
Implementing beam shape variations in a
deep learning based proton dose

calculation algorithm

Nathan Geerts

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on the 23d of August 2022

Student number: 5015413
Project duration: April 20, 2022 - August 1, 2022

Thesis committee:
Dr. Z. Perkó,

Mrs. Dr. ir. M.C. Goorden,
O. Pastor-Serrano

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Bachelor final project (BEP)
Bachelor Applied Physics
Delft University of Technology

Delft, Netherlands August 22, 2022

Supervisor: Z. Perkó
Supervisor: O. Pastor-Serrano

http://repository.tudelft.nl/.

Abstract

In this report, a transformer based deep learning proton dose calculation algorithm called Dose Transformer
Algorithm (DoTA) is described. This model learns to predict proton dose distributions by being trained with
Monte Carlo generated data. Monte Carlo is the golden standard of proton dose calculation because it is very
accurate, but it has relatively long computation times. In current proton therapy treatment programmes,
Monte Carlo algorithms are the most commonly used models to perform dose calculation. The goal of the
DoTA model is to predict proton dose distributions with Monte Carlo accuracy in the fraction of the compu-
tation time of Monte Carlo algorithms to speed up the dose calculation process in proton therapy treatment.
The DoTA model can take patient geometry, random proton beam energy and random proton beam shape (2D
Gaussian with different major and minor axes) as input. The addition of the random proton beam shape input
is discussed in this report, together with a detailed explanation of the DoTA model. The DoTA model is trained
with data from 9 lung cancer patients and 9 head & neck cancer patients. Being used on an Intel(R) Core(TM)
i7-8565U CPU, the DoTA model managed to produce results with a gamma pass rate of 98.45 § 2.60 % with
an average computation time of 0.3 seconds. The gamma pass rate determines how similar the DoTA pre-
dicted dose is to the reference (Monte Carlo generated) dose. Compared to the average computation time of
the Monte Carlo algorithm that was used to generate the training data, which is 20 seconds on the same CPU,
we can conclude that the DoTA model has the potential to greatly improve dose calculation times in proton
therapy treatment, especially when used on a system with greater processing power. Because the DoTA model
is able to deliver accurate results in a small amount of time, it has the potential to be used for real-time dose
calculation. Real-time dose calculation could account for small changes in patient geometry during treatment,
which increases the accuracy of the treatment and minimizes side effects. The DoTA model can also be used
for other radiotherapy types like phonon therapy and electron therapy (in that case it needs to be trained with
different data).

ii

Table of contents

Abstract ii

1 Introduction 1
1.1 Radiotherapy . 1

1.1.1 Radiotherapy in general . 1
1.1.2 Bene�ts of proton therapy . 1

1.2 Dose calculation . 3
1.2.1 Importance of improving dose calculation speed . 3
1.2.2 Different dose calculation algorithms . 3

1.3 Structure of the report . 3

2 Theoretical Background 4
2.1 Neural networks and deep learning . 4

2.1.1 Forward propagation . 4
2.1.2 Activation functions . 4
2.1.3 Backpropagation . 5

2.2 Monte Carlo Algorithms . 5
2.3 Theory for the Dose Transformer Algorithm (DoTA) . 6

2.3.1 Convolution . 6
2.3.2 Pooling . 6
2.3.3 Normalization . 6
2.3.4 Self-attention . 8
2.3.5 Dropout . 9

2.4 Gamma analysis . 9

3 Experimental Method 11
3.1 Monte Carlo generated dataset . 11
3.2 Description of the DoTA model . 11

3.2.1 Convolutional encoder . 12
3.2.2 Transformer encoder . 12
3.2.3 Convolutional decoder . 12

3.3 Training the DoTA model . 13
3.4 Hyperparameter optimization . 13
3.5 Testing the DoTA model . 13

4 Results 14
4.1 Hyperparameter optimization . 14
4.2 Gamma evaluation of the DoTA model . 14
4.3 Analysing the worst performing test blocks . 14

