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1
Abstract

The human gut microbiome has emerged as a key player in health and disease, yet machine learning
on microbiome data remains challenging due to its high dimensionality, sparsity, compositionality, and
inter-study heterogeneity. Although classical and deep learning methods have demonstrated promise,
they often require extensive labeled data, which is rarely available in microbiome research. In this
thesis, we investigate whether meta-learning can address these challenges by enabling better gen-
eralization from small, heterogeneous microbiome datasets. Specifically, we benchmark Prototypical
networks (Protonets), a metric-based, few-shot meta-learning algorithm, against strong classical base-
lines (Random Forests, XGBoost, and Multi-layer Perceptrons) for disease classification tasks across
a selected number of gut microbiome studies. We introduce a unified benchmarking pipeline that stan-
dardizes preprocessing, dimensionality reduction, task construction, and evaluation across studies. A
leave-one-study-out cross-validation strategy simulates realistic deployment scenarios where only a
few labeled samples are available from a new cohort. Our experiments explore the impact of support
set size and dimensionality reduction via principal component analysis. Results show that although Pro-
tonets offer a conceptually appealing approach for few-shot learning, they consistently underperform
compared to Random Forests in classification accuracy. Statistical analyses confirm the significance of
this performance gap, and embedding visualizations reveal limited class separation in the learned fea-
ture space. These findings suggest that, under the evaluated conditions, classical models like Random
Forests remain the more robust choice for microbiome classification in low-data regimes. By offering
a rigorous and reproducible evaluation, this work lays the foundation for further exploration of meta-
learning in microbiome research and highlights both the potential and current limitations of learning to
learn in this complex domain.
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2
Introduction

Over the past two decades, research has increasingly recognized the importance of the microbiome
(communities of microorganisms in an environment) for human health. In particular, the gut micro-
biome has been associated with a wide range of conditions, including neurological disorders and brain
function[11, 66, 10], anxiety and depression[20], behavioral traits[9], metabolic conditions such as obe-
sity[74, 73], cancer[64], and many other relations[28]. This rapidly growing body of literature under-
scores the relevance of the gut microbiome in both basic research and clinical applications.

2.1. Data Challenges and Current ML Approaches
With the rapid growth of publicly available microbiome data, there is an unprecedented opportunity
to deepen our understanding of these microbial communities and unlock their potential. While clas-
sical machine learning methods have great potential for analyzing microbiome data, its application is
challenging because:

• small sample sizes coupled with high dimensionality often lead to overfitting;
• the heterogeneity of data makes it challenging to combine datasets to obtain larger datasets;
• because labeled datasets are scarce, not all ML methods are effective;
• the data are compositional, meaning only relative, not absolute, abundances matter[23]. This
violates common statistical assumptions like independence between features and normality[3].

An important step in mitigating these issues is preprocessing. But the lack of preprocessing standards
in the field[87], with even absence of reliable and unbiased techniques for some data qualities, make
this challenging. This can be for example due to biases introduced by normalization and transfor-
mation steps[86], and batch effects arising from differences in sequencing protocols and laboratory
conditions[87, 46].

2.2. From Transfer Learning to Meta-Learning
Deep learning (DL) has surpassed classical machine learning (ML) methods in many fields, achiev-
ing strong results in vision, language, and speech, which show the potential of dealing with some of
the complex problems with regards to microbiome data[88]. However, learning from a small dataset
becomes a bigger challenge when DL models are used, due to struggles to generalize[1]. Therefore,
a promising solution is to learn a more general model that utilizes extensive public datasets, through
which the model borrows statistical strength across studies due to exposure to more data.

This appears feasible because, despite substantial variation in microbiome composition across studies
(often due to differences in environments), certain microorganisms tend to appear together in consistent
patterns across very different environments[26]. For instance, studies have found that these patterns
hold across countries and laboratories[4], that a small group of microbes are responsible for many of
the shared connections across environments[43], and that species found in multiple environments often

2
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play similar roles and have similar characteristics[57]. Many more examples of such cross-environment
patterns can be found in the recent literature[53, 65].

Transfer learning seems promising for learning this cross-study patterns[30] and multiple studies in the
field have looked into this[8, 55, 7], where transfer learning is used to pre-train a model on a plethora
of data from different context, before applying the model to a new context with fine-tuning.

But recent evidence suggests that few-shot meta-learning, algorithms that learn to adapt quickly to
new tasks with minimal additional data, can outperform standard fine-tuning in transfer learning when
the target context offers only tens of examples[42]. Due to the limited amount of data in individual
microbiome studies, looking at few-shot learning methods makes sense. This is the main reason for
looking at meta-learning models in this study.

Meta-learning goes beyond transfer learning and the related multitask learning, enabling better perfor-
mance when data is scarce or the environment is changing[75, 1]. Yet, systematic investigations of
meta-learning for microbiome classification remain scarce[29].

To probe that open question we adopt Prototypical networks[67], a lightweight, metric-based meta-
learner that is particularly well-matched to microbiome data. Protonets require only a handful of labelled
examples to form class ”prototypes”, train with fast first-order updates, and yield embeddings whose
centroids can be inspected as representative community profiles. This combination of data efficiency,
computational modesty, and interpretability makes them an ideal first test-bed for the high-dimensional,
small-sample microbiome regime.

2.3. Research Objectives
The goal of this thesis is to benchmark the performance of a few-shot meta-learning method (namely
Prototypical networks) against classical machine learning approaches for disease classification using
microbiome data. The focus is on realistic cross-study scenarios where only a few labelled samples are
available from a new cohort. This setting reflects practical challenges in microbiome research, such as
high dimensionality, data scarcity, and strong inter-study variability.

Concretely, the main research question is:

Does meta-learning with Prototypical networks outperform classical machine learning mod-
els in few-shot microbiome classification?

Related questions in answering the above question are:

• How do conventional baseline models perform in general?
• How does the amount of labeled data (number of shots) affect classification performance on
microbiome data with the models studies?

• How does dimensionality reduction using principal component analysis affect classification per-
formance on microbiome data with the models studied?

2.4. Scope and Contributions
To date, systematic meta-learning evaluations for microbiome classification remain scarce. We evalu-
ate a representative algorithm, Prototypical networks, on taxonomic abundance tables drawn from 36
gut-microbiome studies. Contributions include:

1. A unified experimental pipeline that standardizes preprocessing, task generation and evalua-
tion across heterogeneous studies.

2. A comparative benchmark of meta-learningmethods against strong tabular baselines (e.g. Ran-
dom Forests, XGBoost, Multi-layer perceptrons) under different shot regimes.

3. An empirical analysis of the inner workings of Prototypical networks on the dataset used and
data qualities that may affect its performance.

By moving beyond conventional supervised learning approaches, we aim to clarify whether meta-
learning delivers a practical edge for microbiome disease classification.
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2.5. Thesis Structure
We start in Chapter 3 by introducing the reader to important microbiome and machine learning top-
ics that are important for this study. In Chapter 4, we give a review of related existing literature on
using machine learning in microbiome analysis. Chapter 5 dives into specifics about the data used
for experimentation, the methodology for processing the data, and the setup for models and training.
Chapter 6 presents the experimental results and their analysis, and discusses the findings and some
key takeaways. In the last chapter, we end with the conclusion and discuss limitations and possible
future works.



3
Background on Microbiome Data

Microorganisms exist in complex communities (microbiomes) that inhabit virtually every environment,
from soil and oceans to the human body. These microbial communities play fundamental roles in
ecosystem function and host health. For example, the human microbiome, trillions of microbes living
in and on our bodies, contributes to our immune system development, digestion, and metabolism[2].
Although most of these microbes are benign or beneficial, there are some that can cause diseases [2].
Mounting evidence has linked imbalances or shifts in the microbiome to a wide range of health condi-
tions, both for humans and other living organisms[32]. In addition, they influence any other ecosystem
they occur in. These findings underscore the ecological and biomedical importance of microbiomes
and motivate intense research efforts in microbiome science.

3.1. High-Dimensional Taxonomic Data from High-Throughput Se-
quencing Techniques

Microbiome data are typically generated by high-throughput DNA sequencing of environmental or clin-
ical samples to profile the community’s composition. The two predominant approaches are amplicon
sequencing (marker-gene surveys) and shotgun metagenomic sequencing[21, 29].

• 16S rRNA Amplicon Sequencing: This widely used method (also called DNA metabarcoding)
targets a specific genetic marker present in all bacteria and archaea (the 16S rRNA gene[21]).
The result is a set of 16S gene reads that can then be clustered into Operational Taxonomic Units
(OTUs) based on sequence similarity or resolved into exact Amplicon Sequence Variants (ASVs)
with denoising algorithms to keep rare members of the community[29]. Each OTU/ASV roughly
corresponds to a bacterial taxon. This produces a table of taxonomic abundances: counts (or
frequencies) of each OTU/ASV per sample. Amplicon sequencing is cost-effective and requires
relatively few reads per sample (tens of thousands) to capture community composition[59, 37],
making large cohort studies more feasible. However, it has limitations: the 16S marker provides
limited taxonomic resolution (closely related species may be indistinguishable), it cannot detect
organisms lacking the target marker such as viruses or many fungi (although the ITS region
may help here [21]) and it yields no direct functional gene information[59, 37]. Moreover, PCR
amplification can introduce biases and errors, which must be carefully managed[37].

• Shotgun Metagenomic Sequencing: In shotgun sequencing, total DNA from the sample is
randomly fragmented and sequenced without targeting a specific gene. This produces a compre-
hensive catalogue of genes present. Shotgun metagenomics yields higher resolution profiles: it
can detect microbes at strain level and recover functional genes in addition to taxonomic compo-
sition[36]. It is relatively unbiased by primer choice since it does not rely on a single marker[37].
A sufficiently deep shotgun sequence can quantify organisms across the tree of life (bacteria,
archaea, viruses, eukaryotes) and characterize the functional capacity of the community. The
trade-offs are cost and complexity: shotgun data typically require a much larger number of reads
per sample (on the order of millions) to adequately capture low-abundance community members.

5
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Another practical challenge is that in host-associated samples (e.g. blood, tissue swabs), host
DNA often dominates the read pool[37]. Additionally, shotgun sequencing cannot distinguish live
versus dead microbes or activity levels, it shows what genes are present, but not which are ex-
pressed[36]. Despite these challenges, shotgun metagenomics provides a richer dataset that
includes both taxonomic and functional profiles, and recent work has shown that even shallow
shotgun sequencing can outperform 16S surveys in resolution and reproducibility at comparable
cost[37].

Other omics layers, transcriptomics, proteomics, metabolomics, and phenomics, offer complementary
perspectives on microbiome function; however, they fall outside the scope of this thesis.

After sequencing, data from either approach undergoes bioinformatics processing to produce an abun-
dance table, a matrix of microbial features (OTUs, species, or genes) by samples. The end result is a
high-dimensional feature vector for each sample, with each feature representing a microbial taxon (or
gene) and its abundance in that sample.

Having turned raw sequences into high-dimensional abundance matrices, we now ask why those ma-
trices so often confound standard statistics and machine-learning models.

3.2. Challenges in Analyzing Microbiome Data
Microbiome data derived from sequencing have several distinctive characteristics that pose challenges
for analysis:

High-Dimensional and Small Sample Sizes A single microbiome sample can contain hundreds to
thousands of distinct taxa, yielding feature tables with very high dimensionality. The number of features
(e.g. OTUs or species) often far exceeds the number of samples[3]. For instance in MGnify[60], one
of the largest microbiome databases, only 65 out of more than 5,000 studies have a sample size larger
than 1,0001; with the feature counts routinely exceeding the sample size. One reason for this can be
the cost and complexity of sample collection and sequencing. Only a minority of studies include more
than a few hundred samples, and in less-studied environments or rare disease contexts, sample sizes
can be lower.

The combination of small sample sizes and high-dimensional data, is problematic as models can inad-
vertently learn noise or sample-specific patterns rather than true generalizable signals[1]. These mean
that microbiome datasets lie in a vast feature space which encouragesmachine learningmodels to over-
fit and limits their statistical power to detect patterns. Due to these, special care (e.g. dimensionality
reduction or feature selection) is often required to deal with these high-dimensional; data[3].

Sparse Data In addition to high-dimensionality and small sample sizes, most entries in the data matrix
(often > 90%) are zero, since many taxa are absent in a given sample (each sample contains only a
subset of the possible communities). This sparsity further aggravates overfitting

Class Imbalance Microbiome datasets frequently suffer from imbalanced classes – for instance, a
disease cohort might have far fewer positive cases than negatives, or certain environments (e.g. gut
microbiomes) are over-represented in public data while others are under-represented. Imbalanced
data can bias classifiers toward the majority class and make it hard to learn minority class signals. If
not optimized for the correct metric, the model may even not learn biological signals at all. Altogether,
these make it difficult to train robust predictive models and to generalize findings broadly.

These also mean that performance metrics should not be taken as absolute values just as they are
and should be compared to some understandable and simple baseline, e.g. a model with random
outputs. For example, in imbalanced datasets where the positive class is the majority class, a classifier
that always predicts the positive label can already attain an apparently respectable F1 score. In these
cases, it is useful to include a majority-class dummy (=positive-class dummy) baseline against which
all subsequent models are compared.

1Last checked on 20th of June 2024.
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Unfortunately, despite the importance of such baselines, many microbiome classification studies omit
them entirely, reporting performance metrics without demonstrating that their models outperform trivial
baselines. Two recent meta-analyses illustrate the problem. Duvallet et al.[16] and Lee et al.[39] both
benchmark Random Forests yet omit a trivial dummy baseline, leaving open whether their models
captured biology or merely class ratios. This problem is bigger in the former study as the data is more
imbalanced.

These highly-cited, high-quality papers (and many other [14, 81, 84]) illustrate a common issue in the
field: benchmarking sophisticated models (e.g. RF, LASSO) without first confirming they beat a dummy
baseline, even when class imbalance is clearly present.

Compositionality Microbiome data are compositional in nature[23, 3], meaning that only the relative
abundances of features aremeaningful rather than absolute counts. Sequencing assays typically report
each sample’s microbial profile as proportions that sum to a constant (100% or an arbitrary total read
count) [23]. This data live on a simplex (a constrained sum space), not in unconstrained Euclidean
space, which complicates downstream modeling that assumes data in Euclidean space.

This induces inherent dependencies among features (an increase in one taxon’s relative abundance
necessarily means a decrease in another, even if both absolute abundances could have increased).
Compositional data violate assumptions of standard statistical techniques that treat features as inde-
pendent absolute quantities[23]. Ignoring compositionality can lead to misleading results, such as spu-
rious correlations driven by the closure effect (the constant-sum constraint). Best practices therefore
recommend transforming or analyzing data using compositional data analysis methods (e.g. log-ratio
transformations) that respect the geometry of proportions [23, 86].

Biological and Technical Heterogeneity Across Studies Microbiome composition varies widely
with host species, body site, lifestyle, geography, and even among nominally healthy individuals, two
human-gut profiles may share only a minority of taxa. Such ecological diversity (illustrated by the
low Jaccard similarities between gut studies in Figure 3.1) can overshadow disease signals and is
further amplified by sample-level differences in sequencing depth [27], assembly and gene-prediction
workflows [61], and natural variation between samples [41, 36]. On top of these biological factors,
laboratory protocols, sequencing platforms, and bioinformatic pipelines introduce systematic artifacts
(batch effects) that often explain more variance than the phenotype of interest [62]. When datasets from
multiple batches are combined, each batch behaves like a separate domain, blocking cross-study gen-
eralization unless specialized correction methods are applied [62, 40]. Nevertheless, handling these
effects remains a major challenge as algorithms are mainly developed for RNA-seq analysis[25], often
requiring careful study design (e.g. case-control studies within a single cohort) or advanced statistical
correction.

Because each preprocessing decision can amplify or mask the challenges just described, the next
section audits some of commonly used methods.

3.3. Current Workflows Lack a Standardized Pipeline
Preparing microbiome data for analysis involves several steps, each of which can impact downstream
results. However, there are no standards in the field for preprocessing the data, with even absence of
reliable and unbiased techniques for some specific steps [87, 25, 78, 46, 24, 44]; but common practices
have emerged for data preprocessing and feature extraction from sequencing data, which include:

Normalization Because sequencing depths vary (some samples have more total reads than others),
normalization is required to make samples comparable. A simple approach is converting counts to rel-
ative abundances (proportions), effectively dividing each sample’s counts by its total reads. However,
proportions induce the compositional effects noted above. Another common practice is rarefaction,
which subsamples each sample’s reads down to an equal count[87]. Rarefaction can mitigate depth
differences but discards data and may introduce its own bias[87]. More advanced normalization meth-
ods include cumulative sum scaling, total sum scaling, trimmed mean of M-value or other approaches
to adjust for uneven sequencing depth and compositionality[87]. There is ongoing debate about the
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Figure 3.1: Jaccard similarity count of the feature space of the different human gut microbiome studies in the dataset curated
by Sun et al.[68]. The count basically indicates how often the range of Jaccard similarity occurs between different pairs of

studies.

best normalization as no single method is universally optimal, and each can impact the downstream
analysis differently [87, 46, 79].

Compositional Transformation After normalization, further transformations are often applied tomake
the data more suitable for modeling and to get rid of compositionality of data. If the right transformation
is used, this step is believed to help in ”reducing biases and recovering true biological signals”[86]. The
CLR transformation (taking log-ratios relative to the geometric mean of all features in a sample) is a
popular choice grounded in compositional data theory[23]. However, CLR and many of the other trans-
formations add bias to the data and alternatives are being introduced[86]. According to Zhang et al.
[86], log-ratio transformations were not developed for sparse data like microbiome data, as they can-
not handle zeros and no universal solution has been found on how to treat the zeros [86, 79], making
them less appropriate for applications within the microbiome field. Zhang et al. [86] give novel trans-
formations, e.g. Centric Arcsine Constrast (CAC) and Additive Arcsine Contrast (AAC), which shows
enhanced performance in these sparse scenarios and when the rest of the data points are mainly
extremely small.

