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Abstract—A majority of existing single-anchor localization
algorithms make use of antenna arrays or special antenna
systems. However, the need for specialized antenna systems incurs
higher costs, complexity and power consumption. This paper
presents a novel single-anchor localization algorithm, which does
not require antenna arrays or special antennas. The algorithm is
implemented in a two-robot system, where one of the robots acts
as the anchor and the other acts as the target. The localization
algorithm uses velocity measurements of each robot and distance
measurements between robots. Using the change in distance
between the robots and the velocity of the target robot relative
to the anchor robot, the target robot can be localized relative
to the anchor robot. The localization algorithm uses a Kalman
filter as a state estimator of the movement of the target robot
and a Savitzky-Golay filter to filter the distance measurements.
A simulation with Gaussian noise in the distance measurements
is performed to display the impact of the filtering methods.
Another simulation showed an average localization error of 1.38
meters when the distance measurements are acquired through
RSSI measurements, which is comparable to existing RSSI-based
localization methods.

Index Terms—Localization, single-anchor, Kalman filter, RSSI

I. INTRODUCTION

Precise localization, one of the many challenging sub-tasks
of multi-robot navigation, is a key technology to achieve
coordination and control of swarm robots [16]. Specifically,
localization concerns itself with estimating the location of
robots in an environment, given perceived sensor data [14].
To achieve reliable and efficient collaboration in a multi-robot
system, robots must be able to sense each other and interact
with each other locally.

Literature shows many localization methodologies for lo-
calization with a known infrastructure in a well-designed
environment, e.g., landmarks in the environment or a given
map [10]. These methodologies can use anchors: nodes placed
in the environment with a known global position. These
anchor-based localization methods can be categorized into
multi-anchor and single-anchor localization methods.

A conventional multi-anchor setup for localization uses at
least three anchors and ranging sensors on the robots. The
positions of the robots are calculated based on the distinct
anchor-robot distances, using triangulation or multilateration
techniques. However, specific issues remain in multi-anchor
solutions: there is a relatively high setup cost in materials
and human involvement, as found by Lymberopoulos and

Liu [7]. The anchors have to be carefully deployed over the
entire environment where localization is needed. This deploy-
ment overhead remains too high. Furthermore, the anchors’
costs, power usage, and required maintenance shouldn’t be
neglected.

Single-anchor localization methods have also been explored
in recent literature. A common scheme for single-anchor
localization uses both angle-of-arrival (AOA) and time-of-
arrival (TOA) measurements, where the anchor is equipped
with a special antenna or antenna array to perform angular
measurements. A majority of recent works make use of
(multiple) directional antennas, or electronically steerable or
switchable antenna systems [5][11][4][18]. Some works enable
localization based on the exploitation of multipath reflections
in an indoor environment [5][9]. The common trend in these
works is the use of specialized equipment in the form of
an antenna array or special antenna system. Unfortunately,
the need for specialized antenna arrays makes these systems
less flexible and incurs higher costs, complexity and power
consumption [17]. Moreover, not all works explore scenarios
where both the anchor and targets are mobile. Thus, exploring
a single-anchor localization method that does not require
specialized antennas or antenna arrays is warranted.

The objective of this paper is to introduce a single-anchor
localization algorithm that can be implemented on a system
without using antenna arrays or specialized antennas. This is
achieved by relatively localizing a two-robot system, where
one robot acts as a mobile anchor and the other acts as
the target. Furthermore, the algorithm uses only one dis-
tance measurement between anchor and target, which can
be implemented with any type of ranging sensor, and one
velocity measurement for each robot, which, depending on
the robot used, can be measured through varying approaches.
The feasibility of this algorithm is put to trial by simulating
the algorithm when there is noise present in the two previously
mentioned measurements. Two experiments are performed:
the first experiment discusses the impact of filters used to
reduce errors in the proposed algorithm, and the second
experiment simulates the proposed algorithm under a realistic
noise profile, using RSSI-based distance measurements, and
analyzes the performance.

The remainder of this paper proceeds as follows: first, the
problem of interest to this paper is introduced. Second, a
detailed explanation of the developed motion-based single-



Fig. 1: A model of the problem setup. Given are two robots (R0,
R1). Robot R0 acts as a mobile anchor and R1 is the target. Two
given measurements are the velocity vr of R1 relative to R0 and the
distance r between the two robots. The desired result is the position
p of R1 relative to R0 .

anchor localization algorithm is given. Finally, the proposed
algorithm is simulated, and the results are discussed.

