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Abstract
Modeling of fluid flows in density-based topology optimization forms a longstanding challenge. Methods based on the 
Navier–Stokes equations with Darcy penalization (NSDP equations) are widely used in fluid topology optimization. These 
methods use porous materials with low permeability to represent the solid domain. Consequently, they suffer from flow leak-
age in certain areas. In this work, the governing equations for solid/fluid density-based topology optimization are reevaluated 
and reinterpreted. The governing equations are constructed using the volume averaged Navier–Stokes (VANS) equations, 
well known in the field of porous flow modeling. Subsequently, we simplify, interpret and discretize the VANS equations 
in the context of solid/fluid topology optimization, and analytically derive lower bounds on the Darcy penalization to suf-
ficiently prevent flow leakage. Based on both the NSDP and VANS equations, two flow solvers are constructed using the 
Finite Volume method. Their precision and the lower bound on the Darcy penalization are investigated. Subsequently, the 
solvers are used to optimize flow channels for minimal pressure drop, and the resulting designs and convergence behavior 
are compared. The optimization procedure using the VANS equations is found to show less tendency to converge to inferior 
local optima for more precise flow solutions and is less sensitive to its parameter selection.

Keywords Fluid flow · Topology optimization · Volume averaging · Darcy penalization

1 Introduction

Optimization of flow-related problems is a challenging yet 
highly relevant subject. Topology optimization has been suc-
cessfully applied to such problems as can be found in the 
extensive literature survey by Alexandersen and Andreasen 
(2020). In fluidic topology optimization, the two most 

popular approaches are density-based and level-set based 
optimization. In the first work on density-based fluidic 
topology optimization by Borrvall and Petersson (2003) the 
distinction between the fluid and solid parts of the design 
domain is introduced using an inverse permeability. They 
optimize 2D channel flow between two plates where in the 
solid domain the two plates are close to eachother, resulting 
in low permeability and limited flow. Low permeability is 
modeled by adding a high penalization on the flow. In the 
fluid domain the two plates are further apart, permeability 
is high and only a low penalization on the flow is added. 
Design variables control a penalization on the flow, and thus 
influencing permeability of the domain. This approach leads 
to a set of governing equations that combines the Darcy flow 
problem with the Stokes equations and is only suitable for 
low Reynolds flow. Subsequently, Gersborg-Hansen et al. 
(2005) extend this framework from Stokes to Navier–Stokes 
flow by including inertia terms. Furthermore, they note that 
the reference to flow between two plates can be dropped 
and replaced by flow through a porous medium modeled by 
a Brinkman-type model (Brinkman 1949). We will refer to 
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the resulting set of equations as the Navier–Stokes equations 
with Darcy penalization (NSDP equations).

Kreissl et al. (2011) found that density-based optimiza-
tion using the NSDP equations required specific stabilization 
procedures and solutions suffered from erroneous “pressure 
diffusion” trough the solid domains. Kreissl et al. (2011) use 
pressure diffusion to refer to pressure gradients in the solid 
domain which drive erroneous flow in these domains. In 
this work we will refer to this effect as “flow leakage“, as we 
will argue that fluid pressure gradients in the porous “solid” 
domain should be expected and flow through this domain 
is representative of both flow and pressure field errors in 
the fluid domain. As a solution to these density-based opti-
mization problems, Kreissl and Maute (2012) propose to 
use level-set based optimization using X-FEM. In contrast, 
level-set based fluid optimization allows for crisp solid/fluid 
boundaries and rigorously diminishes spurious flow through 
solid parts of the design domain. Provided, if combined with 
a suitable modeling approach (Kreissl and Maute 2012) use 
X-FEM). There is however no such thing as a free lunch 
as resulting designs may become more dependent on the 
initial guess of the level-set function, as shown by Allaire 
et al. (2004). However, topological derivatives can be used 
to measure the effect of adding solid islands in the fluid 
domains, alleviating the influence of the initial design on 
the optimum (Challis and Guest 2009; Guillaume and Idris 
2004). A disadvantage of current topological derivatives is 
that only solid material can be added in the flow domain, but 
the effect of creating a channel between two separate flow 
domains cannot be assessed using topological derivatives to 
the best of the authors’ knowledge. The pressure gradients 
and flow leakage in the solid design domain in density-based 
optimization can thus also be seen as an advantage. They 
distribute sensitivities throughout the entire design domain 
and carry information on the effect of creating a channel 
between two separate flow domains as noted by Alexan-
dersen and Andreasen (2020). However, similar to level set-
based methods, density-based methods will also converge to 
local optima dependent on initial design and optimization 
parameters. Although the more restricted design modifica-
tions of the level-set approach result in a stronger depend-
ence on the initial design.

Methods which blend features of level set-based and 
density-based approaches are proposed by Li et al. (2022), 
Picelli et al. (2022) and Behrou et al. (2019). To attain sen-
sitivity information in the solid domain Li et al. (2022) 
optimize a topology based on a level set function while rep-
resenting the solid domain as highly impermeable porous 
material. They thus do not enforce no flow penetration 
through the solid/fluid interface but inhibit solid domain 
flow using a penalization. The biggest advantage of this 
method is the fact that a body-fitted mesh may be used 
to accurately capture surface effects and no continuation 

approach is required for the flow penalization. However, 
using the level set approach other optimization parameters 
are introduced which also influence design convergence. 
Picelli et al. (2022) represent the topology using a crisp 
interface and explicitly prescribe no-penetration conditions 
on the solid/fluid interface such that no flow is present in the 
solid domain. Moreover, sensitivities in the fluid domain are 
computed by assuming porous material and a flow penaliza-
tion may be introduced in the fluid domain (but in practice 
porous regions are not present in the flow computation). 
Subsequently, spatial filtering is used to populate the solid 
regions with sensitivities. However, the extrapolation of 
sensitivities into the solid regions is dependent on a spa-
tial filtering radius and therefore parts of the solid domain 
will not contain any sensitivities. Similarly, Behrou et al. 
(2019) use a density-based model and remove flow in the 
solid domain by adaptive removal/addition of elements with 
a density below a certain threshold value. Both these last two 
methods have the additional advantage of reducing the com-
putational cost of solving the physics. However, a disadvan-
tage of these methods is that sensitivity information is also 
removed in the large solid areas. Consequently, the effect of 
adding channels in solid domains cannot be measured, creat-
ing difficulties for the optimizer to add these kind of design 
features. Both level-set and density-based flow optimization 
thus have their advantages and disadvantages. In this paper, 
we use density-based fluidic topology optimization as we 
prefer its natural ability to add islands to the fluid domain 
and create channels in the solid domain. Furthermore, we 
aim to improve the flow model such that errors caused by 
flow leakage are reduced.

Several authors have already studied variations on the 
porous flow model to increase its precision and reduce 
flow leakage. A mixed formulation of the Darcy–Stokes 
equations is implemented by Guest and Prévost (2006), 
and they note the similarity between their flow model 
and the Brinkman equation for flow through multiple 
scale porous media. Contrary to Borrvall and Petersson 
(2003) who find some intermediate density elements at 
the solid/fluid boundaries of their optimal designs due to 
a density filter which is applied to prevent convergence to 
inferior local optima, Guest and Prévost (2006) find crisp 
solid/fluid optimal designs. They argue that their meth-
ods automatically converge to discrete valued designs 
and apply a continuation strategy on the maximum flow 
penalization and a procedure of smoothing/projecting the 
design variables to prevent convergence to inferior local 
optima. Furthermore, they note the possibility to use the 
new method to optimize porous/fluid structures. However, 
the mixed Darcy–Stokes equations only consider Stokes 
flow in the fluid domain and do not include the inertial 
effects in the Navier–Stokes equations. Philippi and Jin 
(2015) and Alonso and Silva (2021) extend the standard 
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NSDP equations by including a Forchheimer permeability 
tensor besides the Darcy penalization to penalize flows. 
The Forchheimer permeability tensor, derived in detail by 
Whitaker (1996), adds a porous drag at higher Reynolds 
numbers which scales quadratically with flow velocities. 
Alonso and Silva (2021) found improved designs when the 
Forchheimer tensor was included.

Further extensions to the NSDP equations can be found 
in the optimization of permeable microstructures. Govern-
ing equations in these optimizations allow for flow through 
the porous domain and are interesting to investigate from 
the perspective of solid/fluid optimization where the porous 
domain approaches a solid. A unit cell within a larger peri-
odic porous medium is optimized in micro scale using a 
standard Brinkman type model by Guest and Prévost (2007). 
Subsequently, a more refined Darcy penalization is com-
puted for the NSDP equations using homogenization tech-
niques similar to the techniques which will be used in this 
work. Takezawa et al. (2020) extend this work by also com-
puting the Forchheimer permeability tensor. Furthermore, 
Michaël et al. (2020) use the method of volume averaging 
to derive state equations for the modeling and optimization 
of spatially varying porous media. Volume averaging is a 
well-known technique in the field of flow modeling, used to 
construct refined porous flow models. Moreover, by includ-
ing a high flow penalization in the porous domain, distinct 
solid/fluid designs are found in the results computed by 
Michaël et al. (2020). Extended and more accurate porous 
flow models have thus been investigated in the context of 
topology optimization. However, these techniques have not 
been applied to the construction and interpretation of flow 
models particularly for solid/fluid topology optimization.

In most previous topology optimization studies, porous 
flow models based on the Darcy or Brinkman equations 
were used to define solid/fluid parts in the design domain. 
Robustly decreasing flow leakage and finding correct inter-
polation functions for material properties remains a chal-
lenge in fluidic topology optimization (Alexandersen and 
Andreasen 2020)). However, as discussed in the previous 
paragraphs, more extensive porous flow models exist and 
can be used in topology optimization (Alonso and Silva 
2021; Michaël et al. 2020)). To improve robustness of the 
optimization procedure and gain a better understanding of 
the equations for fluidic topology optimization, we approach 
the porous flow model from a more general viewpoint. An 
extended set of governing equations is investigated which we 
interpret and discretize specifically for solid/fluid topology 
optimization. Particularly, we will use the concept of vol-
ume averaging to derive the volume averaged Navier–Stokes 
(VANS) equations following Whitaker (1969, 1996). By 
closely examining and interpreting the VANS equations, we 
aim to improve two of the challenges set by Alexandersen 
and Andreasen (2020): improve “precision of solution and/

or optimality”, improve “parameter robustness and algo-
rithmic stability”.

In topology optimization we want to divide a design 
domain into a fluid and solid (impermeable porous) part 
using a single set of continuous governing equations to 
represent the flow everywhere within the design domain. 
The governing set of equations should thus be able to accu-
rately capture both flow near the solid/fluid interface as well 
as in the solid and fluid domains. Accurately modeling of 
flows near porous/fluid interfaces has long been a subject 
of research, and is relevant for optimized flow structures 
where the porous/fluid interface represents a solid/fluid 
interface. A boundary condition was proposed by Beavers 
and Joseph (1967) to account for a jump in stress at the inter-
face and to couple the Stokes to Poiseuille flow in a porous/
fluid channel. Ochoa-Tapia and Whitaker (1995) propose a 
momentum jump condition for the interface based on the 
VANS equations to couple the Brinkman flow model to the 
Stokes flow model. Many authors discussed the nature of 
the jump in stress at the porous/fluid interface, continuity 
of stress, velocity and pressure, and appropriate govern-
ing equations/boundary condition (Nield 1991; Vafai and 
Kim 1995; Goyeau et al. 2003; Valdés-Parada et al. 2007). 
More recent studies by Breugem and Boersma (2005) and 
Hernandez-Rodriguez et al. (2022) compared pore scale 
simulations with volume averaged simulations and found 
matching results when the VANS equations were used. Fur-
thermore, Hernandez-Rodriguez et al. (2022) confirm the 
necessity to include the Brinkman corrections to accurately 
model flow at the porous/fluid interface. In this work we will 
draw inspiration from these papers to be able to accurately 
capture stresses at the solid/fluid interface, and use volume 
averaged equations to improve solution precision.

Summarizing, the main contributions of this paper are 
the following: 

1. For a solid/fluid topology optimization problem a refined 
flow model is constructed by investigating the limit case 
of the VANS equations where porous material represents 
a solid. This method improves design convergence for 
optima with similarly precise flow solutions as optima 
obtained using the NSDP equations.

2. Lower bounds on the Darcy penalization will be derived 
analytically such that flow leakage in the solid domain 
is limited, improving parameter robustness of the opti-
mization problem.

This paper is structured as follows: Sect. 2 gives an introduc-
tion to volume averaging techniques for self-containedness, 
shows the VANS equations and compares them to the stand-
ard NSDP equations. Section 3 presents the discretization 
of the VANS equations, and the interpolation function used 
to dicretize the Darcy penalization. Subsequently, we derive 
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lower bounds on the Darcy penalization in Sect. 4, and make 
an a priori estimation of flow leakage. In Sect. 5 the opti-
mization problem and a method for adjoint sensitivity com-
putations are presented. In Sect. 6 we compare precision of 
the flow solution based on the VANS and NSDP equations 
for a range of Darcy penalizations and Reynolds numbers. 
Section 7 performs structural optimization using both the 
VANS and NSDP equations and compares the resulting 
structures in terms of precision and objective. Finally, in 
Sect. 8, we draw conclusions on the use of the VANS equa-
tions for topology optimization and identify subjects for 
further research.

2  The volume averaged Navier–Stokes 
equations

In this section a recap of the derivation of the VANS equa-
tions following Whitaker (1996; Ochoa-Tapia and Whitaker 
1995) is given, such that we are able to appropriately imple-
ment them in topology optimization. Subsequently, the lim-
its of the VANS equations and their suitability for solid/fluid 
optimization are investigated. Moreover, the VANS equa-
tions are simplified and used to derive the NSDP equations.

2.1  A short introduction to the volume average

The aim of fluidic topology optimization is to divide design 
domain Ω into a solid and a fluid domain such that an opti-
mal material layout is found for a certain objective and set 
of constraints. For density-based solid/fluid optimization, 
we simulate the solid domain as an impermeable porous 
domain and simulate flow using the VANS equations. The 
concept of a volume average is introduced using the porous 
and fluid domains Ωp and Ωf respectively, as shown in Fig. 1. 
The domains have interface Γfp = Ωf ∩ Ωp , where ◻ denotes 
the closure of a domain. For each xxx an averaging domain Ωa 
is defined as depicted in Fig. 2. The averaging domain is 

centered around xxx where vector yyy points to locations within 
the averaging domain. Furthermore, it has volume V and 
contains solid � and fluid � . Consequently, the domain can 
be split into its fluid part ( Ω� with volume V� ) and solid part 
( Ω� with volume V� ) as Ωa = Ω� ∪ Ω� , and the interface 
between these domains is defined as Γ�� = Ω� ∩ Ω�.

To find the average of property Ψ in fluid phase � at coor-
dinates xxx the intrinsic ( ⟨Ψ⟩i�xxx  ) and superficial ( ⟨Ψ⟩s�xxx  ) volume 
averages are defined as:

where yyy is used to integrate over fluid domain Ω� centered 
around xxx . Both the intrinsic and superficial averages are thus 
field quantities dependent on coordinate xxx , for convenience 
the subscript xxx is omitted in the remainder of this work. 
Using the superficial volume average the volume fraction 
of phase � is defined as:

which is used to relate the two averages as ⟨Ψ⟩s� = ��⟨Ψ⟩i� . 
The difference in interpretation between the superficial and 
intrinsic averages can be explained using the volume frac-
tion. The superficial average represents the bulk average and 
should generally converge to zero as �� → 0 , whereas the 

(1)

⟨Ψ⟩i� =
1

V�
∫Ω�

Ψ(xxx + yyy)dΩ

⟨Ψ⟩s� =
1

V ∫Ω�

Ψ(xxx + yyy)dΩ

(2)�� = ⟨1⟩s� =
1

V ∫Ω�

1dΩ =
V�

V
,

u

Γfp

u → 0

Ωf

Ωp

x

y xx
Ωa

Fig. 1  Design domain Ω divided into a fluid domain Ωf and a porous 
domain Ωp , both domains are connected at boundary Γfp = Ωf ∩ Ωp . 
Centered around all xxx an averaging domain Ωa is defined as illustrated 
in Fig. 2

x

y

xxxxxx
lφ

Ωa

β : Ωβ

nnφ

φ : Ωφ

yy

2r0

Γφβ

Fig. 2  An averaging volume centered around xxx , containing solid 
phase � and fluid phase � . The averaging domain Ωa can be divided 
into two parts as Ωa = Ω� ∪ Ω� , where the interface between the two 
parts is Γ�� = Ω� ∪ Ω� at which a normal nnn� is defined pointing to 
phase � . The porous microstructure has characteristic length l� , and 
the averaging domain has characteristic length r0 . Vector yyy is used to 
integrate over an averaging domain fixed at location xxx
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intrinsic average represents the pore scale average within 
the fluid domain and does not necessarily converge to 
zero as �� → 0 . For example, if within a certain averag-
ing volume the fluid has constant pressure p = pc and the 
volume fraction approaches zero, the intrinsic average will 
be ⟨p⟩i� = pc , but the superficial average will also approach 
zero ⟨p⟩s� = ��⟨p⟩i� → 0.

Subsequently, some useful mathematical relations are 
defined. The volume average of a gradient can be simplified 
using the averaging theorem (Howes and Whitaker 1985):

where Γ�� is the interface between phases � and � within 
Ωa and nnn� is the unit normal pointing outward of phase � on 
this interface, as shown in Fig. 2. Moreover, the averaging 
theorem in combination with the definition of the volume 
fraction can be used to prove that:

Finally, we assume that fluid field quantities can be split into 
their averaged and a deviational part as:

where Ψ̃ is the deviation from the average which is small 
compared to ⟨Ψ⟩i� . Furthermore, for the averages we assume 
that:

For these approximations to be valid for the pressure or 
velocity of a fluid, separation of scales is required (Whitaker 
1969). If l� and r0 are the characteristic length of the porous 
microstructure and averaging volume, respectively, as shown 
in Fig. 2, separation of scales for quantity Ψ requires that:

where LΨ is a characteristic length of property Ψ defined by:

These conditions ensure that Eq. 6 holds and may further-
more be used to define the average of the deviation as:

Using these tools and properties, the VANS equations can 
be defined in a meaningful manner, where only relatively 
simple closure relations are required to solve the resulting 

(3)⟨∇Ψ⟩s� = ∇⟨Ψ⟩s� +
1

V ∫Γ��

Ψnnn�dΓ�� ,

(4)∇�� = −
1

V ∫Γ��

nnn�dΓ�� .

(5)Ψ = ⟨Ψ⟩i𝜙 + Ψ̃,

(6)
⟨⟨Ψ⟩i�⟩i� = ⟨Ψ⟩i�,
⟨⟨Ψ⟩i�⟩s� = ⟨1⟩s�⟨Ψ⟩i� = ��⟨Ψ⟩i�.

(7)l𝜙 ≪ r0 ≪ LΨ,

(8)O

�
�2⟨Ψ⟩i�
�xi�xj

�
= O

�
⟨Ψ⟩i�
L2
Ψ

�
.

(9)⟨Ψ̃⟩i𝜙 = 0.

equations. We furthermore note that the introduced con-
cepts for volume averaging show many similarities with 
the homogenization concepts for topology optimization in 
(Hassani and Hinton 1998), and the averaging concepts for 
turbulent flow as shown in Alfonsi (2009).

2.2  Derivation of the VANS equations

In this section, the general VANS equations are presented, 
such that they can be interpreted and simplified for topol-
ogy optimization in the coming sections. Whitaker (1996) 
and Ochoa-Tapia and Whitaker (1995) derive the VANS 
equations starting from the incompressible Navier–Stokes 
equations, consisting of the continuity equation and 
momentum equations, respectively:

where � and � are the density and kinematic viscosity, p the 
fluid pressure and vvv⊺ = [u, v,w] is the velocity field where 
u,  v,  w are the velocities in Cartesian coordinate directions 
x,  y,  z, respectively. Subsequently, the VANS equations 
are derived by taking the superficial volume average of the 
Navier–Stokes equations:

A derivation of the averaged continuity equation is found in 
(Ochoa-Tapia and Whitaker 1995) and shown in Appendix 1, 
resulting in:

The superficial velocity field is thus solenoidal and is diver-
gence-free in contrast to the intrinsic velocity field which 
has to satisfy:

where we used the relation between superficial and intrinsic 
averages ⟨vvv⟩s� = ��⟨vvv⟩i�. We prefer to solve for the super-
ficial flow field as this will simplify the required solution 
procedure. Subsequently, we focus our attention on the aver-
aging of the more complex momentum equations. For the 
derivation of the left-hand side of the averaged momentum 
equation we refer the reader to Whitaker (1996), and for the 
derivation of the right-hand side we refer to Ochoa-Tapia 
and Whitaker (1995), resulting in:

(10)
∇ ⋅ vvv = 0,

�

(
�vvv

�t
+ vvv ⋅ ∇vvv

)
= −∇p + �∇2vvv,

(11)
⟨∇ ⋅ vvv⟩s� = ⟨0⟩s� = 0,

⟨�
�
�vvv

�t
+ vvv ⋅ ∇vvv

�
⟩s� = ⟨−∇p + �∇2vvv⟩s�.

