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Abstract
A fundamental tool in radiotherapy treatment planning is the dose calculation algo-
rithm, which models the dose that will be distributed for given beam parameters and
patient geometry. Various available algorithms include Monte Carlo simulations (MC)
and pencil beam algorithms (PBA), with the former being computationally expensive
but offering high precision and the latter sacrificing precision for speed. A recent
study presents the deep-learning based Dose Transformer Algorithm (DoTA) which
provides MC accuracy at speeds 33 times faster than PBA. However, as currently
implemented, DoTA dose computations assume that each ray enters the patient ge-
ometry perpendicularly, while clinical treatment plans consist of many diverging rays
with angles of entry up to 5◦.

In this project, we extend the current model to include angular dependency. The
resulting models DoTA-A and DoTA-S improve on DoTA by including angle of entry
as an additional input on top of the beam energy and patient geometry. DoTA-A
includes the actual angle values as input, while for DoTA-S an expected beam shape
is precalculated with a trajectory based on the angle of entry. A training dataset of
more than 30.000 samples with MC baseline dose is generated from a public patient
dataset, using a 2 mm resolution. The architecture of the models is similar to that of
DoTA, with convolutional layers extracting important spatial features from the input
geometry and a transformer layer using a self-attention mechanism to weigh token
inter-dependence.

The models DoTA-A and DoTA-S are evaluated and compared on different test sets
with MC baseline doses. Both models are shown to be more accurate than PBA,
with DoTA-S having the best performance by most metrics. We demonstrate the
relevance of ray angles in dose calculations by comparing DoTA-A and DoTA-S to
perpendicular MC predictions, which were considered ground-truth for DoTA. The
models DoTA-A and DoTA-S compute dose distributions at an average speed of 10 ms
to 15 ms per dose, with the predictions achieving an average relative error of 1% across
various test sets. The average relative error of the perpendicular MC predictions lies
around 3%, demonstrating the importance of angle of entry as an input variable in
dose calculation algorithms. The gamma pass rates (for δ = 1%,∆ = 3mm) of a
full treatment plan with dose distributions predicted by our models are 97.60% for
DoTA-A and 95.74% for DoTA-S, indicating that there is no strictly better model
between the two.
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1 Introduction
Cancer is a leading cause of death worldwide, accounting for nearly one in every six
deaths in 2020. The survival rate of cancer patients has been steadily increasing over
the last decades, due to earlier detection and improvement of the treatment tech-
niques. One of the most prominent treatment methods is radiotherapy. It is used
in around 50% of cases, sometimes in combination with chemotherapy or surgery. In
radiotherapy, ionizing radiation is used to damage the malignant tumor cells in the
patient; however, this unavoidably damages the healthy tissue surrounding the tumor
as well. Too much damage to healthy tissue can compromise the patients quality of
life in different ways, even after successful treatment. Constructing a treatment that
eradicates the tumor while sparing healthy tissue is a persistent challenge in radio-
therapy. It involves many trade-offs which are different from patient to patient, and
slight inaccuracies can have lasting consequences on the patients health (Breedveld
et al. 2019).

Dose calculation algorithms play an important role in radiotherapy and are a fun-
damental tool for optimizing treatment plans. Dose calculation algorithms compute
the dose delivered under specified conditions, i.e. treatment machine parameters and
patient geometry. The dose needs to be computed accurately and fast to facilitate
precise treatment planning where the treatment can start as soon as possible. Dose
calculation algorithms are necessary for other steps of the clinical workflow as well.
Current clinical dose computation algorithms are typically either fast but inaccurate
in complex geometries, or highly accurate but computationally expensive. The need
for accurate computations often forces clinics to use the latter class of algorithms,
but their slow speed can be problematic. For instance, they are too slow for real-time
adaptive treatments. This is a technique where small changes to the patient geome-
try over the course of a treatment, such as internal motion, are taken into account to
update the treatment plan in real time (Jagt et al. 2018).

1.1 Goal of this Research Project
The goal of this thesis is to explore the possibilities of using deep learning to ac-
curately predict the output of state-of-the-art dose calculation algorithms. We use
the successful deep learning-based dose calculation model DoTA (Pastor-Serrano and
Perkó 2022) as a starting point and attempt to improve on it. In particular, we focus
on the following difference between the proton beams that are modeled by DoTA and
the actual beams used in a clinical setting.

DoTA predicts the dose distributed under specific machine settings and for a given
patient geometry. The model takes the beam energy and patient geometry at the
beams point of entry as input, and outputs the predicted dose. When predicting
full dose distributions for hundreds of proton rays, each ray is considered separately,
adding the predicted doses together to produce the full dose distribution. This does
not consider the relative position of the rays and the prediction operates under the
assumption that they enter the patient geometry perpendicularly.

In reality, the proton rays originate in a point source and pass through a magnetic
scanner where the beamlets diverge towards their respective point of entry. Each ray
therefore enters the patient volume at a slight angle. The diagram in Figure 1 shows
a simplified view of the angles of entry that DoTA does not account for.
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Figure 1: Left: The original DoTA predicts the dose distributed by rays entering the patient geometry
perpendicularly. Right: When using these predictions for a full proton beam this does not account for
slight angles of entry of the rays, which come from a point source.

These angles of entry lie in the interval [−5.16◦, 5.16◦], assuming typical conditions
of a nozzle around two meters from the patient and diverging beamlets whose points
of entry on the top layer of the patient geometry lie in a region of at most 40 cm
by 40 cm. Without considering these angles, the distributed dose is slightly but
noticeably different. Therefore, including the angle of entry into its computation of
doses will bring the algorithm in line with the clinical context. This addition is the
main goal of the research project, as well as gaining a better understanding of the
role dose calculation algorithms play in radiotherapy and the inner workings of the
deep learning architectures that are used. To summarize, the main research question
of this project is:

Can we accurately include the entry angle in a deep learning based dose
calculation algorithm?

1.2 Thesis outline
In Section 2, the radiotherapy workflow is described in more detail with a focus on
dose calculation algorithms, giving examples of currently used and researched models.
In Section 3, we give theoretical background information on deep learning and the
specific architectures used in this project. In Section 4 we describe the architecture
of our model, discuss the different choices that were made in designing them and
the training and evaluation procedures. In Section 5 the results of this project are
presented, including a description of the generated data, performance of the models
under different metrics and comparisons to other models. In Section 6 we discuss the
results and their implications.
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2 Radiotherapy background
In this section, we introduce the clinical context in which the research project takes
place. We first describe the general radiotherapy workflow before going into more
detail on the most relevant steps. We describe why high-quality dose calculation
algorithms are crucial in this context, and we conclude the section by discussing some
of the more important dose calculation algorithms that are used in clinical practice,
along with their advantages and disadvantages.

2.1 Radiotherapy workflow
Radiotherapy treatment starts at the first consultation between the patient and the
radiation oncologist, where the details of the clinical situation are discussed along with
the risks and benefits of treatment. The physician considers information such as the
location and stage of the tumor, its mutational status, general state of the patient and
so on to decide on a treatment strategy. This could include surgery, chemotherapy,
radiotherapy and a number of other modalities, and even multimodal therapy in
which multiple treatment strategies can synergize for better clinical outcomes. If the
physician and patient have decided to proceed with radiation therapy after patient
assessment, the following steps are taken to construct a treatment plan (Feng et al.
2018).

Figure 2: Radiotherapy workflow.

• First, the physician will schedule a simulation with specific instructions. In
most cases, this means acquiring high quality CT images of the patient. The
physicians instructions include details about scan range, treatment site and
patient preparation. The scan is exported to a planning system where the
physician can continue with the treatment planning process. The physician
then outlines the target volume (i.e. the tumor) and organs at risk (OARs) on
the CT images for future reference.

• The treatment planning stage begins with the setting of dosimetric goals for
the target and other tissues. The dosimetric goals include a minimum radia-
tion dose to the target volume, and maximum tolerance levels for the different
OARs. Then, an appropriate treatment technique is chosen. There are different
methods for irradiating the patient and for the most common, external beam
radiotherapy (EBRT), there are different particles that can be used with their
own advantages and disadvantages. We discuss the different techniques and
trade-offs in Section 2.2 below.

Assuming EBRT was chosen, the beam angles and beamlet intensities are opti-

6



mized to best accommodate the planning goals. This is the most complex and
computationally expensive step, mainly due to the large search space consisting
of all possible beam angles and machine settings. This is also a step where dose
calculation algorithms play a large role, and we will discuss it in more detail
below. Finally, the dose distribution resulting from the selected beam settings
is reviewed manually, and the plan may be updated by tightening or relaxing
the dosimetric goals in an interactive loop before the final treatment plan is
presented to the physician.

• If the treatment plan is accepted by the physician, the plan is subjected to
quality assurance protocols to prevent errors and to give high confidence that
the patient will receive the prescribed treatment correctly. These protocols
can include additional dose calculation to ensure the correctness of the dose
computed by the clinical treatment planning system.

Finally, the patient is treated according to the treatment plan. The patient is moni-
tored closely during and after treatment, with follow-up appointments lasting around
3 to 6 weeks after treatment has finished.

2.2 Radiotherapy types
Radiotherapy can be delivered in different ways, commonly divided in three classes
based on the position of the radiation source. The most common is external beam
radiotherapy (EBRT). Alternatively, a sealed radiation source can be placed in or
next to the volume requiring treatment (brachytherapy) or radioactive substances
can be introduced into the body via injection or ingestion (radionuclide therapy).
A physician can decide on a combination of multiple methods as well (multimodal
therapy).

EBRT uses an external source of radiation pointed at the desired part of the patient’s
body. The most widely used sources are X-rays and electron beams, but heavier par-
ticles such as protons can also be used. The different properties of these particles
and their dose distributions give each choice advantages and disadvantages in radio-
therapy. Figure 3 compares the dose deposition behavior for photon beams (X-ray),
electron beams and proton beams.

Figure 3: Comparisons of dose deposition for photon beams. Proton beams can deliver well-localized
high radiation with essentially no exit dose, by taking advantage of the Bragg peak effect and cross-firing
multiple beams. (Sheehan 2015)

We can see that the dose depositions of X-rays and electron beams are comparable, but
that electron beams exhibit rapid dose falloff and deposit more dose near the surface
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of the tissue. This makes electron therapy well suited for target volumes extending to
or near the patient’s skin. In some cases, electron beams are combined with surgery
to apply the radiation directly to the tumor, which is called intraoperative electron
radiotherapy.

X-rays exhibit a slight build-up of dose upon entering the tissue, which has the ad-
vantage of sparing the patient’s skin from the highest radiation. They deposit a
significant amount of energy at depth and can therefore be used to treat tumors deep
within the body. They are used very commonly in radiotherapy for a wide range of
cancers, with different energies used depending on the desired outcome.

