
shortcomings are as following:

1. The linear regression model can only model linear relationships between the independent and depen-
dent variables. Many independent variables are not linear related to the speed, which limits the speed
prediction accuracy. This can also be concluded from the research of den Heijer [1]. It was concluded
that the travel time prediction accuracy of the random forest models outperformed the linear regres-
sion models due to a higher speed prediction accuracy of the random forest models.

2. Random forest is a more accurate prediction method than linear regression, since it allows to model
non-linearities. However, random forest models are bad at predicting new data that differs from the
trained data. This is the case when the model learns from data that is based on combinations of mul-
tiple roads (trip-based data) and predicts the speed of single roads in the map. Therefore, the random
forest can only learn from point-based data. The linear regression model is able to learn from trip-
based data, however it is unclear whether a more accurate prediction method than linear regression is
able to outperform the random forest model with trip-based data.

Bad performance random forest with trip-based data
Most independent variables (properties) of single roads are Boolean, such as speed bumps, traffic
lights, ramp, paved and priority road. 1 means that the road has this property and 0 not. When the
model is first trained on a combination of multiple roads, the average of the properties is taken. The
value of the independent variables is often somewhere between 0 and 1 instead of being a Boolean. A
simple example of a decision tree that is trained on a combination of multiple roads is shown in Fig-
ure 2.3. Many of these kind of trees are used by the random forest prediction method. After the decision
trees are trained, the speed for a single road in the map is predicted based on the Boolean value of X.
When X=0, then the average speed of leaf node Speeds(0≥X<0.25) is taken and when X=1, the average
speed of leaf node Speeds(0.75≥X≥1) is taken. However, this means that speeds that are not equal to
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a Boolean value are also taken into account to predict the speed for X=0 and X=1. This causes a differ-
ence in the desired output for Speeds(X=0) and Speeds(X=1). Because this difference is present at each
predicted road in the map, the final difference is large and the travel time prediction accuracy will be
low.

Figure 2.3: Example of decision tree that predicts the speed based on independent variable X that ranges between 0 and 1.

2.3. COMPARISON CURRENT AND DEN HEIJER’S MODELS
In this section, a comparison between the current and den Heijer’ models is provided. Den Heijer developed
8 different models and are based on two different ML prediction methods, linear regression and random
forest. These prediction methods are used to find relationships between the input variables and the average
speed on the roads in the map. These prediction methods were applied to two different types of training data,
point- and trip-based data. The trip-based data is derived from the point-based data and needs an additional
preprocessing step. These types of data are visualized in Figure 2.4 and Figure 2.5, respectively. Additionally,
the prediction methods were trained on four different types of dependent variables: speed, logspeed, pace
and time. These were after prediction converted back to speed to be able to calculate the travel time with a
shortest path algorithm. The reasoning for using point- and trip-based data as well as different dependent
variables is provided below.

2.3.1. POINT-BASED AND TRIP-BASED DATA

POINT-BASED DATA

Point-based data is the simplest training data. This data is based on the road properties and the driven speed
of the locations where the GPS points were recorded. In Figure 2.4, an example is shown of three recorded
GPS points where the driven speed, obtained from the GPS data, is indicated between brackets. After the GPS
points are matched to a road in the digital map, the properties of the roads can be looked up in the map data.
A simple example with two road properties, speed limit and speed bumps, is shown in Table 2.1. In reality,
many more road properties are available and can be used to find relationships between the road properties
(independent variables) and the speed (dependent variable).

TRIP-BASED DATA

When point-based data is used, only the data from the roads of the GPS locations are used. This means that
information from only a few roads of the travel are used to train the model. All other roads, where no GPS
data is collected, are therefore not used to train the model. As a consequence, travel information of a very
large part of the travel is not used to finally predict the speeds. To still include these roads, where no GPS data
is recorded, den Heijer introduced trip-based data. In Figure 2.5, an example is shown of trip-based data. In
this figure two trips are shown, trip 1-2 and trip 2-3, which are both between two GPS points. Since the trip-
based data uses all roads between two consecutive GPS points, the variables have to be rewritten to a form
that can be easily trained on. This is an additional preprocessing step. This is done by taking the average of
the road properties of all roads that are included the trip. The average of each road property is based on the
relative length that the property occurs in the trip.

Preprocessing Step Trip-Based Data
An example of the preprocessing step for trip-based data is shown in Table 2.1. In this table, the average is
calculated for the speed limit and speed bumps for trip 1-2 and trip 2-3. For simplicity, trip 1-2 is divided into
two roads and trip 2-3 into three roads, which are all straight roads. For trip 1-2, the first road is 85% and
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the second road 15 % of the total trip length. For trip 2-3, the first road is 75%, the second road 20% and the
third road 5% of the total trip length. Subsequently, these percentages are used to determine the values of the
independent variables. For trip 1-2, the first road has a speed limit of 30 km/h and the second road 50 km/h.
This results in a speed limit for trip 1-2 of 0.85*30 + 0.15*50 = 33 km/h. This approach can be applied to all

independent variables. The dependent variable is the average speed of the trip, which is trip length
trip time .

Table 2.1: Overview of how the independent variable values are used and calculated for point-based and trip-based data.

Independent Variables Dependent Variable
Point/Trip Speed Limit [km/h] Speed Bumps [y/n (1/0)] Driven Speed [km/h]
Point 1 30 1 28
Point 2 50 0 52
Point 3 30 1 33
Trip 1-2 33 (0.85*30 + 0.15*50) 0.85 (0.85*1 + 0.15*0) 23
Trip 2-3 45 (0.75*50 + 0.20*30 + 0.05*30) 0.25 (0.75*0 + 0.20*1 + 0.05*1) 25

Figure 2.4: Example of GPS data points used to train the speeds with point-based data. Also the driven speed in km/h is included to
each GPS point.

Figure 2.5: Example of trips between the GPS data points used to train the speeds with trip-based data. Also the average speed in km/h
is included to each trip.
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2.3.2. DEPENDENT VARIABLES
It was decided to train on different dependent variables. den Heijer concluded that training on the speed,
is not necessarily the best choice to improve the travel time prediction accuracy. The reason to choose the
following dependent variables to train on are as following[1]:

Dependent variables for point-based data

• Speed: An obvious choice is to train on the dependent variable speed. This is because the collected GPS
data contains the driven speed and the speeds assigned to each road in the map need to be improved.
Therefore speed is a logical choice to train the prediction model on.

• Logspeed: Linear regression and random forest both use the squared error to optimize the model. This
is not always ideal, because it results in a model that better fits to larger actual values and an underes-
timation of the actual value. A better fit to larger actual values can be explained by Table 2.2, where an
absolute difference for a low and high actual speed is equal to 10 km/h. Intuitively, 10 km/h difference
on the low actual speed (20 km/h) is a much larger difference (100%) than on the high actual speed of
80 km/h (12.5%). This results in a prediction model that better fits to larger actual values.

Table 2.2: Example to show that squared errors favor to fit the model to more accurate predictions of large actual speeds.

Actual Speed Predicted Speed Squared Error
10 km/h 20 km/h (20−10)2 = 100
80 km/h 90 km/h (90−80)2 = 100

Additionally, a second example shows that the same low and high absolute predicted speed compared
to the actual speed give the same error. However, when calculating the travel time for a 10 km road, the
prediction of 5 km/h results in a travel time of 2 hours, while a 15 km/h prediction results in 40 minutes
(Table 2.3). The actual travel time would be 1 hour, which means that the prediction of 15 km/h is closer,
while 5 km/h and 10 km/h have the same squared error. The overestimation is preferred, while both
have the same error. This results in a underestimation of the actual speed. To avoid both problems,
the logarithmic speed can be used. This moves the speeds to a relative space, which agrees better with
the research goal to optimize the travel time predictions. Moving to the logarithmic speed gives the
same error for low and large actual speeds, as well as under- and overestimations. Eventually, whether
training on speed or logspeed is preferred, should be tested.

Table 2.3: Example to show that the same absolute under- and overestimation of the actual value give same results.

Actual Speed Predicted Speed Squared Error
10 km/h 5 km/h (5−10)2 = 25
10 km/h 15 km/h (15−10)2 = 25

Dependent variables for trip-based data
The challenge of using trip-based data is: how can a sequence of multiple roads be written to a form that
can be used by the model, which is in this case linear regression. Some choices used by den Heijer, based on
different dependent variables, are discussed below:

• Time: Training on time between two GPS points is an obvious choice, since the aim of the research
is to improve the travel time prediction accuracy. To train on the trip time and to predict the average
time for each road in the map, the independent variables have to be weighed in some way. This can be
done by multiplying each coefficient by the distance that the corresponding variable occurs during the
trip. A simple example is shown in Equation 2.3.1, with one Boolean variable. This is ’IsHighway’ and
is multiplied by the length of occurrence in the trip.

[trip time] =β1 · [meters on IsHighway]+β2 · [meters not on IsHighway] (2.3.1)

This multiplication by distance can also be applied to categories, such as countries shown in Equa-
tion 2.3.2:
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[trip time] =β1 · [m NL]+β2 · [m LU]+β3 · [m BE] (2.3.2)

Independent variables that occur at a specific site (point-data), such as traffic lights, can also be added.
This is shown in Equation 2.3.3, where β4 represents the average waiting time at a traffic light.

[trip time] =β1 · [m NL]+β2 · [m LU]+β3 · [m BE]+β4 · [number of traffic lights] (2.3.3)

• Pace: An alternative way of training the model, instead of using ’meters driven’, is using ’fraction of
meters’ with respect to the full trip. The conversion to fraction of meters can be simply applied by
dividing each independent and dependent variable by ’total meters driven’ for all trips. This is shown
in Equation 2.3.4. This results in a dependent variable dimension of time/length (1/speed), which is
called average pace. An advantage of moving to the pace is that the data is normalized, so long trip
times are not favored by the squared errors.

[average pace] =β1 · [fraction of meters on IsHighway]+
β2 · [fraction of meters not on IsHighway]

(2.3.4)

• Speed: By using the pace, the model favors a high pace (low speed) due to the squared errors. It is
unknown whether it is preferred that the model favors low or high speeds. Therefore, the speed is
also used as dependent variable. This results in a multiplication of the coefficients by the ’fraction in
seconds’. However, the time that is spent on each road between two GPS points is not known, therefore
the fraction of meters is used. An example is shown in Equation 2.3.5 where all β’s represent the speed.
In addition, training on the speed is, as with point-based data, an obvious choice. This is because the
speeds, assigned to each road in the map, need to be improved.

[average speed] =β1 · [fraction of seconds on IsHighway]+
β2 · [fraction of seconds not on IsHighway]

(2.3.5)

• Logspeed: Also, when using trip-based data, the model is optimized by using the squared error for
linear regression. By optimizing the model with the squared error, larger actual values are favored as
well as an underestimation of the actual value. Therefore, also the logspeed, which is basically the
same as -logpace, will be used as dependent variable. The coefficients are multiplied by the ’fraction of
meters’.

2.3.3. MODEL COMPARISON
In total, 8 speed prediction models were developed by den Heijer and compared to two benchmarks. The first
benchmark is the travel time prediction by ORTEC’s Current model. The second benchmark is the advanced
travel time predictor for trucks from HERE Technologies. The models are compared with the sMdAPETT func-
tion and is a representation of the error between the predicted and actual travel times. In Figure 2.6, it can
be seen that the Current model, which uses 20 different ’road types’ and the experience from the implemen-
tation consultant, has the worst performance with sMdAPETT 18.4%. All 8 developed models by den Heijer
have a better performance than the Current model. The random forest model Point-RF-Logspeed, trained
on point-based data and dependent variable logspeed, performs the best with sMdAPETT 13.8%. This speed
prediction model even outperforms the predicted travel times by HERE-truck, which is seen as an advanced
travel time prediction model.
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Figure 2.6: Travel time error from different models evaluated by sMdAPETT in %. The closer to 0 the better the model[1].

In Table 2.4, the Current model and den Heijer’s best model are summarized. In the table the input, method,
output, type of training data and travel time prediction accuracy are included. Also, the vehicle and road
network are added for which the models are compared.

Table 2.4: Comparison between Current model and den Heijer’s best model.

Current Model den Heijer’s Model

Input
Speeds based on

experience customers
GPS data (5 minutes frequency)

Method 20 Road Types Random Forest (logspeed)
Output Speed Speed
Type of Training Data None Point-based data
Travel Time Accuracy (sMdAPETT) 18.4% 13.8%
Vehicle Truck (chemical packages) Truck (chemical packages)
Road Network Benelux Benelux

2.4. RESEARCH FOCUS
From the research of den Heijer, it was found that the optimization of the travel time predictions is quite a
challenging task. This is because first the speed of each road in the digital map has to be predicted in order to
improve the travel time predictions. Den Heijer concluded that the travel time prediction accuracy, expressed
in sMdAPETT, does not go hand in hand with the speed prediction accuracy expressed in sMdAPESpeed[1].
The problem is that the calculation of the travel time is based on multiple roads instead of one road. If the
calculation of the travel time would be based on one road, then the predictions of the speeds would be directly
correlated to the travel time, since the road length of each road is fixed. This is shown in Equation 2.4.1, where
accurate speed predictions, expressed in sMdAPESpeed, would directly lead to accurate travel time predictions
in sMdAPETT.

Travel Time = Road Length

Travel Speed
(One Road) (2.4.1)

In this research, the goal is to improve the travel time prediction accuracy in sMdAPETT, where a lower
sMdAPETT means a higher accuracy. This research goal can be written in a objective function shown in Equa-
tion 2.4.2. In this equation At is the actual travel time, Pt the predicted travel time, t the travel number and n
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the total number of travels. The predicted travel time Pt for each travel can be calculated by Equation 2.4.3,
which is based on multiple roads. In this equation, m indicates the total number of roads that are included
to calculate travel time Pt and differs between travels. m is based on the roads that are included in the short-
est path, which are found by a shortest path algorithm. To minimize the objective function, Pt has to be
predicted as close as possible to At , where At is obtained from the travel time data.

Minimize sMdAPETT = median

(
200% ·

∣∣∣∣ At −Pt

At +Pt

∣∣∣∣) t ∈ 1, ...,n (2.4.2)

Pt =
(

Road Length

Travel Speed

)
1t
+

(
Road Length

Travel Speed

)
2t
+ ...+

(
Road Length

Travel Speed

)
mt

(Multiple Roads) (2.4.3)

An obvious approach would be to optimize the objective function in Equation 2.4.2 by finding the optimal
speeds for each travel in Equation 2.4.3. However, this approach is not suitable for this research problem due
to the following reasons:

• The travel time prediction Pt , of each travel, is derived from the shortest path that is found by a short-
est path algorithm. Before optimizing Equation 2.4.2, the speeds are not known, which means that
Equation 2.4.3 cannot be derived for each travel, since a shortest path cannot be found. Therefore,
sMdAPETT in Equation 2.4.2 cannot be optimized based on Equation 2.4.3.

• By minimizing Equation 2.4.2, only the speeds of the roads that are included in the travels are pre-
dicted. Therefore, many speeds of other roads in the map are not predicted, which may be needed for
other travels in the future. Therefore, the optimization of the objective function in Equation 2.4.2 with
Equation 2.4.3 is not suitable for this research.

As a conclusion, an improved travel time prediction accuracy has to be found in a different way. Den Heijer
made a first attempt to predict the speeds such that the travel time predictions were improved based on GPS
data. This was done by finding relationships between the driven speeds and road properties, after which the
speed for each road in the road network was predicted. The random forest model, with output logspeed and
trained on point-based data, had the best travel time prediction accuracy. In the chapter, conclusions and
recommendations of den Heijer’s research report[1], it was discussed that the travel time prediction accuracy
might be improved even further. The recommendations from den Heijer, to further improve the travel time
prediction accuracy, will be focused on in this research. These recommendations are:

• Prediction method: The ML methods used by den Heijer had some limitations as explained in sec-
tion 2.2. The linear regression method can be trained on point- and trip-based data, however it can
only model linear relationships. This limits the prediction accuracy of the speeds. The shortcoming
of the random forest method is that it cannot be used for trip-based data. When the model is trained
on trip-based data, the speeds may be predicted more accurately, such that the travel time prediction
accuracy is improved. Therefore, a model with a higher prediction accuracy than linear regression and
random forest for point- and trip based data is preferred.

• Data: The research study conducted by den Heijer had access to GPS data from trucks with a frequency
of 5 minutes. However, the frequency of 5 minutes between two GPS points is rather low and reduces
the quality of the trip-based data. Therefore, it is preferred to use GPS data with a higher frequency
than 5 minutes. It is expected that a higher data frequency will lead to improved speed and travel time
predictions for models that are trained on trip-based data.

• Influential factors: Den Heijer did not conduct a literature survey about factors that influence the
travel time. Only road properties from the map data, provided by HERE, were used to train the model.
Including more factors such as part of the day, season or weather might further improve the travel time
prediction accuracy.
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2.5. CONCLUSION
Currently, the steps that are followed to calculate a route, from which the travel time can be derived, are:

• Step 1: Map data of the road network and the properties of each road segment are obtained from HERE
Technologies.

• Step 2: The map data is converted to a format that ORTEC’s logistic routing software understands and
all road segments are assigned to one of the 20 ’road types’.

• Step 3: The implementation consultant assigns a speed to each ’road type’.

• Step 4: Based on the assigned speed to each ’road type’, the shortest route from point A to B is calcu-
lated.

From these four steps, den Heijer[1] identified that by improving the speed predictions in step 2 and 3, the
travel time prediction accuracy may be improved. This is because of the rough road classification of 20 road
types and possibly inaccurate speeds that are assigned to each road type, by the customer. Den Heijer de-
veloped eight different models, which are based on linear regression and random forest. The models learn
from historical GPS data to make more accurate speed predictions. First, the models try to find relationships
between the road properties and the driven speeds, from the roads in the GPS data set. Secondly, the speed
for each road in the road network is predicted based on its road properties. The GPS data set that was used by
den Heijer, to improve the speed predictions, is obtained from a customer of ORTEC that operate with trucks
throughout the Benelux. The GPS data was recorded with a data frequency of 5 minutes.

The eight developed speed prediction models by den Heijer, differ in prediction method (linear regression or
random forest), type of training data (point- or trip-based) and dependent variable (speed, logspeed or pace).
After learning and predicting the speed for each road in the digital map, the travel times could be predicted
and evaluated. The random forest model, trained on point-based data with dependent variable logspeed,
showed the largest improvement from sMdAPETT 18.4% (Current model) to 13.8%.

From the research of den Heijer, it was found that the optimization of the travel time predictions is quite
a challenging task. This is because first the speed of each road in the digital map has to be predicted in
order to improve the travel time predictions. In the chapter, conclusions and recommendations of den Heijer’s
research report[1], it was discussed that the travel time prediction accuracy, of den Heijer’s best model, might
be improved even further. The recommendations to improve this accuracy, which will also be the research
focus, are the following:

• Developing a model with a higher prediction accuracy than linear regression and random forest that
can be used for point- and trip-based data.

• Using GPS data with a higher frequency than 5 minutes to improve the quality of trip-based data, which
may result in a higher speed and travel time prediction accuracy.

• Finding factors that influence the speed and travel time, which can be included in the model to improve
the speed and travel time predictions.





3
PREDICTION METHODS

In this chapter, the prediction method and methodology for this research are discussed. Firstly, travel time
prediction methods in literature are examined and summarized in tables. This will be done to find out if there
is another method than den Heijer’s method that can be applied to this research problem. After this, a method
trade-off will be done of the prediction methods that can used for this research problem. Subsequently, an
literature review is conducted for the most suitable prediction method, which is the neural network. Lastly,
the methodology for this research is described which is based on den Heijer’s methodology. This is visualized
through a flowchart.

3.1. AVAILABLE TRAVEL TIME PREDICTION METHODS IN LITERATURE
In this section, available travel time prediction methods in literature are discussed. This is done to find out
if there are other methods that can be used for this research problem than the method developed by den
Heijer[1]. In [5], a recent overview of different available travel time prediction methods in literature is pro-
vided. In Figure 3.1, an overview of these travel time prediction methods is shown and can be divided into
model-based and data-driven methods. The difference between these two classified methods are:

• Model-based: Model-based methods are used when a deep understanding of the system or process is
known. The method is simplified and is limited to a certain complexity. To find and build an appropri-
ate model can be a time-consuming and expensive process.

• Data-driven: Data-driven methods learn from data, where more input data results in better predic-
tions. These methods allow high complexity, while the implementation is relatively simple with low
cost. Data-driven methods are able to find relationships between variables without knowing the phys-
ical behavior of the system. However, the precision of the data-driven methods is in general less than
the model-based methods. M. Bai et al.[5] divided the data-driven methods into parametric and non-
parametric. The differences between these two methods are:

– Parametric methods simplify the function to a known form. The parametric methods assume
that the data will follow a certain distribution or ’shape’ of the data. For example, it is known that
a linear line will be fitted to the data if a linear regression model is used.

– Non-parametric methods do not make strong assumptions about the ’shape’ of the data. They
have an indefinite number of parameters and make fewer assumptions about the data. Non-
parametric methods are flexible and have often a higher prediction performance.

17
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Figure 3.1: Classification of travel time prediction methods[5].

Each travel time prediction method in literature is applied to a different research problem. To assess if one
or more methods are suitable for this research, different criteria are used in Table 3.1, Table 3.2 and Table 3.3.
The criteria that are used are:

• Input: The input of the prediction method can be divided into site-based and vehicle-based data. Site-
based data contains information about a specific road segment. Vehicle-based data contains informa-
tion about different points throughout the whole road network. Examples of site-based data are license
plate matching and loop detectors. Mostly, vehicle-based data consists of GPS data. For this research,
GPS data will be used as input of the prediction method.

• Prediction Method: The prediction method is the method used to predict an output based on a given
input. For this research, the method needs to be able to predict the speed based on a given input.

• Output: The output is the prediction of the prediction method based on the input. For this research,
the travel speed needs to be the output.

• Accuracy: The accuracy is important to know how accurate a prediction method is. Different error
functions can be used to express the accuracy, where each error function has its own benefit.

• Scope: The scope indicates how many roads or routes are predicted with the prediction method. The
scope of this research is a road network, which means that different travel time predictions throughout
an entire road network have to be improved.

• Prediction Horizon: The prediction horizon indicates how far in the future predictions can be made.
For this research, there is no prediction horizon since the speeds are predicted only once. This is be-
cause the routing software, developed by ORTEC, is used offline by the customers. This means that the
speed of each road in the map cannot be changed.

3.1.1. MODEL-BASED METHODS
The model-based methods that are commonly used to predict the travel time are based on the queuing theory
and cell transmission model (CTM). These methods are built by traffic parameters such as flow, speed and
density, which are obtained from historical traffic data. Model-based methods predict the behavior for one
or numerous vehicles and are suitable for short-term travel time predictions. In Table 3.1, an overview of
model-based methods that are found in literature is shown. It can be concluded that all prediction methods
use site-based data as input and the travel time as output. The accuracy differs per model and is hard to
compare due to the different error functions used. The scope for each prediction method is limited to a
single road and all methods have a relatively low prediction horizon.

• Queuing Theory: The queuing theory calculates the waiting time, length of the queue and number of
vehicles in the queue. Subsequently, these outcomes can be used to calculate the expected travel time.
Historical data is used to tune the model parameters.

• Cell Transmission Model: The CTM is another model that can be used to simulate the traffic behavior.
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Roads are divided into homogeneous sections, called cells, where vehicles travel from one cell to the
other. The flow and density of each cell are calculated to evaluate the system and are based on the
number of vehicles in each cell at time t.

Table 3.1: Overview model-based methods from literature.

Source Input
Prediction
Method

Output Accuracy Scope
Prediction
Horizon

[6] Site-Based Data Queuing theory Travel Time RMSE = 6-18% Single Road 5 min
[7] Site-Based Data Queuing theory Travel Time - Single Road -
[8] Site-Based Data Queuing theory Travel Time ER <5% Single Road 7 min
[9] Site-Based Data CTM Travel Time RMSE <15% Single Road 5 min
[10] Site-Based Data CTM Travel Time - Single Road 5 min
[11] Site-Based Data CTM Travel Time MAPE = 18 - 19% Single Road -

3.1.2. DATA-DRIVEN METHODS: PARAMETRIC
Where model-based methods can be used for short-term prediction, data-driven methods can be used for
short-term as well as long-term predictions. This makes these methods widely applicable. Data-driven meth-
ods require historical data to find patterns from the past to predict the future. These methods can be di-
vided into non-parametric and parametric methods. The main difference between these two methods is that
parametric methods assume that the data follows a certain distribution, while non-parametric methods do
not.

In literature, three non-parametric methods were found that predict travel times. These methods are: linear
regression (LR), autoregressive integrated moving average (ARIMA) and kalman filtering (KF). In Table 3.2, an
overview of these parametric methods found in literature is shown. It can be concluded that one prediction
method uses GPS data as input. All other prediction methods use site-based data as input. All prediction
methods have as output the travel time. The accuracy differs per model and is hard to compare due to the
different error functions used. The scope for each prediction method is limited to a single road. All methods
have a prediction horizon and ranges between 5 and 90 minutes.

• Linear Regression: A linear regression method can be used when the relationships between indepen-
dent (traffic conditions) and dependent (travel time) variables are expected to be linear. An advantage
of linear regression is that the independent variables that mostly influence the dependent variable can
be identified.

• ARIMA: ARIMA is a statistical analysis method that uses time series data to predict the future. Before
prediction, the time series are made stationary called differencing, which means that the mean and
variance are constant and do not change over time. An extension of ARIMA is a seasonal autoregressive
integrated moving average (SARIMA) model. This model supports seasonal trends where ARIMA does
not. However, the ARIMA model is sensitive to outliers and should not be used for data with a large
variance.

• Kalman filtering: Kalman filtering estimates an output based of observations that might be uncertain
and inaccurate and is an appropriate method for dynamic information forecasts[12]. Kalman filtering
is a method that uses a prediction and correction mechanism. The method adds a correction term,
which is proportional to the predicted error, to the previous estimation. By doing this, the state of the
system is optimized and the error is minimized.
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Table 3.2: Overview parametric methods from literature.

Source Input
Prediction
Method

Output Accuracy Scope
Prediction
Horizon

[13] Site-Based Data LR Travel Time MAPE = 7.7 - 23 % Single Road 60 min
[14] Site-Based Data LR Travel Time MAPE = 7 - 14% Single Road 90 min
[15] Site-Based Data LR Travel Time MAPE = 8.5 - 11.4% Single Road 25 min
[16] Site-Based Data ARIMA Travel Time ME <13.9% Single Road 5 min
[17] Site-Based Data ARIMA Travel Time MAPE = 5.3% Single Road 5 min
[18] Site-Based Data KF Travel Time MARE <2.1% Single Road 5 min

[12]
Vehicle-Based Data
(GPS Data)

KF Travel Time MARE = 2.1 Single Road -

[19] Site-Based Data KF Travel Time ER <9% Single Road 45 min
[20] Site-Based Data KF Travel Time MARE = 1.3 - 4.1% Single Road 5 min

3.1.3. DATA-DRIVEN METHODS: NON-PARAMETRIC
In general, non-parametric data-driven methods are more frequently used than parametric methods. Non-
parametric methods do not make assumptions about the data distribution like the parametric methods. The
non-parametric methods that can be found in literature are: support vector regression (SVR), nearest neigh-
bor, ensemble learning and neural network (NN) methods. In Table 3.3, an overview of these methods is
shown. It can be concluded a few methods used GPS data as input. All all prediction methods use site-based
data as input. The output of all prediction methods is the travel time. The accuracy differs per model and is
hard to compare due to the different error functions used. The scope for most prediction methods is limited
to a single road. One method predicts for multiple roads and two methods for a single route. All methods
have a prediction horizon and ranges between 1 minute and 6 hours.

• Neural Network: Neural networks are based on the human brain to recognize patterns. A neural net-
work consist of different layers of nodes where each node combines inputs and weights to calculate the
output. Neural networks can be applied to any nonlinear problem and is therefore a powerful model.
In literature, four different types of neural networks were found:

– Feed-Forward Neural Network: The feed-forward neural network (FFNN) is the simplest of the
four different types. For this type of neural network, the connections between the neurons are
only ’fed forward’ and are not for example cycles, like for recurrent neural networks. In Figure 3.1,
the term back-propagation neural network is used, where actually the term feed-forward neural
network should have been used. This is because back propagation is a training algorithm that is
used to optimize the neural network. Back propagation can also be used for the other three types
of neural networks and is therefore incorrect to use to indicate feed-forward neural networks.

– Recurrent Neural Network: A recurrent neural network (RNN) allows a bi-directional flow of data
between the nodes, which results in a more complex architecture. The RNN has loops in the archi-
tecture to keep the information in the neural network and to use it for the following predictions.
RNN is able to model dynamic temporal behavior and uses its internal memory to optimize the
model. The RNN is widely used for data with a sequential structure.

– Long Short-Term Memory Network: The long short-term memory (LSTM) network is family of
the RNN and is also used for sequential data. Instead of a single neural network layer, four layers
are used and interact in a unique way.

– State-Space Neural Network: The state-space neural network (SSNN) is also family of the RNN
and uses a state-space model. This model can be used for multiple inputs - multiple outputs
systems.

• Support Vector Regression: Support vector regression (SVR) is a regression method and works with
continuous values instead of classification like the support vector machine (SVM) method. The SVR
method minimizes the error by individualizing the hyperplane with a maximum margin and a tolera-
tion up to a certain error.

• Nearest Neighbor: Another term for the nearest neighbors algorithm is k-nearest neighbors (k-NN).
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The k-NN put the samples in a feature space and divides these in classes, where the historical data,
’neighbors’, is used to predict the travel time.

• Ensemble Learning:An ensemble method combines multiple ’weaker’ models to achieve one strong
model. Examples of ensemble learning methods are random forest (RF) and gradient boosting methods
(GBM).

Table 3.3: Overview non-parametric methods from literature.

Source Input
Prediction
Method

Output Accuracy Scope
Prediction
Horizon

[21] Site-Based Data FFNN Travel Time MAPE = 7.4 - 17.9% Single Road 5-25 min

[22]
Vehicle-Based Data
(GPS Data)

FFNN Travel Time MSE <3% Single Road 3 h

[23] Site-Based Data SSNN Travel Time MRE = 1.6% Single Road 1 min
[24] Site-Based Data SSNN Travel Time MAPE = 7.3% Single Road 2 min
[25] Site-Based Data RNN/FFNN Travel Time MAPE = 4.0 - 17.3% Single Road -
[26] Site-Based Data RNN Travel Time MPE <15% Single Road 15 min

[27]
Vehicle-Based Data
(GPS Data)

LSTMN Travel Time MRE = 7 - 11.3% Single Road 15-60 min

[28] Site-Based Data LSTMN Travel Time MAPE = 1 - 7.3% Single Road 5-60 min
[29] Site-Based Data SVR Travel Time RME = 1 - 4% Single Road 3 min
[30] Site-Based Data SVR Travel Time MAPE = 5.9 - 13.1% Single Road 5 min
[31] Site-Based Data SVR Travel Time MRE = 9.7% Single Road 5 min
[32] Site-Based Data k-NN Travel Time MAPE = 4.3 - 14.8% Single Road 5-30 min

[33]
Vehicle-Based Data
(GPS Data)

1-NN Travel Time MAPE = 1.5 - 8.6% Single Road 5 min

[34] Site-Based Data Mk-NN Travel Time MAPE = 5.9% Single Road 6 h

[35]
Vehicle-Based Data
(GPS Data)

RF Travel Time RMSE <7.5% Multiple Roads 6-30 min

[36] Site-Based Data GB Travel Time MAPE = 2.3 - 18.4% Single Road 5-30 min

[37]
Vehicle-Based Data
(GPS Data)

RF/k-NN Travel Time MAPE = 6.9 - 14.3% Single Route 1 h

[38]
Vehicle-Based Data
(GPS Data)

RF/GB Travel Time MRE = 17 - 29% Single Route -

Conclusion
In the literature review of Bai et al. [5], many different travel time prediction methods were reviewed. A
couple of these methods use GPS data as input, which will also be used for this research. However, based
on the criteria, none of these methods is suitable for this research problem. This is because of the following
reasons:

• The scope of the methods are limited to single/multiple roads or a single route. This means that the
travel times are not improved for an entire road network, which is required for this research.