Feature Engineering Researchers may incorporate ecological knowledge, for example, combining
features at higher taxonomic levels (summarizing by genus or family) to reduce dimensionality, or com-
puting diversity indices and other derived features[17]. Functional considerations matter as well: mi-
crobiome communities exhibit pronounced functional redundancy, meaning that taxonomically distinct
assemblages can carry out overlapping metabolic roles. Puente-Sánchez et al.[57] states that pairs of
species found in multiple environments tend to be more similar in what they do and how they are related
(higher functional and phylogenetic redundancy). This suggests that having this kind of similarity helps
them survive when their environment changes.

Another important step can be feature selection, identifying a subset of taxa that are most relevant
to the prediction task (e.g. potential biomarkers of disease). Methods such as differential abundance
analysis or regularized regression are used to reduce thousands of features to a manageable number
of informative microbes[29]. In microbiome machine learning studies, it’s not uncommon to perform
dimensionality reduction (like principal component analysis) or even use unsupervised techniques (like
clustering or autoencoders) to extract latent features that capture variance in the community[83, 29,
52].

Handling Batch Effects and Confounders As noted, technical or study-specific variations can dis-
tort microbiome measurements, obscuring genuine biological signals. If data from multiple runs or
studies are combined, preprocessing may include steps to correct batch effects (e.g. using statistical
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methods such as ComBat or quantile regression adjustments)[40, 87]. Similarly, metadata variables
(like subject age, diet, or DNA extraction kit) that could confound analysis should be regressed out
or balanced between comparison groups if possible. Careful experimental design and computational
batch correction are essential to ensure that downstream classifiers learn true biological patterns rather
than artifacts of sequencing order or lab origin.

In summary, preprocessing transforms raw sequences into an analysis-ready feature matrix while at-
tempting to mitigate noise and biases. However, there is no established pipeline in microbiome re-
search: different studies employ different quality filters, clustering thresholds, normalization techniques,
and so on. In fact, some steps lack a clearly superior method, and new best practices are still being
developed (for instance, how best to normalize compositional data, correct batch effects, or transform
compositional data). This lack of standardization means that machine learning pipelines must often be
tailored and carefully optimized for each dataset or problem domain.

With the data finally distilled into an analysis-ready matrix, we turn to the algorithms best suited to its
high-p, low-n, compositional quirks.

3.4. Machine Learning Algorithms
Themicrobiome field increasingly relies on supervised learning to convert high-dimensional abundance
tables into clinically useful predictions. We benchmark three widely used learners, Random Forests
(robust non-linear splits and built-in feature importance), XGBoost (state-of-the-art on tabular data),
and a shallow multi-layer perceptron (baseline deep model), against meta-learning approaches. Here,
we will introduce the reader to the general concepts of meta-learning.

3.4.1. Meta-Learning
Meta-learning aims to learn how to learn: instead of training a model for a single task as in conventional
deep learning approaches, it trains an algorithm that can rapidly adapt to new tasks. This means that
these models will not learn to classify samples explicitly, but exploit the training data with the final goal
of being able to learn to classify unseen samples faster from only a few examples [72]. Such rapid-
adaptation paradigms are attractive when a new microbiome study may arrive with fewer than ∼ 50
labelled samples.

As in deep learning, there is a train and test stage during meta-learning. In one stage meta-training
is performed to learn how to learn tasks faster and better on the labeled training dataset; and in the
second stage meta-testing is performed for evaluation purposes, where adaptation to the new task of
the test set with the prior knowledge of the meta-trained model is supposed to help in performing better
in the downstream task. One difference from other deep learning methods comes from this adaptation
step, where the algorithms gets the chance to learn about the new task before inference.

This means that the dataset is always first split into a train and test set for use in the meta-training and
meta-testing part respectively.

A typical example is Model-Agnostic Meta-Learning (MAML) [18], an algorithm that has to learn to better
initialize a model, visualized inFigure 3.2. In the meta-training stage, the inner loop initializes the model
in the algorithm based on a few data points from a task (called the support set), after which it performs
inference on a different set of data point from the same task (called the query set). In the outer loop, the
loss value from the inference on the query set gets back-propagated to update the model, so the next
run the initialization can be better. So, in every iteration the model sees two non-overlapping datasets
for the same task.

So in general, during meta-training, ”task-wise training” happens in two nested loops:

1. Inner loop — task-level adaptation: Given a small support set from one task, the model per-
forms a brief adaptation step (e.g. a few gradient updates or the computation of task-specific
statistics), producing task-specialized parameters θ′T from the shared meta-parameters θ. These
parameters are then evaluated on the task’s query set to obtain the loss LT .

2. Outer loop — meta-level optimization: The loss LT is back-propagated through the entire
adaptation path to update the shared meta-parameters θ, so that the model can adapt more
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quickly and perform better on future, unseen tasks.

During meta-testing, a small part of the test data drawn from a previously unseen task is used to get a
well initialized model that will do inference on the rest of the unseen test data.

Figure 3.2: A typical example of the inner working of meta-learning algorithms. (Reproduced from [22])

In the general concept of meta-learning, every task consists out of some selected classes from the
full training data. The number of classes selected (N ) and the size of the support set (k), give the
well-known N -way k-shot learning scenario of few-shot learning; with k giving the shot number which
is usually small.

Throughout the learning process, also different but related tasks can be used, but the assumption is
that there is an underlying distribution from which all these tasks are sampled [75].

Families of methods
Meta-learning research has produced many different techniques in the last decade and choosing the
right method can be more art than science. These techniques are usually divided into three different
categories [75, 33]:

• model-based (black-box) methods equip the learner with an additional memory or controller
(e.g., LSTM controller, external memory) so it can store and retrieve information across tasks and
learn to learn purely through its own forward pass.

• metric-based methods learn an embedding or distance function such that classification can be
done by simple comparisons in that learned feature space

• optimization-based methods focus on learning an efficient way to optimize model parameters.
These methods essentially train the model’s starting point or training procedure to be well-suited
for few-shot adaptation.

Optimization-based techniques offer the same advantages as model-based techniques but also outper-
form them when dealing with larger training set [31, 33]; and when it comes to generalizability to more
distant tasks [33] (which is studied for MAML in [19]), they are a good choice. However, optimization-
based approaches have the disadvantage of being computationally expensive compared to the other
techniques.

Also Metric-based techniques outperform model-based techniques in supervised learning [33] (which
is shown for graph-neural networks in [22]) too. Metric-based techniques are in addition simpler to
optimize and are extremely data efficient, and therefore form a good starting points for our research
where data scarcity is an important factor.

For an in-depth comparison of the advantages and disadvantages of the different methods, the reader
is referred to table I in [75].
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Figure 3.3: Visual representation of how Protonets work. Reprinted from [85].

A typical metric-based technique is Prototypical Networks (Protonets) [67], which have received much
attention in the few-shot learning scenario[51] . In short, Protonets define a class representation (called
prototypes) in a learned embedding space and classify unseen examples by calculating a distance
metric to these prototypes. According to the authors of the original paper, Protonets are a ”promising
approach for few-shot learning”.

Due to Protonet’s simplicity and data efficiency, their use of embedding spaces where taxa can be
embedded on, and metric use that can easily be connected to the concept of similar taxa, focus will be
laid on this approach.

Inner workings of Prototypical networks
Supervisedmeta-learning with Protonets basically consists of the two stages described formeta-learning.
Figure 3.3 visualizes the inner workings of Protonets specifically, with the following two nested loops:

• Inner loop (adaptation and classification): for each task, the support samples are embedded
and aggregated per class to form prototypes (class cluster representations). Query samples
from the same task are embedded and classified by the nearest prototype.

• Outer loop (meta-update): The classification loss of the query samples from the inner loop is
back-propagated to update the embedding parameters, so that future tasks can be solved better
from only a few support examples.

During meta-testing, the same steps are taken essentially. First, the support set is used to obtain the
prototypes. Afterwards, query samples (which during testing comprise the entire held-out data minus
the support samples) are used for evaluating the performance by mapping them to the representation
space and calculating the loss and other metrics based on the labels predicted, without any backprop-
agation.



4
Related Work

Robust biological insight demands robust evidence. Thanks to concerted international efforts, public
repositories now hold tens of thousands of microbiome samples that offer unpresented opportunities
for discovery. Yet the very properties reviewed in the background, e.g. high dimensionality, sparsity,
compositionality, and batch effects, undermine both classical statistics and modern machine learning.

4.1. Classical Machine Learning on Microbiome Tables
With the recent advancements in machine learning and the surprising successes, such as XGBoost
models that predict myocardial infarction risk from > 500, 000 UK Biobank participants[47] or sparse
LASSO scores helping in identifying key DNA variants for common diseases across multiple ances-
tries[58], it has become clear that it can be useful in extracting knowledge from large datasets. These
methods have the advantage of inferring non-linear relationships in high-dimensional data that classical
statistics cannot capture[44].

The go-to classical machine learning methods for classification purposes with microbiome data are
SVMs, decision trees, random forests (RFs), boosted trees, logistic regression, and simple neural
networks [69]. Of these, RFs are the most widely used in the microbiome classification tasks and
have shown good performance [69, 52]. Although traditional and basic ML methods applied to specific
microbiome datasets have been the mainstream way of conducting research, there is evidence that
they fail to capture governing patterns and representations regarding microbiome data that can help in
having more accurate analyses of the data [12].

Building strong models is a big challenge and it is believed that ”no single machine learning pipeline
can universally accommodate all predictive modeling scenarios” [52]. Papoutsoglou et al.[52] suggests
elaborate experimentation to find the optimal methods including that for preprocessing, but this is time-
consuming and inaccessible for non-ML experts. A recent audit of 100 microbiome ML papers found
that 71% failed to report final hyperparameters and 90% did not perform any hyperparameter search,
indicating that too many studies still rely on default settings and ad-hoc preprocessing [15].

4.2. Deep Learning and the Rise of Pre-Trained Models
More recently, in many fields deep learning has become the go-to method when using ML methods
to achieve a better and more general performance. Specifically, large language model research has
inspired many different architectures and methods [83]. But on the architectural part, these methods
have their shortcomings in dealing with microbiome data and its unique challenges regarding high
dimensionality, sparsity, and heterogeneity[83].

The recent advancements in deep learning also have shown a great potential for pre-trained models
(PTMs)[77, 76], which can, inter alia, fully exploit unannotated data [77]. Examples of recent appli-
cations exceed human language generation/understanding and image recognition to include models
dealing with DNA sequences [34], crop mapping [82], chemical data [63] and many more.

More specifically, due to the successes in other fields like language processing, computer vision, and
protein folding, there has been motivation for transfer learning where pre-trained models are created

12
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for microbiome data to capture the fundamental patterns and are fine-tuned for downstream tasks
afterwards[13]. One argument is that when training these models, many datasets can be combined in
one way or another and tackling the data challenges becomes easier, e.g. sample size increases and
matches what the model needs for the high dimensionality of the data. Another important argument
for transfer learning is related to its usefulness in unsupervised/self-supervised learning, through which
due to availability of much more unlabeled data than labeled data better performance can be achieved.
Unsurprisingly, several groups have attempted to look into pre-training models for microbiome data.

4.2.1. Representative Efforts on Pre-trained Models
Different attempts on creating pre-trained models show varying results.

Çiftcioğlu & Nalbanoglu [8] try to learn a latent representation with embedding networks on gut tax-
onomic tables before training a separate classical classifier model on the embedded data [8]. The
authors acknowledge that the small pre-training cohort prevents generality beyond gut samples and so
does not provide a foundation model, which they consider to be possible in the field.

Pope et al.[55] pre-train paired transformer generator/discriminator networks on masked taxonomic
V4 16S reads, then fine-tune the discriminator as a dimensionality reducer for disease classification
[55]. However, the model does not show impressive results, which can be attributed to other factors
unrelated to the strength of the model. One of the reasons can be the limited dataset size. This can
lead to pre-training not having learned the governing fundamental patterns of the data. In addition,
the focus of this research on taxonomic data based on ”16S data of the V4 region” can be seen as a
limitation as classification from this may not be able to achieve high performance no matter the amount
of the data, due to lower taxonomic resolution and lack of standardized protocols [55].

Chong et al. [7] develop a pre-trained model, called EXPERT, that adapts its knowledge to the spe-
cific context of the downstream task in three steps: (1) reinitializing only the contextual layers of the
pre-trained model according to a specific context, (2) training the contextual layers with the data D
in the specific context, and (3) further fine-tuning by training the whole model on the data D. How-
ever, the method presented is a supervised learning method, not leveraging the abundant unlabeled
data available, missing an opportunity to enhance performance and generalizability by incorporating
unsupervised or semi-supervised approaches.

Common Limitations
Across these studies, different constraints recur:

1. Insufficient pre-training scale – fewer samples than typical language or protein PTMs.
2. Transfer-learning ceiling – fine-tuning on dozens of target samples often fails to adapt weights

adequately [42].
3. Opaque or inconsistent preprocessing – the preprocessing steps in these studies are not

always clear, while preprocessing microbiome data is crucial.

4.3. Few-Shot Scenarios & Meta-Learning as Alternative
Recent studies indicate that few-shot meta-learning, where algorithms rapidly adapt to new tasks using
only a handful of additional examples, can outperform traditional transfer learning methods when the
target task offers merely tens of samples [42]. Because individual microbiome datasets are typically
small, framing the problem in a few-shot setting is natural. Also, in the field of computer vision, meta-
learning has already proven its worth in such small data scenarios where the dimensionality is also
large [54, 31]. This rationale encourages our focus on meta-learning approaches in the present study.

In addition, transfer learning typically requires the source and target tasks to be related[75] while meta-
learning is better able to adapt to less related target tasks.

Altogether, meta-learning explicitly targets scenarios with scarce data or shifting conditions, often deliv-
ering superior performance compared to standard transfer learning or alternatives likemultitask learning
[75, 1]. Nevertheless, systematic evaluations of meta-learning for microbiome classification are lacking
to the best of our knowledge[29].



5
Methodology

In this chapter, the steps taken to produce the results are explained. We start out by first discussing
how the dataset is obtained and processed before learning, and mention some data characteristics. Af-
terwards, important aspects of our meta-learning implementation is explained, we dive into the different
useful strategies to train classical ML methods, and some experimental protocols for further analysis
are explained. All the related results will be shown and discussed in the next chapter.

Reproducible code and data reside in the accompanying GitHub repository: https://github.com/
sr1998/thesis.

5.1. Dataset Acquisition & Preprocessing
The dataset used for the experiments is the species-level taxonomic abundance data from [68] 1, that
the authors obtained by combining abundance data from multiple studies each investigating a different
disease. Each study can have its samples categorized as either healthy or diseased.

5.1.1. Preprocessing Pipeline for our Compositional, Sparse Microbiome Data
Microbiome data is inherently compositional and sparse, so preprocessing to handle these character-
istics is essential and can be done before data-splitting as they do not leak label information across
studies. An overview of the preprocessing pipeline is shown in Figure 5.1.

Figure 5.1: Preprocessing pipeline for the Sun et al.[68] data. The raw dataset contains samples that occur in the metadata file
but not in the abundance data file and vice versa; thus the intersection is kept. Studies LiS_2021a and LiS_2021b are removed.

Samples are then cleaned, normalized, abundance/prevalence-filtered, again normalized, and finally transformed into
Euclidean space.

As mentioned before, preprocessing standards in the field still need to be developed. The choices
1Exact version used here can be downloaded from https://github.com/yexianingyue/GM_common_diseases/commit/

9e2ca93a2bf1c48f96c5748c4704055c362061e0
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made here are driven by what is required for subsequent steps, such as normalization being essential
before applying the transform step, and by commonly adopted best practices.

In prose, the steps for preprocessing the abundance data are:

1. Sample intersection: Keep only samples present in sample.group and mpa4_species.profile.
Duplicated sample IDs are deduplicated by keeping the first occurrence.

2. Remove some studies: Two studies, namely LiS_2021a and LiS_2021b, were removed from
the dataset downloaded as they did not occur in the analysis of the paper by sun et al. [68].

3. Zero-read feature removal: Globally drop taxa whose total read count across all samples is 0.
4. Total sum scaling (TSS): TSS converts counts to relative abundances so that the abundance

threshold in the next step is interpretable.

xTSSij =
xij∑
k xik

(5.1)

5. Per-study abundance & prevalence masking: For every study and every taxon, set Xs,t = 0 if
abundance < 1e4 or prevalence within that study < 10%.

6. Redo TSS: To renormalize after masking
7. Centred arcsine contrast (CAC): The compositional data transformation step at the end is a

crucial step in the preprocessing pipeline, as it brings the data into Euclidean space where deep
learning operations make sense. Here, Centric Contrast transformation CAC is preferred ”for
more complex data structure where no single reference part is appropriate, maintaining full dimen-
sionality”[86]. For the experiments in this research, CAC has been applied in the preprocessing,
given by2:

transformed_data = arcsin(
√
original_data)×
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(5.2)

Regarding the metadata provided by sun et al. [68], the important columns for the experiments here are
[Sample, Group, Project_1]. These columns represent the sample name, sample group (Control
or Disease), project source (author + year), respectively. So, we can remove all the other columns.

5.1.2. Dataset Statistics & Class Imbalance
After applying the preprocessing pipeline, the total number of studies left in the data is 36, with the study
sizes differing between 70 and 400. However, as will be indicated later, not all studies are used for all
experiments. The focus of the experiments will be to apply binary classification to separate healthy
samples (assigned value 0 in experiments) from diseased samples (assigned value 1 in experiments).

The disease groups per study can be more specific than just healthy or diseased, e.g. the diseased
samples for HIV can be grouped into INR, IR and VU groups. See Figure 5.2 for a look at how these
groups are distributed according to the original paper. In here, our focus will however just be on binary
classification as the original paper has done [68].