Proton beams display the Bragg peak effect seen in Figure 3, where the vast majority
of radiation is delivered in a narrow range of depth. This has the prime advantage
in radiotherapy of minimizing damage to healthy tissue, with low entry and exit
dose (dose in front of and behind the target volume). The slow falloff of X-ray
dose deposition in particular causes relatively high exit doses, unavoidably damaging
healthy tissue and potentially causing secondary cancers. Proton radiotherapy may
be selected in cases where it is important to minimize radiation to OARs while keeping
dose to the target volume high: compared to the most advanced photon treatment
techniques, proton therapy can deliver similar or higher radiation doses to target
volumes with a 50%–60% reduction of total body radiation dose (Kandula et al.
2013). Figure 4 shows the dose distributions of two treatment plans for the same
patient, with one plan being optimized for photon treatment and the other for proton
treatment.

Figure 4: Total predicted dose distributions of plans optimized for photon (left) and proton (right)
radiotherapy, with OARs and tumor delineated. With similar radiation to the target volume, low damage
to healthy tissue is the main advantage of proton over photon treatments (Taheri-Kadkhoda et al. 2008).
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2.3 Treatment planning
Treatment planning refers to the stage in the radiotherapy workflow where the beam
specifications for a treatment are determined. A treatment plan describes the machine
parameters that are to be used, including the number of beams, their intensities and
the spatial configuration of the patient and machine. The treatment plan is the
output of an optimization program which optimizes with the given dosimetric goals.
The problem is divided into two parts: the selection of the beam angles and the beam
intensity profiles. Beam angle selection refers to choosing the amount of beams that
are used and their spatial configuration relative to the patient. A common procedure
is to discretize the continuous space of possible beam angles to reduce the search
space. This leaves 3-9 possible beam angles in typical settings where only the gantry
arm changes position. For each angle, the beam intensity profile is optimized, and the
beam resulting in the best treatment plan is fixed. Now additional beams are added
to the treatment plan until a maximum number of beams is reached or no substantial
improvement to the treatment plan is made.

Figure 5: Illustration of a common radiotherapy machine. In this project we only consider beam angles
imposed by rotation of the gantry. The ionizing beam exits the head through the collimator, which is able
to shape and modulate the beam (Breedveld et al. 2019)

The beam intensity profile optimization is more numerically challenging, and can be
described as follows. The beam is discretized into n small rays (or beamlets) based
on direction and energy level. These rays form the set of decision variables x ∈ Rn

for the numerical optimization problem. The value of each element xj represents how
long the ray is "on" for i = j, . . . , n. The patient is also discretized into N voxels,
often using a lower resolution than the original scan to keep the problem numerically
manageable. The dose across all voxels is measured through the voxel dose vector
d ∈ RN . The relation between the beamlets x and the distributed dose d is linear,
meaning we have:

d = d(x) = Ax (1)

where A is called the dose influence matrix. The established dosimetric goals are now
described in terms of d. The structures of interest (i.e. target volume and OARs)
are listed, and we define di as the voxel dose vectors for the voxels that structure i
delineates on the CT. A typical mathematical formulation of the problem then looks
as follows:
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min
x

f(d1)

s.t. gj(di) ≤ bj

g′
j(di) ≥ b′

j ,

h(x) ≤ c

x ≥ 0
di = Aix

(2)

In this formulation, i always runs over the listed structures and j runs over some
index set. An example of the cost-function f is f(d1) :=

∑
d1 where the total dose

to structure 1 is minimized as far as possible while respecting the constraints. The
dosimetric constraints are described by cost-functions gj and g′

j , where the limits bj

and b′
j describe maximum and minimum dose to the respective structures. The target

volume often has both a minimum and a maximum dose constraint on it, while OARs
usually have a maximum dose constraint to prevent complications. The requirement
h(x) ≤ c models hardware limitations, for example putting an upper bound on the
treatment delivery time.

Solving this multi-criteria optimization problem is computationally expensive. The
cost functions can be non-convex and the optimization problem is commonly solved
multiple times for each patient before an optimal treatment plan is selected. An
efficient method of solving these problems is therefore very important, and a lot of
research is being done to improve the methods currently in use (Kim et al. 2020). In
this project, however, we focus on the computation of the dose influence matrix A,
which is done using dose calculation algorithms.

2.4 Dose calculation algorithms
A dose calculation algorithm is an algorithm that computes the expected dose distri-
bution for given beam settings and patient geometry. In the above formulation, the
desired output of the dose calculation algorithm is the dose influence matrix A with
the patient CT and beam settings as input. The distributed dose must be computed
for each of the thousands available rays, so computation speed is an important factor
for the entire treatment planning process. Dose calculation algorithms are important
for other steps of the radiotherapy workflow as well: for example, for quality assurance
of the final treatment plan, a high quality dose prediction of the full plan is necessary
to visually inspect and verify plan robustness.

When comparing the dose distribution provided by a dose calculation algorithm to
the actual dose that will be delivered under the given machine settings, high accuracy
of the algorithm is crucial in radiation therapy. The International Commission on Ra-
diation Units and Measurements (ICRU) has recommended an overall relative dose
accuracy within 5%; considering the uncertainties resulting from the patient setup,
machine calibration and treatment planning system, it is necessary to have a dose cal-
culation algorithm that can predict dose distribution with a 3% relative error margin
(Shalek 1977). Accurate computation of dose distribution requires the accurate mod-
eling of particle transport, which is a complicated task in an inhomogeneous medium
such as the human body, especially for tumors located in the lung. We describe two
of the most commonly used dose calculation methods: Monte Carlo simulation and
Pencil Beam methods.
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Monte Carlo (MC) methods are a general class of computational algorithms that rely
on random sampling to solve problems which are deterministic in principle. In the
context of dose calculation, MC-based algorithms sample a large number of particles
(photon, proton, ...) and simulate the transport of the individual particles. This
requires knowledge of interactions of the particle (energy transfer, production of sec-
ondary particles, ...) and the probability of each interaction, based on the composition
of the tissue as described by the patient CT. An example individual particle transport
prediction could be based on sampling the distance before the first particle interaction
from a known probability distribution, sampling a type of interaction from the prob-
abilities of each interaction taking place, then repeating the procedure until a user
defined energy cut-off has been reached. Through the large number of simulations
(n > 107), the deposited energy in each voxel can be calculated.

MC-based algorithms have been proven to yield the best dose accuracy compared to
other algorithms and are the current clinical standard. The main drawback of MC
implementations has historically been the long computation times. The algorithms
have been sped up over the years, largely due to newer hardware and the parallel
computing power provided by GPUs (Wan Chan Tseung, J. Ma, and Beltran 2015).
However, developments in treatment planning techniques such as real-time adaptive
treatments, where new plans must be generated in real time to adapt the treatment
to anatomical changes, require high-speed and accurate dose calculations during op-
timization (Kontaxis et al. 2017).

Pencil Beam Algorithms (PBA) are analytical in nature and are based on the as-
sumption that particle rays behave approximately like many, infinitely narrow pencil
beams. Each of these pencil beams has a central axis ray along which it deposits some
dose. The deposited dose around this axis is derived from the basic scattering and
absorption processes that the particles undergo, and is sometimes calculated using
MC simulations (Carolan 2010). The deposited dose by a single pencil beam also
depends on the beam’s intensity. Patient inhomogeneities are accounted for by modi-
fying the shape of the pencil beam dose distribution based on the density of the tissue
that the pencil beam travels through. To calculate the dose deposited by the entire
particle beamlet, the dose distributions of all pencil beams are summed up. PBA
methods are significantly faster than MC-based methods, but suffer from relatively
high inaccuracy (Teoh et al. 2019). This is especially the case around inhomogeneous
geometries, such as the lungs (Taylor, Kry, and Followill 2017). Sorriaux et al. (2017)
found gamma pass rates for lung patient full plan PBA predictions as low as 44.7%
(see Section 4.4).

2.5 Related research
Most current research on the reduction of dose calculation times focuses on either
improving current dose calculation algorithms or the implementation of deep learning
(Pastor-Serrano and Perkó 2022). Some deep learning based algorithms approximate
full dose distributions for treatment plans based on historical data of other optimal
plans (Ronneberger, Fischer, and Brox 2015). Convolutional neural networks trained
to approximate full treatment plan dose distributions often use additional information
such as organ and tumor delineations as input (Chen et al. 2019) (Nguyen et al.
2019). Other studies focus on specific steps of the radiotherapy workflow, improving
dose calculation times despite not providing generally applicable dose calculation
algorithms (Meyer et al. 2018).

Besides DoTA, we are aware of only three papers where deep learning was imple-
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mented in proton dose calculation algorithms. However, although these models offer
significantly faster dose predictions than current clinical algorithms, they are not inde-
pendent or generally applicable. Two of the papers use low-accuracy dose predictions
of other models as their input and convert them to achieve higher accuracy, with the
initial predictions coming from either PBA (Wu, Nguyen, et al. 2021) or relatively
fast, low-accuracy MC predictions (Javaid et al. 2021). The third uses treatment plan
and site information to pre-calculate the necessary input variables, and can therefore
only be used as a dose calculation algorithm for a specific treatment site (Nomura
et al. 2020).

To summarize, radiotherapy and especially the treatment planning stage benefit
greatly from fast and accurate dose calculation algorithms. Current models offer
a tradeoff between slow but accurate MC-based algorithms and the fast but inaccu-
rate PBA. In this project, we aim to offer high-speed MC-precision dose calculations
through a deep learning model which leverages specific architectures well-suited for
this task. In Section 3, we give the relevant theoretical context from the field of
deep learning and introduce the most important components of our dose calculation
algorithm.
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3 Deep Learning Background
This section provides theoretical background information for the models constructed
in this project. We start by introducing the fields of machine learning and deep
learning, as well as the most simple and often-used model architectures. We then go
into more detail on two architectures, convolutional neural networks and transformers,
which form the building blocks of our models. More details on the topics discussed
in this chapter can be found in the extensive Deep Learning textbook by Goodfellow,
Bengio and Courville (2016).

3.1 Deep Learning
The field of machine learning has made substantial progress over the last decades,
made possible in large part by the continuous increase in computing power available.
Machine learning (ML) refers to techniques used in artificial intelligence where al-
gorithms use data to infer conclusions or predictions related to that data, without
explicit instructions coming from the programming. In other words, ML models are
built to extract patterns from the data fed to them, without human instructions on
how to interpret the data. The automated nature of ML has proven extremely ef-
fective in a variety of applications, such as computer vision, speech recognition and
many medical settings, as well as any field in which pattern recognition plays a large
role. ML methods are often split into two categories. In unsupervised learning, the
model tries to extract patterns from the input data, often trying to cluster data points
based on similarity or finding probability distributions that describe that data as well
as possible. In supervised learning, the input data is labeled, and the model tries to
find the relation between the presented data and the corresponding labels, often as
to accurately predict the label of new unlabeled data.

