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Abstract
Event cameras are cameras that capture events
asynchronously based on changes in lighting. They
offer multiple benifits, but pose challenges in com-
puter vision due to their asynchronous nature and
hard to capture ground truth values to compare
against. This paper shows the effects training
of a state of the art unsupervised learning algo-
rithm Taming Contrast Maximisation for predict-
ing optical flow on a new dataset BlinkFlow which
promises improvements in performance of super-
vised algorithms. This paper aims to see if these
improved performances also happen for unsuper-
vised models. Results of this research were in-
conclusive for the effectiveness of training unsu-
pervised models, but it was shown that pretrained
models on DSEC and MVSEC datasets did not per-
form well on this new dataset.

1 Introduction
Event-based cameras are cameras inspired by biology, and
respond to changes in brightness, instead of capturing a
set amount of frames every second[2]. Whenever a pixels
brightness threshold is crossed it signals either a positive
or negative change in brightness, and its location [3]. Pixel
brightness usually works on a logarithmic scale [2] and event
based cameras have multiple advantages compared to regular
cameras, namely lower latency, high event rate compared
to frame rate, and high dynamic range. [17]. However, the
different representation of events compared to frames means
that event-based cameras are not compatible with classical
frame based computer vision algorithms.[13] This different
representation of vision compared to regular cameras mean
that regular computer vision algorithms that compare frames
do not work on this data. Multiple computer vision problems
are also problems for event cameras, this paper focuses
specifically on optical flow estimation, the estimation of
motion in a scene.

1.1 Prior Work
There are multiple method to estimate optical flow for event
based cameras, and they can be grouped in different ways
[3][5][13]. There are model based methods that use an algo-
rithm to calculate optical flow, like [3] or there are machine
learning models. This paper focuses on the machine learning
models and separates the models into supervised and unsuper-
vised methods. Supervised methods learn on a dataset with
ground truth. Unsupervised methods do not rely on ground
truth datasets. Recent research has focused more on unsuper-
vised methods because of a lack of ground truth datasets for
supervised methods [13].

Generalisability
A well known problem for these machine learning models is
that models trained on one data set sometimes do not carry
over to different data sets. This is called generalisability.
On average unsupervised methods generalise better than

supervised methods [15]. However, in the literature, quite
little attention is drawn to generalisability of models. In a
survey of deep learning methods [17] we find a table that
shows that almost all methods evaluated are also trained on
at least some part of the same dataset. In fact, the supervised
methods more commonly are trained on other datasets than
MVSEC. This draws into question the claim by [15] that
unsupervised methods generalise better.
However, a new ground truth dataset BlinkFlow has recently
been released claiming improvement for the accuracy of
deep learning methods [8]. To support this claim the authors
only train three different supervised models and show that
the performance of these models improves by over 80%.

Contrast Maximisation
Contrast Maximisation is a method based model to estimates
optical flow [3]. It works by splitting videos into small parts
in which it assumes motion to be linear. In every split, it looks
to flow all events back to a single time frame tref according
to equation 1.

x′
k

.
= W(xk, tk;θ)

.
= xk − (tk − tref)θ (1)

In this equation θ is the proposed flow. This flow is chosen by
taking several possible proposed flows and creating an image
of warped events (IWE) from the events in split according to
equation 2.
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We then calculate the contrast of these different IWE’s with
equation 3. The higher this is the better, since it means a lot
of events can be explained by a movement, so most likely this
is a movement that is happening in the scene.
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.
=
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A visual explanation of this can be seen in figure 1. Where
on the left we can see the contrast as calculated with equation
(3) for different proposed flows. And on the right we can see
the IWE’s created by different proposed flows θ made with
equation 2.

Research question
The research question that this paper aims to answer is
”What is the accuracy in terms of AEE, RSAT and FWL of
a the unsupervised model Taming Contrast Maximisation
trained on BlinkFlow on its accuracy in terms of AEE, RSAT
and FWL on the DSEC dataset compared to the Taming
Contrast Maximisation that is trained on the DSEC dataset.”.
This research will contribute two parts to the current un-
derstanding of event camera optical flow. The first part is
the generalisability of the Taming Contrast Maximisation
algorithm. Since the paper in which this is introduced
only uses a single DSEC trained model and compares it
only to MVSEC a simpler dataset, we do not know the
overall generalisability of the Taming Contrast Maximisation
algorithm. The second part is that the overall knowledge



(a) Contrast f as a function of proposed flow θ.

