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A B S T R A C T

To reach high performance with deep learning, hyperparameter optimization (HPO) is essential. This process
is usually time-consuming due to costly evaluations of neural networks. Early discarding techniques limit the
resources granted to unpromising candidates by observing the empirical learning curves and canceling neural
network training as soon as the lack of competitiveness of a candidate becomes evident. Despite two decades
of research, little is understood about the trade-off between the aggressiveness of discarding and the loss of
predictive performance. Our paper studies this trade-off for several commonly used discarding techniques such
as successive halving and learning curve extrapolation. Our surprising finding is that these commonly used
techniques offer minimal to no added value compared to the simple strategy of discarding after a constant
number of epochs of training. The chosen number of epochs mostly depends on the available compute budget.
We call this approach 𝑖-Epoch (𝑖 being the constant number of epochs with which neural networks are trained)
and suggest to assess the quality of early discarding techniques by comparing how their Pareto-Front (in
consumed training epochs and predictive performance) complement the Pareto-Front of 𝑖-Epoch.
1. Introduction

Optimizing the configuration of a deep learning pipeline is a com-
plex task that involves properly configuring the data preprocessing,
training algorithm, and neural architecture. A configuration is a spec-
ification of so-called hyperparameters [1], which control the behavior
of pipeline elements and hence can greatly influence its final predictive
performance. The objective is to identify the configuration of hyperpa-
rameters that achieves the best predictive performance, usually referred
to as hyperparameter optimization (HPO).

As HPO is often done from a black-box optimization point of view,
that is by observation of input configuration and output performance,
a major challenge is the required computation to evaluate candidate
hyperparameters by training deep neural networks. This greatly limits
the number of testable hyperparameter configurations within a practi-
cal time frame. This is why multi-fidelity hyperparameter optimization
with early discarding was proposed to switch the black-box problem
to a ‘‘gray-box’’ optimization problem by observing the intermediate
training performance of neural networks and using it as an estimate
of the final performance. Such estimates can in principle be obtained

∗ Corresponding author at: Université Paris-Saclay, France.
E-mail address: romain.egele@universite-paris-saclay.fr (R. Egele).

at a computationally cheaper training stage and therefore save overall
computation. In deep neural networks, the training epochs are usually
used to perform early discarding. An epoch usually refers to making a
full pass over the training data. The predictive performance versus the
number of epochs is also known as a ‘‘learning curve’’ [2,3].

HPO with early discarding trades-off computation with quality of
extrapolated performance. For example, if the neural network is trained
for a few epochs, it can save computation but it also means we have
little (noisy) training information and therefore increase the chances of
mistaking the extrapolation. It is important to note that extrapolated
performance is not always absolute but it can also be relative to other
candidates such as by predicting a ranking.

A shortcoming of the HPO early discarding literature is the multi-
objective ((1) predictive performance, (2) overall computation) opti-
mization viewpoint that such techniques are trying to solve. There-
fore, experimental evaluations lack comparison to proper baselines and
sometimes present over-optimistic results. For example, it is common
to compare early discarding techniques with complete training dis-
carding [4] and, only rare works consider the baseline performance,
vailable online 1 June 2024
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which minimizes computation by stopping the training after a single
epoch [5,6] during HPO and possibly selecting from the top-𝑘 models
after further training. We call this baseline ‘‘1-Epoch’’ or more generally
𝑖-Epoch when the training is stopped after epoch 𝑖.

In this work, we evaluate the computation optimal policy 1-Epoch
and show its surprising effectiveness in detecting top-ranked hyperpa-
rameter configurations. In addition, we look at the set of trade-offs
between computation and predictive performance offered by different
early discarding methods among which is the 𝑖-Epoch baseline. We do
this by spanning different levels of early discarding aggressiveness of
each technique. Being more aggressive (i.e., stopping training earlier)
reduces computation but also generally sacrifices predictive perfor-
mance. Therefore, we evaluate the multi-objective optimal frontier,
also known as the Pareto-front, achieved by the different early dis-
carding techniques. Ideally, varying the aggressiveness parameters of
the different techniques, leads to a large Pareto-front, offering different
trade-offs between aggressiveness (training epochs used) and predictive
performance.

To simplify our experiments and avoid confounding factors, we do
not use advanced HPO solvers but instead perform a random sampling
of hyperparameter configurations, for which we can compare several
early discarding techniques. We compare 𝑖 -Epoch to asynchronous suc-
cessive halving (SHA), parametric learning curve extrapolation (LCE),
and the recently introduced LC-PFN model [7] for learning curve
extrapolation. We study these techniques in various classification and
regression tasks for the class of fully connected deep neural networks.

Against all expectations, our findings are:

1. dynamically allocating resources as done by successive halving
or learning curve extrapolation offers minimal (and oftentimes
no) utility compared to a constant number of training epochs,
and

2. one can often early discard models after only one epoch without
losing significant final predictive performance, indicating that
perhaps learning curves are more well-behaved than one may
expect.

We believe these findings highlight the necessity to incorporate 1-Epoch
in future studies since it achieves such good predictive performance for
minimal computation while being extremely simple to implement. The
software used for our experiments is made publicly available.1

2. Related work

Our study focuses on methods, that train only a single model at a
time, but keep all checkpoints for further reference. Early discarding
means switching to training a model with another HP configuration be-
fore attaining the maximum number of epochs allowed. Such strategies
are sometimes referred to as ‘‘vertical’’ model selection [3].

One well-known example is Asynchronous Successive Halving [8]
(SHA). Hyperband [9] can also be adapted to this setting, which can
explore different trade-offs for SHA hyperparameters. Note that since
we try different hyperparameters of SHA, Hyperband cannot improve
over SHA in terms of the Pareto front, because Hyperband must incur
some overhead. After all, it runs multiple versions of SHA inside, which
is why it is not included in this comparison.