Simple ML algorithms are able to extract useful information from well-structured
datasets, but when the features that must be extracted are more complex (e.g. object
recognition from a large grid of colored pixels) and require sophisticated understand-
ing of the data structure, the algorithms used are often based on deep learning. Deep
learning refers to ML model architectures with multiple layers, where instead of con-
sidering raw input data, information in each layer is extracted from the output of the
previous layer. In the example of object recognition, the first layer of a deep learn-
ing model might extract edges from the input pixels, the second layer could extract
corners and contours from those edges and so on. The processed data can then more
easily be interpreted by the final layer. The layers in between the input and output
layers are called hidden layers.

3.2 Neural Networks
The quintessential deep learning models are (artificial) neural networks. Their name
is derived from biological neural networks found in animal brains, on which the model
architectures are loosely based. Typically, a neural network tries to approximate some
function f∗(x) which assigns a label y to each input x (supervised learning). The
network defines a mapping y = fθ(x) and learns the value of the parameters θ that
result in the best function approximation. The word network here refers to the layer
structure described above: for example, for a neural network with three layers we have
fθ(x) = f

(3)
θ (f (2)

θ (f (1)
θ (x))) where the functions f

(i)
θ describe each layer of the network.

These layers are typically vector valued, which is what the word neural refers to. We
can think of a layer as many vector-to-scalar functions called artificial neurons or
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nodes, which process information transmitted from nodes in the previous layer. The
simplest type of neural network architectures are feed-forward neural networks, which
simply means that information only moves through the network layers in the forward
direction, without any loops or cycles. A schematic overview of a feed-forward neural
network architecture can be seen in Figure 6.

Figure 6: An example a simple feed forward neural network. The arrows represent the node-to-node
functions: these depend on the weights θ that are learned by the model during training (X. Ma et al. 2019).

Training neural networks means finding the weights θ that give the best approxima-
tion fθ of f∗. Performance is measured through a loss function that measures the
difference between the predicted values fθ(x) and the true values y for a given, la-
beled dataset. A common choice is the mean square error (MSE) given by LMSE =
1
n

∑n
i=1 (yi − fθ(xi))2, where i iterates over all data points (xi, yi). The weights θ are

then iteratively optimized through an optimization algorithm. Here, most methods
make use of the gradient of the loss function, updating the weights in the opposite
direction (steepest descent) with some predetermined step size. The weights are up-
dated iteratively over all data points, usually considering a small batch of data points
before updating the weights. The number of complete passes through the training
data before training terminates is called the number of epochs.

3.3 Residual connections
Residual connections or skip-connections are a simple addition to the architecture
of neural networks, designed to speed up the convergence of training. In traditional
feed-forward neural networks, data flows from one layer to the next sequentially.
Residual connections provide a path for data to deeper layers of a neural network,
skipping the layers in between. The core idea is that layers that usually cause slow
training convergence, for example due to vanishing gradients, can be skipped in these
more shallow "sub-networks", which will converge faster without losing overall model
accuracy. Although not extensively studied, neural networks with residual connections
showed their potential when one such model won the ImageNet 2015 competition and
became the most cited neural network of the 21st century (He et al. 2016).

3.4 Convolutional neural network
Convolutional neural networks are a type of artificial network designed to process grid-
like data. They improve traditional neural networks by leveraging a few important
ideas. Consider a hidden layer in a neural network, with m inputs coming from the
nodes in the previous layer and n output nodes. In a traditional neural network, the
interaction between the input and output nodes is described by a matrix multiplication
by a parameter-valued matrix of size m × n.
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In a convolutional neural network, the amount of connections from the input nodes to
each output is instead limited to a fixed number k. The matrix with the corresponding
k parameters is called the kernel. The convolution operation which convolutional
layers apply to their input is visualized in Figure 7. A similar operation that is
sometimes used is the transposed convolution operation which increases the size of
the input data instead of decreasing it. Instead of multiplying the kernel with k input
elements to generate one output element, for transposed convolutions the kernel is
multiplied element-wise with one input element to generate k output elements.

Another difference between convolutional and traditional neural networks is that in
the convolutional case, the same kernel is used for each of the n output nodes, mean-
ing that the parameters of each interaction are shared. A significant advantage of
convolutional neural networks is the reduction in runtime and memory requirements:
the amount of parameters that need to be stored are now k instead of m · n, where
k is usually several orders of magnitude smaller than m. Another advantage comes
from the parameter sharing: instead of trying to learn each relation between the input
and output nodes, the layer detects one relation across all the inputs. One common
example is edge detection in images, which convolutional neural networks can do with
very small kernels and many times more efficiently than traditional models.

Figure 7: An example of 2-D convolution. The kernel uses the same weights for each output node,
greatly reducing the memory requirements (Goodfellow, Bengio, and Courville 2016).

A convolutional network typically includes multiple blocks consisting the same se-
quential layers. We describe a common layer structure here. In the first layer, the
convolution operation described above is performed on the input data in parallel to
produce the processed data. A normalization layer which normalizes the processed
data by the mean and variance may be included and has been shown to greatly im-
prove model performance (Ioffe and Szegedy 2015) (Wu and He 2018). The data
is then passed through a pooling layer. Pooling layers reduce the size of the data
by combining the outputs of small groups of nodes into a single node. This makes
the representation of the data less invariant to small translations of the input: two
data points that are only marginally different will give the same output after pooling
and can therefore be treated similarly. The most common types of pooling are max
pooling and average pooling, where the value of the single node is determined by the
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maximum and average value of the group of nodes that is considered, respectively.
Finally, an activation layer is often included, which applies a non-linear function to
the layer output before passing it to the next layer. The reason is that the (con-
volutional) layer has so far only applied linear functions to the input data, and we
want the model to be able to approximate non-linear functions as well. The default
recommendation in modern neural networks is the rectified linear unit (ReLU) acti-
vation function (Jarrett et al. 2009) (Glorot, Bordes, and Bengio 2011), defined by
the element-wise operation g(z) := max{0, z}.

3.5 Transformer
A Transformer is a deep learning model introduced in recent years, with great success
in natural language processing. Transformer models leverage the self-attention mech-
anism (Vaswani et al. 2017). The idea is that, similar to cognitive attention, some
parts of the data are given extra focus when they appear to be more important. This
is achieved through the inclusion of attention units, with dedicated parameters called
attention weights which keep track of which parts of the data seem most important.

We describe a common construction of a self-attention (SA) layer. The L input ele-
ments get embedded into an input matrix X ∈ RL×d for some dimension d. This em-
bedding operation has learned weights, which the model will optimize during training.
X is then projected into three matrices of the same shape (say d×dh): the query ma-
trix XQ := W QX, the key matrix XK := W KX and the value matrix XV := W V X,
again using learned weights for the projections. The output of the attention layer is
then given by:

SA(X) = softmax
(

XQ(XK)T

√
dh

)
· XV ∈ RL×d (3)

The softmax function used here is a common function which normalizes its input into
a probability distribution:

softmax : RK → (0, 1)K

softmax(z)i := ezi∑K

j=1
ezj

The idea of this formula is that values in XV are amplified when the corresponding
element of the key XK are more similar to elements in XQ. In this way, elements
of the output SA(X) are weighted based on how similar they are to other elements.
Conceptually, the attention layer is able to detect patterns in which input tokens
influence each other strongly.

In Multi-head Self Attention (MSA) multiple sets of attention weights are used, which
are called attention heads. Nh SA operations are computed in parallel, and each of the
Nh attention heads can detect different self-attention patterns. The outputs of the
different operations are concatenated and linearly projected with learned weights like
for the single-head case. A transformer model typically combines these self-attention
mechanisms with feed-forward neural networks, in an encoder-decoder structure. Here
the data is first processed through the encoder layers, with the attention units cap-
turing information on which parts of the data are relevant to each other. The decoder
layers then take the encoded output and contextual information and generate an
output sequence.
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MSA is invariant to the order in which the input elements are presented, but by
applying a fixed positional embedding before the MSA operations it is possible to
encode positional information into the self-attention mechanism. One particular case
is causal self-attention, where a masking function removes all connections from a token
to tokens that come after it in the input sequence. This is often used in temporal
settings, where information from the past and present is considered for MSA but not
information from the future. We will discuss how this makes causal self-attention
particularly suited to our setting in Section 4.

The model architectures desribed above were recently used in a dose-calculation algo-
rithm by Oscar Pastor-Serrano and Zoltán Perkó, referred to as the Dose Transformer
Algorithm (DoTA) (Pastor-Serrano and Perkó 2022). The model was trained using
MC generated dose distributions and outperforms both PBA, being 33 times faster
and more accurate in inhomogeneous geometries, and MC itself by offering the same
accuracy at a speed 4000 times faster. DoTA serves as a starting point for the models
in this project and Section 4 describes our methods, model architectures and how
they expand on the original DoTA. Our models aim to improve DoTAs clinical ca-
pabilities by including additional information for each beam, bringing the predicted
dose distributions closer to clinical reality.
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4 Methodology
In this section, we describe the methods used for the construction and evaluation of
the models DoTA-A and DoTA-S. We first describe how these models are constructed
from the original DoTA, and the different ways in which they interpret the angle
of entry as an additional input. We then give an overview of the data generation
procedure and the choices we made with regards to the training data. The models
architectures are also described, going over the building blocks that were used and the
training procedure. Finally we go into detail on the different test sets and evaluation
methods we used to test the performance of our models.

4.1 Variables
The dose calculation algorithms that we consider in this project compute the out-
put dose distribution corresponding to given machine settings and patient geometry.
Mathematically, we can consider the following variables:

• Input geometry x ∈ RL×H×W . This is a subset of the full patient CT scan, tak-
ing values on the Hounsfield scale. The Hounsfield scale describes radiodensity,
which is the ability of certain kinds of radiation to pass through a particular
material. The radiodensity of air is defined as −1000 Hounsfield Units (HU)
and water is defined at 0 HU, with different body tissues such as fat and bone
typically taking HU values in the range [−1000, 1000]. The volume x with HU
values attached to each voxel is taken as the geometric input for our dose cal-
culation algorithms. Other algorithms sometimes require translating the HU
values to other descriptors such as material density or stopping power. Since
the exact HU values can differ between CT acquisitions based on parameters
used by the CT scanner, these conversions are also machine-specific.