(b) Warped
events from
proposed flow
θ

Figure 1: Optical flow prediction from contrast maximisation. The
predicted flow is the one which maximises the contrast as in fig 1a
to produce image of warped events as seen in fig 1b. From: [3]

about the quality and importance of BlinkFlow as a dataset
will be further developed. If it turns out that BlinkFlow
also improves unsupervised algorithms like Taming Contrast
Maximisation it is important to do more research into it. If
it turns out BlinkFlow does not improve the performance
of Taming Contrast Maximisation it might not improve
unsupervised algorithm performance, which would make it
less important.

2 Methodology
The following chapter outlines the methodology and goal of
this research. This research uses the code created in Taming
Contrast Maximisation [10] and described below and uses
it to train a new model on the BlinkFlow dataset. This
model will then be evaluated against the DSEC and MVSEC
datasets. The results of this model can then be compared to
the pre-trained model on DSEC and on MVSEC.

Taming Contrast Maximisation
This section outlines the workings of the Taming Contrast
Maximisation algorithm. Figure 2 represents the entire al-
gorithm. Below parts of the algorithm will be described in
more detail.

Input representation
Event cameras output events, these are given as a thruple of
(coord: x, y, timestamp: ti, and polarity: +, -). Every time
interval all events are collected and seperated into two chan-
nels positive and negative. This leaves us with two maps of
all pixels and the events which have taken place there dur-
ing the time interval. These two maps then are input into our
neural network and the neural network estimates the flow and
creates an IWE with equation 2.

Figure 2: Outline of the Taming Contrast Maximisation algorithm.
From: [10]

Loss function
To evaluate how well an IWE explains the events that have
taken place in the current time frame we use a loss function.
For every pixel in the IWE, temporal loss is calculated with
equation 4 for both positive and negative polarity. The tem-
poral loss is scaled by the time difference between the start
of this time interval and the event time. This temporal loss
only takes into account events which are sufficiently close to
be considered caused by this optical flow with equation 5.
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∑
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j κ(x− xj)κ(y − yj) + ϵ
(4)

κ(a) = max(0, 1− |a|) (5)
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t̄i(tref , ti) = 1− | tref − ti |
R

, ti ∈ [0, R] (10)

Total loss for this time interval is then calculated with equa-
tion 7 which goes over every pixel in the IWE, squares the
temporal loss for both positive and negative polarity and then
normalises by the amount of events that were mapped to this
particular pixel.



Figure 3: Comparison of iterative and linear warping. Linear warp-
ing would not accurately describe the path from t0 to t1, but would
assume linear movement, compared to iterative warping which
tracks the movement better. From: [10]

Figure 4: Splitting of event windowns with R=20 and S=3. The
20 windows are first fully evaluated in red and then split in half 2
more times to calculate the blue and green subwindows because of
S. From: [10]

Iterative warping
A limitation of contrast maximisation is that the optical flow
predictions are always linear. This is not always represen-
tative of actual movements. The Taming Contrast Maximi-
sation algorithm deals with this by iterative warping. This
means we apply contrast maximisation over multiple differ-
ent time frames and combine their outcomes. This means we
get a more accurate view of the optical flow as represented in
figure 3. Iterative warping accuracy is decided by adjusting
two hyperparameters, namely R and S. Parameter R decides
how many time intervals are chained in a row when calcu-
lating optical flow. S decides how far we subdivide the time
intervals for intermediate optical flow. R gets divided into 2S

pieces at the smallest. In figure 4 we can see the subdivisions
for R=20 and S=3, and in equation 9 we can see that all larger
subdivisions are still taken into account. According to [10]
S is added to make the model more robust and reduce its de-
pendency on hyper parameter tuning. Because with a higher
S lower subdivisions are still taken into account, you are less
dependant on getting your R exactly right.

Hyper parameters
Hyper parameters are parameters that are set by us before
training a model. The three hyper parameters that are espe-
cially important in this are the time interval over which we
collect events, R, and S. They decide for a large part how well
our model performs as seen in table 1. According to [10] the
best settings for hyper parameters are mostly dependant on
the dataset on which we evaluate. We can slightly lower this
dependency by increasing S, but at a currently unknown cost
in terms of computing. As seen in table 1, R=5, S=4 is the

EPE↓ %3PE↓ FWL↑ RSAT↓
dt = 0.01s, R = 2, S = 1 9.66 86.44 1.91 1.07
dt = 0.01s, R = 5, S = 1 7.40 50.62 1.39 0.96
dt = 0.01s, R = 10, S = 1 4.52 24.08 1.51 0.92
dt = 0.01s, R = 10, S = 4 16.63 73.13 1.59 1.02
dt = 0.02s, R = 5, S = 1 8.52 35.04 1.36 1.03
dt = 0.02s, R = 5, S = 4 2.73 23.73 1.43 0.91

Table 1: Table comparing hyper parameters, best in bold, runner
up is underlined. ↓ means lower is better, ↑ means higher is better.
From: [10]

Figure 5: Neural network of Taming Contrast Maximisation. From:
[10]

best performing model, however, the paper goes on to use the
R=10, S=1 model. Which although not stated we hypothesise
to be because of the increased computing cost of running the
model with a large S.