An important characteristic of this dataset is the imbalance of samples. This can be seen by observing
the difference in counts of healthy and diseased samples in Figure 5.2. Here, the positive disease class
is in most studies the majority class.

Usually in ML, training data is balanced so the models do not learn the bias present in the distribution
of data but truly learn biological signals. This is necessary as with time, the distribution of classes
may change. Test sets are always kept imbalanced to represent the real world data and have strict
evaluations.

2Original implementation can be found here: https://github.com/bioscinema/Microbiome_Transformation/blob/
50b828b65210b2259905b3f07d152ca674c47da7/Real_Data_Analysis/Overlap_Skewness.R#L149

https://github.com/bioscinema/Microbiome_Transformation/blob/50b828b65210b2259905b3f07d152ca674c47da7/Real_Data_Analysis/Overlap_Skewness.R##L149
https://github.com/bioscinema/Microbiome_Transformation/blob/50b828b65210b2259905b3f07d152ca674c47da7/Real_Data_Analysis/Overlap_Skewness.R##L149
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Figure 5.2: Distribution of diseased vs. healthy
(=control) individuals for the studies in the dataset
curated by Sun et al. [68] (adapted from [68]).

In one of our experiments, an analysis of balancing
is done and further analysis is based on the conclu-
sion from this. This experiment is shown in Subsec-
tion B.1.3. The balancing in this experiment is done by
oversampling the minority class with SMOTE[5], car-
ried out before training on the train set. Testing is al-
ways done on the imbalanced test data.

In addition, experiments also give the performance of
a Dummy classifier, that always predicts diseased, since
diseased samples are more important in these dis-
ease classification tasks, are considered as the pos-
itive class, and in most studies are the majority class
(27/34). This provides a naive lower bound under the
naturally existing class imbalance in most studies. Im-
portantly, this baseline also reflects how metrics such
as F1-score, which are biased towards the positive
class, can be deceptively high even for trivial mod-
els. Including the Dummy classifier thus helps gauge
whether any improvement by more complex models
actually stems from learning biological signal, rather
than just exploiting the label imbalance. Especially
in few-shot scenarios, where the risk of overfitting is
heightened, this simple but informative reference point
provides critical context for interpreting model perfor-
mance.

5.1.3. Dimensionality Reduction Strategies
In Chapter 3, we have already indicated that dimen-
sionality reduction can be helpful in dealing with high-
dimensional, sparse data. Principal component analy-
sis (PCA) gives a common, quick, model-free estimate
of the intrinsic dimensionality of a dataset. Therefore,
we analyze classification accuracy under three data
representations:

1. the full feature set;
2. a PCA projection in which samples are ex-

pressed in the first k principal-component (PC) scores (where k is a hyperparameter optimized
for);

3. a PCA-guided feature subset that helps pre-
serve taxonomic interpretability (where number
of features to select is a hyperparameter).

This last method is a simple unsupervised way to prune taxa, where the taxa are ranked by how strongly
they load onto the first c PCs and only the most ”important” ones are retained. Formally, each taxon j
receives an importance score:

φj = importance(j) =
c∑

i=1

|lji|wi, (5.3)

• where lji is the loading of taxon j on PC i, indicating how much the taxon contributes to the PC;
• and wi is an optional weight proportional to the variance explained by that PC (which can be
scaled).
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Taxa are sorted by φj and kept until the feature-importance coverage

coverage(m) =

∑m
j=1 φ(j)∑p
j=1 φ(j)

reaches a chosen threshold τ . Note that this coverage is defined over features, not over PCs; hence it
behaves very differently from the familiar ”retain 99 % of variance” rule used when selecting c.

All dimensionality-reduction models are fit inside the training fold only and then applied to the corre-
sponding test data, so no information leaks from test to train data. In Subsection B.2.2, we reason for
whether dimensionality reduction is at all useful before the main experiments shown in Subsection 6.3.2.

5.2. Few-Shot Meta-Learning with Prototypical Networks
In this research, we apply the widely used Prototypical networks (Protonets) for the microbiome classi-
fication of interest. Here, the specific way of feeding the data into our model is explained.

5.2.1. Episodic Study-Wise Data Splitting
For training and evaluating Protonets, we need a meta-train and meta-test dataset. In here, we also
apply hyperparameter optimization, which means the meta-train dataset is further split into a train and
validation set during this process.

We follow a leave-one-study-out protocol, where the test set is the data from one of the studies in the
complete dataset. The validation set is also obtained by using the same leave-one-study-out approach
on the meta-train data.

The training is done on a task basis following the steps depicted in Figure 5.3. .

During training, the query set size is the same as the support set size. However, during evaluation time
the model:

1. Receives the k-shot support set of the held-out study and adapts the model.
2. Predicts the labels of the query set (which is the rest of the dataset here), and records the metrics.

No further gradient steps are taken after the adaptation during evaluation.

Both the selected validation studies and the support set of the validation and test studies are preselected
and stored for equal comparison and reproducible outcomes.

Figure 5.3: High-level steps taken to train Protonet on a selected task. The orange path is followed first, adapting the model to
the support set. The blue path is followed afterwards, getting the predictions of the query set and calculating the loss; followed

by the yellow path using the loss to improve the model.
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Task construction and few-shot notation
In this work, each task corresponds to an individual microbiome study. Because for every study the
sample labels are simply either healthy or diseased, the class dimension is fixed at N = 2, giving a
2-way k-shot setup. For every training episode, we first sample one study from the meta-training pool,
draw k labelled examples per class to form the support set (size = 2× k), and place another k labelled
samples per class from the same study in the query set.

Dataset & episode sampler implementation
To turn the raw abundance tables into few-shot tasks we combine two small, self-contained PyTorch
utilities—MicrobiomeDataset and BinaryFewShotBatchSampler—that encapsulate per-study balanc-
ing/oversampling and the support/query split required by meta-learning. Here is a summary of the
implementation details:

Design goal How it is achieved in code
Study-wise task
(one task = one
study)

MicrobiomeDataset groups the samples by the study they belong to. Every
training/testing episode is generated by the sampler picking one study and then
drawing samples from that study for both the support and query set.
A preselected support set can be supplied for the test/validation study so the
support and query set is always the same for reproducible evaluation data. This
means, the exact same data points are used for support/query during evaluation
on test/validation study when the experiment is repeated.

Class balance in-
side every task

During training, for each chosen study in a learning episode exactly k samples
per class are taken for the support set and query set. If a study’s minority class is
too small to provide at least one non-overlapping support and query set (< 2×k),
the whole study is dropped beforehand. During training, the sampler advances
through the larger class circularly, so the smaller class is effectively oversampled
until both contribute the same number of episodes and all the samples from the
larger class have been sampled (either for support or query) once, guaranteeing
balanced k-shot support and query sets within every task.
At evaluation time, the unseen study is visited exactly once: its first k samples
per class become the support set, and the entire remainder forms the query set.

Shuffling strategy The study list and within each study, the class-specific samples, are shuffled
once every epoch when training and only once at the beginning when evaluating
(so evaluation support and query sets stay the same). Shuffling for evaluation is
skipped when a preselected support set is provided.

Label encoding &
loss re-weighting

Labels are one-hot encoded before training. Global class counts over the whole
training corpus are used to derive inverse-frequency weights, which are fed into
the loss function for optimization. This makes the training more similar to the
classical models benchmarked against, as we will see.

5.2.2. Study-Specific Gaussian Jitter Data Augmentation
Limited data has been a challenge in many different applications of deep learning and we know that
in general labelled microbiome datasets are limited. One of the main solutions has been to augment
the data by various methods, e.g. image manipulations in computer vision, where they improve perfor-
mance and generalizability.

This has inspired us to look into using a simple augmentation method as a first step to increase gen-
eralizability performance of Protonets with data augmentation. For abundance tables already mapped
into Euclidean space we adopt an lightweight augmentation analogue: add zero-mean Gaussian noise
whose scale reflects the natural dispersion of each study.

Since microbiome sequencing data are compositional and the sequencing process involves stochastic
sampling, variations in count data are expected. Moreover, many of the zero counts in abundance
tables are likely to be technical zeros (undetected taxa due to limited sequencing depth or sub-sampling
during preprocessing) rather than true biological absences. Taking this into account, we can see that
adding some noise to the data is acceptable and worth looking into.
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One concern has been that due to this noise, labels of samples may not be valid anymore. This is the
reason why the noise added is a hyperparameter to be optimized.

Algorithm
Here, we first calculate the standard deviation (sd) of each feature per study:

σstudyi = sd(Xstudyi) ∈ Rd (5.4)

where σ is the column-wise standard deviation of the preprocessed training samples belonging to study
i and d is the feature dimensionality. In addition, this σ-vector is multiplied by a tunable jitter fraction f to
obtain the final noise scale σ̃studyi

= fσstudyi
. The reason for calculating σ study-wise is because the

data of each of these studies comes from a different research that causes study specific batch effects
and heterogeneity.

The standard deviation of each study in the dataset is used to add some noise (a fraction of this standard
deviation) to the data points in the Euclidean space on-the-fly during training, meaning that at every
__getitem__3 call the original sample x is perturbed as

x̃studyi
= xstudyi

+ ϵstudyi
ϵstudyi

∼ N (0, diag(σ̃studyi
)2) (5.5)

Because the noise is generated at runtime, a single epoch already sees as many independent variants
as there are gradient steps, without increasing disk usage.

The fraction of noise added is taken to be a hyperparameter in the experiments which can also be zero,
essentially skipping this augmentation step if it hurts performance. In addition, the augmentation is
switched off in validation and test phases.

5.3. Classical ML Methods & Suggested Training Strategies
The meta-learning method here is benchmarked against common classical ML models. The main
machine learning classifiers used in microbiome research are random forest classifiers. In addition
to random forests, we include multi-layer perceptrons and XGBoost classifiers as classical baselines
models.

In addition to these classical ML models, a Dummy classifier is used as a baseline for them all. The
Dummy classifier used in the experiments here is one that always outputs the positive class, which in this
research represents diseased samples. As the F1-score is positive-class focused, an always-positive
prediction can look very good for the imbalanced datasets here.

In this section, the different strategies for training these classical models are outlined, which are named
the simple baseline, k-shot baseline, and meta-learning inspired baseline. To make the comparison to
meta-learning fair, we want a strong baseline model but also one that is as similar as possible with
regards to training. The next chapter compares the different strategies in performance and based on
this brings focus to only one of them.

5.3.1. Simple Baseline Method
The first baseline method, which is the simplest, is to select only one study (a study gives multiple
samples of healthy vs diseased) and to train the baseline model on part of the data of this study and
test on the rest of the data. Nested cross-validation is used as visualized in Figure 5.4. Here, the
assumption is made that there is no k-shot scenario and 80/20 ShuffleSplit4 is used for obtaining
both the outer train/test set and the inner train/validation sets.

5.3.2. K-Shot Baseline Method
The second type of baseline is trying to imitate only the meta-testing loop where the test set is obtained
from one study. As depicted in Figure 5.5, the pipeline is comparable to the pipeline for the simple
baseline method with the exception that instead of doing the 80/20 split, we use k examples per class
from the dataset being split for training. This means that the train set will contain only a limited number
of examples.

3Referring to the __getitem__ of the torch.utils.data.Dataset class. See https://docs.pytorch.org/docs/stable/data.
html#torch.utils.data.Dataset

4See https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html

https://docs.pytorch.org/docs/stable/data.html##torch.utils.data.Dataset
https://docs.pytorch.org/docs/stable/data.html##torch.utils.data.Dataset
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html
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Figure 5.4: Simple baseline benchmarking pipeline with nested cross-validation.

Figure 5.5: k-shot baseline benchmarking pipeline with nested cross-validation imitating the meta-testing step of
meta-learning.

5.3.3. Meta-Learning Inspired Baseline Method
This baseline is designed to let classical tabular models benefit from roughly the same information that
a meta-learner sees, while keeping their conventional ”train-once, predict-once” workflow.

First, we apply the usual leave-one-study-out partitioning: one entire study is held out as the test study,
all remaining studies form the training pool.

Inside that training pool, we further perform a study-level cross-validation loop to select hyperparame-
ters: on each inner fold we withhold one complete study as a validation study and fit the model on the
others.

Where the k examples per class come in.
For every fold, both in the inner (train/validation) loop and later in the outer (train/test) loop, we sample
k labelled support examples per class from the held-out study and append them to the global training
table.

Both the selected validation studies and the support set of the validation and test studies are preselected
and stored to ensure fair comparison across models and reproducibility.

Concretely:

• Hyperparameter search: When the validation study is left out, its k samples per class are con-
catenated to the multi-study training data used to fit the model whose hyperparameters we are
about to evaluate. The remaining nval − 2k samples of that study are kept strictly for validation.
Thus, themodel trains on all non-validation studies of the train set and the support set of the valida-
tion study, and we check generalization on the unseen remainder, the query set in meta-learning
terms.

• Final model fitting: After choosing the best hyperparameters, we repeat the same procedure
with the (previously unseen) test study: its support set is added to the full training table and the
rest of its data becomes the test set on which we report performance.

This means that for the meta-learning inspired baseline, the k-shot support examples are always part
of the model’s training data. Nothing special happens at inference time; once the model has been fit, it
outputs predictions for the remaining data of the test study exactly as an ordinary classifier would.

Key distinction from meta-learning In a meta-learning episode, the support set examples are not
folded into a big batch with other studies; instead they form a dedicated support set. The meta-learner
carries out a fast adaptation step only on those k samples per class, adjusts its internal parameters
or prototypes, and then predicts the labels of the episode’s query set. The adaptation is itself a tiny
training run, but it is:

1. Task-specific: parameters are nudged in a way that is unique to that study’s distribution.
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2. Discarded afterwards— the meta-learner reverts to its meta-trained parameters before tackling
the next task.

Thus, both the meta-learning inspired pipelines and the meta-learning pipeline see the same k labelled
support examples per class from the test study in addition to the whole training data, yet they use them
very differently: the baseline sees all the training data including the support set at once for a global fit,
whereas the meta-learner uses the support set for adaptation once only before evaluation.

For even fairer comparisons, in addition to cross-validation, the same train/val and support set splits
are used for both meta-learning inspired methods and Protonets.

Figure 5.6: Meta-learning inspired baseline

For all these methods, hyperparameter tuning has been conducted and for the details, the reader is
referred to Appendix A for specific details on this.

5.4. Evaluation Metrics & Embedding Analysis Protocols
To judge whether the Protonet embedding network actually adds task-relevant structure beyond the
raw abundance vectors, we combine a reproducible embedding extraction pipeline with both qualita-
tive and quantitative evaluations. First, we obtain the embeddings of the paired support and query
samples that are used in meta-testing. We then project these embedded representations, alongside
their corresponding raw input data, into two dimensions with a uniform UMAP configuration chosen to
be fold- and study-agnostic. This side-by-side view allows us to visualize how class geometry changes
when the network is applied, while keeping preprocessing, neighbourhood size and random seed strictly
controlled.

Experimental protocol
Here, we outline the protocol used to do the analysis of the Protonet embeddings in Subsection 6.5.2.

Embedding source For each outer CV fold on which the Protonet’s embedding network is trained,
the network maps every point in the test set to a d-dimensional embedding determined by the study
specific hyperparameter configuration. For every fold we collect the two disjoint subsets from the meta-
testing folds:

• support set— the vectors used to compute class prototypes for adaptation to the test study;
• query set— the held-out samples from the test study on which Protonet is evaluated.

Fold selection To avoid a figure explosion we show one ”representative” fold per study: the fold
whose Protonet test F1 is closest to the test study’s median F1 across all outer folds.

Preprocessing Before fitting UMAP, we z-score each feature (mean 0, SD 1) using statistics from
the combined support ∪ query set and then apply both this standardization and the subsequent UMAP
projection to that same pooled set of points.



5.4. Evaluation Metrics & Embedding Analysis Protocols 22

Projection targets We create two parallel projections per study and fold:

1. Input space— the raw input feature vectors that were supplied to the embedding network.
2. Embedding space— the d-dimensional Protonet embeddings after scaling.

Both projections use the same unsupervised algorithm, enabling a like-for-like visual comparison of
how much structure the embedding network adds beyond the input space.

UMAP settings Each data matrix (input and embedding) is reduced to 2-D using UMAP [45] with

k = ⌈
√
N⌉, min_dist = 0.05, metric = euclidean, random_state = 42, (5.6)

where N is the total number of points (support + query). Choosing k ∝
√
N is a heuristic that keeps

the effective neighborhood radius comparable across studies of very different size. The UMAP model
is fitted on (support ∪ query) and applied to the same set.

Complementing these plots, we compute a small set of geometry-aware and projection-faithfulness
metrics to quantify any gains (or losses) the embedding introduces:

• Silhouette coefficient (Silh): A number between −1 and +1 that captures how compact each
class is relative to its distance from other classes, in the feature space before the UMAP embed-
dings.

– Higher is better: values above 0.5 indicate well-separated, globular clusters; values near
or below zero signal serious overlap.

• Trustworthiness (T) & Continuity (C): Two scores in the range [0, 1] that tell us how faithfully
the low-dimensional plot preserves the high-dimensional neighbourhood structure.

– Values above 0.9 mean the projection is a good cartoon of the original geometry; drops
below 0.8 warn that points have been torn apart or squashed together.



6
Results & Discussion

To judge whether meta-learning is a promising avenue for researchers to look further into, it is necessary
to benchmark it against models usually used for classifying diseases from microbiome abundance data.
Our goal is to characterize how Prototypical networks perform, across data scarce regimes, study
heterogeneity, and alternative representation spaces, relative to classical machine learning classifiers.

The main machine learning classifiers used in microbiome research are random forest (RF) classifiers.
In addition to RFs, we include multi-layer perceptrons and XGBoost classifiers as classical baselines
models.

