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Discrete Time Delay Feedback Control of Stewart
Platform with Intelligent Optimizer Weight Tuner

Farzam Tajdari1, Mahsa Tajdari2, and Amin Rezaei3

Abstract—In the presence of complicated kinematic and dy-
namic, we present a generalizable robust control technique for the
6-Degree of Freedom (6DoF) Stewart integrated platform with
revolving, time-delayed torque control actuators to achieve faster,
and reliable efficiency for parallel control manipulators. The
suggested optimal solution involves the construction of a time-
delay Linear Quadratic Integral (LQI) controller integrated with
an on-line Artificial Neural Network (ANN) as the cost function
gain tuner. The controller is formulated to robustly mitigate
the nonlinear system’s real-time tracking error with large time-
delay, which is implemented via ADAMS software. The method
is validated through simulation experiments to demonstrate that
the developed methodology is practical, optimum, and zero-error
convergence.

Index Terms—Time-Delay, Integral Control, Stewart Platform,
Artificial Neural Network, Optimal Solution.

I. INTRODUCTION

Parallel systems are recommended over serial manipulators
for applications such as surgeries, scanning, and 3D printing
that require higher speeds and acceleration, greater accuracy,
and the lightest weight [1]. The invention of anatomically
adaptable recovery equipment [2] and the upcoming generation
of Ultra Personalized Products and Services (UPPS) [3], [4]
are of particular concern due to the intense importance of
robot-influenced well-being and human life. Rapid automatic
breast scanning [5] is an interesting scanning scenario for
the study’s potential implementation, considering the fact that
it is a very complex procedure due to the flexibility and
deformity of breast tissue, particularly in motion scanning. The
extremely high precision necessitates a thorough knowledge of
parallel robotics, including sensor or actuator time delays and
implementation objections [6]. This examination necessitates
a thorough understanding of the vector, complex, and com-
plicated control approaches. Well-known parallel robots with
widespread use are derived from the mechanism suggested
by Stewart platform [7] as the basis of recent parallel robots
in the applications mentioned above. The complex approach
explains the interaction between internal or external forces
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and torques, as well as the state of the end-effector con-
troller, in terms of the dynamic equations’ main problems.
With respect to dynamics, many approaches have been used,
including the momentum-based approach [8], the Newton-
Euler methodology [9] and the Lagrangian approach [10]. The
key aim of the parallel robot control system architecture is
to ensure an exact continuation for the target position and
orientation of dynamic and static variables in the moving end-
effector of the robot [11]. Due to their extreme complexity, the
robot’s dynamics have lower control methods for the rotary
Stewart robot while a wide range of control mechanisms are
available, for example, optimum feedback robotic control [12];
backstage adaptive control [13]–[15]; and backstage adaptive
control [16], [17]. In order to directly exploit the movement
of the end-effector, reverse dynamic controls are extremely
necessary. In limited studies [18], however, rotary torque
controls are explored and provide the possibility of further use
of recognition technologies, non-linear testing methods and
impedance control systems. Moreover, few of them studied
time delays (particularly in the operational file of robots)
as an undeniable part of robotic controllers in the studies
on rotary control Stewart, which highlighted high accuracy.
Time-Delay Control (TDC) is generally considered an optimal
way to solve this problem. The TDC scheme is also used
for large applications such as robot manipulators [19], and
flexible robots [20]. Time-delay estimation (TDE) errors will
eventually be estimated by using time-related controls in
functional management approaches. There are also increased
TDE errors, which allow the trust of the closed-loop system
regulations to be extremely complicated and non-linear (e.g.
saturation.) As a general solution, TDC is the main benefit of
its model-free functionality.

In the face of a large time lag with the actuators to
maximized torques and reduce tracking errors, the objective
of this paper is to establish and test a modern, stable torque
management strategy for the complex parallel system. In
addition, the controller is evaluated by a valid non-linear test
bed using the ADAMS model proposed for the intelligent
implementation of [21], [22] and experimentally analyzed
using a robot manufactured.