(12)∇ ⋅ ⟨vvv⟩s� = 0.

(13)
∇ ⋅ ⟨vvv⟩s� = ∇ ⋅

�
��⟨vvv⟩i�

�

= ∇ ⋅ ⟨vvv⟩i��� + ⟨vvv⟩i� ⋅ ∇�� = 0,
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where separation of scales is already used to simplify the 
equations. Whereas the superficial flow average is used, 
the VANS equations use the intrinsic pressure average for 
reasons explained in Sect. 2.3. For the interested reader, 
an example of the derivation of the averaged continuity 
equation and viscous forces is given in Appendix 1. In the 
coming section, an interpretation and simplification of the 
VANS equations will be given. The simplification and inter-
pretation will follow results from literature, and are aimed 
at building a better understanding of the VANS equations in 
the context of topology optimization.

2.3  Interpretation of the VANS equations for solid/
fluid topology optimization

The VANS equations have many terms which have differ-
ent physical origins. Closely inspecting these terms helps 
in using the VANS equations for topology optimization. 
Firstly, we focus on terms containing deviational velocities 
( ̃vvv ) and pressures ( p̃ ), as we do not want to solve for them 
and want to remove them from the equations. The bound-
ary integral in Eq. 14 is investigated:

In (Whitaker 1996) this term is referred to as the surface 
filter, as it filters information from the microscale solid/fluid 
interface to the averaged scale. To form a closure relation to 
interpret this term, Whitaker (1996) notes that at interface 
Γ�� the velocity vvv = ⟨vvv⟩i𝜙 + ṽvv = 000 and thus:

Subsequently, Whitaker (1996) uses this idea to construct 
a relation between the deviational and averaged quantities:

where mmm and MMM are a vector and matrix, respectively, used to 
relate averaged to deviational quantities and close the VANS 
equations. By inserting these approximations in the surface 
filter, it may be simplified as:

(14)

𝜌

�
𝜕⟨vvv⟩s𝜙
𝜕t

+ ⟨vvv⟩s𝜙 ⋅ ∇
⟨vvv⟩s𝜙
𝛼𝜙

+ ∇ ⋅ ⟨ṽvvṽvv⟩s𝜙
�

= − 𝛼𝜙∇⟨p⟩i𝜙 + 𝜇∇2⟨vvv⟩s𝜙 − 𝜇∇𝛼𝜙 ⋅ ∇
⟨vvv⟩s𝜙
𝛼𝜙

+
1

V ∫Γ𝜙𝛽

(−p̃ + 𝜇∇ṽvv) ⋅ nnn𝜙dΓ𝜙𝛽 ,

(15)
1

V ∫Γ𝜙𝛽

(−p̃ + 𝜇∇ṽvv) ⋅ nnn𝜙dΓ𝜙𝛽 .

(16)ṽvv = −⟨vvv⟩i𝜙 at Γ𝜙𝛽 .

(17)
p̃ = 𝜇mmm ⋅ ⟨vvv⟩i𝜙,
ṽvv =MMM⟨vvv⟩i𝜙,

where the intrinsically averaged velocity is substituted with 
the superficially averaged velocity. Whitaker (1996) goes 
into great detail to define KKK , but for the purpose of this work 
we recognize it as the Darcy’s law permeability tensor. Fur-
thermore, the permeability tensor is simplified as KKK = �III 
by assuming isotropy of the porous medium and the tensor 
is recognized as the penalization used in the NSDP equa-
tions for topology optimization to inhibit flow through solid 
domains. Moreover, Whitaker (1996) defines the order of 
magnitude for the Darcy permeability tensor as:

Choosing the correct magnitude for � , such that flow through 
the solid domain is inhibited sufficiently in an optimization 
procedure, remains a challenge. However, in Sect. 4 an order 
analysis will be used to derive lower bounds on O(�) which 
will result in lower bounds of similar form as Eq. 19.

Another interesting term in the momentum equation is 
the so called volume filter (Whitaker 1996):

which filters information from the flow on microscale to 
the macroscale. This is actually similar to the Reynolds 
stress tensor used in the Reynolds Averaged Navier Stokes 
(RANS) equations for turbulent flow modeling (Alfonsi 
2009). In this work we will neglect this term as we assume 
the deviational velocities to be small, and remain within the 
laminar flow regime:

Moreover, adding this term for RANS optimization might 
not be straightforward. In the RANS equations velocity fluc-
tuations ṽvv stem from local eddies which are filtered out via a 
time average, whereas in the laminar VANS equations veloc-
ity fluctuations ṽvv stem from flow interaction at the pore scale 
solid/fluid interface.

Subsequently, we investigate the viscous terms in the 
averaged momentum equations:

(18)

1

V ∫Γ𝜙𝛽

(−p̃ + 𝜇∇ṽvv) ⋅ nnn𝜙dΓ𝜙𝛽

=
𝜇

V ∫Γ𝜙𝛽

(−mmm + ∇ ⋅MMM)nnn
⊺

𝜙
dΓ𝜙𝛽 ⋅ ⟨vvv⟩i𝜙

= −𝜇KKK⟨vvv⟩i𝜙 = −𝜇𝜅III
⟨vvv⟩s𝜙
𝛼𝜙

,

(19)

1

V ∫Γ��

(−mmm + ∇ ⋅MMM)nnn
⊺

�
dΓ�� = �

= O

�
��

l2
�

�
+O

�
���⟨vvv⟩i�

�l�

�
.

(20)𝜌∇⟨ṽvvṽvv⟩s𝜙,

(21)𝜌∇⟨ṽvvṽvv⟩s𝜙 ≈ 0.
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where the first part is called the Brinkman correction and 
the second part the second Brinkman correction (Ochoa-
Tapia and Whitaker 1995; Brinkman 1949). In an optimized 
solid/fluid design flow in “solid” porous regions is gener-
ally limited and ∇2⟨vvv⟩s� → 0 . The Brinkman correction is 
thus mainly important in the fluid regions. In contrast, the 
second Brinkman correction is mainly important in bound-
ary regions where large gradients in volume fraction ∇�� 
are found. In solid/fluid topology optimization the aim is 
to create crisp 0-1 designs where a porous “solid” region 
of low permeability ( �� → 0 ) is adjacent to a fluid region 
( �� = 1 ). In the boundary regions the second Brinkman 
correction should thus be included. However, according to 
Whitaker (1986) a solid wall should not be approximated 
using the second Brinkman correction as the length scale of 
the averaging volume r0 becomes of the same order as the 
length scales of �� and ⟨vvv⟩i� and we cannot adhere to the 
separation of scales. One of the solutions to this problem 
is to use a two domain approach in which separate govern-
ing equations are defined for the homogeneous fluid and 
solid domains. Subsequently, these equations are coupled 
via a jump condition on the solid/fluid interface concern-
ing velocities and shear stresses (Beavers and Joseph 1967; 
Ochoa-Tapia and Whitaker 1995; Angot et al. 2017). How-
ever, Breugem and Boersma (2005) and Hernandez-Rodri-
guez et al. (2022) show that flow along a porous wall can be 
accurately simulated using the VANS equations including 
the second Brinkman correction using a correct interpreta-
tion of the results and a correct definition of the permeability 
tensor. As we want to optimize the solid/fluid layout within 
the design domain and do not know the solid/fluid domains 
a priori, we prefer to use only the VANS equations and not 
use a two domain approach.

A physical interpretation of the second Brinkman cor-
rection for solid/fluid topology optimization is given using 
Fig. 3. In the derivation of the VANS equations in Appen-
dix 1 the correction shows up as a simplification of a sur-
face integral over the microscale solid/fluid interface Γ��:

In Fig. 3 we show an averaging volume on porous/fluid 
interface Γfp where the porous material approaches a solid 
l� → 0 . In the "solid" porous domain flow speeds and gra-
dients within the pores are negligible with respect to flow 
speeds within the fluid domain. Within the averaging volume 

(22)�∇2⟨vvv⟩s� − �∇�� ⋅ ∇
⟨vvv⟩s�
��

,

(23)

�

V ∫Γ��

∇⟨vvv⟩i�nnn�dΓ = −�∇�� ⋅ ∇⟨vvv⟩i�

= −�∇�� ⋅ ∇
⟨vvv⟩s�
��

.

we may thus neglect the surface integral over porous domain 
boundaries Γ�� ⧵ Γfp and simplify the boundary integral as:

Moreover, if the formulation is taken to its limits where 
the porous material is a solid and l� = 0 , it is clear that 
Γ�� = Γfp and Eq. 24 holds. Furthermore, the momentum 
equation (and its volume average) represent an equilibrium 
between mass flow acceleration and stresses on an small 
domain of fluid. Subsequently, the boundary integral over 
Γfp ∩ Γ�� is interpreted as an average of the viscous stresses 
( �∇⟨vvv⟩i� ) on the solid/fluid interface. Within the averag-
ing domain, these stresses are supported by the solid mate-
rial at the interface. Supporting a part of these stresses by a 
rigid solid material thus reduces mass flow acceleration and 
consequently flow. The second Brinkman correction thus 
represents the support of fluid domain viscous stresses by 
the solid material at the porous/fluid interface. Moreover, if 
these fluid domain viscous stresses would not be supported 
by the solid material, they would have to be be supported 
by the fluid in the porous domain. The second Brinkman 
correction can thus be said to remove fluid domain viscous 
forces from flow in the porous domain.

Subsequently, we interpret the inertial term on the left-
hand side of Eq. 14:

where we simplified ⟨vvv⟩s�∕�� = ⟨vvv⟩i� . The inertial term on 
the right-hand side represents the advection of microscale 

(24)
�

V ∫Γ��

∇⟨vvv⟩i�nnn�dΓ =
�

V ∫Γfp∩Γ��

∇⟨vvv⟩i�nnn�dΓ.

(25)�⟨vvv⟩s� ⋅ ∇
⟨vvv⟩s�
��

= ⟨vvv⟩s� ⋅ ∇
�
�⟨vvv⟩i��,

x

y

Ωa

nnφ Fsnnnnφ lφ → 0

u

Fµ

Γφβ

Γfp

Fig. 3  An illustration of the effect of the second Brinkman correc-
tion on porous/fluid interface Γfp . Within the pores flow magnitude 
is small with respect to flow magnitude in the fluid domain. Fluid 
domain viscous forces are subsequently mainly supported by the solid 
material at Γfp
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momentum �⟨vvv⟩i� by bulk flow ⟨vvv⟩s� . The supposed advan-
tage of this term in topology optimization is illustrated on a 
converged solid/fluid design. In topology optimization, the 
solid domain is defined by a low and constant volume frac-
tion 𝛼𝜙 = 𝛼 ≪ 1 , resulting in:

Comparing the right-hand side of Eq. 26 to the standard 
inertial term in the Navier–Stokes equations �vvv ⋅ ∇vvv (as in 
Eq. 10), we notice that the density is divided by � . The divi-
sion by the volume fraction is interpreted as a scaling of 
density in the solid domain 𝜌s = 𝜌∕𝛼 ≫ 𝜌 , where “density” 
thus increases relative to the fluid domain where �� = 1 . As 
larger masses require higher forces to accelerate, this should 
reduce flow in the solid domain. However, in Sect. 4 we will 
argue and in Sect. 6 we will find that the effect of this term 
on flow reduction is small when solid/fluid laminar flow 
designs are evaluated. Nonetheless, we will keep this term 
in our optimization model as the work by Alonso and Silva 
(2021) who added the Forchheimer penalization besides the 
Darcy penalization suggests that a quadratic flow penaliza-
tion improves designs found at higher Reynolds numbers. In 
this sense, the inertia term is interpreted as a quadratic flow 
penalization which passes information on inertial effects to 
the sensitivities.

Finally, the new pressure term on the right-hand side of 
Eq. 14 is interpreted:

For the pressure field the intrinsic average is used, as the 
superficial pressure average ( ⟨p⟩i� = ⟨p⟩s�∕�� ) leads to more 
complex equations:

Furthermore, in the standard momentum equation (as shown 
in Eq. 10), the pressure gradient −∇p represents the volumet-
ric pressure forces acting on a parcel of fluid. However, in 
the VANS equations these forces are multiplied by the fluid 
volume fraction −��∇⟨p⟩i� . As the solid domain in topology 
optimization is defined as the domain where 𝛼𝜙 = 𝛼 ≪ 1 , 
pressure forces on a fluid parcel in this domain are reduced 
and 𝛼∇⟨p⟩i𝜙 ≪ ∇⟨p⟩i𝜙 . Consequently, flow leakage caused 
by large pressure gradients in the solid domain is reduced. 
Moreover, if we assume that these pressure gradients are 
the main cause of flow leakage, the pressure penalization 
directly inhibits these errors in converged solid domains 

(26)�⟨vvv⟩s� ⋅ ∇
⟨vvv⟩s�
��

=
�

�
⟨vvv⟩s� ⋅ ∇⟨vvv⟩s�.

(27)−��∇⟨p⟩i�.

(28)
−��∇⟨p⟩i� = −��∇

�⟨p⟩s�
��

�

= −∇⟨p⟩s� +
⟨p⟩s�
��

∇��.

where �� → 0 while it does not add much penalization in 
intermediate designs with a lot of “gray” material where 
�� ≈ 0.5. In fact, the pressure penalization will allow us 
to use a lower maximum Darcy penalization than the one 
required by the NSDP equations as will be shown in Sect. 6. 
The advantage of this lowered penalization is that inter-
mediate designs containing a lot of gray material will be 
penalized less and the optimizer will be less restricted than 
when the NSDP equations are used with a larger maximum 
penalization.

Implementing the simplifications in Eqs. 18 and 21, the 
VANS momentum equation is simplified to:

where we thus used superficial velocity averages and intrin-
sic pressure averages. Furthermore, as might be obvious at 
this stage, we aim to use the VANS equations for topology 
optimization where volume fraction �� is used as a design 
variable.

2.4  Comparison to standard practice

The VANS equations show many similarities to the NSDP 
equations often used for fluid topology optimization:

where Darcy penalization � is a function of the design vari-
ables. In the solid domain flow is inhibited by setting a large 
� resulting in a high flow penalization −��vvv , while in the 
fluid domain � = 0 and Eq. 30 collapses to the standard 
Navier–Stokes equation (Eq. 10). If the NSDP equations are 
a simplification of the VANS equations, we can deduce that 
superficial velocity averages are used in the NSDP equations 
as the continuity equation is the same as the left-hand side of 
Eq. 13. Differences between the VANS and NSDP equations 
are found in the momentum equations. Rewriting the VANS 
(Eq. 29) to the NSDP (Eq. 30) equations can thus be done 
by assuming the velocity and pressure in the NSDP equa-
tions to be the superficial and intrinsic averages respectively 
( ⟨vvv⟩s� = vvv , ⟨p⟩i� = p ), and: 

1.  The second Brinkman correc-

tion is not included in the NSDP equations, and the sup-
port of fluid domain viscous stresses at the solid/fluid 
interface is removed.

(29)
�

�
�⟨vvv⟩s�
�t

+ ⟨vvv⟩s� ⋅ ∇
⟨vvv⟩s�
��

�
= −��∇⟨p⟩i�

+ �∇2⟨vvv⟩s� − �∇�� ⋅ ∇
⟨vvv⟩s�
��

−
��⟨vvv⟩s�

��
,

(30)
�

(
�vvv

�t
+ vvv ⋅ ∇vvv

)
= −∇p + �∇2vvv − ��vvv,

∇ ⋅ vvv = 0,



Towards improved porous models for solid/fluid topology optimization  

1 3

Page 9 of 43   133 

2.  Volume fraction �� is 

removed from the inertia term, and its flow leakage 
reducing effect as illustrated by Eq. 26 and its influence 
on the sensitivities are removed.

3.  Flow leakage due to high pres-
sure gradients in the solid domain is worsened as the 
volume fraction is removed from the pressure term.

4.  In the Darcy penalization, the divi-

sion by �� is removed. However, in Sect. 3.1.4 we will 
show that using certain interpolation functions �(��) , 
the Darcy penalization in the VANS and NSDP equa-
tions can be similar or the same.

The NSDP equations are thus a simplification of the VANS 
equations where we hypothesize that the VANS equations 
will be able to more precisely describe flow in an optimized 
solid/fluid topology. For the remainder of this work we will 
simplify notation by dropping the brackets and superscripts 
from the averaged variables and assuming that vvv is the super-
ficial velocity average, p the intrinsic pressure average and � 
the fluid volume fraction.

3  Discretization of the VANS equations

To use the VANS Equations in topology optimization, vol-
ume fraction � is used as design variable. A well-known 
method to solve and discretize computational fluid dynamics 
(CFD) is the finite volume (FV) method, which is often pre-
ferred due to its natural ability to conserve mass and momen-
tum. As the topology optimization community originated 
from the structural analysis community where the Finite 
Element Method (FEM) is the standard, most fluidic opti-
mization papers use FEM. However, the structured square 
meshes often used in topology optimization are highly suited 
for discretization using the FV method, and fast solution 
algorithms exist for these kind of problems.

3.1  Discretized momentum equation

The VANS and NSDP equations are discretized using the FV 
method and solved using the Semi-Implicit Method for Pres-
sure Linked Equations (SIMPLE) algorithm as described in 
Versteeg and Malalasekera (2007). The NSDP equations are 
discretized following Versteeg and Malalasekera (2007), with 
an exception for the Darcy penalization which is discretized in 
Sect. 3.1.4. In this section we first show the VANS discretiza-
tion as several terms in the VANS equations are not standard 
in a CFD analysis. Furthermore, in this work we only consider 
2D problems where we neglected flow w in the z-direction.

The VANS equations are discretized on an equidistant stag-
gered grid as shown in Fig. 4, where different control vol-
umes are used for the continuity (p-control), u-momentum 
and v-momentum equations. Subsequently, Eq. 29 is split into 
u/v-momentum equations as:

where  we  as sumed  so lu t ions  to  be  s t a t i c 
( �u∕�t = �v∕�t = 0 ), and spatial derivatives are written 
as p,x = �p∕�x and p,y = �p∕�y . Only the discretization 
of the u-momentum equations is described since the dis-
cretization of the v-momentum equation is analogous. To 
discretize the u-momentum equation we use control vol-
ume (CV) Ωu , as shown in Fig. 5. The CV has boundary 
Γu = Ωu⧵Ωu = ΓN ∪ ΓE ∪ ΓS ∪ ΓW , where the superscripts 
denote north, east, south and west boundaries. Design vari-
ables representing volume fractions within the cells are 
attached to the red pressure nodes in Fig. 5, we however 
interpolate these variables on the north/south edges of the 
CV and at the center of the CV (at DOF uP in Fig. 5):

(31)
�vvv ⋅ ∇

u

�
= −�p,x + �∇2u − �∇� ⋅ ∇

u

�
− ��

u

�
,

�vvv ⋅ ∇
v

�
= −�p,y + �∇2v − �∇� ⋅ ∇

v

�
− ��

v

�
,

(32)

�CN =
�E + �W + �NE + �NW

4
on ΓN ,

�CS =
�E + �W + �SE + �SW

4
on ΓS,

�P =
�E + �W

2
at uP,

∆x

∆y

v-control

p-control

u-control

α → 0

Fig. 4  The staggered equidistant grid used to discretize the VANS 
equations using the FV method. velocity DOFs (green arrows) 
are located at the cell faces, while pressure DOFs and design vari-
ables are located at the cell centers (red dots). Design variables � 
are attached to the cell centers and represent a constant volume frac-
tion within the corresponding cell, as illustrated by the upper right 
cell which is solid and where � → 0 . Different control volumes are 
defined for the u, v momentum equations, and the continuity (p) equa-
tion. At the u-control volume all neighboring DOFS contributing to 
the momentum equation are depicted in Fig. 5. (Color figure online)
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where all design variables on the right-hand sides can be 
found in Fig. 5. Furthermore, v-velocities on the north/south 
edges are interpolated as:

To discretize the u-momentum equation it is integrated over 
its control volume:

In the subsequent sections first the inertial pressure and vis-
cous terms will be discretized after which more attention is 
given to the second Brinkman correction and Darcy penali-
zation, finally the discretization is finished by discretizing 
the continuity equation.