4.3.1 Worst performing test block . 14
4.3.2 Second and third worst performing test blocks . 15

4.4 Plots for a block with mean gamma pass rate . 15

5 Discussion 24
5.1 Overall DoTA model discussion . 24
5.2 Model use case . 24
5.3 Limitations . 24

iii

5.4 Future work . 25

6 Conclusion 26

References 27

iv

1
Introduction

1.1. Radiotherapy

1.1.1. Radiotherapy in general

Ever since the discovery of X-rays [27] and Radium in the late 19th century [22], radiotherapy has been used
as a treatment for cancer and up until present day has been one of the most common ways of treating can-
cer. Radiotherapy is a way of treating cancer that uses ionizing radiation to kill cancer cells and thus shrink
a tumor in a patient. There are two main categories of radiotherapy treatments: internal radiotherapy and
external radiotherapy [14][17]. For internal radiotherapy, the ionizing radiation is emitted from a liquid or an
implant inside the body, while for external radiotherapy the ionizing radiation comes from a particle beam
that is emitted by a machine outside of the patient. In this report the focus lies on a speci�c type of external
radiotherapy: proton therapy. Other external radiotherapy types are electron therapy and, the most used type,
photon therapy [19].

1.1.2. Bene�ts of proton therapy

Because electrons can't penetrate a patient much further than the skin, electron therapy can only be used for
skin cancer and cancer cells close to the skin. Photon therapy is the most commonly used external radio-
therapy but the fact that the photon beam passes all the way through the patient causes damage to healthy
tissue and several different side effects. Proton therapy has an advantage on both of the methods previously
mentioned because the proton beam stops somewhere around the tumor site and is very precise. Because of
this, less healthy tissue damage occurs when proton therapy is used compared to when photon therapy is used
[15][18][4].

In Figure 1.1 the difference between the propagation of an X-ray beam through tissue and the propagation
of a proton beam through tissue is showcased. We can see that in the case of this �gure, 12 proton beams are
used to deliver radiation to the tumor. Each proton beam has a sharp energy delivery peak in a small range,
this is what we call the Bragg Peak [16] and what makes proton beams so precise.

1

Figure 1.1: In this �gure the difference between X-ray dose delivery and proton beam dose delivery is showcased by plotting the delivered
dose in percentage relative to the necessary dose against the depth of the beam in a patient. The proton beam dose delivery is made up of
12 Bragg Peaks that make up the Spread-Out Bragg Peak (SOBP) region. It is visible that the proton beam delivers the necessary dosage in
a more accurate manner than the X-ray beam. Image retrieved from [16].

2

1.2. Dose calculation

1.2.1. Importance of improving dose calculation speed

The process of using proton therapy on a patient consists out of several different steps: First consultation,
simulation, treatment planning, treatment delivery and possible follow-up consultations [7]. The focus of this
report is an important part of the treatment planning and treatment delivery: dose calculation. The dose that
needs to be delivered to malignant tissue needs to be calculated very precisely so that surrounding healthy
tissue isn't damaged. During the treatment planning, a dose calculation is performed based on CT scans of the
patient geometry. After the dose calculation, the treatment delivery is provided in daily sessions of around 40
minutes, 5 days a week, for around 5 to 8 weeks on average [5] [28][9]. A new dose calculation can be performed
during the treatment process if something drastically changes in the patient geometry. In modern day proton
therapy delivery, there is no real time dose calculation. In most cases, dose calculation is performed at the
start of the proton therapy treatment with a Monte Carlo algorithm (see section 1.2.2) which is not suitable for
real time dose calculation due to its very long computation time. Real time dose calculation could change the
delivered dose in real time to account for small changes in the patient geometry that are caused by coughing,
breathing, intestinal movements, etc. and thus creates a more precise dose delivery. A more precise dose
delivery means less irradiation of healthy tissue. This is why research is continuously done to �nd solutions
for faster dose calculation.

1.2.2. Different dose calculation algorithms

The current most ideal calculation algorithms are Monte Carlo Algorithms (MCA) and Pencil Beam Algorithms
(PBA). In the MCA, complex mathematical simulations allow the delivered particle dose to be determined with
great accuracy. However, due to these complex simulations, the MCA has a very long computation time and
therefore it is not usable for real time dose calculation. The PBA is an algorithm where the particle beam is
simulated by combining a set of narrow pencil beams. The particle dose is then calculated in a slab geometry
around every pencil beam. The main disadvantage of the PBA is that it has problems adjusting the dose cal-
culation in the presence of heterogeneities lateral to the pencil beams [8][23][24][25]. The calculation per slab
makes the PBA a very fast algorithm but it also makes the PBA lack in accuracy compared to the MCA [11].