Network design
The neural network design of Taming Contrast Maximisation
is based on a recurrent version of EV-FlowNet that was pro-
posed by Gehrig et al. in [5] and is shown in figure 5. It
consists of four encoders as described in [1], then it is fol-
lowed by two residual blocks as described in [6] and then it
is followed by four decoders. Lastly, the P blocks in the fig-
ure are used to produce estimates at lower time scales, so for
higher values for S.

3 Experimental setup
Datasets
This paper uses three datasets, namely MVSEC, DSEC and
BlinkFlow. These three sections are described below.

MVSEC
MVSEC or Multi Vehicle Stereo Event Camera dataset is a
dataset from 2018 that consists of multiple videos of a set of
stereo DAVIS event cameras mounted on different vehicles
and in different lighting conditions [18]. They consists of
videos from a car, motorcycle, and drone. They have videos
in indoor and outdoor, day and night conditions. Apart from
the events, the dataset also supplies grayscale images, intertial
measurement and a second event camera’s events for depth
estimation. The dataset has relatively little motion compared
to DSEC, with 80% of pixel displacements magnitude smaller
then 4 pixels, which is only 18% of DSECs pixel displace-
ment magnitude of 22 pixels [5].



Figure 6: A sample picture of MVSEC video Outdoor Driving Day.
From: [12]

DSEC
DSEC is a dataset from 2021 designed for autonomous driv-
ing vehicles and therefore consists of only driving scenarios.
[4]. Apart from the event cameras the dataset also supplies
RGB images of the driving scenes, as well as GPS and in-
ertial measurement. DSEC has a lot more motion at a pixel
displacement magnitude of 22. [5].

Figure 7: A sample picture of DSEC video thun 00 a.

BlinkFlow
BlinkFlow is a dataset that is completely generated. It con-
sists of videos of different objects drawn from a pool of ob-
ject moving thru a scene according to some predefined rules
[8], an example of what this might look like is seen in fig-
ure 8. BlinkFlow promises better generalisability then DSEC
and MVSEC [8]. However, the paper only shows this on 3
methods and all of them are supervised, although the mod-
els did have very significant improvements in performance of
over 84% in EPE [8]. Which leads to the question, how well
does an unsupervised model trained on BlinkFlow perform
on DSEC and MVSEC.

Evaluation metrics
Results will be evaluated with three evaluation metrics.
Firstly average end point error or AEE, where lower is bet-

Figure 8: A sample picture of BlinkFlow video A 300 consisting
of multiple table like objects floating in front of a background of
pictures of buildings

ter. It is the average euclidean distance between where the
flow was predicted versus the ground truth, or the average
EPE. Second is flow warp loss, or FWL, where higher is bet-
ter. FWL is a proxy for accuracy, introduced to help when
there is no ground truth available [14].
The metric works by first compensating for the flow in the
time frame in equation 11 and then normalising compared to
the no flow image with equation 12.

I(E, ϕ) =

(
x′
i

y′i

)
=

(
xi

yi

)
+ (tref − ti)

(
u(xi, yi)

v(xi, yi)

)
(11)

FWL =
σ2I(E, ϕ)

σ2I(E, 0)
(12)

The metric RSAT or ratio of squared average timestamps. In
this we compare the contrast after forward propagation of the
flow and divide this by the image with no flow propagation.
We expect contrast to go down after forward flow. So lower
is better in this case.

RSAT =
Lcontrast(t

fw
ref | u)

Lcontrast(t
fw
ref | 0)

(13)

4 Results
4.1 Evaluation on BlinkFlow
In table 2 the quantitative results of the evaluation on the
BlinkFlow dataset is shown. The training settings are shown
in table 3. As seen the amount of epochs differ between the
different videos. This is because the amount of time that
could be used for training and evaluation was limited. The
longest training run was about 14 hours for R=10 S=1, the
shortest was around 6 hours for R=2 S=1. The amount of
epochs was at a maximum 50, but also only 1 or 2 at the other
models. This is compared to the 174 that the Taming Con-
trast paper used to train their best DSEC model. The learning
rate of all methods was 0.00001. In figure 9 we can see the
best performing of our own trained models R=2 S=1. Qual-
itatively the model seems to detect edges very well. Filling



in larger figures with the correct flow goes wrong most often,
this also goes for the background which sometimes does not
have that much texture, in which case the model has a hard
time determining the flow. The DSEC model had more trou-
ble with finding the edges of objects, but was in general much
better at predicting the background flow. As seen in figure 9b
the DSEC model often applies the flow not only exactly to
the object moving in front, but also in varying degrees to the
background.