3.1.1  Discretized inertial, pressure and viscous terms

The inertial term is discretized by applying the divergence 
theorem on the CV:

(33)
v̄N =

vNE + vNW

2
on ΓN ,

v̄S =
vSE + vSW

2
on ΓS.

(34)
∫Ωu

�vvv ⋅ ∇
u

�
dΩ

= ∫Ωu

(
−�p,x + �∇2u − �∇� ⋅ ∇

u

�
− ��

u

�

)
dΩ.

where we used the continuity equation ( ∇ ⋅ vvv = 0 ) to rewrite 
vvv ⋅ ∇

u

�
= ∇ ⋅

(
vvv
u

�

)
 and nnnu is the unit normal pointing out-

ward of Ωu on Γu . We discretize the inertial terms using 
approximations on the north, south and east, west bounda-
ries, respectively:

where Δx and Δy are the horizontal and vertical lengths 
of the control volume as in Fig. 5. In the discretized term, 
intrinsic momentum �u∕� is advected through the bounda-
ries by superficial flow average vvv . If momentum is to be 
conserved, advection of inertial momentum through a CV 
boundary should be consistent for all adjacent CV’s. The 
intrinsic momentum �u∕� and superficial flow vvv on a certain 
boundary should thus be the same for both elements adjacent 
to the boundary. As vvv and u are already interpolated consist-
ently for all elements on the boundaries, volume fractions 
�CN and �CS are also interpolated consistently in Eq. 32 at 
the north and south boundaries.

The pressure term is discretized by approximating the 
gradient in pressure and � at the center of the CV:

To discretize the first Brinkman correction, the divergence 
theorem is used:

Subsequently, flow gradients are approximated on the north, 
south and east, west boundaries as:

(35)
∫Ωu

�vvv ⋅ ∇
u

�
dΩ = ∫Ωu

�∇ ⋅

(
vvv
u

�

)
dΩu

= �∫Γu

vvv
u

�
⋅ nnnudΓu,

(36)

∫Γu

𝜌vvv
u

𝛼
⋅ nnnudΓu = 𝜌Δx

(
ΓN

���������

v̄N
uN + uP

2𝛼CN
−

ΓS

�������

v̄S
uS + uP

2𝛼CS

)

+ 𝜌Δy

(
(uE + uP)2

4𝛼E

���������

ΓE

−
(uW + uP)2

4𝛼W

���������

ΓW

)
,

(37)∫Ωu

�p,xdΩu = ΔxΔy�P p
E − pW

Δx

= Δy�P
(
pE − pW

)
.

(38)
∫Ωu

�∇2udΩ = � ∫Ωu

∇ ⋅ (∇u)dΩ

= � ∫Γu

∇u ⋅ nnnudΓ.

uP

uN

ΓN

ΓS

uE

ΓE

uW

ΓW

uS

∆x

∆y
pE , αEpW , αW

αNEαNW

αSEαSW

vNEvNW

vSEvSW

Fig. 5  Control volume Ωu for the u-momentum equation. We denote 
the relevant DOFs and design variabels with respect to the center 
DOF uP . The boundary of the control volume is divided into horizon-
tal boundaries ΓN and ΓS with length Δx , and vertical boundaries ΓE 
and ΓW with length Δy
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Most of the discretization techniques used until this point 
are fairly common and can be found in Versteeg and Mala-
lasekera (2007). However, in most common methods fluid 
volume fraction � is not included, and in its inclusion and 
interpolation we deviate from most standard discrete CFD 
solvers.

3.1.2  Second Brinkman correction on a wall orthogonal 
to the flow

Special attention is given to the second Brinkman correction 
as it is not common in a standard FV discretization. The sec-
ond Brinkman correction in Eq. 22 depends on the gradient 
in volume fraction ∇� , and is used to support fluid domain 
viscous forces as explained in Sect. 2.3. The second Brinkman 
correction is investigated for a converged design where there 
are distinct regions of solid ( � → 0 ) and fluid ( � = 1 ) material. 
In such a solid/fluid design, the gradient ∇� = [�,x �,y]

⊺ is only 
present on the porous/fluid interface (the solid wall), and is a 
vector normal to the interface pointing to the fluid domain. The 
two parts of the gradient �,x and �,y are investigated separately. 
In fact, the case where only �,y = 0 represents a vertical wall 
orthogonal to u as shown in Fig. 6, and the case where only 
�,x = 0 represents a horizontal wall parallel to u as shown in 
Fig. 7. The correction is thus split into a vertical and horizontal 
component:

(39)
� ∫Γu

(∇u) ⋅ nnnudΓ = �Δx

(
ΓN

⏞⏞⏞⏞⏞

uN − uP

Δy
−

ΓS

⏞⏞⏞

uP − uS

Δy

)

+ �Δy

(
uE − uP

Δx
⏟⏟⏟

ΓE

−
uP − uW

Δx
⏟⏞⏟⏞⏟

ΓW

)
.

(40)

B2 = −� ∫Ωu

∇� ⋅ ∇
u

�
dΩ

= −� ∫Ωu

(
�,x

(
u

�

)
,x
+ �,y

(
u

�

)
,y

)
dΩ.

Firstly, the correction is constructed for the vertical wall 
in Fig. 6, orthogonal to flow u in x-direction. The volume 
fraction is only dependent on x and the gradient in x-direc-
tion at the center of the CV is approximated as:

where �E , �W are the east and west volume fractions as in 
Fig. 6. Subsequently, the gradient in u∕� at the center of the 
CV is approximated as:

where �P is the volume fraction at uP as in Eq. 32. Using 
Eqs. 41 and 42, the second Brinkman correction for a verti-
cal wall orthogonal to the flow direction is discretized as:

The last term in the second Brinkman correction works in 
the opposite direction of the Darcy penalization −��u∕� 
in Eq. 34. This term will be neglected as it is assumed to 
be small compared to the Darcy penalization which will be 
discretized in Eq. 60 and whose lower bound will be defined 
in Sect. 4, resulting in:

(41)�,x =
�E − �W

Δx
,

(42)

(
u

�

)
,x
=

1

�

(
u,x −

u

�
�,x

)

=
1

�P

(
uE − uW

2Δx
−

uP

�P

�E − �W

Δx

)
,

d

(43)

uP
uEuW

αE = 1αW → 0

Fig. 6  The relevant DOFs and design variables for the discretization 
of the second Brinkman correction in the CV for uP . In this example, 
the elements to the left are solid ( �W

→ 0 ), the elements to the right 
are fluid ( �E = 1 ), and �,y = 0 resulting in a vertical wall

uN → 0

αPN → 0

vNE → 0vSE → 0

αP = 1
uP

x

yΓN

Fig. 7  The relevant DOFs and design variables for the discretization 
of the second Brinkman correction in the CV for uP . In this exam-
ple, the elements to the north are solid ( �PN

→ 0 ), the elements in the 
CV are fluid ( �P = 1 ), and �,x = 0 resulting in a horizontal wall which 
coincides with the north edge of the CV ΓN
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We investigate the correction for the vertical wall in Fig. 6 
where �E = 1 , �W

→ 0 resulting in �P ≈ 0.5 and:

If the correction is combined with the viscous forces on east 
boundary ΓE in Eq. 39:

we find that the second Brinkman correction removes these 
forces from the control volume as BE

o
+ FE

�
≈ 0 . The second 

Brinkman correction thus removes the viscous forces due 
to fluid flow to the east where no porous material is present 
( �E = 1 ). This is exactly the goal of adding it as these forces 
are in fact supported by the solid material in the porous 
domain as explained in Sect. 2.3.

3.1.3  Second Brinkman correction on a wall parallel 
to the flow

In Sect. 3.1.2 the second Brinkman correction for flow orthog-
onal to a wall is investigated and explicitly discretized. How-
ever, horizontal walls parallel to u also contribute to the second 
Brinkman correction. As an example, we investigating the hor-
izontal wall in Fig. 7 where �P = 1 and �PN

→ 0 . A mismatch 
in the exact location of the wall is found. If the wall is inter-
preted as the boundary where flow stagnates, this leads to an 
interface at either y = Δy ( uN → 0 ) or at y = Δy∕2 ( vNE → 0 
and vSE → 0 ). Furthermore, for approximating gradients u,y on 
ΓN in Eq. 39, we approximated the velocity profile as:

resulting in a flow of u(y = Δy∕2) =
uP+uN

2
 at north edge 

ΓN , which coincides with the wall where flow should be 
stagnant.

In this case, a better approximation of the flow at ΓN would 
be uN as it should tend to zero. If opposed to Fig. 7 �P

→ 0 
and �PN = 1 and the porous domain is to the south of the wall 
at ΓN instead of to the north, it follows that uP → 0 is a better 
approximation of the velocity at the wall at ΓN . Based on these 
requirements a new velocity interpolation is constructed on 
0 ≤ y <

Δy

2
:

which has a complementary interpolation on Δy
2
< y ≤ Δy:

(44)Bo = −�
Δy

Δx

�E − �W

2�P
(uE − uW ).

(45)BE
o
≈ −�

Δy

Δx
(uE − uW ).

(46)FE
�
= �

Δy

Δx
(uE − uW ),

(47)u(y) = uP +
uN − uP

Δy
y,

(48)u(y) = uP + (1 + �P − �PN)
uN − uP

Δy
y.

A plot of the resulting flow fields is shown in Fig. 8. When 
�P = �PN no wall is present at ΓN and Eqs. 48 and 49 col-
lapse into Eq. 47. Moreover, as �P and �PN remain continu-
ous variables, we are able to continuously introduce solid 
walls in a topology optimization procedure.

Furthermore, the new flow fields for walls at ΓN is accom-
panied with a flow field for walls at ΓS on 0 ≥ y > −

Δy

2
:

Using these interpolation functions, the correct gradients at 
the boundaries are computed as:

The new gradient at the north edge contains a standard linear 
part (also found in Eq. 39 at ΓN):

as well as an update (found by subtracting the gradient in 
Eq. 52 from the gradient in Eq. 51):

(49)u(y) = uN + (1 + �PN − �P)
uN − uP

Δy
(y − Δy).

(50)u(y) = uP + (1 + �P − �PS)
uP − uS

Δy
y.

(51)
uc
,y
= (1 + �P − �PN)

uN − uP

Δy
, on ΓN ,

uc
,y
= (1 + �P − �PS)

uP − uS

Δy
, on ΓS.

(52)ul
,y
=

uN − uP

Δy
, on ΓN ,

(53)Δu,y = uc
,y
− ul

,y
= (�P − �PN)

uN − uP

Δy
, on ΓN .

αPN , uN

αP , uP

x

y

y

u

αP → 0,

αP = 1,

0

∆y
2

∆yαPN , uN

αPN = 1

αPN → 0

Fig. 8  Two different flow fields for a vertical wall. Either the top ele-
ments are solid ( �PN

→ 0 ) and the flow at Δy∕2 is approximated as 
uN → 0 , or the bottom elements are solid ( �P

→ 0 ) and the flow at 
Δy∕2 is approximated as uP → 0
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Subsequently, we define the correct viscous force at the 
north edge in Eq. 39 by using uc

,y
= ul

,y
+ Δu,y as:

from which we extract an update to the standard viscous 
forces by subtracting the viscous force at the north edge in 
Eq. 39 from Eq. 54:

Moreover, we find the update to have precisely the func-
tion of the Second Brinkman correction as described in 
Sect. 2.3. When we are investigating flow in the porous 
domain ( �P

→ 0 ) with large viscous forces due to flow in a 
fluid domain above ( �PN = 1 ), the update becomes:

which can be subtracted from the standard viscous force at 
ΓN in Eq. 39 (which is the viscous force due to ul

,y
):

to find that for this porous control volume the viscous forces 
at the north edge become BN

p
+ FN

�
≈ 0 . The function of the 

second Brinkman correction is to remove viscous forces in 
the fluid domain from the solid domain which is exactly 
what the update does. Consequently, we apply the second 
Brinkman correction for flow parallel to a wall using the 
updated velocity gradients in Eq. 51 instead of explicitly 
discretizing Eq. 40. Furthermore, the full correction for flow 
parallel to a wall is found by following a similar procedure 
on the south edge as:

Subsequently, the complete second Brinkman correction can 
be defined by combining Eqs. 44 and 58 as B2 = Bo + Bp.

3.1.4  Discretized Darcy penalization

The final term which is discretized in the volume averaged 
momentum equation is the Darcy penalization:

(54)

� ∫ΓN

(∇u) ⋅ nnnudΓ = � ∫ΓN

(ul
,y
+ Δu,y)dΓ

= �Δx
uN − uP

Δy
+ �Δx(�P − �PN)

uN − uP

Δy
,

(55)BN
p
= �Δx(�P − �PN)

uN − uP

Δy
.

(56)BN
p
≈ −�Δx

uN − uP

Δy
,

(57)FN
�
= �Δx

uN − uP

Δy
,

(58)

Bp = �Δx(�P − �PN)
uN − uP

Δy
+ �Δx(�P − �PS)

uP − uS

Δy
.

where we introduce K(�) as the design dependent penaliza-
tion interpolation which will be used to compare different 
types of interpolation functions and maximum penalization 
in the solid domain ( K = K(� = 0) ). The same discretiza-
tion of the Darcy penalization will be used for both the 
VANS as well as the NSDP equations. Lower and upper 
bounds on � are defined as � ≥ � ≥ � = 0 , which we relate 
to the volume fraction 0 < 𝛼 < 1 via a linear interpolation 
as �(�) = (1 − �)� . As one of the aims of the discretization 
is to introduce the least amount of tunable parameters for 
optimization, a linear interpolation is used to reduce com-
plexities and parameters in the resulting discrete flow model. 
Subsequently, we approximate the penalization at the center 
of the CV by discretizing as:

In the limit case where �P = 0 , i.e. fully solid, this would 
result in an infinitely large penalization which is compu-
tationally infeasible. To prevent this we add a lower bound 
𝛼 ≪ 1 on the volume fraction as �̃� = 𝛼 + (1 − 𝛼)𝛼 and use �̃� 
in the discretization such that �P ≥ �.

In the work by Borrvall and Petersson (2003) and many 
subsequent papers on fluid topology optimization the Darcy 
penalization is interpolated as:

where q̃ is a parameter which is used to control convexity, 
generally by setting it as 0 ≤ q̃ ≤ 1 . This convex function 
ensures that the penalization on intermediate designs where 
� ≈ 0.5 is not too severe, as a severe penalization on inter-
mediate designs generally tends to pull the designs into local 
optima. In this work, no additional interpolation functions 
or filters are applied to �̃� , besides the linear interpolation 
𝜅(�̃�) = (1 − �̃�)𝜅 . However, we may examine the function in 
Eq. 60 as an interpolation function:

which is in fact the same function as the one proposed by 
Evgrafov (2005). Furthermore, when �̃� = 𝛼 + (1 − 𝛼)𝛼 is 
substituted into Eq. 62, we find:

(59)−
��(�)u

�
≡ −K(�)u,

(60)−∫Ωu

�
�(�)

�
udΩ = −ΔxΔy��

1 − �P

�P
uP.

(61)KDa(𝛼) = KDa

q̃(1 − 𝛼)

q̃ + 𝛼
,

(62)KSu(�̃�) = 𝜇�̄�
1 − �̃�

�̃�
,

(63)
KSu(�̃�(𝛼)) = 𝜇�̄�

1 − 𝛼 − (1 − 𝛼)𝛼

𝛼 + (1 − 𝛼)𝛼

KSu(𝛼) ≈ 𝜇�̄�
1 − 𝛼

𝛼 + 𝛼
,
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where we assumed 𝛼 ≪ 1 and 1 − � ≈ 1 , and note that using 
this interpolation function we find a maximum penalization 
in the solid domain of:

Moreover, comparing Eqs. 63 and 61 we note that they scale 
as � ⋅ KSu(�) = KDa(�) if 𝛼 = q̃ ≪ 1 and 𝜇�̄� = KDa , as shown 
in Fig. 9. Under these assumptions, interpolation function 
KSu(�) thus has the same shape as KDa(�) but increases the 
overall Darcy interpolation as KSu(𝛼) = KDa(𝛼)∕𝛼 ≫ KDa(𝛼) . 
A more severe penalization on intermediate designs where 
� ≈ 0.5 is thus imposed using the discretization in Eq. 60, 
which is however balanced by defining a precise lower 
bound on �̄� to sufficiently penalize flow in the solid domain 
in Sect. 4.

3.2  Discretized continuity equation

The continuity equation is needed to close the equations and 
is thus discretized on control volume Ωc

p
 in Fig. 10 with 

boundary Γc
p
= Ω

c

p
⧵Ωc

p
= ΓN

p
∪ ΓE

p
∪ ΓS

p
∪ ΓW

p
 . The continuity 

(64)KSu = KSu(𝛼 = 0) ≈
𝜇�̄�

𝛼
.

equation is integrated over the control volume and the diver-
gence theorem is applied such that:

The continuity equation and its discretization are the same 
for both the VANS and NSDP equations.

4  The Darcy penalization

The question of choosing the correct �̄� is often a difficult 
one: setting it too low results in spurious flow through the 
solid domain while setting it too high may cause ill-con-
vergence of the optimization procedure (Kreissl and Maute 
2012). As a guideline the maximum penalization is often 
related to the Darcy number Da (Olesen et al. 2006):

where L is a characteristic length scale of the system. In 
porous flow modeling, the Darcy number represents the per-
meability of a porous medium and a low Darcy number is 
related to impermeable porous structures. Subsequently, it 
is stated that impermeable “solids” have low Darcy numbers 
Da ≤ 10−5 which is used to define the inverse permeabil-
ity of the solid K = μL−2Da−1 , and flow in the porous solid 
domain is penalized using Darcy penalization:

However, this leaves the question which length scale L to 
use in a changing topology. Using an inlet diameter may 
result in significantly lower K than using the diameter of a 
narrow channel generated by the optimization procedure. 
Moreover, Darcy number Da is often either not low enough 
causing much flow leakage or too low resulting in inferior 
local optima and subsequently requires some tuning before 
optimization. We thus aim to define a lower bound on �̄� to 
penalize flow in the solid domain sufficiently. In Sects. 4.1 
and 4.2 the bounds will be derived for the VANS and NSDP 
equations respectively, after which Sect. 4.3 will give an 
overview and discussion of all derived bounds.

To define the lower bounds on the penalization, the hori-
zontal solid/fluid interface Γfp in Fig. 11 is investigated. 
Although a horizontal interface is used, the actual orienta-
tion of the interface is irrelevant to the derivation. On the 
interface, the pressure field is examined, where we remind 
the reader that we are actually dealing with the intrinsic 

(65)
∫Ωc

p

∇ ⋅ vvvdΩ = ∫Γc
p

vvv ⋅ nnndΓ

= ΔxvN
p

⏟⏟⏟

ΓN
p

− ΔxvS
p

⏟⏟⏟

ΓS
p

+ ΔyuE
p

⏟⏟⏟

ΓE
p

− ΔyuW
p

⏟⏟⏟

ΓW
p

.

(66)Da =
�

KL2
,

(67)−K ⋅ vvv.
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Fig. 9  Plot of the interpolation function KDa(�) in Eq. 61 and scaled 
interpolation function KSu(�) ⋅ � in Eq. 63 for 𝜇�̄� = KDa = 1

ΓN
p

ΓE
p

ΓS
p

ΓW
p

vNp

uE
p

vSp

uW
p

Fig. 10  The control volume Ωc
p
 for the continuity equation with rel-

evant DOFs, and boundary Γc
p
= Ω

c

p
⧵Ωc

p
= ΓN

p
∪ ΓE

p
∪ ΓS

p
∪ ΓW

p
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pressure average ⟨p⟩i� . If we assume that ⟨p⟩i� is a good 
representation and substitute of the actual pore scale pres-
sure ppore , as stated by Eq. 5, we may relate properties of the 
averaged and pore scale pressures. Of the pore scale pressure 
field, we know that it is at least C1-continuous, and assume 
this to also be the case for intrinsic pressure average ⟨p⟩i� . 
Subsequently, the pressure gradient orthogonal to the inter-
face ( p,y for Γfp in Fig. 11) is assumed to be at least C0-con-
tinuous. In the remaining text we will return to the conven-
tion of writing intrinsic pressure average ⟨p⟩i� as p, and 
superscripts ◻Γ and ◻f will be used to denote porous quanti-
ties on the interface and quantities in the fluid domain 
respectively. Due to the continuity, the pressure gradient at 
porous fluid interface Γfp ( pΓ,y ), and the gradient approaching 
Γfp from the fluid domain ( pf

,y
 ) should thus be continuous at 

the interface ( pΓ
,y
= pf

,y
 at Γfp ). Consequently, the order of 

these terms at Γfp should be equal O
(
pf
,y

)
= O

(
pΓ
,y

)
 . An 

order of magnitude analysis will be performed on these 
terms to derive a lower bound on the order of magnitude of 
�̄� . To derive the bound, we aim to ensure no flow penetration 
at the solid/fluid interface Γfp.