• The output of all prediction methods is the travel time. Despite the goal of this research is to improve
the travel time predictions, the speed is required as output. This is because first the speed of each road
in the map needs to be improved, to improve the travel time prediction accuracy.

• All prediction methods have a prediction horizon. This means that the method predicts travel times
in the future, based on historical data. For this research, no prediction horizon is required, since the
routing software, developed by ORTEC, is used offline by the customers. This means that the speeds
have to be predicted once, in such a way, that the travel time predictions are predicted well and can be
used throughout the year.

Because there are many travel time prediction methods available in literature, some methods were not in-
cluded in the literature study from Bai et al. [5]. Therefore, an additional literature review was done, to find
travel time prediction methods that might fit to this research problem. It is required that the travel time pre-
diction method 1) focuses on a road network, 2) has as output speed to improve the travel time predictions
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and 3) predict average speeds once that can be used throughout the year. Additional travel time prediction
methods that were found and seems to comply with these criteria, based on the research title, are:

• A research from Jensen and Larsen [4] was found with the title: Travel-Time Estimation in Road Net-
works Using GPS Data. This seems to be a perfect reference for this research, since GPS data is used for
travel time estimations in a road network. However, this method only focuses on improving travel time
estimations of two roads, Vesterbro and Sohngardsholmsvej, in a road network in Aalborg. Also, the
GPS data that was only collected from these two roads instead throughout a road network. Therefore,
this travel time prediction method is not applicable to this research.

• Another research, from Anderson [39], was found with the title: Travel Time Prediction in Urban Road
Networks. This research focuses on improving travel time predictions on nine links (roads) in a road
network. Also, a site-based data source was used, called license plate matching. Therefore, also this
travel time prediction method is not applicable to this research.

• Asif et al. [40] researched the speed prediction of roads in a large road network with the title: Unsu-
pervised Learning Based Performance Analysis of v-Support Vector Regression for Speed Prediction of A
Large Road Network. In this research, a speed prediction model is developed to predict speeds in a road
network through clustering of the roads. This comes close to the research in this report. However, the
speed predictions are based on current and past speed trends, where speeds are predicted with a pre-
diction horizon between 5 and 60 minutes. Also, the roads are only divided into four clusters, which is
a rough road classification. Therefore, this developed speed prediction model is also not applicable.

As a result, there is no complete travel time prediction method in literature, except the one developed by den
Heijer, suitable for this research problem. The travel time prediction method of den Heijer has been explained
in section 2.2. Collected GPS points are matched to a road in the road network from which the road properties
are looked up. After this, relationships between the road properties and the driven speed are found using a
prediction method such as linear regression and random forest. Subsequently, the speed of each road in
the road network is predicted based on its properties and the relationships found by the prediction method.
Lastly, the travel times can be predicted using a shortest path algorithm.

Despite other travel time prediction methods in literature are not applicable to this research, some predic-
tion methods in Figure 3.1 can be adapted and implemented into the methodology from den Heijer. The
prediction methods that can be used are linear regression, random forest, support vector regression, gradient
boosting and neural networks. These prediction methods are suitable, since they can predict a continuous
output (speed) and are able to generalize speed predictions to an entire road network. All five prediction
methods are machine learning (ML) methods, which is a subset of data-driven methods. In the following
section, a method trade-off of these prediction methods will be performed.

3.2. METHOD TRADE-OFF
In section 3.1, it was concluded that there are five prediction methods suitable to predict the speeds in this
research problem. These methods are: linear regression, random forest, support vector regression, gradient
boosting and neural networks (Appendix C). Den Heijer already used, as discussed in section 2.2, linear
regression and random forest. In this section a trade-off between all five prediction methods will be made
to find the most suitable prediction method for this research. Linear regression and random forest are also
included in the method trade-off to compare the other models with.

3.2.1. TRADE-OFF CRITERIA
To select the right prediction method, a multiple-criteria analysis will be used. This is a common way to make
an appropriate selection. Surprisingly, there are no machine learning method trade-offs available in literature
that can be used as reference for this research. Therefore, the criteria will be defined such that it helps to select
the best prediction method for this research. The criteria that are used to find the best prediction method for
this research are the following:

• Prediction accuracy & interpretability: To distinguish machine learning methods, often the properties
prediction accuracy and interpretability are used. Different references, such as [41] and [42], explain
that a higher prediction accuracy comes at the expense of a lower interpretability of the model. The
interpretability of the model indicates how well it is understood why something is predicted. Or in
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other words, how well can the relationships between the independent and dependent variables be un-
derstood. Both are important criteria to select a prediction method and will be both included in the
method trade-off.

• Hyperparameter tuning: Hyperparameters are parameters that need to be tuned by the user to get the
best performance of the model. More hyperparameters make the model more complex and increase
the computational time for hyperparameter tuning. Also, a higher training time of the model increases
the computational time needed for hyperparameter tuning. Both the number of hyperparameters and
training time of the model are important indicators for this criterion. Because the hyperparameter
tuning process differs between the prediction methods, hyperparameter tuning will also be used as
criterion.

• Large dataset: The dataset that is used for this research is ’large’ (∼1,000,000 data points). It is im-
portant that the prediction method is able to handle this large amount of data to find the underlying
patterns and to obtain an increased speed prediction accuracy. Therefore, ’large dataset’ will also be
used as criterion to select the right prediction method.

Criteria Importance
In the method trade-off, the importance of the criteria will be distinguished by assigning a weight to each
criterion between 1 and 5. A higher weight means a higher importance of the criterion. From the criteria
above, the prediction accuracy and large dataset are the most important criteria and get a weight equal to
5. The criterion prediction accuracy is important, since this leads to a model with accurate speed predictions
and possibly to an improved travel time prediction accuracy. The criterion large dataset is also and important
criterion, since a large data set allows the model to find more underlying relationships between the indepen-
dent and dependent variables. This may also increase the speed prediction accuracy. Hyperparameter tuning
and interpretability are the least important criteria with a weight of 2 and 1 respectively, since they have the
lowest impact on the main research objective. The criterion interpretability has the lowest weight, since the
independent variables are carefully chosen through a literature study and reasoning. Also, the goal of the
research is not to understand why something is predicted.

3.2.2. TRADE-OFF PREDICTION METHODS
In Table 3.4, a trade-off between five different ML methods is shown. In the first column, the criteria used to
find the most suitable method is shown. In the second column, the importance of each criterion is indicated
by a weight that ranges between 1 and 5, where 1 means not important and 5 very important. In the last five
columns, a score can be found for each prediction method with respect to each criterion. This score ranges
between 1 and 5, where 1 means bad performance and 5 great performance for that specific criterion. The
total score, which is the sum of the multiplication between the weight and scores, can be found in the last
row. From Table 3.4, it can be concluded that the neural network has the best total score, while the SVR has
the lowest total score.

Table 3.4: Trade-off between multiple machine learning methods based on different criteria for point-based data.

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 5
Hyperparameter Tuning 2 5 4 2 2 1
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 40 46 31 47 53

Prediction Accuracy
The prediction accuracy for each prediction method depends on the problem. From the research of den Hei-
jer, it was concluded that the random forest performed better than linear regression. The prediction accuracy
for SVR, GB and NN for this research problem is not known. Therefore, the score that are assigned to these
prediction methods are based on how these models perform in general based on [41], [42] and [43]. Linear
regression has the lowest prediction accuracy, since it can only model linear relationships. Therefore, linear
regression has a score of 1. The Neural Network has the highest score of 5, since it can model very complex
relationships which increases the prediction accuracy. In general, Gradient Boosting is more accurate than
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random forest and therefore get a score of 4 and 3 respectively. This is because Gradient Boosting build the
decision trees sequentially instead of parallel. This means that the next decision tree is based on the mistake
made by the previous trees instead of building the decision tree randomly as done by random forest. Support
vector regression also has a relative high prediction accuracy and gets a score of 4, however this is limited to
smaller data sets.

Hyperparameter Tuning
The scores for linear regression and random forest for the criterion hyperparameter tuning can be derived
from the research of den Heijer. It was found that the linear regression model has no hyperparameters and
that the training time is very quick with less than 3 seconds and therefore has the highest score of 5. The ran-
dom forest model also had a fast training time around 10 seconds, but the hyperparameter maximum depth
of decision trees had to be trained. Therefore, a score of 4 was given to the random forest prediction method.
Neural network has the lowest score of 1, this is due to many hyperparameters (∼10) and a relatively long
training time. The long training time is due to the computational expensive training process where many
weights and biases are optimized through many iterations. The SVR has mainly three hyperparameters: ep-
silon (thickness of a tube), C (penalty factor) and sigma (kernel function parameter[44]. However, the training
time of the SVR increases quadratically with respect to a larger data set. For a large dataset, which is used in
this research, the computational time for hyperparameter tuning may increase significantly. Due to the long
training time, but little hyperparameters, the SVR gets a score of 2. Gradient Boosting has a relatively low
training time compared to NN and SVR, but has many hyperparameters (∼10)[45]. The number of hyperpa-
rameters make the hyperparameter tuning process of Gradient Boosting less attractive, and therefore gets a
score of 2.

Interpretability
The scores that are assigned to the prediction methods for the criterion interpretability are based on [41],
[42] and [43] just like the prediction accuracy. Linear regression is the method that is easiest to interpret
and gets the highest score of 5. This is because the importance of each independent variable is expressed by
the value of the coefficients. Neural networks are least interpretable and are also called ’black-boxes’, where
the decision making of the model cannot be derived and gets a score of 1. The random forest and Gradient
Boosting methods can be interpreted to a certain extent and have a score of 3. Each individual decision tree
can be interpreted well, but due to the many decision trees used for both methods, the interpretation is more
challenging.

Large Dataset
In general, all machine learning methods in the method trade-off, except SVR, are able to handle large data
sets. SVR are less appropriate for large data sets due to the quadratically increase of the training time with
the increase of training points and therefore gets a score of 1. The neural network has the highest score of 5,
because it handles large data sets very well. In general, it is able to improve its prediction accuracy with an
increased data size, while the other prediction methods have reached that saturation point[46]. Therefore,
LR, RF and GB have a lower score than the neural network which is 4.

PREDICTION METHOD TRIP-BASED DATA

The method trade-off that is performed in Table 3.4 is applicable to point-based data. However, learning and
predicting from trip-based data requires an additional capability of the prediction method. The prediction
method needs to be able to learn from combinations of multiple roads, between two GPS data points, while
the model is finally used to predict the speeds on single roads. This can be seen as a sort of extrapolation. In
subsection 2.3.1, it was explained that trip-based data cannot be used for random forest models. The random
forest uses a bunch of decision trees which are bad at predicting different combinations of the independent
variables than trained on (multiple road vs. single roads). Because Gradient Boosting also consists of decision
trees, trip-based data is not suitable for this prediction method as well. As a result, linear regression, support
vector regression and neural networks are left as suitable prediction methods for trip-based data. Because the
neural network has the best total score in Table 3.4, the neural networks is also the best prediction method
for trip-based data.

3.2.3. SENSITIVITY ANALYSIS METHOD TRADE-OFF
Additionally, a sensitivity analysis was done for the method trade-off shown in Table 3.4 to make sure that
the outcome is robust. The sensitivity analysis will be done by changing the weights and scores in such a way
that it disfavors the total score of the neural network compared to the other models. In total, four cases will be
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analyzed that have the largest impact on the relative score between the neural network and the other models
and are:

• Case 1: Decreasing the weight of the criterion ’prediction accuracy’ by 1, since the neural network
scores here the best.

• Case 2: Increasing the weight of the criterion ’hyperparameter tuning’ by 1, since the neural network
score here the worst along with Gradient Boosting.

• Case 3: Increasing the weight of the criterion ’interpretability’ by 1, since the neural network score here
the worst.

• Case 4: Decreasing the score of the neural network for the criterion ’prediction accuracy’ by 1, since the
neural network scores here the best.

The outcomes of the four cases can be found in Appendix D. The outcomes show that for each case the
neural network has still the highest total score and is therefore a good choice as prediction method for this
research.

3.3. NEURAL NETWORK
From the method trade-off in section 3.2, it was concluded that the neural network is the best prediction
method for point- and trip-based data. Neural networks or also called artificial neural networks (ANN) are
inspired by the human brain. The neural network consists of neurons and synapses. The synapses connect
the neurons and conveys the input and output from one neuron to the other. Besides the hyperparameters
that can be altered to tune the model, no other control can be exerted on the model. Basically, the network
of neurons between the inputs and outputs is a black box. It is hard and usually impossible to trace back
which input variable influences which output variable and to which extent. In this section the principles of
the neural network are discussed as well as the neural network type that will be used for this research.

3.3.1. SINGLE PERCEPTRON
The most simple type of NN, with one input layer and one node in the output layer, is called a perceptron
and is shown in Figure 3.2. The perceptron consists of n inputs x1, x2...xn which are multiplied by weights
w1, w2...wn before fed into the node through the links, also called synapses. The node sums these inputs by
Equation 3.3.1, after which a bias b is added. The bias can be compared to the constant in a linear function,
y = ax +b, where b would represent the bias. The bias is unknown and should be learned by the model just
like the weights. Inside the nodes, an activation function f can be found. An activation function is added
to add non-linearity and to be able to model complex relationships. After the activation function has been
applied, an output y is produced as shown in Equation 3.3.2.

Figure 3.2: The most simple type of NN, perceptron, which consists of an input layer and an output layer with one node[47].
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h =
N∑

i=1
wi xi = w1x1 +w2x2 + ...+wn xn (3.3.1)

y = f

(
N∑

i=1
wi xi +b

)
(3.3.2)

3.3.2. FEED-FORWARD NEURAL NETWORK
The perceptron, as discussed above, is the simplest NN. However, it is mostly not an accurate predictor, since
it does not support high complexity problems. By adding hidden layers and neurons between the input and
output layer, a model can be developed with increased flexibility and complexity. In this way, the neural
network can be applied to any non-linear problem and is therefore a powerful model. In subsection 3.1.3,
four different types of neural networks were distinguished and explained, and are the following:

1. Feed-Forward Neural Network

2. Recurrent Neural Network

3. Long Short-Term Memory Network

4. State-Space Neural Network

The input data for this research is based on GPS data and is not sequential. This is because the order of
the data, to train the model, is not important for the speed predictions. Therefore, the feed-forward neural
network will be used for this research. The other three neural network types are only suitable for data with
a sequential structure, where the next prediction depends on the previous ones. Below, a description of the
feed-forward neural network is provided.

The information in a feed-forward neural network flows into one direction, from the input layer to the hidden
layer(s) and finally to the output layer. The architecture of a feed-forward NN with an input layer, two hidden
layers and output layer is shown in Figure 3.3. The two hidden layer can be extended to more hidden layers
if a more complex model is desired. The number of neurons in the input layer is equal to the number of
independent variables. The number of neurons in the output layer is equal to number of dependent variables
(outputs) of the model. The number of neurons in the hidden layers differs per neural network and have to
be determined by the user. The neurons in the neural network are connected to the neurons in the previous
and next layer through links, where the output of a neuron is multiplied by the weight of the link.

The output of each neuron in the input layer is shown in Equation 3.3.3. This is equal to the (normalized)
value of the independent variable x j (I j ). Where j is the jth neuron in layer i and i the layer number which
is equal to 1 for the input layer.

ai
j = x j (3.3.3)

The output of the neurons in the hidden layer and output layer can be calculated by Equation 3.3.4. Where
σi is the activation function of each neuron in layer i , w i

j k the weight from neuron k in layer (i-1) to neuron j

in layer i, ai−1
k the output of neuron k in layer (i-1) and bi

j the bias of neuron j in layer i.

ai
j =σi (∑

k

(
w i

j k ·ai−1
k

)+bi
j

)
(3.3.4)
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Figure 3.3: A feed-forward network with an input layer (Layer 1), hidden layers (Layer 2 & 3) and output layer (Layer 4)[48]

3.4. RESEARCH METHODOLOGY
In this section the methodology for this research is discussed. A visualization of the methodology is shown in
Figure 3.4 through a flowchart. This methodology is based on den Heijer’s approach and the neural network
that will be used as prediction method. The methodology can be divided into four parts and will be discussed
in the next three chapters. Below a short discussion of each part of the process is provided:

Preprocessing
In chapter 4, the collection and preprocessing of the data will be discussed. There are two GPS data sets that
will be used from different customers of ORTEC. The first data set is from den Heijer which has already been
collected and preprocessed. The second data set is collected and preprocessed during this research with a
higher frequency of 2 minutes. Before using the raw collected GPS data, first some preprocessing steps have
to be done. In this way, the data can be properly used to train the model. First, the data will be cleaned where
all irrelevant GPS data points are removed. Then, the cleaned data points are matched to a road in the digital
map using a map matching algorithm. After each GPS data point is matched to a road in the map, the features
of the roads are extracted for each GPS point. This is done by looking up the corresponding road properties
in the map data. The trip-based data needs an additional preprocessing step. This includes the calculation of
the average road properties of all roads between two GPS points (trip). Lastly, the point- and trip-based data
set will be split into a training (75%) and a test (25%) set. The training set will be used to the train the model
and to find relationships between the independent (input) and dependent (output) variables. The test set is
used to obtain the training and travel time prediction accuracy.

Model Design
In chapter 5, the model design of the neural network will be discussed. First the independent and dependent
variables of the model will be defined. Subsequently, the neural network is implemented in Python, after
which the hyperparameters can be chosen and tuned. The hyperparameters that will be tuned include the
learning rate, number of neurons, number of hidden layers and mini-batch size of the neural network.

Training & Evaluation (Points and Trips)
In chapter 6, the model will be trained on either point- or trip-based data. After the model is trained, the
speeds in the point-based data test set are predicted using the input (independent) variables of the speeds
in the test set. By comparing these speeds with the actual speeds, the speed prediction accuracy can be
calculated.

Prediction & Evaluation (Routes)
After the evaluation of the trained model, the model is used to predict the speed of each road in the map.
After this, the map is updated. This is the process of replacing the speeds of the roads in the map by the new
predicted speeds. Subsequently, the travel times of the travels in the test set can be predicted. This is done
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by the routing software of ORTEC. It calculates the shortest path from the first to the last GPS point of the
travel, after which the expected travel time is calculated. Lastly, the predicted travel times can be compared
to the travel times of the travels in the test set. This results in a travel time prediction accuracy of the speed
prediction model.

3.5. CONCLUSION
In this chapter, the following conclusions could be made:

• The travel time prediction methods that can be found in literature can be divided into model-based and
data-driven methods. Model-based methods are based on a physical mechanism, while data-driven
methods learn from data. It was found that no complete travel time prediction method in literature,
except the one from den Heijer[1], can be used for this research problem. This is because these meth-
ods only focus on one road or route instead of a road network, for which the travel time is directly
calculated. Also, the prediction methods have a prediction horizon, while a method without prediction
horizon is needed for this research. This is because the speeds have to be predicted once, to be used
throughout the year. Therefore, the methodology of den Heijer, explained in section 2.2, is the only
method that can and will be used for this research.

• Despite the full travel time prediction methods in literature cannot be used, the used prediction meth-
ods can be adapted and used to improve the travel time prediction method of den Heijer. The predic-
tion methods that can be used for this research problem are linear regression, random forest, support
vector regression, gradient boosting and neural networks. These prediction methods are suitable, since
they can predict a continuous output (speed) and are able to generalize speed predictions to an entire
road network. After a method trade-off, it was found that the neural network is the best prediction
method. The feed-forward neural network will be used for training and prediction, based on point-
and trip-based data. Other types of neural networks are not suitable, since they can only be used for
sequential input data, which will not be used in this research.

• In Figure 3.4, the methodology of this research is shown through a flowchart. The methodology is based
on den Heijer’s approach combined with the neural network prediction method. It can be divided into
four parts: preprocessing, model design, training & evaluation and prediction & evaluation. These parts
will be discussed in this order in chapter 4, chapter 5 and chapter 6.
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Figure 3.4: Flowchart of the methodology for this research, from preprocessing to evaluation of the travel times.





4
DATA

In this chapter, the collection and preprocessing of the data is discussed. The data is the input of the model
and comes from two different sources:

1. Map data: This is the data that ORTEC has purchased from HERE Technologies. The map data contains
information about the road network and many properties of each road, discussed in subsection 4.4.2.
The map data is clean and well structured. This makes it easy to use.

2. Customer GPS-data: The GPS-data is collected from customers that operate with fleets of trucks. This
data is raw and of relatively low quality. Much effort is required for cleaning and preprocessing to use
this data.

In this chapter first a description of the GPS data is provided. Secondly, the cleaning steps and the map
matching process of the GPS data is discussed. Where the map matching is needed to assign each GPS point
to a road in the map. After this, the factors that influence the travel time are researched. In this way, only the
road properties from the map data, which are important, are included in the model input. This reduces the
computational time of the neural network as well as the chance of overfitting. At the end of the chapter the
sampling of the data into a training and test data set is described.

4.1. DESCRIPTION OF USED GPS DATA
In this research, both the GPS data from den Heijer (5 min. frequency) and new collected GPS data (2 min.
frequency) during this research will be used. For convenience, the preprocessed GPS data from den Heijer
will be called ’old data’ and the preprocessed GPS data collected during this research ’new data’. The new and
old data are both used for this research because of the following reasons:

• New data: During this research, another customer of ORTEC was willing to share its GPS data. This GPS
data has a frequency of 2 minutes which is higher than a frequency of 5 minutes from the old data. It is
expected that the quality of the trip-based data will be improved with a higher GPS data frequency. As a
consequence, the speed predictions of the neural network will improve. This may result in better travel
time predictions such that the benchmarks are outperformed.

• Old data: den Heijer already collected and preprocessed GPS data with a frequency of 5 minutes which
is ready to use. The data is obtained from a different customer than the new data. By using the old
data as well, more insights can be obtained about the developed speed prediction models. Is the best
speed prediction model for the new data the same as for the old data? Can a neural network, trained on
trip-based data, already outperform the benchmarks with a GPS data frequency of 5 minutes?

A more detailed description of the GPS data that is used for the new and old data is provided below.

NEW GPS DATA

The new GPS data that is collected during this research is from a customer of ORTEC that is specialized in
food services. The food services are distributed by the company itself with 165 trucks throughout the Nether-
lands. In total, 2,513,856 GPS data points were collected and are shown in Figure 4.1. The GPS data is mainly
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recorded in the provinces: Groningen, Limburg, North Holland, South Holland, Utrecht and Zeeland. The
majority of travels are driven between 4:00 and 17:00 and can be explained by the fact that the food has to be
delivered before the time of either breakfast, lunch or dinner. The GPS data is collected throughout 2017 with
an average frequency of 2 minutes. Further detailed information about the exact locations of the travels are
kept confidential due to data protection laws. Besides the longitude and latitude, the GPS data also contains
the following additional information about each recorded GPS point:

• Vehicle ID

• Driver name

• Trailer ID

• Activity

• Speed

• Heading

• Date and time

• Fuel level and fuel used

• Mileage (total distance of vehi-
cle)

• Country

Figure 4.1: All collected GPS data points (2,513,856) from trucks in the Netherlands (new GPS data). This is point-based data.

OLD GPS DATA

The data that was used by den Heijer is GPS data is collected from a customer of ORTEC that is specialized in
the storage and distribution of packaged chemicals. The packaged chemicals are delivered by the company
throughout the Benelux with circa 60 trucks. The majority of the travels are driven between 3:00 and 17:00
and are tens of thousands of kilometers per day. The GPS data that is obtained is recorded between February
and July 2018 with an average frequency of 5 minutes between two recorded GPS points. In total, 2,803,546
GPS data points were collected and are shown in Figure 4.2. It can be seen that the GPS points are more
spread compared to the new GPS data in Figure 4.1. Further detailed information about the exact locations
of the travels are kept confidential due to data protection laws. Besides the longitude and latitude, the GPS
data also contains the following additional information about each recorded GPS point:

• Vehicle ID

• Speed

• Heading

• Date and time

• Mileage (total distance of vehi-
cle)
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Figure 4.2: All collected GPS data points (2,803,546) from trucks in the Benelux (old GPS data). This is point-based data.

4.2. DATA CLEANING
After all raw GPS data is collected from the customer, the data needs to be cleaned so the model only learns
from representative data. The data cleaning steps for the new and old GPS data sets are slightly different. This
is due to different information that was included in the GPS data sets. However, the cleaning data steps of the
new and old GPS data can be considered to be more or less similar. This should not have an impact on the
final results. The data cleaning steps for the old GPS data were already done by den Heijer. The data cleaning
steps for the new GPS data were done during this research.

NEW GPS DATA

In total, 2,513,856 GPS points were collected for the new data set. After data cleaning, the new data set was
reduced to 1,436,985 points and 1,049,195 trips. The total number of remaining travels are 183,408, where
45,852 travels are added to the test set. The travels in the test set are used to evaluate the travel time prediction
accuracy. The data cleaning steps of the new GPS data are described below:

1. Each collected GPS point contains information about the activity of the vehicle. These activities are:
engine off, engine on, driving, standing still, refueling, contact key off, prepare for departure, contact
key on, loading and unloading. Because each GPS point got assigned an activity, relevant GPS points
for the learning model can be easily taken. The GPS points with an activity other than ’driving’ are
discarded from the data set.

2. All first and last GPS points from a travel that contain a speed equal to or below 5 km/h are filtered. It
was found that the majority of the first and last GPS points of a travel, with a speed equal to or below 5
km/h, are on a private terrain. These data points are unrepresentative for learning.

3. All travels that include Belgium are filtered. When the travels in Belgium would be included, then also
all roads in Belgium need to be predicted. This would increase the computational time significantly. By
removing the travels in Belgium, only 0.17% of all travels are removed.

4. GPS points that could not be matched to a road in the map are filtered.
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5. All GPS points and travels that contain a ferry ’road’ are filtered. These travels are considered to be out
of scope for this research.

6. After map matching, all GPS points with a minimum map matching error of 20 meters are filtered.
This means that all points that are at least 20 meters from the closest road in the map are filtered. The
minimum map matching error above 20 meters is mainly caused by trucks that are on private terrain,
which is not included in the map. These GPS points are considered to be unreliable.

7. Travels that only contain 1 data point are filtered. This is because the training and test set of trips need
at least two useful data points of each travel, which is also needed to evaluate travel times.

8. For the trip-based data, very short trips that are shorter than 15 seconds and 50 meters are filtered.
These conditions are also used by den Heijer to remove inaccurate trips.

OLD GPS DATA

In total, 3,475,479 GPS points were collected by den Heijer. After applying all data cleaning steps, the old
data was reduced to 550,268 points and 219,828 trips. The total number of remaining travels were 41,264,
from which 10,316 were added to the test set. The travels in the test set are used to evaluate the travel time
prediction accuracy. The data cleaning steps applied by den Heijer are as following:

1. Sometimes, measurements were recorded in quick succession. Perhaps, multiple events happen at one
instant but cause several messages. To compensate for this, points are merged where the mileage has
not changed. This way, stops (which normally consist of multiple points in sequence) are merged into
one point.

2. Very long travels with over 10,000 km distance are removed.

3. All travels that are not driven by a truck are removed from the data set.

4. GPS points that could not be matched to a road in the map are filtered.

5. All GPS points and travels that contain a ferry ’road’ are filtered. These travels are considered to be out
of scope for this research.

6. After map matching, all GPS points with a minimum map matching error of 20 meters are filtered.
This means that all points that are at least 20 meters from the closest road in the map are filtered. The
minimum map matching error above 20 meters is mainly caused by trucks that are on private terrain,
which is not included in the map. These GPS points are considered to be unreliable.

7. All travels that only contain 1 data point are filtered. This is because the training and test set of trips
need at least two useful data points of each travel, which is also needed to evaluate travel times.

8. For the trip-based data, very short trips that are shorter than 15 seconds and 50 meters are filtered.

4.3. MAP MATCHING
A challenge that comes with the use of GPS data is map matching. Map matching is the process of matching
GPS data, consisting of a latitude and longitude component, to locations in the digital map. In Figure 4.3, an
example of this process is shown, where on the left image the GPS points are indicated by blue dots and on the
right image the corresponding path is shown which is found by applying a map matching algorithm.
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Figure 4.3: Illustration of matching GPS data to roads in a map, this process is called map matching[49].

4.3.1. MAP MATCHING ALGORITHMS IN LITERATURE
The inaccuracy of the GPS data makes the map matching process of GPS data to locations in the digital map
challenging. The inaccuracy is caused by different reasons such as the satellite geometry, signal blockage,
atmospheric conditions and receiver design features/quality[50]. For ideal circumstances, an accuracy be-
tween the 5 and 10 m is claimed[51]. Stanford University[52] did measurements in an open sky and in a city
with a fixed GPS location. The mean for the measurements with an open sky was found to be 4.9 m, while the
mean shifted to 16.8 m in the city. The reduction of the GPS accuracy in the city could be blamed to the signal
blockages by the surrounded buildings.

Figure 4.4: Accuracy distribution of fixed GPS measurements (1087 samples) in open sky and in city/town[52][1].

In literature, many algorithms can be found that improve the map matching accuracy. Quddus et al. [53]
provides a literature review of available map matching algorithmsThese algorithms range from simple search
techniques to more advanced techniques such as an Extended Kalman Filter, fuzzy logic and Belief Theory.
The map matching algorithms were categorized into four categories: geometric, topological, probabilistic
and advanced techniques. A brief explanation of these algorithms can be found below[53]:

• Geometric: Geometric map matching algorithms are simple and only consider the shape of the roads.
The information about the road connections is not utilized leading to less accurate matches. The most
common geometric map matching algorithm is a simple search algorithm called point-to-point match-
ing. This algorithm is fast and easy to implement[54]. This algorithm matches the GPS location to the
closest node or shape point of a road. Other geometric map matching algorithms use point-to-curve
matching which performs better than point-to-point algorithms[54][55]. This algorithm calculates the
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distances from the GPS location to each road, after which the closest road is matched. The drawbacks
of the geometric map-matching approaches are the sensitivity to outliers and the instability for areas
with a high road density.