Learning Curve Extrapolation [10] (LCE) observes early perfor-
mances and extrapolates them to decide whether training should con-
tinue. Learning Curve with Support Vector Regression [11] predicts
the final performance based on the configuration and early obser-
vations. Learning Curve with Bayesian neural networks [12] instead
uses a Bayesian neural network. Trace Aware Knowledge-Gradient [13]

1 Code: https://github.com/fmohr/lcdb/blob/
e96fa3768da94d222644883a11403119844f241/publications/2024-
eurocom/multi-fidelity-hpo/README.md.
2

leverages an observed curve to update the posterior distribution of a
Gaussian process more efficiently. [7] uses a prior-fitted network [14],
which is a transformer, to extrapolate learning curves, which is a sped-
up and improved version of [10]. [15] extrapolates learning curves
using a transformer to larger fidelities to predict the best algorithm
from a portfolio, but does not perform regression. [16] uses a purely lin-
ear extrapolation, which is a conservative technique that is guaranteed
to not prune the optimal candidate given the convexity of the learning
curve. The latter, however, is usually not the case for learning curves
of neural networks.

FABOLAS [17] uses a similar technique, where correlations are
learned in the candidates’ ranking between different levels of fidelity.
Bayesian Optimization Hyperband [4] embeds Bayesian optimization
in Hyperband to sample candidates more efficiently.

Some previous works sometimes implicitly make strong assumptions
about the learning curve. For example, methods based on SH or SHA
(implicitly) assume that the discarded learning curves will not cross
in the future, since only Top-𝐾 models are allowed to continue at any
given step. In this context, models that start slowly are often discarded.
This phenomenon is known as the ‘‘short-horizon bias’’ [18], and this
is one of the most pressing reasons to introduce more complex models
to deal with learning curves and their possibility of crossing. That is
essentially what LCE methods aim to achieve. They either assume a
parametric model [7,10], Gaussian process model [13], complex hier-
archical Bayesian models [10], or Bayesian neural network models [12]
to model the learning curves, to name a few examples. These models
can make quite strong assumptions about the learning curves.

It is not clear how often learning curves cross in general [2,19] and
what kind of problem this poses for HPO. This work investigates how
often curves cross: if curves often cross, 1-epoch cannot perform well,
generally, because it would discard too many slow-starting models.
Our method further avoids making any assumptions about the learning
curves, in the same spirit as SHA. One can see 1-Epoch as SHA to the
extreme: where the reduction factor is set in such a way as to prune all
models in one go.

Benchmarks play a critical role in the design and development
of HPO methods. We have surveyed several recent benchmarks for
continuously evolving learning curves, such as HPOBench [20,21],
LCBench [22], JAHS-Bench-201 [23], and YAHPO-Gym [24]. In a pre-
liminary version of this study [5], we have already provided visualiza-
tion and early elimination experiments for these different benchmarks
that are consistent with this study. However, as LCBench only had
learning curves of 50 epochs and performance estimates on a test set,
JAHS-Bench-201 and YAHPO-Gym are using a surrogate model which
makes learning curves smoother, we prefer to use actual learning curve
data to improve reliability. Therefore, we have chosen to only use
learning curves from 4 regression tasks in HPOBench [20,21], and we
resort to generating our own learning curves for classification with an
experimental setup close to HPOBench.

3. Methods

We consider a function 𝑓 (𝜃, 𝑖) ∈ R that returns (empirical) gen-
eralization error of a deep neural network pipeline configured with
hyperparameters 𝜃 ∈ 𝛩 (i.e., a vector of mixed variables) after 𝑖 ∈ 
training epochs. In our setting we bound the number of training epochs
𝑖min ≤ 𝑖 ≤ 𝑖max. Next consider a hyperparameter optimization algorithm
𝑎 ∈  such that 𝑎(𝑓,𝛩,) = (𝑦𝐿, 𝑦𝐼 )𝑇 where 𝑦𝐿 = 𝑓 (𝜃∗, 𝑖max) ∈ R is
he generalization error of the returned trained deep neural network
ipeline configured with hyperparameters 𝜃∗ and 𝑦𝐼 ∈ N is the total
umber of training epochs used by 𝑎 to complete the hyperparameter
ptimization process. Then, the multi-objective problem that hyperpa-
ameter optimization with early discarding algorithms aims to solve
s:

min (𝑦 , 𝑦 ) (1)

𝑎∈ 𝐿 𝐼

https://github.com/fmohr/lcdb/blob/ce96fa3768da94d222644883a11403119844f241/publications/2024-neurocom/multi-fidelity-hpo/README.md
https://github.com/fmohr/lcdb/blob/ce96fa3768da94d222644883a11403119844f241/publications/2024-neurocom/multi-fidelity-hpo/README.md
https://github.com/fmohr/lcdb/blob/ce96fa3768da94d222644883a11403119844f241/publications/2024-neurocom/multi-fidelity-hpo/README.md
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Fig. 1. Hyperparameter optimization and its components including input/output, outer optimization loop exploring new hyperparameter configurations, inner optimization loop
incrementally allocating training iterations (what we study in this work) and selection of hyperparameters to return. In italic we specify the blocks to match with our experimental
tudy.
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s.t. (𝑦𝐿, 𝑦𝐼 )𝑇 = 𝑎(𝐿,𝛩,)

In Fig. 1 we provide a flowchart diagram of the hyperparameter
ptimization with early discarding algorithm class  that we consider.
he HPO process comprises an outer open cycle (red parts), in which
n optimizer decides whether optimization should be continued or
ot. If so, it picks a candidate hyperparameter (HP) configuration
or various if parallelization is supported) for evaluation. Then, the
erformance of the chosen configurations is computed (blue parts).
ince we only consider training of neural networks one can think of the
andidate evaluation as an inner cycle in which an empirical learning
urve is constructed, with one entry per epoch. In the orange box, a
et of final candidates is selected (possibly of size 1) and trained to
onvergence (if not done already). Among these, the candidate with
he best performance is returned and serves as a trained model for
redictions.

In the interest of separation of concerns, this paper focuses only on
he aspect of early discarding (blue diamond). The other components
re fixed as follows: The outer cycle simulates a random search with
n evaluation limit of 200 pipelines, which are sampled offline to make
ure that all early discarding methods decide upon the same pipelines.
ince no model of the performance landscape is built in the random
earch, the evaluation module simply returns the prediction perfor-
ance of the network at the time when training is being stopped (no
atter whether prematurely or because it has converged). The orange

omponent selects the 3 best configurations found during optimization
nd trains them to convergence (if not yet). It then returns the best of
hese models.