4.1  Bounds on the Darcy penalization for the VANS 
equations

To derive the VANS bounds, firstly the VANS v-momentum 
equation found in Eq. 31 is used to define a general equation 
for p,y:

where Eq. 31 is reordered and divided by � as it contains 
the pressure penalization �p,y . Subsequently, we make the 
following assumptions to define pΓ

,y
 : 

1. The penalization at the interface is interpolate as 
𝜅Γ = �̄�(1 − 𝛼Γ).

(68)p,y = −�
vvv

�
⋅ ∇

v

�
+

�

�
∇2v −

�

�
∇� ⋅ ∇

v

�
−

��v

�2
,

2. We assume the second Brinkman correction removes 
fluid domain viscous forces from the interface as 
explained and shown in Sects. 2.3, 3.1.2, 3.1.3, and thus 
neglect it and any contribution of fluid domain flow ( vf ) 
to the viscous forces at the interface.

Which results in a pressure gradient at the interface as:

Subsequently, we make the following assumptions to define 
pf
,y
 : 

1. No flow penalization is applied in the fluid domain and 
�f = 0.

2. Fluid domain volume fraction �f = 1 is constant and thus 
∇�f = 0.

Which results in a pressure gradient in the fluid domain as:

The magnitudes of the different terms in Eqs.  69 
and  70 are related by performing an order analy-
sis on the discretized equations. In the order analy-
sis we approximate the magnitude of gradients as 
O(∇Ψ) = O(ΔΨ∕Δx + ΔΨ∕Δy) = O(ΔΨ∕h)  w h e r e 
h ≈ Δx ≈ Δy is the element size. The magnitude of the gra-
dient in the inertial term in Eq. 69 is thus approximated as:

where we used Δ�Γ = 1 as we are investigating the porous/
fluid (0/1) interface and approximate the flow magnitude 
using the flow itself O

(
ΔvΓ

)
= O

(
vΓ
)
 . Subsequently, 

the magnitude of the flow velocity is approximated as 
O
(
vvvΓ

)
= O

(
∣ vvvΓ ∣

)
≈ O

(
uΓ + vΓ

)
 , such that the magnitude 

of the inertial term in Eq. 69 can be approximated as:

Moreover, as there are no difficult terms present in the Darcy 
penalization in Eq. 69, its order is estimated as:

D i f f u s i v e  t e r m s  a r e  a p p r o x i m a t e d  a s 
O
(
∇2Ψ

)
= O

(
ΔΨ∕Δx2 + ΔΨ∕Δy2

)
= O

(
ΔΨ∕h2

)
 s u ch 

that the magnitudes of the viscous terms in Eqs. 69 and 70 
are approximated as:

(69)pΓ
,y
= −𝜌

vvvΓ

𝛼Γ
⋅ ∇

vΓ

𝛼Γ
+

𝜇

𝛼Γ
∇2vΓ −

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2
,

(70)pf
,y
= −�vvvf ⋅ ∇vf + �∇2vf,

(71)


(

∇ vΓ

�Γ

)

= 
(

∇(vΓ)
�Γ

− vΓ

�Γ2
∇�Γ

)

= 
(

ΔvΓ

h�Γ
− vΓ

�Γ2
Δ�Γ
h

)

= 
(

vΓ

h�Γ

(

1 − Δ�Γ

�Γ

))

= 
(

vΓ

h�Γ
(

1 − 1
�Γ

)

)

,

(72)O

(
�
vvvΓ

�Γ
⋅ ∇

vΓ

�

)
= O

(
� ∣ vvvΓ ∣ vΓ

�Γh

(
1 −

1

�Γ

))
.

(73)O

(
𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)
.

Γfp

Ωf

Ωp

p

y

pΓ,y

pf,y

∆

Fig. 11  The intrinsic pressure field orthogonal to a horizontal wall 
which is at least C1-continuous. For Δ → 0 the pressure gradient in 
the fluid ( pf

,y
 ) will thus approach the pressure gradient at the porous 

interface pΓ
,y
= pf

,y
 at Γfp
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where we used O
(
ΔvΓ

)
= O

(
vΓ
)
 . Lastly, the inertial term in 

Eq. 70 is estimated along the same lines as Eq. 72:

where O
(
∣ vvvf ∣

)
≈ O

(
uf + vf

)
 . The magnitudes of the flow 

at the porous interface/in the fluid domain are thus related 
by approximating the order of the pressure gradients using 
Eqs. 72, 73, 74, 75:

and by using continuity requirement O
(
pf
,y

)
= O

(
pΓ
,y

)
:

To extract bounds on the penalization, an elemental Reyn-
olds number is introduced to measure the respective rel-
evance of the inertial and viscous forces as:

where we make the important note that it is dependent on 
mesh size h and not on characteristic length L. Two main 
cases are examined based on whether element scale viscous 
( Ree ≪ 1 ) or inertial ( Ree ≫ 1 ) forces are dominant. Subse-
quently, bounds on the penalization will be constructed by 
aiming to stop flow from penetrating into the solid domain 
through the solid/fluid interface. We will quantify flow pen-
etrating the interface relative to the flow in the fluid domain 
via flow reduction vΓ∕vf . If a relatively small amount of 
flow penetrates the interface, the order of the flow reduction 
becomes:

which will be used to derive bounds on O(�̄�).

(74)
O

(
�

�Γ
∇2vΓ

)
= O

(
�vΓ

�Γh2

)
,

O
(
�∇2vf

)
= O

(
�vf

h2

)
,

(75)O
(
�vvvf∇vf

)
= O

(
� ∣ vvvf ∣ vf

h

)
,

(76)

O

(
pΓ
,y

)
= O

(
−

𝜌 ∣ vvvΓ ∣ vΓ

𝛼Γh

(
1 −

1

𝛼Γ

)

+
𝜇vΓ

𝛼Γh2
−

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)
,

O

(
pf
,y

)
= O

(
−
𝜌 ∣ vvvf ∣ vf

h
+

𝜇vf

h2

)
,

(77)


(

−
� ∣ vvvΓ ∣ vΓ

�Γh

(

1 − 1
�Γ

)

+
�vΓ

�Γh2
−

��̄(1 − �Γ)vΓ

�Γ2

)

= 
(

−
� ∣ vvvf ∣ vf

h
+

�vf

h2

)

.

(78)Ree =
� ∣ vvvf ∣ h

�
,

(79)O

(
vΓ

vf

)
< 1,

4.1.1  VANS bounds: dominant viscous forces

If the viscous term is dominant ( Ree ≪ 1 ), the inertial terms 
are neglected and Eq. 77 is simplified as:

where either the first or the second term on the left-hand side 
is dominant. If the first term (�vΓ)∕(�Γh2) is dominant the 
main mechanism for flow reduction is the pressure penaliza-
tion which causes the division by �Γ in Eq. 68. If the second 
term (𝜇�̄�(1 − 𝛼Γ)vΓ)∕(𝛼Γ2) is dominant the main mechanism 
for flow reduction is the Darcy penalization. We measure 
the relative dominance by dividing the first term with the 
second term:

and examine the two scenarios where either rl
V
> 1 or rl

V
< 1:

• Dominant Darcy penalization ( rl
V
< 1):

  If the second term on the left-hand side of Eq. 80 is 
dominant, the order analysis reduces to: 

 which is rewritten to find the flow reduction at the 
interface: 

 The bound on the flow reduction is subsequently rewrit-
ten to find a lower bound on �̄� for Ree ≪ 1 and rl

V
< 1 : 

• Dominant pressure penalization ( rl
V
> 1):

  If the first term on the right-hand side of Eq. 80 is 
dominant, the order analysis reduces to: 

 which can be rewritten to find the flow reduction as: 

(80)O

(
𝜇vΓ

𝛼Γh2
−

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)
= O

(
𝜇vf

h2

)
,

(81)rl
V
=
|||||
𝜇vΓ

𝛼Γh2
𝛼Γ2

𝜇�̄�(1 − 𝛼Γ)vΓ

|||||
=
||||

𝛼Γ

h2�̄�(1 − 𝛼Γ)

||||,

(82)O

(
𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)
= O

(
𝜇vf

h2

)
,

(83)O

(
vΓ

vf

)
= O

(
𝛼Γ2

h2�̄�(1 − 𝛼Γ)

)
< 1.

(84)O(�̄�) > O

(
𝛼Γ2

h2(1 − 𝛼Γ)

)
.

(85)O

(
�vΓ

�Γh2

)
= O

(
�vf

h2

)
,

(86)O

(
vΓ

vf

)
= O

(
�Γ

)
.
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 Flow is thus automatically reduced for 𝛼Γ ≪ 1 
( O

(
𝛼Γ

)
< 1 ) if the first term on the left-hand side of 

Eq. 80 is dominant.

4.1.2  VANS bounds: dominant inertial forces

In the second case, inertial terms are dominant ( Ree ≫ 1 ) 
and the viscous forces can be neglected, resulting in:

where either the first or second term on the left-hand side is 
dominant. If the first term:

is dominant, the main mechanisms for flow reduction are the 
pressure penalization which causes the first division by �Γ 
in Eq. 68 and the inertial penalization which results in the 
(1 − 1∕�Γ) term as can be seen in Eq. 71. If the second term 
(𝜇�̄�(1 − 𝛼Γ)vΓ)∕(𝛼Γ2) is dominant, the main mechanism for 
flow reduction is again the Darcy penalization. We measure 
the relative dominance by dividing the first term with the 
second term:

and again examine two scenarios where either rh
V
> 1 or 

rh
V
< 1:

• Dominant Darcy penalization ( rh
V
< 1):

  If the second term is dominant the order analysis 
reduces to: 

 which can be rewritten to find the flow reduction at the 
interface: 

(87)
O

(
𝜌 ∣ vvvΓ ∣ vΓ

𝛼Γh

(
1 −

1

𝛼Γ

)
+

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)

= O

(
𝜌 ∣ vvvf ∣ vf

h

)
,

(88)
� ∣ vvvΓ ∣ vΓ

�Γh

(
1 −

1

�Γ

)

(89)

rh
V
=
|||||
𝜌 ∣ vvvΓ ∣ vΓ

𝛼Γh

(
1 −

1

𝛼Γ

)
𝛼Γ2

𝜇�̄�(1 − 𝛼Γ)vΓ

|||||
=
|||||
𝜌 ∣ vvvΓ ∣

h𝜇�̄�

|||||
.

(90)O

(
𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ2

)
= O

(
𝜌 ∣ vvvf ∣ vf

h

)
,

(91)
O

(
vΓ

vf

)
= O

(
𝜌 ∣ vvvf ∣ 𝛼Γ2

h𝜇�̄�(1 − 𝛼Γ)

)

= O

(
Ree𝛼Γ2

h2�̄�(1 − 𝛼Γ)

)
< 1,

 from which we can extract a bound on the penalization 
for Ree ≫ 1 and rh

V
< 1 as: 

• Dominant pressure and inertial penalization ( rh
V
> 1):

  If however the first term on the left-hand side of Eq. 87 
is dominant the order analysis reduces to: 

 The equation is subsequently rewritten to find that for 
𝛼Γ ≪ 1 flow at the interface is automatically lower than 
flow in the fluid domain: 

For both Eqs.  86 and  94 we assumed that 𝛼Γ ≪ 1 to 
achieve some flow reduction. In practice however, we use 
�Γ = �P ≈ 0.5 which is just below 1. We will examine these 
assumptions and resulting errors in Sect. 4.4.

4.2  Bounds on the Darcy penalization for the NSDP 
equations

For the NSDP equations we can follow a similar procedure 
as for the VANS equations. In the fluid domain pf

,y
 is defined 

as in Eq. 70. In the porous domain pΓ
,y
 is defined using Eq. 30 

as:

where �Γ is interpolated using KSu(�
Γ) in Eq. 62. The orthog-

onal pressure gradient p,y is again assumed to be continuous, 
and an order analysis is performed resulting in an equation 
similar to Eq. 77:

4.2.1  NSDP bounds: dominant viscous forces

If Ree ≪ 1 and viscous forces are dominant inertial forces 
are neglected such that Eq. 96 reduces to:

(92)O(�̄�) > O

(
Ree𝛼Γ2

h2(1 − 𝛼Γ)

)
.

(93)O

(
� ∣ vvvΓ ∣ vΓ

�Γh

(
1 −

1

�Γ

))
= O

(
� ∣ vvvf ∣ vf

h

)
.

(94)O

(
∣ vvvΓ ∣ vΓ

∣ vvvf ∣ vf

)
≈ O

(
vΓ

2

vf
2

)
= O

(
𝛼Γ

1 −
1

𝛼Γ

)
< 1.

(95)pΓ
,y
= −𝜌vvvΓ ⋅ ∇vΓ + 𝜇∇2vΓ −

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ
,

(96)
O

(
−
𝜌 ∣ vvvΓ ∣ vΓ

h
+

𝜇vΓ

h2
−

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ

)

= O

(
−
𝜌 ∣ vvvf ∣ vf

h
+

𝜇vf

h2

)
.



 M. J. B. Theulings et al.

1 3

  133  Page 18 of 43

We first examine the case where the first term on the left-
hand side is dominant, resulting in:

which can be rewritten to find that no flow reduction takes 
place:

The only mechanism for flow reduction in the NSDP equa-
tions is thus the Darcy penalization and we assume that when 
an effective Darcy penalization is applied O

(
vΓ
)
< O

(
vf
)
 

and we may neglect the first term on the left-hand side of 
equation 97:

After which the flow reduction:

is used to derive a lower bound on the penalization as:

4.2.2  NSDP bounds: dominant inertial forces

If Ree ≫ 1 and inertial forces are dominant, the order 
analysis reduces to:

As was the case for low Ree , the only mechanism for 
flow reduction is the Darcy penalization and we neglect 
the first term on the left-hand side by assuming that 
O
(
∣ vvvΓ ∣ vΓ

)
< O

(
∣ vvvf ∣ vf

)
 , such that the inertial term at the 

interface can be neglected:

(97)O

(
𝜇vΓ

h2
−

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ

)
= O

(
𝜇vf

h2

)
.

(98)O

(
�vΓ

h2

)
= O

(
�vf

h2

)
,

(99)O

(
vΓ

vf

)
= O(1).

(100)O

(
−
𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ

)
= O

(
𝜇vf

h2

)
.

(101)O

(
vΓ

vf

)
= O

(
𝛼Γ

h2�̄�(1 − 𝛼Γ)

)
< 1,

(102)O(�̄�) > O

(
𝛼Γ

h2(1 − 𝛼Γ)

)
.

(103)
O

(
−
𝜌 ∣ vvvΓ ∣ vΓ

h
−

𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ

)

= O

(
−
𝜌 ∣ vvvf ∣ vf

h

)
,

(104)O

(
𝜇�̄�(1 − 𝛼Γ)vΓ

𝛼Γ

)
= O

(
𝜌 ∣ vvvf ∣ vf

h

)
.

Subsequently, the analysis is again rewritten to find the order 
of flow reduction:

After which a lower bound on the Darcy penalization is 
defined as:

For the NSDP equations we thus derive bounds on the 
penalization under the assumption that flow reduction is a 
fact ( O

(
vΓ
)
< O

(
vf
)
 and O

(
∣ vvvΓ ∣ vΓ

)
< O

(
∣ vvvf ∣ vf

)
 ). These 

assumptions however only hold when the appropriate penali-
zation’s from Eqs. 105 and 102 are used. If these appropriate 
penalizations are not used there is no other mechanism for 
flow reduction and errors due to flow leakage will become 
large.

4.3  Overview and discussion of bounds 
on the penalization

Both the VANS and NSDP equations thus have bounds on the 
penalization dependent on the elemental Reynolds number as 
defined in Eq. 78. Moreover, the VANS equations may have 
an additional dependence on measurements rl

V
 and rh

V
 defined 

in Eqs. 81 and 89 which measure the dominant mechanism 
for flow reduction. We will first define bounds on the penali-
zation assuming that the Darcy penalization is the dominant 
mechanism for flow reduction ( rl

V
< 1 and rh

V
< 1 ) resulting 

in the VANS bounds in Eqs. 84 and 92. In Sect. 4.4 we will 
come back to this assumption and show that although although 
the Darcy penalization is dominant the pressure penalization 
also plays a significant role in flow reduction. Subsequently, 
the VANS bounds in Eqs. 84 and 92 and NSDP bounds in 
Eqs. 102 and 106 are simplified by using the elemental Reyn-
olds number Ree and defining inverse elemental surface area:

resulting in the lower bounds on O(�̄�) as summarized in 
Table 1.

In practice for elements at the interface volume fraction 
�Γ = �P ≈ 0.5 is used. In Table 1 the magnitudes depend 
on �Γ = 0.5 as �Γ∕(1 − �Γ) = 1 or �Γ2∕(1 − �Γ) = 0.5 . For 
the order of magnitude the dependence on �Γ can thus be 
neglected resulting in the same penalization for the VANS 
and NSDP equations. Moreover, we require �̄� to be an order 
of magnitude higher than the values in Table 1, and specify 

(105)
O

(
vΓ

vf

)
= O

(
𝜌 ∣ vvvf ∣ 𝛼Γ

h𝜇�̄�(1 − 𝛼Γ)

)

= O

(
Ree𝛼Γ

�̄�h2(1 − 𝛼Γ)

)
< 1.

(106)O(�̄�) > O

(
Ree𝛼Γ

h2(1 − 𝛼Γ)

)
.

(107)He =
1

h2
,
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the increase in magnitude using 10q , where q is a small whole 
number (generally q = 0 , q = 1 or q = 2 ). The resulting values 
which we implement for �̄� can be found in Table 2.

To relate the maximum Darcy penalization found in this 
work to common practice we rewrite it as:

The maximum penalization in the solid domain at � = � and 
𝜅 = �̄� for Ree ≤ 1 is subsequently found as:

and for Ree > 1 as:

where we treat 10q∕� as a factor which scales the maximum 
penalization similar to the factor 1∕Da ≫ 1 which scales 
the commonly used maximum penalization by Olesen et al. 
(2006):

Comparing the maximum penalization for Ree ≤ 1 in 
Eq. 110 to the common penalization in Eq. 111 they seem 
similar. However, whereas the common penalization is 
dependent on characteristic length L which may change for 
changing topologies, our new penalization is dependent on 
mesh size h which allows us to accurately predict errors as 

(108)−�
�(�)

�
⋅ vvv = −Kh(�) ⋅ vvv

(109)
Kh = 𝜇

�̄�

𝛼
= 𝜇

10qHe

𝛼

= 𝜇
10q

h2𝛼
≫

𝜇

h2
,

(110)
Kh = 𝜇

�̄�

𝛼
= 𝜇

10qHeRee

𝛼
= 𝜇

10q

h2𝛼

𝜌 ∣ vvvf ∣ h

𝜇

=
10q𝜌 ∣ vvvf ∣

h𝛼
≫

𝜌 ∣ vvvf ∣

h
,

(111)K =
𝜇

L2Da
≫

𝜇

L2
.

will be discussed in Sect. 4.4 and shown in Sect. 6. Moreo-
ver, the bounds for the Darcy penalization are also depend-
ent on an elemental Reynolds number. This is not completely 
new as Kondoh et al. (2012) and Alexandersen et al. (2013) 
already implement a Reynolds dependent penalization. How-
ever, contrary to those works, the penalization in this work is 
dependent on an elemental Reynolds number and h instead 
of the global  Reynolds number:

Whereas a global Reynolds number is computed using refer-
ence length L, the elemental Reynolds number in Eq. 78 is 
dependent on h which is often much lower ( h ≪ L ) resulting 
in much lower elemental Reynolds numbers ( Ree ≪ Re ). 
Moreover, the penalization definitions in Kondoh et  al. 
(2012) and Alexandersen et al. (2013) are defined for non-
dimensional Navier–Stokes equations which impacts their 
interpretation and comparision to common practice as dis-
cussed in Appendix 2.

We note that the elemental Reynolds number and thus 
the Darcy penalization remain dependent on an a priori 
estimate of ∣ vvvf ∣ which may cause problems in changing 
topologies when this estimate is erroneous. A solution to 
this problem could be a penalization dependent on actual 
local flow magnitude ∣ vvv ∣ . However, as this requires the 
absolute flow magnitude this would introduce discontinui-
ties in the gradients of the model used. Furthermore, this 
approach would be similar to the Forchheimer penaliza-
tion introduced by Alonso and Silva (2021) who deal with 
discontinuous gradients by using automatic differentiation.