4.2 Evaluation on DSEC
Quantitative results are shown in table 4, the DSEC and
MVSEC models outperform our trained models in most as-
pects. In terms of AEE our models have around 200%-300%
higher average endpoint error then DSEC and MVSEC. In-
terestingly the R=2 S=1 model has the best FWL by around
35%. Qualitatively there is a large difference between the
flow estimation between our models and the DSEC and
MVSEC models which look quite similar. Our models have
sharper edges and a lot of space where very little flow is pre-
dicted. The DSEC model predicts flow almost everywhere,
but does not have sharp edges. All our trained models ex-
cept R=2 S=1 predicted almost all flow in exactly the same
direction for every part of the screen. Although not all mod-
els predicted the same direction. R=10 S=1 predicted mostly
red and orange flow direction top-left as seen in figure 10b,
but dt=0.02 R=5 S=1 predicted mostly pink flow, bottom-left
flow. Two of our models have RSAT and FWL around 1,
which means their flow prediction did not improve contrast
compared to a predicted flow of 0.

5 Responsible Research
This section outlines the ethical aspects of this research as
well as a reflection on the reproducability of this research and
this field of research in general. In our opinion, the field of
event camera optical flow has an issue of not being nearly
reproducable enough. A lot of papers get published with no
code, for example [7] [11] [16] [19] . Although the algo-
rithms are usually explained quite well in the papers itself.
The amount of work required for a researcher to actually ver-
ify the results by writing an entire project based on the paper
are infeasible. There are also papers that claim certain results
for models without supplying the supposed model [9], and
even the Taming Contrast Maximisation paper only supplies
two pretrained models, whilst they have trained and show re-
sults for a lot more models like in table 1. This means there is
no way to verify the claims without training the model your-
self which is very expensive, both in terms of time for the
researcher as well as in energy consumption as models could
take multiple days of training on power heavy setups.
To combat these issues, this paper has published both the code
used, as well as all models that were used to generate the re-
sults of this paper. Which models belong to which results can
be found in appendix table 5.

6 Discussion
The training time for the models that we trained was too low
to draw any definitive conclusions about the performance of

Taming Contrast Maximisation as a whole. This was also vis-
ible in figure 10b where all flow pointed to one side. This was
first thought to be a result of overfitting, leading us to up the
amount of videos in the subset of the data that was used for
training. However, this made the problem worse as it lead to
a decrease in epochs trained.
This lead to us training our best performing model R=10 S=1
on only 10 videos in BlinkFlow, for overall 10 seconds of
video. This is only a very small part of the around 3300
videos in the BlinkFlow training dataset. All 10 videos were
also of subsection A of blinkflow, the subsections of Blink-
Flow did not seem to have any visible distinction between
them, so this might not matter.
Another shortcoming of this method was the lack of equal
settings throughout the training. The amount of video’s ev-
ery model was trained on was based on the runtime. A fairer
comparison might be to compare models trained on an equal
amount of video footage, however, this was not possible due
to runtime constrictions.
A question left unresolved is the question about the effect of
S on runtime. S had compatibility issues with our torch and
therefore cuda version. Which means we could not test the
effect of S on runtime.
Lastly more evaluation metrics could be added. As the FWL
metric seemed to not predict accuracy very well, it would be
good to add more metrics for a more rigorous evaluation.