The chapter is organized as follows. Section 6.1 establishes the best training settings for training
classical ML baselines on the gut-microbiome studies, ensuring a fair method for comparison with
meta-learning. Section 6.2 provides a concise overview of the full benchmarking pipeline and evalua-
tion protocol. Section 6.3 shows further analysis of the classical models and the Prototypical network
meta-learner with regards to shot number and dimensionality reduction. In Section 6.4, the two meth-
ods are placed side-by-side on identical data splits, and paired F1-score differences are subjected to
statistical-significance testing to highlight where meta-learning is better, worse, or indistinguishable.
The remainder of the chapter tries to analyze this underperformance with a look at the Protonet em-
beddings and feature similarity of studies.

More detailed visualizations and some extra analysis are supplied in Appendix B.

6.1. Fair Comparison with Meta-Learning Inspired Baseline — with
Random Forests on Top

We have introduced multiple strategies for training classical models fairly, since comparing these clas-
sical ML models to meta-learning models can easily end up being unfair. Our goal in this section is
to decide on a fair baseline strategy that can be used for further analysis and comparison with meta-
learning, establishing a baseline that is both strong and as similar as possible to the meta-learning
method regarding the way it is trained and tested. The strategies that we will look at are: the simple
baseline, k-shot baseline, and meta-learning inspired baseline.

6.1.1. Comparing Classical Training Strategies: Simple,K-Shot, and Meta-Learning
Inspired

Here, we analyze which baseline training strategy and model is most suitable for the benchmarking
against Protonets.

The meta-learning inspired baseline appears to be the most conceptually similar to meta-learning, as
the data used for training and testing is exactly the same. By adding k shots per class from the test
study to the classical model’s training data, we give it the opportunity to exploit study-specific information
exactly once during ordinary fitting. This make the classical model’s training more comparable to that of

23
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meta-learning models, so that comparisons between the two are as fair as possible. At the same time,
because the classical model still ingests all training samples simultaneously, we preserve the standard
strengths of tree-based and neural baselines (robustness to noisy features, simple optimization, etc.).

However, aggregating data from multiple studies may introduce too much noise for classical models
to learn effectively. Therefore, we benchmark the meta-learning inspired baseline against the k-shot
baseline to assess whether such data aggregation negatively impacts performance. Our expectation
is that this is not the case and that this k-shot setting puts the model at a big disadvantage as there is
almost no data to learn from.

We also include the simple baseline, as it reflects how classical machine learning models are typically
used in the field. This method however gives classical models the advantage of seeing many examples
from the test study compared to the other methods.

Table 6.1 shows this comparison of the different strategies with different ML models. We can conclude
that as expected the k-shot baseline is being outperformed by the meta-learning baseline and that the
simple baseline outperforms all baselines in absolute metric values.

However, comparing the simple baseline to the other baselines and meta-learning is unfair due to the
way the data is split in this strategy. Therefore, the performance of the positive-class Dummy classifier
for the different baselines (with meta-learning baseline and k-shot baseline having the same Dummy)
can be analyzed to see how much the performance improves by using the classical models.

Table 6.1: Performance of baseline training strategies across four classifiers. The given Cells report the mean±std F1-scores
over outer CV folds. Because the Simple baseline uses a random 80/20 split, it is not directly comparable to the other

baselines that test on the query set of the test study. Improvements over the Dummy classifier therefore serve as the fairest
indicator of a model’s added value in this table.

Strategy/Model Dummy RF XGBoost MLP
Meta-learning inspired baseline 0.727±0.10 0.705±0.09 0.673±0.10 0.676±0.12

K-shot baseline 0.727±0.10 0.616±0.12 0.620±0.13 0.597±0.22
Simple baseline 0.720±0.12 0.730±0.15 0.740±0.16 0.737±0.16

Looking at the different strategies, we can conclude that due to the comparable setup of the meta-
learning inspired method (with regards to how training is done in meta-learning) and the good perfor-
mance it shows, it is the right choice for benchmarking against meta-learning.

Subsection B.1.1 shows in-depth results related to comparing different strategies.

Now, looking only at the meta-learning inspired baseline using different classification models, we ob-
serve from Table 6.1 and Figure 6.1 that RFs outperform XGBoost and multi-layer perceptrons, which
is confirming the field’s tendency of using RFs as they show good performance.

Nevertheless, the performance of RF in general is not outstanding, as the Dummy classifier is showing
comparable results. The random classifier is an additional ”dummy” classifier that has truly random pre-
dictions. This shows that the Dummy classifier used in all the experiments has been chosen specifically
due its specific strength in the imbalanced data case we have and forms a good dummy baseline for
all the other models. More detailed results can be found in Subsection B.1.2.
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Figure 6.1: Performance of meta-learning inspired baseline method using different classification models for k = 10. The
corresponding mean±std values of are given on top of each box.

Some concern arises from this asmanymicrobiome research focusing on the same kind of classification
as here do not report any ”dummy” classifier performance. This is a common issue in the field as
discussed in Chapter 3, for examples see [14, 16, 39, 81, 84].

Due to the imbalanced data found in the field and the bias of the metrics like F1, precision, and recall
towards the positive-class, high performance scores do not by themselves mean strong performance;
making the results reported in many papers hard to interpret, leading to overestimation of model effec-
tiveness, and thus in dire need for an understandable baseline to compare results to. Hence, including
a strong, appropriate dummy classifier is critical for future benchmarking studies.

Based on the discussion above, the remainder of this chapter focuses on the meta-learning inspired
baseline that uses an RF classifier to simplify comparisons. In addition, whenever useful the perfor-
mance of the Dummy classifier is given to show how well models are learning true biological signals and
the performance of the random classifier is given to show that learning is happening in general.

6.2. A Unified, Cross-Study Benchmarking Workflow
One of the contributions we have had in mind throughout this project was the setup of an useful bench-
marking pipeline, with all the necessary step: data-splitting, training and evaluation. We have intro-
duced three different strategies of training the classical models and in the previous subsection con-
cluded that the meta-learning inspired baseline is what we will be using for benchmarking against
meta-learning. For this method and meta-learning itself, we have designed a training and evaluation
pipeline.

Figure 6.2 gives a visual overview of the benchmarking pipeline used for the meta-learning inspired
baseline and meta-learning methods. We start with the data being split into a meta-train and meta-test
set, with only one study in the meta-test set. This study-wise splitting is chosen as it simulates how in
the real world a trained model can be shared and used on an unseen study by adaptation and inference.

The next step is to find the right configuration (hyperparameters) to train the model with. For this, the
training set is again split in the leave-one-study-out fashion to obtain an inner train and validation set.

This is where meta-learning inspired method and meta-learning diverge paths for the first time. The
meta-learning inspired baseline model is trained on the train data plus the support set of the validation
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Figure 6.2: High-level overview of the benchmarking pipeline in this thesis. The gray path indicates the shared data path for
both meta-learning inspired method and meta-learning itself, while the purple path belongs to meta-learning inspired baseline

and the orange path to meta-learning.

data, while the meta-learning method first trains on the train data and afterwards does an adaptation
step with the support set from the validation data. The two paths converge when evaluation is done on
the left out query set.

During the hyperparameter tuning phase, each set of hyperparameters are validated on multiple vali-
dation studies to get more reliable performance estimates, and at the end the best hyperparameter set
is used for testing the model

In this testing phase, the two methods diverge paths for a second time. The meta-learning inspired
baseline model with the tuned hyperparameters is trained on the meta-train data plus the support set
from the meta-test data, while the meta-learning model with tuned hyperparameters is first trained on
the meta-train data and afterwards adapted on the support set from the meta-test data. The two paths
again converge for testing on the left out query set.

This testing phase is repeated multiple times on the meta-test study with different support sets to obtain
more reliable performance estimates.

6.2.1. Study-Centric Leave-One-Study-Out Data Splitting
In conventional meta-learning, each task is assembled by first sampling a few classes and then drawing
the support and query examples per class from a single, mixed pool of data. That class-centric split is
illustrated in Fig.6.3a. To respect batch boundaries in microbiome datasets due to differing sequencing
protocols and populations, and to emulate the real scenario of deploying a model to an unseen cohort,
we adopt a study-centric leave-one-study-out scheme.

Because of this leave-one-study-out scheme, meta-testing tests the meta-learning algorithm on one
unseen study. The unseen study is treated as one single held-out task: the model receives its k-shot
support set for adaptation and is evaluated on the rest of the data (query set) from the study, reflecting
real-world deployment where an analyst can label only a handful of samples from a new cohort.

During meta-training, the goal is to learn in a comparable way as meta-testing. The difference here is
that the query set is also following the k-shot logic, where k examples per class are sampled each time
for the query set.

Figure 6.3 contrasts this study-centric split with the conventional class-centric split in meta-learning,
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highlighting that what is normally a ”class” becomes an entire study in our setup and each study forms
a binary classification problem.

(a) Standard data splitting strategy for general meta-learning methods if
it were to be applied to our dataset. Tasks are constructed by sampling
two classes from a shared pool of samples, and selecting support and

query examples from each.

(b) Our approach replaces class-centric task construction
with a study-centric one. Each task corresponds to a full
study and involves binary classification between healthy
and diseased samples. This strategy respects study

boundaries and better reflects the real-world deployment
scenario of adapting a model to an unseen cohort using a

k-shot support set.

Figure 6.3: Comparison between conventional class–centric meta-learning splits and the study-centric splitting strategy used
in this work. Visualization of 2-way 10-shot scenario learning during meta-training.

A Note on the Choice of k in the Experiments
In meta-learning, the support set size is an important parameter that influences the performance a lot.
To frame the data-scarce reality of microbiome research we benchmark different shot numbers: k = 2,
k = 5, k = 10, and k = 25. The smaller values represents a genuinely few-shot situation, while the
largest one tests whether modestly increasing the labelled budget improves adaptation. Requiring non-
overlapping support and query subsets means that not every study qualifies for all regimes due to them
being smaller than required:

• 34 of 36 studies meet the 10-shot criterion where each class in the studies should contain at least
20 (10× 2) labelled samples;

• and only 20 of 36 studies contain at least 50 (25 × 2) labelled samples required for the 25-shot
split.

6.2.2. Design Choices Ensure Leak-Free, Balanced, and Comparable Data Splits
In this section and in Section 5.2, the exact ways of feeding the data into the models have been de-
scribed. Altogether, they help us achieve the following points:

• No hidden information leakage: In every training episode of the Protonet, only the support
is used for the adaptation in the inner loop, and the query set is used for loss calculation and
optimization. The same is the case for the baseline method, although the support set is used
differently, namely added to the whole training data.

• Minimal hyperparameters for data sampling: Apart from the optional jitter_fraction, all
other behaviour (cycling, shuffling, caching) is deterministic and data-driven, which keeps the
search space related to data operations small. The shot number is decided for every experiment
beforehand.

• Data split consistency between models: With the use of preselected support sets, the testing
of different models between the meta-learning method and meta-learning inspired methods can
be comparable during testing.

• Balance across classes within a study: Because we are looking at few-shot scenarios, splits
trained on should be balanced for Protonets (2-way, k-shot). To ensure consistency across tasks,



6.3. Which Factors Actually Drive Performance? 28

balancing is used by oversampling. The data can still be shown to be imbalanced by using
reweighting as this is necessary for a fair comparison.

6.3. Which Factors Actually Drive Performance?
To better understand what impacts classification performance on microbiome abundance data, we
jointly analyze the role of the size of the support set (k-shot) and dimensionality reduction for both
baseline and meta-learning models. These two factors reflect core challenges in microbiome research:
high-dimensionality and low sample sizes.

Regarding a higher number of shots, the expectation is that the methods will have an improved per-
formance due to the fact that the support set is larger. It is also expected that this also reduces the
variability in performance between different cross-validation folds.

Dimensionality reduction methods such as PCA and PCA-guided feature selection offer ways to ad-
dress the curse of dimensionality and reduce computational cost, while k-shot analysis mirrors real-
world constraints where only a limited number of labeled samples per study are available. In this
section, we systematically compare how these two factors influence performance of both classical ML
models (with the meta-learning inspired RF baseline) and meta-learning models (Protonets), using
consistent data splits and evaluation protocols to enable fair comparison. By bringing these analyses
together, we aim to clarify whether either approach benefits from dimensionality reduction and whether
learning improves with increased data in the support set.

Our expectation is that dimensionality reduction will help with decreasing computational complexity by
reducing the number of features trained on while offering the possibility of improved model performance
due to noise reduction. One reason from literature is that this should be possible due to the existence
of functional redundancies in microbiome data.

Our expectation is that dimensionality reduction will help with decreasing computational complexity by
reducing the number of features trained on while offering the possibility of improved model performance
due to noise reduction. This should, inter alia, be possible due to the existence of functional redundan-
cies, whereby taxonomically different microbes perform overlapping metabolic roles, so collapsing the
feature space is unlikely to discard signals essential for classification.

By isolating the factors analyzed here, we establish a solid reference point and a set of practical insights
for future research.

6.3.1. Effect of Support Set Size: Protonets Improve, RFs Plateau
As explained before, the shot number (k) is the support set size of each class. Comparing the influence
of different k is important, as more data is expected to reduce the noise learned and improve perfor-
mance. But in the microbiome field, the amount of data to learn from is hard to increase by a lot, which
is our motivation for testing small changes in the data. As indicated, in the 25-shot setting the number
of studies tested on is only 20 which means that comparing to other shot numbers should be done on
the same 20 test studies. Thus, the groups visualized only contain 20 studies each.

Figure 6.4 shows the performance of the meta-learning inspired baseline and Protonets for different
shot numbers.
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Figure 6.4: CV F1-scores for the meta-learning inspired Dummy and RF methods, and Protonets for different k-shots for the
same test-studies. The corresponding mean±std values are given on top of each box. Number of shots is indicated on the

x-axis, with thicker outlines corresponding to higher shot numbers. Each group only contains the 20 test studies tested in the
25-shot setting.

It can be seen that the small increase in k does not change the performance of RF baseline models
drastically: the mean CV performance increased from 0.710 to 0.726. However, Protonets show bet-
ter performance when the shot number increases (namely an increase from 0.505 to 0.648), showing
promise for larger datasets. In addition, the variance of the performance is reducing, indicating that
more support examples help the model learn more stable and generalizable representations.

We also observe that at really low shot settings (e.g. around 2 shots), Protonets perform worse than
even the random classifier: mean CV performance of 0.505 vs 0.532 respectively, with a much larger
variance for Protonets. This means that adapting on a small number of support set examples is noisy
and can often results in harmful inductive bias, pushing the model below chance-level performance.

Since performance differences across shot numbers are minor for the baseline case and small for the
10- and 25-shot case, meta-learning starts performing well around 10-shots, and we have more studies
to test on in the 10-shot case, we focus on the 10-shot setting for the remainder of this chapter. And we
ignore the 2 and 5-shot cases, as Protonets basically perform like a random classifier.

Our hypothesis still is that higher-shot scenarios will increase performance and this can be tested with
more data.

6.3.2. PCA-Based Approaches Improve Classification With Fewer Features
Due to dimensionality reduction being helpful in dealing with high-dimensional, sparse data, we analyze
its effect on the performance of meta-learning inspired method and Protonets. For the exploratory
rationale behind our PCA settings, see Subsection B.2.2; we focus here on their effect on classification
accuracy.

From the discussion in the background and the appendix, dimensionality reduction of microbiome data
seems an interesting, promising avenue for the field to reduce computational load and improve perfor-
mance as microbiome data usually has many more features than samples. Reducing computational
load is even more important for meta-learning, as deep learning methods need more resources to train.
For this reason, comparing the performance of the methods with different dimensionality reduction
techniques can give insights into what additional steps in the preprocessing pipeline can benefit the
performance.

Here, we experiment with dimensionality reduction and report the experimental results for the three
representations discussed in Section 5.1:

• Full feature set – original data;
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• PCA projection – strong dimensionality reduction, loses direct taxon semantics. Number of
principal components is a hyperparameter;

• PCA-guided feature subset – interpretable compromise; number of features to select is a hy-
perparameter (can be at most 1500 so feature reduction has some significance) and number of
PCs has not much effect on this and is set to 500 to explain more of the variance of the data.

This setup helps us to find whether dimensionality reduction can help achieve a better classification
performance, mainly by getting rid of noise in data, and checking whether computational load can be
reduced.

Figure 6.5 shows the performance of the baseline and Protonet models with different dimensionality
reduction techniques.

Figure 6.5: CV F1-scores for meta-learning inspired RF methods showing influence of dimensionality reduction on
performance (10-shot scenario). The corresponding mean±std are given on top of each box. The transparency is related to the

dimensionality reduction technique.

As expected, dimensionality reduction seems to improve the classification performance of the RF mod-
els, namely from a mean CV performance of 0.705 to 0.732. In the meta-learning case, the same trend
is observed, namely an increase of mean CV performance from 0.610 to 0.623. These improvements
may be due to reduced noise when the number of features is lowered. In any case, achieving this while
using fewer features is computationally attractive.

Overall, dimensionality reduction using PCA improves or maintains performance while significantly re-
ducing feature dimensionality, suggesting that it can lower computational cost without hurting perfor-
mance. From the analysis in Subsection B.2.2, the PCA-guided feature selection method appeared
to provide good coverage only when retaining 90%+ of the taxa. Yet our experiments show that high
accuracy can already be achieved with fewer than 1500 features (i.e., under 60% coverage, which was
set as a hard upper bound during hyperparameter tuning). This indicates that PCA-guided feature
selection is also a useful approach for reducing dimensionality.

With PCA being a simple dimensionality method, we see the promise of dimensionality reduction meth-
ods in general. Based on this, the results from other studies, e.g. [50, 49, 80, 71, 38], and the ex-
istence of functional redundancies[6, 70] we see great potential for stronger dimensionality reduction
techniques like autoencoders.

These findings highlight practical considerations, such as dimensionality reduction and increasing sup-
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port set size, that can inform future microbiome modeling efforts.