II. EQUATIONS OF MOTION

A. Kinematics equation

The power torques of the motors and their rotational angles
are controllable variables on a Stewart base powered by rotat-
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Fig. 1: Schematic of a Stewart platform. (a) Defined variables
and vectors. (b) Dynamic force-torque diagram.

ing engines. The relationship between the motor variables and
the end-effector position is stated in the following equations:

L̄ = f(X̄), θM = g(L̄), (1)

where vector X̄ = [φ θ ψ x y z]T represents the end-effector’s
variables which are the rotation angles φ, ψ, and θ of the
moving plate about the X , Y and Z axis respectively, and the
position of the end-effector center of mass as x, y, and z with
respect to the fixed coordinate XY Z, according to Fig. 1(a).
Moreover, the vector L̄ = [L1 L2 L3 L4 L5 L6]T representing
the distance between the joints on the fixed base ( ~Pi) and the
corresponding joints on the movable frame (~pi), and eventually
θM = [θM1

θM2
θM3

θM4
θM5

θM6
]T is the motor angular

shown in Fig. 1(a). We’ve used the findings of the same model
in [21] to find the relationship between Li and θMi, then

θMi
= −(asind

(
Ci√
A2
i + B2

i

)

− acosd

(
Bi√
A2
i + B2

i

)
+ 180), (2)

where Ai,Bi, Ci ∈ U(X̄) and

Ai = 2|~ui|
(
|~Lix |Sin(θh)− |~Liy |Cos(θh)

)
, (3)

Bi = 2|~ui|(|~Lix |Cos(β)Cos(θh)

+ |~Liy |Cos(β)Sin(θh)− |~Liz |Sin(β)), (4)

Ci = |~li|2 − |~Li|2 (5)

in which θh is the angle between ~Pi and ~X in global axis,
and β is the installation angle between the motor and horizon.
The equation explained in (2) specifies that with a X̄ on the
end-effector sensor, the angle value of each motor is defined.
What helps to monitor these robots location.

B. Kinetics equations

In this section, the dynamic equations of the Stewart plat-
form powered by six rotary motors are obtained using the
Newton-Euler method. The derivations are summarized only
in order to illustrate the different dynamic properties of the
systems and the effects. The Stewart system with six rotary

motors as actuators studied in this paper is shown in Fig. 1 (a).
The frame comprises, as can be seen, of a revolving plate as an
end-actuator, of a fixed plate as a base and, as an end-actuator
manipulator, of six legs connected to six rotary actuators. The
circular joints are used to connect the end-effector and the
spine to the six thighs. The kinetics equations for end-effector
can be written as:

Σ ~M = Ī~α, Σ~F = m̄~a (6)

where ~α is the angular acceleration vector, and ~a is the linear
acceleration vector of the end-effector. In addition, m̄ contains
the mass value (m) of the end-effector, and Ī includes the end-
effector moment of inertia around x, y, and z axis, then[

Ī 03×3

03×3 m̄

]
X =

[
M
F

]
(7)

Ī =

Ixx 0 0
0 Iyy 0
0 0 Izz

 , m̄ =

m 0 0
0 m 0
0 0 m

 (8)

and,

M = [Mx, My, Mz]
T
, F = [Fx, Fy, Fz]

T
. (9)

In Fig. 1(b), M and F represents the torques and the exerted
forces on the end-effector, respectively. The complex equation
should be driven in the following way, when discussing the
torque-manipulation of the rotary motors[

Ī 03×3

03×3 m̄

]
¨̄X =

[
M
F

]
= τ6×6T (10)

where T = [T1 T2 T3 T4 T5 T6]T , and each component of
T as Ti is the manipulated torque with motor i. The kinetics
equations can also be formed using their unit vectors. We can
write:

Σ ~M = Σ~ri × ~Fli = Σ~pi × ~eli |~Fli | = Σ~eMi
|~Fli | (11)

in which, ~eMi
= ~pi × ~eli (i.e., ~e denotes the unit vector of

its corresponding vector). Then, the summation of the exact
forces can be obtained by:

Σ~F = Σ ~eli | ~Fli |, (12)

consequently,[
M
F

]
=

[
eM1

· · · eM6

el1 · · · el6

]Fl1...
Fl6

 (13)

where,

τ1 =

eM1
· · · eM6

el1 · · · el6
.