This being said, our study focuses only on early discarding tech-
iques for single candidates as opposed to candidate portfolios. Many
opular optimizers consider entire portfolios of candidates, which are
hen reduced at some predefined ratio [4,25–27]. We are interested in
more flexible class of early discarding techniques that do not need

o know all the candidates upfront but decide only upon one candidate
t a time based on the score of the best candidate seen so far. This
s also referred to as the difference between horizontal optimization
simultaneously growing learning curves of a portfolio) and vertical
3

ptimization (evaluating candidates one by one, possibly without even
nowing the whole set of candidates to be evaluated) [3].

Among these early discarding techniques for single candidates,
e consider three state-of-the-art approaches from different research
ranches and an approach that simply trains the networks for a previ-
usly defined constant number of epochs. First, for the idea of Succes-
ive Halving, which is used in many horizontal optimizers [4,25–27],
here is a sequential variant [8] that can be used as an independent
arly discarding module. The second and third approaches discard
andidates based on extrapolated learning curves using Monte Carlo
arkov Chains (MCMC) [5] and Prior Fitted Networks (PFN) [7],

espectively. Another approach for extrapolation, learning curve-based
ross-validation (LCCV) [28] with state-of-the-art results in early dis-
arding is not considered in the evaluation because it is based on the
ssumption of convexity (or concavity) of the learning curves, which is
he typical case for sample-wise learning curves but not iteration-wise
earning curves as created during the training of a neural network [3].

.1. Vertical version of successive halving

Successive Halving (SHA) [25] is an optimization technique that
eceives a set of candidates, which is successively reduced while grant-
ng more resources to candidates that are being retained. A common
pproach is to eliminate 50% of the candidates and double the amount
f resources for the remaining candidates until only one candidate
emains; thereby, all iterations consume roughly the same quantity of
ompute resources.

It is possible to isolate the idea of SHA in order to use it as an early
iscarding module such as shown in blue in Fig. 1 [8]. To do this, one
an test at epoch 𝑖 if the currently observed score is among the top-
00∕𝑟% already observed in the past for other candidates at the same
poch 𝑖, where 𝑟 is called the reduction factor (e.g., 𝑟 = 2 for a reduction
f 50%). If this is the case, then the training is continued otherwise it
s stopped. This condition is not checked at every training epoch but
ollows a geometric schedule.
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3.2. Parametric learning curve extrapolation with adapted MCMC variant

Parametric Learning Curve Extrapolation (LCE) [10] uses a para-
metric model to predict the continuation of a learning curve. The
parametric functions used for this task are mostly power laws origi-
nating from physics research [3]. It is also common to consider linear
combinations of such functions [10].

To enable the reconfigurability of greediness, we are interested in
probabilistic extrapolations. That is, the extrapolation technique should
output a distribution over learning curves rather than just a single one
(usually the likelihood maximizer). These distributions can be obtained
by sampling from the posterior distribution, usually using a Bayesian
approach [10,12].

However, we found that the above techniques suffer from insta-
bilities, which is why we here use a technique called RoBER (Robust
Bayesian Early Rejection) [5]. Instead of considering a linear combi-
nation of several parametric models, we only consider one, that is
MMF4 which was found to work well in general for extrapolation
by [19]. In addition, we do not use a pure Bayesian approach but
instead combine optimization with Bayesian inference. That is, first, we
fit the parametric model using Levenberg–Marquardt, which minimizes
the mean squared error on the observed anchors of the learning curve.
Afterward, we use these fitting parameters 𝜃̂ to derive a data-driven
prior of the form 𝜃 ∼ 𝑁(𝜃̂, 1). We use a Gaussian likelihood on
he observed learning curve anchors with an exponential prior with
cale parameter 1. This completely defines the posterior, which is
ampled using Markov-Chain-Monte-Carlo. This allows us to sample
he distribution of extrapolated values at the largest anchor. We com-
ute this distribution for each currently observed learning curve. If
his distribution indicates for a learning curve candidate that we are
ith probability larger than 𝜌 worse than the current best-observed

earning curve value, the candidate is eliminated. The larger 𝜌, the more
onservative: for example if 𝜌 = 0.9, a candidate is only discarded if the
robability that it under-performs the currently best one at the horizon
s greater than or equal to 90%.

.3. Extrapolation via Prior Fitted Networks (PFN)

Prior Fitted Networks (PFN) are transformer networks that are being
rained on synthetic tasks sampled from a so-called prior distribu-
ion [29]. For a new task, the PFN does not only output a single
rediction for each test point but a distribution.

Due to their general nature, PFNs can also be used to predict dis-
ributions over learning curves. A recent approach that reports results
omparable to or better than the MCMC approach of [10] was presented
n [7]. In this approach, synthetic learning curves are sampled from a
rior distribution over linear combinations of model classes; a subset
f those suggested in [10] is used. The authors of this network offer
pre-trained implementation,2 which comes with an API that allows

xtrapolations of learning curves out of the box. Our experiments are
ased on this implementation.

Regarding LCE, one can define a confidence level 𝜌 and discard
andidates only if the probability that the limit performance is worse
han the best currently known solution is at least 𝜌.

.4. i-Epoch: Constant number of epochs

The last and simplest method is one of a constant number of
pochs. In this case, the number of epochs is defined a priori and
oes not depend on any observations made during the evaluation of
he candidate. In our experiments, we consider all numbers of epochs
etween 1 and 100 as possible limits.

2 LC-PFN code: https://github.com/automl/lcpfn.
4

This method is different from the others in that it does not nec-
essarily train any model to convergence during the evaluation. In all
the other approaches, at least one network, namely the one that is
believed to be best, is trained until convergence. On the contrary, in
the case of a constant number of epochs, even the best network is not
(necessarily) trained to convergence during evaluation but only in the
final selection phase (orange box in Fig. 1). Of course, if the number
of epochs configured is high, it can implicitly happen that the networks
converge during evaluation. In particular, no early stopping (mind the
difference to early discarding) is used to stop training once the curve
has flattened out, so training can even take more epochs than what
would be observed with a standard early stopping approach.