6.4. Meta-Learning Falls Short of Random Forests
The main research question of this study is whether compared to classical machine learning models,
meta-learning can contribute to better learning in classification tasks with microbiome data. The re-
sults in the previous section, visualized in Figure 6.4 and Figure 6.5, show a multifaceted comparison
between these two methods. More detailed results are given in Appendix B for easier comparison.

We can also look at the study-wise performance of Protonets in comparison to the meta-learning in-
spired RF and Dummy classifier. Figure 6.6 shows that with the exception of some test studies, RF
drastically outperforms Protonets by a considerable margin, which looking at the 10-shot setting shows
a mean CV performance of 0.705 for RF vs 0.610 for Protonets.

(a) RF vs Protonet in 10-shot case (b) Dummy vs Protonet in 10-shot case

Figure 6.6: Study-wise performance comparison between Protonet and the meta-learning inspired baselines with RF and
Dummy. Each dot is the average score of the cross-validation performed. The size of the dots indicate the study size with colors

representing different diseases.

Thus, a well-tuned RF still offers the best trade-off between simplicity and performance for microbiome
classification.

6.4.1. The Performance Gap Is Statistically Significant
To address the research question whether compared to conventional baseline methods, meta-learning
can contribute to better learning in classification tasks with microbiome data, we tested whether Pro-
tonet’s F1 scores are systematically different from those of RF when both are evaluated on the same
unseen microbiome studies.

We formalized this as:

• Null hypothesis (H0): the typical paired difference in F1 equals 0.
• Alternative hypothesis (H1): ∆ ̸= 0 (two-sided).

A two-sided test was chosen because Protonet could be either better (by exploiting cross-study struc-
ture) or worse (e.g. due to overfitting or generalization issues).

The 34 paired∆F1-values, one for each leave-one-study-out evaluation in 10-shot case, are not guaran-
teed to be normally distributed, so we used the Wilcoxon signed-rank test1. To accompany the p-value

1SciPy implementation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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with an interpretable effect size, we computed a bias-corrected bootstrap 95% confidence interval (CI)
for the mean. See Section C.1 for details on how this is done.

Results
• Mean ∆F1 (Protonet - RF): 0.0943
• 95% CI: [−0.1245,−0.0622]

• p-value: p = 7× 10−6

The confidence interval lies entirely below zero, and theWilcoxon p-value is well below the conventional
α = 0.05 threshold. Hence we reject the null hypothesis that the median paired difference is zero and
conclude that Protonet’s typical F1 score is significantly lower than that of the RF.

The average deficit of 0.09 F1 points is large on the 0 − 1 scale and remains ∼ 0.06 even in the most
optimistic bootstrap resampling. Combined with the significant Wilcoxon test, this indicates that the
observed shortfall is neither a sampling artifact nor driven by a small subset of studies. In practical
terms, RF not only outperforms Protonet on average but does so with a margin that is likely to affect
downstream biological interpretation

6.5. Why Did Protonets Underperform?
The previous section established that Protonets lag behind the meta-learning inspired RF baseline
by 0.09 F1 on average, a gap that is statistically significant across all the 34 leave-one-study-out
evaluations. The inability of Protonet to match (let alone surpass) the baseline indicates that cross-
study information is not being captured effectively with the present architecture, training protocol, and/or
dataset.

In this diagnostic chapter, we therefore probe Protonets from multiple complementary angles for bet-
ter understanding of this underperformance. First, we ablate the encoder altogether, comparing the
standard model with a ”no-embedding” variant that uses raw support means as prototypes. We then
visualize both input- and embedding-space neighbourhoods with UMAPs, looking at cluster separation
with addition of some metrics, and move from there on to looking at how performance may depend
on feature space similarity of different studies and disease groups they belong to (see Section D.1 for
some info on the disease groups).

By triangulating these perspectives, we obtain a clearer picture of why meta-learning under-delivers
here and what ingredients are most likely to close the performance gap in future work.

6.5.1. Embedding Network Adds Little Benefit
Here, we look at how much added value the embeddings from Protonets have. Basically, in one set of
experiments we skip the embedding neural network inside the Protonet algorithm and directly get the
class representations (prototypes) of the support set from the raw original input data by calculating the
mean of the support set per class. The classes of the query samples are predicted by using the raw
query samples and finding to which prototype they are closest to. This analysis and the one in the next
subsection are meant to show the usefulness of learning an embedding space with Protonets.

Figure 6.7 shows the comparison of Protonets with and without the use of the embedding space. What
is surprising is that Protonet without using any embeddings is outperforming the standard Protonet
algorithm.

These results suggest that, for the present dataset, prototypes computed directly in the raw input space
perform just as well as those derived from the support set. In other words, the additional capacity of
the embedding network does not translate into better generalization and may even introduce harmful
variance here.

This could be due to data from different studies not sharing enough latent information that is transferable
between them, the network overfitting the small support sets during adaptation, the support set being
too small and not representative enough for the test set, or the network distorting naturally well-clustered
features. The analysis from the next subsection will shed some light on these.
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The results here underline two practical points: (i) always include a ”no-embedding” baseline when
benchmarking Protonet models, and (ii) when the raw features are low-dimensional or already discrimi-
native, the cost of learning an embedding can outweigh its benefits, unless, perhaps, additional training
data or larger support sets ultimately shift the balance.

Figure 6.7: Performance comparison of Protonet with and without the embedding network (10-shot case). The corresponding
mean±std values are given on top of each box. Protonet without embeddings is basically an algorithm that uses the mean of

the raw support set as the prototypes for each class and predicts the classes of the query samples with these prototypes based
on the raw query samples.

6.5.2. UMAP Projections Reveal Limited Class Separation in the Embedding Space
Seeing the results in the previous subsection, one hypothesis is that the embedding may be distorting
naturally well-clustered features for some studies. In here, we would like to take a step into visualizing
the data in a 2-dimensional space to get an idea of the change the embedding brings to the clustering
of the data. If the encoder adds useful structure, same-class points should contract and different-class
clusters should separate more cleanly.

Here, we use Uniform Manifold Approximation and Projection (UMAP), a non-linear manifold learning
algorithm that preserves local neighborhoods while providing faithful 2-D layouts for high-dimensional
data [45].

For clarity, only a selection of studies is shown here; full results for all 34 studies appear in Ap-
pendix B.3.3.

Results of selected studies
The figures here juxtapose input- and embedding-space 2-D UMAPs for the one representative fold for
the selected studies. Left plot is the projection of the original data and the right that of the embedded
data. Each point represents a sample from the study, colored by class (green = Healthy, red = Disease),
and shaped by type: support (circles), query (diamonds), and prototypes (stars). The reason for sepa-
rating the support and query set in the visualizations is to get an idea of why the prototypes are where
they are and the performance is as it is. In the caption of the sub-figures, the F1-score for the corre-
sponding study and analysis metrics are given in addition to the Silhouette coefficient, Trustworthiness
, and Continuity.

From the UMAPs, it seems that in most cases the samples in the embedding space are easily pulled
apart by the UMAP but that the classification is not invariably improving: the clustering of samples is
still a challenge in the embedding space. The Silhouette coefficient indicates this too as on average it
shows a decrease when going when original to embedding space (∼ −0.003 which is negligible small);
but for both the original space and embedding space the Silhouette coefficient is small on average
(0.013235 and 0.004 respectively), meaning that overlap in the high dimensional space is substantial.
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(a) F1 : 0.73 | Silh : 0.006 | T : 0.991 | C : 0.988 (b) F1 : 0.53 | Silh : −0.069 | T : 0.766 | C : 0.758

(c) F1 : 0.64 | Silh : 0.012 | T : 0.983 | C : 0.981 (d) F1 : 0.71 | Silh : 0.047 | T : 0.842 | C : 0.837

Figure 6.8: 2-D UMAP projection of support and query samples (a) HuangR_2020 (studying immune disease) and (b)
JieZ_2017 (studying cardiometabolic disease). Left plot is the projection of the original data and the right that of the
embedded data. Each point represents a sample from the study, colored by class (green = Healthy, red = Disease), and

shaped by type: support (circles), query (diamonds), and prototypes (stars).

In addition, the trustworthiness and continuity scores decrease for the embedded samples (on average
with ∼ −0.3, which means that the embedding space is harder for UMAP to reduce the dimensions of.
This can be a sign of the embedding network not creating a cleaner, more ”manifold-like” representa-
tions. This by itself doesn’t prove the embedding is useless as it might encode task-relevant, non-local
signals that boost a downstream classifier, but it does signal that neighbourhood-level information de-
teriorated.

We also had the expectation that disease groups with greater representation in the dataset, i.e. those
associated with multiple studies (see Section D.1 for overview of disease groups), would benefit from
better embeddings compared to underrepresented disease groups with only one or two studies. How-
ever, based on all the UMAP results together this was not observed, reinforcing the idea that even
similar studies may require distinct embedding spaces. This makes us question how similar feature
space similarity affects performance and whether studies from larger disease groups will perform better.
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6.5.3. High Feature-Space Similarity ̸= High Performance
In Chapter 3, we have already stated that feature space heterogeneity of feature spaces between
studies is prevalent for microbiome studies and in the previous subsection seen that even when a
disease group with greater representation is being studied, the learned embedding is not always strong.
Here, we take a look at whether the feature space similarity between studies can be related to the
classification performance.

From Figure 6.9, we can see that the performance of the different models does increase monotonically
with higher feature space similarity.

In addition, one expectation was to see disease groups that occur more often in the dataset to have a
better summed Jaccard similarity, but from Figure 6.10 we can see that YanQ_2017 (kidney disease) has
a higher Jaccard similarity compared to LiuP_2021 (cardiometabolic disease). This could be related to
our functional redundancy discussion in Subsection 6.3.2, as taxonomic composition can indeed differ
a lot but functional effects can be the same.

Figure 6.9: F1 score of different models for different sum of the Jaccard similarity.

Another lesson from this is that when using data from many different studies, simply taking the union of
the feature set of the different studies may be counterproductive as the feature space similarity is low in
general and sparsity and dimensionality will increase without adding new information. It may be better
to make use of methods able to handle heterogeneous feature spaces, e.g. heterogeneous transfer
learning methods [35].

In Subsection B.3.1, a different perspective is given on the above Jaccard similarity analysis.
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Figure 6.10: Jaccard similarity of the feature space between studies. The Jaccard similarity of a study (on the row) between
the union of the feature space of all the other studies is given on the right y-axis. The table gives the F1-scores closest to the
median F1-score per study for the Protonet without (original), Protonet with embedding, and meta-learning inspired RF. In

addition, the disease group the study belongs to is given.



7
Conclusion and Future Work

This research aimed to benchmark the classification performance of Prototypical networks (a meta-
learning method) against classical machine learning models (RFs, XGBoost, andMLPs) onmicrobiome
taxonomic abundance data. Motivated by the claims that meta-learning enables better performance
when there is data scarcity and when the environment is changing, we began with the expectation that
Protonets would outperform classical machine learning models in microbiome classification tasks.

Along the way towards this goal, we have tried to find out how some other factors influence the clas-
sification performance of the models, to create an experimental setup useful for the benchmarking
considered, and find practical steps that can be helpful to researchers in the field.

Based on initial experiments with classical machine learning models, we proposed a meta-learning in-
spired baseline strategy to enable fair benchmarking against meta-learning (and related transfer learn-
ing) methods. With this, we have implemented data sampling utilities useful for meta-learning within
the context of multi-study microbiome data, see Section 5.2.

We have also confirmed the strong performance of the widely used RF models and emphasized the
necessity for the use of an appropriate dummy classifier as a baseline to compare any model against.

Before explicit comparison of the meta-learning inspired baseline with Protonets, our analysis of the
influence of support set size (shot number) showed no gain for the baseline model in the low shot set-
tings considered (namely 2, 5, 10, and 25 shot scenarios); but for Protonets both accuracy and stability
improved as expected. Our believe still is that higher shot settings can improve both the performance
of the baseline and meta-learning methods.

From our analysis on dimensionality reduction, the conclusion is that simple PCA already reduces
dimensionality with minimal performance loss (and sometimes even gains), easing computational bur-
den. We are also able to keep interpretability by using PCA-guided feature selection. Based on this,
the results from other studies (e.g. [50, 49, 80, 71, 38]) and the existence of functional redundan-
cies[6, 70], our recommendation is to look further into strong dimensionality reduction techniques like
autoencoders.

To return to our central benchmarking question of this research, where we asked ”Does meta-learning
with Prototypical networks outperform classical machine learning models in few-shot microbiome clas-
sification?”, our experiments offer a clear, data-driven answer. Across all leave-one-study-out evalua-
tions, shot regimes (2, 5, 10, 25) and representation settings (full, PCA projection, PCA-guided feature
subset), Prototypical Networks consistently fell short of a well-tuned RF baseline. We have analyzed
this further and found some points of consideration:

• Encoder utility of Protonets is marginal at best: Ablation showed that removing the Protonet
embedding network altogether did not change the performance significantly. This implies that,
given current data scale and heterogeneity, the learned representation does not add discrimina-
tive power and sometimes distorts naturally separable structures.

37
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• Size of the support set is a hard bottleneck: Protonet accuracy and variance improved steadily
from 2- to 25-shot settings, yet still fell short of RF. RFs already performed well at low shot settings
and did not improve drastically, giving them a practical edge in truly low-shot settings.

• Cross-study taxonomic overlap is not a free lunch: Jaccard similarity between a test study
and the training pool did not correlate with Protonet gains. Even studies sharing many taxa with
the training set, saw no uplift, indicating that naively pooling heterogeneous feature spaces is
insufficient; domain alignment or techniques able to handle heterogeneous feature spaces may
be required.

We also hope that the benchmarking pipeline proposed here can serve as the foundation for a community-
wide standard: one that can be iteratively improved, extended to new data modalities, and adopted as
a reproducible reference framework for future microbiome ML studies.

7.1. Limitations and Future Work
While this thesis has provided a systematic benchmark of meta-learning versus classical machine learn-
ing on microbiome data, several factors constrain the generalizability and interpretability of the results:

1. Gut-only data modality

This study focused exclusively on taxonomic abundance profiles derived from gut microbiome
samples. However, knowing that co-occurence patterns and functional redundancies exist, and
that with enough data shared fundamental patterns of microbiome can be found, extending data
to include other biomes, and with increase in size, is an important step to take.

2. Low sample sizes

Despite the aggregated 36 studies, the number of labeled samples per disease cohort were small.
The small per study sample sizes exacerbate class imbalance, which can skew model training
and evaluation (especially in few-shot regimes). We have tried to deal with this problem during
evaluations by cross-validation and use of a dummy classifier, but this does not help improve
training. In addition, due to the heterogeneity in taxa representation, our models may not fully
capture the shared information if data is limited.

3. Limited computational budget

Resource constraints restricted the scope of our hyperparameter optimization. With only amodest
Optuna trial budget, we may not have fully explored the parameter spaces of classical models
and more importantly Protonets, which are especially sensitive to tuning and have a larger hy-
perparameter space. This ”undertuning” could have narrowed the observed performance gap
between baselines and meta-learners, as Protonets had a more complex hyperparameter space
to tune.

4. Restriction to few-shot scenarios

Our experiments concentrated on low-shot conditions (2, 5, 10, and 25 support examples) under
the assumption that meta-learning excels compared to other methods when data are scarce. How-
ever, the performance trajectories in higher-shot regimes remain unexplored here; it is possible
that both classical and meta-learning methods behave differently as sample sizes increase.

Building on the limitations, several concrete research avenues emerge that could strengthen both the
generalizability and the biological insight of few-shot microbiome classifiers. First, the present bench-
mark is constrained to taxonomic tables from the human gut. Broadening the corpus to encompass
other body sites (oral, skin, vaginal) and even non-human or environmental biomes, paired with more
data, would introduce different community structures, helping a meta-learner disentangle study-specific
noise from transferable biological patterns.

Second, our experiments showed that simple dimensionality reduction techniques are already promis-
ing. Future work should therefore explore more complex dimensionality reduction techniques, such
as variational or denoising autoencoders, that respect the compositional constraints of abundance
data and maybe use some prior information. Such representations could supply both classical and
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meta-learning models with more meaningful features without sacrificing interpretability and treat high
dimensionality problems.

A final avenue worth exploring is the use of self-supervised learning to leverage the large volume of
unlabeled microbiome data. Recent methods such as STUNT[48], which introduces self-supervision
specifically for tabular data, and microbial representation learning approaches trained on millions of
unlabeled profiles[56], have shown that it is possible to extract useful structure and transferable features
without requiring manual labels. Applying such methods to microbiome data could help overcome the
current limitations posed by small labeled datasets and improve downstream classification performance
in low-data regimes.



References

[1] Laith Alzubaidi et al. “A survey on deep learning tools dealing with data scarcity: definitions,
challenges, solutions, tips, and applications”. In: Journal of Big Data 10.1 (2023), p. 46.

[2] Steven Benowitz. Human microbiome meeting highlights research progress in a field already
beginning to matter. url: https://www.genome.gov/27554771/human-microbiome-meeting-
highlights-research-progress-in-a-field-thats-already-beginning-to-matter#:~:
text=trillions%20of%20microorganisms%20that%20inhabit,microbes%20cause%20sicknes
s%20and%20disease. (accessed: 13.01.2025).

[3] Sebastiano Busato et al. “Compositionality, sparsity, spurious heterogeneity, and other data-
driven challenges for machine learning algorithms within plant microbiome studies”. In: Current
opinion in plant biology 71 (2023), p. 102326.

[4] Samuel Chaffron et al. “A global network of coexisting microbes from environmental and whole-
genome sequence data”. In: Genome research 20.7 (2010), pp. 947–959.

[5] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In: Journal of arti-
ficial intelligence research 16 (2002), pp. 321–357.

[6] Huaihai Chen et al. “Functional redundancy in soil microbial community based on metagenomics
across the globe”. In: Frontiers in microbiology 13 (2022), p. 878978.