4.4  A priori error estimation

Using the bounds on the penalization as provided in the 
previous section, we may estimate flow leakage in the 
porous domain for low and high Reynolds flow. For low 
Ree ≤ 1 we set �̄� = 10qHe = 10qh−2 , which can be substi-
tuted into the estimated flow reduction at the interface in 
Eqs. 101 and 83, respectively:

when �Γ ≈ 0.5 at the solid/fluid interface. For the same value 
of q, flow at the interface should thus be reduced by a similar 
factor in the VANS as well as the NSDP equations. However, 
we speculate that the same flow reduction may also be used 
in the solid domain where 𝛼 ≈ 𝛼 ≪ 1:

(112)Re =
�VL

�
.

(113)

O

(
vΓ

vf

)

NSDP

= O

(
�Γ

1 − �Γ
10−q

)
= O(10−q),

O

(
vΓ

vf

)

VANS

= O

(
�Γ2

1 − �Γ
10−q

)
= O(0.5 × 10−q),

Table 1  The lower bounds on O(�̄�) at boundary Γfp defined using an 
inverse elemental surface area and elemental Reynolds number

Re
e ≪ 1 Re

e ≫ 1

NSDP
O

(
�Γ

1−�Γ
He

)
O

(
�Γ

1−�Γ
HeRe

e
)

VANS
O

(
�Γ

2

1−�Γ
He

)
O

(
�Γ

2

1−�Γ
HeRe

e
)

Table 2  Definition for �̄� in a practical application defined using 
inverse elemental surface area He and elemental Reynolds number 
Ree

The power q is used to increase the magnitude of the penalization, 
and is generally set as q = 0 , q = 1 or q = 2

Re
e ≤ 1 Re

e > 1

VANS/NSDP 10qHe 10qHeRe
e
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for the NSDP and VANS equations, respectively, where vs 
represents the flow in the solid domain. Flow in the solid 
domain computed using the VANS equations may thus be 
decreased by an additional factor � with respect to the NSDP 
equations for low Reynolds flow. This stronger suppression 
of flow leakage originates from the penalization of the pres-
sure gradient �∇p in the VANS equations which added an 
extra division by � in the definition of pΓ

,y
 in Eq. 68. Fur-

thermore, the estimates for flow reduction at the interface 
have been derived in Sects. 4.1 and 4.2, while the estimates 
in the porous domain are a speculation on the extensibil-
ity of Eq. 113. The extensibility of flow reduction in the 
porous domain is based on the idea that the pressure gradi-
ent should not only be continuous across the fluid domain 
and porous/fluid interface, but also across the porous/fluid 
interface and porous domain. Moreover, for high Ree > 1 
we set �̄� = 10qHeRee = 10qReeh−2 , which can be substituted 
into Eqs. 91 and 105 respectively resulting in the exact same 
flow reductions as in Eqs. 113 and 114.

If an insufficient penalization is chosen for the NSDP 
equations ( q < 0 ) flow leakage may introduce significant 
errors. However, for the VANS equations, there is still 
the possibility that rl

V
> 1 or rh

V
> 1 resulting in the Darcy 

penalization not being the dominant mechanism for flow 
reduction. The dominant mechanism for flow reduction 
is investigated by substituting �Γ ≈ 0.5 and �̄� in Eqs. 81 
and 89:

f o r  Ree < 1  (  �̄� = 10qh−2  )  a n d  Ree > 1 
( ̄𝜅 = 10qReeHe = 10q𝜌||vvvf||h−1𝜇−1 ) respectively. In the low 
elemental Reynolds case, the dominant mechanism for flow 
reduction is thus completely determined by q. If q < 0 and 
as a result rl

V
> 1 we do not satisfy the condition for flow 

reduction through the Darcy penalization in Eq. 102, but 
still manage some flow reduction through the condition in 
Eq. 86:

(114)

O

(
vs

vf

)
NSDP

= O

(
�

1 − �
10−q

)
= O

(
� × 10−q

)
,

O

(
vs

vf

)
VANS

= O

(
�2

1 − �
10−q

)
= O

(
�2 × 10−q

)
,

(115)

rl
V
=
||||

𝛼Γ

h2�̄�(1 − 𝛼Γ)

|||| ≈
||||

0.5

h210qh−20.5

|||| = 10−q,

rh
V
=
|||||
𝜌 ∣ vvvΓ ∣

h𝜇�̄�

|||||
=
|||||
𝜌 ∣ vvvΓ ∣

h𝜇

h𝜇

10q𝜌 ∣ vvvf ∣

|||||
=
|||||
∣ vvvΓ ∣

∣ vvvf ∣
10−q

|||||
,

(116)O

(
vΓ

vf

)
= O

(
�Γ

)
.

This will not result in much flow reduction at the solid/fluid 
interface where �Γ ≈ 0.5 . However, within the solid domain 
where 𝛼 = 𝛼 ≪ 1 this flow reduction mechanism might have 
significant effects. To ensure sufficient flow penalization, in 
this work we will use q ≥ 0 . If Ree > 1, the problem is more 
complicated as the dominant mechanism for flow reduction 
depends on the flow reduction itself. However, if we substi-
tute the flow reduction ( ||vvvΓ||∕||vvvf|| ≈ vΓ∕vf ) due to the Darcy 
penalization in Eqs. 113 into rh

V
 in Eq. 115 we find:

Similar to the low Reynolds case, if q < 0 it thus follows that 
the Darcy penalization is not the dominant flow reducing 
mechanism as rh

V
> 1 . Moreover, flow at the interface is not 

reduced as substituting �Γ ≈ 0.5 into the flow reduction for 
rh
V
> 1 in Eq. 94 results in:

However, if we again speculate on the extensibility of these 
formulations to the porous domain where 𝛼 = 𝛼 ≪ 1 , we find 
a significant solid domain flow reduction of:

Finally, we make a note on the error in pressure, which 
is more difficult to estimate. In the solid domain, a non-zero 
pressure field will be present. However, the intrinsic average 
of the pressure field ( ⟨p⟩i� ) is computed while the superfi-
cial average of the velocity field ( ⟨vvv⟩s� ) is computed. When 
no fluid is pumped into the porous domain where � → 0 , 
velocity ⟨vvv⟩s� naturally converges to zero, while ⟨p⟩i� does 
not necessarily converge to zero as it represents the pore 
scale average as explained in Sect. 2. Non-zero intrinsic 
pressure fields in the solid domain should thus be expected 
and should not be treated as erroneous. Furthermore, for 
both the VANS and NSDP momentum equations, the pres-
sure gradient at every point within the fluid domain can be 
written as solely a function of velocity: ∇p = f (vvv) , if mate-
rial properties � , � , �̄� and � = 1 are taken as constant. If the 
correct velocity field is found in the fluid domain, it follows 
that the correct pressure field is also computed, respective to 
a reference pressure in the fluid domain. As pressure gradi-
ents in the solid domain are expected, and errors in pressure 
are harder to quantify, we mainly focus on flow leakage as a 
representation of precision of the solution.

(117)rh
V
=
|||||
∣ vvvΓ ∣

∣ vvvf ∣
10−q

|||||
= 0.5 × 10−2q.

(118)O

(
vΓ

2

vf
2

)
= O

(
�Γ

1 −
1

�Γ

)
= O(1).

(119)O

�
vs2

vf
2

�
= O

⎛⎜⎜⎝
�

1 −
1

�

⎞⎟⎟⎠
≈ O

�
�2
�
.
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5  Optimization problem and adjoint 
sensitivity analysis

Using the discretization and bounds on the Brinkman penali-
zation the optimization problem is defined as:

where N is the number of discrete design DOFs �i , 
RRR(uuu,vvv,ppp,���) is a column containing all discretized equilib-
rium equations, uuu, vvv, ppp, ��� contain the discrete velocities 
pressures and design variables, the desired maximum fluid 
volume fraction is Vf and f (uuu,vvv,ppp,���) is the objective to be 
minimized. No additional filters such as a blurring filter or 
Heaviside projection are applied to the design as they are 
not necessary to regularize the optimization problems in this 
paper. The MMA algorithm by Svanberg (1987, 2004) is 
used to perform the optimization. Computing the sensitivi-
ties required by the MMA algorithm can be a cumbersome 
task in non-linear fluid problems. The main problem lies in 
the computation of the Jacobian matrix for the solution of 
the adjoint equations. In this work we use the MATLAB 
(2019) symbolic toolbox to construct discrete momentum 
and continuity equations, such that we are able to create 
functions for the Jacobian matrices before running the opti-
mization. In essence, a similar approach as in (Dilgen et al. 
2018) is implemented, where automatic differentiation is 
used to compute the Jacobian of the residuals.

To construct the adjoint sensitivities, columns contain-
ing discrete functions for the u, v-momentum and conti-
nuity equations are defined as RRRu(uuu,vvv,ppp,���) , RRRv(uuu,vvv,ppp,���) , 
RRRp(uuu,vvv,���) respectively. An element of RRRu(uuu,vvv,ppp,���) is thus 
associated with DOF uP and the stencil as in Fig. 5, where 
both uP and the stencil are mapped to the global mesh in 
Fig. 4. Boundary conditions are applied via ghost nodes 
as described in (Versteeg and Malalasekera 2007) and 
are added to the columns containing the discrete equa-
tions. All equations are gathered as RRR⊺ = [RRR

⊺

u,RRR
⊺

v ,RRR
⊺

p] and 
UUU = [uuu⊺,vvv⊺,ppp⊺] . Furthermore, objective f (uuu, vvv,ppp,���) is 
defined and used to construct the augmented objective:

where ��� contains the adjoint multipliers. The sensitivities 
are subsequently defined as:

where first, the adjoint equations are solved:

minimize
���

f (uuu,vvv,ppp,���)

subject to RRR(uuu,vvv,ppp,���) = 0,
∑N

i=1
�i

N
− Vf ≤ 0,

(120)F = f + ���⊺RRR,

(121)
dF

d���
=

�f

����
+ ���⊺

�RRR

����
+

(
�f

�UUU
+ ���⊺

�RRR

�UUU

)
�UUU

����
,

after which the sensitivities are computed as:

The difficult part in solving the adjoint equations is to define 
�RRR∕���� and the Jacobian:

as it is never explicitly formed in the SIMPLE solution algo-
rithm. We are however able to assemble the Jacobian after 
solving for flow and pressure fields, by using a symbolic 
coding toolbox. For example, element Ri

u
 of RRRu contains the 

discretized u-momentum equation in terms of the symbolic 
stencil variables in Fig. 5 UUUs = [uP, uN ,… , vNE,… �E,…]⊺ , 
and derivatives can be computed using symbolic differen-
tiation �Ri

u
∕�UUUs . As the derivatives for one stencil are the 

same for every element Ri
u
 , we only perform the symbolic 

differentiation for one stencil and let the symbolic coding 
toolbox automatically construct a vector function from 
�Ri

u
∕�UUUs which takes vectors of DOFs UUUs and returns vec-

tors of �Ri
u
∕�UUUs . Both UUUs and �Ri

u
∕�UUUs can be mapped to 

the global mesh. The subsequent assembly procedure into 
�RRR∕�UUU is coded by hand and the same procedure is per-
formed for �RRR∕���� . For this particular implementation, a 
symbolic toolbox which can compute derivatives and con-
struct vector functions from symbolic equations is thus 
required. To confirm the adjoint sensitivities used in this 
work they are verified using complex step finite difference 
sensitivities in Appendix 3.

6  Precision of the VANS and NSDP Equations

A precise flow solution is essential for finding precise optima 
when optimizing fluid problems. The precision of the NSDP 
and VANS solvers is therefore investigated for several flow 
problems, Reynolds numbers, minimal volume fraction � 
and penalizations �̄� . As precision is of most importance 
in the optimal black/white designs, only these designs are 
investigated. In Appendix 4 we examine the effect of the 
second Brinkman correction and argue that flow leakage is 
a good measure for overall solution accuracy. Consequently, 
we will use flow leakage to asses solution precision in this 
section and the remainder of this work. To confirm the lower 
bound on �̄� derived in Sect. 4 a sweep on power q is per-
formed for low elemental Reynolds numbers ( Ree ≤ 1 ) in 

(122)���⊺ = −
�f

�UUU
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�UUU
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,

(123)dF

d���
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+ ���⊺
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.
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Sect. 6.1 and moderate elemental Reynolds flow ( Ree > 1 ) in 
Sect. 6.2. The results in these sections will be used to choose 
optimization settings for q and � such that flow is sufficiently 
penalized in the optimization problems in Sect. 7. Flow is 
sufficiently penalized when we expect errors evvv ≈ 10−1 and 
ul < 10−2 . Error evvv ≈ 10−1 is chosen relatively high on pur-
pose as it represents a flow error in two cases and influ-
ences convergence behavior of the optimization procedure. 
The error is mainly caused by flow at those locations in the 
design where �P ≈ 0.5 , which are found at either the solid/
fluid interface, or in the intermediate gray design during 
optimization where � ≈ 0.5 . If flow in the intermediate gray 
design is penalized too much, the optimizer can be pushed 
into an inferior local optimum from which it may be hard 
to escape. Moreover, when choosing the optimization set-
tings we put more emphasis on ul < 10−2 as in Appendix 4 
flow leakage is shown to correlate to errors in pressure drop 
(which we will optimize for in Sect. 7). Furthermore, in 
Sect. 6.3 the penalization for a range of Reynolds numbers 
is investigated.

6.1  Low elemental Reynolds numbers

First, a sweep on the penalization is performed for low Ree 
(and low Re) using the problem depicted in Fig. 12 and the 
parameters given in Table 3.We examine a channel of height 
2L where flow is obstructed by two solid porous walls of 
two elements thick. A parabolic flow profile with maximum 
velocity umax is prescribed at the inlet and pressure at the 
outlet is fixed at pout . Furthermore, as equidistant meshes 
are used where Δx = Δy = h and four mesh refinements 
are examined where h = 0.1 L , h = 0.05 L , h = 0.025 L , 
h = 0.0125 L , the elemental Reynolds number can be com-
puted as:

where Ree = h < 1 and we approximate ||vvvf|| ≈ umax . Since 
Ree = h < 1 , the maximum �̄� is computed following Table 2 
as:

Furthermore, using the parameters in Table 3, the Reynolds 
number is computed as

To investigate the a priori error estimates in Sect. 4.4 the 
precision of the model is measured using a spurious flow 
error:

(125)Ree =
�||vvvf||h
�

=
�umaxh

�
= h,

(126)�̄� = 10qHe =
10q

h2
,

(127)Re =
�umaxL

�
= 1.

where Ip = {i ∣ (xi, yi) ∈ Ωp} denotes the indices i of all 
DOFs ui, vi in Ωp and in this example the porous domain 
Ωp consists of the two obstructing walls. Error evvv measures 
the norm of flow in the porous domain and at the porous/
fluid interface, and normalizes it using a measure for flow 
in the fluid domain ( umax ). We expect flow at the porous/
fluid interface to be dominant in the norm, and evvv can thus 
be seen as a measure for flow reduction vΓ∕vf . Besides error 
evvv an error which represents the flow leakage in the solid 
domain is defined as:

where Γw is the center line in the two walls as shown in 
Fig. 12. As ul represents the leakage in the porous wall where 
� = � and is normalized by umax , we use it as a measure of 
flow reduction in the solid domain vs∕vf . Both evvv and ul can 
thus be compared against the error estimates in Sect. 4.4.

6.1.1  Low elemental Reynolds results

Using these parameters the errors in Fig. 13 and the flow 
field in Fig. 14 are found. As shown in Fig. 13a and b, we 
generally find that O(evvv) = O(10−q) when q ≥ 0 which con-
firms the bounds on �̄� in Sect. 4 and expected flow reduction 
vΓ∕vf in Eq. 113. Furthermore, for the NSDP equations in 
Fig. 13d O

(
ul
)
= O

(
�10−q

)
 and for the VANS equations 

in Figure  13c O
(
ul
)
= O

(
�210−q

)
 , which confirms the 

estimated flow reduction for us∕uf in Eq. 114. When q < 0 
the constraints derived in Sect. 4 are not satisfied, and rela-
tively large errors evvv are found as predicted in Eq. 116. As 
expected, larger errors evvv than ul are found. The larger evvv 
is mainly caused by spurious flow through the tips of the 
walls as shown in Fig. 14. Since the spurious flow mainly 

(128)evvv =
1

umax

√∑
i∈Ip

u2
i
+
∑
i∈Ip

v2
i
,

(129)ul =
1

Lumax
∫Γw

∣ u ∣ dΓ,

Γw

Lwall

umax

Lx

2LL

0.5L

2∆x

pout

Fig. 12  A 2D channel with parabolic inflow applied at the left inlet 
and constant pressure applied at the right outlet. At Lwall two small 
porous solid walls of thickness 2Δx are inserted to inhibit flow. For 
different mesh sizes the problem will thus slightly vary as the wall 
thickness changes. For low Reynolds flow the wall affects the pres-
sure distribution to the left and is placed at the center, while for mod-
erate Reynolds flow the wall has large wakes to the right and is placed 
closer to the inlet
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crosses the corners of the walls but not Γw , it only shows up 
in the computation of evvv and not in the computation of ul . 
Furthermore, as the wall is two elements thick, the different 
h lead to slightly different problems with slightly different 
solutions, but no qualitatively different behavior between the 

solutions is observed for h < 0.1 . For h = 0.1 the mesh is too 
coarse and is not able to facilitate the vortices at the base of 
the walls as observed in Fig. 14. We note that for q ≤ 0 the 
solution procedure becomes less stable and shows longer 
convergence times.

Table 3  The material and problem parameters for the flow problem in Fig. 14, where low Reynolds flow is investigated for low Ree and varying 
q, �

� � u
max

p
out

L L
wall

Lx

1 1 1 1 1 4L 8L
N s/m2 kg/m3 m/s N/m2 m m m
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VANS
h = 0.1L, α = 10−1

h = 0.05L, α = 10−1

h = 0.025L, α = 10−1

h = 0.0125L, α = 10−1

h = 0.05L, α = 10−2

h = 0.05L, α = 10−3

(a) Error evv representative of flow reduction vΓ/vf ,
computed using the VANS equations.

−1 0 1 2 310−3

10−2

10−1

100

q

evv v

NSDP
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h = 0.05L, α = 10−2

h = 0.05L, α = 10−3

(b) Error evv representative of flow reduction vΓ/vf ,
computed using the NSDP equations.
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(c) Error ul representative of flow reduction vs/vf ,
computed using the VANS equations.
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(d) Error ul representative of flow reduction vs/vf ,
computed using the NSDP equations.

Fig. 13  The errors evvv and ul for low Ree in the problem as illustrated 
in Fig. 12 using the parameters from Table 3 computed using vary-
ing h and � . The horizontal solid black lines indicate the maximum 

allowable errors evvv ≈ 10−1 and ul < 10−2 for optimization, and are 
used to select appropriate optimization parameters q and �
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6.1.2  Low elemental Reynolds optimization parameter 
selection

Subsequently, the errors in Fig. 13 are used to select appropri-
ate optimization values for q and � such that evvv ≈ 10−1 and 
ul < 10−2 . For the VANS equations we use q = 1 as for this 
setting evvv ≈ 10−1 in Fig. 13a. We note that the errors are actu-
ally slightly higher but choose q = 1 as q = 2 would result 
in evvv ≈ 10−2 and possibly a too severe penalization on the 
intermediate design where � ≈ 0.5 and convergence to infe-
rior local optima. Moreover, for the selection of � we note 
that when 𝛼 < 10−2 design convergence of the optimiza-
tion problems in Sect. 7 was often ill behaved for both the 
VANS and NSDP equations. In Fig. 13c for q = 1 we find 
ul ≈ 10−3 < 10−2 when � = 10−1 for the VANS equations. 
To select q for the NSDP equation both q = 1 and q = 2 are 
viable options for evvv ≈ 10−1 in Fig. 13b. If we select q = 1 , we 
require � = 10−2 to achieve ul ≈ 10−3 < 10−2 for the NSDP 
equations in Fig. 13d. However, if we select q = 2 , � = 10−1 
is sufficient to achieve ul ≈ 10−3 < 10−2 for the NSDP equa-
tions in Fig. 13d. For the NSDP equations there are thus two 
options for appropriate parameter settings although we suspect 
the parameters using q = 2 might put a too severe penalization 
on intermediate designs. All parameter setting are summarized 
in Table 4 where we use a superscript to denote the parameter 
setting of a certain model.