4. Experimental design

Our experiments were designed to answer the following research
questions (RQs) for the hyperparameter optimization of deep neural
networks:

RQ1: What is the anytime performance of the HPO process (i.e., when
stopped at any iteration of the red loop in Fig. 1) when run with
the different early discarding techniques for extreme configura-
tions of discarding aggressiveness (i.e., when stopping training
at the earliest and at the latest)?

RQ2: For each early discarding technique, what is its Pareto-frontier
in terms of (1) final predictive performance (of the selected
and trained hyperparameter configuration) and (2) total training
epochs consumed in the HPO process, obtained when testing
different settings of the method?

RQ3: What does each method contribute to the Pareto frontier result-
ing from all techniques? This aims to see if methods complement
each other in terms of attainable trade-offs and which algorithm
offers the most diverse trade-offs.

RQ4: How does 1-Epoch compare to other methods and how can we
understand its surprisingly good performance?

Preempting the detailed results, we already summarize at this point
that the answers to these questions might be in contrast to the expec-
tations in two ways:

1. While it is clear that 1-Epoch is Pareto-optimal (since one cannot
be faster), one would expect that 𝑖-Epoch tends to develop a
sub-optimal Pareto frontier (compared to other early discarding
methods) as 𝑖 grows. This is because, since 𝑖-Epoch does not react
to the previous performance observations, there is an increasing
risk that (unpromising) candidates are trained unnecessarily
long so that the number of total training epochs in the HPO in-
creases without generating any benefit. In other words, for pretty
much any 𝑖 > 𝑖min for some small 𝑖min, e.g., 5 or 10, one would
expect that there are configurations of the other early discarding
methods that Pareto-dominate 𝑖-Epoch. The surprising insight of
our experiments is that the simple 𝑖-Epoch policy is rarely ever
Pareto-dominated by any other method.

2. While one would generally expect the maximally aggressive
strategy 1-Epoch to deliver significantly sub-optimal results in
predictive performance 𝑦𝐿, we show that generally there is little
and sometimes no possible improvement in predictive perfor-
mance 𝑦𝐿 over the 1-Epoch baseline. In several cases, 1-Epoch
is not only Pareto-optimal but strictly optimal.

4.1. Learning curves benchmarks

To be able to generalize conclusions from this work, we answer
the questions on several datasets, both regression and classification,
which displayed noticeable differences in the observed learning curves.
However, we limited our study to the class of fully connected deep

https://github.com/automl/lcpfn
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Table 1
Hyperparameter search space for regression benchmarks
defined in HPOBench [21,30].
Hyperparameters Choices

Initial LR {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}
Batch Size {8, 16, 32, 64}
LR Schedule {cosine, fix}
Activation/Layer 1 {relu, tanh}
Activation/Layer 2 {relu, tanh}
Layer 1 Size {16, 32, 64, 128, 256, 512}
Layer 2 Size {16, 32, 64, 128, 256, 512}
Dropout/Layer 1 {0.0, 0.3, 0.6}
Dropout/Layer 2 {0.0, 0.3, 0.6}

neural networks, still including a variety of hyperparameters (e.g., pre-
processing, residual connections, regularization).

All learning curves used to benchmark early discarding techniques
were computed and stored prior to the experimentation. We now
escribe this generating process. All evaluated deep neural networks
re trained for 100 epochs, which fixes 𝑖min = 1 and 𝑖max = 100.
or regression tasks, we used an external benchmark of pre-computed
earning curves from HPOBench [20,21]. The deep neural networks
rom this benchmark are similar to ours but were generated from 9
yperparameters listed in Table 1 and 4 datasets were used.

Datasets were split into 3 folds. The training split was used to
ptimize the neural network weights for a fixed hyperparameter config-
ration. The validation split was used to optimize the hyperparameter
onfigurations and serves as an estimate of generalization performance.
he test split was used as a final set of data to provide an unbiased
eport of our results. The data split was 60% for training, 20% for
alidation, and 20% for testing in the regression tasks, which was
ictated by the setup of [20]. In the classification tasks, we chose the
plit to be 80% for training, 10% for validation, and 10% for testing.

For classification tasks, we generated a set of 1000 randomly sam-
led hyperparameter configurations from a search space of 17 hyper-
arameters listed in Table 2. The learning curve generation for each
lassification task required about 1 h of computation on 400 parallel
VIDIA A100 GPUs on the Polaris Supercomputer at the Argonne
eadership Computing Facility.

For all these configurations we compute the training, validation, and
est learning curves by collecting confusion matrices on predictions.
ccounting for hyperparameter configurations that resulted in failures

e.g., ‘‘nan’’ loss with overflow or underflow) we end up with about
50 correct learning curves for each classification dataset. The diversity
f evaluated tasks is provided through the number of samples, features,
lasses or targets, and the type of features (real or categorical) in
able 3.

.2. Experimental protocol

As we are interested in evaluating early discarding techniques (blue
iamond in Fig. 1) isolated from the process which suggests hyperpa-
ameter configurations, we propose the following experimental proto-
ol. The simulated process that suggests hyperparameter configurations
red rectangle in Fig. 1) is a random sampling from the set of pre-
omputed learning curves. This process is fixed by an initial random
eed to simulate the same stream of candidate learning curves to
ifferent early discarding techniques. The number of search iterations
red diamond in Fig. 1) is fixed to 200 (main constant which makes
utcomes of all experiments comparable). Once the (red) loop of 200
andidates is over, the Top-3 models observed are selected and trained
o completion if not already done. A model that was not trained to
ompletion during the previous 200 iterations will be retrained from
cratch. Of course, these additional training epochs are accounted for in
he total number of training epochs used by the method. For example,
n 1-Epoch after 200 iterations we select the Top-3 candidates based on
5

𝑅

he observed scores 𝑦𝐿, we train them to completion so it consumes an
dditional 3 × 100 epochs, then we return the best from these 3. For
00-Epoch, as all evaluated models are already trained to completion
o additional training is required. The performance we report corre-
ponds to the score reached by ‘‘Method + Top-3’’ at any iteration of

the search. This corresponds to looking at the ‘‘any-time’’ performance
of each early discarding method, that is looking at what would be
the outcome of the method if we were to stop after 𝑘 hyperparameter
search iterations (red loop) for all 𝑘 ∈ [𝑖min = 1, 𝑖max = 100]. A
fixed set of 10 random seeds is set to perform 10 repetitions for each
method. This protocol ensured that each method was exposed to the
same streams of candidates. Therefore the different outcomes observed
are only coming from differences in the decisions taken by each method
to stop or continue the training.