The MCA is the golden standard due to its great accuracy, but the downfall of the MCA is the computation
time. The PBA is way faster than the MCA but lacks accuracy. In this report, we will discuss a deep learn-
ing algorithm that produces MCA accuracy with PBA speeds. This algorithm is a Dose Transformer Algorithm
(DoTA) that predicts the particle dose based on patient geometry input, beam energy input and beam shape
input. Previously, this algorithm only had the geometry input and beam energy input, with the beam shape
being a constant 2D Gaussian. The main task of this Bachelor Project was to implement beam shape as an
input token for the deep learning algorithm so that the beam shape can be varied.

1.3. Structure of the report

In chapter 2, the theory behind the MCA generated data will be described and the theory needed to under-
stand the DoTA model together with some general info about neural networks will be given.

In chapter 3, a description of how the MCA data generation will be performed and how the DoTA model will
be utilized to predict proton dose distributions will be given. In this chapter there will also be discussed how
we want to produce results.

In chapter 4, the results will be showcased with some additional discussion.

In chapter 5, a discussion about the DoTA model will be given. This includes: Model use case, limitations
and future work/possible improvements.

Finally, in chapter 6, a conclusion about the project and the results will be drawn.

3

2
Theoretical Background

2.1. Neural networks and deep learning

Later in this chapter, the theory of the model that will be used in this project will be given. First a very basic
explanation of a neural network will be given to create an understanding of deep learning for the reader. The
neural network is an algorithm that is inspired by the human brain. It consists of several layers of so called
neurons which mimic the way real biological neurons signal to one another. A neural network consists of an
input layer, several hidden layers, and an output layer. Each layer consists of arti�cial neurons where every
neuron of a certain layer is connected to all the neurons of the previous and next layer as can be seen in Figure
2.1 [10].

2.1.1. Forward propagation

Every neuron has its own assigned value. Each link between two neurons is called a connection and has a
certain weight value attached to it that determines its "importance". For each neuron in the hidden layers, we
need to determine if it will get activated or not (not activated = value 0) to know if this neuron will pass on its
information or if it won't. To do this, call a random neuron from one of the hidden layers neuron A. For neuron
A, we calculate the sum of the products of the values of the neurons in the previous layer with the weight that
links these neurons to neuron A plus the bias that is attached to neuron A. We can formulate this explanation
for a neuron in layer k into an equation called the feed-forward operation, as can be seen in Equation 2.1.

NX

zÆ1
w zxz,k Å bkÅ1, (2.1)

with N being the amount of neurons in layer k, w z being the weight of the connection between a neuron in
layer k+1 and neuron number z in layer k, xz,k being the assigned value of neuron number z in layer k and bkÅ1

being the bias belonging to the neuron in layer k+1 [10].

Because of Equation 2.1 we can see that the size of the weights play a role in the determination of the acti-
vation of a certain neuron, hence why it was mentioned earlier that the weights determines a connections
"importance". We can also conclude that the data is propagated through the neural network in the direction
of input to output. This is what we call forward propagation.

2.1.2. Activation functions

To determine if a neuron gets activated or not, Equation 2.1 will be passed through what we call an activation
function. There are many different activation functions [2], but the ones we will use in our DoTA model are

4

Figure 2.1: A simple representation of a neural network with an input layer, hidden layers, an output layer. The circles represent the
neurons and the lines between the circles represent connections. Each neuron has its own value and each connection has its own weight.
Image retrieved from [10].

the Recti�ed Linear Unit (ReLU) activation function (Equation 2.2) and the Gaussian Error Linear Unit (GELU)
activation function (Equation 2.3):

ReLU(x) Æmax (0,x), (2.2)

GELU(x) Æx©(x), (2.3)

with ©(x) is the cumulative distribution function of the standard normal distribution.

2.1.3. Backpropagation

We do not know yet how accurate the output of the neural network is. To know this, a neural network needs to
be trained with data that is already correct, we call this the target output. When we train the neural network, we
want to minimize the error function. The error function is a function of the difference between the output of
the neural network and the target output with respect to the weights of the neural network. By a method called
gradient descent, the weights for which the error function is minimized will be determined. The information
about the new weights is transferred backward through the neural network. We call this backpropagation [10].

In this project, the neural network we use will be trained by data that is generated with a MCA, which will
be explained in the next subsection.