II. PROBLEM OF INTEREST

Consider a system composed by two mobile robots
{R0, R1} in a two-dimensional Euclidian space. In this prob-
lem, R0 will be referred to as the anchor robot and R1 will be
the target robot. The goal is to find the position of R1 relative
to R0. We define this position as the vector p(t) as depicted
in Figure 1:

p(t) =

[
x(t)
y(t)

]
,

where x(t) and y(t) are the x and y coordinates respectively.

To achieve relative localization of R1, it is assumed that
the robots have certain equipment available to sense distance
and velocity information in the system. The exact hardware
implementations are considered out of the scope for this
paper. First, assume R0 has a practical method to measure
the distance between R0 and R1. This distance is defined as
r(t), which is the norm of p(t):

r(t) = ||p(t)|| =
√
x(t)2 + y(t)2

Second, R1 can measure its own velocity and communicate
this measurement to R0. R0 can measure its own velocity as
well. The velocity of R1 to relative to R0 is defined as vr(t):

vr(t) = v1(t)− v0(t) =

[
ẋ(t)
ẏ(t)

]
,

where v0(t) and v1(t) are the velocities of R0 and R1

respectively. A graphical depiction of the system can be found
in Figure 1.

Fig. 2: A depiction of the position discrepancy when performing
localization using the proposed localization algorithm. Note that the
velocity vr(t) of R1 relative to R0 is drawn on the frame of R0

for simplicity of drawing angles. Given only the angle θ(t) between
the robots and the velocity vr(t), we find two possible locations for
R1. Thus, it is not possible to precisely localize R1 given only the
previously stated information.

III. MOTION-BASED SINGLE-ANCHOR LOCALIZATION
ALGORITHM

This section describes the developed motion-based single-
anchor localization algorithm under the circumstances dis-
cussed in the previous section. In order to localize R1 relative
to R0, the angle θ(t) between vr(t) and p(t) can be calculated.
The equation for θ(t) is given below (see Appendix A for the
full derivation):

θ(t) = arccos
ṙ(t)

||vr(t)||
(1)

Thus, to calculate the angle θ(t), the change in distance
between the robots and the velocity of R1 relative to R0 is
utilized.

However, given only the angle θ(t) and the velocity vr(t),
it is not possible to precisely localize R1 relative to R0: the
result is two possible positions for R1. This is due to the fact
that p(t) could be on either side of vr(t) with an angle of
θ(t). This issue will be called the position discrepancy in the
remainder of this section and is demonstrated in Figure 2. The
equation for finding the position p(t) of R1 relative to R0 now
becomes:

p(t) =

[
r(t) cos (α(t)± θ(t))
r(t) sin (α(t)± θ(t))

]
, (2)

where α(t) denotes the angle of vr(t):

α(t) = arctan
ẏ(t)

ẋ(t)
,

and the ± signifies the discrepancy in the position p(t) as
discussed earlier.

Two methods of eliminating this position discrepancy are
discussed in the following subsections. The first method as-



sumes a known initial position of R1, and the second assumes
the initial position is unknown.

Case 1 - Localization with a known initial position

After calculating the two possible positions using the local-
ization algorithm, the simplest way to select one of the two
positions is by picking the position closest to the previous
position. This method is only achievable if the initial position
is known. Moreover, it’s the simplest way of eliminating the
position discrepancy. However, the need for an initial position
might reduce the use of the algorithm in practice.

Case 2 - Localization with an unknown initial position

The second scenario of the position discrepancy is one
where the initial position is unknown. Due to the absence of an
initial position, the simple algorithm described in the previous
subsection cannot be utilized. In this case, to precisely localize
R1, we need to make an assumption about the velocity vr(t).
We assume that at some point during the movement of the two
robots, there is a significant change in the direction of vr(t).
At the exact moment this change in direction happens, we
can select one of the two possible positions and thus precisely
localize R1 and determine future positions. This process is
demonstrated in Figure 3. In this figure, two consecutive time
steps of the movement of the robots are shown.

In the first time step, the angle θ(0) between vr(0) and
p(0) has been calculated and the two possible positions p0,true
and p0,false are shown, which correspond to the real and
wrong position of R1 in time step 0 respectively. From the
information known in just this time step, it is not possible to
localize R1.