4.3. Performance indicators

In this section, we describe the two performance indicators of
importance in our study. First, we detail the 𝑅2 metric (generalized
o both regression and classification) used to assess the predictive
erformance of evaluated hyperparameter configurations. Then, we
etail the hypervolume indicator (HVI) metric used to assess the quality
f the solutions for multi-objective optimization.

First, we introduce the coefficient of determination 𝑅2 in the case of
egression tasks, where the target prediction is a real value, and, then
e extend the notion to the case of classification tasks, where the target
rediction is a categorical value in the spirit of [31], also called the Pre-
iction Advantage. This metric is useful as it standardizes both regres-
ion and classification similarly which helps us homogenize regression
nd classification learning curves. A dataset 𝐷 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)}
s composed of i.i.d. variables from the joint distribution 𝑃 (𝑋, 𝑌 ). In re-
ression, the usual definition of 𝑅2 (a.k.a., coefficient of determination)
s:

2 ∶= 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂(𝑥𝑖))2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(2)

where 𝑆𝑆𝑟𝑒𝑠 is the residual sum of squares, 𝑆𝑆𝑡𝑜𝑡 is the total sum of
squares, 𝑦̄ = 1

𝑛
∑𝑛

𝑖=1 𝑦𝑖 is the empirical mean of the marginal distribution
𝑃 (𝑌 ) and, 𝑦̂(𝑥𝑖) is a prediction from our model. This definition can also

ritten as:

2 = 1 −
1
𝑛
∑𝑛

𝑖=1 𝐿2(𝑦𝑖, 𝑦̂(𝑥𝑖))
1
𝑛
∑𝑛

𝑖=1 𝐿2(𝑦𝑖, 𝑦̄)
≈ 1 −

𝐸[(𝑌 − 𝐸[𝑌 |𝑋])2|𝑋]
𝐸[(𝑌 − 𝐸[𝑌 ])2]

(3)

In the form given by Eq. (3), the expectations 𝐸[𝑌 ] and 𝐸[𝑌 |𝑋] corre-
spond to the optimal Bayes predictors for the squared loss 𝐿2(𝑌 , 𝑌 ) =
𝑌 − 𝑌 )2 respectively on the marginal and conditional distributions.
herefore 𝑅2 corresponds to the normalization of the expected error
f the optimal Bayes predictor on the conditional 𝑃 (𝑌 |𝑋) distribution
y the expected error of the optimal Bayes predictor on the marginal
istribution 𝑃 (𝑌 ) (a.k.a., constant or ‘‘dummy’’ predictor). In classifica-
ion, we replace the squared-loss with the 0−1 loss 𝐿0-1(𝑌 , 𝑌 ) = 1 if 𝑌 ≠
̂ else 0. The optimal Bayes predictor becomes the mode instead of the

ean (i.e., the class with the highest probability). We then obtain a
ew definition of 𝑅2 for classification:

2 = 1 −
1
𝑛
∑

𝑖 𝐿0-1(𝑦𝑖, 𝑦̂(𝑥𝑖))
1
𝑛
∑

𝑖 𝐿0-1(𝑦𝑖, 𝑦̇)
(4)

here 𝑦̇ is the mode on the marginal distribution 𝑃 (𝑌 ). This is also
nown as the Prediction Advantage [31]. For both regression and
lassification, we have that performance of zero means that the model
s as bad as the optimal constant predictor that only uses information
rom the marginal 𝑃 (𝑌 ) and ignores the input 𝑋. If the 𝑅2 is 1 the
rediction is ‘‘perfect ’’ (which also means that there is no presence of
andom noise on the target). In our study, the goal is to maximize the
2
 score for improved predictive performance which is equivalent to
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Table 2
Hyperparameter search space for classification benchmarks.
Hyperparameters Choices

Activation Function {none, relu, sigmoid, softmax, softplus, softsign,
tanh, selu, elu, exponential}

Activity Regularizer {none, L1, L2, L1L2}
Batch Normalization {True, False}
Batch Size [1, 512] (log-scale)
Bias Regularizer {none, L1, L2, L1L2}
Dropout Rate [0.0, 0.9]
Kernel Initializer {random-normal, random-uniform, truncated-normal,

zeros, ones, glorot-normal, glorot-uniform,he-normal,
he-uniform, orthogonal, variance-scaling}

Kernel Regularizer {none, L1, L2, L1L2}
Learning Rate [10−5 , 101] (log-scale)
Number of Layers [1, 20]
Number of Units [1, 200] (log-scale)
Optimizer {SGD,RMSprop,Adam,Adadelta,Adagrad,Adamax,Nadam, Ftrl}
Regularizer Factor [0.0, 1.0]
Shuffle Each Epoch {True, False}
Skip Connections {True, False}
Transform Categorical {onehot, ordinal}
Transform Real {minmax, std,none}
Table 3
Characteristics of datasets used for our experiments. On Top, the 4 datasets were used for regression, and on the bottom, the
6 datasets were used for classification. The datasets are sorted by decreasing number of samples.
Dataset (OpenML-Id) #Features #Samples #Classes

or #Targets
Real
Features

Categorical
Features

Slice Localization (42973) 380 53,500 1 True False
Protein Structure (44963) 9 45,730 1 True False
Naval Propulsion (44969) 14 11,934 1 True False
Parkinson’s Telemonitoring (4531) 20 5875 2 True True