2.2. Monte Carlo Algorithms

The Monte Carlo algorithm is the golden standard for proton dose calculation. The algorithm is based on ran-
dom sampling to obtain numerical results. In the case of proton path simulation, probability density functions
are sampled. The probability density functions represent the probabilities of different particle interactions
(absorption, annihilation, change of direction or change of energy). We call these probabilities cross sections.
To accurately simulate the path a certain proton takes (track the proton), the sampling is done one small step
at a time. These steps should be small enough so that the cross sections at the beginning and end of each step
are similar. If the step size is too big, the MCA will give an inaccurate simulation of the real world physics but
as the step size is decreased, the computation time will increase.

5

The use of so called multiple scattering theories make the simulation less complex. These multiple scattering
theories provide probability density functions that contain the net result of multiple single scattering interac-
tions. Sampling these new probability density functions will give you the scattering angle after the multiple
single scattering events while only one sample was taken.

It is assumed that the energy of the tracked proton keeps decreasing continuously and thus is a continuous
process. However, for protons there are also certain events that need to be analysed as a discrete process: nu-
clear interactions, secondary particle production and large angle Coulomb scattering.

In Monte Carlo algorithms, the proton transport simulation is stopped based on a particle energy threshold
or particle range threshold that the user de�nes. These thresholds determine until what amount of energy
and until what distance you want to simulate the proton respectively. The lower the energy threshold and the
higher the particle range threshold, the more accurate the proton transport simulation will be, but the longer
the simulation will take to compute. [20]

2.3. Theory for the Dose Transformer Algorithm (DoTA)

In this section, background theory about the following operations that will be used to build up our DoTA model
will be given: convolution, pooling, normalization, self-attention and dropout.

2.3.1. Convolution

The convolution operation [13] is denoted with an * and is an operation that determines the overlap of 2 (dis-
crete) functions. In our case we will use the convolution operation to reduce the dimensions of 2D input. This
gives us the relation in Equation 2.4

(K ¤ I)(i , j) Æ
MX

mÆ1

NX

nÆ1
I (i ¡ m , j ¡ n)K (m,n), (2.4)

with I being the 2 dimensional input, K being the convolutional �lter (also called kernel) and M and N being
the dimensions of the convolutional �lter K. Figure 2.2 shows what convolution applied to a 2D data set looks
like with M = 2 and N = 2.

2.3.2. Pooling

The pooling operation [13] replaces the output of a certain neuron with a summary of the output of the nearby
neurons. In our DoTA model, we will speci�cally use max pooling. The max pooling operation replaces the
output of a neuron with the maximum output in a rectangular neighbourhood of this neuron. Figure 2.3 shows
the effect of the max pooling operation when the pooling region has a width of 3 neurons.

2.3.3. Normalization

Normalization [29] is an operation that normalizes a set of neighbouring features in the input image by their
mean and variance to reduce model training time. Normalization methods perform Equation 2.5,

x̂i Æ
1

¾i
(xi ¡ ¹ i), (2.5)

where x is the feature computed by a layer, x̂ is the normalized feature, ¾is the standard deviation of a certain
selected set of pixels, ¹ is the mean of this same set of pixels and i is an index. Because we deal with 2D im-
ages,i is a 4D vector (i Æ(i N , i C , i H , i W) that indexes the features in the order (N,C,H,W) where N is the batch
axis, C is the channel axis, H is the spatial height axis and W is the spatial width axis. The batch size indicates
with how many input samples a neural network gets trained at once, the channel number indicates the input
sample number in a batch and the height and width describe the 2D spacial dimensions of the input sample.

6

Figure 2.2: This �gure shows how a 2D M = 2 by N = 2 convolutional kernel reduces the dimensions of a 2D discrete input by multiplying
the values of the convolutional kernel with the values of the input it overlaps with and then summing all the multiplied values. This sum
becomes the new value of one input cell. Image retrieved from [13].

Figure 2.3: The above layer shows the values of the neurons after the pooling stage with a pooling region that has a width of 3 neurons.
This means that for every value of a neuron in the bottom layer, the maximum value of this neuron, the neuron to the left and the neuron
to the right is chosen as the output of the pooling layer, which is demonstrated in the �gure. Image retrieved from [13].

7

Figure 2.4: Figure that showcases that in layer normalization, ¹ and ¾are computed along the (C,H,W) axes where C is the channel axis,
H is the spatial height axis and W is the spatial width axis. Image retrieved from [29].

Figure 2.5: Figure that showcases that in group normalization, ¹ and ¾ are computed along the (H,W) axes and along C
G channels per

group where H is the spatial height axis and W is the spatial width axis. In this �gure there are two groups (G = 2) which each contain 3
channels (C = 6). Image retrieved from [29].