In the second time step, the direction of the velocity vector
has changed. Again, we can calculate θ(1) and use it to acquire
two possible positions for R1: p1, true and p1, false, which
correspond to the real and wrong position of R1 in time step
1 respectively. Now, if we calculate the change in position
between the pairs of positions in the first time step and the
second time step, we observe that the change in position
between p0, true and p1, true is the smallest. The changes in
position between all the other possible pairs are significantly
larger than the change in position of the true positions. Thus,
when a change in velocity direction occurs in consecutive time
steps, by picking the pair of consecutive possible positions
with the smallest change in position, R1 can be precisely
localized.

A cosine similarity metric quantifies the change in the
direction of velocity vr(t). The cosine similarity score of two
consequent velocity vectors vr(t) and vr(t − 1) is computed
and compared to a threshold. If the cosine similarity score is
smaller than the threshold, we pick the pair of consecutive
possible positions with the smallest change in position.
The threshold depends on how big we want the change of
direction to be, which should be decided by the amount of
noise in the measurement of velocity vr(t).

Fig. 3: Two consecutive time steps of the localization algorithm
when the initial position is unknown. In each time step, the possible
positions are drawn using θ(t). When there is a change in direction
of velocity vr(t), R1 can be localized by comparing pairs of possible
positions between time steps. We can observe that the combination
p0,true and p1,true has the lowest change in position between the
time steps. The pair with the smallest change in position will be the
pair of true positions of R1.

In both cases, assumptions are made: the first case assumes
the initial position is known, and the second case assumes there
is some change of direction in vr(t). In the remainder of this
paper, we will consider the second case. This case could be
of more use in practice if the change of direction is relatively
accurate.

IV. REDUCING THE IMPACT OF NOISE

The localization algorithm is based on mobile robots, which
make measurements of physical data: the velocity vr(t) and
distance r(t). In the physical world, both these measurements
will contain noise. We assume that these measurements con-
tain zero-mean Gaussian noise. Further details on the exact
measurement noise can be found in section V. The real
challenge of the algorithm is to localize accurately despite
having noisy measurements. The following subsections will
introduce techniques which were utilized to maintain accurate
localization with noisy measurements.



A. Kalman Filter

In this work, we have chosen to use the Kalman filter to
track the target robot’s position accurately. The Kalman filter
is an adaptive filter that estimates the state of a linear system
and has been widely used for many applications, of which
mobile robot navigation is one [15].

1) Kinematic model: The state of the target robot is mod-
eled according to the Constant Velocity (CV) model. This
model has been used in many applications due to its relative
simplicity, versatility and effectiveness [12].

The state vector is modeled in terms of position and velocity
in a two-dimensional space:

Xk =
[
xk yk ẋk ẏk

]T
The general kinematic state model is given by:

Xk+1 = FXk + ωk,

with the transition matrix F:

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,

where T represents the time interval for each step and ωk is
the process noise which is assumed to be zero-mean Gaussian
noise with covariance matrix Q. The selected covariance
matrix Q is the most commonly used random acceleration
process noise for conventional tracking systems, given by:

Q =


T 4/4 0 T 3/2 0
0 T 4/4 0 T 3/2

T 3/2 0 T 2 0
0 T 3/2 0 T 2

σ2
q ,

where σq is a tuning parameter that is chosen empirically
based on the assumed motion of the target, as is often done
in numerous studies [12]. The choice of σq is important, as
it directly impacts the performance of the Kalman filter.

2) Measurement Model: The measurements are modeled
as:

zk = HXk + nk,

where zk is the measurement vector, H is the measurement
matrix and nk is the measurement noise, which is assumed to
be zero-mean Gaussian noise with covariance matrix R. The
measurement vector zk and measurement matrix H are given
by:

zk =
[
x̄k ȳk v̄xk v̄yk

]T
H = I,

where x̄k and ȳk are coordinates calculated with equation 2,
as explained in section III, and v̄xk and v̄yk are measurements
of velocity vr(t).

The covariance matrix R of the measurements is formed
from the error in x̄k and ȳk and the variance of noise in the

Fig. 4: Path of the target robot during the simulations. The target
robot starts at the coordinate [-9, -5] and runs in a straight line until
[1, -5], where it makes a change in direction, turning into a circular
track and running for 5 laps.

measurements of velocity vr(t). The error in x̄k and ȳk is
acquired statistically by performing over 1000 Monte Carlo
runs of localization and calculating the mean squared error in
each position measurement. The matrix contains both diagonal
and non-diagonal elements, because the noise in the x and
y measurements are correlated due to both of them being
computed with the same r(t) and vr(t). The measurement
covariance matrix is given by:

R =


E[n2

x] E[nxny] 0 0
E[nxny] E[n2

y] 0 0
0 0 σ2

v 0
0 0 0 σ2

v

 ,

where nx and ny are the errors of the measured positions in
the x and y axis respectively and σ2

v is the variance of the
noise in the measurement of velocity vr(t).