• Input particle energy ϵ ∈ E ⊂ R+. This measures the initial positive charge of
the protons in a proton ray in megaelectrovolts (MeV). The protons gradually
transfer energy to material that they traverse through, which is what causes
the radiation damage to the patient tissue. Therefore, proton rays with higher
MeV values typically cause radiation damage deeper inside the patient geometry
than rays with low MeV values. For our models, we take the energy range E =
[70, 140]. This range of energy values is typical for treatments in inhomogeneous
geometries such as the lungs, or for relatively shallow tumors in the prostate
and head and neck areas.

• Output dose distribution y ∈ RL×H×W . This measures the dose distributed by
a proton ray, with each voxel in y measuring the dose absorbed in the corre-
sponding voxel of the geometry x. The dose is typically measured in the SI unit
Gray (Gy), although equivalent units are also sometimes used. In radiotherapy,
the dose delivered to a patient is usually between 20 and 100 Gray, depending
on the site and stage of the cancer being treated.

The depth L, height H and width W of the geometry x and dose volume y are
fixed for consistency. In this project, when referencing the dimensions of a volume
we refer to the depth-axis as Y (the direction the patient is facing), the height-axis
as Z (the axis on which the patients body is positioned) and the width-axis as X.
For our models, we let L = 150 and H = W = 25. From the full patient CT and
corresponding dose distribution, we extract the cropped volumes x and y in such a
way that the target point of the proton ray lies exactly at the center voxel in the first
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layer of x. This usually means that highest dose value of the first layer lies in the
center, with dose values decreasing towards the edges in a way that resembles a 2D
Gaussian distribution.

The models presented in this project are built on top of the DoTA model. This model
captures the relation between input and output through a nonlinear mapping fθ(x, ϵ) :
RL×H×W × E → RL×H×W , performed by a series of artificial neural networks. Our
models, however, include additional information in the input data to describe the
direction of the ray we want to compute the dose distribution of. We consider two
descriptions of this information:

• The angles ϕ = (ϕX , ϕZ) ∈ A ⊂ R2, where ϕ = (0, 0) corresponds to a perpen-
dicular ray. Here we limit ourselves to clinically achievable angles, which under
typical conditions fall in the range [−5.16◦, 5.16◦].

• The shape volume s ∈ RL×H×W , which contains the shape the dose distribu-
tion is roughly expected to take based on the angles and machine settings.

We refer to the corresponding models as DoTA-A and DoTA-S respectively. The
following sections explain the two different descriptions and how they are constructed.

Angle description The DoTA-A model defines a mapping

fA
θ (x, ϕ, ϵ) : RL×H×W × A × E → RL×H×W (4)

In this description we include the angle ϕ under which a ray travels from the nozzle to
the patient. When a ray exits the gantry head non-perpendicularly in radiotherapy,
the machine reads a specified target point on the top layer of the patient geometry
to determine the direction. The diverging beamlets share a focal point at a fixed
distance above the isocenter, which is machine specific but can be read from the
Beam Data Library (BDL) text file (Souris, Lee, and Sterpin 2016). Therefore, using
the coordinates of the center-most voxel (isocenter) on the top layer of the patient
geometry, the distance from the focal point to this isocenter and the coordinates of
the target point, we can calculate the angle under which the ray travels.

Figure 8: Diagram illustrating the construction of recorded angles ϕX and ϕZ . Left: X/Y view (side).
Right: X/Z view (top-down). Note: in reality the focal point lies two meters (!) above the patient geometry,
and the recorded angles are often invisibly slight.

19



Since the angles in the X and Z direction are imposed by two distinct magnetic fields,
the isocenter-to-focal-point distance is different for both angles as well. We treat
each case separately, considering the X/Y plane to determine ϕX and onto the Z/Y
plane to determine ϕZ . Note that the actual three-dimensional angle of entry is not
recorded; the angles ϕX and ϕZ only describe the angle of entry in their corresponding
two-dimensional plane. These descriptions are equivalent however, as can be seen in
Figure 8. In the X/Z plane, the angles ϕX and ϕZ imply the coordinates of the target
point, and a conversion from Cartesian to polar coordinates would give a description
of the three-dimensional angle of entry plus the beamlet direction in the X/Z plane.
The description ϕ = (ϕX , ϕZ) seems less geometrically intuitive, but is easier to work
with mathematically since we frequently compute the angles from the target points
coordinates and vice versa.

Shape description The DoTA-S model defines a mapping

fS
θ (x, s, ϵ) :

(
RL×H×W

)2 × E → RL×H×W

In this description we compute the shape s ∈ RL×H×W that the dose distribution of
a proton beamlet is expected to take, based on the used machine settings, energy and
angle of entry. Figure 9 illustrates the construction of s.

Figure 9: Left: The angle and energy values allow us to predict the ray direction and dose distribution
on the first layer, respectively. For each subsequent layer we shift this 2D distribution along the expected
direction, which gives the shape volume s. Right: The expected direction aligns with the actual dose
distribution.

The dose distribution of such a beamlet upon first entering the patient geometry
resembles a 2-dimensional normal distribution, with variance (in X and Z directions)
depending on the energy of the beam. The variances per energy can be read from the
Beam Data Library (BDL) file of the machine used.

Given the angles of entry, we can also predict the direction of the ray in the patient
geometry. On the first layer, the center of the dose is exactly the entry point of
the beamlet. For subsequent layers, we move along the line from the virtual source
point through the target point to predict the center of the dose distribution at this
depth. We use the same variances for the normal distribution in each layer, shifting
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the mean along this line. This results in a volume s predicting the shape of the dose
distribution.

Note that the shape volumes for fixed machine settings only depend on the energy
and angles of a ray. The patient geometry is not considered and the actual dose
distribution in complex geometries is very different from our predicted shape. We
also need more memory to store the input data in this way, since instead of ϕ ∈ R2

we now store s ∈ RL×H×W .

The advantage of DoTA-S is that it simplifies the relation between input and output.
In the mapping (4) defined by DoTA-A, the relation between ϕ and the output dose
distribution y is highly non-trivial. A small change in one of the angles ϕX and ϕZ

can cause a large change in the shape of the dose distribution which can hurt the
models accuracy. In DoTA-S we circumvent this issue by constructing the input s to
be similar to the desired output y.

4.2 Data generation
The first step in the construction of our models was the generation of a training
dataset. A training dataset consists of a large amount of training samples, which in our
case are sets {x, ϕ, ϵ, y} for DoTA-A and {x, s, ϵ, y} for DoTA-S. We generated a large
amount of input variables x, ϕ and ϵ in a randomized way, which are described below.
After a collection of input values was established, we calculated the corresponding
baseline dose distribution y using the open source Monte Carlo particle simulation
code MCsquare (Souris, Lee, and Sterpin 2016), which is optimized for modern multi-
core CPUs. MCsquare calculations are done in the open source treatment planning
software matRad (Cisternas et al. 2015), utilizing 8 Intel Xeon E5-26990 CPUs in
parallel.

The angle of entry is modeled in MCsquare through the specification of a target point
for each ray. The software assumes that the gantry nozzle lies straight above the
isocenter of the CT, and by default it will simulate particle trajectories where the ray
travels straight down. To impose the angle of entry for our training data we instead
specify a target point for each ray.

The data was generated from a CT scan dataset of 53 patients, of which 21 lung,
20 head and neck, and 12 prostate scans. For each patient, we first generated 21
different patient geometries by rotating the scan around the Z axis. These rotations
simulate the physical rotation of the gantry arm, which is able to rotate around the
Z axis of the patient to irradiate under different beam angles. For each of these 21
geometries, we then sampled multiple target points and attached a random energy in
the interval E = [70, 140] to each of them, giving rise to multiple sets {x, ϕ, ϵ}. The
geometry, angle and energy values were then given as input to MCsquare to determine
the output dose volume y. Finally, each set {x, ϕ, ϵ, y} was stored as a single training
sample.

Target point selection The method of target point sampling went through two
major iterations. While any sample that models a clinically achievable ray could be
used for our training data, there are a few considerations to make. For the models
to perform well on unseen test samples, the training data needs to include enough
variety between the different geometries, angles and energy values. We do not want
to select a target point that causes the modeled ray to miss the patient partly or
entirely, and therefore we want to select target points that are not too close to the
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limits of the patient geometry. Additionally, the total amount of data points needs
to be kept reasonable with regards to the speed of the model training and the data
generation itself.

• Cycle 1: For the first generation cycle, target points were taken from a regular
grid across each patient geometry. The grid was constructed automatically for
each geometry such that all corresponding rays fell well within the boundaries of
the patient geometry. Figure 10 gives an example of the construction of such a
target point grid. A rectangular range was first constructed such that all points
within it are expected to lie within patient geometry limits. Then, the regular
grid of target points was generated within this range with no point lying too
close to the boundaries. The predetermined step size of the target point grid
was 30 mm for both axes.

Figure 10: X/Z slice of a lung patient CT scan illustrating the first generation method with target
point grids. The red cross is the isocenter of the CT, with the nozzle exit located exactly above it. Red
dots are target points that were sampled. The values X1 and X2 are fixed at two-thirds from the isocenter
to either patient geometry limit on the X-axis. Then, Z1 and Z2 are fixed such that all points in the
rectangle with vertices (Xi, Zi) at isocenter depth lie within the patient limits.

After analyzing the first generated dataset, it became clear that too few differ-
ent angles were considered. The first training dataset had around 100 different
angles in total, while the amount of angles that can be selected in clinical prac-
tice is more than 10.000. We initially hoped that the model would be able to
interpolate the smaller angles from the training data, but after training on the
first dataset and evaluating the results we saw that the models were unable
to predict these smaller angles accurately. This led us to include many more
different angles in the data generation cycles going forward.

• Cycle 2 & 3: From the second generation cycle onward, we introduced random-
ness to our target point selection method. We could not use every target point in
the available search space, as this would result in more than 8000 different data
points for each patient geometry. Since we wanted to use multiple patients and
multiple rotated geometries from each patient, we limited the amount of angles
chosen to keep the total amount of samples manageable. We chose to randomly
sample 50 points within a fixed distance of the patient geometry limits.

Dataset clean-up Upon inspecting the generated datasets, we found that many of
the samples contained largely empty geometry volumes, with dose volumes that were
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accurately simulated but mostly consisted of low amounts dose deposited in air outside
of patient limits. These samples were the consequence of the automated target point
selection procedure, which selects as many diverse points as possible and therefore
selects many edge cases. The randomness in the selection procedure for the second
dataset also generated many samples that did not contain relevant information.

To exclude these trivial samples from the training data, we computed the percentage
of air voxels in the geometry volume of each sample. Samples where this percentage
is higher than 80% are sure to contain no relevant information for the model, while
samples with a percentage between 40% and 70% usually contain tissue on one side
of the geometry volume and air on the other. These last samples correspond to rays
that only graze the patient, and therefore deposit some radiation in tissue but mostly
go through air. Rays like these are unlikely to be applied in clinical practice, so we
decided to select the subset of samples with less than 40% air voxels in the geometry
as an improved dataset.