MNIST (554) 784 70,000 10 True False
Australian Electricity Market (151) 8 45,312 2 True True
Bank Marketing (1461) 16 45,211 2 True True
Letter Recognition (6) 16 20,000 26 True False
Letter Speech Recognition (300) 617 7797 26 True False
Robot Navigation (1497) 24 5456 4 True False
Chess End-Game (3) 36 3196 2 False True
Multiple Features (Karhunen) (14) 76 2000 10 True False
Multiple Features (Fourier) (16) 64 2000 10 True False
Steel Plates Faults (40982) 27 1941 7 True False
QSAR Biodegradation (1494) 41 1055 2 True False
German Credit (31) 20 1000 2 True True
Blood Transfusion (1464) 4 748 2 True False
minimizing 𝑦𝐿 ∶= 1 − 𝑅2(𝜃, 𝑖max) in Eq. (1) (replacing the  by our 𝑅2

core).
Now that we have discussed the performance indicator for predic-

ion we will present the metric used to assess the quality of multi-
bjective optimization (MOO). For the sake of brevity, we will not
ecall the formal definitions related to the notion of Pareto-optimality
n MOO. However, shortly we recall that Pareto-Front refers to the
olution set in the objective space (i.e., 2-dimensional in our case as
e have 2 objectives 𝑦𝐿 and 𝑦𝐼 ). As these objectives are (supposedly)

onflicting, 𝑦𝐿 the predictive performance and 𝑦𝐼 the total number of
training iterations used, the Pareto-Front is a one-dimensional space
(i.e., a line) unless the problem is ‘‘degenerated’’, meaning there is
no real conflict between objectives and the solution set is therefore
containing a single point. Among the possible metrics used in MOO [32]
and as we do not know the true Pareto-Front of our problem we decide
to use the hypervolume indicator (HVI). As we are in 2-D it corresponds
to measuring the area defined by an estimated Pareto-Front and a
reference point (fixed for all experiments on the same dataset). The HVI
is compliant with the notion of Pareto-optimality and also known to
measure the compare the diversity of solutions (i.e., trade-offs) between
different Pareto-Fronts. In our study, the goal is to identify the early dis-
carding technique which maximizes the Hypervolume indicator when
6

evaluated at different levels of aggressiveness.
5. Results

In this section, we present the results that helped us answer the
research questions introduced in Section 4.

5.1. RQ1 — What is the anytime performance of early discarding tech-
niques?

To understand the anytime performance of early discarding tech-
niques we plot the 1 − 𝑅2 test performance as a function of overall
training epochs realized so far. That is, a curve that passes the point
(𝑡, 𝑙) in the plot means that the test score of the model that would
have been picked if the HPO process had stopped after 𝑡 total training
epochs would have been 𝑙. This type of performance curve weighs
training epochs equally for all hyperparameter configurations, which
may be deceiving since they can vary in computational cost (e.g., large
and small neural networks). Still, it is a convenient simple method
abstracting from implementation details. We present the performance
curves in Figs. 2 and 3 for classification and regression respectively.

The most important insight from the plots is that the sensitivity
of the early discarding techniques with respect to their aggressiveness
parameter varies a lot. While the 𝑖-Epoch and 𝑟-SHA algorithms are
very sensitive to the aggressiveness (as expected), the learning curve

extrapolation-based methods (i.e., 𝜌-LCE and 𝜌-PFN) are surprisingly
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Fig. 2. Comparing the any-time performance of various early discarding techniques during a random search (mean and one standard error over 10 repetitions) of 200 iterations
(4 regression tasks). The two baseline strategies 1-Epoch and 100-Epoch method bound the trade-offs that can be achieved. The predictive performance of 1-Epoch is at least of
the same order of magnitude as other strategies while consuming a significantly smaller (the minimum in training epochs) number of training epochs.
less sensitive to aggressiveness parameter 𝜌. This can be observed
especially on the set of classification tasks shown in Fig. 3. In other
words, for 𝜌-LCE and 𝜌-PFN, it almost makes no difference in consumed
training epochs whether the user requires almost certainty (𝜌 = 0.95)
or whether the certainty is just as good as a coin flip (𝜌 = 0.5). This
could indicate that the models express too little uncertainty about the
extrapolated learning curve.

Another observation is that the 𝜌-PFN method hardly reduces the
overall training epochs used by 100-Epoch as can be seen for all
datasets. It means that the learning curve extrapolation of this method
is probably over-optimistic. It even seems to perform worse than 100-
Epoch for both predictive performance and overall training epochs used
on learning curves which are very noisy and increasing. These failures
can be observed in Figs. 3(c), 3(l) and 3(m).

A third observation is that 𝜌-LCE, while being a more robust version
of LCE, can still under-perform predictive performance even when
being set to be conservative (𝜌 = 0.95). This can be seen in Figs. 2(d),
3(d), 3(h) and 3(k). This confirms our belief that such models express
too little uncertainty about the extrapolation.

From the practical viewpoint, no utopia method has yet been found.
A utopia method would achieve a strict and consistent dominance
compared to the 100-Epoch baseline. That is a method that achieves, on
all tasks, better predictive performance while being faster than the base
full training evaluation. Such a method seems not to exist currently and
may not exist if both objectives 𝑦𝐿 and 𝑦𝐼 are truly conflicting.

Finally, the presented performance curve plots also show the im-
portance of considering the 1-Epoch baseline to contextualize results
and avoid an overly optimistic presentation of the methods. Without
the solid red line which corresponds to 1-Epoch, 𝜌-LCE might appear a
quite dominant approach in this experimental setting. While it is true
that learning curve extrapolation-based methods are very convincing
in many cases, there are some datasets, such as Protein Structure
(Fig. 2(b)), Parkinson’s Telemonitoring (Fig. 2(d)), MNIST (Fig. 3(a)),
QSAR-Biodegradation (Fig. 3(j)), or German Credit (Fig. 3(l)), in which
the 1-Epoch baseline can reduce the number of epochs of LCE again by
about 50% without losing significant or any predictive performance.
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5.2. RQ2 — Multi-objective trade-offs and pareto-fronts

While the previous question only considers two extreme configu-
rations to understand the sensitivity of the HPO process with respect
to the aggressiveness of the early discarding technique, we now want
to better understand the actual trade-offs that each method can span.
At this point, we no longer look at any-time performance but instead,
we look at the final predictive performance and overall consumed
training epochs for one aggressiveness setting. Once all methods and all
aggressiveness levels are collected we compute the Pareto-Front of each
early discarding method which does not always contain all evaluated
points.