B. Filtering ṙ(t)

The proposed algorithm makes use of ṙ(t) when calculating
θ(t), as seen in equation 1. In our system, there is noise in the
measurement of r(t). By differentiating the measurement r(t),
we amplify the noise greatly. If we want accurate localization,
we need to filter this noise. For this filtering, we make use of
a Savitzky-Golay filter [13]. This filter is a popular method
of smoothing data and is based on fitting a polynomial to the
data. Furthermore, it’s commonly used to calculate derivatives
of noisy data. Thus, this filter can be used to calculate a filtered
ṙ(t).

V. PERFORMANCE EVALUATION

The evaluation of the proposed algorithm is performed by
simulations written in Python. The target robot is localized
using the developed localization algorithm for a certain path,
and accuracy is judged based on the root-mean-square error
(RMSE) of the position estimate. The following subsections
describe the simulation setup and results.



A. Simulation Setup

The experiments are split into two parts based on the
type of noise added to the distance measurement r(t). Both
experiments assume a static anchor robot, an unknown initial
position of the target robot and velocity vr(t) measurements
with zero-mean Gaussian noise with σv = 0.1 meters. The
robot runs at a speed of 1 m/s and takes measurements at
every 0.5 meters traveled (T = 0.5). The path of the target
robot is given in Figure 4. The target robot starts at the point
[-4, -5] and runs in a straight line until around the point [0,
-5], where it changes direction and begins turning for five
laps around the track. This change in direction is needed for
localization using the developed algorithm (with an unknown
initial position).

The first part of the experiments is performed to evaluate
how noisy measurements affect the localization algorithm
and how the filtering techniques discussed in the previous
section improve the position estimates. In this experiment,
there is zero-mean Gaussian noise with σr = 1.0 meter added
directly to the distance measurement r(t).

For the second part of the experiments, the goal is to get
a view of the performance of the proposed algorithm under
realistic noise circumstances. To achieve this, an implemen-
tation of the localization algorithm using RSSI to measure
the distance r(t) is simulated. RSSI is a popular choice for
distance measurement techniques due to its low cost, easy
implementation, and low power consumption [2]. Furthermore,
it fits the use case for our proposed algorithm since RSS
measurements can be made without the use of antenna arrays
or special antenna systems. Unfortunately, RSSI values are
often extremely sensitive to environmental dynamics, such as
multipath propagation, environmental noise and transmission
conditions.

To express the relation between distance and RSSI, we use
a lognormal shadowing path loss model, which is the most
popular channel model for RSSI-based localization [2]. The
model is given by:

RSSI = P0 − 10η log d+ σRSS ,

where P0 is the reference power at 1 meter from the anchor, η
is the path loss exponent, d is the distance between anchor and
target, and σRSS is a zero-mean Gaussian random variable,
which denotes a measurement noise.

For the setup of our simulation, we have taken channel
parameters from an estimation of channel parameters for an
environment described in [1], containing obstacles such as
tables and computers: P0 = −52 [dBm], η = 1.8 and
σRSS = 5.8 [dB].

Before the RSSI measurements are converted to distances,
they are preprocessed with a Simple Moving Average filter,
which positively impacts the filtering of raw RSSI data [6].

B. Results

1) Impact of noise reduction techniques: In this part of
the results, we first show a simulation run with no noise

Fig. 5: Noiseless run of the simulation.

Fig. 6: Simulation with Gaussian noise added to measurements
(σr = 1.0, σv = 0.1).

in either the velocity or distance measurement. After that,
we add Gaussian noise to the measurements and discuss the
effectiveness of the filtering techniques covered in section IV.

A noiseless run of the simulation is given in Figure 5. We
can see that the estimated target path and actual target path
overlap. As expected, there is no position estimate before the
target robot changed direction onto the circular path. The
figure also shows the two possible positions calculated with
the measurements for each time step. Note that both of the
measured positions for all time steps are drawn in the figures,
though, in reality, only one measured position is selected
(after a change in direction, as explained in section III). In
the case of this path, one of these measured paths overlaps
with the actual path, and the other is inaccurate. It should
be noted that not in all paths the actual robot path is given
by only one of the measured paths: the real path can be
composed of a combination of both measured paths.