• Topological: Topological map matching algorithms use the geometry of the roads as well as the con-
nectivity and contiguity of the roads. These algorithms are relatively quick and easy to implement[56].
Greenfeld [57] introduced a weighted topological algorithm and uses the heading, proximity, link con-
nectivity and turn restriction to assign each GPS point to the right road. Quddus et al. [58] proposed an
algorithm that also included the speed.

• Probabilistic: Probabilistic map matching algorithms use an elliptical or rectangular confidence region
around each GPS location. This region is based on the error variances of the GPS device[59]. Within
this confidence region, the GPS location is matched to the most likely road based on the heading, con-
nectivity and closeness criteria. Also other criteria such as speed, and distance to junctions can be used
for further improvement of the map matching algorithm.

• Advanced: Advanced map matching algorithms are algorithms that use more refined approaches. Ex-
amples are: (Extended) Kalman Filter, Dempster-Shafer’s mathematical theory of evidence and an in-
teracting multiple model. In general, the performances of these advanced methods are better than the
geometric, topological and probabilistic algorithms. However, these algorithms are more difficult to
implement and require more computational time.

4.3.2. USED MAP MATCHING ALGORITHM
To save a significant amount of time on the development and implementation of a map matching algorithm,
the online map matching service from HERE is used. This map matching service is called Fleet Telematics
Route Matching. A sequence of GPS points of an unique travel are sent to the API and are matched to the
most likely driven roads in the map. The most likely driven roads are determined by the longitude, latitude,
timestamp, speed, heading and the other GPS points of the same travel. The map matching algorithm has
two outputs: the minimum error and link IDs. The minimum error is the minimum distance from the GPS
location to the nearest road in the map. The link IDs are the identification numbers of the matched roads in
the map. The map matching service from HERE is both used for the old and new GPS data set.

It is not clear exactly which map matching algorithm has been used by HERE. From the required input and
the documentation[60] it is expected that a topological algorithm is used. A topological algorithm uses, as
explained in subsection 4.3.1, the geometry, connectivity and contiguity of the roads in the map and the
longitude, latitude, speed, heading and time of the GPS points. A topological algorithm is relatively quick and
simple to implement, while preserving a high accuracy. HERE’s map matching algorithm also ignores GPS
points that are too far from the path causing a big detour. GPS points that have ’0’ as longitude and latitude,
meaning that the recorded GPS location is unknown, are also ignored.

4.4. FEATURE EXTRACTION
After matching the GPS data to locations in the digital map, features can be extracted. This includes the
process of deriving values (features) that are informative to facilitate the learning and predicting process of
the model. For this research, it is important to find features (independent variables) that are predictors for
the speed and travel time. These features will be used to train the model and to predict the speed of each road
in the map. In this section, first a literature review will be conducted to find out which features are relevant
to include in the model input. After this, relevant features will be extracted from the map data which are the
road engineering factors. Lastly, a description will be provided how the temporal factor will be included in
the model to improve the travel time prediction accuracy even further.

4.4.1. LITERATURE REVIEW OF TRAVEL SPEED INDICATORS
In this section, travel speed indicators that are found in literature are discussed. Travel speed indicators are
factors that influence the driven speed and as a result the travel time. MacAngus et al. [61] identified six
factors that influence the operating speed and are: 1) vehicle classification, 2) temporal factors, 3) weather
factors, 4) driver attitude and behaviour, 5) regulatory and enforcement environment and 6) road engineering
factors. Sigakova [62] listed 12 important factors that influence the operating speed and are categorized into
predefined, predictable and unpredictable classes. To combine the factors from both literature sources, the



4.4. FEATURE EXTRACTION 37

factors are categorized into five classes. A description of these five classes is provided below:

1. Vehicle classification - truck, car, delivery van, motor, etc.

2. Temporal factors - season, day of week, time of day, etc.

3. Weather factors - precipitation, snow, wind, temperature, etc.

4. Road engineering factors - speed limit, lane width, speed bumps, bridge, tunnel, etc.

5. Unpredictable factors - driver attitude, incident, unscheduled road closure, etc.

VEHICLE CLASSIFICATION

The type of vehicle has a large influence on the operating speed. This differs due to the condition of the ve-
hicle, the maneuverability, the shape of the vehicle and the vehicle speed management systems[63][64]. For
larger vehicles such as trucks and buses, the maximum speed on highways is reduced due to environmental
and safety reasons. In addition, the type of load such as hazardous and fragile materials, which needs special
attention, affects the operating speed of the vehicle as well. Weight and height restrictions for large vehi-
cles on specific location such as bridges, tunnels, mountainous passes and certain urban areas, also forces
the driver to take a different route. This does not always directly influence the operating speed, but rather
increases the travel time due to a diversion.

TEMPORAL FACTORS

Temporal factors such as part of the day, day of the week, seasons and holidays have a large impact on the
vehicle operating speed [62]. The main reason for a reduction in operating speed is caused by the vehicle
density on the road. The vehicle density is especially high during recurrent congestions that take place during
morning and evening rush hours throughout the mid-week. Other reasons that influence the operating speed
due to the temporal factors are driver performance, trip purpose and lighting conditions. Brilon & Ponzlet [65]
found that darkness reduces the velocity by 5 km/h on German highways without a speed limit. The temporal
factors can be used to find recurrent patterns in the driven speed. Non-recurrent congestions are harder to
incorporate, where Google and Yandex use real-time GPS data from users to detect these events.

WEATHER FACTORS

There are different weather factors that may influence the vehicle operating speed. In the USA, 15% of the
congestions are caused by bad weather conditions where rain accounts for 70%[66]. Other weather fac-
tors that influence the operating speed are among others: snow, wind, visibility, road surface condition,
temperature[61]. Rain seems to influence the operating speed by the intensity and road surface condition.
A speed reduction between 1 and 10 km/h, due to the precipitation intensity, is found for urban road and
highways[67][68][69]. A speed reduction, due to wet surface conditions, is found between 9.5 and 12 km/h
on highways[65][70].

Like rain, also snow influences the operating speed based on the intensity and road surface conditions. De-
pending on the snowfall intensity, a speed reduction between 3 and 50 km/h can be obtained for different
types of roads[67][69]. When the road surface is covered by snow, then a speed reduction between 10 and 16
km/h was found on highways[70][71].

The wind speed has an impact on the driver’s speed when it is above a certain threshold, which was found to
be 16 km/h for highways[70]. When the wind speed exceeds 24 km/h, then it has a larger effect on the vehicle
speed. However, this seems to have large variations and depends on the type of driver making the influence
of wind on the driving speed hard to incorporate. A wind speed between 24 and 48 km/h reduces the average
operating speed on highways by 11.7 km/h.

The visibility, caused by rain, snow, fog, dust or smoke, influences the operating above a certain thresh-
old. Kyte et al.[71] found a speed reduction of 14 km/h when the visibility was less than 0.16 km. While
Kyte et al.[70] found a speed reduction of 0.77 km/h for every 0.01 km below a visibility of 0.28 km on high-
ways.

ROAD ENGINEERING FACTORS

Road engineering factors entail the characteristics that can be assigned to roads and are also called road at-
tributes. Road attributes are fixed and are different for each road segment. There are many attributes that can
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be assigned to roads from which the influence of some are described in literature. The road engineering fac-
tors that influence the operating speed and travel time that are found in literature are described below:

• Road category: The road category to which a road can be assigned to is an important factor, since
other road engineering factors depend on this. Examples of road categories are highway, arterial road,
side road and local road[62].

• Speed limit: The speed limit is strongly correlated to the road category[62]. For example, a highway
allows a much higher speed than a local road. The speed limit highly influences the driving speed, since
drivers want to be as fast as possible, while not exceeding the speed limit which might lead to penalties
and undesired consequences[61].

• Tunnels and bridges: In tunnels, drivers are more alert and cautious due to the closed environment.
Typically, this results in a speed reduction and drivers who try to stay away from the tunnel walls[72].
On bridges, the wind speed and oscillations may have an impact on the driving speed. The experienced
discomfort results in a decrease of speed by the driver[73].

• Mountain passes: Mountainous regions can considerably slow down the vehicle speed, while the maxi-
mum allowed speed is higher. The main reasons for the reduction in speed is the limited sight distance,
amount of turns, radius of turns, road gradient and limited road width[74].

• Intersection: Intersections highly affect the operating speed and the travel time, since they break up
the road section and requires attention and time to perform a collision-free maneuver. There are many
types of intersections and how they are controlled[75]. General types of intersections are among others
roundabouts, T-intersection and cross-intersections. Each type of intersection is controlled by either a
stop sign, give way sign, traffic signal or no sign or signal. Both the type of intersection and the way the
intersection is controlled have a different influence on the travel time.

• Country/region: The country or region may considerably affect the driven speed. Reasons for this are
among others: different speed limits, type of roads, infrastructure, population, traffic density, traffic
rules, etc. All of these factors that differ per country may effect the difference in driving speed and thus
the travel time per country.

• Road gradient: When going uphill, the driver’s visibility is restricted, which leads to a speed reduction
to be able to anticipate to uncertain situations. Besides the visibility, also the gravity plays a role in
the operating speed which decreases the speed when going uphill and increases the speed when going
downhill[76]. For both cases, the drivers seem not to compensate for these changes in speed compared
to speed limit. The influence of the road gradient on heavy vehicle speeds in Germany is significant. A
decrease of 40-60% is measured on highways for a positive gradient of 6% [68]. A gradient of 2% results
in a decrease of 10-20% in operating speed. In urban areas, the gradient has not a significant impact on
the average speed.

• Speed humps: Speed humps, which have a maximum length of 3.5 m and a height of about 0.15 m,
decrease the driving speed by approximately 10 km/h[76]. Short humps up to 2 meters have a low
impact on the speed, while humps with a length between 2 and 3 meters and a low driving speed,
causes high discomfort and as a result a decreases in speed. Speed bumps are a more aggressive form
of speed humps and are in general used on parking lots and private terrains. This is because of the
substantial discomfort which may lead to damage to the vehicle suspension or loss of control at too
high speeds.

• Horizontal curve: Different researches show that a decrease in curve radius decreases the operating
speed due to extra effort required to stay on the road and reduction in visibility[76]. Ben-Bassat & Shinar
[77] showed that for sharp (radius = 80 m) and shallow (radius = 380 m) turns the speed decreased from
120 km/h to 80 and 100 km/h respectively. Shallam & Ahmed [78] performed a study at the Shillong
bypass (highway) for 10 different curves. From this study it was concluded that curves with a radius
lower than 100 m has the largest impact on the speed. For low radius curves, the speed reduced from
80 km/h to 43-56 km/h.

• Road width: The driving speed seems to associate with the perceived usable road width by the driver[79].
A smaller perceived road width results in a lower driving speed. The perceived road width is influenced
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by the lane width, number of lanes, shoulder width, presence of parked cars and vertical elements on
the road side.

• Road surface roughness: The roughness of the road surface causes noise and vibration leading to dis-
comfort of the driver and a reduction in speed[76]. For example, the driving speed on asphaltic concrete
is higher than on brick roads due to the increased roughness. Therefore it is one of the most important
factors that influences the driving speed.

• Turn cost: In general, the time needed to perform a left turn, right turn or going straight at an inter-
section is different. Performing a left turn takes most time due to the oncoming traffic that need to
be crossed. Jensen & Larsen [4] show an example where a left turn takes considerably more time (39
sec) than a right turn (19 sec) or going straight (20 sec). This is not an average case for all intersections
due to the influence of different factors. Examples are: presence of traffic signals, the timing of traffic
signals, number of lanes, etc.

UNPREDICTABLE FACTORS

There are many unpredictable factors that influence the operating speed and thus the travel time of a vehicle.
Because they are unpredictable, it is hard to impossible to take them into account for the prediction of the
operating speed. One unpredictable factor has a larger influence than the other on the travel time, from
which some of the most influential unpredictable factors are listed below[62]:

• Driver attitude and behavior: The driver attitude and behavior differs form one person to the other.
They can be distinguished by drivers that stick to the speed limit and those that drive above the speed
limit and are called the risk takers or socially deviant drivers[80][81]. Reasons for driving above the
speed limit are: finding the speeds limit to low, selfishness, risk-taking, forgetting to pay attention to
the speed limit and being afraid of being to late[80][82].

• Non-recurrent congestions: Where some congestions are predictable, for example due to rush hours
throughout the mid-week, some are not. Reasons for these are: bad weather conditions, incidents,
work-zones and other special events[66].

• Road accidents: Obviously, road accidents cannot be predicted beforehand. The results differ from
small congestions to road closures, where the latter has a large influence on the travel time.

• Unscheduled road closure: Unscheduled closures may result in large travel time delays and are caused
by severe accidents, pavement subsidence, fall of a bridge, an avalanche and other natural disasters[62].

• Delay on customs/border control: Delays on custom and border controls may vary a lot depending on
the country and location. This type of delay is mostly applicable to routes that pass borders between
an EU and a non-EU country[62].

4.4.2. FEATURE EXTRACTION FROM MAP DATA
In subsection 4.4.1, a literature study was conducted about travel speed indicators which influence the travel
time. These influential factors can be categorized into five classes: vehicle classification, temporal, weather,
road engineering and unpredictable factors. The influence of the following factors on the travel speed are
considered to be out of scope for this research study:

• Vehicle classification: Since the collected GPS data is only from one type of truck, other vehicles such
as cars and delivery vans are out of scope for this research. Therefore, the vehicle classification will not
be taken into account as independent variable This results in a model that is only applicable to trucks.

• Weather: The weather is considered to be out of scope for this research due to a high additional work-
load. This is because no information about the weather is included in the GPS data. An external data
source such as KNMI [83] needs to be consulted to link each GPS point to the weather at that moment
in time.

• Unpredictable factors: Obviously, the unpredictable factors cannot be taken into account as indepen-
dent variable, since these factors are unknown. However, it is important to keep in mind that these
unpredictable factors cause a certain amount of inaccuracy which limits the improvement of the travel
time predictions to a certain unknown accuracy.
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The influential factors that will be included in the model are road engineering and temporal factors. The road
engineering factors are included by using them as independent variable and can be obtained from the map
data. This is explained below. The feature extraction of the temporal factor is explained in subsection 4.4.3.
The temporal factor is researched at the end of this research after the best model is found using only road
engineering factors. This is because the temporal factor cannot be included in the model as independent
variable. This is explained in more detail in subsection 4.4.3.

ROAD ENGINEERING FACTORS

The road engineering factors can be obtained from the map data from HERE. These will be the independent
variables of the speed prediction model. The majority of these factors are shown in Appendix B and used
by den Heijer. In Table 4.1, an overview can be found of the road engineering factors that were found in
literature. Also, road engineering factors are added that were not found in literature, but are expected to be
appropriate predictors of the speed. In the second column, the map data that can be used, to include each
road engineering factor, is provided. In the third column, it is indicated whether the factor can and will be
applied to the model. A discussion of each road engineering is provided below including how and whether
they will be used as model input.

Table 4.1: Overview of road engineering factors found in literature and other from HERE. It is indicated what map data of HERE can be
used for the factors in the model and whether the factor will be applied.

Road Engineering Factors
from Literature

HERE map data Applied (y/n)

Road Category Functional Class y
Speed Limit Speed Limit y

Tunnel Tunnel y
Bridge Bridge y

Mountain Passes Mountain Passes n
Intersection Traffic Signal y

Country/Region (Non) Urban y
Road Gradient Grade Category n
Speed bumps Speed Bumps y

Horizontal Curve - n
Road Width Road Width & Lane Category y

Road Surface Roughness Paved y
Turn Cost - n

Other Road Engineering
Factors from HERE

HERE map data Applied (y/n)

Road Length Road Length y
Ramp Ramp y

Priority Road Priority Road y

Speed Pattern
Speed Pattern Maximum, Minimum,

Average & Monday 8:30
y

• Road Category: HERE does not provide road categories in a form such as highway, local road, side road,
arterial road, etc. However, HERE provides a functional class to each road between 1 and 5, which is
also a categorization of the roads:

– Functional Class = 1: roads allow for high volume, maximum speed traffic movement between
and through major metropolitan areas.

– Functional Class = 2: roads with very few, if any, speed changes that allow for high volume, high
speed traffic movement.

– Functional Class = 3: roads that intersect Functional Class = 2 roads and provide a high volume
of traffic movement at a lower level of mobility than Functional Class = 2 roads.

– Functional Class = 4: roads that provide for a high volume of traffic movement at moderate speeds
between neighbourhoods. These roads connect with higher Functional Class roads to collect and
distribute traffic between neighbourhoods.
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– Functional Class = 5: roads with volume and traffic movement below the level of any other Func-
tional Class.

• Speed Limit: The speed limit indicates the maximum allowed driven speed on a road and is provided
by HERE for each road and ranges between 5 and 130 km/h.

• Tunnel/Bridge: If a road in the map is a tunnel or a bridge then HERE assigns the attribute tunnel =
yes or bridge = yes to the road.

• Mountain Passes: HERE indicates whether a road is a mountainous pass yes or no. However, since
the research scope is the Netherlands, which does not have any mountain passes, this factor will be
disregarded and not applied to the model.

• Intersection: HERE does not provide clear information about the type of intersections. The only at-
tribute that can be used that contains useful information about the intersection is whether the road has
a traffic light yes or no. If the road has a traffic light, then it is expected that the average speed on this
road will be lower.

• Country/Region: The region can be taken into account by using the attribute whether a road is in an
urban area yes or no. This might have a significant influence on the speed due to a higher vehicle
density in urban areas.

• Road Gradient: The road gradient can be taken into account by the Grade Category provided by HERE
and can be either up, level or down. However, due to the flatness of the Netherlands, Belgium and
Luxembourg, this factor is not taken into account.

• Speed Bumps: HERE provides data whether a road has speed bumps yes or no.

• Horizontal Curve: The horizontal curve can be incorporated by adding an attribute to the road about
whether the road is a horizontal curve yes or no. However, whether a road is a horizontal curve cannot
be derived from the HERE map data and is therefore not taken into account.

• Road Width: The road width of the roads is provided by HERE and ranges between 2.50 and 3.50 m.
Another attribute that is related to the road width is lane category and ranges between 1 and 3.

– Lane category 1 contains roads with 1 lane

– Lane category 2 contains roads with either 2 or 3 lanes

– Lane category 3 contains roads with 4 or more lanes

• Road Surface Roughness: The road surface roughness can be described by whether the road is paved
yes or no.

• Turn Cost: The turn cost is the time it takes to go left, right or straight at an intersection. Since only
one speed can be assigned to an edge in the map, different speeds for going either left, right or straight
cannot be assigned to the roads. Therefore, the turn cost cannot be incorporated in this research study.

• Road Length: Each road in the map has a road length assigned by HERE in meters. A longer road
means less intersections which might increase the average driven speed and is therefore incorporated
as independent variable.

• Ramp: HERE indicates whether a road is a ramp yes or no. This might give additional information
about the driven speed, since vehicles accelerate or decelerate on ramps reducing the average driven
speed.

• Priority Road: HERE indicates whether a road is a priority road yes or no. This might improve the ac-
curacy of the speed prediction, since the vehicle does not need to stop to give priority to other vehicles
which increases the average speed.

• Speed Pattern: HERE provides speed patterns of cars for each road which contain the minimum speed,
maximum speed, average speed and the average speed on Monday 8:30. Den Heijer [1] researched
whether the average speed of cars, obtained from HERE map data, could be used in the map to improve
the travel time predictions. However, these speeds did not improve the travel time prediction accuracy
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of trucks. Still, these speed patterns can be a good indicator for the model to predict the average truck
speed on each road.

Point-Based and Trip-Based Data
There are different ways to learn from the GPS data and road engineering factors to improve the speed predic-
tions. Den Heijer [1] used two types of training data, which are point- and trip-based data and are explained
in subsection 2.3.1. The difference between these two types of data is that the point-based data only con-
tains information about a few roads, where the GPS data is recorded, of each travel. The advantage of the
trip-based data is that it contains information about all roads of each travel. Each trip-based data point is
based on all roads between two consecutive GPS points. This needs an additional preprocessing step. This
step includes the calculation of the average of the road properties (independent variables) of all roads that
belong to each trip. This calculation step is explained in more detail in subsection 2.3.1.

In den Heijer’s research[1], point-based data produced better speed predictions than trip-based data, such
that a higher travel time prediction accuracy was obtained. However, trip-based data was only used as train-
ing data for linear regression models, since this data cannot be used for random forest models, as explained
in subsection 2.2.2. Therefore, both point- and trip-based data will be used in this research, because another
prediction method may perform better with trip-based data than point-based data.

4.4.3. FEATURE EXTRACTION TEMPORAL FACTOR
The temporal factors can be extracted from the time and date of the recorded GPS data. Unfortunately, the
Highway Node Routing used by ORTEC is static and therefore only one speed value can be assigned to each
road in the map. This means that the temporal factor cannot be included as independent variable for the
model input. Therefore, a different method has to be used to research the influence of temporal factors on
the travel time prediction accuracy. This can be done by splitting the data set into sub data sets, where each
sub data set contains data that belongs to a certain time window such as rush hours (7:00 - 9:00 & 16:30 -
18:30), non-rush hours, day of the week, season, etc. For this research, it is decided to research the effect of
dividing the data into rush and non-rush hours. This seems to be the most influencing temporal factor due
to the many traffic jams at these moments of the day. An example, visualized through a flowchart, of this
method with sub data sets ’rush hours’ and ’non-rush hours’ is shown in Figure 4.5. This is a simplification of
Figure 3.4. The influence of the temporal factor is researched at the end of this research after the best model
is found using only road engineering factors.

4.5. DATA SAMPLING
After the collection and preprocessing of the data sets, the data sets are randomly split into a training and
a test data set. The training set will be used to train the model and the test set to evaluate the model on
points/trips and complete travels. 75% of the full data set will be used as training set and 25% as test set,
which is a common ratio used in many researches. Only complete travels, containing a sequence of GPS
points, will be put in either the training or test data set. This is done to make sure that during the training
process nothing is seen from the travels that will be evaluated on. For both the point- and trip-based data,
the points and trips from the same travels are put in the training and test set. In this way, the models that are
trained on point- and trip-based models are evaluated on the same travels.
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Figure 4.5: Example of how temporal factors can be researched with a static routing algorithm. This example shows a split in the data
set for rush and non-rush hours.

4.6. CONCLUSION
In this chapter, the following conclusion could be made:

• The data that is used as model input, comes from map data and GPS data. The map data comes from
map supplier HERE and contains information about the road network and many properties of each
road. The GPS data comes from two different customers of ORTEC who operate with trucks. One cus-
tomer operates in the Netherlands and has a data frequency of 2 minutes. The other customer operates
in the Benelux with a data frequency of 5 minutes and is called. The 2 minute frequency data is called
’new data’ and is collected and preprocessed during this research. The 5 minute frequency data is called
’old data’ and is collected and preprocessed by den Heijer.

• The new data set is used due to a higher frequency than the old data set. It is expected that the quality
of the trip-based data increases, since it can be more accurately estimated how the truck has driven
between two GPS points. This may result in a higher travel time prediction accuracy. The old data
is also used to get insight whether both the new and old data have the same best speed prediction
model. Also, more knowledge can be obtained whether a neural network, trained on trip-based data,
may already outperform the benchmarks with a data frequency of 5 minutes.

• After the collection of raw GPS data, the data needs to be cleaned so the model only learns from rep-
resentative data. After this, the GPS data can be matched to locations in the digital map. This is called
map matching. Different algorithms are available in literature to improve the map matching accuracy.
These algorithms are categorized into: geometric, topological, probabilistic and advanced. To save a
significant amount of time on the development and implementation of a map matching algorithm, the
online map matching service from HERE is used.
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• After each GPS point is matched to a road in the digital map, the factors (road properties) that can be
used to predict the speeds, are extracted. First, a literature review was done to find out which factors
influence the speed or travel time. These factors can be divided into five categories: type of vehicle,
temporal, weather, road engineering and unpredictable factors. For this research, the weather and
unpredictable factors are out of scope. The type of vehicle is trucks, since the GPS data is only obtained
from customers with trucks. The road engineering factors can be obtained from the map data of HERE.
These factors are used to train the model and to predict the speeds in the map. For the trip-based
data, an additional computational step need to be performed. This is because the average of the road
properties of the roads, that are between two GPS data points (trip), has to be calculated.

• Lastly, the data sets are randomly split into a training (75%) and test (25%) set. Complete travels are put
in either the training or the test set, which includes all points and trips from the same travel. This is done
to make sure that during the training process nothing is seen from the travels that will be evaluated on.
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MODEL DESIGN

In this chapter, the model design of the neural network will be discussed. First the objective of the model
will be discussed, including the error function used to measure the travel time prediction accuracy. Secondly,
the independent and dependent variables, which are the input and the output of the model, are discussed.
After this, the model design choices are made. This includes the values of the hyperparameters such as loss
function, number of neurons and hidden layers, optimizer, etc. After the neural network is implemented in
Python, the hyperparameter process of the neural network is discussed.

5.1. MODEL OBJECTIVE
The overall objective of the model is to predict the speed of each road in the digital map such that the travel
time prediction accuracy of the current speed prediction models, developed by den Heijer, is outperformed
for a given road network. This will be done by learning from points and trips obtained from GPS data, which
contain valuable information about the driven speed, and the travel time, at many different locations in the
road network.

TRAVEL TIME PREDICTION ACCURACY

To compare the travel time prediction accuracy of the new and current speed prediction models, an error
function is needed. The advantage of an error function is that the performance of the model can be summa-
rized in just one value. This allows for an easy comparison between the models in a quantitative way. There
are several error functions available which can be used to measure the performance. Armstrong & Collopy
[84] proposed five primary criteria to find an appropriate error function and are the following:

• Reliability: The reliability of an error function indicates whether a repeated application of a procedure
will produce similar results for different samples.

• Construct validity: Construct validity indicates in what extent the error function assesses the ’accuracy’
of the model.

• Outlier protection: The influence of outliers, due to a much larger or smaller error, on the error func-
tion should be kept to a minimum. Outliers may occur due to a mistake in recording the data or a
situation which is far from average.

• Sensitivity: It is important for calibration that the influence, even for a small change in parameters, on
the model performance is understood.

• Relationship to decisions: To what extent can the error be used to support decision-making.

Other criteria from Armstrong & Collopy [84] are the computational effort and understandability. The com-
putational effort is for all error functions not an issue due to the current computer capabilities. Also, the
understandability of the common error functions is, except for squared error terms, relatively easy.

Another criterion that was not proposed by Armstrong & Collopy [84] is that the error function has to give
relatively equal penalties for small and large values. This is important for this research study and can be

45
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solved by measuring the error with respect to the actual value. For example, if you have a predicted travel
time of 10 minutes and the actual travel time is 9 minutes, then the error should be the same as for a predicted
travel time of 90 minutes with an actual travel time of 81 minutes. By dividing the error by the actual value,
both predicted travel times have an error of 10%.

In Figure 5.1, an overview of different error functions is provided. The five primary criteria that are included
are: reliability, construct validity, outlier protection, sensitivity and relationship to decisions. The ratings that
are given to the error functions with respect to the criteria are poor, fair and good. Reliability and construct
validity are based on empirical results, while the other criteria are based on subjective judgements. From the
table, it can be concluded that no error function performs well for all criteria. The reliability and construct
validity is fair and good for all error functions, except for the RMSE. Thus when choosing an error function,
these two criteria do not have a significant impact on the decision.

Figure 5.1: Ratings of error measures[84].

Most travel time prediction methods found in literature (section 3.1) use the mean absolute percentage error
(MAPE). This error function is shown in Equation 5.1.1. Where n is the total number of travels, At the actual
travel time and Pt the predicted travel time for travel t. This error function calculates the mean of all absolute
comparisons between the actual and predicted travel time with respect to the actual travel time. However,
this error function has mainly two drawbacks[85]. Firstly, the MAPE is sensitive for outliers, which means
that some bad recorded data influence the MAPE negatively. Secondly, the MAPE uses a non-symmetric
loss, which means that positive errors are more penalized than negative errors. Makridakis [86] showed an
example where for the first case At = 150 and Pt = 100 and for the second case At = 100 and Pt = 150. This
results in a MAPE of 33.33% and 50% for the first and second case respectively and shows the effect of non-
symmetric loss. Also, by using a symmetric error function, large errors, when the actual value is close to 0, are
avoided. With a symmetric error function, these problems can be mitigated.

MAPE = 100%

n
·

n∑
t=1

∣∣∣∣ At −Pt

At

∣∣∣∣ (5.1.1)

The sensitivity to outliers can be solved by taking the median instead of the mean of the absolute percentage
errors. This results in the median absolute percentage error (MdAPE) function shown in Equation 5.1.2. In
Figure 5.1 it can be seen that the ’outlier protection’ improves from poor to good.

MdAPE = median

(
100% ·

∣∣∣∣ At −Pt

At

∣∣∣∣) t ∈ 1, ...,n (5.1.2)

The second problem, non-symmetric loss, can be solved by using the symmetric median absolute percentage
error (sMdAPE) function shown in Equation 5.1.3. The difference between At and Pt is now divided by the
average of At and Pt . In this way, the error function becomes symmetric with an error that ranges between 0
and 200%. The sMdAPE function will be used as main indicator for the travel time prediction accuracy in this
research study. This is the same error function as used by den Heijer, which also allows to make a comparison
with den Heijer’s models. For clarification in this report, the subscript TT is added to the sMdAPE to indicate
that this error function is used to evaluate the travel times.

sMdAPETT = median

(
200% ·

∣∣∣∣ At −Pt

At +Pt

∣∣∣∣) t ∈ 1, ...,n (5.1.3)
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To see whether the travel time predictions are under- or overestimated, den Heijer [1] introduced a symmetric
median percentage error (sMdPE) function (Equation 5.1.4). This function is similar to the sMdAPE, but it
does not consider the absolute values. A negative sMdPE means that the travel time predictions are too fast,
whereas a positive value means that the travel time predictions are too slow. In this way, the sMdAPETT can
be later improved by moving the sMdPE to 0%. Also for the sMdPE, the subscript TT is added to indicate that
this error function is used to evaluate the travel times.

sMdPETT = median

(
200% · Pt − At

At +Pt

)
t ∈ 1, ...,n (5.1.4)

The IQR sPE, inter-quartile range of the symmetric percentage error, is also included as error measure to get
an idea how much the travel time prediction errors are spread. This error function is included, because a
model can be accurate (low sMdAPETT), but may have errors that are widely spread (large IQR sPETT). The
IQR is the difference between the upper and lower quartiles of the median and is shown in Figure 5.2. If for
example the IQR sPE is 40%, then the difference between 25% of the errors below the sMdPE and 25% above
the sMdPE is in a range of 40%. In Equation 5.1.5, the formula of the IQR sPE is shown, where the formula
of the sPETT is shown in Equation 5.1.6. The subscript TT is added to indicate that this error function is
evaluated on the travel times.

IQR sPETT = Q3 sPETT −Q1 sPETT (5.1.5)

sPETTt = 200% · Pt − At

At +Pt
t ∈ 1, ...,n (5.1.6)

Figure 5.2: Visualization and formula of the inter quartile range (IQR).