In our DoTA model, we make use of Layer Normalization (LN) and Group Normalization (GN). LN computes
¹ and ¾along the (C,H,W) axes for each feature. This is showcased in Figure 2.4. GN computes ¹ and ¾along
the (H,W) axes and along a group of C

G channels where C is the number of channels and G is the number of
groups. This is showcased in Figure 2.5.

2.3.4. Self-attention

If we have a sequence z 2 RL£ D with L tokens, where tokens are one dimensional vectors with size D(= embed-
ding dimension, see section 3.2.1), the self-attention (SA) operation transforms each i th token zi into a query
vector qi 2 R1£ Dh , a key vector k i 2 R1£ Dh and a value vector v j 2 R1£ Dh , where Dh is the dimensionality of
these vectors. The query vector represents information that is to be gathered from other elements of z, the key
vector contains the type of information that is to be shared to other elements of z and the value vector is used
to transform zi into z' i by applying Equation 2.6.

z' i Æ
LX

j Æ1
w j v j , (2.6)

where the weight w j denotes the similarity between the i th query and the other keys in z and is de�ned as
w j ÆqT

i k j . The self-attention function is now de�ned by equation 2.7:

z' ÆSA(z), (2.7)

where the SA(z) function denotes what happens to the sequence z after self-attention.

In our DoTA model, we will also make use of a variant of the SA operation called multi-head self-attention
(MSA). This variant runs Nh parallel SA operations which focus on different features and inter-dependencies
of the data. If we set the size of qi , k i and v j (Dh) to D, the outputs of the parallel SA operations, called atten-
tion heads, are �rst concatenated and then linearly projected with weights Wh 2 RNh Dh £ D as

MSA(z) Æconcat[SAh (z)]Wh (2.8)

8

Figure 2.6: This �gure showcases the effect of dropout on a neural network. When dropout is applied, random neurons in the neural
network are deactivated. When a neuron is deactivated, it can't pass on its information to the following layer. Image retrieved from [26].

Because our DoTA model trains for proton trajectories, we use the causal variants of these SA and MSA op-
erations. This means that the tokens can only attend to previous tokens and not to future tokens [21].

2.3.5. Dropout

With dropout [26], Equation 2.1 becomes:

NX

zÆ1
w z x̃z,k Å bkÅ1, (2.9)

with
x̃z,k Ær z,k ¤ xz,k , (2.10)

where r z,k is a Bernoulli random variable (0 or 1). Dropout is used to prevent a neural network from over�t-
ting. Over�tting happens when a neural network learns random �uctuations and noise in the training data
as something that it should apply to input data, which makes the output inaccurate [3]. Figure 2.6 showcases
what a network looks like before and after dropout.

2.4. Gamma analysis

Gamma analysis is used to compare calculated dose distributions to a ground truth dose distribution (in our
case this is the Monte Carlo calculated dose distribution). With gamma analysis, the dose of voxels (volume
elements) in the ground truth dose grid gets compared to the dose of neighbouring voxels in the predicted
dose grid by using Equation 2.11:

° (a) Æmin
b

{¡ a,b(±,¢)}, (2.11)

with a being the coordinates of a voxel in the ground truth grid of which its dose will be compared to voxels in
the predicted dose grid with coordinates b, ° (a) being the so called gamma value and ¡ a,b(±,¢) being given by
Equation 2.12:

¡ a,b(±,¢) Æ

s
ja¡ bj2

±2 Å
jya ¡ yb j2

¢ 2 , (2.12)

with ya and yb being the dose at coordinates a and b respectively, ± being the distance-to-agreement and ¢
being the dose difference criterion. The distance-to-agreement is the radius of the sphere around a voxel in

9

which it is compared to neighbouring voxels and the dose difference criterion is the maximum error between
a predicted dose value for a voxel and the reference value for the same voxel for these dose values to be seen as
similar. The dose difference criterion is given asa percentage of the reference dose.

When a voxel has a gamma value ° (a) Ç 1, it passes the gamma analysis. The gamma pass rate is the percent-
age of voxels that have passed the gamma analysis. A gamma pass rate is often followed by the dose difference
criterion and the distance-to-agreement like this: gamma pass rate value in percentage (¢ , ±).