 . (14)

As ~Fli = ~eli ·~eNi
|~Ti|
|~ui| where ~eNi is the unit vector of ~Ti, thenFl1...

Fl6

 =


~el1 ·~eN1

|~u1| · · · 0
...

. . .
...

0 · · · ~el6 ·~eN6

|~u6|


T1

...
T6

 . (15)



(a) (b)

Fig. 2: 3D model of the Stewart platform designed with
Solidworks software. (a) Top view. (b) Perspective view.

Considering,

τ2 =


~el1 ·~eN1

|~u1| · · · 0
...

. . .
...

0 · · · ~el6 ·~eN6

|~u6|

 (16)

one can obtain[
Ī 03×3

03×3 m̄

]
¨̄X =

[
M
F

]
= τ6×6T = τ1τ2 T. (17)

Therefore, the ultimate dynamic transfer matrix, from the end-
effector to the base is τ = τ1τ2, which defines the equations of
motion based on the end-effector states and the applied torques
by the actuators, which enables us to directly implement the
torque control method as below:

¨̄X = τtotT (18)

where,

τtot =

[
Ī 03×3

03×3 m̄

]−1

τ. (19)

C. Non-linear model

In order to evaluate the controller design, it is vital to
have a reasonable non-linear model to characterize the real
device. While certain physical restrictions, such as collision
of objects, stiffness and elasticity of rigid bodies, and the
friction between hard surfaces, cannot not be considered in
the MATLAB software, the ADAMS model can be efficiently
used [21] to examine these physical constrains. Then, the 3D
machine model that is shown in Fig. 2 can be integrated
into ADAMS and the basic constrains can be implemented
on the robot model. The given parameters in Fig. 2(a) and
Fig. 1(a) are as follows: Rup =0.12 mm, Rdown =0.22 mm,
θ0 =5◦, and θ1 =15◦. In addition, the dynamic parameters are
reported in Table I in which, the system consists of fourteen
components of mass and moment of inertia.

III. CONTROLLER DESIGN

Given the fact that the dynamic system in the ADAMS
software is developed based on the nonlinear parameters
of the real system, it can be seen as a nonlinear Stewart

TABLE I: Dynamical features of the robot’s components.

Component Dimension
(m)

Inertia [Ix,Iy ,Iz]
(×10−4kg.m2)

Mass
(kg)

Quantity

li 0.404 [16, 16, 0.01] 0.08 6
ui 0.11 [0.01, 0.58, 0.6] 0.04 6
End-
effector

Circle
(Rup=0.12)

[30, 30, 60] 4 1

Base Circle
(Rdown=0.22)

[270, 270, 540] 7 1

platform; thus, in order to proficiently monitor the system,
the proposed controller has to minimize the tracking errors in
the presence of nonlinearities [23]. Besides robustness, input
signals optimization of the parallel manipulator is another
problem to be tackled in the control design step. In this respect,
an optimal control unit for the Linear Quadratic Integral (LQI)
is a strong and suitable candidate.

A. State-space equations

The state space and dynamic equations of the Stewart robot
are formulated as follows:

˙̄x(t) = Ācx̄(t) + B̄c(t)T (t) + d̄c(t) (20)

where x̄ represents the main states in X̄ , and the speed of
the states. Consequently, the error dynamic is defined is the
following fashion:

˙̄e(t) = Ācē(t) + B̄c(t)T (t) + d̄c(t) (21)

where, vector d̄c depicts the time variant disturbance. ē is the
error matrix of the states and is defined as ē = x̄− xd, where
xd denotes the desired values of each states. In addition, matrix
Āc includes all the ai,j elements in (22) which represents the
system dynamics. Finally, matrix B̄c, carries bi,j elements
in (23) which produces the interconnections between the
applied torques and corresponding states as follows:

ai,j =

{
1 if i = 2n− 1, and j = i+ 1

0 otherwise
(22)

bi,j =

{
τtot(

i
2 , j) if i = 2n,

0 otherwise
(23)

where n = 1, · · · , 6. Since in any real system the presence
of disturbances (i.e., uncertainties in dynamic parameters,) is
inevitable, an integral controller is used to eradicate constant
disturbances [23]. The key control issue resulting from (21)
can therefore be reformulated by taking into account integral
states (z) of S (i.e., as many as the number of links,) described
by:

ż(t) = C̄cē(t) (24)

where C̄c consists of c̄i,j denoted in the following way:

c̄i,j =

{
1 if i = n, and j = 2i− 1

0 otherwise
(25)



hence, by adding the integral states, the resulting dynamic
error of the system can be written as bellow:

ė = Ae(t) +B(t)T (t) + d(t) (26)

e =

[
ē
z

]
, d =

[
d̄c

0S×1

]
(27)

A =

[
Āc 0H×S
C̄c 0S×S

]
, B =

[
B̄c

0S×F

]
, C =

[
C̄c 0n×S

0S×2n IS×S

]
.

(28)

B. Time-delay control scheme

If we consider a time-delay of η for the system in (26) (η is
the summation of all the delays including actuator and sensor),
then the time variant form of the system is written as:

ė(t) = Ae(t) +BT (t− η)

y(t) = Ce(t). (29)

Accordingly, the solution for the well-known differential equa-
tion in (29) is presented in [24]:

ė(t) = eAt(t−t0)e(t0) +

∫ t

t0

eA(t−ζ)BT (ζ)dζ (30)

In the discrete time domain and considering only one step
delay, t can be considered as

t0 = k ∆t, t = k ∆t+ ∆t. (31)

Generally, it may happen that the resolution of the time step
(∆t) cannot cover the delay of η, then η = n∆t+ η0, and

e(k + 1) =eA∆te(k) +

∫ η0

0

eA(∆t−ν)Bdν T (k − 1)

+

∫ ∆t

η0

eA(∆t−ν)Bdν T (k) (32)

where k∆t− ζ = −ν, and T (k − 1) is the delayed output of
T (k) for one time step. From now on, the µ number of steps
delayed output is shown as Tk−µ Which is considered as extra
states to be controller as following,

e1dis =

[
e

Tk−1

]
. (33)

Then, the state space in (32) is formulated as

e1dis(k + 1) = A1dise1dis(k) +B1disT (k) (34)

where,

A1dis =

[
eA∆t

∫ η0
0
eA(∆t−ν)Bdν

0n×(N+S) 0n×n

]

B1dis =

∫∆t

η0
eA(∆t−ν)Bdν

−−−−−−−
In×n

 , C1dis =
[
C 0S×n

]
(35)

where, n is the number of the system inputs, S is the number
of integral states, N denotes the number of elements in matrix

ė in (21), and I is the identity matrix. Now, we explain the
discrete system with µ steps delay which can be written as:

e1dis(k + 1) = A1dise1dis(k) +B1disTk−µ

y(k) = C1dise1dis(k). (36)

Considering each delay line of the control signal as a single
state of the discrete system and the total number of variable
in e1dis as H = N + S + n, then, the state variable matrix of
the discrete system with the new states is

edis(H+µn)×1 =


e1dis

edisH+1:H+n

...
edisH+(µ−1)n+1:H+µn

 =


e1dis

Tk−µ
...

Tk−1

 . (37)

And, the system with µ-step delay is

edis(k + 1) = Adisedis(k) +BdisTk

y(k) = Cdisedis(k) (38)

where,

Adis =

 A1dis B1dis 0H×(µ−1)n

0(µ−1)n×H 0(µ−1)n×n I(µ−1)n×(µ−1)n

0n×H 0n×n 0n×(µ−1)n


Bdis =

[
0(H+(µ−1)n)×n

In×n

]
, Cdis =

[
C1dis 0S×(H+µn)

]
.

(39)

Now, we can define the following quadratic cost function
over an infinite time horizon, which is defined for minimiza-
tion of all states and control inputs:

minJ =

∞∑
k=0

[edis(k)TCTdisQCdisedis(k) + TT (k)RT (k)]

(40)
where,

Q = ωQI(H+µn)×(H+µn), R = ωRIn×n. (41)

The Q and R matrices are weight matrices that tend to
minimize the error of all states and the control signals. And,
ωQ > 0 and ωR > 0 are formulated for weighing matrices.

A Linear Quadratic Regulator (LQR) is used to solve the
resultant optimal control problem (40), (41), in which the goal
is to stabilize feedback gains via the assumption. Although the
stability and detectability parameters are fulfilled according
to Hautus-test in [25]–[27] extended to [21] by the initial
resulting method.