The selected penalization parameters can be compared 
against common practice. Using the definition of the maxi-
mum Darcy penalization in Eq. 111 we find:

(130)K =
�

L2Da
= 105,

where we used Da = 10−5 as recommended by Olesen et al. 
(2006), a parameter which often requires a lot of tuning. On 
the contrary, since we use �̄� as defined in Eq. 126 a maxi-
mum penalization is found using Eq. 110 as:

Consequently, using the optimization parameters in Table 4 
we find the maximum penalizations:

where the parameters for NSDP(a) and NSDP(b) result in the 
same maximum penalization K

NSDP

h
 and the resulting penali-

zation values for the four different mesh sizes can be found 
in Table 5. Even though the maximum penalization values 
for each model in Table 5 span two (almost three) orders 
of magnitude for varying h, similar error magnitudes are 
found for the same settings of q and � in Fig. 13. Moreo-
ver, whereas using the common penalization definition in 
Eq. 130 ( K = 105 ) some tuning would be required to find the 
appropriate setting for the NSDP equations, using our new 
definition we are able to precisely define Kh = 6.4 × 106 to 
achieve the desired error magnitude for h = 0.0125.

6.2  Moderate elemental Reynolds numbers

Secondly, a sweep on the penalization is performed for mod-
erate Ree (and moderate Re) using the new parameters given 
in Table 6. The walls are shifted to the left ( Lwall = L ) to 
account for large wakes.Using these parameters, the Reyn-
olds number is computed as:

Furthermore, as the elemental Reynolds number is directly 
proportional to the mesh size Ree ∝ h only the relatively 
large mesh sizes of h = 0.1 L, h = 0.05 L and h = 0.025 L 

(131)Kh = �
10q

h2�
.

(132)
K

VANS

h
= �

10q

h2�
= 102

�

h2
,

K
NSDP

h
= �

10q

h2�
= 103

�

h2
,

(133)Re =
�umaxL

�
= 2 × 102.
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y

(a) The flow solution.

5.052.00

y

4x

0.005 0.01 0.015 0.02 0.025

(b) The magnitude of the erroneous flow in the bottom
wall rotated 90 degrees to the right. Note the large
contribution to the flow error at the wall tip to the
right which causes the large errors evv .

Fig. 14  A flow solution for the problem in Fig. 12, computed using 
the VANS equations and the parameters in Table 3 and an erroneous 
flow plot. For this particular solution q = 1 , h = 0.025 and � = 10−1 
were used

Table 4  Parameter settings to achieve sufficient flow penalization 
such that evvv ≈ 10−1 and ul < 10−2 during low Reynolds optimization 
for the VANS and NSDP equations

Two options (NSDP(a) and NSDP(b) ) are viable for the NSDP equa-
tions

VANS(a) NSDP(a) NSDP(b)

q 1 1 2
� 10−1 10−2 10−1
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are investigated. Subsequently, the elemental Reynolds num-
ber is computed by approximating ||vvvf|| ≈ umax as:

resulting in Ree = 20, Ree = 10 and Ree = 5 for the decreas-
ing element sizes, respectively. As Ree > 1 the definition of 
�̄� changes following Table 2 as:

6.2.1  Moderate elemental Reynolds results

Using these parameters, the errors in Fig. 15 and flow pro-
file in Fig. 16 are found. For q = −1 , flow in the porous 
walls showed a tendency to oscillate and not stabilize and 
for q < −1 flow in the porous walls does not stabilize. 
This problem is more prominently present in the VANS 
equations than in the NSDP equations. In Fig. 15a and 
b we generally find O(evvv) = O(10−q) for both the VANS 
and NSDP equations, confirming the bounds on �̄� derived 
in Sect. 4 and expected flow reduction vΓ∕vf in Eq. 113. 
Furthermore, in Fig. 15d we find O

(
ul
)
= O

(
�10−q

)
 for the 

NSDP equations as expected in Eq. 114. Contrarily, for the 
VANS equations ul in Fig. 15c behaves less regular. For 
� = 10−1 , the error behaves regular as O

(
ul
)
= O

(
�210−q

)
 

as predicted by Eq. 114. However, for 𝛼 < 10−1 errors 
behave less regular and are bounded from above as 
O
(
ul
) ≤ O

(
�10−q

)
 . Nonetheless, the error follows the 

prediction of O
(
ul
)
= O

(
�210−q

)
 , but only for q > 1 when 

� = 10−2 and for q > 2 when � = 10−3 . However, com-
paring errors between the VANS and NSDP equations in 
Fig. 15, we find that the VANS equations generally result 
in errors of lower or similar magnitude.

6.2.2  Moderate elemental Reynolds optimization 
parameter selection

Subsequently, the errors in Fig. 15 are used to find appropri-
ate setting for q and � such that evvv ≈ 10−1 and ul < 10−2 . For 

(134)Ree =
�umaxh

�
= 2h × 102,

(135)�̄� = 10qHeRee = 10q
𝜌umax

h𝜇
.

the VANS equations we use q = 1 as for this setting evvv ≈ 10−1 
in Fig. 15a. Moreover, in Fig. 15c we find ul ≈ 10−3 < 10−2 
for q = 1 and � = 10−1 which we will thus use for optimiza-
tion using the VANS equations. For the NSDP equations 
we also use q = 1 as for this setting evvv ≈ 10−1 in Fig. 15b. 
Contrary to the low Reynolds NSDP optimization, the mod-
erate Reynolds NSDP optimization has only one appropriate 
setting for q. Furthermore, for q = 1 and � = 10−2 we find 
ul ≈ 10−3 < 10−2 in Fig. 15d which we will thus adopt for 
optimization using the NSDP equations. Parameter settings 
for moderate Reynolds optimization can be found in Table 7.

Furthermore, using �̄� as in Eq. 135 results in the maxi-
mum Darcy penalization in Eq. 110 of:

Consequently, using the optimization parameters in Table 7 
we find the maximum penalizations of:

resulting in the penalization values for varying h in Table 8. 
Using the common penalization definition in Eq. 111 (with 
Da = 10−5):

would thus result in under penalization for the NSDP 
equations.

6.3  Sweep on the elemental Reynolds number

Comparing overall performance of the VANS and NSDP error 
convergence both sets of equations are found to reduce errors 
satisfactory for increasing q and decreasing � and can thus be 
used to find precise optima in topology optimization. However, 
for higher Reynolds numbers an estimation of Ree has to be 
made which depends on an a priori estimated flow velocity 
||vvvf|| . Subsequently, when Ree > 1 this estimation is used to set 
the appropriate �̄� as found in Table 2. In a changing topology 
Reynolds numbers may change and this estimate may be incor-
rect. The Reynolds dependence of the errors in the VANS and 
NSDP equations is thus investigated using the parameters in 
Table 9 where in contrast to Sects. 6.1 and 6.2 we fix q = 1 
and h = 0.1 × L but investigate for varying Reynolds number:

by changing the density as:

(136)Kh =
10q�||vvvf||

h�
=

10q�umax

h�
.

(137)
K

VANS

h
=

10q�umax

h�
= 102

�umax

h
,

K
NSDP

h
=

10q�umax

h�
= 103

�umax

h
,

(138)K =
�

L2Da
= 5 × 102,

(139)Re =
�umaxL

�
,

Table 5  The Darcy penalization from Eq.  132 computed using 
the material parameters in Table  3 and optimization parameters in 
Table 4

Both optimization parameter setting for NSDP(a) and NSDP(b) in 
Table 4 result in the same maximum penalization K

NSDP

h

h [m] 0.1 0.05 0.025 0.0125

K
VANS

h
[
N s

m4
] 104 4 × 104 1.6 × 105 6.4 × 105

K
NSDP

h
[
N s

m4
] 105 4 × 105 1.6 × 106 6.4 × 106
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(a) Error evv representative of flow reduction vΓ/vf ,
computed using the VANS equations.
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(c) Error ul representative of flow reduction vs/vf ,
computed using the VANS equations.
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(d) Error ul representative of flow reduction vs/vf ,
computed using the NSDP equations.

evv

Fig. 15  The errors evvv and ul for the moderate Reynolds problem as 
illustrated in Fig.  12 using the parameters from Table  3 computed 
using varying h and � . The horizontal solid black lines indicate the 

maximum allowable errors evvv ≈ 10−1 and ul < 10−2 for optimization, 
and are used to select appropriate optimization parameters q and �

Table 6  The material and problem parameters for the flow problem in Fig. 16, when moderate Reynolds flow is investigated for varying q and �

� � u
max

p
out

L L
wall

Lx

5 × 10−3 1 1 1 1 L 8L
N s/m2 kg/m3 m/s N/m2 m m m

0 2 4 6 8

x

2

1

0

y

Fig. 16  The resulting flow field for the problem in Fig.  12, com-
puted using the VANS equations and the parameters in Table 6. For 
the computation of this particular flow field q = 3 and � = 10−2 were 
used, and for all other settings (VANS and NSDP) similar flow fields 
were found

Table 7  Parameter settings 
to achieve sufficient flow 
penalization such that evvv ≈ 10−1 
and ul < 10−2 during moderate 
Reynolds optimization for the 
VANS and NSDP equations

VANS
(a)

NSDP
(a)

q 1 1
� 10−1 10−2
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Moreover, using the density and fixed mesh size h = 0.1 × L 
the elemental Reynolds number can be approximated as:

Using the bounds on �̄� as found in Table 2, maximum penali-
zation values are found in Eqs. 109 and 110 as:

Furthermore, we also investigate the case where the ele-
mental Reynolds number is underestimated and we use the 
penalization for Ree ≤ 1 in Eq. 142 ( ̄𝜅 = 10qHe ) to compute 
errors for the cases where Ree > 1.

Using the resulting penalization values found in Fig. 17 
leads to the errors shown in Fig. 18. No Reynolds numbers 
larger than Re = 103 ( Ree = 0.1 × Re = 102 ) were investi-
gated as this would be within the turbulent flow regime which 
the flow solver is not suited for. When we use �̄� = 10qHeRee 
for Ree > 1 both evvv and ul decrease in Fig. 18 but remain close 
to the expected order of magnitude as predicted in Sect. 4.4. 
However, when we divert from the penalization bounds 
derived in Sect. 4 and use a fixed �̄� = 10qHe for Ree > 1 , the 
order of magnitude of ul in Fig. 18 increases significantly for 
increasing Ree . For Ree > 1 a correct penalization is thus cou-
pled to the elemental Reynolds number.

(140)� =
Re�

umaxL
= Re,

(141)Ree ≈
�umaxh

�
=

Re�

umaxL

umax0.1 ⋅ L

�
= 0.1 × Re.

(142)
Kh = 𝜇

10qHe

𝛼
=

103

𝛼
for Ree ≤ 1,

Kh =
10qHeRee

𝛼
=

103Ree

𝛼
for Ree > 1.

7  Topology optimization examples using 
the VANS and NSDP equations

To verify the applicability of the VANS equations to topol-
ogy optimization firstly a flow problem is optimized for low 
and moderate Reynolds flow, after which we investigate 
optimization under moderate Reynolds flow in more detail. 
The problems are inspired by the flow around a bend prob-
lem as defined by Kreissl and Maute (2012), and the two 
channel flow problem as defined by Olesen et al. (2006).

7.1  Initial optimization investigation

To push the flow penalization within an optimization to its 
limits a flow around a two element thick porous solid wall 
as shown in Fig. 19 is optimized. The inlet and outlet are 
separated from the design domain by short pipes to allow 
for an accurate description of the boundary conditions. On 
inlet Γin a parabolic velocity profile with maximum velocity 
umax is prescribed and on outlet Γout static reference pressure 
pout is prescribed.

The objective of the optimization procedure is to mini-
mize pressure drop:

Table 8  The Darcy penalization from Eq.  137 computed using the 
parameters in Table 6 and optimization parameters in Table 7

h [m] 0.1 0.05 0.025

K
VANS

h
 [N s/m4] 103

2 × 103 4 × 103

K
NSDP

h
 [N s/m4] 104

2 × 104 4 × 104

Table 9  The material and problem parameters for the flow problem in Fig. 16, for varying Reynolds numbers (and thus varying �)

� u
max

p
out

L L
wall

Lx q h

1 1 1 1 L 20L 1 0.1L
N s/m2 m/s N/m2 m m m – m

10−3 10−2 10−1 100 101 102
104

105

106

107

Ree

K
h

α = 10−1, κ̄ = 10qHeRee for Ree > 1
α = 10−2, κ̄ = 10qHeRee for Ree > 1
α = 10−1, κ̄ = 10qHe for Ree > 1
α = 10−2, κ̄ = 10qHe for Ree > 1

Fig. 17  Maximum penalization values Kh computed using the 
Eq. 142 and used in the computations for Fig. 18. For Ree ≤ 1 we use 
�̄� = 10qHe , while for Ree > 1 we use two different definitions �̄�
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under a volume constraint of Vf = 0.5 . In fact, minimizing 
pressure drop is equivalent to minimizing fluid energy dis-
sipation. The optimization problem is initialized using a 
completely fluid design domain ( � = 1 ) and the optimizer 
thus determines where to introduce solid material. Given 
the pressure drop objective, adding material will generally 
increase pressure drop and the first few design iterations 
objective values will increase. Furthermore, viscosity � is 
determined using the Reynolds number as:

and the structure is optimized for Re = 0.2 and Re = 200 
resulting in Ree = 0.01 and Ree = 10 respectively using 
the parameters in Table  10. Subsequently, maximum 

(143)f = ∫Γin

pdΓ − ∫Γout

pdΓ,

(144)� =
�umaxL

Re
,

penalization �̄� is determined using q, He and Ree as in 
Table 2, and we select q and � following Tables 4 and 7 for 
low ( Ree = 0.01 ) and moderate ( Ree = 10 ) Reynolds opti-
mization, respectively.

In Table 10 we show the penalization in the intermediate 
design where � ≈ 0.5 and thus −𝜇�̄�(1 − 𝛼)∕𝛼 ≈ −𝜇�̄� and 
the penalization in the solid domain Kh . It can be observed 
that the selected parameters result in a maximal penalization 
Kh which spans two orders of magnitude for both the VANS 
and NSDP equations respectively. Kreissl and Maute (2012) 
find appropriate maximum penalization values for the prob-
lem on which our problem is inspired of K = 2.5 × 106 for 
Re = 0.1 and K = 2.5 × 104 for Re = 10 . We thus use similar 
order of magnitude penalizations for the low and moderate 
Reynolds NSDP equations. However, our moderate Reyn-
olds penalization could be expected to be one order higher 
than the one by Kreissl and Maute (2012) as our moderate 
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VANS, α = 10−1, κ̄ = 10qHeRee for Ree > 1
VANS, α = 10−2, κ̄ = 10qHeRee for Ree > 1
NSDP, α = 10−1, κ̄ = 10qHeRee for Ree > 1
NSDP, α = 10−2, κ̄ = 10qHeRee for Ree > 1
VANS, α = 10−1, κ̄ = 10qHe for Ree > 1
VANS, α = 10−2, κ̄ = 10qHe for Ree > 1
NSDP, α = 10−1, κ̄ = 10qHe for Ree > 1
NSDP, α = 10−2, κ̄ = 10qHe for Ree > 1

(a) Error evv representative of flow reduction vΓ/vf

computed using q = 1 for a range of Reynolds numbe
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u
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(b) Error ul representative of flow reduction vs/vf

computed using q = 1 for a range of Reynolds num-
bers.

Fig. 18  The errors evvv and ul for a range of Reynolds numbers com-
puted using the parameters from Table 9 resulting in the penalization 
values in Fig. 17
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LL
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Fig. 19  An optimization problem which minimizes pressure drop for 
flow around a thin wall of two elements thick. The thin wall (dark 
gray) is modeled using a porous formulation and its density is fixed 
at � , to challenge the flow model the thin wall is surrounded by a 
fluid non design domain (white) of five elements thick. A parabolic 
flow is prescribed on inlet Γin and a constant pressure on outlet Γout . 
The inlet/outlet are separated from the design domain by fluid pipes 
(white) surrounded by solid material where no flow is present (black). 
The optimization procedure is initialized using a completely fluid 
design domain (light gray)
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Reynolds number is one order higher ( Re = 200 instead of 
Re = 10 ) and the elemental Reynolds number should there-
fore also be one order higher. Since our penalization scales 
with elemental Reynolds number, the penalization by Kreissl 
and Maute (2012) could be extrapolated to Re = 200 to find 
a penalization of magnitude 105 which is one order higher 
than the one in Table 10 for Re = 200 NSDP optimization.

Optimized designs can be found in Figs. 20 and 22. 
Furthermore, error evvv is computed by constructing porous 
domain Ωp using all elements where 𝛼 < 0.5 , and ul as 
defined in Eq. 129 is computed using Γwall as defined in 
Fig. 19. Both errors and the optimized objectives f ∗ can be 
found in Table 11. The VANS equations are used to com-
pute reference flow and pressure solutions ( VANSR solu-
tions), objectives and errors. To achieve accurate reference 
results we set � = 10−3 and q = 7 , and post process the 
designs into crisp solid fluid distributions where � is set 
to zero for 𝛼 < 0.5 and to one for � ≥ 0.5 . The convergence 
of the objectives is shown in Fig. 21 where the objective 
is normalized using the objective value at the first design 
iteration f1 . In principle, all optimization procedures ran 
for 300 iterations. However, if the design did not stabilize 
after 300 iterations the optimizer is allowed to optimize 
for an additional 200 or 400 iterations depending on the 
convergence behavior resulting in a total of 500 or 700 
optimization iterations, respectively.In general errors for 
the VANS and NSDP optimized designs in Table 11 are 
comparable. However, reference objectives of the VANS 
based optimal designs are generally lower than those of 
the NSDP based optimal designs.

7.1.1  Analysis of the results

A noticeably different topology is found for Re = 0.2 
when using the NSDP(b) model in Fig. 22 than using the 

Fig. 20  The optimal design and flow fields for the problem in Fig. 19 
using the parameters in Table  10. Although flow through the solid 
(gray) material is plotted, spurious solid flow remains low as shown 
by the errors in Table 11

Table 10  The material and problem parameters for the optimization problem in Fig. 19

The structure is optimized for low and moderate Reynolds flow, resulting in two different Ree . For Ree = 0.01 and Ree = 10 values for q and � 
are selected following Tables 4 and 7, respectively, and �̄� is computed following Table 2, resulting the maximal penalizations Kh computed using 
Eqs. 131 and 136. We show 𝜇�̄� as this is the term used to penalize intermediate designs where � ≈ 0.5

� u
max

p
out

L h He V
f

1 1 1 1 0.05 400 0.5
kg/m3 m/s N/m2 m m 1/m2 –

Re, Ree q � 𝜇�̄� Kh

NSDP
(a) 0.2, 0.01 1 10−2 2 × 104 2 × 106

NSDP
(b) 0.2, 0.01 2 10−1 2 × 105 2 × 106

NSDP
(a) 200, 10 1 10−2 2 × 102 2 × 104

VANS(a) 0.2, 0.01 1 10−1 2 × 104 2 × 105

VANS(a) 200, 10 1 10−1 2 × 102 2 × 103
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VANS(a) or NSDP(a) models in Fig. 20a and b. Moreover, 
the NSDP(b) based optimization shows a longer and less 
regular convergence in Fig. 21a and finds the worst per-
forming optimum as shown in Table 11. This convergence 

behavior is tied to the two solid islands beside the inner 
wall in Fig. 22 and the fact that q = 2 for NSDP(b) instead 
of q = 1 for NSDP(a) , causing a greater 𝜇�̄� for the NSDP(b) 
model as can be found in Table 10. In the fist few design 
iterations, the optimizer adds gray material ( � ≈ 0.5 ) to 
the fluid design domain to improve the design. However, 
using q = 2 this gray material is over-penalized as flow is 
reduced as O(10−q) as derived in Eq. 113. Over-penalizing 
flow causes much energy dissipation in the gray domain 
which is inefficient for minimizing pressure drop, as a 
consequence these gray areas are quickly converted to 
solid domains ( � → 0 ) such that flow through them and 
thus fluid energy dissipation is minimized. Moreover, in 
Fig. 23a and b intermediate designs for the VANS(a) and 
NSDP(a) , Re = 0.2 optimization can be found which also 
show some intermediate material islands beside the wall. 
However, as the VANS(a) and NSDP(a) based optimizations 

Table 11  The optimized objectives and errors for the problem defined in Fig. 19 and Table 10 with optimized designs in Fig. 20 and 22

VANS
R solutions are computed using � = 10−3 and q = 7

VANS(a) NSDP(a) NSDP(b) VANS(a) NSDP(a)