10

3
Experimental Method

3.1. Monte Carlo generated dataset

First the Monte Carlo data generation (Chapter 2.2) that is used to generate the training data for the DoTA
model will be discussed. To generate the data an open-source MATLAB code called matRad [1] is used. MatRad
is an open-source code that covers radiation planning for different types of energy beams (photon,proton,etc...).
For the dose calculation of protons, matRad uses another open-source code called MCsquare [12].

With these codes, we calculate the dose distribution for 20 3D CT scans (10 CT scans of lung cancer patients
and 10 CT scans of head neck (H&N) cancer patients). Because of the diameter of proton beams being about
25 mm and the travel distance of the proton beams in the patient geometry being not more than 300 mm, we
reduce the CT scans to blocks of dimensions Y £ X £ Z = 150 £ 24 £ 24 with a 2 mm isotropic grid resolution.
This means that the blocks cover a volume of 300 £ 48 £ 48 mm 3. The proton beam travels in the Y direction.
We obtain multiple blocks per patient by rotating the CT sampling block in steps of 10 ± and shifting it laterally
in steps of 10 mm. For every block, the dose distribution is calculated for a random beam energy in the range
of 70 to 140 MeV and a random 2D Gaussian beam shape. The random 2D Gaussian beam shape was added
to the data generation during this project. In the previous model, the beam shape was a 2D Gaussian with the
same variance for both dimensions (circle). For the random 2D Gaussians, the variance of both dimensions
are random and are not necessarily the same (ellipses). The random 2D Gaussian beam shape was added to
the MC code by randomly changing the SpotSize1x and SpotSize1y beam parameters in the BDL �le [6] of the
MCsquare code and then calculating a 2D Gaussian beam shape for every block by using the square of Spot-
Size1x and SpotSize1y as the variances of the X and Z dimensions in the 2D Gaussian. The BDL �le is a �le
that has the beam parameters for different beam energies between 70 and 225 MeV in steps of 5 MeV. For every
block, SpotSize1x and SpotSize1y are extracted from the BDL �le for a random beam energy between 70 and
140 MeV. We use the data of 1 patient of the lung cancer patient set and 1 patient of the H&N patient set as test
data and the data of the other 18 patients as training data. This gives us 3276 test blocks and 36288 training
blocks. We will use these training blocks to train our DoTA model.

3.2. Description of the DoTA model

We will �rst describe how the DoTA model calculates the dose distribution from geometry, energy and beam
shape input. In Figure 3.1 the architecture of the DoTA model without the implementation of the beam shape
variable is presented [21]. The DoTA model processes the input 3D L £ H £ W Æ150£ 24£ 24 CT voxel grid
(block) as L 2D slices with dimensions H £ W , with L being the depth (direction of proton beam propagation),
H being the height and W being the width of the block. The user de�ned batch size determines how many
input blocks the DoTA model processes at the same time.

11

Figure 3.1: This �gure showcases the model architecture of the DoTA model before the beam shape was implemented as a token. The
3D CT input is treated as a set of 2D slices which are passed through the convolutional encoder (together with a 2D beam shape slice
in the new DoTA model). The convolutional encoder extracts important information from the 2D input such as tissue boundaries and
material contrasts and saves this into a vector. The beam energy is added as a token at the beginning of the sequence resulting from the
convolutional encoder. The transformer encoder with causal self-attention combines information from all the different elements in the
sequence. The convolutional decoder transforms the output vectors of the transformer encoder into 2D dose slices. Image retrieved from
[21].

3.2.1. Convolutional encoder

As can be seen in Figure 3.1 the convolutional encoder passes all L 2D slices separately through a convolutional
block twice. This convolutional block contains a down-sampling convolution (Chapter 2.3.1), a Group Normal-
ization (Chapter 2.3.3) and a max pooling (Chapter 2.3.2) layer that is followed by ReLU activation (Equation
2.2). This convolutional block extracts important features like tissue boundaries and material contrasts from
the input slices. The output that is produced after the second convolutional block is passed through a �nal
convolution with K f convolutional �lters (kernels), this �attens the output into a vector of embedding dimen-
sion D ÆH 0£ W 0£ K f where H 0 and W 0 are the reduced height and width after the max pooling operations.
The process that was just described is applied to all L 2D slices of the input CT image, so after the convolu-
tional encoder, we are left with L 1-dimensional vectors of size D. We call these vectors tokens. In Figure 3.1
the beam shape wasn't implemented as a variable input yet, but for our DoTA model, there is an extra token
for the beam shape that is created by passing a 24 £ 24 image of the beam shape through the convolutional
encoder. For our model, there are 151 tokens after the convolutional encoder (L + beam shape token)