From the results presented in the previous section, we already
know that the Pareto-Fronts of 𝜌-PFN will be strictly dominated by
other techniques (i.e., the area/hypervolume it defines will be strictly
included in the area of other methods). Since even the difference
between minimum (𝜌 = 0.95) and maximum aggressiveness (𝜌 = 0.5)
had only minimal effect, one expects the area covered by 𝜌-PFN in the
multi-objective profile to be narrow.

The multi-objective profiles and the corresponding Pareto-Fronts
are presented in Figs. 4 and 5. For 𝑖-Epoch, a value was computed
for each 1 ≤ 𝑖 ≤ 100. For 𝜌-LCE and 𝜌-PFN, we used values of
𝜌 ∈ {0.5, 0.7, 0.8, 0.9, 0.95}, and for 𝑟-SHA we used values of 𝑟 ∈

{
√

√

2 = 1.19,
√

2 = 1.41, 2, 4, 8, 16, 32, 64}. For each approach, the
Pareto-optimal points are connected with a step function to indicate
the respective Pareto frontier. The shaded areas show the hypervolume
of each approach.

Some plots, like in Fig. 4(a), suggest a certain inconsistency in the
trade-off logic of 𝑖-Epoch in the sense that many points of a single
method do not lie on the same method’s Pareto frontier. However, this
can often be attributed to noise on rather small scales. For example,
in the mentioned plot, differences are on a scale below 10−3, i.e., less
than 0.1% difference in performance in terms of the constant predictor
baseline. For the other methods, this effect is less pronounced or does
not occur because much fewer points are generated and the change in
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Fig. 3. Comparing the any-time performance of various early discarding techniques during a random search (mean and one standard error over 10 repetitions) of 200 iterations
(on 13 classification tasks).
aggressiveness is more significant (10%-steps in the case of 𝜌 compared
to single epochs in the case of 𝑖-Epoch).

The first observation confirms our expectation that learning curve
extrapolation-based techniques offer little diversity of trade-offs. 𝜌-LCE,
no matter how aggressiveness is configured, tends to use about 10x
less training epoch than 100-Epoch while sometimes slightly under-
performing in attained predictive performance. And, again, PFN on
most datasets offers almost no reductions regardless of the configura-
tion of 𝜌.
8

5.3. RQ3 — Which methods offer diverse trade-offs?

To quantity the observation that 𝑖-Epoch offers a more diverse set
of trade-offs we compute the relative hypervolume spanned by each
method in Figs. 4 and 5. To evaluate the hypervolume we set as
reference point 𝑦ref ∶= (max𝜇𝐿 + 𝜎err

𝐿 ,max𝜇𝐵 + 𝜎err
𝐵 ) (i.e., element-wise

upper-bound of observations) for all methods. Then we apply a log10(.)
transformations on both 𝑦𝐿 and 𝑦𝐼 values (including the reference
point). This transformation serves to spread the volume contributed by
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Fig. 4. Multi-objective profiles built from spanning various levels of aggressiveness of early discarding methods (on 4 regression tasks). The estimated Pareto-Front of each method
is shown in a plane line. The black dotted line corresponds to the estimated Pareto-Front including the methods altogether. It can be seen that the 𝑖-Epoch strategy spans more
trade-offs (larger area) than other methods while never being significantly dominated.
small and large values equally. Otherwise, differences in hypervolume
would become unnoticeable as soon as improvements in 𝑦𝐿 or 𝑦𝐼
become orders of magnitude smaller than the largest reference point
values. Finally, we compute the hypervolume of all methods which we
divide the hypervolume of the Pareto-Front considering all observations
(in dotted black line). This relative hypervolume then quantifies how
much each method contributes to the available set of trade-offs that we
observed. The closer is the value to 1 the more complete the method.
The resulting scores are presented in Table 4.

As it can be observed 𝑖-Epoch achieves the highest scores on all but
one task giving it an average rank of 1.125. The second best-ranked
method is 𝜌-SHA followed by 𝜌-LCE. The 𝜌-PFN method consistently
finishes last ranked on all tested tasks. Lastly, we also notice that
relative hypervolume scores of 𝑖-Epoch are often close to 1 which
confirms that this method spans most of the observed trade-offs and
it is never significantly outperformed in either objective.

5.4. RQ4 — Is 1-Epoch so good and if so, how?

Last but not least, throughout our presented results we can notice
the unreasonable effectiveness of 1-Epoch. Despite sometimes being
noisier in its performance profiles such as in Figs. 2(c), 5(f) and,
5(l), it always achieved better any-time performance than other early
discarding methods. This is demonstrated by the fact that its perfor-
mance curve does not cross with the performance curves of other
methods. However, the difference in final predictive performance 𝑦𝐿
can sometimes be statistically significant such as in Figs. 3(c), 3(g), 3(i)
and, 3(k) which confirms the trade-off between the two objectives.

How is it possible this approach can perform so well? To better
understand this, we analyze the learning curves of our experiments. In
Figs. 6 and 7 we display 500 randomly sampled learning curves from
our pre-computed sets, we then color the curves by their ranking at 100
epochs (the maximum number of training epochs). Low ranks, colored
in light blue, correspond to the best models, while high ranks, colored
in red and then yellow, correspond to the worst models. We plot the
performance of the constant predictor as a dashed lime line and also
plot its rank.
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In these plots, it can be observed that for all benchmarks there exists
among the best models some that are also the best early in the training
process. This observation explains the performance of 1-Epoch. Then, in
a few cases, we can observe a significant proportion of models perform
worse than the constant predictor. It is about 33% of models in Fig. 6(a)
and about 80% of models in 7(g) to 7(i). Finally, it seems that learning
curve oscillations are correlated with the final predictive performance.
The best models present much less oscillations than the worst models,
which justifies high aggressiveness in the early discarding method.