7 Conclusions and Future Work
The main research question of this paper was: ”What is
the accuracy in terms of AEE, RSAT and FWL of a the
unsupervised model Taming Contrast Maximisation trained
on BlinkFlow on its accuracy in terms of AEE, RSAT and
FWL on the DSEC dataset compared to the Taming Contrast
Maximisation that is trained on the DSEC dataset.”. Overall
the DSEC trained model performs better than our trained
models. This is most likely due to the fact that DSEC has
had a lot more training than our own models. The amount
of training of our models have had is too low to make any
meaningful conclusions about the generalisability of the
Taming Contrast Maximisation method when trained on
BlinkFlow. Our best performing model performing model
in terms of AEE on BlinkFlow R=10 S=1 does not have a
significantly better AEE than our other models which were
trained less. When looking at the data more qualitatively,
the BlinkFlow trained models do seem to have some upsides
compared to the DSEC and MVSEC models, in that it is a lot
better at edge detection than DSEC trained models.
When looking at the generalisability of DSEC to the Blink-
Flow dataset we see a significant performance drop in AEE
of about 400%. This shows that DSEC does not generalise
well to BlinkFlow. The largest issues with this seem to
happen around edges of objects. This is not unexpected as
the DSEC dataset does not have a lot of object moving across
our plane of vision. DSEC is a driving dataset and the types
of cross camera movement in BlinkFlow does not happen
often when driving.
Another interesting finding of this research is the unreliability
of FWL as a measure in our results. When evaluating on



AEE↓ FWL↑ RSAT↓ training time per video (s) inference time (s)
dt = 0.01s, R = 2, S = 1 15.05 2.982 1.013 121 306
dt = 0.01s, R = 5, S = 1 16.06 0.997 0.999 485 286
dt = 0.01s, R = 10, S = 1 16.94 1.092 0.996 1504 290
dt = 0.02s, R = 5, S = 1 16.52 4.402 1.152 1293 296
DSEC best model 6.17 2.207 0.753 unknown 290
MVSEC best model 6.93 2.04 0.769 unknown 281

Table 2: Table comparing hyper parameters of models trained on BlinkFlow subsection A video’s 0-10, evaluated on subsection A video’s
300-309, best in bold, runner up is underlined. ↓ means lower is better, ↑ means higher is better. Runtime training calculated on HP Zbook
with Quadro P2000. Runtime evaluation calculated on PC with GTX 1060TI

(a) BlinkFlow A 309 evaluated by model R=2 S=1

(b) BlinkFlow A 309 evaluated by DSEC

Figure 9: BlinkFlow A 309 evaluation. Left to right: ground truth, predicted flow, AEE

epochs trained videos per epoch
dt = 0.01s, R = 2, S = 1 50 10
dt = 0.01s, R = 5, S = 1 1 20
dt = 0.01s, R = 10, S = 1 1 80
dt = 0.02s, R = 5, S = 1 2 10

Table 3: Amount training in epochs and video’s per epoch per
model.

Blinkflow the FWL of two of our models are the highest
of all, but when looking at AEE, which takes into account
ground truth data, they do not perform nearly as well as the
MVSEC and DSEC model. This repeats again on the DSEC
evaluation where the same two models have the highest FWL
with a much lower AEE accuracy. This indicates that FWL
is not a good predictor of AEE, although it does claim to be
a proxy for accuracy [14]. Though it must be said that the
sample size of this result is rather small and not enough to

AEE↓ FWL↑ RSAT↓
dt = 0.01s, R = 2, S = 1 9.31 1.962 1.102
dt = 0.01s, R = 5, S = 1 9.08 0.998 0.999
dt = 0.01s, R = 10, S = 1 9.94 1.022 0.989
dt = 0.02s, R = 5, S = 1 9.629 2.547 1.159
DSEC best model 1.758 1.188 0.870
MVSEC best model 1.468 1.280 0.851

Table 4: Table comparing models trained on BlinkFlow subsection
A video’s 0-10, evaluated on subsection DSEC thun 00 a, best in
bold, runner up is underlined. ↓ means lower is better, ↑ means
higher is better.

make any definitive claims about the validity of FWL as a
metric.

Future work could try to train models on a larger part
of the BlinkFlow dataset, and for more epochs to try and



(a) Optical flow prediction trained on dt=0.01, R=2, S=1

(b) Optical flow prediction trained on dt=0.01, R=10, S=1

(c) Optical flow prediction trained on DSEC

Figure 10: DSEC thun 00 a evaluation. Left to right: ground truth, predicted flow, AEE

answer the question posed in this paper. Another question
to research could be to see how well FWL can be used to
predict the accuracy of different models, both supervised and
unsupervised.



Appendix

Setting Model id
dt = 0.01s, R = 2, S = 1 b63b1c2c4f2b44748bf1b5819a78046b
dt = 0.01s, R = 5, S = 1 9be02248631f4297995f852ed8012b63
dt = 0.01s, R = 10, S = 1 5acdcb9f357f40258fd7a71c6380b457
dt = 0.01s, R = 10, S = 4 unavailable
dt = 0.02s, R = 5, S = 1 6a5bf0154a4440bb87da96a2d43c79a1
dt = 0.02s, R = 5, S = 4 unavailable

Table 5: Model and corresponding ID to run
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