Re = 0.2 Re = 0.2 Re = 0.2 Re = 200 Re = 200

q = 1 q = 1 q = 2 q = 1 q = 1

� = 10−1 � = 10−2 � = 10−1 � = 10−1 � = 10−2

evvv 7.70 × 10−2 8.70 × 10−2 2.28 × 10−2 2.56 × 10−2 3.07 × 10−2

u
l 3.60 × 10−3 3.28 × 10−3 3.59 × 10−3 9.24 × 10−4 8.62 × 10−4

f ∗ 278.2 274.0 293.4 0.4177 0.4529

VANS
R

VANS
R

VANS
R

VANS
R

VANS
R

evvv 8.29 × 10−8 8.52 × 10−8 1.10 × 10−8 1.98 × 10−8 2.46 × 10−8

u
l 3.40 × 10−13 3.56 × 10−13 4.08 × 10−14 8.43 × 10−14 9.00 × 10−14

f ∗ 280.6 282.8 302.4 0.4209 0.4676
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iteration

f
/f

1

VANS(a), q = 1, α = 10−1

NSDP(a), q = 1, α = 10−2

NSDP(b), q = 2, α = 10−1

(a) Re = 0.2
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f
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1

VANS(a), q = 1, α = 10−1

NSDP(a), q = 1, α = 10−2

(b) Re = 200

Fig. 21  The convergence of the designs in Figs. 20 and 22 with errors 
and objectives in Table 11. Objective values are normalized using the 
objective in the first design iteration f1 . During the first few design 
iterations objective values drastically increase by the addition of solid 
material to the fluid design domain, however normalized objective 
values are cut of at 2 to be able to inspect the convergence behavior

Fig. 22  The inferior local optimum for the problem in Fig. 19, com-
puted using the NSDP(b) parameter set from Table  10 for Re = 0.2 . 
spurious flow and objective values can be found in Table 11
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use q = 1 they do not over-penalize these intermediate 
designs and are able to escape this inferior local optimum. 
Furthermore, the convergence plot for the NSDP(b) param-
eter set in Fig. 21a shows a large bump starting around 
iteration 250. This bump is caused by the optimization 
process decreasing the islands by pushing the boundaries 
inward during iterations 250–400. When the boundaries 
are pushed inward elements are not instantly switched 
from solid to fluid but move through some grayscale values 
� ≈ 0.5 . In these grayscale areas flow speeds and thus fluid 
energy dissipation are increased and sensitivities change 
due to the non-linear nature of the Navier–Stokes equa-
tions. Due to the increased fluid energy dissipation the 
pressure drop objective increases, and due to the changed 

sensitivity information the design is further disturbed. The 
small oscillations around iterations 200–400 in objective 
for the VANS(a) and NSDP(a) convergence in Fig. 21a are 
caused by a similar effect. During these iterations the 
designs and objective are quite close to the optimal design 
and objective, but small tweaks to the boundaries con-
tinue to be made which causes some boundary elements 
to become gray increasing fluid energy dissipation and 
pressure drop. A final remark is made on the fact that for 
Re = 0.2 the optimized pressure drop f ∗ is close to the 
reference VANSR pressure drop for the VANS equations 
but large differences are observed between the NSDP and 
VANSR pressure drop in Table 11. As shown in Sect. 3.1.3 
for flow parallel to a wall the interpretation of the solid/
fluid interface is off by h/2, causing lowered pressure drop 
through a channel for the NSDP model as confirmed in 
Appendix 4. However, the VANS equations correct for this 
error via the second Brinkman correction.

Comparing the optimal designs for Re = 200 in Fig. 20c 
and d and reference objectives in Table 11, the moderate 
Reynolds NSDP(a) based optimization also seems to con-
verge to an inferior local optimum. Convergence to the infe-
rior local optimum may be caused by an overestimation of 
the Reynolds and consequently elemental Reynolds num-
bers. Both Re and Ree are computed using the maximum 
velocity at the inlet umax . However, within the design domain 
flow channels generally widen and flow speed is decreased 
resulting in an overestimation of elemental Reynolds number 
and thus penalization �̄� = 10qHeRee . For similar reasons as 
for the Re = 0.2 NSDP(b) convergence, this over-penalization 
causes the Re = 200 NSDP(a) optimization to converge to 
an inferior local optimum. However, the Re = 200 VANS(a) 
optimization uses the same �̄� as can be seen in Table 10 and 
finds an optimum containing similar error evvv as the Re = 200 
NSDP(a) optimization as can be seen in Table 11. For similar 
errors the VANS(a) model thus shows improved convergence 
behavior over the NSDP(a) case. Furthermore, the NSDP(a) 
Re = 200 convergence in Fig. 21b shows oscillations and 
an increase in objective value starting around iteration 80. 
These disturbances are caused by the small solid island to 
the left of the wall as shown in Fig. 23d disappearing. The 
small solid island itself increases pressure drop locally as 
flow moves around it. However, removing it causes a non-
linear reaction of the flow in the remainder of the channel 
and consequently total pressure drop to increase. Moreover, 
the VANS(a) convergence in Fig. 21b shows a longer range 
of oscillations and increasing objective during iterations 
80–200, which is caused by the porous material in the inter-
mediate designs as shown in Fig. 23c and the non-linearity 
of the Navier–Stokes equations. While the design changes 
it evolves through some gray material states where flow is 
less penalized causing more flow through the porous domain 
which increases power dissipation and thus pressure drop, 

(a) VANS(a), iteration
4,Re = 0.2, q = 1,
α = 10−1.

(b) NSDP(a), iteration
4, Re = 0.2, q = 1,
α = 10−2.

(c) VANS(a), iteration
150, Re = 200, q = 1,
α = 10−1.

(d) NSDP(a), iteration
80, Re = 200, q = 1,
α = 10−2, a small solid
island can be found at
the arrow tip.

Fig. 23  Intermediate designs and flow fields for the optimal design 
and flow fields found in Fig. 20
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similar to the convergence for the NSDP(b) based optimi-
zation. Furthermore while small changes at the boundaries 
may seem to benefit the objective looking at the linear sen-
sitivities, non-linear effects on the flow actually increase the 
objective.

Penalizing intermediate designs too much by setting q > 1 
resulting in large �̄� may thus cause convergence to inferior 
local optima as shown in Fig. 22. However, if an appropri-
ate penalization is used ( q = 1 ) low Reynolds optimization 
problems converge nicely using both the VANS(a) (with 
� = 10−1 ) and NSDP(a) (with � = 10−2 ) models. However, 
for moderate Reynolds optimization estimating the elemen-
tal Reynolds number introduces uncertainties in the param-
eter settings which may again cause convergence to inferior 
local optima, a property which will be examined in more 
detail in the next section.

7.1.2  Tuning the NSDP parameters for moderate Reynolds 
optimization

For the Re = 0.2 NSDP(a) based optimization, lower q 
(and thus lower �̄� ) resulted in an improved design. As the 
Re = 200 NSDP(a) based optimization also converges to a 

local optimum, lowering the maximum penalization may 
cause improved convergence behavior. We thus investigate 
optimal designs and convergence for lower q (lowering �̄� and 
K ), increased � (keeping �̄� constant but lowering K ) or both, 
resulting in the optimization parameters as in Table 12 (the 
same material parameters as in Table 10 are used).

Using � = 10−2 and lowered q = 0 (NSDP(c) ) results in 
the inferior local optimum in Fig. 24a. Although it converged 
to a distinct solid/fluid design and the reference objective 
value decreased to f ∗ = 0.4699 as found in Table 13, it 
still performed worse than the VANS optimum in Table 11 
with f ∗ = 0.4209 . Furthermore, we note that the VANSR 
reference error for the NSDP(c) based design in Table 13 is 
evvv = 1.045 × 10−1 which is caused by the small tip on the 
left of the solid island in Fig. 24a on which flow impinges 
at high speeds. Subsequently, using q = 1 and increased 
� = 10−1 (NSDP(d) ) results in the design found in Fig. 24b 
which suffers from the same problems as the initially opti-
mized design in Fig. 20d and is an inferior local optimum 
with f ∗ = 0.4678 as found in Table 13. However, lowering 
q = 0 and increasing � = 10−1 (NSDP(e) ) results in the con-
verged discrete solid/fluid design in Fig. 24c with a reference 
objective of f ∗ = 0.4312 which is only 2.45% worse than the 
VANS(a) based reference objective in Table 11. Improved 
convergence behavior however came at the cost of increased 
errors as evvv increased by one order to evvv = 2.63 × 10−1 and 
ul increased by two orders to 4.53 × 10−2 compared to the 
Re = 200 errors in Table 11. Furthermore, convergence of 
the objectives can be found in Fig. 25 where the NSDP(e) 
based optimization shows the most stable convergence 
behavior. Solution precision is thus traded for convergence 
behavior when using the NSDP equations, whereas the 
VANS model is able to attain precise solutions and good 
objective convergence for moderate Reynolds optimization.

Table 12  The tweaked optimization parameters for the problem in 
Fig. 19

Optimized designs can be found in Fig. 24 and the resulting objective 
values and errors in Table 13

Re, Ree q � 𝜇�̄� Kh

NSDP(c) 200, 10 0 10−2 2 × 101 2 × 103

NSDP(d) 200, 10 1 10−1 2 × 102 2 × 103

NSDP(e) 200, 10 0 10−1 2 × 101 2 × 102

Table 13  The optimized objectives and errors for the problem defined in Fig. 19 using the material parameters in Table 10 and optimization 
parameters in Table 12

Optimized designs can be found in Fig. 20

NSDP(c) NSDP(d) NSDP(e)

q = 0 q = 1 q = 0

� = 10−2 � = 10−1 � = 10−1

evvv 3.85 × 10−1 4.39 × 10−2 2.63 × 10−1

u
l 4.51 × 10−3 7.84 × 10−3 4.53 × 10−2

f ∗ 0.4514 0.4525 0.4166

VANS
R

VANS
R

VANS
R

evvv 1.045 × 10−1 2.40 × 10−8 1.96 × 10−7

u
l 5.20 × 10−13 9.13 × 10−14 6.21 × 10−13

f ∗ 0.4699 0.4678 0.4312



Towards improved porous models for solid/fluid topology optimization  

1 3

Page 33 of 43   133 

7.2  Solution precision versus design convergence

In the previous section we have shown that by reducing the 
Darcy penalization and increasing errors design convergence 
can be improved for the NSDP equations. In this sections 
we study the balance between solution precision and design 
convergence and establish that the VANS equations attain 
better convergence behavior for lower errors than the NSDP 
equations. We optimize the problem as shown in Fig. 26, 
which is inspired by one of the problems in (Olesen et al. 
2006) and use the material and problem parameters as shown 
in Table 14. For the NSDP equations all parameter settings 
except those in NSDP(b) (with q = 2 ) are investigated. Fur-
thermore, beside the VANS(a) parameters which are the same 
as used in the previous sections, we also use the VANS(b) 

parameters with lowered q = 0 to investigate if this also 
leads to improved designs for the VANS equations.

We minimize pressure drop for flow through two chan-
nels which flow in opposite direction using maximum fluid 
volume fraction Vf = 0.4 . Inspecting the optimized results 
in Olesen et al. (2006), the optimum is expected to consists 
of two separate channels of constant height L which would 
result in a pressure drop of:

where we assumed constant parabolic flow throughout the 
two channels. We thus normalize the pressure drop objec-
tive as:

However, for this objective to be achieved the design would 
have to include a two element thick horizontal wall through 

(145)Δp = ∫Γin

pdΓ − ∫Γout

pdΓ = 112
�umax

L
,

(146)f =

(
∫Γin

pdΓ − ∫Γout

pdΓ

)
∕Δp.
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(a) NSDP(c), q = 0,
α = 10−2
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(b) NSDP(d), q = 1,
α = 10−1

(c) NSDP(e), q = 0,
α = 10−1

Fig. 24  Optimal designs for Re = 200 computed using the NSDP 
equations, the optimization parameters in Table  12 and material 
parameters in Table 10
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Fig. 25  The convergence of the designs in Fig.  24 with errors and 
objectives in Table  13. Objective values are normalized using the 
objective at the first design iteration f1 . During the first few design 
iterations objective values drastically increase by the addition of solid 
material to the fluid design domain, however normalized objective 
values are cut of at 2 to be able to inspect the convergence behavior
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Fig. 26  An optimization problem which minimizes pressure drop for 
flow through 2 channels. On the black thin wall at the inlet/outlet no 
slip and no penetration conditions are explicitly applied. Parabolic 
flow profiles are applied at all inlets Γin and outlets Γout . The optimi-
zation procedure is initialized using a completely fluid design domain 
(light gray)
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the center of the domain. Excessive flow leakage and conse-
quent errors in pressure drop as found in Appendix 4 might 
thus be a problem for this optimization problem, and this 
may lead to alternative solutions.

7.2.1  Analysis of the results

Inspecting the optimized designs in Fig. 27 we find that 
none of the optimization procedures converged to the theo-
retical optimum which is confirmed by the objective values 
in Table 15 for which f ∗ > 1 . However, the VANS(b) based 
design in Fig. 27f comes close to the theoretical optimum 
and finds a reference objective of f ∗ = 1.028 as found in 
Table 15. Increasing q = 1 for the VANS(a) based design, 
however, pushes the optimizer in a local optimum which 
splits the flow of all four inlets/outlets and subsequently 
finds an inferior local optimum which performs worse as 
f ∗ = 1.269 . The spurious flow errors are, however, quite 
similar with evvv = 2.59 × 10−1 for the VANS(b) based design 
and only slightly lower evvv = 1.00 × 10−1 for the VANS(a) 
design. Nonetheless, flow errors of evvv = O(−q) = O(−1) are 
expected for the VANS(a) design as predicted in Eqs. 113, 
and in this particular design are mainly caused by the thin 
features at the upper right and lower left of the center island. 
Moreover, as these kind of thin features which guide the 
flow require sufficient penalization to be found by the opti-
mizer, the VANS(a) based design is unlikely to be found by 
the VANS(b) based optimization procedure. In addition flow 
error evvv for the VANS(b) based design is quite low due to the 
objective of pressure drop minimization. If spurious flow is 
large, much energy is dissipated by flow through the solid 
domain and the optimizer thus tends to reduce spurious flow 
if possible. Furthermore, the convergence behavior for both 
VANS based designs in Fig. 29 shows both designs converge 
relatively smoothly.

Subsequently, we investigate the NSDP(a) and NSDP(d) 
based designs which use q = 1 . Both designs in Fig. 27a and 
b are similar to the VANS(a) design in Fig. 27e, although they 
perform worse in terms of objective as shown in Table 15. 
The decreased objective is mainly caused by the small solid 
islands at the tip of the thin walls separating the inlets and 
outlets. Similar small solid islands can be found in the design 
at design iteration 20 of the VANS(a) optimization procedure 
as shown in Fig. 28. However, whereas the NSDP(a) and 
NSDP(d) based designs solidify the solid islands, using the 
VANS(a) model the islands are slowly removed over itera-
tions 20–40 resulting in the design in Fig. 27e.

Comparing the NSDP based designs which use q = 0 , 
the NSDP(c) based design in Fig. 27c seems an intermediate 
design between the VANS(a) and VANS(b) based designs in 
Fig. 27e and f which is confirmed by the reference objec-
tive value of f ∗ = 1.130 in Table 15. The NSDP(c) based 
design seems to get stuck in an inferior local optimum and 
is found to contain less thin features than the VANS(a) based 
design in Fig. 27e as it is unable to sufficiently penalize flow 
in these features. Moreover, the NSDP(e) based design in 
Fig. 27d shows a completely different topology and performs 
the worst with a reference objective of f ∗ = 2.493 as found 
in Table 15. Additionally, a large difference between opti-
mized ( f ∗ = 2.045 ) and reference objective is found, which 
is caused by the small porous islands in the fluid channels. 
These porous islands slow down the flow right before it 
bends around the thin wall, and thus smooth the change in 
direction of the flow but also increase error evvv = 2.74 . As the 
maximum penalization is low for the NSDP(e) based model 
it prefers to smooth the flow at the start of the bend even if 
more energy is dissipated and pressure drop is increased by 
flow through the porous material. However, post process-
ing the design and computing the objective using a more 
accurate model increases the objective value by 21.9% from 

Table 14  The material and problem parameters for the optimization problem in Fig. 26 for the NSDP equations all previously used parameter 
sets except for NSDP(b) are investigated

For the VANS equations we use the standard parameter set ( VANS(a) ) but also investigate the case where q = 0 resulting in the VANS(b) param-
eter set

� � u
max

L h He Re, Ree V
f

1 1/180 1 1 0.05 400 180, 9 0.4
kg/m3 N s/m2 m/s m m 1/m2 – –

q � 𝜇�̄� Kh

NSDP(a) 1 10−2 2 × 102 2 × 104

NSDP(d) 1 10−1 2 × 102 2 × 103

NSDP(c) 0 10−2 2 × 101 2 × 103

NSDP(e) 0 10−1 2 × 101 2 × 102

VANS(a) 1 10−1 2 × 102 2 × 103

VANS(b) 0 10−1 2 × 101 2 × 102
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Fig. 27  The optimal design and 
flow fields for the problem in 
Fig. 26 using the parameters 
in Table 14. Although flow 
through the solid (red) material 
is plotted, spurious solid flow 
remains low as shown by the 
errors in Table 15. (Color figure 
online)

(a) NSDP(a), q = 1, α = 10−2 (b) NSDP(d), q = 1, α = 10−1
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(d) NSDP(e), q = 0, α = 10−1
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(f) VANS(b), q = 0, α = 10−1

Table 15  The optimized objectives and errors for the problem defined in Fig. 26 using the parameters in Table 14. Optimized designs can be 
found in Fig. 27

NSDP(a) NSDP(d) NSDP(c) NSDP(e) VANS(a) VANS(b)

q = 1 q = 1 q = 0 q = 0 q = 1 q = 0

� = 10−2 � = 10−1 � = 10−2 � = 10−1 � = 10−1 � = 10−1

evvv 1.20 × 10−1 1.54 × 10−1 3.70 × 10−1 2.74 × 100 1.00 × 10−1 2.59 × 10−1

f ∗ 1.295 1.376 1.059 2.045 1.274 1.020

VANS
R

VANS
R

VANS
R

VANS
R

VANS
R

VANS
R

evvv 7.98 × 10−8 8.64 × 10−8 3.705 × 10−8 1.97 × 10−6 7.62 × 10−8 2.99 × 10−8

f ∗ 1.363 1.445 1.130 2.493 1.269 1.028
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f ∗ = 2.045 to f ∗ = 2.493 . Using the NSDP(e) based optimi-
zation procedure thus leads to the worst design containing 
the biggest errors for the problem in this section while it 
resulted in the best design attainable by the NSDP equations 
in Sect. 7.1.2 as seen in Fig. 24c.

7.2.2  Findings

The preceding numerical experiments indicate that increas-
ing solution precision (higher q and lower � ) may lead to 
convergence to inferior local optima for both VANS and 
NSDP based moderate Reynolds optimization procedures. 
However, the VANS equations generally show better design 
convergence for higher flow penalization and solution preci-
sion and require less tuning of the optimization parameters. 
For low Reynolds optimization both VANS- and NSDP-based 
optimization procedures show good convergence behavior for 
equally precise flow solutions when appropriate optimization 
parameters are selected (NSDP(a) and VANS(a) ). Furthermore, 
in our framework parameter q is used to select an appropri-
ate penalization at intermediate designs where � ≈ 0.5 , and 
� is used to increase flow inhibition and solution precision in 
the solid domain where � = � as shown in Sect. 4.4. Moreo-
ver, as shown in Sect. 3.1.4 parameter � can be compared to 
parameter q̃ which is often tuned to set convexity of the Darcy 
interpolation and lower penalization in intermediate designs 
as discussed by Borrvall and Petersson (2003). However, in 
our approach we precisely define the penalization in interme-
diate designs �̄� using the derivations in Sect. 4. The approach 
thus differs slightly as we precisely set the penalization in 
intermediate density areas using q and increase maximum 
penalization K by lowering � , instead of setting the penaliza-
tion in solid density areas and lowering the penalization in 
intermediate density areas using a convex interpolation.

8  Conclusions and recommendations

In this work we have introduced the VANS (Volume Aver-
aged Navier–Stokes) equations for solid/fluid topology 
optimization and shown their applicability and advantages. 
Using volume averaging we were able to create a theoreti-
cally consistent framework for introducing design variables 
in the Navier–Stokes equations. The NSDP (Navier–Stokes 
with Darcy Penalization) equations often used in topology 
optimization are shown to be a simplification of the VANS 
equations. Moreover, two main improvements for solid/fluid 
topology optimization are found: 

1. Lower bounds on the Darcy penalization are theoreti-
cally derived such that for both the VANS and NSDP 
equations flow is sufficiently penalized in the solid 
domain while keeping flow penalization in intermedi-
ate gray designs at a minimum to prevent convergence 
to inferior local optima.