Multiple samples per geometry One idea that the original DoTA model made
use of, was the inclusion of samples with the same geometry x but different energy
values ϵ. Intuitively, presenting the model with dose distributions in the same geom-
etry but with two different energy values taught the model the impact of the energy
value on the output dose, and therefore made the model more robust to changes in ϵ.
This idea was adopted to make our model more robust to changes in angle of entry
as well.

After sampling two random energies and computing the corresponding two dose vol-
umes, the CT and target point were shifted 7 mm in a random cardinal direction. This
simulates the change in dose distribution that is obtained when moving the nozzle
while retaining the same target point, resulting in a slightly different angle of entry for
the same target geometry. For this new angle, two dose volumes were then computed
with the same two energy levels. The volumes were then cropped around the point
of entry and the four resulting samples consisting of one geometry volume, four dose
volumes, two energy levels and two pairs of angles were stored together to reduce
the amount of storage space needed. The difference between these dose volumes (and
those used to train DoTA, in which the rays traveled straight down) is illustrated in
Figure 11.

Figure 11: Examples of generated dose volumes illustrating the effect of changing the parameters. (1)
Sliced patient geometry (2) Dose volume with no imposed angle (as used for original DoTA, not used here)
(3) Dose for first energy and pair of angles (4) Dose with the same energy but slightly different angles (5)
Dose with same angle as (3) but lower particle energy.
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This method was taken a step further from the second generation cycle onward.
Trained on the first dataset, we saw the model struggle to accurately capture the
relation between the angle values and output dose. We therefore included more sam-
ples with the same geometry and energy but different angles, in an attempt to further
increase the models sensitivity to changes in angle of entry. In particular, for 10
target points out of every 50, we took the corresponding angles ϕ and generated 10
more samples, corresponding to the same geometry and energy but with the opposite
angles −ϕ. This simulates a shift of the nozzle across the target point in the X/Z
plane, to the exact opposite relative position.

Combining the samples from all cycles of data generation, the final training dataset
consisted of 30765 samples, with diverse patient geometries and angle values. Details
on the full training dataset can be seen in Section 5.1, including the total amount
of samples, the distribution of all angles in the training dataset and the impact that
removing the trivial samples had on the angle variety. The shape volumes s were
constructed for each sample in the dataset, so that it could be used to train both
models DoTA-A and DoTA-S. The next section describes the architectures of both
models, as well as hyperparameter choices made through model validation.

4.3 Model architecture and training
Model architecture The models DoTA-A and DoTA-S have similar architectures,
both consisting of a convolutional encoder, a transformer encoder and a convolutional
decoder. A schematic description of the model architectures is given in Figures 13
and 14.

The first layer of both models is the convolutional encoder which takes the geome-
try volume x ∈ RL×H×W as input, considering the horizontal slices {xi ∈ RH×W |i =
1, . . . , L}. In the case of DoTA-S, the volume s is taken as input as well and is treated
the same way. The encoder consists of two convolutional blocks and one final con-
volution. Each convolutional block consist of the following sequential layers (see also
Figure 12):

1. A convolutional layer, which performs a convolution operation on each xi

separately. Here, we use kernels of size 5 × 5 in 64 channels, with each channel
having a different set of weights for its kernel and producing a different output.
The kernel weights are regularized when updated to avoid problems with van-
ishing gradients. To ensure the output of each channel has the same size as the
input, we apply padding before the convolution operation. For the first convo-
lutional block in the encoder, this means we add rows and columns of zeros at
the edges of each xi so that there are H × W possible kernel positions. The
output of this layer is an abstract feature map {zi ∈ RH×W ×64|i = 1, . . . , L}.

Note that for the second convolutional block in the encoder, the input is of
the form {z′

i ∈ RH
2 × W

2 ×64|i = 1, . . . , L} as a result of the max pooling layer
described below. Therefore, we now use kernels of size 5×5×64 in 64 channels,
and we proceed in the same way as before to produce an output of the same
size as the input. For the convolutional decoder, the kernel sizes are adjusted
in a similar fashion.

2. A group normalization layer. Normalizing feature maps is known to enhance
model training, and for our models we used group normalization with G = 16
groups (Wu and He 2018), although many different options for normalization
are available. Group normalization splits the feature map sequentially along
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the channel axis into G groups, which in our case results in groups with shape
L × H × W × 4. For each of these groups the mean and standard deviation is
computed, and the groups are normalized accordingly.

Figure 12: The structure of each convolutional block in DoTA-A and DoTA-S.

3. A max pooling layer. We use a 2 × 2 filter for the pooling operation which
reduces the size of the feature map to L × H

2 × W
2 × 64. Each H × W -sized grid

is split into 2 × 2-sized patches, and the value of an element in the H
2 × W

2 -sized
output equals the maximum of the 4 values in the corresponding patch.

4. A Rectified Linear Unit (ReLU) activation layer. Activation layers allow
convolutional neural network to compute non-trivial problems by applying a
non-linear function (note: all functions that were applied to the input data so
far were linear). The most popular non-linear activation function for deep neural
networks is ReLU, which is defined as f(x) := max(0, x), applied element-wise
to the feature map. ReLU has a number of advantages compared to other
activation functions like the logistic sigmoid and the hyperbolic tangent, such
as scale-invariance, efficient computation and often producing sparse outputs.

The final convolution uses a predetermined number of K channels (the K correspond-
ing kernels have size H

4 × W
4 × 64) and embeds the resulting sequence of elements in

tokens {zi|zi ∈ RD, i = 1, . . . , L} for D = H
4 · W

4 · K.

After the convolutional encoder, we add tokens for the energy and the angles as
zϵ = Wϵϵ ∈ RD and zϕ = Wϕ(ϕX , ϕZ) ∈ RD respectively to the encoder output,
where the linear projections Wϵ ∈ RD×1 and Wϕ ∈ RD×2 have learned weights.
The next layer is a transformer encoder, which takes the L + 2 tokens as input to
extract information about the inter-dependence of the tokens through its self-attention
mechanism. We refer to Section 3.5 for an explanation of the inner workings of the
transformer layer.

We use a single transformer layer with a predetermined number of Nh attention
heads. Transformer blocks use a large amount of learned weights to capture the inter-
dependence of the different tokens, making optimizing models that use them especially
data-hungry. In our case, depending on the hyperparameters, the transformer layer
makes up for 90 − 99% of the total learned weights of the models. For the original
DoTA model, increasing the amount of transformer blocks in this layer did not improve
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Figure 13: The architecture of DoTA-A.

model performance while greatly increasing the model size, probably due to the large
amount of data needed to optimize. DoTA-A and DoTA-S are expected a priori to
need more data to achieve similar results as DoTA, since the relation that needs
to be captured is more complex. Based on this observation, DoTA-A and DoTA-S
use only one transformer block as well. A similar reasoning holds for the amount of
convolutional blocks in the convolutional encoder and decoder, which we kept at two.

The transformer is particularly suited to our setting when using causal self-attention,
which does not check later elements in the sequence for relevance to earlier tokens. In
our case, energy deposition happens mostly sequentially in the forward beam direc-
tion, meaning that to accurately predict dose values at any depth, deeper geometric
information is not expected to be relevant. Causal self-attention only considers the
relevance of earlier tokens, so for each of the L geometric tokens, only geometric
information above the corresponding layer is considered.

The output of the transformer has the same size (L + 2) × D as its input. The
convolutional decoder transforms these tokens into the desired size L × H × W
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with two convolutional blocks and one final convolution, similarly to the convolutional
encoder. The main difference between the convolutional encoder and decoder is that
for the decoder all convolutions are transposed, which increases the dimension of their
input. The final convolution transforms the output of the second block into 2D dose
slices {yi ∈ RH×W |i = 1, . . . , L} which are combined to produce the output dose
volume y.

Figure 14: The architecture of DoTA-S. The residual connections provide a path to deeper layers that
bypasses the convolutional layers in between.

In DoTA-S, the geometric input is presented together with the shape volume as
(x, s) ∈ RL×H×W ×2 (the kernels in the first convolutional layer thus have size 5×5×2).
To exploit the similarity between the input and output data, we include residual con-
nections in its architecture. The reasoning here is that on top of the general training
speed increase that residual connections bring, data will be able to flow to deeper lay-
ers in the model without passing through every convolutional layer. Since the input
shape volumes s and the output dose volumes are similar by construction of s, the
shorter path from input to output could help the model recognize this similarity and
use it in its predictions.
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Training Using these architectures, DoTA-A and DoTA-S were trained with the
generated training data. Using a voxel resolution of 2 mm × 2 mm × 2 mm, each
cropped geometry, dose and shape volume in our training set has a size of 150×25×25
voxels.

The training data is loaded in mini-batches of 8 samples. Upon loading each sample,
we randomly pick a rotation angle α ∈ {0◦, 90◦, 180◦, 270◦} and use this angle for a
rotation of the geometry, dose and shape volumes around the vertical axis (i.e. the
depth axis Y ). By adjusting the angle values ϕ = (ϕX , ϕZ) accordingly to one of
the four options (±ϕX , ±ϕZ) and (∓ϕZ , ±ϕX), the augmented samples are then still
valid. This augmentation step increases the effective amount of samples available to
the models. Since the convolutional encoder embeds the input data into tokens of
length D = H

4 · W
4 · K, we then crop the geometry, dose and shape volumes such that

H = W = 24.

For the training procedure, we use the end-to-end machine learning platform Tensor-
flow (Abadi et al. 2016) in Python 3.8. To optimize the model weights, we use the
LAMB (Layer-wise Adaptive Moments optimizer for Batch training) optimizer. The
LAMB optimizer uses the popular ADAM (Adaptive Moment Estimation) algorithm
as its basis, but adds normalization steps to the update rules which make training
more stable for large batch sizes. ADAM itself is based on standard stochastic gra-
dient descent methods, but instead of updating the weights by just the gradients of
the loss function, the moving averages of the gradients are taken into account. For a
detailed description of the ADAM and LAMB optimizers, we refer the reader to (You
et al. 2019).

We use MSE as a loss function, which measures the error between the model output
and given baseline dose. We train the model for 90 epochs (i.e. iterations over all
training data). The learning rate starts at 10−3, is halved every 4 epochs, and reset
to 10−3 after epoch 30 and 60. Of the full training dataset, 90% was used for training
and a fixed 10% of samples was used as a validation dataset. After each epoch, the
model performance on the validation dataset was measured, and the validation loss
after all 90 epochs was used as the main validation metric. The weights resulting in
the lowest validation MSE was saved for each model.