3.2.2. Transformer encoder

In the causal transformer encoder, a learnable positional embedding r is added to the tokens produced by
the convolutional encoder. The 0 th position embedding r0 is added to a new token that represents the beam
energy and the 1 st position embedding r1 is added to the beam shape token. We now have 152 tokens (L +
beam shape token + beam energy token). The transformer encoder consists of alternating MSA (Equation 2.8)
and Multi-layer Perceptron (MLP) layers with residual connections and Layer Normalization (Chapter 2.3.3) is
applied before every layer. MLP is a two layer feed-forward network with Dropout (Chapter 2.3.5) and GELU
activations (Equation 2.3). Equation 3.1 [21] represents the operations that are carried out by the transformer
encoder on the 152 tokens z:

z' ÆzÅ MSA(LN (z)) Å MLP (LN (zÅ MSA(LN (z))), (3.1)

3.2.3. Convolutional decoder

The convolutional decoder has the same structure as the convolutional encoder except for the convolution
and max pooling layers that are replaced with a convolution transpose layer that increases the dimensions of
the input of the convolutional decoder so that the output of the DoTA model has the same dimensions as the
input of the DoTA model [21].

12

3.3. Training the DoTA model

The DoTA model will be trained using TensorFlow with 8 samples per batch (batch size = 8), a scheduled
learning rate starting at 10 ¡ 3 that is divided by 2 after every 4 epochs. We train for 30 epochs and save the
weights that minimize the error function (see Chapter 2.1.3). The number of epochs determines the number
of complete passes through the training dataset. The learning rate determines how much the weights of the
model change after every epoch (how quickly the model "learns").

3.4. Hyperparameter optimization

We perform hyperparameter optimization on the training data set for several values of N , K f and Nh which
represent the number of transformer blocks, the number of convolutional �lters in the last convolution of the
convolutional encoder and the number of attention heads respectively. We will perform this optimization by
looking at the Mean Absolute Error (MAE) of the models with these different parameters.

3.5. Testing the DoTA model

We will test the DoTA model with the best parameters with the test data from the 2 patients mentioned in
chapter 3.1 and compare the predicted dose distribution to the Monte Carlo calculated dose distribution by
performing gamma analysis (Equation 2.11). For this project, every gamma analysis is performed with ¢ = 1%
and ± = 3 mm.

13

4
Results

4.1. Hyperparameter optimization

From Table 4.1, we see that set 2 gives the smallest MAE and thus we will analyse the results of the DoTA model
that is trained with the hyperparameters of set 2.

4.2. Gamma evaluation of the DoTA model

We test the model with the data of 2 patients that is not used during training, giving 3276 output blocks. In Fig-
ure 4.1 a histogram is presented with the gamma pass rates of the DoTA model. By analysing the gamma pass
rate, we compare the predicted dose to the target Monte Carlo calculated dose. In Figure 4.1 we can see that
most of the output blocks have gamma pass rate between 90 and 100%. Some important values of the gamma
passrate of this model are: Mean = 98.45%, Standard deviation = 2.60%, Minimum = 44.13% and Maximum =
100%. The dose difference criterion (¢) is equal to 1 % and the distance-to-agreement (±) is equal to 3 mm for
every gamma analysis in this section.

Because the minimum passrate is very low, we will look at the dose distribution plots of some of the worst
gamma pass rate blocks and try to �nd a pattern.

4.3. Analysing the worst performing test blocks

4.3.1. Worst performing test block

In Figure 4.2 10 �rst consecutive slices around the middle of the W-axis of the worst performing block, which
has a gamma pass rate of 44.13%, are presented. In Figure 4.3 10 consecutive slices around the point on the L-
axis where the proton beam stops propagating of the same block are presented. From Figure 4.3 we can clearly
see that the beam shape was predicted very inaccurately. In the �rst slice in Figure 4.3, where the beam shape

Table 4.1: The DoTA model is trained with the training data for 3 sets of hyperparameters N , K f and Nh . These values have been given in
this table together with the MAE these sets produce.

Transformer blocks (N) Convolutional �lters (K f) Attention heads (Nh) MAE (Gy
109par t .