A simulation run with noise added to both measurements
is given in Figure 6. In this case, no Kalman filter or filtering
on ṙ(t) has been done. The measurements are extremely
chaotic, and no information can be extracted from the figure:
the RMSE of the estimate is 8.51 meters.

Another run with noisy measurements is shown in Figure
7. However, in this case, the state estimation from the
Kalman filter is added. We can observe that the localization



Fig. 7: Simulation with Gaussian noise added to measurements, using
Kalman filter (σr = 1.0, σv = 0.1).

Fig. 8: The change in distance ṙ(t) without filtering the distance
measurements (same simulation as Figure 7).

is performed more accurately than in the previous case:
the RMSE of the position estimation is 2.286 meters. In
this case, the accuracy of the estimation is mostly due to
the relatively accurate velocity measurements. This can be
concluded due to the fact that the measurements can still be
seen chaotically jumping around the space: the RMSE of the
measured positions is roughly 7.94 meters.

The key to reducing the inaccuracy in the position
measurements is by filtering the distance measurements.

Fig. 9: The change in distance ṙ(t) after filtering, using the Savitzky-
Golay filter.

Fig. 10: Simulation with Gaussian noise added to the measurements,
combining Kalman filter and Savitzky-Golay filter to filter the dis-
tance measurements (σr = 1.0, σv = 0.1).

Fig. 11: A part of a noisy simulation run, using the Kalman filter
and Savitzky-Golay filter. Even though ṙ(t) has been filtered, we
still initially localize incorrectly when a change of direction occurs.

Figure 8 plots ṙ(t) over time in the simulation case of
Figure 7, where we used a Kalman filter and unfiltered
distance measurements. This figure showcases the high noise
in the distance measurements. Using the Savitzky-Golay
filter, we can obtain a much smoother ṙ(t) signal, as shown
in Figure 9. Combining all these techniques, we can use
the developed localization algorithm to localize even more
accurately. Figure 10 shows localization using a Kalman
filter and a filtered ṙ(t). Comparing this figure to 7, we can
notice that the measured positions are a lot less chaotic:
they are spaced around in a circular manner, as expected.
Naturally, the filtered ṙ(t) signal is not perfect, so there
will still be some noise in the measured positions. In this
case, the RMSE of the measured positions is 1.41 meters,
and the RMSE of the estimated positions is 0.61 meters.
Thus, the combination of a Kalman filter and Savitzky-
Golay filter results in the best performance and the filtering of
ṙ(t) is key to obtaining relatively accurate measured positions.

However, there are still a few problems in this process. The
first problem arises due to noise in the ṙ(t) curve. As stated
in the previous paragraphs, when the noise in ṙ(t) is high,
the measured positions become chaotic and jump around the
space. This noise also causes the initial localization, when



Fig. 12: The error in estimated position over time. In this case, the
algorithm initially localized to the incorrect measured position (same
scenario as Figure 11). The error in estimated position gradually
decreases over time and converges.

Fig. 13: Simulation using RSSI for distance measurements, according
to the lognormal shadowing path loss model described in section V-A

there is a change in the direction of velocity, to be incorrect:
this can be seen in Figure 7. The problem is that this incorrect
initial localization can still happen even though we filter ṙ(t).
This can be seen in Figure 11. In the case of our robot path,
this isn’t a big problem since it is a track with many changes
in the direction of velocity: the localization starts with a big
error in position estimate, but gradually decreases this error
and converges, as shown in Figure 12. However, this could
lead to severe localization inaccuracies on more straight robot
paths.

The second problem is related to issues with the algorithm
itself. In equation 2, we calculate the position using an angle-
based approach: r(t) cos γ. When r(t) increases and there is
a constant error in γ, the error in the position gets amplified
by the increasing r(t). The same problem is present in our
algorithm. Even if the noise in θ(t) is small and constant after
filtering, the more r(t) increases, the more noisy the mea-
surements will be. The current Kalman filter implementation
does not take this problem into account and will have to be
improved.

2) RSSI-based distance measurements: This part of the
experiment simulates distance measurements acquired through
RSSI measurements. To model the RSSI channel, we used
a lognormal shadowing path loss model and parameters de-

scribed in section V-A. The simulation result is shown in
Figure 13. Compared to the simulation in Figure 10, we can
see the estimation is noisier, due to noisier r(t) measurements.