6. Conclusion

In this paper, we conducted a comprehensive analysis of early dis-
carding techniques for hyperparameter optimization of fully connected
deep neural networks. Our study rigorously compared an array of
advanced techniques and unveiled intriguing findings: (1) the unrea-
sonable effectiveness of the 1-Epoch strategy, a straightforward yet
previously overlooked baseline method, and (2) the Pareto-dominance
of the 𝑖-Epoch strategy despite its simplicity.

We attribute the success of this strategy to effectively differentiating
between high and low-potential models in the early stages of training.
Notably, models with promising prospects exhibit minimal performance
oscillations, a pattern consistently observed in widely used benchmarks.
These insights not only underscore the importance of incorporating the
𝑖-Epoch strategy in future benchmark analyses but also highlight the
potential necessity of considering the multi-objective problem hidden
behind early discarding strategies. An early discarding method would
bring significant value only if it complements or dominates the 𝑖-Epoch
Pareto-Front. Current early discarding approaches only add minimal or
no utility in this sense.

Besides its good performance, we believe that 1-Epoch’s simplicity
is valuable in itself. Besides being easy to implement, before execution,
it is easy to predict the number of training epochs consumed by 𝑖-Epoch
for any 𝑖 when it is not possible for either 𝜌-LCE or 𝑟-SHA. This makes
𝑖-Epoch practically attractive.

To be noted, our work is limited to using ‘‘epoch’’ as iteration units
for early discarding. While this is convenient and appealing to conduct
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Fig. 5. Multi-objective profiles built from spanning various levels of aggressiveness of early discarding methods (13 classification tasks). The estimated Pareto-Front of each method
is shown in a plane line. The black dotted line corresponds to the estimated Pareto-Front including the methods altogether. It can be seen that the 𝑖-Epoch strategy spans more
trade-offs (larger area) than other methods while never being significantly dominated.
studies independent of hardware implementation considerations, prac-
tical application settings may require considering wall time or other
options as units for early discarding. In particular, since different con-
figurations may have different batch sizes, some configurations could
be much faster to train than others. However, comparing wall-clock
time is extremely hardware and software implementation dependent.
Maybe considering the size of the deep neural network as a third
objective of Eq. (1) could be an improvement.
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We have tried a limited range for the aggressiveness parameters
of 𝜌-LCE and 𝑟-SHA. Their Pareto-Front could be larger and more
dominant for a wider range of parameters considered. However, values
of 𝜌 < 0.5 seem relatively strange for 𝜌-LCE because in that case it will
be very pessimistic about extrapolated performance and discard models
as soon as there is a small probability of under-performing. 𝑟-SHA could
be more aggressive but it should be noted that our largest reduction
factor of 64 corresponds to continuing training only if the model is in
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Table 4
Relative hypervolumes of each early discarding technique with respect to the
hypervolume including all the techniques. Bold and green is best, followed
by yellow, orange and red. These scores assess the diversity of trade-offs,
in consumed training epochs and predictive performance, offered by each
technique among all observed outcomes. The higher the score the more
complete (in terms of possible trade-offs) is the early discarding technique.
In our experiments, the 𝑖-Epoch technique offers the best set of trade-offs
and achieves a trade-off close to 1 indicating optimality amongst all methods.

Dataset 𝑟-SHA 𝜌-PFN 𝜌-LCE 𝑖-Epoch

Slice Localization 0.930 0.401 0.823 0.932
Protein Structure 0.916 0.241 0.652 0.989
Naval Propulsion 0.881 0.280 0.742 0.951

Parkinson’s Telemonitoring 0.930 0.201 0.667 0.880

MNIST 0.858 0.176 0.743 0.994
Australian Electricity Market 0.768 0.205 0.829 1.000

Bank Marketing 0.609 0.184 0.847 0.989
Letter Recognition 0.851 0.169 0.672 0.988

Letter Speech Recognition 0.915 0.175 0.810 0.974
Robot Navigation 0.882 0.218 0.789 0.992
Chess End-Game 0.866 0.233 0.827 0.965

Multiple Features (Karhunen) 0.901 0.231 0.606 0.955
Multiple Features (Fourier) 0.936 0.239 0.697 0.951

Steel Plates Faults 0.806 0.257 0.644 0.923
QSAR Biodegradation 0.141 0.037 0.176 0.993

German Credit 0.585 0.198 0.800 0.970
Blood Transfusion 0.811 0.167 0.753 0.856

Average Rank 2.029 4.000 2.846 1.125
Fig. 6. Visualizing the final ranking for good (light blue) and bad (yellow) models for 500 randomly sampled learning curves (on 4 regression tasks). The constant predictor
performance (at 0) is shown as a green dashed line. Models can be selected from the first epoch as there appear to be dominant models early on in the training epochs.
the current Top-1.5% meaning comparing to the single best model after
100 Hyperparameter suggestions and Top-3 of 200. Also, this value is
significantly larger than the suggested default value of 4 in the original
paper [8].

Also, we studied the early discarding methods in combination with
a random search. In other words, HPO is often combined with tech-
niques that suggest candidates through more sophisticated methods,
such as Bayesian optimization or portfolio [4,25–27]. However, for
such approaches we cannot quantify the computational cost as easily
through the number of epochs, as the Bayesian optimization may not
be a neural net. Besides that, the comparison becomes more compli-
cated, because the different components (configuration proposer, early
discarding technique, etc.) may interact in unexpected ways. Therefore,
such a comparison is out of the scope.
11
To come back to the question of the earlier work: is one epoch all
you need? We think the answer remains to be seen, in particular, we
think that the 1-epoch approach can be even pushed further. During
the first epoch, more information is available for making decisions.
For example, the loss per batch could be collected. This again forms a
curve of performances versus the number of batches processed, which
seems conceptually similar to a learning curve. This curve could be
extrapolated as well. This will allow us to make potentially better deci-
sions after 1 epoch or even training could be stopped before finishing
one epoch. The latter could be especially promising for large language
models, for which one epoch of training can already consume hours of
training time.
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Fig. 7. Visualizing the final ranking for good (light blue) and bad (yellow) models for 500 randomly sampled learning curves (on 13 classification tasks). The constant predictor
performance (at 0) is shown as a green dashed line. Models can be selected from the first epoch as there appear to be dominant models early on in the training epochs.
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