)

Set 1 1 16 16 0.0266
Set 2 1 12 16 0.0261
Set 3 1 8 16 0.0299

14

Figure 4.1: The histogram that presents the gamma pass rates of the DoTA model that is presented in section 3.2 and has been trained with
the following hyperparameter set: N = 1, K f = 12 and Nh = 16

still looks unaltered due to complexities in the material density, it can be seen that the target beam shape is a
normal 2D Gaussian (circle) and the predicted beam shape is an ellipse that has its major axis along the W axis
of the block and its minor axis along the H axis of the block. This looks like the main reason why the gamma
pass rate of this block is so low.

4.3.2. Second and third worst performing test blocks

Figure 4.4 displays a slice in the middle of the W-axis for the second worst performing block, which has a
gamma pass rate of 76.35%. Figure 4.5 displays a slice in the middle of the L-axis of this same block.

From Figure 4.4 we can see that the dose distribution of the second worst predicted block is way closer to
the target dose distribution than the worst predicted block was. Figure 4.5 shows us that the beam shape was
predicted well, as almost no voxels have a gamma value greater than 1. This con�rms that the beam shape not
adjusting only happens in one special case (for the worst performing block). If the beam shape didn't adjust
for any other blocks, their gamma pass rate would be similar to that of the worst block.

Figure 4.6 displays a slice in the middle of the W-axis for the third worst performing block, which has a gamma
pass rate of 76.73%. Figure 4.7 displays a slice in the middle of the L-axis of this same block. Figure 4.6 is
plotted to look for a pattern that may cause disturbances in the predicted dose. We see that the error of this
block is near the end of the block (on the L-axis/beam direction axis), right after the last part of dense tissue
in the patient geometry. Since both the error of Figure 4.4 and Figure 4.6 happen in air (black area), these er-
rors might be due to a sudden change in density that disrupts the dose calculation. Figure 4.7 shows that the
beam shape was again predicted well, in the showcased slice there is not a single voxel that has a gamma value
greater than 1. This again con�rms that the beam shape not adjusting only happens in the case of the worst
performing block.

4.4. Plots for a block with mean gamma pass rate

In this last section, plots will be shown for a block with a gamma pass rate that is close to the mean gamma
pass rate of the model. This block represents the average performance of our model.

In Figure 4.8 10 consecutive slices around the middle of the W-axis of a block with a gamma pass rate of 98.69%
are presented. This gamma pass rate is close to the mean gamma pass rate of 98.45%. In Figure 4.9 10 consec-
utive slices on the L-axis of the same block, around the position where the proton beam stops propagating, are

15

Figure 4.2: This �gure showcases 10 consecutive slices around the middle of the W-axis of the worst performing block. In the �rst column
a 2D slice of the patient geometry CT scan is showcased, in the second column the Monte Carlo calculated target proton dose distribution
is showcased, in the third column the DoTA predicted proton dose distribution is showcased and in the fourth column, the absolute
difference between the target dose and the predicted dose is showcased. These slices are used to analyse how the proton beam travels
along the L axis.

16

Figure 4.3: This �gure showcases 10 consecutive slices on the L-axis of the worst performing block around the point where the proton beam
stops propagating. In the �rst column a 2D slice of the patient geometry CT scan is showcased, in the second column the Monte Carlo
calculated target proton dose distribution is showcased, in the third column the DoTA predicted proton dose distribution is showcased
and in the fourth column, the absolute difference between the target dose and the predicted dose is showcased. These slices are used to
analyse the beam shape of the proton beam at certain values on the L axis.

17

	Abstract
	Introduction
	Radiotherapy
	Radiotherapy in general
	Benefits of proton therapy

	Dose calculation
	Importance of improving dose calculation speed
	Different dose calculation algorithms

	Structure of the report

	Theoretical Background
	Neural networks and deep learning
	Forward propagation
	Activation functions
	Backpropagation

	Monte Carlo Algorithms
	Theory for the Dose Transformer Algorithm (DoTA)
	Convolution
	Pooling
	Normalization
	Self-attention
	Dropout

	Gamma analysis

	Experimental Method
	Monte Carlo generated dataset
	Description of the DoTA model
	Convolutional encoder
	Transformer encoder
	Convolutional decoder

	Training the DoTA model
	Hyperparameter optimization
	Testing the DoTA model

	Results
	Hyperparameter optimization
	Gamma evaluation of the DoTA model
	Analysing the worst performing test blocks
	Worst performing test block
	Second and third worst performing test blocks

	Plots for a block with mean gamma pass rate

	Discussion
	Overall DoTA model discussion
	Model use case
	Limitations
	Future work

	Conclusion
	References