5.2. INDEPENDENT AND DEPENDENT VARIABLES
The independent and dependent variables, which are the input and output of the neural network model, are
shown in Table 5.1. In the second and third column, the range of the values for the point- and trip-based data
is shown. As can be seen, most independent variables for the point-based data are Boolean variables, where
0 is ’False’ and 1 is ’True’. For the trip-based data, these Boolean variables change to continuous variables
ranging between 0 and 1, since it is the average of multiple roads. The dependent variable is either speed,
logspeed or pace. The speed and logspeed will be used for the point-based data and the speed, logspeed and
pace for the trip-based data. After training and prediction, the predicted logspeed and pace are converted
back to speed. The number of independent variables used for the neural network are less than used by den
Heijer. This is because only relevant independent variables are used in the neural network model based on
literature. The road engineering factors, which are used by den Heijer as independent variables, are shown in
Appendix B.



48 5. MODEL DESIGN

Table 5.1: Independent and dependent variables of the neural network model.

Independent Variables Range Points Range Trips
Functional Class 1 0 or 1 [0,1]
Functional Class 2 0 or 1 [0,1]
Functional Class 3 0 or 1 [0,1]
Functional Class 4 0 or 1 [0,1]
Speed Limit [5,130] [5,130]
Tunnel 0 or 1 [0,1]
Bridge 0 or 1 [0,1]
Traffic Signal 0 or 1 [0,1]
Urban 0 or 1 [0,1]
Speed Bumps 0 or 1 [0,1]
Road Width > 0 > 0
Lane Category 1 0 or 1 [0,1]
Lane Category 2 0 or 1 [0,1]
Paved 0 or 1 [0,1]
Road Length > 0 > 0
Ramp 0 or 1 [0,1]
Priority Road 0 or 1 [0,1]
Speed Pattern Max [0,130] [0,130]
Speed Pattern Min [0,130] [0,130]
Speed Pattern Avg [0,130] [0,130]
Speed Pattern Monday 8:30 [0,130] [0,130]
Dependent Variables Range Points Range Trips
Speed ≥ 0 ≥ 0
Logspeed ≥ 0 ≥ 0
Pace > 0 > 0

5.2.1. DUMMY VARIABLES
In Table 5.1, two categorical variables can be found, which are the Functional Class and Lane Category. To
use these variables by the model, these variables have to be changed to numeric dummy variables, which are
understood by the model. This means that the Lane Category is changed to dummy variables Lane Category
1, Lane Category 2 and Lane Category 3, which have a value between 0 and 1. For example, if a road belongs
to Lane Category 1, then Lane Category 1 = 1, Lane Category 2 = 0 and Lane Category 3 = 0. To avoid a dummy
variable trap, one dummy variable needs to be removed. For this model, Lane Category 3 is removed which
is also excluded from the set of independent variables shown in Table 5.1. A dummy variable trap can be
explained by Equation 5.2.1, which shows the multi-collinearity between the dummy variables. This example
shows that Lane Category 1 can be predicted from the other two Lane Categories. The same is true for the
Functional Class, where the Functional Class 5 is not included in the set of independent variables to avoid
another dummy variable trap.

Lane Category 1 = 1−Lane Category 2−Lane Category 3 (5.2.1)

5.2.2. DEPENDENT VARIABLES
The main goal of this research is to improve the travel time predictions from point A to B. However, this can
only be done by predicting the speed of each road in the map in such a way, that the travel time prediction
accuracy will be improved. Because the driven speed is obtained from the GPS data, an obvious choice is to
train the neural network on the dependent variable speed. However, den Heijer came up with three other
dependent variables which can also be used to train the model. These have all their own benefits and have
been explained in subsection 2.3.2. These dependent variables are logspeed, time and pace and are converted
back to speed after training and prediction of the model. The choices for the dependent variables used in this
research, for point-based and trip-based data, are explained below.

Dependent variables for point-based data
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• Speed: An obvious choice is to train the neural network model on the dependent variable speed. This is
because the speed of each road in the map needs to be improved to improve the travel time prediction
accuracy. Also, the collected GPS data contains the driven speed. Therefore, the speed is a logical
dependent variable to train the model on.

• Logspeed: Non-relative loss functions, such as the mean squared error (MSE) and mean absolute error
(MAE), fit better to larger values. Two examples that describe the drawback of these loss functions are
discussed in subsection 2.3.2. To avoid this problem, the logarithmic speed can be used, which moves
the speeds to a relative space. Moving to the logarithmic speed gives the same relative error for low
and high speeds. However, moving the speeds to a logarithmic space causes some problems when the
speed is equal to 0 km/h. This is because log(0) is equal to minus infinity resulting in extremely large
errors. To avoid this problem, all speeds are clipped to 1 km/h before conversion to logarithmic space.

Eventually, training on the speed and logspeed have both their own benefits. Both will be tested to see
which dependent variable is preferred and result in the best travel time predictions.

Dependent variables for trip-based data

• Pace: Besides the speed, another logical choice for the dependent variable is the time. This is because in
the end, the travel time predictions have to be improved. Using time as dependent variable is possible
for trip-based data, since the time between two consecutive GPS points (trip) can be derived from the
GPS data. Since the distance and time between two consecutive GPS points contain multiple roads,
the independent variables have to be weighted in some way. This can be done by multiplying each
independent variable by the distance in meters that it occurs in the trip. This is shown in Equation 5.2.2,
for 2 independent variables. However, using the time as dependent variable requires the model to
extrapolate. This is because the independent variables that are trained on, have a (much) larger value
than the independent variables that are used to predict the speed for single roads (Equation 5.2.3). This
is because the independent variables are multiplied by ’meters driven’, which is significantly less for
single roads compared to trips.

[trip time (multiple roads)] = f (speed bumps · [meters driven on speed bumps], ...,

bridge · [meters driven on bridge])
(5.2.2)

[trip time (single road)] = f (speed bumps · [road length in meters], ...,

bridge · [road length in meters])
(5.2.3)

An alternative way of training the model is to use ’fraction of meters’ with respect to the full trip. By
using ’fraction of meters’, the range of values of the independent variables are the same for training and
prediction. These values will range between 0 and 1 for training (trips) and is either 0 or 1 (Boolean) for
prediction (single road). The conversion to ’fraction of meters’ can be simply applied by dividing each
independent and dependent variable by the ’total meters driven’. In Equation 5.2.4, the conversion is
shown. This results in a dependent variable dimension of time/length (1/speed), which is called the
average pace. An advantage of moving to the pace is that the data is normalized. This means that long
trip times are not favored by the non-relative loss functions.

[average pace] = f (speed bumps · [fraction of meters on speed bumps], ...,

bridge · [fraction of meters on bridge])
(5.2.4)

• Speed: The speed is, as with point-based data, an obvious choice as dependent variable. To derive
the average speed from equation Equation 5.2.2, the independent variables have to be applied by the
’fraction of seconds’ of the total trip time. However, these ’fraction of seconds’ are not known due to
the lack of information between two GPS points. Therefore, an alternative approximation will be used
which is the ’fraction of meters’. This is shown in Equation 5.2.5.
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[average speed] = f (speed bumps · [fraction of meters on speed bumps], ...,

bridge · [fraction of meters on bridge])
(5.2.5)

• Logspeed: Also, when using trip-based data, the model can be optimized by non-relative loss functions
such as MSE and MAE. By optimizing the model with a non-relative loss function, larger actual values
are favored. Therefore, also the logspeed will be used as dependent variable where the independent
variables are multiplied by the ’fraction of meters’.

5.2.3. NEURAL NETWORK ARCHITECTURE
A visualization of the independent and dependent variables, which are summarized in Table 5.10, is shown in
Figure 5.3. This is the architecture of the neural network. The number of neurons n and hidden layers m still
need to be determined through hyperparameter tuning. The dependent variable or output is either speed,
logspeed or pace.

Figure 5.3: Neural Network architecture for speed, logspeed and pace prediction.
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5.3. MODEL DESIGN CHOICES
For the neural network, several model design choices have to be made. These design choices are either a
method or a hyperparameter. A hyperparameter is a parameter that is not learned by the model and needs to
be chosen and/or tuned by the user. The model design choices that have been made for the neural network
are described in the subsections below.

5.3.1. REGULARIZATION METHOD
Regularization is an additional method that can be applied to the optimization process of the neural network.
A regularization method allows to find the most appropriate values for the weights and biases to get the best
generalization error. The best generalization error is found when the model is neither under- or over-fitted.
The most popular regularization techniques for the neural network are Early Stopping, L1 & L2 and Dropout
and are discussed below:

• Early stopping: As the name suggest, the training process of the model is stopped before it has finished
the full training process. If the full training process would be executed, then there is a higher chance
of over-fitting and a higher generalization error at the test set. For early stopping, a validation dataset
is used that represents the test dataset. It is used to stop the training process before the model is over-
fitted. A visualization of this process is shown in Figure 5.4.

Figure 5.4: Early stopping[87].

• L1 & L2: The L1 and L2 regularization method are similar in a way that both methods lead to smaller
weights. However, L2 regularization reduces the weight proportional to the value of the weight. This
means that a larger weight value leads to a faster weight value reduction than a smaller weight value. In
L1 regularization, the weight value is reduced independent of the value and is a fixed value for each
iteration. Therefore, L1 regularization leads to more weight values of zero and results in a ’sparse’
network[87]. The idea behind L1 and L2 regularization is that lower weight values lead to a simpler
and more stable networks. As a result, an improved generalization of the model is obtained. In Equa-
tion 5.3.1 and Equation 5.3.2, both equations for L1 and L2 regularization are shown. L is the loss
function and is usually the Cross Entropy loss. λ is the regularization parameter and indicates the
importance of the regularization term. n is the size of training data set and wi the weight on each
connection.

L1 = L+ λ

n

∑
w
|wi | (5.3.1)

L2 = L+ λ

2n

∑
w

w2
i (5.3.2)
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• Dropout: The dropout method randomly ignores certain neurons in the NN at each iteration. This is
applied throughout the entire training process and to the neurons present in the input and hidden layer
of the NN. By doing this, neurons that are insignificant are identified and get assigned a lower weight
than other ones or vice versa. A visualization of this process is shown in Figure 5.5. The neurons with
a cross represent the ignored neurons during a certain iteration. The dropout regularization method is
effective due to two reasons[87]:

– Since random neurons are dropped during the training process, neurons cannot blindly rely on
other neurons to get the best result for the model. This means that each neuron has to perform
well for different combinations and therefore gets robust. This generalizes the NN and improves
the generalization accuracy.

– An technique that is often used in ML is ’bagging’ and is used to improve the prediction accuracy
by combining different ML algorithms. The dropout regularization technique uses the same prin-
ciple by using different NN models. At the end, an average prediction model is obtained. This
turns out to be an effective method[88].

Figure 5.5: Dropout regularization[87].

For this research, Early Stopping will be used to avoid the neural network from under- and over-fitting. Early
Stopping is chosen due to its effectiveness and simplicity[89]. Early Stopping uses both a training and vali-
dation set, where the validation set is used to measure the generalization of the model. If the model starts to
degrade on the validation set, then the training process is stopped as visualized in Figure 5.4. Early stopping
has one hyperparameter. This is the number of epochs (iterations) after which the model stops training when
no improvement has been made on the validation set. The chosen number of epochs for the neural network
in this research is 10. This number of epochs allows the model to get out of possible local minimum to find
the global minimum. However, it also stops the training process to save unnecessary training time.

5.3.2. GRADIENT DESCENT METHOD
The optimization/training process of the NN is a time-consuming process. During the training process, the
best values for wi and bi are found to minimize the loss function. The optimization process is done through
a first order optimization algorithm, called ’gradient descent’. This algorithm uses the gradient of the loss
function with respect to the weights and biases in the neural network. The gradient of each parameter with
respect to the total error is sort of iterative and accumulative and therefore not easy to calculate. Therefore,
back-propagation is first used to calculate these gradients before being used by the gradient descent method.
Back-propagation propagates the total error from the output layer to the input layer through the connections
and calculates the gradient for each weight and bias layer by layer.

The gradient descent method can be divided into three variants: batch gradient descent (BGD), stochastic
gradient descent (SGD) and mini-batch gradient descent (MBGD). These methods are discussed below[90]:

• Batch gradient descent: The BGD updates the parameters based on the entire training data set. There-
fore, this method requires a lot of computational time and is a problem for too large data sets due to
memory issues. The formula for the gradient descent algorithm as well as the batch gradient descent
is shown in Equation 5.3.3. Here,~x is the vector that contains all weights and biases of the model, η
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is the learning rate, ∇ the gradient and L(~x) the loss function that should be minimized. The learning
rate η, determines the step size of the update and therefore the accuracy and speed of the optimization
process. In Figure 5.6, an example is shown of a big and small learning rate. A too big learning rate,
as shown in the left image, causes the error to grow. While a too small learning rate requires much
computational time to find the optimal solution.

~x =~x+η ·∇L(~x) (5.3.3)

Figure 5.6: Example big and small learning rate[91].

• Stochastic gradient descent: The SGD updates the parameters after a single training example instead
of a whole data set as done by BGD. This leads to a fluctuating error which means that two consecutive
updates of the parameters may vary considerably. This is illustrated on the right in Figure 5.7. On the
left the training error vs iterations of a standard gradient descent is shown. The convergence of this
method might take some time due to the fluctuations, but can be mitigated by decreasing the learning
rate. The stochastic behavior of the SGD allows to escape from a local minimum and to find the global
minimum.

Figure 5.7: Comparison standard gradient descent and stochastic gradient descent[92].

• Mini-batch gradient descent: MBGD is a combination of the BGD and the SGD method. It updates all
parameters after a batch of n data points instead of the whole data set or single training example. By
using a batch, the convergence to the local or global minimum is more stable. The MBGD method is the
most popular gradient descent method and almost always applied to NNs. A mini-batch size between
50 and 256 is mostly preferred, but depends on the application.

For this research the mini-batch gradient descent method will be used. This method allows a stable conver-
gence to the local or global minimum compared to the stochastic method. Also, a reduced computational
time is obtained compared to the batch gradient descent method. The hyperparameter that come along with
this method is the mini-batch size. After each mini-batch, the weights and biases are updated in the neural
network. Common mini-batch sizes that are used in literature are either 32, 64, 128, 256 or 512, which are all
numbers of the power of two[93]. These mini-batch sizes are commonly chosen, because they fit well to the
GPU or CPU memory requirements. In general, a smaller batch-size leads to a slow, but more accurate train-
ing process. A larger batch-size leads to faster convergence, but less accurate estimates. The right mini-batch
size for the neural network will be found through hyperparameter tuning.
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5.3.3. LOSS FUNCTION
To optimize the neural network, a loss function needs to be used. A loss function minimizes the error between
the actual and predicted values to obtain the best prediction accuracy. To indicate that an error function is
used as loss function, the subscript LF will be used. There are different loss functions available, the loss
functions that will be used in this research are:

• sMdAPELF: In section 5.1, it was concluded that the sMdAPETT will be used to evaluate the travel time
predictions. Therefore, it would be logical to use the sMdAPE as loss function (sMdAPELF) to optimize
the speed predictions. This loss function is shown in Equation 5.3.4, where At is the actual value of the
dependent variable, Pt the predicted value of the dependent variable and n the number of observations.
However, den Heijer[1] concluded that the speed and travel time prediction accuracy in sMdAPESpeed

and sMdAPETT are weakly correlated. A high speed prediction accuracy in sMdAPESpeed, did not directly
result in a high travel time prediction accuracy in sMdAPETT. In section 2.4, it has been explained why
the speed and travel time predictions are not directly correlated. Therefore, also other common loss
functions will be used to train the model, which are MSE, MAE, MAPE and sMAPE. One or multiple loss
functions may optimize the speed predictions of the neural network, such that the sMdAPETT will be
improved with respect to den Heijer’s best models.

sMdAPELF = median

(
200% ·

∣∣∣∣ At −Pt

At +Pt

∣∣∣∣) t ∈ 1, ...,n (5.3.4)

• MSELF: The mean squared error (MSE) is a very common loss function and shown in Equation 5.3.5.
The MSELF is easy to implement and mostly used as default loss function. However, the MSELF is a
non-relative error function, which means that the model fits better to larger speeds as explained in
subsection 2.3.2. Therefore, besides the speed, also the logspeed will be used as dependent variable
which puts the speeds in a relative space and has been explained in section 5.2. Another property of
the MSELF is its sensitivity to outliers. Whether this is beneficial for the speed predictions is unknown
and hard to estimate. Therefore, the MAELF will also be used, which is less sensitive to outliers.

MSELF = 1

n
·

n∑
t=1

(At −Pt )2 (5.3.5)

• MAELF: The mean absolute error (MAE) takes the absolute value instead of the square like the MSELF

and is shown in Equation 5.3.6. This means that the loss function gets less sensitive to outliers than the
MSELF, which results in a more robust loss function. The MAELF is like the MSELF a non-relative error
function. Therefore, also the logspeed will be used as dependent variable which puts the speeds in a
relative space. Another solution is to use the relative loss function MAPELF.

MAELF = 1

n
·

n∑
t=1

|At −Pt | (5.3.6)

• MAPELF: The mean absolute percentage error (MAPE) is also a very common loss function due to its
simplicity and easy interpretation, and is shown in Equation 5.3.7. It is easy to interpret, because it
indicates how much percent the average prediction deviates from the actual value. This MAPELF is a
relative loss function, which means that the model fits well to large and small speeds. However, the
disadvantage of the MAPELF is that when speeds are equal to zero, the MAPELF goes to infinite. There-
fore, this loss function will only be used for the dependent variable pace (1/speed). Consequently, the
sMAPELF will also be used, which is able to handle speeds that are equal to 0 km/h.

MAPELF = 100%

n
·

n∑
t=1

∣∣∣∣ At −Pt
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∣∣∣∣ (5.3.7)

• sMAPELF: The symmetric mean absolute percentage error (sMAPE) is a relative error function and is
shown in Equation 5.3.8. The sMAPELF is a symmetric loss function, which means that a prediction
with a factor of 2 higher or lower, compared to the actual value, will have the same error. Whether this
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is beneficial for the speed predictions is unknown and hard to estimate.

sMAPELF = 200%

n
·

n∑
t=1

∣∣∣∣ At −Pt

At +Pt

∣∣∣∣ (5.3.8)

5.3.4. NUMBER OF NEURONS AND HIDDEN LAYERS
Both the number of neurons and hidden layers are important for the neural network architecture and perfor-
mance. Too few neurons and hidden layers result in under-fitting. A too large number of neurons and hidden
layers result in over-fitting and a too large training time. Unfortunately, there is no exact formula that can be
used to calculate the best number of neurons and hidden layers for the neural network. This differs from one
data set to the other. Generally, to determine the number of neurons, the following rule-of-thumb methods
are used[94]:

1. The number of hidden layer neurons are 2/3 (or 70% to 90%) of the size of the input layer. If this is
insufficient, then the number of output layer neurons can be added later[95].

2. The number of hidden layer neurons should be less than twice of the number of neurons in the input
layer[96].

3. The size of the hidden layer neurons is between the input layer size and the output layer size[97].

Usually, the same number of nodes are added to each hidden layer and will also be applied to the model in
this research. Because there is no exact formula to determine the number of nodes, the three rule-of-thumb
methods described above are used to determine the search space. This results in a search space for hidden
neurons between one and twice the number of neurons in the input layer. For 21 independent variables, this
result in a search space between 1 and 42 hidden neurons.

Like for hidden neurons, there is no exact rule to determine the number of hidden layers. Hagan et al. [98]
claims that it is unusual to use more than two hidden layers. However, for difficult problems involving time-
series and computer vision, more than two layers may be required. Additionally, Heaton [99] states that two
hidden layers are rarely encountered. For the neural network it is decided to use two hidden layers, since
from two hidden layers, functions with any kind of shape can be represented[99].

5.3.5. OPTIMIZER
To accelerate the optimization process of the neural network an additional algorithm can be applied to the
MBGD algorithm. The most common optimizers are: momentum, Nesterov accelerated gradient, Adagrad,
AdaDelta, RMSprop, Adam, AdaMax, Nadam and AMSGrad. Ruder [100] recommends Adam as optimizers
to train a neural network and is a combination of the advantages of AdaGrad and RMSProp. In Figure 5.8,
a comparison between different optimizers is shown for a multi-layer neural network[101]. As can be seen,
Adam obtains the lowest training cost with less iterations than the other optimizers. Other advantages of
Adam are[101]:

• Straightforward to implement

• Computationally efficient

• Little memory requirements

• Well suited for problems that are large in terms of data and/or parameters

• Hyper-parameters have intuitive interpretation and typically require little tuning

Due to the advantages and in general better performance than other optimizers, Adam is chosen as optimizer
for the neural network. The values of the hyperparameters are set to good default settings which are[101]: α
= 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.
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.

Figure 5.8: Training of multi-layer neural networks on MNIST images with AdaGrad, RMSProp, SGD Nesterov, AdaDelta and Adam as
optimizers[101]

5.3.6. LEARNING RATE
The learning rate is known as one of the hyperparameters to tune. A small learning rate causes the network to
optimize slowly, but carefully. A large learning rate causes the network to optimize quickly, but overshooting
might also occur as shown in Figure 5.6. However, Adam is an adaptive learning rate optimization algorithm
which means that the algorithm adjust the learning rate for each individual parameter during the training
process. This is beneficial, since fast convergence can be made at the beginning with a large learning rate.
While slow convergence can be made later with a small learning rate leading to accurate results. A good
default setting for the learning rate of Adam is 0.001[101]. This will also be used in this research study.

5.3.7. ACTIVATION FUNCTION
Activation functions are part of the neurons in the hidden and output layers. The aim of an activation function
is to decide in which extent the sum of the inputs and bias should be fed forward to the neurons in the next
layer or output. In general 3 properties of activation functions are desired:

1. Non-linearity: The non-linearity property of an activation function is key to be able to solve non-linear
problems.

2. Continuously differentiable: The first order derivative of the activation function has to be continuous
to enable gradient-based optimization.

3. Monotonic: Monotonic means that the activation function accelerates the convergence of the NN to a
precise model. The function is then either entirely non-increasing or non-decreasing.

A simple example of an activation function is a step function which has an output of either 0 or 1. If the
output is ’1’, then the output of the neuron is activated and is sent to the next neurons. If the output is ’0’,
then the output of the neuron is deactivated and not send to the neurons in the next layer. However, a binary
activation function would limit the outcome to activated and deactivated. Intermediate results such as 0.3
(30%) or 0.8 (80%) cannot be applied which lowers the accuracy of the model. Popular activation functions
along with their graphs, which are not binary, are shown in Figure 5.9. Below a short discussion of each
function is provided[102]:

• Sigmoid: The Sigmoid function ranges from 0 to 1, is not zero centered and behaves exponentially. The
Sigmoid function suffers from the vanishing gradient problem. This means that the end of the curve is
almost horizontal and that the gradient is very low. This slows down or stops the gradient optimizer to
learn further. The Sigmoid function is mostly used for the output layer where outputs between 0 and 1
are preferred.
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• Tanh: Tanh or also called the hyperbolic tangent activation function has a range between -1 and 1 and
is zero centered. Like the Sigmoid function, the end of the Tanh function is almost horizontal which
might trouble the optimization of the NN.

• ReLU: The rectified linear unit activation function (ReLU) is the most popular activation function. This
is because it is simple and requires relatively low computational effort. During the gradient optimizing
process, the function does not saturate, but has fast convergence. However, if w>0 (weight) and x<0
(input), then ReLU(w*x) = 0 which vanishes the gradient and is called a dead ReLU problem.

• Leaky ReLU: The Leaky ReLU behaves in the same way as the ReLU function, but has improved per-
formance, since it has not the dead ReLU problem.

• Maxout: Maxout has a linear property, never saturates or die and needs relatively more computational
effort.

• ELU: ELU is an exponential version of the ReLU, but has no dead ReLU solution. Also, it requires more
computational effort due to its exponential behavior.

Figure 5.9: Examples of different activation functions and their graphs[87].

HIDDEN LAYER ACTIVATION FUNCTION

In Table 5.2, the available activation functions in Python can be found, including the range. The most com-
mon activation function to use in the hidden layer is the rectified linear unit (ReLU)[103]. However, the ReLU
activation function has as disadvantage that if a neuron gets negative, then it can hardly recover. This is be-
cause the slope of the ReLU in the negative range is 0. It is possible to end up with many neurons in the
network that are actually useless. To solve this problem, the Leaky ReLU, parametric rectified linear unit
(PReLU) and exponential linear unit (ELU) were developed to fix this problem. For the neural network in this
research, the exponential linear unit (ELU) function is chosen instead of the most common ReLU function.
The ELU has a clear saturation plateau in the negative regime, which leads to a more robust and stable train-
ing process compared to Leaky ReLu and PReLU[103]. Other advantages of the ELU are fast convergence and
accurate results, compared to other activation functions, which is based on experiments with different data
sets[103].
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Table 5.2: Available activation functions and range available in Keras.

Activation Function Range
Linear (-∞, ∞)
ReLU (0, ∞)
ELU (-α, ∞)
SELU (-∞, ∞)
Softplus (0, ∞)
Softmax (0, 1)
Softsign (-1, 1)
TanH (-1, 1)
Sigmoid (0, 1)
Hard Sigmoid (0, 1)

OUTPUT LAYER ACTIVATION FUNCTION

The output layer activation function provides a final transformation of the features into output ŷi . For this
research, the output of the activation function is the speed, which is in the range of (0,90]. According to Ta-
ble 5.2, this leaves the Linear, ReLU, ELU, SELU and Softplus as potential options for the output activation
function. This is because these functions can produce an output for the range (0,90]. In literature, the linear
activation function is commonly used to predict a continuous output, since it is unbounded. For example,
Wisitpongphan et al. [22] developed a feed-forward neural network, with a linear output activation function,
to predict the travel speed on a highway. Later, the predicted travel speed was converted to the travel time,
by dividing the highway length by the calculated travel speed. Another example is that Bilgili et al. [104] de-
veloped an feed-forward neural network, with a linear output activation function, to predict the wind speed.
Both researches showed good results by using the linear activation function in the output layer. Therefore, in
this research also the linear activation function will be used in the output layer which can be written as σ(x)
= x.

5.3.8. MAXIMUM NUMBER OF EPOCHS
The maximum number of training epochs indicate after how many iterations the training process stops. This
is not an important hyperparameter, since the Early Stopping method is used to stop the training process
earlier, when the error starts to degrade on the validation set. Therefore, the maximum number of epochs is
set to 200, which should be enough to let the Early Stopping method stop the training process, before reaching
the maximum number of epochs. If 200 seems not to be sufficient, then the maximum number of epochs will
be increased.
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5.4. MATHEMATICAL FORMULATION NEURAL NETWORK
After the model design choices have been made, the mathematical formulation of the neural network can be
written. First all parameters are defined and are shown below:

i layer number, i ∈ 1,2,...,I
j neuron number in layer i, j ∈ 1,2,...,Ji

k neuron number in layer i-1, k ∈ 1,2,...,Ji−1

Ji total number of neurons in layer i
I total number of layers
ai

j output of neuron j in layer i

σi activation function of all neurons in layer i
bi

j bias of neuron j in layer i

w i
j k weight from neuron k in layer i-1 to neuron j in layer i

n number of observations
t single observation out of all observations
yt actual value of observation t
x j input j (independent variable) in layer i=1

In section 5.3, it was discussed that five different loss functions will be used to train the neural network model.
This means that the model has five different objectives based on the loss functions MSELF, MAPELF, MAELF,
sMAPELF and sMdAPELF. These objectives are shown in Equation 5.4.1, Equation 5.4.2, Equation 5.4.3, Equa-
tion 5.4.4 and Equation 5.4.5. To minimize each objective, the Adam optimizer algorithm is used. In Equa-
tion 5.4.6, the mathematical formulation of the output of the neurons in the input layer is shown. In Equa-
tion 5.4.7, the mathematical formulation of the output of the other neurons is shown.

Minimize C ( j = 1, i = I ) = 1

n

n∑
t=1

(yt − (ai
j )t )2 (MSELF) (5.4.1)

Minimize C ( j = 1, i = I ) = 100%

n

n∑
t=1

∣∣∣∣∣ yt − (ai
j )t

yt

∣∣∣∣∣ (MAPELF) (5.4.2)

Minimize C ( j = 1, i = I ) = 1

n

n∑
t=1

|(yt − (ai
j )t | (MAELF) (5.4.3)

Minimize C ( j = 1, i = I ) = 200%

n

n∑
t=1

∣∣∣∣∣ yt − (ai
j )t

yt + (ai
j )t

∣∣∣∣∣ (sMAPELF) (5.4.4)

Minimize C ( j = 1, i = I ) = median

(
200%

n∑
t=1

∣∣∣∣∣ yt − (ai
j )t

yt + (ai
j )t

∣∣∣∣∣
)

(sMdAPELF) (5.4.5)

Where:

ai
j = x j i ∈ 1,∀ j ∈ {1,2, ..., Ji } (5.4.6)

ai
j =σi (∑

k

(
w i

j k ·ai−1
k

)+bi
j

) ∀i ∈ {2,3, ..., I },∀ j ∈ {1,2, ..., Ji } (5.4.7)
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5.5. IMPLEMENTATION

5.5.1. SOFTWARE
For this research, Python version 3.6 is used as programming language and is an open-source software. The
reasons to take Python as programming language are the following:

1. Python has many open source frameworks, libraries and tools which can be used. This saves a lot of
time and money.

2. ORTEC is familiar with python which makes it easy for them to use the files after the research.

3. The author is most familiar with Python, which favors the speed of programming and the research.

To build the neural network, many free packages are available which allows the user to build neural networks
quickly and efficiently. It is decided to use Keras which is one of the leading APIs and is written in Python.
Keras runs on top of Tensorflow to allow programming in Python and to make the usage of Tensorflow user
friendly and modular. Tensorflow is an open source library created by Google for numerical computation and
large-scale machine learning. Feature scaling and cross-validation will be done by scikit-learn which is a free
machine learning library for Python.

The software that is used to calculate the shortest path and travel time from point A to B is called HNR and is
developed by ORTEC. This software is based on the Highway Node Routing algorithm developed by Schultes
and Sanders[2].

5.5.2. HARDWARE
The preprocessing, learning, prediction and evaluation steps are all performed on one computer with the
following specifications:

Intel Core i7-8650U CPU 1.90GHz
16,0 GB RAM
Windows 10 OS

5.6. HYPERPARAMETER TUNING
All hyperparameters of the neural network, along with their values, are shown in Table 5.3. These values
are determined in section 5.3 and based on literature references. As can be seen, most hyperparameters are
already fixed, while the mini-batch size and number of neurons still have a range of values from which the
best value needs to be chosen.

Table 5.3: Overview neural network hyperparameters and values based on literature references.