[7] Hui Chong et al. “EXPERT: transfer learning-enabled context-aware microbial community classi-
fication”. In: Briefings in Bioinformatics 23.6 (2022). issn: 1467-5463 1477-4054. doi: 10.1093/
bib/bbac396.

[8] U. Gülfem Elgün Çiftcioğlu and O. Ufuk Nalbanoglu. “DeepGum: Deep feature transfer for gut
microbiome analysis using bottleneck models”. In: Biomedical Signal Processing and Control 91
(2024). issn: 17468094. doi: 10.1016/j.bspc.2024.105984.

[9] John F Cryan and Timothy G Dinan. “Mind-altering microorganisms: the impact of the gut micro-
biota on brain and behaviour”. In: Nature reviews neuroscience 13.10 (2012), pp. 701–712.

[10] John FCryan et al. “The gut microbiome in neurological disorders”. In: The Lancet Neurology 19.2
(2020), pp. 179–194. issn: 1474-4422. doi: https://doi.org/10.1016/S1474-4422(19)30356-
4. url: https://www.sciencedirect.com/science/article/pii/S1474442219303564.

[11] John F. Cryan et al. “The Microbiota-Gut-Brain Axis”. In: Physiological Reviews 99.4 (2019),
pp. 1877–2013. issn: 0031-9333. doi: 10.1152/physrev.00018.2018.

[12] M. M. David et al. “Revealing General Patterns of Microbiomes That Transcend Systems: Poten-
tial and Challenges of Deep Transfer Learning”. In: Msystems 7.1 (2022). Zh2le Times Cited:3
Cited References Count:47. issn: 2379-5077. doi: ARTNe01058-2110.1128/msystems.01058-21.
url: HYPERLINK%20%22http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=
2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=
000760774900006%22%3CGo%20to%20ISI%3E://WOS:000760774900006.

[13] Maude M. David et al. “Revealing General Patterns of Microbiomes That Transcend Systems:
Potential and Challenges of Deep Transfer Learning”. In: mSystems 7.1 (2022), e01058–21. doi:
10 . 1128 / msystems . 01058 - 21. eprint: https : / / journals . asm . org / doi / pdf / 10 . 1128 /
msystems.01058-21. url: https://journals.asm.org/doi/abs/10.1128/msystems.01058-21.

[14] FrancescaDe Filippis et al. “Specific gut microbiome signatures and the associated pro-inflamatory
functions are linked to pediatric allergy and acquisition of immune tolerance”. In: Nature commu-
nications 12.1 (2021), p. 5958.

[15] Natasha Katherine Dudek et al. “Supervised machine learning for microbiomics: bridging the gap
between current and best practices”. In: Machine Learning with Applications (2024), p. 100607.

40

https://www.genome.gov/27554771/human-microbiome-meeting-highlights-research-progress-in-a-field-thats-already-beginning-to-matter#:~:text=trillions%20of%20microorganisms%20that%20inhabit,microbes%20cause%20sickness%20and%20disease
https://www.genome.gov/27554771/human-microbiome-meeting-highlights-research-progress-in-a-field-thats-already-beginning-to-matter#:~:text=trillions%20of%20microorganisms%20that%20inhabit,microbes%20cause%20sickness%20and%20disease
https://www.genome.gov/27554771/human-microbiome-meeting-highlights-research-progress-in-a-field-thats-already-beginning-to-matter#:~:text=trillions%20of%20microorganisms%20that%20inhabit,microbes%20cause%20sickness%20and%20disease
https://www.genome.gov/27554771/human-microbiome-meeting-highlights-research-progress-in-a-field-thats-already-beginning-to-matter#:~:text=trillions%20of%20microorganisms%20that%20inhabit,microbes%20cause%20sickness%20and%20disease
https://doi.org/10.1093/bib/bbac396
https://doi.org/10.1093/bib/bbac396
https://doi.org/10.1016/j.bspc.2024.105984
https://doi.org/https://doi.org/10.1016/S1474-4422(19)30356-4
https://doi.org/https://doi.org/10.1016/S1474-4422(19)30356-4
https://www.sciencedirect.com/science/article/pii/S1474442219303564
https://doi.org/10.1152/physrev.00018.2018
https://doi.org/ARTN e01058-21 10.1128/msystems.01058-21
HYPERLINK%20%22http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000760774900006%22%3CGo%20to%20ISI%3E://WOS:000760774900006
HYPERLINK%20%22http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000760774900006%22%3CGo%20to%20ISI%3E://WOS:000760774900006
HYPERLINK%20%22http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000760774900006%22%3CGo%20to%20ISI%3E://WOS:000760774900006
https://doi.org/10.1128/msystems.01058-21
https://journals.asm.org/doi/pdf/10.1128/msystems.01058-21
https://journals.asm.org/doi/pdf/10.1128/msystems.01058-21
https://journals.asm.org/doi/abs/10.1128/msystems.01058-21


References 41

[16] Claire Duvallet et al. “Meta-analysis of gut microbiome studies identifies disease-specific and
shared responses”. In: Nature communications 8.1 (2017), p. 1784.

[17] Sergey Feranchuk et al. “Evaluating the use of diversity indices to distinguish between microbial
communities with different traits”. In: Research in Microbiology 169.4-5 (2018), pp. 254–261.

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adapta-
tion of deep networks”. In: International conference on machine learning. PMLR. 2017, pp. 1126–
1135.

[19] Chelsea Finn and Sergey Levine. “Meta-Learning and Universality: Deep Representations and
Gradient Descent can Approximate any Learning Algorithm”. In: CoRR abs/1710.11622 (2017).
arXiv: 1710.11622. url: http://arxiv.org/abs/1710.11622.

[20] Jane A Foster and Karen-Anne McVey Neufeld. “Gut–brain axis: how the microbiome influences
anxiety and depression”. In: Trends in neurosciences 36.5 (2013), pp. 305–312.

[21] Jessica Galloway-Peña and Blake Hanson. “Tools for Analysis of the Microbiome”. In: Digestive
diseases and sciences 65 (2020), pp. 674–685.

[22] Victor Garcia and Joan Bruna. Few-Shot Learning with Graph Neural Networks. 2018. arXiv:
1711.04043 [stat.ML]. url: https://arxiv.org/abs/1711.04043.

[23] Gregory B Gloor et al. “Microbiome datasets are compositional: and this is not optional”. In: Fron-
tiers in microbiology 8 (2017), p. 2224.

[24] W. W. B. Goh, W. Wang, and L. Wong. “Why Batch Effects Matter in Omics Data, and How to
Avoid Them”. In: Trends Biotechnol 35.6 (2017), pp. 498–507. issn: 1879-3096 (Electronic) 0167-
7799 (Linking). doi: 10.1016/j.tibtech.2017.02.012. url: https://www.ncbi.nlm.nih.gov/
pubmed/28351613.

[25] Wilson Wen Bin Goh, Chern Han Yong, and Limsoon Wong. “Are batch effects still relevant in
the age of big data?” In: Trends in Biotechnology 40.9 (2022), pp. 1029–1040. issn: 0167-7799.
doi: https://doi.org/10.1016/j.tibtech.2022.02.005. url: https://www.sciencedirect.
com/science/article/pii/S0167779922000361.

[26] Jacopo Grilli, Christine A. Tataru, and Maude M. David. “Decoding the language of microbiomes
using word-embedding techniques, and applications in inflammatory bowel disease”. In: PLOS
Computational Biology 16.5 (2020). issn: 1553-7358. doi: 10.1371/journal.pcbi.1007859.

[27] H Soon Gweon et al. “The impact of sequencing depth on the inferred taxonomic composition
and AMR gene content of metagenomic samples”. In: Environmental Microbiome 14.1 (2019),
pp. 1–15.

[28] National Institutes of Health. Science Highlights. url: https://commonfund.nih.gov/human-
microbiome-hmp/science-highlights. (accessed: 08.01.2025).

[29] Ricardo HernándezMedina et al. “Machine learning and deep learning applications inmicrobiome
research”. In: ISME Communications 2.1 (2022). issn: 2730-6151. doi: 10.1038/s43705-022-
00182-9.

[30] Asmaul Hosna et al. “Transfer learning: a friendly introduction”. In: Journal of Big Data 9.1 (2022).
issn: 2196-1115. doi: 10.1186/s40537-022-00652-w.

[31] Timothy M Hospedales et al. “Meta-Learning in Neural Networks: A Survey”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2021), pp. 1–1. issn: 0162-8828. doi: 10.
1109/tpami.2021.3079209.

[32] Kaijian Hou et al. “Microbiota in health and diseases”. In: Signal transduction and targeted therapy
7.1 (2022), p. 135.

[33] Mike Huisman, Jan N. Van Rijn, and Aske Plaat. “A survey of deep meta-learning”. In: Artificial
Intelligence Review 54.6 (2021), pp. 4483–4541. issn: 0269-2821. doi: 10.1007/s10462-021-
10004-4.

[34] Yanrong Ji et al. “DNABERT: pre-trained Bidirectional Encoder Representations from Transform-
ers model for DNA-language in genome”. In: Bioinformatics 37.15 (2021), pp. 2112–2120.

https://arxiv.org/abs/1710.11622
http://arxiv.org/abs/1710.11622
https://arxiv.org/abs/1711.04043
https://arxiv.org/abs/1711.04043
https://doi.org/10.1016/j.tibtech.2017.02.012
https://www.ncbi.nlm.nih.gov/pubmed/28351613
https://www.ncbi.nlm.nih.gov/pubmed/28351613
https://doi.org/https://doi.org/10.1016/j.tibtech.2022.02.005
https://www.sciencedirect.com/science/article/pii/S0167779922000361
https://www.sciencedirect.com/science/article/pii/S0167779922000361
https://doi.org/10.1371/journal.pcbi.1007859
https://commonfund.nih.gov/human-microbiome-hmp/science-highlights
https://commonfund.nih.gov/human-microbiome-hmp/science-highlights
https://doi.org/10.1038/s43705-022-00182-9
https://doi.org/10.1038/s43705-022-00182-9
https://doi.org/10.1186/s40537-022-00652-w
https://doi.org/10.1109/tpami.2021.3079209
https://doi.org/10.1109/tpami.2021.3079209
https://doi.org/10.1007/s10462-021-10004-4
https://doi.org/10.1007/s10462-021-10004-4


References 42

[35] Siraj Khan et al. “Heterogeneous transfer learning: Recent developments, applications, and chal-
lenges”. In: Multimedia Tools and Applications 83.27 (2024), pp. 69759–69795.

[36] Rob Knight et al. “Best practices for analysing microbiomes”. In: Nature Reviews Microbiology
16.7 (2018), pp. 410–422. issn: 1740-1526. doi: 10.1038/s41579- 018- 0029- 9. url: https:
//www.nature.com/articles/s41579-018-0029-9.pdf.

[37] Bablu Kumar et al. “A comprehensive overview of microbiome data in the light of machine learning
applications: categorization, accessibility, and future directions”. In: Frontiers in microbiology 15
(2024), p. 1343572.

[38] Vuong Le et al. “Deep in the bowel: highly interpretable neural encoder-decoder networks predict
gut metabolites from gut microbiome”. In: BMC genomics 21 (2020), pp. 1–15.

[39] Karla A Lee et al. “Cross-cohort gut microbiome associations with immune checkpoint inhibitor
response in advanced melanoma”. In: Nature medicine 28.3 (2022), pp. 535–544.

[40] Wodan Ling et al. “Batch effects removal for microbiome data via conditional quantile regression”.
In: Nature communications 13.1 (2022), p. 5418.

[41] Catherine A Lozupone et al. “Diversity, stability and resilience of the human gut microbiota”. In:
Nature 489.7415 (2012), pp. 220–230.

[42] Jingjie Luo et al. “Meta-learning with elastic prototypical network for fault transfer diagnosis of
bearings under unstable speeds”. In: Reliability Engineering System Safety 245 (2024). issn:
09518320. doi: 10.1016/j.ress.2024.110001.

[43] Bin Ma et al. “Earth microbial co-occurrence network reveals interconnection pattern across mi-
crobiomes”. In: Microbiome 8 (2020), pp. 1–12.

[44] Laura Judith Marcos-Zambrano et al. “Applications of Machine Learning in Human Microbiome
Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treat-
ment”. In: Frontiers in Microbiology 12 (2021). issn: 1664-302X. doi: 10 . 3389 / fmicb . 2021 .
634511.

[45] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and Projection”. In: The Journal
of Open Source Software 3.29 (2018), p. 861.

[46] Donald T. Mcknight et al. “Methods for normalizing microbiome data: An ecological perspective”.
In: Methods in Ecology and Evolution 10.3 (2019), pp. 389–400. issn: 2041-210X. doi: 10.1111/
2041-210x.13115.

[47] Alexander Moore and Max Bell. “XGBoost, a novel explainable AI technique, in the prediction of
myocardial infarction: a UK Biobank cohort study”. In: Clinical Medicine Insights: Cardiology 16
(2022), p. 11795468221133611.

[48] Jaehyun Nam et al. STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unla-
beled Tables. 2023. arXiv: 2303.00918 [cs.LG]. url: https://arxiv.org/abs/2303.00918.

[49] Min Oh and Liqing Zhang. “DeepGeni: Deep generalized interpretable autoencoder elucidates
gut microbiota for better cancer immunotherapy”. In: Scientific Reports 13.1 (2023), p. 4599.

[50] Min Oh and Liqing Zhang. “DeepMicro: deep representation learning for disease prediction based
on microbiome data”. In: Scientific reports 10.1 (2020), p. 6026.

[51] Boris Oreshkin, PauRodríguez López, and Alexandre Lacoste. “Tadam: Task dependent adaptive
metric for improved few-shot learning”. In: Advances in neural information processing systems
31 (2018).

[52] Georgios Papoutsoglou et al. “Machine learning approaches in microbiome research: challenges
and best practices”. In: Frontiers in microbiology 14 (2023), p. 1261889.

[53] Nikos Pechlivanis et al. “Microbial co-occurrence network demonstrates spatial and climatic trends
for global soil diversity”. In: Scientific Data 11.1 (2024), p. 672.

[54] Huimin Peng. “A comprehensive overview and survey of recent advances in meta-learning”. In:
arXiv preprint arXiv:2004.11149 (2020).

[55] Quintin Pope et al. “Learning a deep language model for microbiomes: the power of large scale
unlabeled microbiome data”. In: bioRxiv (2023). doi: 10.1101/2023.07.17.549267.

https://doi.org/10.1038/s41579-018-0029-9
https://www.nature.com/articles/s41579-018-0029-9.pdf
https://www.nature.com/articles/s41579-018-0029-9.pdf
https://doi.org/10.1016/j.ress.2024.110001
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.1111/2041-210x.13115
https://doi.org/10.1111/2041-210x.13115
https://arxiv.org/abs/2303.00918
https://arxiv.org/abs/2303.00918
https://doi.org/10.1101/2023.07.17.549267


References 43

[56] Quintin Pope et al. “Learning a deep language model for microbiomes: the power of large scale
unlabeled microbiome data”. In: PLOS Computational Biology 21.5 (2025), e1011353.

[57] Fernando Puente-Sánchez et al. “Cross-biome microbial networks reveal functional redundancy
and suggest genome reduction through functional complementarity”. In: Communications biology
7.1 (2024), p. 1046.

[58] Timothy G Raben et al. “Biobank-scale methods and projections for sparse polygenic prediction
from machine learning”. In: Scientific Reports 13.1 (2023), p. 11662.

[59] Ravi Ranjan et al. “Analysis of themicrobiome: Advantages of whole genome shotgun versus 16S
amplicon sequencing”. In: Biochemical and biophysical research communications 469.4 (2016),
pp. 967–977.

[60] L. Richardson et al. “MGnify: the microbiome sequence data analysis resource in 2023”. In: Nu-
cleic Acids Res 51.D1 (2023), pp. D753–D759. doi: 10.1093/nar/gkac1080. url: https://www.
ncbi.nlm.nih.gov/pubmed/36477304.

[61] Lorna Richardson et al. “MGnify: the microbiome sequence data analysis resource in 2023”. In:
Nucleic acids research 51.D1 (2023), pp. D753–D759.

[62] Stefano Romano et al. “Machine learning-based meta-analysis reveals gut microbiome alter-
ations associated with Parkinson’s disease”. In: Nature Communications 16.1 (2025), pp. 1–17.

[63] Irwin Ross et al. “Chemformer: a pre-trained transformer for computational chemistry”. In: Ma-
chine Learning : Science and Technology 3.1 (Mar. 2022). Copyright - © 2022 The Author(s). Pub-
lished by IOPPublishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0
(the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content
in accordance with the terms of the License; Last updated - 2024-10-16, p. 015022.

[64] Robert F Schwabe and Christian Jobin. “Themicrobiome and cancer”. In:Nature Reviews Cancer
13.11 (2013), pp. 800–812.

[65] Justin P Shaffer et al. “Standardized multi-omics of Earth’s microbiomes reveals microbial and
metabolite diversity”. In: Nature microbiology 7.12 (2022), pp. 2128–2150.

[66] Gil Sharon et al. “The central nervous system and the gut microbiome”. In: Cell 167.4 (2016),
pp. 915–932.

[67] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot learning”. In:
Advances in neural information processing systems 30 (2017).

[68] Wen Sun et al. “A population-scale analysis of 36 gut microbiome studies reveals universal
species signatures for common diseases”. In: npj Biofilms and Microbiomes 10.1 (2024). issn:
2055-5008. doi: 10.1038/s41522-024-00567-9.

[69] Marco Teixeira et al. “A review of machine learning methods for cancer characterization from
microbiome data”. In: NPJ Precision Oncology 8.1 (2024), p. 123.

[70] Liang Tian et al. “Deciphering functional redundancy in the human microbiome”. In: Nature com-
munications 11.1 (2020), p. 6217.