C. Controller design

In order to solve the LQI problem, a linear feedback control
law is proposed as follows:

T (k) = −Kedis(k) (42)

where
K =

(
R+BTdisPBdis

)−1
BTdisPAdis, (43)



P = CTdisQCdis +ATdisPAdis

−ATdisPBdis
(
R+BTdisPBdis

)−1
. (44)

Resulting K in (43) as optimal gain, and the Algebraic
Riccati Equation (44) are investigated in [28].

D. Intelligent estimator design

As a function of time variables in the dynamic equation (20),
Bdis(k) is the time variable in (38) according to (23), which
leads to the conclusion that the process behaves differently in
various paths. Thus, using intelligent approaches is an achieve-
ment in solving non-linearity and maximum efficiency [29]–
[34]. As the cost efficiency can be maximized by well-defining
the wQ and wR in (40) it’s a path dependence approach to
approximate true variables by time.

Where wQ indicates the degree of state error minimization
and wR optimizes the torque values. An ANN-based estimator
will be defined where the input variables are the density of
the functions of the state error and the torque density of the
function and the outputs of the estimator are wQ and wR.

The density functions are derived from [21] which describes
the density function for any arbitrary ε parameter by the
following equation:

ρε(k) = Ωε(ε(k)) = (win + 1)
ε(k)∑k

i=k−winε(i)
(45)

where ρε denotes the parameter’s density function. When
the average of the parameter with window size win + 1
is significantly less than ε(k), the ρε value becomes highly
sensitive. As a consequence, the ρε that is appropriate is the
one that has the least divergence from the average values.
This gives the a parameter changes a smooth and rational
instigation, according to [21]. Therefore, the inputs of the
intelligent estimator are ρē1×6 and ρT1×6 , and the outputs are
wQ1×1

, and wR1×1
as shown in Fig. 3.

We used controller output, for win = 30, and wQ and wR
as 0.1, 1, 4 and various quantities of delay (µ) as 0, 5, 10, 20
and 30 intervals including 45 experimental intervals in all. We
have repeated the above measurements with frequencies of 0.5
Hz, 2 Hz, 4 Hz, and 6 Hz to consider the frequency effects of
the desired values, so that the final datasets are composed of
180, and the sampling time during these tests is 0.1s and the
time spent is 10 s. That ends the data set with 18000 samples
of the input-output.

Regarding the Fig. 3, the input layer consists of 18 neurons,
the hidden layer contains 10 neurons, and the output layer
includes 2 neurons. Also, the employed activation functions
are linear and sigmoid for the input and the output, and the
hidden layer respectively. In addition, the training algorithm of
the ANN is a Levenberg-Marquardt back-propagation method
based on [35]. A collection of data, including the inputs-
outputs, is needed to design an ANN-based estimator. As a
result, the estimator’s controller (42) is used as a master. Thus
the randomly chosen 70% data set for training is considered,
while the remaining 30% is used to test the model collected.

Fig. 3: Structure of the ANN-based intelligent estimator.

Fig. 4: Closed-loop time-delay control diagram.

The closed-loop optimum feedback management diagram
of the proposed device displays in Fig. 4 where the ANN
estimator changes the controller gains of wQ and wR at each
step, depending on error states and torque values.

IV. SIMULATION RESULTS

The results of the simulation are produced by implementing
win = 30, µ = 8, and ∆t = 0.1 s in ADAMS, while the
desired variables (X̄d) are considered to be following:

X̄d(t) =
[
φd(t), θd(t), ψd(t), xd(t), yd(t), zd(t)

]T
=[

π
12 ,

π
12 ,

π
12 , 0.02, 0.02, .08

]T
Sin(t)+

[
0, 0, 0, 0, 0, .38

]T
(46)

where t is time. The corresponding simulation results are
obtained by implementing a proposed controller (42). Two
different control methodologies (controllers without integral
states, integral controllers, intelligent time-delay controller
without integral state, and intelligent time-delay integral con-
troller) are compared, according to Fig. 5(a). While the first
two controllers are technically stable without any delay in
the actuator, as discussed in [21], they cannot monitor the
robot in the presence of a time-delay (cyan and green line)
due to the unique dynamics of the robots (resulting from pair
instability (Āc,B̄c)). In Section III-C, the other two controllers
have a stable output, however, with finite errors. The intelligent
integrated time-delay controller ensures flawless monitoring
(looking at Fig. 5(a) on the blue lines and refuses errors as
seen in Fig. 5 (b).