Hyperparameter Value
Learning Rate 0.001
Loss Function [MSELF, MAPELF, MAELF, sMAPELF, sMdAPELF]
Mini-Batch Size [32, 64, 128, 256, 512]
Early Stopping Epochs 10
Number of Hidden Layers 2
Number of Neurons [1 - 42]
Optimizer Adam
Hidden Layer Activation Function ELU
Output Layer Activation Function Linear
Maximum Epochs 200

Because of the different loss functions, dependent variables and data types, different types of neural network
models can be developed. In Table 5.4, an overview of the different models can be found, which are 21 models
in total, indicated by a cross. As can be seen, the MAPELF will not be tested for the speed and logspeed, since
speeds equal to 0 km/h or log(1 km/h) causes the MAPELF to rise to infinity. For each model, the best set of
hyperparameters needs to be found. This will be done through a hyperparameter tuning process. To tune
these hyperparameters, cross-validation will be applied. This is used to find the set of hyperparameters that
generalizes the model such, that the best model performance is obtained.
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Table 5.4: Overview of different neural network models that will be developed. These models differ in loss function, type of training data
(point- and trip-based) and dependent variable (speed, pace and time).

Dependent Variable Data Type MSELF MAPELF MAELF sMAPELF sMdAPELF

Speed points x x x x
Logspeed points x x x x
Speed trips x x x x
Logspeed trips x x x x
Pace trips x x x x x

5.6.1. CROSS-VALIDATION METHOD
Cross-validation is a technique that can be used to assess the effectiveness of the built ML model on an un-
seen or independent data set. This is needed, because the model can have an excellent performance on the
training set, but a bad performance on the test set. This means that the model is not well generalized. By using
cross-validation, the correctness of the found patterns, bias and variance are found[105]. Cross-validation is
also an useful method for hyperparameter tuning to choose the best combination of hyperparameters for the
model. The hyperparameter tuning process, using cross-validation, is explained in the following subsection.
Cross-validation can be applied to any ML model and is in general highly recommended. Cross-validation
can be categorized into two classes:

• Non-exhaustive methods: These cross-validation methods do not split the data in all possible com-
binations for training and validation data sets. Non-exhaustive methods are: holdout, k-fold cross-
validation and stratified k-fold cross validation.

• Exhaustive methods: These cross-validation methods are more time consuming and use every com-
bination how the training and validation data sets can be split. An exhaustive methods is leave-p-out
cross-validation.

A description of the four most common cross-validation methods are discussed below[105]:

• Holdout method: The holdout method is the simplest cross-validation method and reserves a part of
the data set, validation data set, to assess the performance of the trained model. However, this method
is vulnerable for high variances, since a different validation set with different data points may give dif-
ferent results. Therefore the holdout method is not preferred.

• Leave-P-out cross-validation: This method uses p data points from the training data for the validation
set. When there are n data points, then the model is trained on n-p data points. Leave-p-out cross-
validation is an exhaustive method, since it uses every possible combination with p data points, from
the training set, to validate the model. For p=1, also called leave-one-out cross-validation, the method
is least exhaustive. This is because the number of combinations is equal to n, which is the size of the
training data set.

• K-fold cross-validation: The K-fold method uses instead of one validation set, k validation sets. The
entire training data set is split into k subsets and at each iteration a different subset is used to validate
the model. This is shown in Figure 5.10. This means that each training data point is used once for vali-
dation and k-1 times for training the model. In this way, the bias of the model is significantly reduced,
since most data is used for fitting. Also, the variance is significantly reduced, since different validation
sets are used. There is no general rule for the number of folds, but from experience, found in literature,
k=5 or k=10 is generally preferred.
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Figure 5.10: K-fold cross-validation with k=10[106].

• Stratified k-fold cross-validation: Stratified k-fold cross-validation is an advanced version of k-fold
cross-validation. The difference is that this method equally divides the data into folds, based on the
value of the dependent variable. This results in the same mean value of the dependent variable in
each fold. This method is used for classification problems when the dependent variable is not equally
distributed.

For this research, the k-fold cross-validation method will be used. This is method is chosen, since it has
a reduced bias and variance, compared to the holdout and leave-p-out method. Also, the method is non-
exhaustive, which means that it is not very time consuming such as the leave-p-out method. The k-fold is
chosen over the stratified k-fold method, since stratified k-fold can only be applied to classification problems.
In this research, the speed is predicted, which is a regression problem.

Number of Folds
The number of folds k that needs to be chosen for k-fold cross-validation is based on a bias-variance trade-
off. A high bias oversimplifies the model, while a high variance generalizes the model too little. Values for k =
5 or k = 10 provide an error on the test fold that neither suffer from high bias nor variance [107]. A 5-fold cross-
validation is chosen, since this requires about twice as less computational time than 10-fold cross-validation.
This means that the training set will be split into 5 random sub data sets. During each iteration, one sub data
set is used as validation set and the other four as training set.

5.6.2. HYPERPARAMETER TUNING PROCESS
Now the cross-validation method is chosen, the hyperparameters can be tuned. It is important to set the hy-
perparameters properly to obtain the best model performance. Hyperparameters are parameters that cannot
be learned by the model itself and have to be set by the user. Cross-validation can be used to find out which
combination of hyperparameters performs the best, where an example is shown in Figure 5.11. In this figure,
10-fold cross-validation is applied to n different hyperparameter combinations. The hyperparameter com-
bination with the highest cross-validation accuracy is the best and is finally used to train the model with the
full training set.
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Figure 5.11: Example of the hyperparameter tuning process using 10-fold cross-validation[108].

In total, there are 42 different neural network models from which the hyperparameters need to be tuned. 21
models for the new data and 21 models for the old data (Table 5.4). There are different hyperparameter tuning
methods that can be used to choose different hyperparameter combination at the first step in in Figure 5.11.
The most common hyperparameter tuning methods are grid search, random search and Bayesian optimiza-
tion and are discussed in Appendix E. Using either grid search, random search or Bayesian optimization for
each model would take a significant amount of time and is not realistic within the time window of this re-
search. Because it is expected that each model has more or less the same best hyperparameter combination,
due to the same format of the dataset, the following approach will be used:

1. To save a tremendous amount of time on hyperparameter tuning, first the best combination of hyper-
parameters for one model will be found. This is done, instead of doing the hyperparameter tuning
process for all 21 models for the new and old data.

2. After the best combination of hyperparameters for one model is found, a sensitivity analysis will done
for all 21 models. This is done to find out whether the hyperparameter combination in the previous
step is the best for all models. If this is not the case, hyperparameter tuning will be repeated for the
models where the hyperparameter combination in the previous step does not provide the best result.

In section 5.3, the model design choices were made and are mostly based on literature references. In gen-
eral, there is not one optimal model design that can be applied to the neural network for any problem. The
best hyperparameter setting depends from one problem to the other. Instead of using a time consuming hy-
perparameter tuning algorithm such as grid and random search, the best hyperparameter combination will
be found by analyzing the hyperparameters individually. The most important hyperparameters that have
generally the largest influence on the prediction accuracy ([109], [110],[111]) and will be analyzed are:

1. Learning Rate

2. Number of Neurons

3. Number of Layers

4. Mini-Batch Size

Firstly, the hyperparameters of the Points-NN-Speed-MSE model will be tuned. This model is trained on
point-based data with dependent variable speed and loss function MSELF. After the best hyperparame-
ters of this model are found, a sensitivity analysis will be done for all models and is discussed in subsec-
tion 5.6.3.

1. Learning Rate
The learning rate is known as the most important hyperparameter. To make sure that a learning rate of
0.001 produces the best results, different learning rates between 0.0001 and 0.1 on a logarithmic scale are
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researched. This approach is generally executed in literature such as [112] and [113]. This results in learning
rates: 0.0001, 0.001, 0.01 and 0.1. Each learning rate is researched using 5-fold cross-validation. The other
hyperparameter values are shown in Table 5.3. Where the loss function is MSELF, mini-batch size 128 and
number of hidden neurons 21, which is the average of 1 and 42.

The results are shown in Table 5.5 and Figure 5.12, which show that a learning rate of 0.001 produces the best
model accuracy. A learning rate of 0.01 and 0.1 are too high causing divergence of the optimization process. A
learning rate of 0.0001 is too small causing very slow convergence. This may result in a optimization process
that got stuck at a suboptimal solution. The lower training time of the learning rates 0.0001, 0.01 and 0.1, is
due to the early stopping regularization method. The model stops training when the model does not improve
after 10 epochs. These experiments show that a learning rate of 0.001 result in the best model accuracy. This
learning rate is also recommended by the developer of the Adam optimizer. Therefore, a learning rate of 0.001
will be used for all other neural network models and further experiments.

Table 5.5: Model accuracy and 5-fold CV training time versus learning rate for the model Points-NN-Speed-MSE. The learning rate
ranges between 0.0001 and 0.1 on a logarithmic scale, number of neurons = 21, number of hidden layers = 2 and the mini-batch size =

128. The best result is underlined.

Learning Rate Accuracy (MSELF) Time [seconds]
0.0001 237.3 3383
0.001 230.8 5038
0.01 235.0 2140
0.1 249.4 653

Figure 5.12: Model accuracy (purple circle) and 5-fold CV training time (blue square) versus learning rate for the model
Points-NN-Speed-MSE. The learning rate ranges between 0.0001 and 0.1 on a logarithmic scale, number of neurons = 21, number of

hidden layers = 2 and the mini-batch size = 128.

2. Number of hidden neurons
To make sure that the best number of neurons is found, the search space will be between 1 and 512 neurons.
Each model is trained using 5-fold cross-validation with the hyperparameters shown in Table 5.3. The loss
function is MSELF, number of hidden layers is 2 and the mini-batch size is 128. The results are shown in
Table 5.6 and Figure 5.13 and show that the model accuracy improves with the number of neurons. However,
from 128 neurons the model accuracy is more or less constant. Also, it can be concluded that the training time
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for 5-fold CV increases linearly from 64 neurons to 512 neurons. This analysis shows that the best number of
neurons is 128, which is far outside the range (1-42) recommended in literature.

Table 5.6: Model accuracy and 5-fold CV training time versus number of hidden neurons for the model Points-NN-Speed-MSE. The
number of hidden neurons ranges between 1 and 512, lr = 0.001, number of hidden layers = 2 and mini-batch size = 128. The best result

is underlined.

Hidden Neurons Accuracy (MSELF) Time [seconds]
1 271.4 1090
2 247.2 2959
4 238.1 2073
8 235.9 2989
16 232.9 4198
32 228.0 3340
64 224.3 3438
128 222.4 5243
256 222.6 8343
512 223.0 14461

Figure 5.13: Model accuracy (purple circle) and 5-fold CV training time (blue square) versus number of hidden neurons for the model
Points-NN-Speed-MSE. The number of hidden neurons ranges between 1 and 512, lr = 0.001, number of hidden layers = 2 and

mini-batch size = 128.

3. Hidden Layers
Based on literature references, the number of hidden layers that was chosen for the neural network is 2.
However, the number of hidden layers is known as an important hyperparameter and to make sure that 2
hidden layers are rightly chosen, the neural network will also be analyzed for more hidden layers. The number
of hidden layers that are analyzed ranges between 1 and 8. Each model is trained using 5-fold cross-validation
with the hyperparameters shown in Table 5.3. The loss function is MSELF, mini-batch size 128 and number
of neurons 128, which has been determined in the previous step. The results are shown in Table 5.7 and
Figure 5.14, and show that the prediction accuracy can be improved substantially, by increasing the number
of layers. The best model accuracy in MSELF is obtained with 5 hidden layers. After this, the model becomes
too complex which results in a lower model accuracy.
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Table 5.7: Model accuracy and 5-fold CV training time versus number of hidden layers for the model Points-NN-Speed-MSE. Number of
hidden layers ranges between 1 to 8, lr = 0.001, number of neurons = 128 and mini-batch size = 128. The best result is underlined.

Hidden Layers Accuracy (MSELF) Time [seconds]
1 231.2 2414
2 223.3 3653
3 218.9 4841
4 217.9 4794
5 216.6 6612
6 221.9 3510
8 225.8 4179

Figure 5.14: Model accuracy (purple circle) and 5-fold CV training time (blue square) versus number of hidden layers for the model
Points-NN-Speed-MSE. Number of hidden layers ranges between 1 to 8, lr = 0.001, number of neurons = 128 and mini-batch size = 128.

4. Mini-Batch Size
The recommended mini-batch size in literature is 32, 64, 128, 256 or 512. These numbers are all to the power
of 2, which fit well to the GPU or CPU memory requirements. To make sure that other mini-batch sizes are
not overlooked, a mini-batch size of 16 and 1024 are also added to the hyperparameter tuning process. Each
model is trained using 5-fold cross-validation with the hyperparameters shown in Table 5.3. The loss function
is MSELF, the number of neurons 128 and the number of layers 5, which have been determined in the previous
hyperparameter tuning steps. The results are shown in Table 5.8 and Figure 5.15. It can be seen that the best
mini-batch size is 256. Smaller mini-batch sizes lead to a noisy training process and divergence. Too large
mini-batch sizes lead to convergence at a non-optimal minimum. The training time increases exponentially
with a smaller mini-batch size.
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Table 5.8: Model accuracy and 5-fold CV training time versus mini-batch size and 5-fold CV training time for the model
Points-NN-Speed-MSE. Mini-batch size ranges between 16 and 1028, lr = 0.001, number of neurons = 128 and number of hidden layers

= 5. The best result is underlined

Mini-Batch Size Accuracy (MSELF) Time [seconds]
16 231.2 12030
32 228.5 9060
64 220.3 6850
128 218.6 3907
256 216.2 2756
512 217.8 2137
1024 223.1 1430

Figure 5.15: Model accuracy (purple circle) and 5-fold CV training time (blue square) versus mini-batch size for the
Points-NN-Speed-MSE model. Mini-batch size ranges between 16 and 1028, lr = 0.001, number of neurons = 128 and number of hidden

layers = 5.

5.6.3. SENSITIVITY ANALYSIS
To repeat the hyperparameter tuning process of the Points-NN-Speed-MSE model for all other 20 models,
would take too much time. Therefore, it is decided to do a sensitivity analysis for the best hyperparameter
combination found by the Points-NN-Speed-MSE model. The sensitivity analysis will be done for all models.
The combinations of hyperparameters for the sensitivity analysis are shown in Table 5.9. The initial setting
is the best combination found by the Points-NN-Speed-MSE model. For the other combinations, a lower
or higher value is chosen for the number of hidden neurons, number of hidden layers and mini-batch size.
The learning rate is fixed to 0.001, since this value is recommended by the developer of the Adam optimizer
and showed the best model accuracy for the experiments shown in Figure 5.12. By fixing the learning rate,
additional computational time is saved.

The results of the sensitivity analysis for the new data of all 21 models are shown in Table F.1, in Appendix F. In
this table, the best model accuracy of the 7 different hyperparameter combinations, for each model, is under-
lined. From these results, it can be concluded that all models, except the ones with loss function sMdAPELF

and dependent variable pace, produce the best result with the initial setting. Remarkably, the models that
are either trained on the dependent variable pace and/or loss function sMdAPELF, produce the best result
for hyperparameter combination 2 (64 neurons and 5 hidden layers). This shows that these models require
a less complex model to produce better results. Therefore, the hyperparameter tuning process was repeated
for the models with dependent variable pace and loss function sMdAPELF. This is discussed in Appendix F.
The results in Appendix F show that the best hyperparameter combination for the models with dependent
variable pace is 32 neurons, 4 hidden layers and mini-batch size 256. The best hyperparameter combination



68 5. MODEL DESIGN

Table 5.9: Seven different hyperparameter combinations to research whether the initial setting produces the best model accuracy.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 128 5 256
1 0.001 256 5 256
2 0.001 64 5 256
3 0.001 128 6 256
4 0.001 128 4 256
5 0.001 128 5 128
6 0.001 128 5 512

for the models with loss function sMdAPELF is 32 neurons, 7 hidden layers and mini-batch size 256.

Subsequently, a sensitivity analysis was done for the old data set, for all 21 neural network models, and is
discussed in Appendix G. These results show that the best number of neurons and hidden layers is the same
for the new and old data set. This shows that the smaller old data set, compared to the new data set, does
not influence the best number of neurons, number of hidden layers and mini-batch size. In Table 5.10, an
overview is shown of the final hyperparameter values that will be used to train the models in chapter 6. These
sets of hyperparameter are divided into 3 categories: models without pace and sMdAPELF, models with pace
and models with sMdAPELF.

Table 5.10: Overview of final neural network hyperparameters divided into three model categories: all models without dependent
variable pace and sMdAPELF, models with dependent variable pace and models with sMdAPELF. This overview of hyperparameters

applies to the new and old data set.

Hyperparameter
Models without
pace and sMdAPELF

Models with pace Models with sMdAPELF

Learning Rate 0.001 0.001 0.001
Mini-Batch Size 256 256 256
Early Stopping Epochs 10 10 10
Number of Hidden Layers 5 4 7
Number of Neurons 128 32 32
Optimizer Adam Adam Adam
Hidden Layer Activation Function ELU ELU ELU
Output Layer Activation Function Linear Linear Linear
Maximum Epochs 200 200 200

5.7. CONCLUSION
The conclusions that could be made in this chapter are the following:

• The sMdAPETT will be used to compare the travel time prediction accuracy of different speed prediction
models. The sMdAPETT has several properties that make this error function most suitable to calculate
the travel time prediction accuracy. Examples are the insensitivity to outliers, due to the median, and
equal penalization to positive and negative errors, due to its symmetry. In addition, den Heijer also
used the sMdAPETT to compare the travel time prediction accuracy of different models. This makes the
comparison between den Heijer’s best models and the new developed neural network models in this
research easier.

• In total, 21 independent variables will be used as input of the neural network. These independent
variables are all based on road engineering factors, which are available from the map data. In total, 3
different dependent variables will be used as output of the neural network. The dependent variable of
the neural network is either speed, logspeed or pace. These dependent variables were also used by den
Heijer, where each dependent variable has its own benefits.

• In total, 21 different neural network models will be developed for old and new data. This is because of
the different dependent variables (speed, logspeed and pace), data types (point- and trip-based) and
loss functions used. Five different loss functions will be used, where each loss function has its own
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advantages. They will all be used, since it is unclear and hard to estimate, which loss function will
predict the speeds such that the travel time prediction accuracy is improved.

• The hyperparameters that were tuned are the learning rate, number of hidden layers, number of neu-
rons and mini-batch size. It was found that the best learning rate is 0.001 and is used for all models. The
best number of neurons and hidden layers differs among the models. They depend on whether the de-
pendent variable pace or loss function sMdAPELF is used. Furthermore, it was found that a mini-batch
size of 256, had the best results for all models. In Table 5.10, an overview of the best set of hyperpa-
rameters, for the new and old data set, can be found. These hyperparameters will be used to train the
models in chapter 6.





6
EXPERIMENTS AND RESULTS

In this chapter, first the experiments that will be run will be discussed. Secondly, the speed prediction accu-
racy of the developed neural network models will be shown and discussed. After this, the travel time predic-
tion accuracy of all models will be presented and discussed. Subsequently, the reason why the old and new
data have different best speed prediction models will be analyzed. Lastly, the influence of the temporal factor
will be researched by splitting the data set into a rush and non-rush hour data set.

6.1. EXPERIMENTS
The experiments will be run with new data, which is collected and preprocessed during this research, and the
old data, from den Heijer[1]. Both data sets are used due to the following reasons:

• New data: The new data will be used, due to a higher data frequency than the old data. This data was
collected and preprocessed during this research. The data has a frequency of 2 minutes and is obtained
from trucks in the Netherlands. It is expected that the quality of the trip-based data will be improved
with a higher GPS data frequency, since it is more certain how trucks have driven between two GPS
points. As a consequence, it is expected that the speed predictions of the neural network will improve.
This may result in better travel time predictions such that the benchmarks are outperformed.

• Old data: The old data, from den Heijer, has already been collected and preprocessed. Therefore, this
data is ready to be used. The data has a frequency of 5 minutes and is obtained from trucks in the
Benelux. By using this data, more insights can be obtained about the developed speed prediction mod-
els. Questions that may be answered are: Is the best speed prediction model for the new data the same
as for the old data?, Can a neural network, trained on trip-based data, already outperform the bench-
marks with a GPS data frequency of 5 minutes?

In Table 6.1, an overview of the most important properties of each data set is shown. The main difference
between the two data sets is that the frequency of the new data is 2 minutes and for the old data 5 minutes.
Other differences are:

• The minimum evaluated travel time for the new data set is 2 minutes, while for the old data set 10
minutes.

• The old point- and trip-based data set are smaller compared to the new point- and trip-based data set.

• The GPS points of the new data set are recorded in the Netherlands, while the GPS points of the old
data set were recorded throughout the Benelux.

In Table 6.2, an overview is shown of the different neural network models that will be trained and used to
predict the speeds in the map to improve the travel time prediction accuracy. These models are indicated
by an ’x’. For convenience, an abbreviation will be used for these model in the format ’type of training data’-
’prediction method’-’model output’-’loss function’. For example, Trips-NN-Pace-MAE means that it is a neu-
ral network, trained on trip-based data with output pace and loss function MAELF. The neural network mod-
els will be trained on the old and new data set, which means that there are in total 21*2=42 training processes.

71
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Table 6.1: Summarized description of old and new data used for training and predicting speeds and ultimately travel time predictions.

Data Properties New Data Old Data
Average Recorded Frequency 2 min 5 min
Minimum Evaluated Travel Time 2 min 10 min
Training Points 1,083,237 410,137
Test Points 362,141 139,687
Training Trips 785,920 165,479
Test Trips 263.275 54,349
Test Travels 45,852 10,316
Country Netherlands Benelux
Vehicle Type Truck Truck

Due to the different dependent variables (speed, logspeed and pace), types of training data (point- and trip-
based), loss functions (MSELF, MAPELF, MAELF, sMAPELF and sMdAPELF) and data sets (old and new), quite
a few experiments have to be run.

In den Heijer’s research[1], point-based data performed better than trip-based data. However, by using a
neural network model and a higher data frequency (2 min. vs 5 min.), a higher travel time prediction accu-
racy may be obtained using trip-based data. Therefore, both point- and trip-based data will be used in this
research.

Table 6.2: Overview of all different neural network models that will be researched to find the best travel time predictor. The neural
network models differ in dependent variable, type of data and loss function. In total, there are 21 different neural network models.

Dependent Variable Data Type MSELF MAPELF MAELF sMAPELF sMdAPELF

Speed points x x x x
Logspeed points x x x x
Speed trips x x x x
Logspeed trips x x x x
Pace trips x x x x x

The experiments that will be run for the models in Table 6.2, can be divided into two steps: Training & Eval-
uation and Prediction & Evaluation. These steps are shown in Figure 6.1 and are the last steps of the entire
process shown in Figure 3.4. These last steps include the following:

• Step 1: The model is first trained on either point- or trip-based data. After this, the speed prediction ac-
curacy is calculated of the trained model. This is done by comparing the predicted speeds of the trained
model, based on the input variables, with the actual speeds in the test data set of the point-based
data. The speed prediction accuracy of each neural network model will be calculated with the same
error function as the used loss function. The speed prediction accuracy will be expressed in MSESpeed,
MAPESpeed, MAESpeed, sMAPESpeed and sMdAPESpeed.

• Step 2: After the model is trained and evaluated on the speeds, the trained model can be used to predict
the speed of each road in the map, based on its road properties (map data). In total, 3,304,031 speeds
have to be predicted for the Netherlands and 5,169,618 for the Benelux. After all speeds of the roads in
the map have been predicted, the map from either the Netherlands (new data) or the Benelux (old data)
will be updated. The map update is the process of replacing the speeds of the roads in the map by the
new predicted speeds. Subsequently, the travel times of the travels in the test set can be predicted. This
is done by the routing software of ORTEC. It calculates the shortest path from the first to the last GPS
point of the travel, after which the expected travel time is calculated. These predicted travel times are
compared to the actual travel times in the test set. The travel time prediction accuracy will be expressed
in sMdAPETT.

BENCHMARKS

The goal of this research is to improve the travel time prediction accuracy of den Heijer’s models. Den Heijer’s
two best models will be used to compare the neural networks with and are the benchmarks. Den Heijer’s two
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best models are both based on random forest, with dependent variable speed and logspeed, and trained on
point-based data. For convenience, the abbreviations Points-RF-Speed and Points-RF-Logspeed are used to
indicate these models.

Figure 6.1: The last phase of the research. This includes the training of the models, calculation of the speed prediction accuracy, the
prediction and update of the speeds in the map and finally the calculation of the travel time prediction accuracy.

6.2. RESULTS SPEED PREDICTION ACCURACY
Each of the 42 neural network models can be trained on either point- or trip-based data with the hyperpa-
rameters found in section 5.6. The training process is the optimization of the neural network model, such
that the used loss function, MSELF, MAPELF, MAELF, sMAPELF or sMdAPELF is minimized. An example of the
training process of the Points-NN-Speed-MSE model, trained on new data, is shown in Figure 6.2. This neural
network model is trained on point-based data with output speed and loss function MSELF. In Figure 6.2, the
training loss is the error between the predicted and the actual speeds in the training set. The validation loss
is the error between the predicted and actual speed in the test data set (unseen data). The test set is not used
to train the model, but for early stopping, to avoid over-fitting. If the validation loss has not improved after 10
iterations, then the training process is stopped. In Figure 6.2, it can be seen that the training loss, expressed
in MSELF, keeps on improving until the training process is stopped at 89 epochs (iterations). From 60 epochs,
the validation loss gets more or less constant and has reached its minimum at 79 epochs. The behavior of the
training and validation loss in Figure 6.2 is as expected, based on the example shown Figure 5.4. The training
process of the other models is more or less identical, where the validation loss gets constant and the training
process is stopped after 10 epochs that the validation loss has reached its minimum.

The speed prediction accuracy of each neural network model for old and new data is shown in Table 6.3 and
Table 6.4, respectively. The speed prediction accuracy is calculated with the same error function as the loss
function, where the loss function is used to optimize the model. In addition, the speed prediction accuracy is
calculated based on the speeds from the point-based in the test set. This means that the predicted logspeeds
and paces are first converted back to speed, after which the speed prediction accuracy is calculated. In this
way, the neural network models with the same loss functions can be compared. The speed prediction accu-
racy is either expressed in MSESpeed, MAPESpeed, MAESpeed, sMAPESpeed or sMdAPESpeed.



74 6. EXPERIMENTS AND RESULTS

Figure 6.2: Training process of the Points-NN-Speed-MSE model with MSELF versus Epoch Number. Both the training and validation
loss are shown, where the validation loss is used to avoid overfitting.

From Table 6.3 and Table 6.4, it can be concluded that the neural network models with dependent variable
speed and point-based data, have the highest speed prediction accuracy with respect to the models with the
same loss function. This is as expected, since the other models are trained with a different output (logspeed
or pace) and data (trip-based), while the speed prediction accuracy is calculated for the speeds from point-
based data in the test set.

Table 6.3: Overview of speed prediction accuracy for all 21 different neural network models for old data. The speed prediction accuracy
is evaluated on the speeds from point-based data in the test set. The speed prediction accuracy is calculated with the same error

function as the loss function used for each model.

Speed Prediction Accuracy - Old data
Dependent Variable Data Type MSESpeed MAPESpeed MAESpeed sMAPESpeed sMdAPESpeed

Speed points 255 - 9.88 32.5 7.61
Logspeed points 330 - 10.0 32.6 8.12
Speed trips 420 - 13.7 49.7 20.5
Logspeed trips 480 - 13.6 48.9 21.1
Pace trips 653 292 13.3 48.3 20.0

Table 6.4: Overview of the speed prediction accuracy for all 21 different neural network models for new data. The speed prediction
accuracy is evaluated on the speeds from point-based data in the test set. The speed prediction accuracy is calculated with the same

error function as the loss function used for each model.

Speed Prediction Accuracy - New data
Dependent Variable Data Type MSESpeed MAPESpeed MAESpeed sMAPESpeed sMdAPESpeed

Speed points 215 - 9.51 40.2 14.8
Logspeed points 264 - 10.5 40.2 15.0
Speed trips 391 - 14.7 43.7 18.0
Logspeed trips 407 - 15.3 50.0 18.8
Pace trips 669 331 16.6 49.7 21.7
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6.3. RESULTS TRAVEL TIME PREDICTION ACCURACY
After the models are trained, the speed of each road in the map can be predicted with the trained neural
network models. After this, the travel times can be predicted by finding the shortest path from the first to the
last GPS point of each travel in the test set. Finally, the travel time prediction accuracy of each neural network
model can be found by comparing the new predicted travel times, through new speed predictions, with the
actual travel times in the test set. In section 5.1, it was discussed that the most suitable main indicator of the
travel time prediction accuracy, which will be used, is the sMdAPETT. The reasons to use the sMdAPETT as
main indicator are:

1. To be able to compare the travel time prediction accuracy between all models, the travel time prediction
accuracy has to be expressed with one and the same error function.

2. The sMdAPETT has several properties that make this error function most suitable to calculate the travel
time prediction accuracy. Examples are the insensitivity to outliers, due to the median, and equal pe-
nalization to positive and negative errors, due to its symmetry. In addition, den Heijer also used the
sMdAPETT to compare the travel time prediction accuracy of different models. This makes the compar-
ison between den Heijer’s best models and the new developed neural network models in this research
easier.

In addition, the sMdPETT and IQR sPETT will also be used to assess the travel time prediction accuracy. The
sMdPETT is an indicator whether the travel time predictions are under- or overestimated. The IQR sPETT

indicates how much the errors are spread. A more detailed explanation of these error functions can be found
in section 5.1.

6.3.1. COMPENSATION OF SYSTEMATIC BIAS
The results of the travel time prediction accuracy for all models are shown in Table H.1, in Appendix H. From
these results, it can be concluded that the sMdPETT for each model is not equal to 0%. This means that for a
negative sMdPETT the travel time predictions are underestimated (too fast), while a positive sMdPETT means
that the travel times are overestimated (too slow). This can be seen as a systematic bias where more than
halve of the travel time predictions are under- or overestimated. There might be different reasons for the
systematic bias:

• The shortest path, calculate by routing software from ORTEC, is not the same path as driven by the
driver. The shortest path is calculated, based on the first and last GPS point of a travel.

• The prediction models optimize the speed of points and trips. This means that not the travel time, but
instantaneous moments and short parts of the full travel are optimized.

From the research of den Heijer[1], it was concluded that the sMdAPETT of each model improves after the
sMdPETT was moved to 0%. The sMdPETT can be moved to 0% by multiplying the travel times or speeds
assigned to each road in the map by a factor x. This multiplication is shown in Equation 6.3.1, where Pt is
the predicted travel time or speed before compensation by x. P

′
t is the predicted travel time or speed after

compensation by x.

P
′
t = x ·Pt (6.3.1)

Because the sMdPETT is used to compensate the systematic bias of the travel time predictions, the value x will
be based on the actual median and predicted median travel time. This results in Equation 6.3.2, where P

′
md

is the compensated median predicted travel time, Pmd the median predicted travel time and Amd the actual
median travel time.