Validation The above model architecture contains two main hyperparameters: the
amount of channels K in the convolutional encoders final convolution, and the amount
of attention heads Nh in the transformer block. Both of these hyperparameters are
strongly connected to the models size. Recall that over 90% of the learned weights
of the model are used to model the inter-dependencies between token elements in the
transformer block. K determines the token dimension D := 36K of the convolutional
encoder output, so increasing K also increases the amount of weights in the trans-
former. Increasing the amount of attention heads Nh adds more sets of weights to
the transformer and therefore has the same effect.

To choose the values of these two hyperparameters, we performed validation on the
validation set consisting of a fixed 10% of our dataset. We performed a grid search
across all combinations of K ∈ {12, 16, 20, 24} and Nh ∈ {8, 16, 24, 32}. After training
both models with each of these combinations, the lowest validation loss was achieved
for K = 16 and Nh = 32 for DoTA-A, and K = 24 and Nh = 32 for DoTA-S.
These are the hyperparameter values that were used to evaluate our models, which
we describe in Section 4.4.

The best performing hyperparameters including a high amount of attention heads for
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both models can be interpreted as a sign that many interdependencies exist between
the tokens. With highly inhomogeneous geometries from a variety of treatment sites,
attention heads can be devoted to the interdependence of specific geometrical patterns
and the dose around or below them. For example, an attention head could capture
information about the behavior of dose deposition around different tissues. Attention
heads are also used to store relevance of the energy and angle tokens.

DoTA-S gives the best validation results when using 24 channels in the final encoder
convolution whereas DoTA-A performs the best when using 16 channels. Increasing
the amount of channels can increase the amount of features that are detected in the
convolutional encoder, and since DoTA-S gives the shape volume s as input for the
convolutional encoder as well as the patient geometry volume x, the extra channels
could help the model detect features from the shape volume.

4.4 Evaluation
To evaluate the models presented in this project we compared their predictions on a
test set to the baseline dose distributions coming from Monte Carlo simulations. We
compare the DoTA-A and DoTA-S models to the MC baseline to see how well they
approximate the ground-truth, and compare the results to those of PBA generated
dose distributions, calculated in matRad as well (Cisternas et al. 2015).

Additionally, for each test sample we want to evaluate the inclusion of the angle
information as a whole, relative to models that do not include any angle information
such as the original DoTA which is trained on perpendicular rays only. To measure
this difference, we calculate another MC dose distribution for each sample, this time
with each ray entering the geometry perpendicularly at the target point. Any model
that does not consider angle of entry is at most as accurate to clinical reality as this
method, which we call perpendicular MC.

Test sets The test sets were generated separately from the training sets, so the
evaluations test the models performance on samples that they have not seen before.
A few different test sets were used: water volumes, single rays and full plan.

• For the water volume test set, the dose distributions for proton beams through
water were generated using MC square. Since the geometry is completely ho-
mogeneous, this can be considered a benchmark evaluation method for any dose
calculation algorithm. The models were only trained on samples with realistic
patient geometries, so the question is if the models are able to extrapolate the
particle physics in a simple setting that is unlike anything it has seen so far. The
test samples all contain an empty water phantom geometry x, and the target
points were chosen in a fixed 7 × 7 grid to generate 49 different angles of entry.
For each of these angles, two samples were generated using energy values of 90
and 120 MeV, for a total of 98 samples in this test set.

• The single ray test set consists of samples generated in an identical way to the
samples in the training set. A patient CT was used for these samples that was
not used for the training set so that the inputs are new to the models. However,
since the models are trained on samples constructed in the exact same way, we
expect the performance on these samples to be good. We use a target point
selection as in the second and third generation cycle, meaning this test set
includes a variety of smaller and larger angle values. After removing samples
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with less than 60% non-empty geometry (as for the training set), this test set
consisted of 228 test samples.

• For the full plan test set, a treatment plan for a lung patient (which was not used
in the training set) was fixed, consisting of 2 beams of ±1000 rays each. Each
ray has its corresponding target point, energy value and relative weight listed
in the treatment plan. For each of these rays the baseline dose distribution was
calculated using MCsquare, and the individual ray dose distributions were added
together to create the full plan dose distribution. The models then predicted
the dose distribution for each of the rays as well, and the full plan distributions
were compared. This is the context in which dose calculation algorithms are
used clinically, and the results are not necessarily the same as those for the
single rays. For example, positive and negative inaccuracies could cancel out
when added together in the full dose distribution, and the error for lower energy
rays which account for less dose in the full plan have less impact than higher
energy rays.

Evaluation metrics To compare our models on the test sets described above, a
few different metrics were used. First, we measure the average speed it takes for the
models to produce the dose distributions. To evaluate prediction accuracy, the most
straightforward metric is MSE, which was also used as loss function for the training
of the models. Additionally, for a given prediction and baseline dose distribution,
we calculate the absolute dose difference between them for each voxel. We calculate
the maximum, mean and standard deviation of the error across all voxels in a single
sample, and average the resulting values over all samples in the test set. For the
mean voxel dose difference, we also include the variance and maximum across the test
samples.

The unit used for these calculations is percentage of maximum baseline dose, mean-
ing that for each sample we divide both prediction and baseline dose values by the
maximum dose value in the baseline dose distribution. This means that the same
error percentage for different test samples might not correspond to the same actual
dose difference, but instead refers to the relative accuracy of the prediction for each
sample.

We also exclude all voxels with a dose value of zero in both the prediction and the
baseline from our calculations. Since a ray only deposits dose along its path and our
cropped dose volumes have fixed size, most voxels in the dose volumes generally have
a dose value of zero. This causes the mean of the error values to be very close to
zero and makes them harder to interpret. This is especially apparent for the full plan
test set, where in a dose volume with more than 107 voxels only 3% to 4% of them
typically have non-zero dose values.

One caveat to the exclusion of zero-dose voxels is that a prediction could be very in-
accurate but have many inaccurate low dose-value voxels included in the calculations.
Even if the corresponding baseline dose values are zero, the low dose-value of these
voxels causes the error to be close to zero as well, and the average error across all
voxels could give the impression that the prediction is relatively good. The inaccu-
racy for such samples should however be reflected by a high deviation and maximum
error across all voxels. MSE evaluations, although harder to interpret in a dosimet-
ric sense, also avoid this problem and offer a more objective method for comparing
relative model performance.
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Gamma evaluation Another comparison tool for the predicted and ground-truth
dose distributions is gamma analysis (Low et al. 1998). Gamma analysis is based on
the observation that two dose distributions can be functionally identical even when
their voxel-by-voxel difference (such as measured by MSE) is large. A prediction with
a high dose value in a certain voxel could have a baseline with the same high dose
value in an adjacent voxel. Even though the exact voxel dose difference could then be
high, the prediction can still be considered accurate for practical purposes and this is
reflected in the gamma value.

For each voxel in the predicted dose distribution, gamma analysis searches a voxel
in the ground-truth dose distribution with a dose value that is similar enough and
which lies within a certain range. The thresholds are expressed through the maximum
dose difference parameter δ and the distance-to-agreement parameter ∆. Common
values for clinical gamma evaluations are δ = 1% and ∆ = 1mm, which means that
a dose value within 1% of the baseline dose is searched in a sphere around the target
voxel of radius 1mm. Mathematically, the gamma value is calculated as the minimum
distance in dose-distance space between the target point in the prediction and any
point in the baseline:

γ(p) := min
p̂

{Γ(p, p̂)}

Γδ,∆(p, p̂) :=
√

|p − p̂|2
δ2 + |D(p) − D(p̂)|2

∆2

where p are the coordinates of a point in the predicted dose volume, p̂ are the coor-
dinates a point in the ground-truth dose volume, D(p) is the dose value at any point
and δ and ∆ are the threshold parameters described above. In this description, a
voxel in the prediction is considered to pass the gamma evaluation when γ(p) < 1.
For an entire dose prediction, the gamma pass rate is then defined by the percentage
of all voxels which pass the gamma evaluation.

Since our models were trained and evaluated on a 2 mm resolution, we used gamma
evaluation parameters of δ = 1% and ∆ = 3mm for our single ray test sets so that
the range includes at least the surrounding voxels. For our full plan evaluations,
we used the four parameter combinations (δ, ∆) ∈ {(1, 3), (1, 1), (2, 2), (3, 3)}. When
performing gamma evaluations for ∆ = 1 mm on 2 mm resolution predictions, the
necessary dose values are interpolated from the surrounding voxels. These evaluations
are therefore not expected to produce a high pass rate but are still included for
completeness.
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5 Results
In this section, we present the results of this research project. We first show statistics
on the training dataset that was generated, with particular attention to the angle
values which are the focus of this project. We then give and discuss the computa-
tion speeds of the different dose calculation algorithms which we compare. Finally,
we present the evaluation results across different evaluation metrics and test sets,
including single ray test samples and a full treatment plan simulation.

5.1 Training data
With the generation methods described in Section 4.2, the training dataset for our
models was generated over three generation cycles. Table 1 describes the results for
each cycle. Each sample consists of one cropped geometry volume x ∈ R150×25×25,
two energy values ϵ, two pairs of angles ϕ = (ϕX , ϕZ) and four dose volumes y ∈
R150×25×25 corresponding to each energy-angle combination. Here, the geometry
volume is cropped such that the ray’s point of entry lies exactly at the coordinate
(1, 13, 13), which is the center voxel on the first layer.

The data was generated from a dataset of 53 patient scans, with the scans taken at
different regions of the body depending on the patients tumor location. The patients
can thus be categorized as being either Head and Neck (H&N), Lung (L) or Pelvic
(P) patients. Some scans include multiple regions as well. For each of the second and
third cycle, we selected only two patients for each region but generated a much larger
amount of different angles for each patient, resulting in a similar amount of samples
as the first cycle with more angle variety.

Cycle # of samples (with < 40% air) # of patients (H&N/L/P) # of angles
1 17469 (11499) 53 (21/22/14) 411
2 13449 (9748) 6 (2/2/2) 11469
3 13500 (9518) 6 (2/2/2) 12684

Total 44418 (30765) - 15880

Table 1: Construction of the training dataset over three cycles.

Angles Figure 15 below describes the angles ϕ = (ϕX , ϕZ) that appeared in the
samples generated over our three generation cycles. We see that the first cycle only
produced few fixed angles in a grid across the available range of [−5.16◦, 5.16◦] in
either direction. The second and third cycle use a stochastic approach, and generate
a more diverse set of angles.