The reduction in error was completed by an integral sta-
tus zero error function and with well-specified wQ and wR
controller time variant parameters recorded in Fig. 6 (a). The
smart time-delay controller without any detailed states does,
however, cause a substantial error, especially in the crucial
points of the required path (i.e. the output of the controller with
respect to a x, y and z in Fig. 5(b)). This is a discrepancy even
though the controller attempts to generate a periodic motion
close to the desired value.



Fig. 5: Controlled case performance via the ADAMS model.
(a) Main states (X̄). (b) Error of Main states (X̄ − X̄d)

TABLE II: Accumulative absolute percentage error (Eac)
report.

Controller Eac

Controller without integral states NaN

Integral controller NaN

Time-delay controller without integral states 225

Time-delay integral controller 80

To compare the experiments with regard to the monitoring
error, a criterion with the accumulated absolute percentage
error Eac is added

Eac =
2

H

H
2∑
i=1

∫ t

0

(
|X̄i(t)− X̄di(t)|

Ami
× 100

)
dt (47)

where Eac is the sum of all absolute amounts, from the
beginning to the end of the simulation. Where i = 1, . . . , H2 ,
tend = 10 s, and Ami represents the peak-to-peak magnitude
of the desired values (X̄di ) of the relative vector (X̄i) (where
the desire is constant, Ami is presumed to be 1). The output
of the controllers is then defined separately on the basis of
the parameters in TABLE II. As for the table, all controllers
without the time-delay scheme (the controller with no integral
states and the integral controller) failed as expected, at around
t = 0.8 s looking at the Figs. 5(a) and 5(b). While time-
delay controllers kept the system in the allowed work-space,
the time-delay integral controller had a significant advantage
over the time-delay controller without integral states, with
a 64% improvement. This reflects integral states’ ability to
reject unknown shocks and uncertainties. In comparison, Fig. 7
displays the torques that have been applied on the device for
the two time-delay management scenarios.

(a) (b)

Fig. 6: Online estimated of wQ ,and wR. (a) Time-delay
controller without integral states. (b) Time-delay integral con-
troller.

As the torques in Fig. 7(b) are compared to the torques
in Fig. 7(a), the control effort produced by the intelligent
time-delay integral controller decreases over time as the errors
decrease. In addition, the Integral controller’s torques have
more trembling (from t = 0 s to t = 5 s) than the torques of
the controller without integral states, which is attributable to
the integral states’ increased sensitivity to the tracking error
due to (24). Due to the significant tracking error, the amplitude
of the control signals produced by the intelligent time-delay
controller without integral states is increasing.

(a) (b)

Fig. 7: Motor torques. (a) Time-delay controller without inte-
gral states. (b) Time-delay integral controller.

V. CONCLUSION

In this paper, we investigated an innovative control method-
ology for a Stewart platform parallel robot with delayed rotary
actuator. We derived the equations of motion for the system,
and optimally designed the dimensions of the platform. We
also implemented a 3D model of the system in ADAMS
software. The current dynamic is controlled online via the
intelligent time-delay tuning of the LQI controller. The ro-
bustness, as well as the adaptive component, i.e., the ANN
estimator, enables us for an easy practical implementation,
without the necessity of lengthy and costly measurements of
the dynamic parameters. Finally, the simulation results showed
that the ideal time-delay LQI controller with an intelligent
estimator was able to monitor the dynamics of the device and
eradicate the error of monitoring given the presence of actual
dynamic forces and the enormous delay of the actuators in the
ADAMS model. Numerically, we showed that the time-delay
intelligent integral controller achieved 64% improvement in
terms of accumulative absolute percentage error (Eac). Further
developments include the study of the controller parameters
sensitivity, robustness of the method in presence of noise and
actuator saturation which will appear in our future scholar.
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