P
′
md = x ·Pmd = Amd (6.3.2)

This results in a x that is equal to:

x = Amd

Pmd
(6.3.3)
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Starting from the sMdPE (Equation 6.3.4), x can be determined through a derivation that is shown from Equa-
tion 6.3.4 to Equation 6.3.10:

sMdPE = median

(
200% · Pt − At

At +Pt

)
t ∈ 1, ...,n (6.3.4)

sMdPE = 200% · Pmd − Amd

Amd +Pmd
(6.3.5)

sMdPE · (Amd +Pmd )

200%
= Pmd − Amd (6.3.6)

sMdPE · Amd

200%
+ Amd = Pmd − sMdPE ·Pmd

200%
(6.3.7)

Amd

(
1+ sMdPE

200%

)
= Pmd

(
1− sMdPE

200%

)
(6.3.8)

Amd

Pmd
= 1− sMdPE

200%

1+ sMdPE
200%

(6.3.9)

x = 200%− sMdPE

200%+ sMdPE
(6.3.10)

An example of the compensation of the systematic bias, sMdPETT, is shown in Figure 6.3. In this figure, the
travel time prediction errors, in sPETT, before and after compensation of the sMdPETT, are shown for the
Points-RF-Logspeed model. Before compensation of the sMdPETT, the sMdAPETT is equal to 28.9%. After
compensation, the sMdAPETT improved significantly to 14.3%.

Figure 6.3: Distribution of the travel time prediction error in sPETT of the Points-RF-Logspeed model. The results are for new data
before (normal) and after moving sMdPETT from 26.0 % to 0%.
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6.3.2. RESULTS
The results of the compensated travel time predictions for all speed prediction models are shown in Table H.2,
in Appendix H. In Table 6.5 and Table 6.6, an overview is shown of the speed prediction models with the
highest travel time prediction accuracy for point- and trip-based data and for old and new data. The speed
prediction models with the highest travel time prediction accuracy for old and new data are highlighted in
purple. From Table 6.5 and Table 6.6, the following can be concluded:

• Both the Points-RF-Logspeed and Points-NN-Logspeed-MSE models have the highest travel time pre-
diction accuracy for old data with sMdAPETT 13.8%. The Points-RF-Speed model has the highest travel
time prediction accuracy for new data with sMdAPETT 12.4%. From these results, it can be concluded
that all neural network models, for both the new and old data set, do not improve the travel time pre-
diction accuracy of den Heijer’s best models. This means that none of the neural networks is able to
predict the speeds in such a way that the travel time prediction accuracy is improved.

• For old data, the best trip-based neural network model did not outperform the best point-based neural
network model. For new data, the best trip-based neural network model, slightly outperformed the best
point-based neural network model with sMdAPETT 12.9% versus 13.0%. It seems that a lower sMdAPETT

can be obtained by neural networks, trained on trip-based data, with a higher data frequency (2 min.
vs 5 min.). However, the best trip-based neural network model differ between old and new data. Also,
from the results of all models in Table H.2, it can be concluded that some trip-based neural network
models have a low sMdAPETT for old data, but a high sMdAPETT for new data or vice versa. It is unclear
whether this is due to a different data frequency or different type of data set. More research need to be
done to find the influence of the data frequency on the travel time prediction accuracy.

• The results show that the best speed prediction model, with respect to sMdAPETT, differs between old
and new data. This means that there is not one best speed prediction model that can be used for dif-
ferent data sets. Also, Table H.1 and Table H.2 show inconsistent differences in sMdAPETT between the
same speed prediction models for old and new data. The cause seems to be the consistently higher
sMdPETT, before compensation of the systematic bias, for new data. This means that all speed predic-
tion models of the new data set, predict the travel times consistently slower, compared to the models
of the old data set. Possible reasons will be analyzed in section 6.4.

Table 6.5: Overview of den Heijer’s best models and the best neural network models for old and new data in sMdAPETT. The best
model(s) for old and new data is/are highlighted.

Training Data
Den Heijer’s Best Model

in sMdAPETT (%)
Best Neural Network

in sMdAPETT (%)
Point-Based 13.8 13.8

Old Data
Trip-Based 15.4 14.5
Point-Based 12.4 13.0

New Data
Trip-Based - 12.9

Table 6.6: Overview of den Heijer’s best models and the best neural network models for old and new data. The best model(s) for old and
new data is/are highlighted. The best models for old data are Points-RF-Logspeed and Points-NN-Logspeed-MSE, the best model for

new data is Points-RF-Speed.

Training Data Den Heijer’s Best Model Best Neural Network
Point-Based Points-RF-Logspeed Points-NN-Logspeed-MSE

Old Data
Trip-Based Trips-LR-Logspeed Trips-NN-Logspeed-MSE
Point-Based Points-RF-Speed Points-NN-Speed-MSE

New Data
Trip-Based - Trips-NN-Pace-sMdAPE
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6.3.3. TRAVEL TIME PREDICTION ACCURACY VERSUS SPEED PREDICTION ACCURACY
In this subsection, possible relationships between the speed and travel time prediction accuracy will be re-
searched. Den Heijer concluded that the speed prediction accuracy, in sMdAPESpeed, has no correlation with
the travel time prediction accuracy in sMdAPETT. Because of the different loss functions that are used, it
can be researched whether the speed prediction accuracy, expressed with a different error function than
sMdAPESpeed, is related to sMdAPETT.

The speed prediction accuracy in MSESpeed showed the best relationship with the travel time prediction accu-
racy sMdAPETT. This is shown in Figure 6.4 and Figure 6.5, which include the neural network models with loss
function MSELF. Also, the random forest models (benchmarks) are included, since the random forest models
also use the MSE to optimize the model. The MSESpeed is based on how well the speeds in the test set, from
the point-based data, are predicted. The relationships of the other error functions MAESpeed, sMAPESpeed and
sMdAPESpeed with respect to sMdAPETT can be found in Figure H.1, Figure H.2 and Figure H.3. MAPESpeed

was not included, since only one neural network model for old and new data used the loss function MAPE
(MAPELF). That are too few models to find possible relationships.

From the graphs in Figure 6.4 and Figure 6.5, and Figure H.1, Figure H.2 and Figure H.3, the following can be
concluded:

• The clearest relationships between the speed and travel time prediction accuracy can be found between
MSESpeed and sMdAPETT, which seems to be linearly related. However, for old data, this seems not to
be true for 200-300 MSESpeed and for new data after 400 MSESpeed. For new data, the model with the
lowest MSESpeed has the lowest sMdAPETT, while for old data the models with the third and fourth
lowest MSESpeed has the lowest sMdAPETT. Therefore, minimizing MSELF does not directly mean for all
data sets, that the lowest sMdAPETT will be obtained. However, the MSESpeed can be used as a rough
indicator for the sMdAPETT.

• The speed prediction models with the lowest MSESpeed are Points-RF-Speed and Points-NN-Speed-
MSE and shown in Figure 6.4 and Figure 6.5. This is as expected, because both models are trained on
the output speed and point-based data, where the MSESpeed is evaluated on. Remarkably, from Fig-
ure 6.4 and Figure 6.5, it can be concluded that the Points-RF-Speed model has a lower MSESpeed than
Points-NN-Speed-MSE. This is not as expected, since the neural networks are generally known as mod-
els with a high complexity, which increases the prediction accuracy. Since the hyperparameters of the
neural network models are chosen carefully and tuned, it is not expected that other hyperparameter
settings will further improve the MSESpeed of the Points-NN-Speed-MSE model. Apparently, the rela-
tionships between the independent and dependent variables are not such, that a more complex model
than the random forest, find better relationships. In addition, den Heijer found that also linear regres-
sion, which is a less complex model than random forest, does not find better relationships between the
independent and dependent variables[1]. This means that the complexity of the relationships between
the independent and dependent variables are best found by the random forest model.

• The relationships between sMdAPESpeed and sMdAPETT in Figure H.3 confirm that these are weakly cor-
related, as concluded by den Heijer[1]. The results are contradictory, since the sMdAPETT generally im-
proves with a worse sMdAPESpeed. Furthermore, the relationships between MAESpeed and sMAPESpeed

with respect to sMdAPETT seem to be quite random. A lower MAESpeed or sMAPESpeed does not neces-
sarily result in a lower sMdAPETT. Therefore, these speed prediction accuracies should not be used as
indicator for the travel time prediction accuracy.
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Figure 6.4: Travel time prediction accuracy in sMdAPETT versus speed predictions in MSESpeed for old data. Only the models with loss
function MSELF are included in the graph.

Figure 6.5: Travel time prediction accuracy in sMdAPETT versus speed predictions in MSESpeed of new data. Only the models with loss
function MSELF are included in the graph.
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6.4. ANALYSIS RESULTS
In this section, it will be analyzed why the old and new data have different best speed prediction models
with respect to sMdAPETT. From the results in Table H.1, it can be concluded that the sMdPETT (systematic
bias) for the new data, is consistently higher, compared to the same models of the old data. This means
that the travel times of the new data set are consistently predicted slower, compared to the old data set. As
a consequence, the sMdAPETT differs between old and new data for the same speed prediction model. The
reasons that may cause these differences and will be researched are:

1. Different starting times of travels throughout the day

2. The minimum travel time that is evaluated on

3. Number of travels that are evaluated on

4. Difference in country

5. Different size of training set

The Points-RF-Logspeed model will be used to analyze the consistently slower travel time predictions of the
new data models, compared to the old data models. This model shows one of the largest differences in
sMdPETT between old and new data with sMdPETT 4.2% and 26.0%, respectively. In Figure 6.6, the distri-
bution of the travel time prediction accuracy in sPETT (%) is shown of the Points-RF-Logspeed model. As can
be seen, the travel time predictions of the new data are predicted much slower (higher sPETT) than the old
data.

Figure 6.6: Distribution of the travel time prediction accuracy in sPETT of the Points-RF-Logspeed model for new and old data before
compensation with sMdPETT. The sMdPETT for old and new data is 4.2% and 26.0%, respectively.

1. A first reason for the large difference in sMdPETT between the old and new data set, might be due to
more travels during rush hours (7:00-9:00 & 16:30-18:30) in the old data set. Travels that are driven
during rush hours may be predicted too fast leading too a lower sMdPETT. In Figure 6.7, a distribution
of the starting time of each travel is shown. As can be seen, both data sets follow the same distribution
and there is no significant difference in percentages of travels during rush. Therefore, the difference in
working hours can be excluded as reason for the large differences in sMdPETT between the new and old
data set.
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Figure 6.7: Distribution of the starting time of the travels throughout the day for the new and old data set.

2. A second reason for the large differences in sMdPETT might be due to the minimum actual travel time
that is evaluated on. The distribution of the actual driven travel times are shown in Figure 6.8. The
minimum actual travel time for the new data is 2 minutes and for the old data 10 minutes. The influence
of the minimum travel time on the accuracy is analyzed by removing travels that are shorter than 10
minutes from the new data. The results are shown in Table 6.7. It can be concluded that the sMdPETT

and sMdAPETT improve with 5.5% and 5%, if only travel times larger than 10 minutes are evaluated,
instead of 2 minutes. However, this improvement is still too small to explain the large difference in
sMdPETT between the old and new data set of 4.2% and 26.0% respectively.

Figure 6.8: Distribution of the travel starting time throughout the day for the new data set.
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Table 6.7: Influence minimum travel times on travel time prediction accuracy before compensation with sMdPE.

New Data (All travel times) New Data (travel time ≥ 10 min)
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark
Points-RF-Logspeed

28.9 26.0 28.1 23.9 20.5 20.7

3. A third reason might the number of travels that are evaluated on. To analyze the influence of the num-
ber of travels on the prediction accuracy, the number of travels of the new data set is reduced from
45,852 to 10,316. This is equal to the number of travels in the old data set. From the results in Table 6.8,
it can be concluded that the number of travels used for evaluation, does not explain the large difference
in sMdPETT between the old and new data set of 4.2% and 26.0% respectively.

Table 6.8: Influence number of travels on accuracy before compensation with sMdPE.

New Data (Evaluated on 45,852 travels) New Data (Evaluated on 10,316 travels)
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark
Points-RF-Logspeed

28.9 26.0 28.1 27.5 24.7 27.9

4. A fourth reason for the large differences in sMdPETT, might be the country where the travels are driven
(Netherlands vs. Benelux). This is analyzed by only evaluating the travels of the old data set that
are driven in the Netherlands. In Table 6.9, the travel time prediction accuracy of the travel times in
the Netherlands and the Benelux of the old data set is shown. It can be concluded that the sMdPETT

and sMdAPETT improve from 4.2% and 14.8% to -1.7% and 13.5%. This shows that the sMdPETT and
sMdAPETT do not come closer to the 26.0% and 28.9% of the new data set. Therefore, the country where
the travels are driven is not the cause for a large difference in sMdPETT and thus the difference in best
speed prediction models of the old and new data.

Table 6.9: Influence country on travel time prediction accuracy before compensation with sMdPE.

Old Data (Benelux) Old Data (Netherlands)
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark
Points-RF-Logspeed

14.8 4.2 28.5 13.5 -1.7 28.2

5. A last reason might be that the large differences in sMdPETT are caused by an smaller training set. This
is analyzed by reducing the point-based data set, of the new data, from 1,083,237 to 410,137. Which is
the size of the point-based data set of the old data. The results are shown in Table 6.10. It can be seen
that the sMdPETT and sMdAPETT slightly improve if the model is trained on a smaller point-based data
set. This result shows that the large differences in sMdPETT, between the new and old data set, are not
caused by the smaller data sets used by the old data.

Table 6.10: Influence point-based data size on travel time predictions new data, before compensation with sMdPE.

New Data (1,083,237 points) New Data (410,137 points)
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark
Points-RF-Logspeed

28.9 26.0 28.1 27.5 24.5 27.3

Finally, by analyzing the old and new data, none of the five reason explained why all sMdPETT for the new
data are consistently higher than the old data. Therefore, it also does not explain why the old and new data
have a different best speed prediction model. An explanation that is left over, is that the trucks of the new
data drive faster than the trucks of the old data, which transport chemical packages. Apparently, the speed
prediction models do not learn and predict the speeds for fast and slow trucks such that the same travel time
prediction accuracy is obtained. This means that the best speed prediction model for fast trucks may be
different compared to slow trucks.
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6.5. RESULTS TEMPORAL FACTOR
The temporal factor could not be included in the neural network model as independent variable, since this
would require the digital map to assign more speeds to one road for different moments in time. Therefore,
the temporal factor will be researched by splitting the data set into rush (7:00-9:00 & 16:30-18:30) and non-
rush hour data sets and training two different neural network models. This is shown through a flow chart in
Figure 4.5. If more than halve of the travel is driven during rush hours, then all data of this travel will be put
in the rush hours data set. If not, then the travel will be added to the non-rush hours data set. The rush and
non-rush hours data sets will be both split into a training and test set. Only complete travels will be put into
the training and test sets. This is done to make sure that during the training process, nothing is seen from the
travels in the test set that will be evaluated on.

The number of points and trips in the rush and non-rush hours data sets, for point- and trip-based data, is
shown in Table 6.11. From this table it can be concluded that about 1/5th of the travels are driven during rush
hours and 4/5th outside the rush hours.

Table 6.11: Number of data points in rush and non-rush hour data sets for point- and trip-based data.

Model Point-Based Data Trip-Based Data
Rush and non-rush hours (total) 1,445,378 1,049,195
Rush hours 313,721 219,535
Non-rush hours 1,131,655 829,660

Three different models, Points-RF-Speed, Points-NN-Speed-MSE and Trips-NN-Speed-MSE, are retrained to
research the influence of the temporal factor. In Table 6.12, the results of the speed prediction accuracy
in MSESpeed and travel time prediction accuracy in sMdAPETT are shown. The speed prediction accuracy is
expressed in MSESpeed, since all models use loss function MSELF to optimize the speed prediction model. The
best value for each model, in each column, is highlighted. It can be concluded that the speed and travel time
prediction accuracy for all three models, which are trained on the non-rush hour dataset, is the best. This is
as expected, because most traffic jams are excluded from the non-rush hour data set, reducing the variance
in speeds. The speed prediction accuracy on the rush hour dataset, is the worst for all three models. This is
also as expected, because of a high variance in speeds due to more vehicles on the roads.

Finally, the results of the models, which are trained on the rush and non-rush hour training set, can be added
together to be able to asses the influence of the temporal factor. It can be seen in Table 6.12 that the MSESpeed

improves when rush and non-rush hours are taken into account (normal versus rush and non-rush hour).
The sMdAPETT of the Points-NN-Speed-MSE and Trips-NN-Speed-MSE model improves with 0.6% and 3.0%,
respectively. The sMdAPETT of the Points-RF-Speed model does not improve, however the IQR sPETT im-
proves from 28.0% to 27.3% for this model. This means that the errors are less widely spread. As a conclusion,
the speed and travel time prediction accuracy can be improved by taking rush and non-rush hours into ac-
count. However, the influence of the temporal factor decreases for models with an relatively high speed and
travel time prediction accuracy.

Table 6.12: Speed and travel time prediction accuracy of Points-RF-Speed, Points-NN-Speed-MSE and Trips-NN-Speed-MSE model in
MSESpeed, sMdAPETT, sMdPETT and IQR sPETT.

New Data
Model MSESpeed sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Points-RF-Speed (normal) 202 12.6 0.0 28.0
Points-RF-Speed (only rush hour) 257 16.0 0.0 33.7
Points-RF-Speed (only non-rush hour) 175 11.6 0.0 25.5
Points-RF-Speed (rush and non-rush hour) 193 12.6 0.0 27.3
Points-NN-Speed-MSE (normal) 215 13.0 0.0 28.6
Points-NN-Speed-MSE (only rush hour) 267 15.7 0.0 30.8
Points-NN-Speed-MSE (only non-rush hour) 176 11.4 0.0 27.4
Points-NN-Speed-MSE (rush and non-rush hour) 195 12.4 0.0 28.4
Trips-NN-Speed-MSE (normal) 392 18.3 0.0 37.2
Trips-NN-Speed-MSE (only rush hour) 452 20.7 0.0 39.9
Trips-NN-Speed-MSE (only non-rush hour) 356 14.0 0.0 33.5
Trips-NN-Speed-MSE (rush and non-rush hour) 370 15.3 0.0 35.3
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6.6. CONCLUSION
In this chapter, the following conclusions could be made:

• In total, 42 neural network models were trained. 21 models were trained on the old data and 21 models
on new data. The models differ in type of training data, loss function and dependent variable. The neu-
ral network models were first trained on point- and trip-based data. Then, the models were evaluated
on the speeds in the test set with the same error function that was used as loss function. This resulted
in a speed prediction accuracy, where the models that were trained on point-based data and output
speed had the highest speed prediction accuracy.

• After the speed of each road in the map was predicted, the travel times of the travels in the test set could
be predicted. This was done by finding the shortest path from the first to the last GPS point of a travel.
It was found that the Points-RF-Logspeed model and Points-NN-Logspeed-MSE model have the best
travel time prediction accuracy for the old data with sMdAPETT 13.8%. The Points-RF-Speed model
has the best sMdAPETT for new data with 12.4%. Remarkably, none of the neural network models did
improve the travel time prediction accuracy sMdAPETT of the models of den Heijer (benchmarks). This
is not as expected, since neural networks are known as models with high prediction accuracies. This
means that the developed neural network models are not able to predict the speeds in such a way, that
the travel time prediction accuracy is improved.

• An attempt was made to find relationships between the speed and travel time prediction accuracy. The
speed prediction accuracy of each neural network model was expressed in the same error function as
the loss function used, to optimize the neural network model. It was found that the MSESpeed is mostly
related to sMdAPETT. In general, a lower MSESpeed results in a lower sMdAPETT. For new data, the speed
prediction model with the lowest MSESpeed has the lowest sMdAPETT. However, this is not true for the
old data. Therefore, the relationship between MSESpeed and sMdAPETT is not fully related. However,
MSESpeed can be used as rough indicator for sMdAPETT.

• It was expected that by increasing the data frequency from 5 to 2 minutes, a higher travel time pre-
diction accuracy could be achieved with respect to the benchmarks. However, from the results it was
unclear whether a higher data frequency improves the sMdAPETT. More research need to be done to
find the influence of the data frequency on the travel time prediction accuracy.

• The best speed prediction model, with respect to sMdAPETT, differs between the old and new data.
This means that there is not one best speed prediction model that can be used for different data sets.
The cause seems to be the consistently higher sMdPETT, before compensation of the systematic bias,
for new data. This means that all speed prediction models of the new data set, predict the travel times
consistently slower, compared to the models of the old data set. The most likely reason is that the speed
prediction models behave differently for different data sets, due to different type of trucks (food versus
chemical packages) and routes from the customer.

• By taking rush and non-rush hours into account, a better speed and travel time prediction accuracy can
be obtained. The sMdAPETT of the Points-NN-Speed-MSE and Trips-NN-Speed-MSE model improved
with 0.6% and 3.0%, respectively. The sMdAPETT of the Points-RF-Speed model did not improve, how-
ever the IQR sPETT improved from 28.0% to 27.3%. This means that the errors are less widely spread.
It can be concluded that the influence of the temporal factor decreases for models with an relatively
high speed and travel time prediction accuracy. By taking into account more temporal factors (season,
day of the week, holidays) and weather factors (rain, snow, wind speed), it is expected that even better
travel time prediction accuracies can be obtained.



7
CONCLUSION & RECOMMENDATIONS

In this chapter, the conclusion and recommendations are discussed. Conclusions of the research will be
made by answering each sub research question, after which the main research question will be answered.
The recommendations are split into two sections. First, the recommendations for ORTEC will be discussed
and secondly, the recommendations for further research.

7.1. CONCLUSION
The answers to the sub research questions, which are essential to answer the main research question, are the
following:

1) How are travel times currently estimated at ORTEC and what are the shortcomings?
To calculate the travel time at ORTEC, first the shortest path has to be found. From the shortest path, the
travel time can be derived. This is the sum of the length, divided by the speed, of each road that is included
in the shortest path. Therefore, it is important that the predicted speed for each road in the road network
is accurate to obtain accurate travel time predictions. Currently, each road in the map belongs to one of the
20 road types, where each road type has a speed that is assigned by the customer. The shortcomings of this
current method are that the classification of the 20 road types is quite rough, and that the assigned speeds to
each road type is based on experience of the customer. Both shortcomings lead to a reduction in travel time
prediction accuracy.

Recently, den Heijer [1] developed a new method at ORTEC, based on GPS data, to improve the speed pre-
dictions in the map. Based on this new method, eight different speed prediction models were developed that
were either based on linear regression or random forest. One model, which was based on random forest,
improved the accuracy of the current method (20 road types) significantly with sMdAPETT 4.6%. The devel-
oped models by den Heijer, predict the speed for each road in the map based on found relationships. These
relationships were found between the driven speed, obtained from the GPS data, and the properties of the
corresponding road, such as speed limit, speed bumps, lane width, etc. The shortcoming of the linear re-
gression model is that only linear relationships can be modelled, which limits the prediction accuracy. The
shortcoming of the random forest model is that it is not able to learn from trip-based data. A more accurate
model than linear regression, which is able to learn from trip-based data, may lead to a higher travel time
prediction accuracy.

2) Which related literature and researches are available, including available travel time prediction meth-
ods and influential travel time factors?
The travel time prediction methods in literature, except the method from den Heijer, focus on improving the
travel time predictions for one route or road. This research study focuses on improving travel time predic-
tions for an entire road network. Therefore, the travel time prediction method, developed by den Heijer, is
only applicable to this research. However, to improve the method of den Heijer, prediction methods that are
used by the travel time prediction methods in literature, can be adapted to this research problem. The pre-
diction methods that can be used are linear regression, random forest, support vector regression, gradient
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boosting and neural networks.

The influential factors of the travel time, which were found in literature, can be divided into five categories.
These categories are: vehicle classification, temporal factors, weather factors, road engineering factors and
unpredictable factors. For this research, the vehicle classification is fixed to trucks and the weather and un-
predictable factors are considered to be out of scope. The temporal and road engineering factors were used
to improve the speed predictions. Furthermore, the most suitable error function that was found to measure
the travel time prediction accuracy, is sMdAPETT. This is the symmetric median absolute percentage error. In
addition, the sMdPETT and IQR sPETT were used as indicator whether the predictions are too fast or too slow
and how widely the errors are spread, respectively.

3) Which prediction method is most suitable to predict the speeds?
A method trade-off was performed to choose the most suitable prediction method for the speeds in this re-
search. The criteria that were used for the method trade-off are: ’prediction accuracy’, ’hyperparameter tun-
ing’, ’interpretability’ and ’large data set’. After performing the method trade-off and a sensitivity analysis,
it was found that the neural network is the most suitable prediction method, for both point- and trip-based
data.

4) How can a prediction method be developed for this problem?
The neural network can be used as prediction method by finding relationships between the independent
variables (speed limit, region, lane width, etc.) and the dependent variable. In total, 21 independent variables
were used to find relationships between the road engineering factors and speeds in the data sets. This is the
training process. After the model is trained, the speed of each road in the map can be predicted individually.
In total, 21 different neural network models were developed. These models differ in type of training data
(point- or trip-based data), loss function (MSELF, MAPELF, MAELF, sMAPELF and sMdAPELF) and dependent
variable (speed, logspeed and pace (1/speed)). During hyperparameter tuning, it was found that the best
number of neurons and hidden layers differ for each model. This depends on whether the dependent variable
pace or loss function sMdAPELF was used.

5) How does the new model compare to the current models?
In total, 21 neural network models were developed and trained on the old and new data set. The old data
set is collected and preprocessed by den Heijer with a frequency of 5 minutes. The new data set is collected
and preprocessed during this research with a frequency of 2 minutes. Den Heijer’s two best models, which are
based on random forest, were used as benchmarks. From the results, it was concluded that none of the neural
networks had an improved travel time prediction accuracy, compared to the two random forest models. This
is true for both old and new data. This means that the neural network is not able to learn and predict the
speeds in such a way, that the travel time prediction accuracy is improved.

Main Research Question: Can a new speed prediction model be developed for trucks that outperforms the
travel time prediction accuracy of the current speed prediction models for a given road network?
Based on the results that were obtained in this research, a new speed prediction model that outperforms the
current speed prediction models, with respect to sMdAPETT, could not be developed. This is true for both the
old and new data set. For both old and new data, one of the two random forest models, developed by den
Heijer, had the best performance with sMdAPETT 13.8% and 12.4%. However, it can be neither concluded
that the neural network does not provide better travel time predictions for other data sets. Also, it cannot be
concluded that neural networks, which are trained on trip-based data, will not outperform the random forest
models with a higher data frequency than 2 minutes.

7.2. RECOMMENDATIONS FOR ORTEC
From this research, the following recommendations for ORTEC were found:

• From the results in this research, it can be concluded that none of the neural network models out-
performs the sMdAPETT of the random forest models of den Heijer. These random forest models are
Points-RF-Speed and Points-RF-Logspeed. However, the best random forest model differs between the
old and new data. If the best travel time prediction accuracy wants to be achieved for each customer,
then it is recommended to train both random forest models and pick the best model subsequently.

• In this research, the temporal factor was researched by splitting the data set into rush and non-rush
hours. It was found that the improvement in travel time prediction accuracy, of the best speed predic-
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tion model for the new data, is not significant. Currently, ORTEC is considering to move from a static
to a dynamic routing algorithm, where more speeds can be assigned to one road. Therefore, ORTEC
should do more research about the influence of other temporal factors (holidays, day of week, etc.), to
know whether the investment is worth it.

• More GPS data from different customers should be researched whether the random forest models are
consistently the best models. Also, it should be researched whether GPS data from one customer, can
be used for another customer with the same type of truck. This would save a lot of time to collect and
clean GPS data for each customer individually.

7.3. FURTHER RESEARCH
After this research, the following suggestions were found to further improve the travel time prediction accu-
racy:

• After this research, it cannot be concluded whether a higher data frequency of 2 minutes, compared to
5 minutes, did improve the travel time prediction accuracy of neural network models that were trained
on trip-based data. The difference in data sets, due to different vehicles and routes, seemed to have a
too large impact on the results to draw conclusions about the influence of the GPS data frequency on
the results. Therefore, it is recommended to research different data frequencies for the same data set.

• None of the neural network models that was trained on trip-based data, with a frequency of 2 and 5
minutes, had improved the travel time prediction accuracy of the benchmarks. Therefore, it is recom-
mended to research data frequencies that are higher than 2 minutes, such as 15 or 30 seconds. A higher
frequency may produce better results and outperforms the benchmarks. This is because a higher fre-
quency gives more certainty about the driven path between two consecutive GPS points. This improves
the quality of the training data. Also, a higher frequency means that the (average) independent variables
of a trip, are based on less roads. This makes it easier for the model to extract information for the speed
predictions of single roads.

• By including more influential factors of the travel time, higher travel time prediction accuracies might
be obtained. Factors that can still be researched are other temporal factors such as day of the week,
season, holidays, hour of the day, etc. But also weather factors such as rain, snow, wind speed, etc.
can be included to improve the travel time predictions. However, including weather factors is quite a
difficult job, which also requires access to historical weather data.

• It would be interesting to research the minimum amount of data required, until the random forest and
neural network are saturated. If too little data is used, the model has not found all possible relation-
ships. However, if too much data is used, the training time of a neural network can increase signifi-
cantly.

• The models developed during the previous research by den Heijer and this research, are based on ML
methods. These methods find relationships between the road properties and the speed. However, the
final goal is to improve the travel time predictions. Therefore, more research can be done, to develop a
new method that is able to learn and predict the speeds in such a way, that it is directly related to the
travel time.
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Abstract— Route planning is an important part for com-
panies that transport goods between different locations. To
optimize the route planning, it is important that the travel time
predictions come close to reality. A too tight schedule would
lead to pressure to the driver, late fees and reputation damage,
but a too loose schedule would result in wasted capacity. To
predict the travel time, first a speed has to be assigned to
each road in the digital map, after which the shortest path can
be calculated. This research proposes a speed prediction model
based on neural networks to predict the speed of each road such
that the travel time prediction accuracy is improved. The neural
network speed prediction model will be compared to the current
speed prediction model, which is based on random forest. The
speed prediction model first learns from preprocessed GPS data
that is obtained from two different companies that operate with
trucks. After relationships have been found between the driven
speed and road properties (e.g. speed limit, road width, tunnel,
etc.), the speed prediction model predicts a speed for each
road in the digital map. Subsequently, the shortest path can be
calculated from the first to the last GPS point of different routes.
Then the predicted travel times from the shortest paths were
compared to the real driven travel times. After comparison, it
turned out that for both GPS data sets, the neural network
speed prediction model did not outperform the travel time
prediction accuracy in sMdAPETT of the random forest speed
prediction model.

I. INTRODUCTION

With the growing population and the demands for products
and goods, the transportation by trucks is increasing[1]. To
cope with this increase, an accurate route planning is key to
do the transportation between different locations efficiently
and to save transportation cost as a result. To optimize the
route planning, it is important that the travel time predictions
come close to reality. A too tight schedule would lead to
pressure to the driver, late fees and reputation damage, but
a too loose schedule would result in wasted capacity. More
addresses could be visited or less vehicles could be used.