Figures 15 and 16 show that the training data consists of a large variety of angles
of entry, with the most commonly used angles in the range [−2◦, 2◦] appearing more
frequently. Values of ϕX and ϕZ that are close to the machines physical limitations
are uncommon in clinical practice. Since the patient and gantry arm can also be
rotated for a treatment plan, these rotations are usually chosen such that the target
points lie relatively straight under the nozzle exit. This does not take away from the
relevance of the angle of entry, since each beam consists of multiple rays diverging
to a collection of target points. Note that by convention, patients are oriented along
the Z-axis in the CT scans. Thus, although rays with a high value of ϕZ might
still deposit dose in patient tissue, high values of ϕX typically correspond to the ray
traveling through mostly air and therefore being deleted in our dataset clean-up.
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Figure 15: The angles of all samples generated per generation cycle, in degrees (from left to right: cycle
1, 2 and 3). The blue outline represents the maximum clinically achievable angles.

Figure 16: Heat-map of all angles in the final training set, colored by number of appearances. Left:
original training set after 3 cycles. Right: after removing samples with over 40% air in the geometry. For
visibility, angles appearing between 20 and 30 times are grouped together.

In Figure 16, the angles that appear in our training set (combining data from all three
generation cycles) are shown in a heatmap. The full range of angles is discretized into
a 100 × 100 grid and each voxel is colored by the amount of angles in our training set
that lie inside of it.

In the right figure we see the angles that remain after excluding those samples whose
geometry volume consists of more than 40% air voxels (as per Section 4.2). This
causes 13 653 samples to be excluded from the training set, which was around one
third of the original amount. Removing these samples does not significantly reduce
the amount of different angles in the training set: the reduced training set still has
13 219 different angles, meaning 2 661 were discarded. We see that the distribution
of angles is also not distorted by the removal of samples with more than 40% air in
the geometry.

For each sample in the final training set, we constructed shape volumes s for all four
energy-angle combination, using the methods described in Section 4.1. This training
set was then used for the training of DoTA-A and DoTA-S, which we will describe in
the next section.
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5.2 Prediction speed
In this section we discuss the prediction speed of the dose calculation algorithms used
for our comparisons. Table 2 lists the average time per dose it took for each algorithm
to calculate the dose distributions of samples in our test sets. The predictions for
DoTA, DoTA-A and DoTA-S were performed using GPU hardware (NVidia Quadro
RTX 6000) and for PBA and MC we used CPUs for the calculations (Intel Xeon CPU
E5-2690) utilizing 8 CPUs in parallel.

Model Average runtime per ray (s)
DoTA 0.005

DoTA-A 0.013
DoTA-S 0.018

PBA 0.83
MC 38.40

Table 2: Average runtime per test set ray of various dose calculation algorithms.

We see that the prediction speed of DoTA-A offers prediction speed of a factor 60 faster
than PBA, with DoTA-S being slightly slower and offering a factor 40 reduction. Both
models DoTA-A and DoTA-S are slightly slower than the original DoTA. Compared
to MC simulations, DoTA-A and DoTA-S offer a 3000 and 2000 times reduction in
calculation time respectively.

The difference between the average runtimes of DoTA, DoTA-A and DoTA-S is likely
due to the different model sizes. The original DoTA used around 107 learned weights,
while DoTA-A and DoTA-S use around 4.3 · 107 and 9.7 · 107 learned weights respec-
tively. The amount of learned weights is roughly proportional to the total amount of
operations that the models perform on its input to compute the corresponding output.
As we see, the proportions of the three model sizes roughly correspond to the pro-
portions of the model prediction speeds. We might expect DoTA-S to be more than
twice as slow as DoTA-A because it has more than twice as many learned weights;
the roughly 40% increase in runtime might be an indication that many of the weights
in DoTA-S are set to zero, simplifying the operations that the model performs.

5.3 Accuracy
This section lists the results of our evaluations on the different test sets. As described
in Section 4.4, we first measure the absolute difference across the voxels within a
sample, only considering non-zero dose value voxels. The mean, standard deviation
and maximum for the relative error across all voxels is then calculated, and the average
of these metrics across all test samples is measured. We also compute the deviation
and maximum across the test set over each samples mean relative error.

We additionally computed the gamma pass rates of voxels with non-zero dose value,
using a dose difference threshold of ∆ = 1% and a distance threshold of 3mm. This
gave a percentage of passed voxels for each sample. The average gamma pass rate of
all samples in the test set is provided, along with the standard deviation across all
samples and the lowest and highest pass rates in the test set.

Water In tables 3 and 4 we see the results for the water phantom test set. We see
that DoTA-S is the best performing model for this test set, scoring a gamma pass
rate close to 100% for all samples in the test set. The models have not encountered
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Water test set Error in % of max. baseline dose
(over voxels in a sample) Mean absolute error σ Max.

(over all samples) µ σ Max. µ µ
DoTA-A 0.91% 0.24 % 1.57% 1.43% 19.98 %
DoTA-S 0.60% 0.12% 0.84% 0.96% 13.59%

PBA 1.22% 0.06% 1.40% 2.93% 46.73%
Perp. MC 2.77% 1.21% 5.33% 3.98% 35.15%

Table 3: Error between model predictions and MC baseline for the water test set.

Water test set γ pass rates MSE
(over all samples) µ σ Min. Max. µ

DoTA-A 99.18% 0.85% 97.11% 100% 3.13
DoTA-S 99.88% 0.14 % 99.15% 100% 1.32

PBA 92.78% 4.11% 81.32% 99.41% 10.26
Perp. MC 87.14 % 12.44 % 60.16 % 100 % 28.01

Table 4: Gamma pass rates and MSE of all models for the water test set. The gamma pass rate is the
percentage of non-zero dose value voxels that pass gamma evaluation with δ = 1% and ∆ = 3mm.

empty geometries such as the ones used in this test set during training, so the high
performance demonstrates the models’ capacity to extrapolate accurately from the
training data. Figure 17 shows the different model predictions for the test sample
where DoTA-S had the worst performance.

The high performance of DoTA-S compared to DoTA-A can be explained by the
increased similarity of the shape volume s to the target dose in this test set. For
inhomogeneous geometries, the shape volume will only be a rough outline of the
shape the dose is expected to take, but it does not consider geometry. For the water
test set, the shape of the actual dose is continuous in a similar way to the shape
volumes that DoTA-S takes as input.

The performance of PBA is poor compared to the other models, but gives a higher
accuracy for the water test set than for the other test sets. We expected to see this
behavior since the way PBA calculates dose by drawing a central pencil beam and
expanding the dose around it is very similar to the dose deposition behavior of pro-
ton rays in water volumes. PBA is known to provide less accurate predictions in
inhomogeneous geometries, as we will see for the next test sets. While the perpendic-
ular MC predictions are fairly accurate for samples with smaller angle values, it gets
increasingly less accurate for larger angles.

To visualize which type of sample the models have the worst performance on, we plot
the SMSE of our model predictions for all samples in Figure 18, sorting the samples
by either energy or angle values. The SMSE is defined as

√
MSE where MSE is

the standard mean square error between the prediction and baseline dose; we take
the square root to simplify the visualization, since we are interested in relative error
between samples. For the water test set, sorting by energy splits the test set in half
since the 98 samples in the test set consist of 49 angles and a dose corresponding
to the energy values 90 and 120 MeV for each angle. When sorting by angle values,
we calculate ϕ2

X + ϕ2
Z for each sample as a metric for relative combined angle size,

and sort the samples by these values. The perpendicular MC calculated doses are
not shown in these plots, since we know that the inaccuracy of these predictions only
depends on the angle values.
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Figure 17: Predictions and relative error of the different models, showing the same central X/Y slice
for each volume. This is the sample in the water test set with the highest MSE between DoTA-S predicted
dose and the MC baseline (ϵ = 120 MeV, (ϕX , ϕZ ) = (3.1◦, −3.7◦)).

Figure 18: Left: SMSE of water test set samples for different models, sorted by energy. Right: Sorted
by relative combined angle values instead.

As we see in Figure 18, out of the three models, DoTA-S is the most stable with regards
to increases in both energy and angle values and outperforms the other models for
most samples. DoTA-A seems to perform slightly worse on average on samples with
large angle values, and the samples where DoTA-A has the worst performance have
both high energy and angle size. We can also see that PBA is significantly worse
when predicting doses with a higher energy value in this test set.
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Test patient Error in % of max. baseline dose
(over voxels in a sample) Mean absolute error σ Max.

(over all samples) µ σ Max. µ µ
DoTA-A 1.45% 0.52% 3.89% 2.20 % 35.42 %
DoTA-S 1.09% 0.34 % 2.10% 2.10% 36.13%

PBA 1.88% 0.85% 4.47% 4.71% 90.86%
Perp. MC 3.04 % 1.86% 11.25% 5.44% 57.95%

Table 5: Error between model predictions and MC baseline for the test patient dataset.

Test patient γ pass rates MSE
(over all samples) µ σ Min. Max. µ

DoTA-A 97.07% 2.25% 89.15% 99.95 % 7.69
DoTA-S 97.22% 2.37% 86.95% 99.99% 6.25

PBA 84.74% 7.32% 60.99% 99.02% 30.03
Perp. MC 73.30 % 18.60 % 32.93 % 99.97 % 50.37

Table 6: Gamma pass rates and MSE of all models for the test patient dataset. The gamma pass rate
is the percentage of non-zero dose value voxels that pass gamma evaluation with δ = 1% and ∆ = 3mm.

Test patient In tables 5 and 6 we see the test results for the test set consisting of
samples similar to the training data, using a patient geometry that the models have
not yet encountered. For this test set, DoTA-S is again the best performing model for
most metrics, although DoTA-A has similar results and performs slightly better by
some metrics. The patient geometry is largely inhomogeneous, with the CT including
the patients lungs as well as the head and neck area. This makes achieving a similar
accuracy as for the water test set unlikely, but we see that DoTA-A and DoTA-S
approximate MC baseline dose distributions better than PBA and significantly better
than perpendicular MC simulations, which demonstrates the importance of the angle
of entry in dose calculation algorithms.

Figure 19: SMSE of test patient samples for different models, sorted by percentage of air in the sample
geometry.

Like for the water test set, we plot the SMSE of all samples in Figure 20, sorting the
samples by energy and angle values. The error values show that PBA struggles to
achieve the same high accuracy as DoTA-A and DoTA-S in this test set, most likely
due to the inhomogeneous patient geometry. To test this hypothesis, we additionally
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sort the samples in this test set by amount of air in the geometry in Figure 19. Recall
that we removed all samples with more than 40% air in the geometry from both the
training and the test datasets.

Figure 20: Above: SMSE of test patient samples for different models, sorted by energy. Below: Samples
are now sorted by relative combined angle values.

Figure 19 shows that all models perform worse for samples with high percentages
of air in the geometry. This is the most apparent for PBA, while the samples that
give the worst results for DoTA-A and DoTA-S usually have a combination of high
energy, angle values and air percentage. In Figure 20, we see that DoTA-A and
DoTA-S display high robustness with regards to changes in energy and angle, and
this observation supported by their low variance in error and gamma pass rates across
the test set.