2. Compared to the NSDP equations, the VANS equations 
are shown to require less parameter tuning and display 
improved design convergence for similarly accurate flow 
solutions.

0

0.2

0.4

0.6

0.8

1

Fig. 28  The intermediate design at iteration 20 for the problem 
in Fig.  26 computed using the VANS(a) model. Note the two solid 
islands at the arrow tips which are slowly removed over design itera-
tions 20–40 resulting in the optimal design in Fig. 27e
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NSDP(a), q = 1, α = 10−2

NSDP(d), q = 1, α = 10−1

NSDP(c), q = 0, α = 10−2

NSDP(e), q = 0, α = 10−1
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VANS(a), q = 1, α = 10−1

VANS(b), q = 0, α = 10−1

Fig. 29  The convergence of the designs in Fig.  27 with errors and 
objectives in Table  15. During the first few design iterations objec-
tive values drastically increase by the addition of solid material to the 
fluid design domain, however, objective values are cut of at 5 and 3 to 
be able to inspect the convergence behavior
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Furthermore, instead of relating the appropriate Darcy 
penalization to problem specific parameters, it is related to 
the mesh size and an elemental Reynolds number, reduc-
ing the amount of required parameter tuning. However, the 
lower bounds are not exact, and for changing topologies 
(and mainly for changing elemental Reynolds numbers) flow 
leakage may remain hard to estimate a priori. A solution 
to this problem might be the addition of the Forchheimer 
penalization which scales quadratically with flow speeds and 
thus may not require an estimate of flow speeds and elemen-
tal Reynolds number to find an appropriate magnitude for 
flow reduction. Moreover, viability of the lower bounds in 
other computational frameworks (such as the Finite Element 
Method instead of FV) remains an open question. We thus 
recommend performing a representative study on a range 
of mesh sizes and elemental Reynolds numbers as shown 
in Sect. 6 for implementation of the lower bounds in other 
computational frameworks. However, when the bounds are 
confirmed no representative studies should be required for 
individual optimization problems containing different mesh 
sizes and/or elemental Reynolds numbers.

Another opportunity for further research is to apply vol-
ume averaging techniques to other physics. A logical next 
step would be their application to turbulent flow optimiza-
tion as the Reynolds average often used for turbulence mode-
ling shows many similarities to the volume average. Besides 
turbulent optimization thermal and even mechanical optimi-
zation models could be investigated using volume averag-
ing techniques, such that physically consistent models and 
interpretations can be constructed. Furthermore, in this work 
the second Brinkman correction is interpreted as the forces 
in the solid material which support the fluid domain viscous 
stresses at the solid/fluid interface. It could thus be included 
in solid/fluid interaction optimization to more accurately 
couple the fluid domain forces to the solid domain. Another 
field which could benefit from the averaging techniques in 
this paper could be the pseudo-3D topography optimization 
as discussed by Alexandersen (2022). In this work a slowly 
varying distance between two plates is optimized and an 
augmentation of the conservation equation needs to be intro-
duced to attain accurate solutions. We note the possibility of 
approaching this problem using superficially averaged flow 
between the plates such that the continuity equation does not 
need to be changed, as was the case in this work.

Appendix 1: Derivation of the VANS 
equations

To give some more insight into the derivation of the VANS 
equations the volume averaged continuity equations and 
viscous terms will be derived in this appendix. For a more 

detailed and complete derivation of the VANS equations we 
refer the reader to the works of Whitaker (1996), and Ochoa-
Tapia and Whitaker (1995). Firstly, we derive the volume aver-
aged continuity equation by applying the averaging theorem 
from Eq. 3 to pull the divergence operator out of the average:

Using the no-penetration condition ( vvv ⋅ nnn� = 0 ) at the solid/
fluid boundary Γ�� , the boundary integral can be removed:

resulting in the averaged continuity equation.
The derivation of the averaged viscous term 

( ⟨�∇2vvv⟩s� = ⟨�∇ ⋅ ∇vvv⟩s� ) is slightly more complex and will 
result in the first/second Brinkman corrections and a part of 
the Darcy penalization. Firstly, the averaging theorem from 
Eq. 3 is used to pull the divergence operator out of the average:

where we assumed � to be constant and pulled it out of the 
averaging operators. The first term on the right-hand side of 
Eq. 149 can again be simplified using the averaging theorem 
resulting in the first Brinkman correction:

where we used the no-slip and no-penetration conditions at 
soid/fluid boundary Γ�� to assume that vvv = 000 . Subsequently, 
for the second term on the right-hand side of Eq. 149 we 
assume separation of scales as shown in Eq. 5 and assume 
the velocity can be split into its intrinsic volume average 
( ⟨vvv⟩i� ) and deviational part ( ̃vvv ). The divergence of the veloc-
ity within an averaging volume can thus be rewritten as:

Furthermore, by assuming the averaged divergence ∇⟨vvv⟩i� to 
be constant within the averaging domain, it can be removed 
from the boundary integral:

(147)⟨∇ ⋅ vvv⟩s� = ∇ ⋅ ⟨vvv⟩s� +
1

V ∫Γ��

vvv ⋅ nnn�dΓ = 0.

d (148)

(149)⟨�∇ ⋅ ∇vvv⟩s� = �∇ ⋅ ⟨∇vvv⟩s� +
�

V ∫
��

∇vvv ⋅ nnn�dΓ,

d
(150)

(151)∇vvv = ∇
�⟨vvv⟩i𝜙 + ṽvv

�
= ∇⟨vvv⟩i𝜙 + ∇ṽvv.

(152)

𝜇

V ∫
𝜙𝛽

∇vvv ⋅ nnn𝜙dΓ =
𝜇

V ∫
𝜙𝛽

�
∇⟨vvv⟩i𝜙 + ∇ṽvv

�
⋅ nnn𝜙dΓ

=
𝜇

V
∇⟨vvv⟩i𝜙 ⋅ ∫

𝜙𝛽

nnn𝜙dΓ

+
𝜇

V ∫
𝜙𝛽

∇ṽvv ⋅ nnn𝜙dΓ.
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Subsequently, we use the fact that the gradient of the volume 
fraction can be rewritten using Eq. 4 as ∇�� = −

1

V
∫
Γ��

nnn�dΓ , 
and simplify the boundary integral as:

where the superficial volume average is introduced 
( ⟨vvv⟩i� = ⟨vvv⟩s�∕�� ) as this is used in the final VANS equa-
tions. Gathering all terms in Eqs. 150 and  153, the volume 
averaged viscous stresses are found as:

where the first term is the first Brinkman correction, the 
second term is the second Brinkman correction and the third 
term (in combination with a term containing devotional 
pressures) will be simplified as the Darcy penalization.

Appendix 2: Comparison of maximum 
penalization values

In literature, different interpolation functions for Darcy 
interpolation −K(�) ⋅ vvv and different definitions for a 
maximum penalization K  can be found. Similar to the 
maximum penalization for Ree > 1 in this work, Reynolds 
dependent penalization values have been used. However, 
these different forms of penalization are often argued from 
non-dimensional Navier–Stokes equations and remain 
similar to the commonly used maximum penalization by 
Olesen et al. (2006):

where Da ≪ 1 is the Darcy number used to scale the penali-
zation, and which is based on the Navier–Stokes Equations:

We examine the maximum penalization by Alexandersen 
et al. (2013):

where Da ≪ 1 and the maximum penalization by Kondoh 
et al. (2012):

(153)

𝜇

V
∇⟨vvv⟩i𝜙 ⋅ ∫

𝜙𝛽

nnn𝜙dΓ +
𝜇

V ∫
𝜙𝛽

∇ṽvv ⋅ nnn𝜙dΓ

= −𝜇∇⟨vvv⟩i𝜙 ⋅ ∇𝛼𝜙 +
𝜇

V ∫
𝜙𝛽

∇ṽvv ⋅ nnn𝜙dΓ

= −𝜇∇𝛼𝜙 ⋅
⟨vvv⟩s𝜙
𝛼𝜙

+
𝜇

V ∫
𝜙𝛽

∇ṽvv ⋅ nnn𝜙,

(154)

⟨𝜇∇ ⋅ ∇vvv⟩s𝜙 = 𝜇∇ ⋅ ∇⟨vvv⟩s𝜙 − 𝜇∇𝛼𝜙 ⋅
⟨vvv⟩s𝜙
𝛼𝜙

+
𝜇

V ∫
𝜙𝛽

∇ṽvv ⋅ nnn𝜙,

(155)K =
𝜇

L2Da
≫

𝜇

L2
,

(156)�vvv ⋅ ∇vvv − �∇(∇vvv + ∇vvv⊺) + ∇p + KA(�) ⋅ vvv = sss.

(157)KA =
1

ReDa
≫

1

Re
,

where 𝜒 ≫ 1 . Both penalizations in Eqs. 157 and 158 are 
based on the non-dimensional Navier–Stokes equations:

where:

are the non-dimensional velocity, pressure, coordinate vector 
and gradient operator respectively, based on characteristic 
length L and velocity U. We may however rewrite the non-
dimensional Navier–Stokes equation into a form similar to 
Eq. 156:

where �∗ ≡ 1 and �∗ ≡ 1∕Re can be regarded as a non-
dimensional density and viscosity respectively and the prob-
lem has characteristic length and velocity L∗ ≡ 1 and U∗ ≡ 1 
respectively. Subsequently, we rewrite the penalization by 
Alexandersen et al. (2013) as:

since 1∕L∗2 = 1 and we note that this form is the same as 
the one in Eq. 155, which is a logical consequence of the 
fact that Alexandersen et al. (2013) argue their penalization 
from the dimensional Navier–Stokes equations. Moreover, 
the penalization by Kondoh et al. (2012) can be rewritten 
using the formulation in Eq. 161 as:

For high Reynolds numbers 𝜇∗ = 1∕Re ≪ 1 and thus 
KK ≈ 𝜒(𝜌∗U∗)∕L∗ ≫ (𝜌∗U∗)∕L∗ , which shows similarities 
to our penalization for Ree > 1 as defined in Eq. 110:

However, Kh differs significantly from KK in the fact that 
it scales with h instead of L∗ . For low Reynolds numbers 

(158)KK =
(
1 +

1

Re

)
𝜒 ≫

(
1 +

1

Re

)

(159)ṽvv ⋅ ∇̃ṽvv −
1

Re
∇̃
(
∇̃ṽvv + ∇̃ṽvv⊺

)
− ∇̃p̃ + K(𝛼) ⋅ ṽvv = sss,

(160)

ṽvv =
vvv

U
,

p̃ =
p

𝜌U2
,

x̃xx =
xxx

L
,

∇̃ = L∇,

(161)𝜌∗ṽvv ⋅ ∇̃ṽvv − 𝜇∗∇̃
(
∇̃ṽvv + ∇̃ṽvv⊺

)
− ∇̃p̃ + K(𝛼) ⋅ ṽvv = sss,

(162)KA =
1

ReDa
=

𝜇∗

Da
≫ 𝜇∗ =

𝜇∗

L∗2
,

(163)
KK =

(
1 +

1

Re

)
𝜒 =

(
𝜌∗U∗

L∗
+

𝜇∗

L∗2

)
𝜒

≫

(
𝜌∗U∗

L∗
+

𝜇∗

L∗2

)
.

(164)Kh =
10q𝜌 ∣ vvvf ∣

h𝛼
≫

𝜌 ∣ vvvf ∣

h
.
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𝜇∗ = 1∕Re ≫ 1 and thus KK ≈ 𝜒𝜇∗∕L∗2 ≫ 𝜇∗∕L∗2 , and we 
again retrieve a similar maximum penalization as in Eqs. 155 
and 162

Appendix 3: Finite difference sensitivity 
verification

To investigate the validity of the adjoint sensitivity computa-
tion as presented in Sect. 5 a Finite Difference (FD) sensitivity 
verification is performed on the problem in Fig. 30 using the 
parameters in Table 16. Two cases are examined, one where 
the porous “solid” domain consists of volume fraction � = 0.1 
and one where it consists of � = 0.5 . Sensitivities are thus 
verified for converged designs containing solid domains of 
volume fraction � = 0.1 and for intermediate designs contain-
ing gray areas of volume fraction � = 0.5 . Furthermore, the 
(elemental) Reynolds number can be computed as:

and we expect both viscous and inertial effects to be relevant 
for the sensitivity computation.

The adjoint and FD sensitivities are compared using the 
objective of minimal pressure drop:

(165)
Re =

�uL

�
= 10,

Ree =
�uh

�
= 1,

where Γin is the flow inlet boundary and Γout is the pressure 
outlet in Fig. 30. To verify the adjoint sensitivities complex 
step finite difference (CSFD) sensitivities (Martins et al. 
2003) are computed. For the CSFD analysis the design varia-
ble for which the sensitivity is computed ( sk ) is perturbed as:

where s̃k is the perturbed design variable, e is an offset as 
found in Table 16 and i2 = −1 the imaginary number. Con-
sequently, using the perturbed design variable the objective 
is computed as:

and if the offset is small enough ( e ≪ 1 ) the CSFD sensitiv-
ity can be computed as:

where the FD sensitivity is thus accurate to the order O
(
e2
)
 

and we approximate 𝜕f∕𝜕sk ≈ 𝜕f̃∕𝜕sk . Using the problem 
shown in Fig. 30, the adjoint and CSFD sensitivities are 
computed for all elements at x = L + h∕2 such that sensitivi-
ties in the porous wall and in the fluid domain are computed, 
resulting in the sensitivities in Fig. 31a and b. Moreover, 
relative errors in sensitivity are computed as:

where �f∕�sk is the adjoint sensitivity and the errors can be 
found in Fig. 31c and d. Visually the sensitivities in Fig. 31a 
and b are the same, but a small relative error of magnitude 
10−3 can be found in Fig. 31c and d. The small error is 
caused by the numerical accuracy of the solution procedure 
as the velocity and pressure fields are updated until the rela-
tive change in fields is lower than 10−4 . Lowering this value 
also lowers the error in sensitivity.

(166)f = ∫Γin

pdΓ − ∫Γout

pdΓ,

(167)s̃k = sk + e ⋅ i,

(168)f̃ = fRe + fIm ⋅ i,

(169)
𝜕f̃

𝜕sk
=

Im(f̃ )

e
+O

(
e2
)
=

fIm

e
+O

(
e2
)
,

(170)ef =

𝜕f̃

𝜕sk
−

𝜕f

𝜕sk

|||
𝜕f̃

𝜕sk

|||
,

Γw

L

u

8L

2LL

0.5L

2∆x

po

x

y

Γin Γout

Fig. 30  A 2D channel with parabolic inflow applied at the left inlet 
Γin and constant pressure applied at the right outlet Γout . At x = L two 
small porous solid walls of thickness 2h ( Δx = Δy = h ) and volume 
fraction � are inserted to inhibit flow. Sensitivity values are computed 
in the wall elements to the right of Γw at x = L + h∕2

Table 16  The material and problem parameters for the flow problem in Fig. 30, when the adjoint sensitivity analysis is compared to a Finite Dif-
ference sensitivity analysis

� � u p
o

L h q � e

10−1 1 1 1 1 0.1 1 0.1, 0.5 10−5

N s/m2 kg/m3 m/s N/m2 m m – – –
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Appendix 4: Flow leakage and the effect 
of the second Brinkman correction

To investigate flow leakage and the effect of the second 
Brinkman correction a simple channel of height L = 2r as 
in Fig. 32 is investigated. On the inlet and outlet respec-
tively velocity vvvin = [uin, 0]

⊺ and relative pressure pout are 
prescribed. A porous “solid” wall of two elements thick is 
inserted at y = r and y = −r . Close to the inlet and outlet 
no-slip and no penetration conditions are prescribed on 
the wall to ensure a correct application of the boundary 
conditions. Some spurious flow through the porous walls 
is expected as we prescribe a constant relative pressure 
of −10 ⋅ pout on the upper and lower boundaries and leave 
them open. Consequently, flow should develop into a para-
bolic profile as:

where the maximum flow velocity can be computed from 
continuity as umax = 6uin∕4 . At x = 5L reference solution 
ur(y) is used to compute flow error:

(171)ur(y) =

(
1 −

y2

r2

)
umax,

where index i is related to discrete DOF ui at coordinates 
(xi, yi) , and I5L = {i ∣ xi = 5L ∪ r > yi > −r} . Furthermore, 

(172)eu
5L

=

����
∑

i∈I5L
(ur(yi) − ui)

2

∑
i∈I5L

(ur(yi))
2

× 100%,

Fig. 31  The adjoint/CSFD 
sensitivities and resulting errors 
computed using Fig. 30 and the 
parameters from Table 16
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(c) The error in adjoint sensitivity rela-
tive to the CSFD sensitivity computed using
Equation C24 for α = 0.1.

0 0.5 1 1.5 2

0

1

·10−3

y

ef

VANS
NSDP

(d) The error in adjoint sensitivity rela-
tive to the CSFD sensitivity computed using
Equation C24 for α = 0.5.
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Fig. 32  A 2D channel with constant inflow applied at the inlet and 
constant pressure applied at the outlet. Upper and lower walls at 
y = ±r are made of highly impermeable solids (gray) except for small 
solid walls (black) at the inlet/outlet on which no-slip and no penetra-
tion conditions are explicitly prescribed to ensure a correct applica-
tion of the boundary conditions. The upper and lower boundaries are 
open and a constant relative pressure of −10 ⋅ pout is applied on them
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exact pressure drop pR
,x
= −2�umax∕r

2 is computed and used 
to define an error in pressure drop at (x, 0):

where px,x is the pressure drop computed using finite differ-
ence on the discrete solution at (x, 0). Finally, flow leakage 
through porous walls is computed by numerical integration 
of the flow through the wall:

at y = r + Δy . Subsequently, the parameters in Table 17 are 
used and the elemental Reynolds number is estimated as:

where h = Δx = Δy , and we approximate ∣ vvvf ∣≈ uin using 
the inlet velocity. For both the NSDP and VANS equations 
the penalization was thus computed following Table 2 as:

(173)eΔp
x

=

√√√√ (pR
,x
− px,x)

2

pR
,x

2
× 100%,

(174)vl =
1

Luin ∫
6L

0

∣ v ∣ dx × 100%,

(175)Ree =
� ∣ vvvf ∣ h

�
=

�uinh

�
= 0.25 ≤ 1,

In Table 18 the errors computed using this problem setup 
are presented. Major flow leakage is observed for the NSDP 
equations when q = 1 , as illustrated in Fig. 33 and by the 
error vl = 36.6% . However, flow leakage is significantly 
reduced to 3.93% using q = 2 . Furthermore, as expected in 
Eq. 114, flow leakage is reduced by a factor � using the 
VANS equations (from vl = 36.6% to vl = 4.56% ). Another 
notable difference in error between the NSDP and VANS 
equations is the difference in eΔpx  , which has two causes. 
Firstly, in Sect. 3.1.3 it was observed that for flow parallel 
to a wall the interpretation of the solid/fluid interface might 
be off by h/2. The VANS equations correct for this error 
via the second Brinkman correction while the NSDP equa-
tions do not. In the NSDP discretization, the upper and lower 
wall are thus shifted by h/2 and the channel has erroneous 
height L + h = 2r̃ . As r̃ > r increased, we find an errone-
ous decreased pressure drop p,x = −2𝜇umaxr̃

2 . Secondly, 
we notice that more flow leakage vl causes larger errors in 
pressure drop eΔpx  . For larger vl , more flow is lost through 
the lower and upper walls. Consequently, the parabolic flow 
profile in the pipe flattens which reduces viscous forces and 
pressure drop. Furthermore, as flow is moving to the right, 
more flow is lost through the upper and lower wall and the 
parabolic profile flattens even more. Consequently, pres-
sure drop is erroneously reduced when moving to the right 
and we find eΔp

5 L
> e

Δp

4 L
 in all examples. Errors in pressure 

distribution are thus correlated to flow leakage, and for the 
remainder of this work we will mainly focus on flow leakage 
as a representation of precision of the solution.
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Table 17  The material and problem parameters for the flow problem in Fig. 32, where q is used to compute �̄� using the equations from Table 2
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Table 18  The errors in flow profile and pressure drop for the problem 
in Fig. 32 with results in Fig. 33
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VANS, q = 1 4.34 3.53 4.07 4.56

NSDP, q = 1 32.8 36.3 40.2 36.6

NSDP, q = 2 5.64 9.43 9.86 3.93

6420

1.5

0

-1.5

Fig. 33  The flow solution using the NSDP equations for the problem 
in Fig.  32 where q = 1 was used. The illustration shows flow lines 
at the inlet/outlet and top/bottom pressure boundaries, in gray the 
porous walls are shown
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