This research is conducted at ORTEC, where the travel
time prediction between point A and B is based on the sum of
the length, divided by the speed, of each road that is included
in the shortest path. Since the length of each road is fixed, the
speed that is assigned to each road in the road network has to
be improved to improve the travel time prediction accuracy.
Currently, each road in the map belongs to one of the 20 road
types, where each road type has a speed that is assigned by
the customer. These speeds are based on the experience of

the implementation consultant (customer). However, dividing
the roads in the map into 20 road types, is quite a rough
road classification. Also, the speeds that are assigned to each
road type is based on the experience from the customer. This
reduces the accuracy of the travel time predictions.

An easy and obvious option to improve the travel time
prediction would be to use available routing software such
as Google maps, Bing maps, etc., which can provide accurate
travel time predictions. However, these routing softwares
cannot be used by ORTEC, because they do not support
many-to-many queries (shortest paths between all sources
s and targets t), which is needed to solve the vehicle
routing problem (VRP). Also, the computational time of
these routing softwares is high and undesired[2], since the
customers have a limited amount of time for the planning and
scheduling process. Lastly, these routing softwares do only
route calculations for cars, while route calculations for trucks
are desired due to the majority of customers that operate with
trucks.

At ORTEC, a first attempt was made to improve the travel
time predictions based on historical GPS data and machine
learning (ML) algorithms by den Heijer[3]. GPS data is used,
since it contains information about the driven speed of the
vehicles at many roads and plenty of historical GPS data
can be obtained from the customer. Eight different models
were developed by den Heijer and were either based on
linear regression (LR) or random forest (RF). The developed
models predict the speed for each road in the digital map
based on found relationships. These relationships were found
between the driven speed, obtained from the GPS data, and
the properties of the corresponding road, such as speed limit,
speed bumps, lane width, etc. An illustration of this process
can be found in Figure 1.

However, the shortcoming of the linear regression models
is that only linear relationships can be modelled. This limits
the prediction accuracy when it learns from point- or trip-
based data. The shortcoming of the random forest model is
that it is not able to learn from trip-based data. A more
accurate model than linear regression, which is able to
learn from trip-based data, may lead to a higher travel time
prediction accuracy.

This paper presents a new speed prediction model which
will answer the following main research question: Can a new



speed prediction model be developed for trucks that outper-
forms the travel time prediction accuracy of the current speed
prediction models for a given road network?

Fig. 1: Illustration how the speed prediction model is devel-
oped and used to predict a new speed for each road in the
digital map.

II. PREDICTION METHOD

Besides the research of den Heijer[3] at ORTEC, also other
travel time prediction methods were reviewed in literature.
Bai et al. [4] provides an extensive review of different
travel time prediction methods. However, these methods
only focus on one route or road instead of an entire road
network. Because this review of Bai et al. is incomplete,
additional travel time prediction methods were investigated
which seemed to be applicable for a road network and thus
this research[5][6][7]. However, these methods focuses only
on a couple of individual roads in a road network and are
therefore also not suitable for this research. Therefore, it
is decided to improve the travel time prediction method,
developed by den Heijer[3], for this research problem based
on its shortcomings.

The method of den Heijer can be improved by using a
different prediction method, than linear regression or random
forest, for the speed prediction model. Other suitable predic-
tion methods are: support vector regression (SVR), Gradient
Boosting (GB) and neural networks (NN). These prediction
methods are suitable, since they can predict a continuous
output (speed) and are able to generalize speeds from a data
set to an entire road network. In Table I, an method trade-
off can be found that helps to select the most appropriate
prediction method. The neural network has the highest total
score and will therefore be used for the speed prediction
model for point- and trip-based data. Since, the input data
of the speed prediction model is not sequential, the feed-
forward neural network will be used. Other types of neural
networks, such as the recurrent or long short-term memory
neural network are only suitable for sequential input data and
therefore not applicable to this research.

TABLE I: Trade-off between multiple prediction methods
based on different criteria.

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 5
Hyperparameter Tuning 2 5 4 2 2 1
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 40 46 31 47 53

III. AVAILABLE DATA

The data that is available for this research are map data
and GPS data:

1) Map data: This is the data that ORTEC has purchased
from HERE Technologies. The map data contains in-
formation about the road network and many properties
of each road such as speed limit, road width/length,
tunnel, etc. The map data is clean and well structured.

2) Customer GPS data: The GPS data is collected from
customers of ORTEC that operate with fleets of trucks.
This data is raw and of relatively low quality. Much
effort is required for cleaning and preprocessing to be
able to use this data.

To use the neural network as speed prediction model, a
training and test set are required. The training set is used
to find relationships between the independent (input) and
dependent (output) variables. The test set is used to evaluate
the model. To obtain the training and test set, first a few
preprocessing steps have to be followed as shown in Figure 2.

Fig. 2: Data preprocessing steps.

Den Heijer [3] used both point- and trip-based data to
train the model. In den Heijer’s research, point-based data
performed better than trip-based data to train the speed
prediction model. However, by using a neural network model
and a higher data frequency (2 min. vs 5 min.), a higher
travel time prediction accuracy may be obtained using trip-
based data. Therefore, both point- and trip-based data will
be used in this research. The differences between point- and
trip-based data are:
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• Point-based data: This type of data contains the road
properties and the corresponding travel speed of each
recorded GPS point. The road properties are the inde-
pendent variables (model input) and the travel speed is
the dependent variable (model output). This type of data
is also shown in Figure 1.

• Trip-based data: The advantage of trip-based data is
that it contains information about all roads of each
travel. This is not the case for point-based data, where
the information is based on a few roads where the
GPS points are recorded. Each trip-based data point
is based on all roads between two consecutive GPS
points. This needs an additional preprocessing step.
This step includes the calculation of the average of the
road properties (independent variables) of all roads that
belong to each trip.

A. Collecting Raw Data

For this research, two different GPS data sets are used.
One GPS data set is collected and preprocessed during this
research and is called ’new data’ for convenience. This GPS
data set comes from a customer that operates with trucks in
the Netherlands and has a data frequency of 2 minutes. The
other GPS data set is collected and preprocessed during the
research of den Heijer[3], and is called ’old data’. This GPS
data set comes from a customer that operates with trucks in
the Benelux and has a data frequency of 5 minutes. Both
GPS data sets are used because of the following reasons:

• New data: This GPS data has a frequency of 2 minutes,
which is higher than a frequency of 5 minutes from
the old data. It is expected that the quality of the
trip-based data will improve with a higher GPS data
frequency. As a consequence, the speed predictions of
the neural network can be improved, which may result
in better travel time predictions. In this way, the travel
time predictions of the random forest speed prediction
models may be outperformed.

• Old data: Den Heijer already collected and prepro-
cessed GPS data with a frequency of 5 minutes which
is ready to use. The data is obtained from a different
customer than the new data. By using the old data as
well, more insights can be obtained about the developed
speed prediction models. Is the best speed prediction
model for the new data the same as for the old data?
Can a neural network, trained on trip-based data, already
outperform the random forest speed prediction models
with a GPS data frequency of 5 minutes?

B. Data Cleaning

After all raw GPS data is collected from the customer,
the data needs to be cleaned so the model only learns from
representative data. In total, eight data cleaning steps were
applied to both GPS data sets. Examples of data cleaning
steps are: 1) All GPS points that are not recorded during
a travel are discarded 2) Travels that only contain one GPS
point are removed 3) Travels that contain a ferry are removed
and considered to be out of scope.

C. Map Matching

Map matching is the process of matching GPS data,
consisting of a latitude and longitude component, to locations
in the digital map. To save a significant amount of time
on the development and implementation of a map matching
algorithm, the online map matching service from HERE is
used. This map matching service is called Fleet Telematics
Route Matching. A sequence of GPS points of an unique
travel are sent to the API and are matched to the most
likely driven roads in the map. The most likely driven roads
are determined by the longitude, latitude, timestamp, speed,
heading and the other GPS points of the same travel.

D. Feature Extraction

After matching the GPS data to locations in the digital
map, features (independent variables) can be extracted. These
independent variables will be used to train the model and to
predict the speed of each road in the map. For this research,
road engineering factors (road properties) are used and are
available from the map data. In Table II, an overview can be
found of the used independent variables. Also the range of
the values of the independent variables are shown for point-
and trip-based data, which are either Boolean, continuous or
discrete.

TABLE II: Independent variables of the neural network
model, including the range of values for point- and trip-based
data.

Independent Variables Range Points Range Trips
Functional Class 1 0 or 1 [0,1]
Functional Class 2 0 or 1 [0,1]
Functional Class 3 0 or 1 [0,1]
Functional Class 4 0 or 1 [0,1]
Speed Limit [5,130] [5,130]
Tunnel 0 or 1 [0,1]
Bridge 0 or 1 [0,1]
Traffic Signal 0 or 1 [0,1]
Urban 0 or 1 [0,1]
Speed Bumps 0 or 1 [0,1]
Road Width > 0 > 0
Lane Category 1 0 or 1 [0,1]
Lane Category 2 0 or 1 [0,1]
Paved 0 or 1 [0,1]
Road Length > 0 > 0
Ramp 0 or 1 [0,1]
Priority Road 0 or 1 [0,1]
Speed Pattern Max [0,130] [0,130]
Speed Pattern Min [0,130] [0,130]
Speed Pattern Avg [0,130] [0,130]
Speed Pattern Monday 8:30 [0,130] [0,130]

E. Sampling

After the collection and preprocessing of the data sets, the
data sets are randomly split into a training and a test data
set. The training set will be used to train the model and the
test set to evaluate the model on points/trips and complete
travels. 75% of the full data set will be used as training set
and 25% as test set.
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IV. MODEL DESIGN

The overall objective of the model is to predict the speed
of each road in the digital map such that the travel time
prediction accuracy of the current speed prediction models,
developed by den Heijer, is outperformed for a given road
network. This will be done by learning from points and trips
obtained from GPS data, which contain valuable information
about the driven speed, and the travel time, at many different
locations in the road network.

A. Travel Time Prediction Accuracy

The travel time prediction accuracy will be expressed in
sMdAPETT and is shown in Equation 1. Where n is the
total number of travels, At the actual travel time and P t
the predicted travel time for travel t. The sMdAPETT has
several properties that make this error function most suitable
to calculate the travel time prediction accuracy. Examples
are the insensitivity to outliers, due to the median, and
equal penalization to positive and negative errors, due to its
symmetry. In addition, the sMdPETT and IQR sPETT will also
be used to assess the travel time prediction accuracy. The
sMdPETT is an indicator whether the travel time predictions
are under- or overestimated. The IQR sPETT indicates how
much the errors are spread.

sMdAPETT = median

(
200% ·

∣∣∣∣
At - Pt

At + Pt

∣∣∣∣
)

t ∈ 1, ..., n (1)

sMdPETT = median

(
200% · Pt - At

At + Pt

)
t ∈ 1, ..., n (2)

IQR sPETT = Q3 sPETT − Q1 sPETT (3)

sPETTt = 200% · Pt - At

At + Pt

t ∈ 1, ..., n (4)

B. Neural Network Models

In Table III, an overview can be found of 21 different
neural network models that will be used for the old and new
data to predict the speeds. They differ in dependent variable,
type of training data and loss function.

TABLE III: Overview of all 21 different neural network
speed prediction models that will be researched to find the
best travel time prediction accuracy.

• Dependent variable: The dependent variables that will
be used as model output are speed, logspeed and pace
(1/speed). Speed is an obvious choice, since the speed
is obtained from the GPS data and the speed of each
road in the road network has to be improved. However,
non-relative loss functions, such as the mean squared
error (MSE) and mean absolute error (MAE), fit better
to larger values. Therefore, the logspeed (logarithmic
speed) is also used to move the speeds to a relative
space. This gives the same relative error for low and
high speeds. Furthermore, for trip-based data, the time
could also be used as dependent variable, since the
time between two GPS points is known. However, this
requires the neural network to extrapolate. A solution
is to divide the (in)dependent variables by the distance
between two GPS points, which results in the dependent
variable pace. In this way the data is normalized and
does not need to extrapolate.

• Data type: In den Heijers research[3], point-based
data performed better than trip-based data. However,
by using a neural network model and a higher data
frequency (2 min. vs 5 min.), a higher travel time
prediction accuracy may be obtained using trip-based
data. Therefore, both point- and trip-based data will be
used in this research.

• Loss function: It would be logical to use the sMdAPE
as loss function (sMdAPELF) to optimize the speed
predictions, since sMdAPETT is used for the travel time
prediction accuracy. However, den Heijer[3] concluded
that the speed prediction accuracy in sMdAPESpeed
is not related to sMdAPETT. Therefore, also other
common loss functions will be used, which may be
more related to sMdAPETT. These are MSELF, MAELF,
MAPELF and sMAPELF. These loss functions are shown
from Equation 5 to Equation 8, where At is the actual
value of the dependent variable, Pt the predicted value
of the dependent variable and n the number of obser-
vations. This may result in an improved sMdAPETT,
compared to the random forest speed prediction models
of den Heijer.

MSELF =
1

n
·

n∑

t=1

(At - Pt)
2 (5)

MAELF =
1

n
·

n∑

t=1

|At − Pt| (6)

MAPELF =
100%

n
·

n∑

t=1

∣∣∣∣
At − Pt

At

∣∣∣∣ (7)

sMAPELF =
200%

n
·

n∑

t=1

∣∣∣∣
At − Pt

At + Pt

∣∣∣∣ (8)
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C. Neural Network Architecture

A visualization of the neural network architecture, includ-
ing the independent and dependent variables, is shown in
Figure 3. The number of neurons n and hidden layers m
have to be determined through hyperparameter tuning. The
independent variables are the same as shown in Table II and
the dependent variable is either speed, logspeed or pace.

Fig. 3: Neural Network architecture for speed, logspeed and
pace prediction.

D. Hyperparameter Tuning

Hyperparameters are parameters that have to be chosen by
the user. In Table IV, the hyperparameters along with their
values of the neural network models can be found. Hyper-
parameter tuning was done for the learning rate, mini-batch
size, number of hidden layers and number of neurons. These
are the most important hyperparameters that have generally
the largest influence on the prediction accuracy[8][9][10].
Hyperparameter tuning was done by using 5-fold cross-
validation. It was found that all models without dependent
variable pace and sMdAPELF had the best prediction accu-
racy for 5 hidden layers and 128 hidden neurons. For the
models with dependent variable pace the best number of
hidden layers is 4 and hidden neurons 32. For the models
with sMdAPELF, the best number of hidden layers is 7 and
hidden neurons 32.

TABLE IV: Overview neural network hyperparameters and
values. All hyperparameter values, except the number of
hidden layers and neurons, are the same for all 21 neural
network models.

Hyperparameter Value
Learning Rate 0.001
Mini-Batch Size 256
Early Stopping Epochs 10
Number of Hidden Layers 5, 4 or 7
Number of Neurons 128, 32 or 32
Optimizer Adam
Hidden Layer Activation Function ELU
Output Layer Activation Function Linear
Maximum Epochs 200

V. EXPERIMENTS

The experiments will be run with new data, which is
collected and preprocessed during this research, and the old
data, from den Heijer[3]. An overview of the new and old
data is shown in Table V. The main difference between the
two data sets is that the frequency of the new data is 2
minutes and for the old data 5 minutes. Since there are 21
different neural network models, as shown in Table III, for
new and old data, 2*21=42 experiments have to be run.

TABLE V: Summarized description of new and old data
that is used for training and predicting speeds and ultimately
improving travel time predictions.

The experiments that will be run consists of two steps:
Training & Evaluation and Prediction & Evaluation. These
steps are shown in Figure 4.

• Step 1: The model is first trained on either point-
or trip-based data. After this, the speed prediction
accuracy is calculated of the trained model. This is
done by comparing the predicted speeds of the trained
model, based on the input variables, with the actual
speeds in the test data set of the point-based data.
The speed prediction accuracy of each neural network
model will be calculated with the same error function
as the used loss function. The speed prediction accuracy
will be expressed in MSESpeed, MAPESpeed, MAESpeed,
sMAPESpeed and sMdAPESpeed.
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Fig. 4: The two last steps of the research, which contains the
experiments. This includes the training of the models, cal-
culation of the speed prediction accuracy, the prediction and
update of the speeds in the map and finally the calculation
of the travel time prediction accuracy.

• Step 2: After the model is trained and evaluated on
the speeds, the trained model can be used to predict
the speed of each road in the map, based on its road
properties (map data). In total, 3,304,031 speeds have to
be predicted for the Netherlands and 5,169,618 for the
Benelux. After all speeds of the roads in the map have
been predicted, the map from either the Netherlands
(new data) or the Benelux (old data) will be updated.
The map update is the process of replacing the speeds of
the roads in the map by the new predicted speeds. Sub-
sequently, the travel times of the travels in the test set
can be predicted. This is done by the routing software of
ORTEC based on an improved Dijkstra algorithm called
Highway Node Routing[11]. It calculates the shortest
path from the first to the last GPS point of the travel,
from which the expected travel time is calculated. These
predicted travel times are compared to the actual travel
times in the test set. The travel time prediction accuracy
will be expressed in sMdAPETT.

VI. RESULTS

A. Results Speed Prediction Accuracy

After the training process of each neural network speed
prediction model, the speed prediction accuracy is calculated.
The speed prediction accuracy for old and new data can be
found in Table VI and Table VII, respectively. It can be
concluded that the neural network models with dependent

variable speed and point-based data, have the highest speed
prediction accuracy with respect to the models with the same
loss function.

TABLE VI: Speed prediction accuracy for all 21 neural
network models for old data.

TABLE VII: Speed prediction accuracy for all 21 neural
network models for new data.

B. Compensation Systematic Bias

From the research of den Heijer[3], it was concluded that
the sMdAPETT of each model improves after the sMdPETT
was moved to 0%. If the sMdPETT is negative, then the travel
time predictions are underestimated (too fast), while a posi-
tive sMdPETT means that the travel times are overestimated
(too slow). This can be seen as a systematic bias where
more than halve of the travel time predictions are under-
or overestimated. Reasons for the systematic bias might be:

1) The shortest path, calculate by routing software from
ORTEC, is not the same path as driven by the driver.

2) The prediction models optimize the speed of points
and trips. This means that not the travel time, but
instantaneous moments and short parts of the full travel
are optimized.

The sMdPETT can be moved to 0% by multiplying the
travel times or speeds assigned to each road in the map, by a
factor x. This multiplication is shown in Equation 9, where Pt

is the predicted travel time or speed before compensation by
x. P

′
t is the predicted travel time or speed after compensation

by x. The equation of x is shown in Equation 10.

P
′
t = x · Pt (9)

x =
200%− sMdPE
200% + sMdPE

(10)
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C. Results Travel Time Prediction Accuracy

In Table VIII and Table IX, the speed prediction models
with the highest travel time prediction accuracy (lowest
sMdAPETT) are shown. These results are after compensation
of the systematic bias with factor x. For convenience, an
abbreviation is used for the models in the format ’type of
training data’-’prediction method’-’model output’-’loss func-
tion’. For example, Trips-NN-Logspeed-MSE means that it
is a neural network, trained on trip-based data with output
logspeed and loss function MSELF. The best speed prediction
model for old data is Points-RF-Logspeed and Points-NN-
Logspeed-MSE with sMdAPETT 13.8%. For new data this is
Points-RF-Speed with sMdAPETT 12.4%. This means that
the best speed prediction model differs between the data
sets and that the random forest models of den Heijer are
not outperformed by the neural network models with respect
to sMdAPETT. Furthermore, the neural networks trained on
trip-based data, with a higher frequency of 2 min., instead
of 5 min., does also not outperform the random forest speed
prediction model that is trained on point-based data.

TABLE VIII: Overview of den Heijer’s best models and
the best neural network models for old and new data in
sMdAPETT. The best model for old and new data is high-
lighted.

TABLE IX: Overview of den Heijer’s best models and the
best neural network models for old and new data. The best
model for old and new data is highlighted.

D. Travel Time versus Speed Prediction Accuracy

Den Heijer[3] concluded that the travel time prediction
accuracy in sMdAPETT is not related to the speed predic-
tion accuracy in sMdAPESpeed. Because different loss func-
tions were used, it could be researched whether MAESpeed,
MSESpeed or sMAPESpeed is related to sMdAPETT. It was
found that MSESpeed is mostly related to sMdAPETT. This
is shown in Figure 5 and Figure 6 for old and new data.
For new data, the model with the lowest MSESpeed has the
lowest sMdAPETT, while for old data the models with the
third and fourth lowest MSESpeed has the lowest sMdAPETT.
Therefore, minimizing MSELF does not directly mean for
all data sets, that the lowest sMdAPETT will be obtained.

However, the MSESpeed can be used as a rough indicator for
the sMdAPETT.

Fig. 5: Travel time prediction accuracy in sMdAPETT versus
speed prediction accuracy in MSESpeed for old data. Only the
models with loss function MSELF are included in the graph.

Fig. 6: Travel time prediction accuracy in sMdAPETT versus
speed prediction accuracy in MSESpeed for new data. Only
the models with loss function MSELF are included in the
graph.

E. Influence Temporal Factor

The temporal factor could not be included in the neural
network model as independent variable, since this would
require the digital map to assign more speeds to one road
for different moments in time. This is not possible with the
routing software of ORTEC. Therefore, the temporal factor
was researched by splitting the data set into rush (7:00-
9:00 & 16:30-18:30) and non-rush hour data sets. Subse-
quently, two different neural network models were trained.
The temporal factor was researched for the Points-RF-Speed,
Points-NN-Speed-MSE and Trips-NN-Speed-MSE model.
The improvement of the speed and travel time prediction ac-
curacy can be found in Figure 7, after moving the sMdPETT
to 0%. The sMdAPETT of the Points-NN-Speed-MSE and
Trips-NN-Speed-MSE model improves with 0.6% and 3.0%,
respectively. The sMdAPETT of the Points-RF-Speed model
does not improve, however the IQR sPETT improves from
28.0% to 27.3% for this model. This means that the errors
are less widely spread.
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Fig. 7: Improvement of MSESpeed, sMdAPETT and IQR
sPETT, when including rush and non-rush hours in the speed
predictions.

VII. CONCLUSION & RECOMMENDATIONS

A. Conclusion

The main research question of this paper was: Can a new
speed prediction model be developed for trucks that out-
performs the travel time prediction accuracy of the current
speed prediction models for a given road network? Based
on the results that were obtained in this research, a new
speed prediction model that outperforms the current speed
prediction models, with respect to sMdAPETT, could not be
developed. This is true for both the old and new data set. For
both old and new data, one of the two random forest models,
developed by den Heijer, had the best performance with
sMdAPETT 13.8% and 12.4%. However, it can be neither
concluded that the neural network does not provide better
travel time predictions for other data sets. Also, it cannot be
concluded that neural networks, which are trained on trip-
based data, will not outperform the random forest models
with a higher data frequency than 2 minutes.

B. Further Research

Several recommendations for further research can be made
based on this research. 1) From this research it is unclear
what the influence is of a higher data frequency of 2 min.
instead of 5 min. This is because the GPS data is obtained
from two different customers. It would be interesting to
research multiple data frequencies of the same data set to
investigate whether a higher frequency improves the travel
time prediction accuracy. 2) The neural network, trained on
trip-based data, did not outperform the random forest models.
Therefore, it is recommended to research data frequencies
higher than 2 minutes, which increases the quality of the trip-
based data and possibly the travel time prediction accuracy of
the neural network speed prediction model. 3) By including
more influential factors of the travel time, higher travel
time prediction accuracies might be obtained. This includes
weather factor and more temporal factors, but also road
engineering factors that were not included in the available
map data. 4) More research can be done, to develop a new
method that is able to predict the speeds in such a way, that it
is directly related to the travel time. In this way, the highest
travel time prediction accuracy can be obtained. Due to the
road network, which consists of many roads, and the lack
of research for this subject in literature, this is a challenging
problem.
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B
ROAD ENGINEERING FACTORS USED BY DEN

HEIJER

Table B.1: Overview of road engineering factors that are used by den Heijer for linear regression and random forest models.

Road Engineering Factor HERE map data
Road Category Functional Class, Speed Category
Speed Limit Speed Limit
Tunnel Tunnel
Bridge Bridge
Intersection Intersection Category
Traffic Signal Traffic Signal, Traffic signal/km,
Country The Netherlands, Belgium, Luxemburg
Region (Non) Urban
Speed Bumps Speed Bumps
Horizontal Curve Sharp Turns
Road Width Lane Category, WidthCm
Road Surface Roughness Paved
Road Length Road Length
Ramp Ramp
Priority road Priority Road
Frontage road Frontage
One way road One Direction
Only four wheel driven vehicles Only 4WD
Advisory Speed Advisory Speed
Transition of amount of lanes Transition
Narrowing of the road Narrowing
Controlled Access Road Controlled Access Road
Speed pattern Speed Pattern Max, Range, Average, Min, Mon830
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C
DESCRIPTION MACHINE LEARNING

METHODS

Machine Learning (ML) is a domain of artificial intelligence (AI) and can be used to learn from data by iden-
tifying patterns from large data sets to predict future outcomes and can be used for decision making. ML
algorithms can be categorized into: supervised learning, unsupervised learning and reinforcement learn-
ing.

• Supervised learning: Supervised learning can be applied to problems where the data is labeled. The
algorithm tries to find correlations between the input data and the outcome. The more data is used
for the prediction model the more the system can learn which increases the accuracy of the outcome.
Supervised learning algorithms can be divided into regression and classification problems. Regression
is used if the output is a continuous variable, while classification is used for a categorical output.

• Unsupervised learning: Unsupervised learning is used when only the input data is known without
a corresponding output. Unsupervised learning algorithms aim to find a underlying structure of the
input data. Problems can be divided into clustering and association rule learning problems, where
clustering tries to find groups to categorize the data and association rule learning tries to find relations
between the variables in the data.

• Reinforcement learning: Reinforcement learning learns from previous decisions and adjust the strat-
egy to improve the decision making. It differs from supervised learning in a way that the output is not
known and the output is found by sequentially decisions.

In Figure C.1, an overview of common supervised and unsupervised ML algorithms is shown. In this research
study, a supervised regression algorithm can only be used, since the output of the prediction model needs to
be continuous which is the speed. The most supervised regression methods that can be used for this research
problem are linear regression, support vector regression, gradient boosting method and neural network. All
methods, except the neural network, are described below in more detail. A detailed description of the neural
network can be found in section 3.3.
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Figure C.1: Overview of the most popular supervised and unsupervised ML algorithms[114].

C.1. LINEAR REGRESSION
Linear regression is a simple type of regression and assumes linear relationships between the independent
and dependent variables. In Equation C.1.1, a simple linear regression equation is shown where y is the
dependent variable, x1 the independent variable,β0 a constant andβ1 a coefficient. When more independent
variables affect the dependent variable y then a multi linear regression model can be used from which the
equation is shown in Equation C.1.2. This equation has like the simple linear equation a constant β0, but
additional coefficients β and independent variables x.

y =β0 +β1x1 (C.1.1)

y =β0 +β1x1 +β2x2 + ...+βn xn (C.1.2)

To find the best values for the coefficient β, a loss function is minimized which calculates the sum of squared
errors also known as the residual sum of squares (RSS) and is shown in Equation C.1.3. The RSS function is
minimized by using gradient descent which uses the partial derivatives of the RSS function with respect to
the coefficients β to update the coefficients β.

RSS =
n∑

i=1

(
yi −β0 −

p∑
j=1

β j xi j

)2

(C.1.3)

However, when there are too many outliers, then the model might not be generalized well for the unseen/test
data set resulting in an over-fitted model. This is illustrated in Figure C.2, where on the right image the model
is over-fitted by fitting the model too much to the outliers increasing the model complexity. In Figure C.3, it
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is illustrated that when the model complexity increases the error on the training set decreases, but on the test
set increases. A good balance have to found to minimize the error on the set. The two most common regu-
larization methods for linear regression are Ridge Regression and Lasso from which the formulas are shown
in Equation C.1.4 and Equation C.1.5. Both regularization methods use the RSS function plus an additional
term that penalizes the increase in coefficients β resulting in a decrease in complexity and over-fitting of the
model. λ represents the tuning parameter which determines how much the complexity of the model is penal-
ized. This is a hyperparameter where the optimal value can be found by applying a hyperparameter tuning
method.

Figure C.2: Example of an under-fitted, fitted and over-fitted model[115].

Figure C.3: Optimum model capacity where a further reduction of the training set error leads to over-fitting and an decrease in the
model accuracy [115].

Ridge Regression =
n∑

i=1

(
yi −β0 −

p∑
j=1

β j xi j

)2

+λ
p∑

j=1
β2

j (C.1.4)

Lasso =
n∑

i=1

(
yi −β0 −

p∑
j=1

β j xi j

)2

+λ
p∑

j=1
|β j | (C.1.5)

C.2. SUPPORT VECTOR REGRESSION
Support Vector Regression is a regression method and is an implementation of Support Vector Machines
(SVM) which is used for classification problems. SVR can be used for both linear and non-linear problems,
where a kernel function is used to map the low dimensional data in a high-dimensional feature space. An
example of an one dimensional linear SVR model is shown in Figure C.4. The middle line is the hyper plane
and predicts the target value. The two dashed lines are the boundary lines and are constructed with an ε-
deviation to create a margin. The SVR model tries to fit all observations within the two constructed boundary
lines. However, when outliers are present, then this is not possible. The best fit can found by minimizing
the error function shown in Equation C.2.1 taking into account the constraints shown below. Equation C.2.1
aims to minimize the generalization error, where the first term is used to minimize the complexity of the
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model. The second term represents the error of the points that are outside the boundary lines. Where C is
the regularization parameter, that determines how much the outliers are taken into account and ξi and ξ∗i
are the distances between observation i and the boundary lines.

minimize
1

2
||w||2 +C

m∑
i=1

(ξi +ξ∗i ) (C.2.1)

Constraints:

yi − (w ·xi)−b ≤ ε+ξi , i = 1, ...,m

(w ·xi)+b − yi ≤ ε+ξ∗i , i = 1, ...,m

ξi ,ξ∗i ≥ 0 , i = 1, ...,m

Figure C.4: Schematic of the one-dimensional support vector regression (SVR) model. only the points outside the dashed lines are used
for making predictions[116].

C.3. RANDOM FOREST
Random forest is an ensemble learning method that merges multiple decision tree models to obtain a more
stable and accurate model. The variance of one decision tree model can be quite high and depends consid-
erably on the training set. By combining more decision trees, which are trained on different training sets, the
average of all decision trees is taken and therefore the variance reduced. Despite one decision tree is easy to
interpret, many decision trees together forming a random forest is hard to understand. Random forest can be
used for both classification and regression where for regression the outcomes of all decision trees are averaged
to predict the output y . A visualization of the random forest method is shown in Figure C.5. The mathemati-
cal representation of the random forest method is shown in Equation C.3.1, where f̂ b(x) represents a decision
tree b, b = {1,2,...,B} and B the total number of decision trees. Random forest is known as a robust method for
over-fitting where the error converges to a limit with increased number of decision trees[117].