The RMSE of the estimated position in Figure 13 is 1.51
meters, and the RMSE of the estimated position after running
the simulation 1000 times is 2.3 meters. This increase in
RMSE is due to the fact that the algorithm occasionally
initially localizes to the incorrect measured position and then
converges to the correct measurement, similar to Figure 12.
If we consider only the RMSE after convergence, we get an
error of 1.38 meters. This performance aligns with other RSSI-
based localization systems, which typically have an error of 1-
5m, depending on the environment and experiment parameters
[3]. In [8], RSSI measurements from multiple anchors are
fused with IMU measurements to localize a mobile unit. This
approach is similar to the method described in our simulation,
since it localizes a mobile target using RSSI measurements
and the motion of the target. The result is an RMSE in
an estimated position of 1.28 meters, which is similar to
the result obtained in our simulation. Thus, the proposed
algorithm seems like a promising technique for RSSI-based
single-anchor localization.

VI. CONCLUSIONS

In this paper, we proposed a novel motion-based single-
anchor localization algorithm. The proposed algorithm uses
the distance measurement r(t) between the anchor and target
and the velocity measurement vr(t) of the target relative to
the anchor. The algorithm is implemented in a two-robot
system, where one of the robots acts as an anchor and the
other acts as the target. To localize accurately when these two
measurements are noisy, a Kalman filter was used as a state
estimator, and a Savitzky-Golay filter was used to obtain more
accurate r(t) and ṙ(t) measurements. Simulations showed the
positive impact that the Kalman filter and Savitzky-Golay
filter had. In particular, to get accurate measured positions
from the proposed algorithm, it is essential to have precise
ṙ(t) measurements. Another experiment simulated distance
measurements acquired through RSSI, using a lognormal shad-
owing path loss model. This experiment resulted in an RMSE
of 1.38 meters, which could make the proposed algorithm
promising for RSSI-based single-anchor localization. How-
ever, the results could vary in a real-life simulation, depending
on the environment, the severity of multipath propagation,
model inaccuracies or measurement errors.

Future works can expand upon this work in many ways.
First of all, different target robot paths can be explored,
including paths where both the anchor and target are moving.
Second, the system can be expanded to a system with more
than two robots. Third and most important, studies can be
done on improving the filtering of r(t) and ṙ(t), since this
is key to increasing the measured positions obtained from the
proposed algorithm. Finally, the system can be implemented
on hardware, and the performance can be analyzed.



VII. REPRODUCIBILITY AND INTEGRITY

In this section we reflect upon the reproducibility and in-
tegrity of our work. Two factors were maintained to ensure the
reproducibility and integrity of our work. First, in this paper,
the proposed algorithm and all the necessary models were
described with as clearly as possible in Sections III and IV.
This allows readers to implement a similar system themselves,
if they should wish so. Second, the code repository1 for the
simulations in this paper is available publicly. This code is
made publicly available to allow future researchers to start
from where we left off and evaluate the exact parameters used
in the simulations. Due to the random variables involved in the
experiments, the simulations won’t be identical to the results
in this paper in every case, however results will converge to
the results found in this paper.

APPENDIX

A. Derivation of θ(t)

Consider two robots {R0, R1}. Let p(t) be the vector of
the position of R1 relative to R0 and v(t) the velocity of R1

relative to R0 (see Figure 1):

p(t) =

[
x(t)
y(t)

]
v(t) =

[
ẋ(t)
ẏ(t)

]
We define r(t) as the norm of p(t), which is the distance
between the the two robots:

r(t) = ||p(t)|| =
√
x(t)2 + y(t)2

Now we derive the time derivative of r(t):

ṙ(t) =
x(t)ẋ(t) + y(t)ẏ(t)√

x(t)2 + y(t)2

=
p(t) · v(t)√
x(t)2 + y(t)2

=
p(t) · v(t)

r(t)

Consider the two unit vectors p̂(t) and v̂(t):

p̂(t) =
p(t)

||p(t)||
=

p(t)

r(t)
v̂(t) =

v(t)

||v(t)||

Using these unit vectors, we can rewrite ṙ(t) into a form
containing θ(t), which is the angle between v(t) and p(t):

ṙ(t) =
||v(t)||r(t) ∗ p̂(t) · v̂(t)

r(t)

= ||v(t)|| ∗ p̂(t) · v̂(t)
= ||v(t)|| cos (θ(t))

This gives the formula for θ(t):

θ(t) = arccos
ṙ(t)

||v(t)||
1https://github.com/suleyman222/motion-based-single-anchor-localization
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