[71] Hanaa Torkey et al. “A novel deep autoencoder based survival analysis approach for microarray
dataset”. In: PeerJ Computer Science 7 (2021), e492.

[72] Eleni Triantafillou et al. “Meta-dataset: A dataset of datasets for learning to learn from few exam-
ples”. In: arXiv preprint arXiv:1903.03096 (2019).

[73] Peter J Turnbaugh et al. “A core gut microbiome in obese and lean twins”. In: nature 457.7228
(2009), pp. 480–484.

[74] Peter J Turnbaugh et al. “An obesity-associated gut microbiome with increased capacity for en-
ergy harvest”. In: nature 444.7122 (2006), pp. 1027–1031.

[75] Anna Vettoruzzo et al. “Advances and Challenges in Meta-Learning: A Technical Review”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 46.7 (2024), pp. 4763–4779.
issn: 0162-8828. doi: 10.1109/tpami.2024.3357847.

[76] Benyou Wang et al. “Pre-trained language models in biomedical domain: A systematic survey”.
In: ACM Computing Surveys 56.3 (2023), pp. 1–52.

https://doi.org/10.1093/nar/gkac1080
https://www.ncbi.nlm.nih.gov/pubmed/36477304
https://www.ncbi.nlm.nih.gov/pubmed/36477304
https://doi.org/10.1038/s41522-024-00567-9
https://doi.org/10.1109/tpami.2024.3357847


References 44

[77] Haifeng Wang et al. “Pre-Trained Language Models and Their Applications”. In: Engineering 25
(2023), pp. 51–65. issn: 2095-8099. doi: https://doi.org/10.1016/j.eng.2022.04.024. url:
https://www.sciencedirect.com/science/article/pii/S2095809922006324.

[78] Yiwen Wang and Kim-Anh Lêcao. “Managing batch effects in microbiome data”. In: Briefings in
Bioinformatics 21.6 (2020), pp. 1954–1970. issn: 1477-4054. doi: 10.1093/bib/bbz105.

[79] Sophie Weiss et al. “Normalization and microbial differential abundance strategies depend upon
data characteristics”. In: Microbiome 5 (2017), pp. 1–18.

[80] Dinithi Wickramaratne, Rupika Wijesinghe, and Ruvan Weerasinghe. “Human gut microbiome
data analysis for disease likelihood prediction using autoencoders”. In: 2021 21st International
Conference on Advances in ICT for Emerging Regions (ICter). IEEE. 2021, pp. 49–54.

[81] Yuanqi Wu et al. “Identification of microbial markers across populations in early detection of
colorectal cancer”. In: Nature communications 12.1 (2021), p. 3063.

[82] Yijia Xu, Yuchi Ma, and Zhou Zhang. “Self-supervised pre-training for large-scale crop mapping
using Sentinel-2 time series”. In: ISPRS Journal of Photogrammetry and Remote Sensing 207
(2024), pp. 312–325. issn: 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2023.12.
005. url: https://www.sciencedirect.com/science/article/pii/S0924271623003386.

[83] Binghao Yan et al. Recent advances in deep learning and language models for studying the
microbiome. 2024. arXiv: 2409.10579 [q-bio.QM]. url: https://arxiv.org/abs/2409.10579.

[84] Yongzhi Yang et al. “Dysbiosis of human gut microbiome in young-onset colorectal cancer”. In:
Nature communications 12.1 (2021), p. 6757.

[85] Liang Zeng et al. “A Meta-learning Method for Few-shot Bearing Fault Diagnosis under Variable
Working Conditions”. In: Measurement Science and Technology 35 (Feb. 2024). doi: 10.1088/
1361-6501/ad28e7.

[86] Yiqian Zhang et al. “Review and revamp of compositional data transformation: A new framework
combining proportion conversion and contrast transformation”. In: Computational and Structural
Biotechnology Journal 23 (2024), pp. 4088–4107. issn: 2001-0370. doi: 10.1016/j.csbj.2024.
11.003.

[87] Ruwen Zhou et al. “Data pre-processing for analyzing microbiome data – A mini review”. In:
Computational and Structural Biotechnology Journal 21 (2023), pp. 4804–4815. issn: 2001-0370.
doi: 10.1016/j.csbj.2023.10.001.

[88] Qiang Zhu et al. “Application of deep learning in microbiome”. In: Journal of Artificial Intelligence
for Medical Sciences 1.1 (2020), pp. 23–29.

https://doi.org/https://doi.org/10.1016/j.eng.2022.04.024
https://www.sciencedirect.com/science/article/pii/S2095809922006324
https://doi.org/10.1093/bib/bbz105
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2023.12.005
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2023.12.005
https://www.sciencedirect.com/science/article/pii/S0924271623003386
https://arxiv.org/abs/2409.10579
https://arxiv.org/abs/2409.10579
https://doi.org/10.1088/1361-6501/ad28e7
https://doi.org/10.1088/1361-6501/ad28e7
https://doi.org/10.1016/j.csbj.2024.11.003
https://doi.org/10.1016/j.csbj.2024.11.003
https://doi.org/10.1016/j.csbj.2023.10.001


A
Training Details for the Models

In here, all the details deemed necessary with regards to the different baseline and meta-learning
methods are explained.

A.1. Baseline Methods
To ensure a robust evaluation of the baseline classifiers, we employed a nested cross-validation setup
with 10 outer folds and 3 inner folds, with 80/20 shuffle splits. The inner loop was used for hyperparam-
eter tuning, conducted using 50 trials using the default Optuna sampler (with the multivariate setting
set to True).

Hyperparameters unrelated to the models included:

• number of components after feature reduction: [0, 1500] with steps of 100 and 0 meaning no
feature reduction.

The model specific hyperparameters included the following:

• Random forests:

– n_estimators: [10, 500] with steps of 10
– max_depth: [10, 200] with steps of 10
– criterion: gini or entropy
– bootstrap: True or False
– oob_score: (False, ”F1”)

• XGBoost:

– learning_rate: [0.2, 0.1]
– gamma: [0, 3]
– max_depth: [3, 8]
– reg_lambda: [0.0, 1.0]
– reg_alpha: [0.0, 1.0]

• Multi-layer perceptron:

– batch_size: [8, 64] with steps of 8
– learning rate: continuous in [10−5, 10−2]

– num_layers: [1, 4]
– dropout_rate: [0.0, 0.7] with steps of 0.1
– base_size (initial layer size): [16, 1008] with steps of 32
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– reduction_factor (per layer): [1.0, 3.0] with steps of 0.5
– layer_sizes: dynamically determined based on base_size and reduction_factor, decreas-
ing with depth

– layer_norm: True or False
– batch_norm: True or False, but not used when layer_norm is True

The best-performing hyperparameter configuration from the inner loop was used to train the model on
the full outer training set, and the performance was evaluated on the corresponding outer test fold.

The above belongs to all the different baseline methods, including the meta-learning inspired one. How-
ever, instead of nested CV, the CV loops are performed separately as shown in Figure 5.6.

A.2. Meta-Learning Methods
Again, for statistically significant experimentation, cross-validation has been used and as indicated in
Section 5.2 two separate CV loops have been used instead of a nested one. The hyperparameter
optimization CV loop repeated the experiments for each trial 5 times with at least 30 trials in total, and
the test CV loop used 10 folds. For all these, reproducible data splits are used. Again, the default
Optuna sampler (with the multivariate setting set to True) is used. The hyperparameters optimized for
during meta-learning are the following:

• Training Hyperparameters

– starting_lr: log-uniform in [5× 10−7, 5× 10−4]

– scheduler_gamma: [0.1, 1.0] with steps of 0.1
– weight_decay: [0.0, 0.5] with steps of 0.1

• Model Architecture Hyperparameters

– num_layers: integer in [1, 4]

– layer_sizes: for each layer i, chosen from [60, 300] with steps of 60 (determined dynamically
based on num_layers)

• Feature Reduction (if used)

– feature_reduction_n_components: [300, 1500] with steps of 300
• Early Stopping

– early_stopping_patience: [0, 50] with steps of 2
• Data Augmentation

– jitter_fraction: [0.0, 0.5] with steps of 0.1

For more optimal results, number of trials should be much larger, but due to limited computational
resources, this was not possible.



B
Elaborate Experimental Results

The goal here is to give a more comprehensive overview of the experimental results. Due to the fact
that the the dataset consists out of many different studies and each study has been considered as a
test set, the results can be overwhelming at first glance if not aggregated as in Chapter 6. The results
here are meant to give a more detailed picture by showing study-wise performance comparisons or
grouping of studies in various ways. The hope further is that these results will give some inspiration for
researchers in the field to conduct useful experiments, collaborate on coming up with standards, and
figure out what is missing in this research.

B.1. Baseline Methods
In Section 6.1, some metrics regarding the performance of baseline methods were given. This section
will show the results of all these baseline model from a different perspective.

B.1.1. Different Baseline Strategies
The first comparison we looked at was the one of the different strategies. Here, we show an aggregated
comparison of the different strategies with the different classification models.
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(a) Aggregated CV F1-score.

(b) Study-wise CV F1-score of meta-learning inspired RF versus
k-shot RF.

(c) Study-wise CV F1-score of simple baseline rf versus simple
baseline dummy.

Figure B.1: Comparing the performance of different baseline methods with RF to each other (10-shot setting). The first Dummy
result belongs to both meta-learning inspired RF and k-shot RF as the test set is the same in both cases. Further, the simple
baseline RF should not be directly compared to the other RF models, as the test set is different. In addition, Study-wise results

are shown.



B.1. Baseline Methods 49

(a) Aggregate CV F1-score.

(b) Study-wise CV F1-score of meta-learning inspired XGBoost
versus k-shot XGBoost.

(c) Study-wise CV F1-score of simple baseline XGBoost versus
simple baseline dummy.

Figure B.2: Comparing the performance of different baseline methods with XGBoost to each other (10-shot setting). The first
Dummy result belongs to both meta-learning inspired XGBoost and k-shot XGBoost as the test set is the same in both cases.

Further, the simple baseline XGBoost should not be directly compared to the other XGBoost models, as the test set is different.
In addition, Study-wise results are shown.
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(a) Aggregate CV F1-score.

(b) Study-wise CV F1-score of meta-learning inspired MLP versus
k-shot MLP.

(c) Study-wise CV F1-score of simple baseline MLP versus simple
baseline dummy.

Figure B.3: Comparing the performance of different baseline methods with MLP to each other (10-shot setting). The first Dummy
result belongs to both meta-learning inspired MLP and k-shot MLP as the test set is the same in both cases. Further, the simple
baseline MLP should not be directly compared to the other MLP models, as the test set is different. In addition, Study-wise

results are shown.

B.1.2. Different Models Within the Meta-Learning Inspired Baseline Method
We have seen that using the meta-learning inspired baseline strategy with the RF model in general out-
performs the other classification models in this strategy. Interestingly, the majority-class Dummy which
classifies all samples as ”Diseased”, shows that the performance of all the models in general are dis-
appointing.
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(a) Aggregated CV F1-scores.

(b) Study-wise CV F1-score of RF versus Dummy. (c) Study-wise CV F1-score of RF versus XGBoost.

(d) Study-wise CV F1-score of RF versus MLP. (e) Study-wise CV F1-score of Dummy vs Random.

Figure B.4: Comparison of different models used within the meta-learning inspired baseline method (10-shot case).
Figure B.4a shows the aggregated results, where RF is outperforming the other models. With this in mind, the other figures

show the study-wise performance comparison of RF and the other models. Each dot is the average score of the
cross-validation performed. The size of the dots indicate the study size with colors representing different diseases.
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B.1.3. Balancing of Data
Due to the dataset used in this study being imbalanced, it is worthwhile to look at some results regarding
random forests with focus on how balancing affects performance. Figure B.5 shows the results of
running the random forest classifier on balanced and imbalanced data. In addition, the performance of
the BalancedRandomForestClassifier1is compared to these, which inherently deals with imbalanced
data. From this, it is clear that in these experiments the RF model on imbalanced data performs better
in general. It is true that due to imbalanced datasets, the model may also learn the bias in class
distribution, but the Dummy classifier is used as a baseline to show performance because of this bias
and this way we can look at improvement of the models.

The corresponding mean±std values of the F1-scores are:

• Balanced RF classifier: 0.664± 0.11

• RF with unbalanced data: 0.705± 0.09

• RF with balanced data: 0.681± 0.09

showing the strong performance of the method in the imbalanced case. Based on these results, we
have decided to keep the strongest method for comparison in the other experiments, although all of
these results can be referenced for comparison to prevent the bias added by looking at these results.

Also more generally, training on imbalanced data avoids problems regarding balancing which is a chal-
lenge in the microbiome field.
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(a) Aggregated CV F1-scores.

(b) Study-wise CV F1-scores of
BalancedRandomForestClassifier1 versus RF on imbalanced

data
(c) Study-wise CV F1-scores of RF on balanced data versus RF

on imbalanced data

Figure B.5: Influence of balancing on performance of meta-learning inspired baseline method with RFs (10-shot setting).
Figure B.5a shows that RF on imbalanced data outperforms the other two methods, the BalancedRandomForestClassifier and
RF with balanced data (balancing done with SMOTE). Figure B.5b and Figure B.5c show study-wise performance comparison
between RF on imbalanced data and the other two methods, showing how well it outperforms them. Each dot is the average
score of the cross-validation performed. The size of the dots indicate the study size with colors representing different diseases.

B.2. Meta-Learning Inspired Baseline vs Protonets
B.2.1. Effect of Number of Shots
Figure B.6 visualizes the performance per study when meta-learning inspired baseline is used with
different shot numbers. As can be seen, changing the number of shots shows varying performance
changes.

1From the Imbalanced-learn library: https://imbalanced-learn.org/stable/references/generated/imblearn.
ensemble.BalancedRandomForestClassifier.html

https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
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Figure B.6: CV F1-score for meta-learning inspired RF methods for different k-shots. Number of shots is indicated in the
legend. Results are only shown for studies that are tested in all shot scenarios, which are only 20 studies.

B.2.2. Dimensionality Reduction
This appendix first presents some preliminary analyses to understand the structure of the microbiome
feature space, specifically, how much variance can be explained by a reduced number of principal
components. It then explores a PCA-guided feature selection method aimed at preserving taxonomic
interpretability. These have been amotivation for doing the empirical analysis of the learning algorithms.
Finally, we show more detailed, study-wise results here on how dimensionality reduction affects the
performance of random forest models across different shot numbers.

Let us start by looking at the cumulative explained variance of the PCs, as shown in Figure B.7.

Figure B.7: This shows how much of the Sun et al.[68] dataset’s variance is cumulatively explained by a certain number of
principal components.

In the figure, some of the findings standing out are:

• Only 59 principal components are needed to explain 80% of the data. This is 2.3% of the original
2557 features in the data.

• 109 principal components are needed to explain 90% of the variance of the data, which is 4.3% of
the original number of features.
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• 278 principal components are enough to explain 99% of the variance of the data, which is just
10.9% of the original number of features.

These numbers are a strong signal that the data could be living in a much lower-dimensional sub-space
than the raw feature set suggests. One reason for this is functional redundancy, which is prevalent in
microbial communities.

Altogether, PCA seems to be able to easily help us reduce computational load necessary to learn from
the data, and the reduction in number of features may help reduce noise and counteract problems
caused by the curse of dimensionality; this way increase classification performance.

Figure B.8: Jaccard similarity of the feature space of the studies from gathered by sun et al.[68].

Taxon-Level Feature Selection Using PCA Loadings
Additionally, we can argue for keeping data in the original feature space and thus preserve taxonomic
interpretability. With this in mind, we can look into a PCA-guided feature filtering, where features are
ranked by their weighted contribution to the first c components and retained until a cumulative ”impor-
tance variance” threshold is reached, as explained in Section 5.1.

In Table B.1, we report the number of taxa selected for different important coverage threshold when
278 PCs are used with no weighting applied. The number of PCs does not have much of an influence
here as can be seen in Figure B.9, as does not what weighting is used.

Table B.1: Number of taxa retained for different coverage thresholds when 278 PCs are used and no weighting is applied.

Feature-importance coverage τ taxa retained
80% 279
85% 317
90% 391
95% 1133
99% 2271

Table B.1 and Figure B.9 reveal a key limitation: because microbiome loadings are diffuse, a high
coverage threshold (τ ≥ 0.90) keeps most of the original taxa. In other words, almost every species
contributes measurably to the loadings, so very little pruning occurs. Consequently, this filter delivers
little computational relief. Only at much lower coverages (∼ 90% or less) does the retained set shrink
to a few-hundred taxa, levels useful for computational load reduction.

From this, we hypothesize that for computational savings while keeping interpretability, we need to
choose a lower coverage risking worse performance. When interpretability is not required, projecting
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into a few hundred PCs looks to be the better route, and when biological interpretation is paramount,
feature selection can better be skipped it seems.

Figure B.9: Taxa retained vs. feature-importance coverage τ . Curves are nearly identical across different number of PCs and
weighting schemes, confirming that the coverage criterion, not the PCA settings (, linear, log, or no weighting), drives the

outcome.

Detailed results
Figure B.11 zooms into the results from Subsection 6.3.2 and shows study-wise how PCA and feature
selection (with feature importance found by PCA) influences the performance of RF, for different shot
numbers. As we can see, the performance change of RF with dimensionality reduction varies a lot
between test studies and the conclusion from Subsection 6.3.2 is valid.

(a) RF versus RF with PCA (b) Rf versus RF with PCA feature selection

Figure B.10: Study-wise comparison is shown between RF and RF with some dimensionality reduction technique (10-shot
setting). Each dot is the average score of the cross-validation performed. The size of the dots indicate the study size with

colors representing different diseases.
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Figure B.11: Study-wise CV F1-scoring of meta-learning inspired RF models and Protonets with different dimensionality
reduction techniques (10-shot setting).