The training data set for each decision tree is based on the bagging method or also called bootstrap aggregat-
ing. Bootstrap aggregating makes sure that the entire training data set is divided into random data subsets
which improves the accuracy of the random forest model. Tunable features that can be changed to improve
the model are:

1. Number or variables at each cut

2. Minimum size of the terminal nodes

3. Number of terminal nodes

4. Number of decision trees
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The terminal nodes contain one of the outcomes of the decision tree and a cut splits the branch into 2 or
more other branches. The size of the terminal nodes depends on how much of the training data is in the last
node of the tree. If the size is too small, then the tree is over-fitted, but if the size is too large, then the tree is
under-fitted. The number of decision trees should be large enough until a maximum accuracy is obtained.
There is not a too large number of decision trees, since over-fitting of the model by the number of trees is not
possible[117]. However, over-fitting due to the number of terminal nodes and the size of terminal nodes is
possible.

y = f̂av g (x) = 1

B

B∑
b=1

f̂ b(x) (C.3.1)

Figure C.5: Architecture of the random forest model[118].

C.4. BOOSTING METHODS
Boosting is also like random forest an ensemble technique which combines different weak learners to get
a strong learner. The main difference between Boosting and random forest is that random forest creates
decision trees in parallel and independently based on different training data subsets, while Boosting creates
shallow decision trees sequentially and on the same training data set. A new decision tree that is added to the
prediction model learns from the mistakes made by the previous tree(s) and uses this information to build a
tree that increases the accuracy of the prediction model. The most popular Boosting methods are AdaBoost
and Gradient Boosting and can both be used for both regression and classification problems

ADABOOST

AdaBoost, also called adaptive boosting, uses multiple decision trees with a single split as weak learners. The
single split decision trees are built sequentially and learn by the incorrect classification of observations made
by the previous trees. In Figure C.6, a simple example of the process of AdaBoost is shown. First, all pluses
(+) and minuses (-) have an equal weight as shown in Box 1, after which the first decision tree is applied. As
can be seen, 3 pluses are in the wrong region and therefore get a higher weight as shown in Box 2. Then the
following decision tree takes the incorrect classification into account when making a new single split. This is
repeated until a satisfactory classification is achieved as shown in Box 4.
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Figure C.6: Simple example of the process of AdaBoost[119].

GRADIENT BOOSTING

Gradient Boosting adds different shallow decision trees sequentially together to improve the accuracy of the
model. Instead of changing the weights of each observation after a single split decision tree is applied like
AdaBoost, Gradient Boosting builds a new predictor based on the residual errors of the previous build models.
A visualization of this process is shown in Figure C.7, where each decision tree learns from the residual errors
and improves the prediction model accuracy.

Figure C.7: Process of building a Gradient Boosting prediction model, where new learned decision trees are added to the prediction
model[120].

The algorithm of Gradient Boosting is shown below[121]. Here f̂ (x) is the prediction model, f̂ b(x) one de-
cision tree, ri the residual error between yi and f̂ (xi ), λ the shrinkage parameter, B the total number of
decision trees and X the independent variables. First, the prediction model is set to zero and the residual
errors set equal to y . Then a decision tree is fit to the training data (X ,r ), after which the prediction model
is updated by adding a new decision tree. Then the residuals are updated by subtracting the output of the
added decision tree, multiplied by λ, from the residuals. Step 2 is repeated until all B trees are added to the
prediction model, after which the boosted model is built.

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.

2. For b = 1,2,...,B, repeat:

(a) Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training data (X , r ).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂ (x) ← f̂ (x)+λ f̂ b(x) (C.4.1)
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(c) Update the residuals,
ri ← ri −λ f̂ b(xi ) (C.4.2)

3. Output the boosted model,

f̂ (x) =
B∑

b=1
λ f̂ b(x) (C.4.3)

The tunable features of the GBA that can be changed to improve the model are the following:

1. Number of decision trees B . It is possible to over-fit the model if B is too large, but goes slowly.

2. Value of the shrinkage parameter λ which is the learning rate. λ and B are correlated meaning that λ
decreases when B increases and vice versa.

3. Number of cuts d , where too many cuts leads to over-fitting.

Most Gradient Boosting algorithms optimize there model by using the means squared error (MSE), which is
the average between the predictions and the actual values[122]. Gradient boosting has a high flexibility due
to the many parameters like number of iterations, tree depth, regularization parameters, etc. This requires
tuning of these parameters to get the best performance and is explained in subsection 5.6.2.

A recent and famous implementation of Gradient Boosting is XGBoost, which stands for eXtrem Gradient
Boosting[119]. This implementation is extremely popular at data science competition due to the outstanding
speed and performance. This is due to the parallelization of tree construction, distribution of computations,
out-of-core computation for data sets that do not fit in memory and optimization of data structures.





D
SENSITIVITY ANALYSIS METHOD

TRADE-OFF

To make sure that the outcomes of the method trade-offs in subsection 3.2.2 are robust, a sensitivity analysis
was done. In total, four different cases were analyzed where the relative score of the neural network compared
to the other models is disfavored by decreasing or increasing a weight or score by 1. The cases that were
analyzed are:

• Case 1: Decreasing the weight of the criterion ’prediction accuracy’ by 1, since the neural network
scores here the best.

• Case 2: Increasing the weight of the criterion ’hyperparameter tuning’ by 1, since the neural network
score here the worst along with Gradient Boosting.

• Case 3: Increasing the weight of the criterion ’interpretability’ by 1, since the neural network score here
the worst.

• Case 4: Decreasing the score of the neural network for the criterion ’prediction accuracy’ by 1, since the
neural network scores here the best.

In Table D.1 the original method trade-off is shown where in Table D.2, Table D.3, Table D.4 and Table D.5 the
method trade-offs with adjusted weight and scores are shown. From the adjusted trade-off tables, it can be
concluded that in all cases the neural network still has the highest score.

Table D.1: Trade-off between multiple machine learning methods based on different criteria.

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 5
Hyperparameter Tuning 2 5 4 2 2 1
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 40 46 31 47 53

Table D.2: Trade-off between multiple machine learning methods based on different criteria. The weight of the criterion prediction
accuracy is decreased by 1 (Case 1).

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 4 (-1) 1 3 4 4 5
Hyperparameter Tuning 2 5 4 2 2 2
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 39 43 29 43 50
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Table D.3: Trade-off between multiple machine learning methods based on different criteria. The weight of the criterion
hyperparameter tuning is increased by 1 (Case 2).

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 5
Hyperparameter Tuning 3 (+1) 5 4 2 2 1
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 45 50 33 49 54

Table D.4: Trade-off between multiple machine learning methods based on different criteria. The weight of the criterion interpretability
is increased by 1 (Case 3).

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 5
Hyperparameter Tuning 2 5 4 2 2 1
Interpretability 2 (+1) 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 45 49 33 50 54

Table D.5: Trade-off between multiple machine learning methods based on different criteria. The score of neural network for criterion
prediction accuracy is decreased by 1 (Case 4).

Criteria Weight LR RF SVR GB NN
Prediction Accuracy 5 1 3 4 4 4 (-1)
Hyperparameter Tuning 2 5 4 2 2 1
Interpretability 1 5 3 2 3 1
Large Dataset 5 4 4 1 4 5
Total 40 46 31 47 48
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HYPERPARAMETER TUNING METHODS

To find the best setting for the hyperparameters, a search algorithm can be used. The most common search
algorithms are grid search, random search and Bayesian optimization and are discussed below:

• Grid search: The simplest hyperparameter tuning method is grid search. This technique evaluates dif-
ferent combinations from a predefined list with values for each hyperparameter and returns the com-
bination with the best performance. However, the computational effort of grid search is considerably
high. For example, if there are 5 hyperparameters with each 5 different values to test, then there are 55

= 3125 combinations.

• Random search: Random search differs from grid search in a way that random combinations of hy-
perparameters are used instead of predefined hyperparameter combinations. The chance of finding
the optimal value of hyperparameters with random search is higher, since it is not limited to a grid. In
Figure E.1, a two-dimensional grid and random search, with an important and unimportant hyperpa-
rameter, for nine trials is shown. As can be seen, a change in value for the unimportant hyperparameter
does not have a significant impact. A change in the important hyperparameter has a significant impact
according to the green distribution. Because the grid search uses predefined values for the hyperpa-
rameters, the chance of finding an optimal value is less compared to random search. Generally, it also
uses more computational time.

Figure E.1: Grid and random search of nine trials for optimizing a function[123].

• Bayesian optimization: The grid and random search are performed isolated and therefore do not learn
from previous experiments to improve the next experiment. Unlike grid and random search, Bayesian
optimization chooses the next hyperparameter values based on the previous experiment. In this way,
less iterations are needed and an improved generalization performance on the test set is obtained. A
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Gaussian process can be used to obtain a probability function of the previous scores with respect to
the hyperparameter values. This function can be used to choose the next hyperparameter values that
will highly likely improve the model performance. In Figure E.2, an illustration of three iterations of the
Bayesian optimization procedure is shown. The green line shows the acquisition function. The green
line is high where the model predicts a high objective and a high prediction uncertainty. The prediction
uncertainty is illustrated by the purple area[124]. Both the acquisition function and the uncertainty are
used to choose the following point to evaluate. In Figure E.2, the left remains unsampled due to little
expected improvement compared to the right of the graph. For a more detailed explanation of the
Bayesian optimization method, Shahriari et al. [124] can be consulted.

Figure E.2: Illustration of the Bayesian optimization procedure over three iterations[124]



F
HYPERPARAMETER TUNING AND

SENSITIVITY ANALYSIS - NEW DATA

In Table F.1, the results of the sensitivity analysis, explained in subsection 5.6.3, are shown for all 21 neural
network models trained on new data. From the results, it can be concluded that the models with dependent
variable pace or sMdAPELF do not have the same best hyperparameter setting as the Points-NN-MSE-Speed
model. Therefore, an additional hyperparameter tuning process has to be done for these models. This will be
done by repeating the process as done for the Points-NN-MSE-Speed model for one model with dependent
variable pace (Points-NN-MSE-Speed model), and one model with sMdAPELF (Points-NN-Speed-sMdAPE).
After this, a sensitivity analysis will be done for the other models with dependent variable pace or sMdAPE

LF. The hyperparameters that will be tuned are the number of neurons and hidden layers. During the hy-
perparameter tuning process, the learning rate is fixed to 0.001 and the mini-batch size to 256. Whether a
mini-batch size of 256 results in the highest model accuracy will be researched during the sensitivity analy-
sis.

HYPERPARAMETER TUNING AND SENSITIVITY ANALYSIS FOR MODELS WITH DEPENDENT VARIABLE PACE

To determine the right number of neurons and hidden layers for the models with dependent variable pace,
the Trips-NN-Pace-MSE model is used. First, the number of neurons were determined, after which the best
number of hidden layers were found. Table F.2 and Figure F.1 show that the best model accuracy, in MSELF,
is obtained with 32 neurons. The results in Table F.3 and Figure F.2 show that the model accuracy in MSELF is
further improved with 4 hidden layers.

A sensitivity analysis is done for all models with dependent variable pace. The combination of hyperpa-
rameters are shown in Table F.4. The results in Table F.5 show that all models, except the one trained with
sMdAPELF, obtained the best model accuracy with the initial setting (32 neurons, 4 layers). Therefore the
initial setting of hyperparameters will be used to for these models.

HYPERPARAMETER TUNING FOR MODELS WITH SMDAPELF

To determine the right number of neurons and hidden layers for the models with loss function sMdAPELF,
the Points-NN-Speed-sMdAPE model is used. First the number of neurons were determined and used to find
the best number of hidden layers. Table F.6 and Figure F.3 show that the best model accuracy in sMdAPELF is
obtained with 32 neurons. The results in Table F.7 and Figure F.4 show that the model accuracy in MSELF is
further improved with 7 hidden layers.

A sensitivity analysis is done for all models with loss function sMdAPELF. The combination of hyperparame-
ters are shown in Table F.8. The results in Table F.9 show that all models obtain the best model accuracy with
the initial setting (32 neurons, 7 layers). Therefore the initial setting of hyperparameters shown in Table F.8
will be used for these models.
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Table F.1: Results of the sensitivity analysis for all 21 different neural network models for seven different combinations of
hyperparameters and trained on new data with 5-fold CV. The best result of the seven hyperparameter combinations for each model is

underlined.

Point-Based Data - Speed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 216.6 - 9.368 0.4163 0.1655
1 217.8 - 9.384 0.4313 0.1699
2 218.4 - 9.502 0.4522 0.1602
3 221.9 - 9,376 0.4355 0.1615
4 217.9 - 9.372 0.4283 0.1658
5 218.7 - 9.398 0.4317 0.1623
6 219.1 - 9.418 0.4411 0.1630

Point-Based Data - Logspeed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.1535 - 0.2176 0.2581 0.04529
1 0.1624 - 0.2196 0.2653 0.04621
2 0.1553 - 0.2185 0.2592 0.04321
3 0.1559 - 0.2211 0.2610 0.04541
4 0.1559 - 0.2199 0.2626 0.04419
5 0.1611 - 0.2201 0.2673 0.04501
6 0.1622 - 0.2206 0.2688 0.04489

Trip-Based Data - Speed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 156.8 - 7.047 0.2562 0.1307
1 158.3 - 7.152 0.2600 0.1354
2 162.8 - 7.092 0.2582 0.1283
3 161.7 - 7.182 0.2629 0.1376
4 158.8 - 7.120 0.2582 0.1292
5 159.2 - 7.108 0.2622 0.1364
6 158.2 - 7.121 0.2598 0.1382

Trip-Based Data - Logspeed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.04002 - 0.1069 0.1101 0.03828
1 0.04115 - 0.1177 0.1195 0.04012
2 0.04014 - 0.1101 0.1178 0.03577
3 0.04060 - 0.1089 0.1213 0.03921
4 0.04054 - 0.1112 0.1124 0.03627
5 0.04154 - 0.1181 0.1204 0.03821
6 0.04102 - 0.1150 0.1193 0.03701

Trip-Based Data - Pace
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.007383 24.93 0.02510 0.2759 0.1532
1 0.007429 25.22 0.02556 0.2854 0.1594
2 0.007062 22.45 0.02370 0.2578 0.1343
3 0.007287 25.26 0.02409 0.2713 0.1547
4 0.007134 23.38 0.02481 0.2633 0.1432
5 0.007312 24.12 0.02477 0.2695 0.1495
6 0.007166 24.85 0.02434 0.2663 0.1506
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Table F.2: Model accuracy in MSELF and 5-fold CV training time versus number of hidden neurons for the model Trips-NN-Speed-MSE.
The number of hidden neurons ranges between 1 and 128, lr = 0.001, number of hidden layers = 2 and mini-batch size = 256. The best

result is underlined.

Hidden Neurons Model Accuracy (MSELF) Time [seconds]
1 0.007705 1750
2 0.007582 1540
4 0.007410 1632
8 0.007158 1580
16 0.007120 2340
32 0.007063 3132
64 0.007105 3853
128 0.007090 5126

Figure F.1: Model accuracy in MSELF (purple circle) and 5-fold CV training time (blue square) versus number of hidden neurons for the
model Trips-NN-Speed-MSE. The number of hidden neurons ranges between 1 and 128, lr = 0.001, number of hidden layers = 2 and

mini-batch size = 256.

Table F.3: Model accuracy in MSELF and 5-fold CV training time versus number of hidden layers for the model Trips-MSE-Speed. The
number of hidden layers ranges between 1 to 8, lr = 0.001, number of neurons = 32 and mini-batch size = 256. The best result is

underlined.

Hidden Layers Model Accuracy (MSELF) Time [seconds]
1 0.007207 2510
2 0.007063 3132
3 0.007042 3343
4 0.007011 3512
5 0.007092 3020
6 0.007143 2980
8 0.007284 2612
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Figure F.2: Model accuracy in MSELF (purple circle) and 5-fold CV training time (blue square) versus number of hidden layers for the
model Trips-NN-Speed-MSE. The number of hidden layers ranges between 1 to 8, lr = 0.001, number of neurons = 32 and mini-batch

size = 256.

Table F.4: Seven different hyperparameter combinations to research whether the initial setting for models with dependent variable pace
produces the best model accuracy.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 32 4 256
1 0.001 64 4 256
2 0.001 16 4 256
3 0.001 32 5 256
4 0.001 32 3 256
5 0.001 32 4 128
6 0.001 32 4 512

Table F.5: Results of sensitivity analysis of 5 different neural network models with dependent variable pace. The results are for seven
different combinations based on the number of hidden neurons, number of hidden layers and mini-batch size with 5-fold CV.

Trip-Based Data - Pace
Combination MSE MAPE MAE sMAPE sMdAPE
Initial Setting 0.006922 21.77 0.02346 0.2403 0.1338
1 0.007126 22.35 0.02412 0.2554 0.1295
2 0.006996 22.20 0.02384 0.2476 0.1336
3 0.007159 21.85 0.02415 0.2493 0.1268
4 0.007288 21.97 0.02447 0.2499 0.1319
5 0.007125 22.31 0.02415 0.2512 0.1380
6 0.007168 22.94 0.02453 0.2572 0.1349
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Table F.6: Model accuracy in MSELF and 5-fold CV training time versus number of hidden neurons for the model
Points-NN-Speed-sMdAPE. The number of hidden neurons ranges between 1 and 128, lr = 0.001, number of hidden layers = 2 and

mini-batch size = 256. The best result is underlined.

Hidden Neurons Model Accuracy (MSELF) Time [seconds]
1 0.1942 2483
2 0.1762 2822
4 0.1692 3162
8 0.1672 2905
16 0.1598 3282
32 0.1557 3460
64 0.1582 3622
128 0.1572 3919

Figure F.3: Model accuracy in MSELF (purple circle) and 5-fold CV training time (blue square) versus number of hidden neurons for the
model Points-NN-Speed-sMdAPE. The number of hidden neurons ranges between 1 and 128, lr = 0.001, number of hidden layers = 2

and mini-batch size = 256.

Table F.7: Model accuracy in MSELF and 5-fold CV training time versus number of hidden layers for the model
Points-NN-Speed-sMdAPE. Number of hidden layers ranges between 1 to 10, lr = 0.001, number of neurons = 32 and mini-batch size =

256. The best result is underlined.

Hidden Layers Model Accuracy (MSELF) Time [seconds]
1 0.1581 2510
2 0.1557 3132
3 0.1510 3343
4 0.1526 3512
5 0.1512 3020
6 0.1489 2980
7 0.1472 2612
8 0.1491 3741
10 0.1539 3817
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Figure F.4: Model accuracy in MSELF (purple circle) and 5-fold CV training time (blue square) versus number of hidden layers for the
model Points-NN-Speed-sMdAPE. Number of hidden layers ranges between 1 to 10, lr = 0.001, number of neurons = 32 and mini-batch

size = 256.

Table F.8: Seven different hyperparameter combinations to research, whether the initial setting for models with loss function sMdAPELF
produces the best model accuracy.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 32 7 256
1 0.001 64 7 256
2 0.001 16 7 256
3 0.001 32 8 256
4 0.001 32 6 256
5 0.001 32 7 128
6 0.001 32 7 512

Table F.9: Result sensitivity analysis for 5 different neural network models with sMdAPELF using 5-fold CV.

Point-Based Data Trip-Based Data
Combination Speed LogSpeed Speed LogSpeed Pace
Initial Setting 0.1557 0.0422 0.1297 0.03424 0.1253
1 0.1701 0.0461 0.1316 0.03532 0.1280
2 0.1613 0.0432 0.1352 0.03601 0.1271
3 0.1572 0.0451 0.1307 0.03592 0.1293
4 0.1608 0.0437 0.1299 0.03499 0.1301
5 0.1643 0.0471 0.1327 0.03588 0.1283
6 0.1686 0.0498 0.1281 0.03517 0.1334
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SENSITIVITY ANALYSIS - OLD DATA

In this appendix, the sensitivity analysis for the models of the old data set will be discussed. For the new
data set, it was found that the models with either dependent variable pace or sMdAPELF, require a different
set of hyperparameters than the other neural network models (Appendix F). Because the old data has the
same format and range of values for the independent and dependent variables, it is expected that the best
hyperparameters of the new data, is the same for the old data. Therefore, the best hyperparameters for the
models of the new data will be used as initial setting for the sensitivity analysis. The initial settings and
combinations that will be used for the sensitivity analysis of the old data are shown in Table G.1, Table G.2
and Table G.3.

The results of the sensitivity analysis are shown in Table G.4 and show that the initial setting of hyperparam-
eters is the best for all models. Therefore, the initial settings that were found for the models of the new data
will also be used for the models of the old data.

Table G.1: Seven different hyperparameter combinations to research whether the initial setting for all models, without dependent
variable pace and sMdAPELF, is the best for the old data. The initial setting is obtained from the models of the new data set.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 128 5 256
1 0.001 256 5 256
2 0.001 64 5 256
3 0.001 128 6 256
4 0.001 128 4 256
5 0.001 128 5 128
6 0.001 128 5 512

Table G.2: Seven different hyperparameter combinations to research whether the initial setting for all models with dependent variable
pace, is the best for the old data. The initial setting is obtained from the models of the new data set.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 32 4 256
1 0.001 64 4 256
2 0.001 16 4 256
3 0.001 32 5 256
4 0.001 32 3 256
5 0.001 32 4 128
6 0.001 32 4 512
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Table G.3: Seven different hyperparameter combinations to research whether the initial setting for all models with sMdAPELF, is the
best for the old data. The initial setting is obtained from the models of the new data set.

Combination Learning Rate Hidden Neurons Hidden Layers Mini-Batch Size
Initial Setting 0.001 32 7 256
1 0.001 64 7 256
2 0.001 16 7 256
3 0.001 32 8 256
4 0.001 32 6 256
5 0.001 32 7 128
6 0.001 32 7 512

Table G.4: Results of sensitivity analysis for all 21 different neural network models trained on old data with 5-fold cross-validation. The
best result of the seven hyperparameter combinations for each model is underlined.

Point-Based Data - Speed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 252.6 - 9.785 0.3312 0.1278
1 253.5 - 9.802 0.3424 0.1299
2 252.9 - 9.811 0.3381 0.1388
3 254.1 - 9.828 0.3359 0.1302
4 253.9 - 9.805 0.3432 0.1396
5 253.1 - 9.837 0.3372 0.1322
6 254.9 - 9.814 0.3402 0.1425

Point-Based Data - Logspeed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.1336 - 0.2041 0.1906 0.03702
1 0.1452 - 0.2156 0.2014 0.03723
2 0.1395 - 0.2106 0.1962 0.03832
3 0.1446 - 0.2154 0.1997 0.03928
4 0.1388 - 0.2088 0.2029 0.03841
5 0.1475 - 0.2123 0.2019 0.03902
6 0.1361 - 0.2077 0.2025 0.03825

Trip-Based Data - Speed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 108.8 - 6.867 0.1359 0.08622
1 109.9 - 6.882 0.1388 0.08691
2 110.6 - 6.962 0.1489 0.08742
3 111.2 - 6.901 0.1501 0.08750
4 110.9 - 6.976 0.1490 0.08838
5 110.5 - 6.927 0.1523 0.08775
6 111.7 - 6.982 0.1484 0.08828

Trip-Based Data - Logspeed
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.02371 - 0.07637 0.05655 0.1032
1 0.02394 - 0.07701 0.05801 0.1173
2 0.02491 - 0.07783 0.05745 0.1095
3 0.02404 - 0.07691 0.05772 0.1126
4 0.02459 - 0.07699 0.05791 0.1192
5 0.02515 - 0.07791 0.05871 0.1125
6 0.02439 - 0.07799 0.05841 0.1172

Trip-Based Data - Pace
Combination MSELF MAPELF MAELF sMAPELF sMdAPELF

Initial Setting 0.004249 14.86 0.01352 0.01716 0.7997
1 0.004382 15.14 0.01386 0.01792 0.8032
2 0.004281 16.43 0.01512 0.01850 0.8152
3 0.004414 15.95 0.01429 0.01812 0.8201
4 0.004324 16.01 0.01424 0.01777 0.8090
5 0.004385 15.26 0.01472 0.01884 0.8217
6 0.004302 16.77 0.01418 0.01759 0.8089
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In Table H.1, the travel time prediction accuracies before compensation of the systematic bias sMdPETT are
shown. The best value in each column, and the values that have a maximum absolute difference of 1% with
this best value, are highlighted in purple. The results are expressed in sMdAPETT, sMdPETT and IQR sPETT,
where sMdAPETT is the main indicator of the travel time prediction accuracy. The best travel time prediction
model for the new data is Points-RF-Speed with sMdAPETT 12.4%. For the old data, the Trips-NN-Logspeed-
MSE model performs the best with sMdAPETT 14.5%.

Table H.1: Travel time prediction accuracy of all trained neural network models and two benchmarks. The models are evaluated on the
travels in the test set where a lower sMdAPETT means a better accuracy.

New Data Old Data
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark Points-RF-Speed 12.4 -1.0 28.0 18.7 -17.7 30.4
Benchmark Points-RF-Logspeed 28.9 26.0 28.1 14.8 4.2 28.5
Points-NN-Speed-MSE 13.0 -0.1 28.6 18.7 -18.3 30.0
Points-NN-Speed-MAE 16.2 -13.7 31.8 18.6 -16.5 29.9
Points-NN-Speed-sMAPE 16.7 -14.4 32.7 30.3 -30.2 32.3
Points-NN-Speed-sMdAPE 23.5 22.7 38.4 28.9 7.5 37.7
Points-NN-Logspeed-MSE 28.1 25.1 27.3 14.6 3.1 28.8
Points-NN-Logspeed-MAE 17.6 7.5 32.0 18.9 -17.5 30.1
Points-NN-Logspeed-sMAPE 16.3 -13.5 32.7 27.2 -26.7 31.6
Points-NN-Logspeed-sMdAPE 23.0 -22.2 39.4 37.7 -37.7 37.0
Trips-NN-Speed-MSE 20.4 8.0 37.2 15.7 -12.3 33.0
Trips-NN-Speed-MAE 34.0 29.6 41.6 17.0 -14.4 31.6
Trips-NN-Speed-sMAPE 22.9 16.7 33.4 18.1 -16.5 31.7
Trips-NN-Speed-sMdAPE 17.3 -7.5 35.2 28.1 -27.4 36.4
Trips-NN-Logspeed-MSE 44.0 41.6 37.2 14.5 -3.0 32.0
Trips-NN-Logspeed-MAE 37.2 33.9 38.8 17.1 -15.0 32.3
Trips-NN-Logspeed-sMAPE 19.3 13.1 28.8 17.0 -15.6 31.4
Trips-NN-Logspeed-sMdAPE 13.6 -9.3 29.0 27.5 -27.2 34.3
Trips-NN-Pace-MSE 26.7 24.2 36.3 19.9 9.5 34.6
Trips-NN-Pace-MAPE 23.3 -22.6 34.4 31.0 -30.9 33.2
Trips-NN-Pace-MAE 30.1 26.5 32.4 16.7 -14.7 31.4
Trips-NN-Pace-sMAPE 30.8 27.2 35.6 19.4 -18.6 32.1
Trips-NN-Pace-sMdAPE 13.9 -9.6 29.2 29.6 -29.4 34.2

In the research of den Heijer[1], it was found that moving the sMdPETT to 0.0%, the sMdAPETT of the majority
of the models are improved. This can also be seen as compensating for the systematic bias and is explained in
subsection 6.3.1. In Table H.2, the travel time prediction accuracy after compensation of the systematic bias
sMdPETT is shown. The best value in each column, and the values that have a maximum absolute difference
of 1% with this best value, are highlighted in purple. The best travel time prediction model for the new data
is Points-RF-Speed with sMdAPETT 12.6%. For the old data, the Points-RF-Logspeed is the best model with
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sMdAPETT 13.8%. The Points-NN-Logspeed-MSE also has sMdAPETT 13.8% for the old data, however the
errors are more spread than the Points-RF-Logspeed model with IQR sPETT 28.8%, compared to 28.5%.

Table H.2: Travel time prediction accuracy of all compensated neural network models and two benchmarks where the sMdPE is equal
to 0. The models are evaluated on the travels in the test set where a lower sMdAPETT means a better accuracy.

New Data Old Data
Model sMdAPETT (%) sMdPETT (%) IQR sPETT (%) sMdAPETT (%) sMdPETT (%) IQR sPETT (%)
Benchmark Points-RF-Speed 12.6 0.0 28.0 14.1 0.0 30.8
Benchmark Points-RF-Logspeed 14.3 0.0 28.5 13.8 0.0 28.5
Points-NN-Speed-MSE 13.0 0.0 28.6 14.1 0.0 30.4
Points-NN-Speed-MAE 14.5 0.0 29.1 14.2 0.0 30.2
Points-NN-Speed-sMAPE 14.7 0.0 33.0 15.3 0.0 33.2
Points-NN-Speed-sMdAPE 17.6 0.0 39.1 18.7 0.0 37.8
Points-NN-Logspeed-MSE 13.9 0.0 27.8 13.8 0.0 28.8
Points-NN-Logspeed-MAE 16.0 0.0 32.0 14.3 0.0 30.4
Points-NN-Logspeed-sMAPE 14.5 0.0 33.0 14.9 0.0 32.3
Points-NN-Logspeed-sMdAPE 18.2 0.0 40.1 18.0 0.0 38.6
Trips-NN-Speed-MSE 18.3 0.0 37.2 15.5 0.0 33.2
Trips-NN-Speed-MAE 21.2 0.0 42.5 15.2 0.0 31.8
Trips-NN-Speed-sMAPE 16.8 0.0 33.6 15.0 0.0 32.0
Trips-NN-Speed-sMdAPE 17.0 0.0 35.3 17.3 0.0 37.3
Trips-NN-Logspeed-MSE 20.1 0.0 36.4 15.2 0.0 32.0
Trips-NN-Logspeed-MAE 19.8 0.0 39.8 15.4 0.0 32.5
Trips-NN-Logspeed-sMAPE 14.3 0.0 28.9 14.8 0.0 31.7
Trips-NN-Logspeed-sMdAPE 13.2 0.0 29.2 16.3 0.0 35.1
Trips-NN-Pace-MSE 17.5 0.0 35.6 17.2 0.0 34.7
Trips-NN-Pace-MAPE 15.9 0.0 35.0 16.1 0.0 34.2
Trips-NN-Pace-MAE 16.4 0.0 32.9 14.7 0.0 31.6
Trips-NN-Pace-sMAPE 18.1 0.0 36.2 14.8 0.0 32.5
Trips-NN-Pace-sMdAPE 12.9 0.0 29.0 16.3 0.0 35.1

In Figure H.1, Figure H.2 and Figure H.3, additional results of the speed versus travel time prediction accuracy
can be found. The relationships between MAESpeed and sMAPESpeed with respect to sMdAPETT seem to be
quite random. A lower MAESpeed or sMAPESpeed does not necessarily result in a lower sMdAPETT. Therefore,
these speed prediction accuracies should not be used as indicator for the travel time prediction accuracy. The
relationships between sMdAPESpeed and sMdAPETT in Figure H.3 confirm that these are weakly correlated, as
concluded by den Heijer[1]. The results are contradictory, since the sMdAPETT generally improves with a
worse sMdAPESpeed.
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Figure H.1: Travel time prediction accuracy in sMdAPETT versus speed predictions in MAESpeed.

Figure H.2: Travel time prediction accuracy in sMdAPETT versus speed predictions in sMAPESpeed.
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Figure H.3: Travel time prediction accuracy in sMdAPETT versus speed predictions in sMdAPESpeed.
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