In Figure 22 we see the predictions of the different models for one sample of the
patient test set. As we see, this dose passes through an inhomogeneous part of lung
tissue, and the geometry volume consists of 35.1% air (not including the air in the
lungs, which has a different radiodensity from air outside of the patient).

We see that PBA struggles to accurately predict the dose in this inhomogeneous
setting and greatly overestimates the intensity and location of the Bragg peak. This
confirms the cited problems with PBA predictions at lung treatment sites (Taylor,
Kry, and Followill 2017), and we will see the same issue arise for the treatment plan
evaluation. DoTA-S is the most successful for this test set, with DoTA-A performing
only slightly worse.
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Figure 21: Predictions and relative error of the different models, showing the same central X/Y slice
for each volume. This sample from the patient test set has 35.1% air in the geometry (ϵ = 98 MeV,
(ϕX , ϕZ) = (−1.4◦, −2.1◦)).

Treatment plan For the full treatment plan, we compare the predicted and MC
baseline dose distributions resulting from a full plan of around 2000 rays. The plan
consists of two beams that correspond to different gantry angles, and each beam
consists of around 1000 rays using a variety of energy values and angles of entry. For
each model, the dose distributions for each ray was inferred separately, and tables 7
and 8 show the accuracy of the full plan dose distributions obtained by summing the
dose distributions for all rays together with their assigned relative weights.

Treatment plan Mean absolute error σ Max. MSE
DoTA-A 0.89% 1.20% 18.20% 2.23
DoTA-S 0.88% 1.39 % 22,88% 2.71

PBA 8.42 % 14.38% 156.64% 277.67
Perp. MC 3.27 % 4.99% 39.16% 35.60

Table 7: Test results for the full treatment plan, combining predictions for around 2000 rays. Absolute
voxel difference is measured in % of maximum baseline dose value and considers only non-zero dose voxels.

Surprisingly, DoTA-A provides a more accurate full plan dose prediction than DoTA-S
for this treatment plan. Across the 2245 individual rays that make up the treatment
plan, DoTA-S dose predictions are more accurate than those of DoTA-A for more
than half the rays. However, due to the rays having different weights and energy
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Treatment plan γ pass rates
(δ, ∆) (1%, 3mm) (1%, 1mm) (2%, 2mm) (3%, 3mm)

DoTA-A 97.60% 88.32% 97.68% 99.43%
DoTA-S 95.74% 86.76% 95.71% 98.21%

PBA 66.34 % 44.92% 61.47% 71.83%
Perp. MC 78.33 % 57.11% 75.09% 84.84%

Table 8: Gamma pass rates for the full treatment plan. Measured over all non-zero dose value voxels in
the treatment plan, combining the predictions of around 2000 rays.

values, the contribution of individual rays to the total dose distribution varies. In
other words, a likely reason for the high performance of DoTA-A is the relatively high
weights in the total plan of those rays where DoTA-S performed worse than DoTA-A.

Additionally, note that the voxel error for dose predictions of individual rays can
be either negative or positive if the model respectively over- or underestimates the
target dose values. When adding the dose distributions of individual rays together,
combining the error values on one voxel can either cause the error to be canceled out
or amplified. One other explanation for the higher performance of DoTA-A for this
particular plan could therefore be that the individual ray errors of DoTA-A cancel
each other out in the full dose distribution more frequently than for DoTA-S.

Figure 22: Predictions and relative error of the different models, showing the same X/Y slice at isocenter
depth for each volume.

Likely due to the treatment plan being constructed for a lung patient, we see that
the PBA predictions are very inaccurate for the full dose distribution. The PBA
ray predictions overestimate and misplace the dose deposition, especially in the lungs
where the baseline dose has the highest intensity. The positive errors in dose value
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get amplified when the individual rays get added together to create a dose error of up
to 150% of the maximum baseline dose. The gamma pass rate of our PBA prediction
is still higher than found by Sorriaux et al. (2017), where for δ = 2% and ∆ = 2 mm
gamma pass rates of 44.7% was observed for a full lung patient plan dose distribution.
For these parameters and our treatment plan, we find a PBA prediction gamma pass
rate of 61.47%.

The perpendicular MC prediction suffers less from the inhomogeneous patient geom-
etry, and the angles used for this treatment plan were relatively slight compared to
those used in our training and test datasets (all angles used in this plan satisfied
ϕX ∈ [−0.3◦, 2.1◦] and ϕZ ∈ [0.4◦, 2.8◦]). Still, neglecting the ray angle of entry
causes the full plan dose distribution to be at least three times more inaccurate than
DoTA-A and DoTA-S predictions. While the maximum error value is only twice as
high for the perpendicular MC prediction as for DoTA-A and DoTA-S, the area with
high dose deposition shows a consistent error. For DoTA-A and DoTA-S, the in-
correct voxels seem to be more evenly distributed with dose values both higher and
lower than desired. This difference is also illustrated by the deviation in error and
the gamma pass rates.
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6 Discussion
Here, we interpret the results from the previous section. We examine the performance
of the models constructed in this project, considering both prediction speed and ac-
curacy, and if these or similar models have potential in clinical practice. We also take
a critical look of the methods used in this project, suggesting approaches that could
lead to better results and ways to bypass the shortcomings of DoTA-A and DoTA-S.

6.1 Prediction speed
The average runtimes of DoTA-A and DoTA-S when predicting a single dose are
13ms and 18ms respectively. This is around three times slower than the original
DoTA, but much faster than the PBA and MC dose calculation algorithms which are
currently used in clinical practice. Our models are able to predict the dose distributed
by 56 and 77 rays per second. This gives them potential in clinical use, drastically
reducing the time required in general treatment planning and possibly allowing for
the implementation of techniques such as real-time adaptive treatment planning.

As discussed in 5.2, the computation speed of our models seems to be mostly pro-
portional to the model sizes, which in turn are determined by the choice of hyper-
parameters K and Nh. While our used values of Nh = 32, K = 16 and K = 24
for DoTA-A and DoTA-S respectively gave the highest performance on our validation
set, the difference between validation losses for different combinations of hyperparam-
eters was often marginal. Therefore, it is likely that there exists a trade-off in the
choice of hyperparameters, where smaller models have higher prediction speed but
sacrifice accuracy in the process. Finding the optimal choice of model architecture
with both factors in mind could be explored further, perhaps increasing the amount
of training data to compensate for the decrease in model size. In this way, DoTA-A
and DoTA-S could possibly achieve the same millisecond prediction speed as DoTA
without sacrificing prediction accuracy.

In practical applications, DoTA-S requires additional computation time since for each
ray, the shape volumes need to be constructed from the angle and energy information
as a prerequisite input variable. This roughly doubles the computation speed of the
model, which would outweigh its marginal and disputable increase in accuracy over
DoTA-A. When implementing such a model in practice, one solution could be to
construct a lookup table of shape volumes for all angle and energy values in the
available ranges. Since the shape volumes do not depend on patient geometry, they
could be generated a priori and stored for later use, which would virtually remove
this part of the DoTA-S computation speed limitations.

6.2 Accuracy
From the evaluations across three different test sets, we see that the models DoTA-A
and DoTA-S approximate Monte Carlo ground-truth dose distributions with an av-
erage relative error of around 1% and average gamma pass rates of 97%. This is a
significant improvement over the original DoTA model; recall that DoTA approxi-
mates a perpendicular MC baseline, which for the same test sets achieved an average
relative error of around 3% and gamma pass rates around 78%. These errors indi-
cate that dose predictions based on perpendicular rays are unsuited for clinical use,
and that the inclusion of ray angle as an input for dose calculation algorithms is an
important factor in achieving high accuracy.
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Our comparisons show that the PBA model we used performs a lot poorer than the
other models. However, this PBA model is not the same as those that are used in
clinical treatment planning systems. Clinical PBA models typically achieve higher
accuracy by modifying the basic PBA algorithm, for example to account for parti-
cle scattering behavior. The PBA model we used is part of an open-source toolbox
(Cisternas et al. 2015). However, maintaining high accuracy in inhomogeneous ge-
ometries such as the lungs remains a challenge even for clinical PBA models. The
performance of these clinical PBA models compared to deep learning based models
such as DoTA-A and DoTA-S could be investigated in further research.

Upon reviewing the evaluation results for the full treatment plan, a definitive answer
to the question which of DoTA-A and DoTA-S provides a higher accuracy is hard to
give. DoTA-S performed better on the single ray test sets, but the full treatment plan
results illustrate that prediction accuracy is not consistent across different settings,
and show why manually reviewing the final dose distribution is important in practical
applications. Since DoTA-S has more than twice as many learned weights as DoTA-A,
it is possible that the former would benefit more from an increase in training data.
Transformer based models are known to be extremely data hungry, and it is likely
that both models could achieve much higher accuracy when exposed to more training
data.

The accuracy and speed of both models gives them potential in clinical practice, but
they are unlikely to be implemented in their current state since a maximum dose
error of 3% is a clinical requirement which our models do not fulfill in some settings.
The performance of the models is also worse than that of DoTA relative to its own
baseline. This is not completely unexpected however, since the input-output relation
is more complex with the inclusion of angle-dependency compared to the original
DoTA.

6.3 Future research
There are multiple ways in which future research could improve on or implement the
models DoTA-A and DoTA-S. Experimenting with the training data, model archi-
tectures and training procedure could provide better performing models. In general,
experimenting with different training dataset showed a correlation between larger
training datasets and better performance. The shape volume construction is an idea
that could be explored further, perhaps with applications in different settings or stages
of the radiotherapy workflow. Model architecture could also be designed around the
shape volume in a similar fashion to the residual connections included in DoTA-S.

Different ways of implementing angle dependency into dose calculation algorithms
could also be a further area of research. An example is taking predictions which don’t
take the ray angle into account at all, such as perpendicular MC, as an initial input
similar to (Javaid et al. 2021). Rotating these initial doses or other distortions based
on the angle of entry could also approximate realistic dose distributions, although the
patient geometry in the new trajectory would have to be taken into account somehow.
Modeling the angle of entry by rotating the patient CT and computing a perpendicular
MC dose prediction could be investigated, although the dose deposition around the
first CT layer would have to be corrected.

Another interesting continuation could be to investigate the performance of DoTA-A
and DoTA-S when trained exclusively using samples from a single treatment site. The
original DoTA aimed to capture general particle transport, which is a challenging task,
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and the addition of angle dependency made the relation our models try to capture
even more complex. Limiting the kind of geometries for which the models should
be able to predict dose distributions could improve the accuracy of the models, and
although the general application of modeling particle transport would be lost, clinical
applications for treatment planning on specific treatment sites could become possible.
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