(a) Protonet versus Protonet with PCA (b) Protonet versus Protonet with PCA feature selection

Figure B.12: Study-wise comparison is shown between Protonet and Protonet with the dimensionality reduction techniques
used (10-shot setting). Each dot is the average score of the cross-validation performed. The size of the dots indicate the study

size with colors representing different diseases.

B.3. Meta-Learning vs Baseline
As we have seen in Section 6.4, the performance of Protonets is inadequate compared to the meta-
learning inspired method. The following scatter plots shows the performance comparison in more
detail.
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(a) 2-shot setting (b) 5-shot setting

(c) 10-shot setting (d) 25-shot setting

Figure B.13: Study-wise comparison is shown between Protonet and RF for the same shot number. Each dot is the average
score of the cross-validation performed. The size of the dots indicate the study size with colors representing different diseases.



B.3. Meta-Learning vs Baseline 59

(a) RF with PCA versus Protonet with PCA
(b) Protonet with RF with PCA feature selection versus PCA feature

selection

Figure B.14: Study-wise comparison is shown between Protonet and RF for the same dimensionality reduction technique
(10-shot setting). Each dot is the average score of the cross-validation performed. The size of the dots indicate the study size

with colors representing different diseases.

B.3.1. Analysis of Protonets
Here, we depict some more detailed visualization regarding the analysis done on the performance of
Protonets.

Embedding Network Performance
In Subsection 6.5.1 we have seen the aggregated performance of Protonets without embeddings. In
Figure B.15, we show the study-wise performance for the purposes of being complete.

Feature Space Similarity Analysis
In Subsection 6.5.3, we saw the heatmap showing the Jaccard similarity of the feature space between
studies. Here, we look at it from a different perspective.

Figure B.16 shows the pair-wise Jaccard similarity between the species-level feature sets of the gut-
microbiome studies. Although several tight clusters emerge (e.g. 2 immune disease studies or 2
cardiometabolic disease studies next to each other), not all related diseases get clustered. The re-
sults here support the conclusion from Subsection 6.5.3 that there are no strong disease-associated
signatures in microbiome profiles across different studies.
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(a) RF with PCA versus Protonet with PCA

(b) Protonet with RF with PCA feature selection versus PCA feature selection

Figure B.15: Study-wise comparison between Protonets using an embedding network and Protonets skipping this network
(10-shot setting).
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Figure B.16: Hierarchical clustering of microbiome studies based on Jaccard similarity of identified microbial features. The
heatmap displays pairwise Jaccard similarity coefficients between studies, with darker shades indicating higher similarity.
Studies are hierarchically clustered using average linkage based on the similarity matrix. The colored sidebar indicates the

disease category associated with each study, indicated by the legend.
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B.3.2. Learning Curves Reveal Overfitting and Generalization Issues
In addition to all that has been discussed in Chapter 6, there are some observations indicating more
reasons for the inferior performance of Protonets. One of them is related to the fact that the model
does not generalize well. Looking at Figure B.17, we see that although the model is fitting the training
set well, the performance on the test set is not improving by much.

This can be due to the support set for this outer fold not being representative for the rest of the test
study and the model not being able to adjust to the new task, or due to the fact that the data from the
train studies is less generalizable to the data of the test study. The former is more probable, as some
other folds show better performance while the train data is not changing.

The model itself of course can be a big limiting factor as well for how well generalization is done.

The sensitivity to support set is an important reason as we are focusing on a limited shot learning
scenario. Due to the limited number of samples in the support set, the prototypes found differ a lot
between different folds which have different support sets. This can also be seen in the UMAPmanifolds
shown Subsection B.3.3, where the data is quite intermingled and prototypes can easily shift drastically
dependent on support set.

(a) HuangR_2020 (b) HuangR_2020

(c) ZengQ_2021 (d) ZengQ_2021

(e) ZhuJ_2018 (f) ZhuJ_2018

Figure B.17: A selection of learning curves from experiments with different test studies showing that the model has a hard time
generalizing. F1-score is shown for one of the outer cross-validation loops for both the train and test set. The first 20 epochs
are logged every epoch and after that logging is done every 10 epochs. This is the reason why the plot is changing more in the
beginning. The caption of each image indicates which study has been the test study with training set being the data from other

studies.

However, another reason for the lack of performance can be related to overfitting. Patterns of overfitting
have also been observed where the performance on test data increases but decreases soon afterwards.
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Some examples are given in Figure B.18. Here, early stopping has been a challenge to solve this
problem, mainly due to limited data as validation set. In addition, the performance on train data is not
even high when the performance on test data starts to decrease, showing the model having a hard time
to learn all the patterns.

(a) ZuoK_2019 (b) ZuoK_2019

(c) ChenB_2020 (d) ChenB_2020

(e) ZuoK_2019 (f) ZuoK_2019

Figure B.18: A selection of learning curves from experiments with different test studies showing that the model overfitting fast.
F1-score is shown for one of the outer cross-validation loops for both the train and test set. The caption of each image

indicates which study has been the test study with training set being the data from other studies.

B.3.3. UMAPs
In here, we give the UMAPs for all the studies in the sun et al. [68] dataset analyzed in this research and
with that elaborate on the discussion in Subsection 6.5.2. Also here, we show input- and embedding-
space UMAPs for the one representative fold per study, which is the fold that gives the F1 closest to
the median of the experiment.
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(a) F1 : 0.67 | Silh : 0.001 | T : 0.987 | C : 0.985 (b) F1 : 0.69 | Silh : 0.007 | T : 0.563 | C : 0.555

Figure B.19: 2-D UMAP projection of support and query samples from LiJ_2017 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).

(a) F1 : 0.60 | Silh : 0.005 | T : 0.984 | C : 0.980 (b) F1 : 0.67 | Silh : 0.010 | T : 0.569 | C : 0.558

Figure B.20: 2-D UMAP projection of support and query samples from LiR_2021 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).
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(a) F1 : 0.68 | Silh : 0.019 | T : 0.984 | C : 0.982 (b) F1 : 0.72 | Silh : 0.007 | T : 0.580 | C : 0.573

Figure B.21: 2-D UMAP projection of support and query samples from LiuR_2017 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).

(a) F1 : 0.55 | Silh : 0.009 | T : 0.983 | C : 0.977 (b) F1 : 0.72 | Silh : 0.005 | T : 0.632 | C : 0.617

Figure B.22: 2-D UMAP projection of support and query samples from YanQ_2017 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).
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(a) F1 : 0.58 | Silh : −0.001 | T : 0.988 | C : 0.986 (b) F1 : 0.55 | Silh : 0.000 | T : 0.868 | C : 0.863

Figure B.23: 2-D UMAP projection of support and query samples from ZhongH_2019 (studying cardiometabolic disease).
Left plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the

study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and
prototypes (stars).

(a) F1 : 0.83 | Silh : 0.053 | T : 0.990 | C : 0.983 (b) F1 : 0.65 | Silh : 0.006 | T : 0.739 | C : 0.723

Figure B.24: 2-D UMAP projection of support and query samples from ZuoK_2019 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).



B.3. Meta-Learning vs Baseline 67

(a) F1 : 0.64 | Silh : 0.012 | T : 0.983 | C : 0.981 (b) F1 : 0.71 | Silh : 0.047 | T : 0.842 | C : 0.837

Figure B.25: 2-D UMAP projection of support and query samples from JieZ_2017 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).

(a) F1 : 0.55 | Silh : −0.001 | T : 0.983 | C : 0.982 (b) F1 : 0.54 | Silh : −0.004 | T : 0.552 | C : 0.548

Figure B.26: 2-D UMAP projection of support and query samples from WangQ_2021 (studying cardiometabolic disease).
Left plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the

study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and
prototypes (stars).
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(a) F1 : 0.55 | Silh : 0.011 | T : 0.981 | C : 0.980 (b) F1 : 0.52 | Silh : 0.010 | T : 0.729 | C : 0.726

Figure B.27: 2-D UMAP projection of support and query samples from ZengQ_2021 (studying cardiometabolic disease).
Left plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the

study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and
prototypes (stars).

(a) F1 : 0.51 | Silh : 0.006 | T : 0.982 | C : 0.981 (b) F1 : 0.54 | Silh : 0.003 | T : 0.578 | C : 0.574

Figure B.28: 2-D UMAP projection of support and query samples from QinJ_2012 (studying cardiometabolic disease). Left
plot is the projection of the original data and the right that of the embedded data. Each point represents a sample from the
study, colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and

prototypes (stars).
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(a) F1 : 0.63 | Silh : 0.023 | T : 0.986 | C : 0.984 (b) F1 : 0.66 | Silh : 0.025 | T : 0.700 | C : 0.693

Figure B.29: 2-D UMAP projection of support and query samples from ChenB_2020 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.35 | Silh : 0.005 | T : 0.986 | C : 0.980 (b) F1 : 0.38 | Silh : 0.017 | T : 0.683 | C : 0.657

Figure B.30: 2-D UMAP projection of support and query samples from YeZ_2018 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.59 | Silh : 0.015 | T : 0.987 | C : 0.985 (b) F1 : 0.69 | Silh : 0.008 | T : 0.820 | C : 0.812

Figure B.31: 2-D UMAP projection of support and query samples from ChuY_2021 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.66 | Silh : 0.010 | T : 0.987 | C : 0.983 (b) F1 : 0.75 | Silh : −0.014 | T : 0.599 | C : 0.584

Figure B.32: 2-D UMAP projection of support and query samples from ZhouC_2020 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.73 | Silh : 0.006 | T : 0.991 | C : 0.988 (b) F1 : 0.53 | Silh : −0.069 | T : 0.766 | C : 0.758

Figure B.33: 2-D UMAP projection of support and query samples from HuangR_2020 (studying immune disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).

(a) F1 : 0.62 | Silh : 0.008 | T : 0.994 | C : 0.990 (b) F1 : 0.63 | Silh : −0.018 | T : 0.765 | C : 0.752

Figure B.34: 2-D UMAP projection of support and query samples from LiuP_2021 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.48 | Silh : −0.001 | T : 0.993 | C : 0.989 (b) F1 : 0.59 | Silh : −0.001 | T : 0.577 | C : 0.562

Figure B.35: 2-D UMAP projection of support and query samples from YeZ_2020 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.54 | Silh : 0.003 | T : 0.987 | C : 0.985 (b) F1 : 0.55 | Silh : 0.000 | T : 0.864 | C : 0.857

Figure B.36: 2-D UMAP projection of support and query samples from ZhangX_2015 (studying immune disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).
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(a) F1 : 0.74 | Silh : 0.015 | T : 0.992 | C : 0.989 (b) F1 : 0.72 | Silh : −0.042 | T : 0.688 | C : 0.676

Figure B.37: 2-D UMAP projection of support and query samples from ZhuQ_2021 (studying immune disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.57 | Silh : 0.007 | T : 0.988 | C : 0.986 (b) F1 : 0.64 | Silh : 0.006 | T : 0.832 | C : 0.829

Figure B.38: 2-D UMAP projection of support and query samples from YangY_2021 (studying cancer). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.65 | Silh : 0.007 | T : 0.981 | C : 0.975 (b) F1 : 0.61 | Silh : 0.004 | T : 0.657 | C : 0.641

Figure B.39: 2-D UMAP projection of support and query samples from YuJ_2017 (studying cancer). Left plot is the projection
of the original data and the right that of the embedded data. Each point represents a sample from the study, colored by class

(green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.56 | Silh : 0.008 | T : 0.990 | C : 0.987 (b) F1 : 0.52 | Silh : 0.004 | T : 0.581 | C : 0.569

Figure B.40: 2-D UMAP projection of support and query samples from ZhuJ_2018 (studying cancer). Left plot is the projection
of the original data and the right that of the embedded data. Each point represents a sample from the study, colored by class

(green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.54 | Silh : 0.006 | T : 0.992 | C : 0.989 (b) F1 : 0.59 | Silh : −0.013 | T : 0.868 | C : 0.863

Figure B.41: 2-D UMAP projection of support and query samples from WanY_2021 (studying mental disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.61 | Silh : 0.010 | T : 0.987 | C : 0.978 (b) F1 : 0.68 | Silh : −0.002 | T : 0.631 | C : 0.602

Figure B.42: 2-D UMAP projection of support and query samples from WangM_2019 (studying mental disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).



B.3. Meta-Learning vs Baseline 76

(a) F1 : 0.55 | Silh : 0.003 | T : 0.990 | C : 0.987 (b) F1 : 0.48 | Silh : 0.001 | T : 0.570 | C : 0.561

Figure B.43: 2-D UMAP projection of support and query samples from ZhuF_2020 (studying mental disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.70 | Silh : 0.010 | T : 0.982 | C : 0.980 (b) F1 : 0.69 | Silh : −0.026 | T : 0.781 | C : 0.776

Figure B.44: 2-D UMAP projection of support and query samples from YeohYK_2021 (studying infectious disease). Left plot
is the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).
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(a) F1 : 0.73 | Silh : 0.016 | T : 0.994 | C : 0.989 (b) F1 : 0.70 | Silh : −0.008 | T : 0.790 | C : 0.773

Figure B.45: 2-D UMAP projection of support and query samples from HuY_2019 (studying infectious disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).

(a) F1 : 0.88 | Silh : 0.075 | T : 0.991 | C : 0.985 (b) F1 : 0.77 | Silh : 0.113 | T : 0.833 | C : 0.825

Figure B.46: 2-D UMAP projection of support and query samples from HeQ_2017 (studying digestive disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).



B.3. Meta-Learning vs Baseline 78

(a) F1 : 0.63 | Silh : 0.000 | T : 0.984 | C : 0.982 (b) F1 : 0.68 | Silh : 0.025 | T : 0.627 | C : 0.624

Figure B.47: 2-D UMAP projection of support and query samples from HanL_2021 (studying digestive disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).

(a) F1 : 0.58 | Silh : 0.010 | T : 0.989 | C : 0.983 (b) F1 : 0.54 | Silh : 0.001 | T : 0.891 | C : 0.877

Figure B.48: 2-D UMAP projection of support and query samples from MaoL_2021 (studying nerve disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).
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(a) F1 : 0.60 | Silh : 0.012 | T : 0.988 | C : 0.982 (b) F1 : 0.47 | Silh : 0.047 | T : 0.760 | C : 0.748

Figure B.49: 2-D UMAP projection of support and query samples from QianY_2020 (studying nerve disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.78 | Silh : 0.044 | T : 0.981 | C : 0.974 (b) F1 : 0.56 | Silh : −0.004 | T : 0.805 | C : 0.794

Figure B.50: 2-D UMAP projection of support and query samples from QiX_2019 (studying endocrine disease). Left plot is
the projection of the original data and the right that of the embedded data. Each point represents a sample from the study,
colored by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes

(stars).
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(a) F1 : 0.70 | Silh : 0.033 | T : 0.990 | C : 0.988 (b) F1 : 0.80 | Silh : 0.007 | T : 0.584 | C : 0.577

Figure B.51: 2-D UMAP projection of support and query samples from QinN_2014 (studying liver disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).

(a) F1 : 0.81 | Silh : 0.011 | T : 0.988 | C : 0.986 (b) F1 : 0.75 | Silh : −0.003 | T : 0.568 | C : 0.563

Figure B.52: 2-D UMAP projection of support and query samples from WangX_2020 (studying kidney disease). Left plot is the
projection of the original data and the right that of the embedded data. Each point represents a sample from the study, colored
by class (green = Healthy, red = Disease), and shaped by type: support (circles), query (diamonds), and prototypes (stars).



C
Additional Methodologies Used

C.1. Statistical Significance Analysis Method
The 34 paired ∆F1 values, one for each leave-one-study-out evaluation in the 10-shot case, are not
guaranteed to be normally distributed, so we used the Wilcoxon signed rank test1, a nonparametric
counterpart to the paired t-test. To accompany the p-value with an interpretable effect size we computed
a bias corrected bootstrap 95 % confidence interval (CI) for the mean ∆ (10, 000 resamples, seed =
42).

Procedure

1. For each of the 34 leave-one-study-out evaluations we computed first the mean classification
performance over the folds and afterwards the difference:

∆studyi
= F1avg,protonet,studyi

− F1avg,RF,studyi
(C.1)

2. The Wilcoxon signed-rank test was run on the vector ∆ (two-sided, zero_method="wilcox").
3. To obtain the CI, we drew 10, 000 bootstrap samples of length 34 with replacement, recorded the

mean ∆ for each, and took the 2.5 th and 97.5 th percentiles.

1SciPy implementation is used: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.
html
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D
Data Characteristics

D.1. Disease Groups in the Data
Transferability of latent information between studies is important for generalizability. One hypothesis
is that generalization to a test study is better when it comes from a disease group that appears more
frequently in the training data, due to the richer representation learned during training.

Although each study in the sun et al. data[68] focuses on a different disease group, there is an im-
balance here. Table D.1 gives an overview of the disease groups and their corresponding studies
according to the original paper for the studies kept after the preprocessing pipeline.

Table D.1: Disease groups found in the dataset from Sun et al.[68] with the number of diseases belonging to that group and the
corresponding studies per group.

Disease group Number of studies Studies
Cardiometabolic dis-
ease

10 LiJ_2017, LiR_2021, LiuR_2017, YanQ_2017,
ZhongH_2019, ZuoK_2019, JieZ_2017,
WangQ_2021, ZengQ_2021, QinJ_2012

Immune disease 9 ChenB_2020, YeZ_2018, ChuY_2021,
ZhouC_2020, HuangR_2020, LiuP_2021,
YeZ_2020, ZhangX_2015, ZhuQ_2021

Cancer 3 YangY_2021, YuJ_2017, ZhuJ_2018
Mental disease 3 WanY_2021, WangM_2019, ZhuF_2020
Infectious disease 2 YeohYK_2021, HuY_2019
Digestive disease 2 HeQ_2017, HanL_2021
Nerve disease 2 MaoL_2021, QianY_2020
Endocrine disease 1 QiX_2019
Liver disease 1 QinN_2014
Kidney disease 1 WangX_2020
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