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ABSTRACT

We present HUM–High-frequency UAV Messaging: an acoustic
side channel communication system we design for localized drone-
to-drone communications. We generate Pulse Width Modulated
(PWM) signals from dronemotors to carry information and improve
communication reliability by mitigating propeller noise interfer-
ence throughmodifications to the propeller’s physical design. These
modifications reduce propeller noise in the designated acoustic spec-
trum by up to 7 dB. We deploy a custom ultrasonic microphone
shield specifically designed for decoding in the receiver. HUM’s
improved signal-to-noise ratio enables up to 80x higher data rates
compared to the existing design from the literature while providing
better scalability. HUM supports simultaneous decoding across 16
drones within 8m, range as seen in real flight tests. The cost of this
performance is minimal; we experimentally demonstrate that HUM
has a marginal impact on flight dynamics and battery life.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Sensors
and actuators; Robotics; • Hardware → Sound-based input /

output.
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audio processing, acoustic communication.
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Figure 1: HUM communication: we use motors as transmit-

ters, custom changes to existing propellers to reduce inter-

ference noise, an ultrasonic microphone at the receiver, and

a dedicated communication protocol. A demonstration video

can be found online: https://youtu.be/Ji_CjWFnaB4

1 INTRODUCTION

Aerial drones are now recognized as formidable mobile comput-
ing platforms [38]. They enable a multitude of applications [4, 21],
including aerial mapping and surveillance [42], search and res-
cue [56, 59], environment monitoring [27, 45], and gas leak detec-
tion [13]. In indoor settings, micro- and nano-drones are deployed
to support warehouse management tasks [18, 66], ambient intelli-
gence applications [5], and human-drone interactions [19]. Owing
to their size and energy consumption, micro- and nano-drones are
extremely resource-constrained.

In many applications involving multiple drones, localized and
short-range communication supports drone coordination in a shared
physical space [43]. Most often, these systems use RF technologies
such as Bluetooth and 802.15.4 [37, 57].
Where RF fails. Paradigmatic scenarios exist, however, where RF
technologies fall short of expectations. During Fukushima nuclear
disaster, the robots deployed in response encountered significant
RF communication problems caused by high radiation levels and
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the complex environment within the nuclear power plant. These
interfered with the wireless control signals used by the robots [24]
and forced rescue teams to rely on tethered connections, making
operations much more challenging. Several reports indicate that,
in addition to physical and environmental obstacles, reliable RF
communication was a major hurdle in the effective deployment of
robots in such hazardous areas [7, 11].

Jamming attacks on RF communications that impede the safe
operation of drones are also increasingly reported [16, 29, 68, 75].
Intentional jamming of RF links is very common, for example, in
military applications where adversaries may use special equipment
to block RF communications [6, 17, 49, 53]. After natural disasters,
RF communication could be blocked by infrastructure failures or
terrain [47, 50, 62]. Temporary RF blackouts may also occur in
challenging environments like warehouses, underground caves,
or near high-voltage transmission lines, where RF signals can be
dampened, absorbed, or scattered [23].

These scenarios require the use of non-RF side channels for local-
ized communications that can, even with reduced capacity, be useful
for coordination and contention while being interference agnostic.
While each drone runs its own flight control loop locally, short-
range non-RF communication can help drones in close proximity
exchange critical navigation data or maintain formation. A key
example is the implementation of an identification system “Friend
or Foe” (iFF) to enable drones to distinguish between friendly and
unauthorized drones [40]. This functionality is fundamental to pre-
venting collisions and improving coordination in densely populated
airspaces [40] and is increasingly required by drone regulations
worldwide [3, 20] preferably using a different channel.
Challenges. Provisioning a non-RF communication channel for
localized drone-to-drone communications is arguably difficult. At-
tempts exist in the literature that still provide insufficient band-
width in many of the above scenarios and are inherently limited to
sending a few heartbeat messages [10].

The key requirements we elicit are: 1 scaling to more than a
handful of drones to support applications from warehouse manage-
ment to monitoring of high-voltage transmission lines; 2 effec-
tively supporting robot coordination and possibly operating as a
fail-over link using non-RF technologies and with higher data rates
than a couple of bits per second [10] to be able to send important
parameters for coordination in one frame; 3 reaching at least a
few meters to reach drones operating in a shared physical space; 4

only relying on the constrained resources found in micro- and nano-
drones, thus limiting processing overhead, energy consumption,
and additional weight that may impact the drone flight dynamics.

Attempts already exist to tackle some of these requirements, as
we discuss in Sec. 2. For example, Bleep [10] utilizes propellers gen-
erating acoustic chirps with data rates up to 1-2 bps and a maximum
of 4 coordinating drones, because the issue of propeller-generated
noise greatly complicates decoding. However, Bleep [10] evidently
struggles fulfilling the requirements 1 and 2 .
Solution.Wepresent a unique design calledHUM–High-frequency
UAVMessaging, which uses acoustic communications tomeet these
requirements. Fig. 1 shows a high-level overview.We generate Pulse
Width Modulated (PWM) signals by purposely switching the fre-
quency of drones’ motors simultaneously, reducing the amplitude

of self-noise for reliable communication. We deploy a dedicated
hardware shield with an ultrasonic microphone at the receiver that
adds minimal weight. Three key technical contributions concur to
make our design ultimately efficient:
(1) A quantitative analysis of the acoustic signals generated

by micro- and nano-drones, including the propellers’ noise
and its effect on an acoustic signal possibly generated by
modulating the PWM motor signals, illustrated in Sec. 3;

(2) A custom design of micro- and nano-drone propellers re-
ducing the noise they generate upon intentionally generated
drone motor audio signals, discussed in Sec. 4;

(3) A dedicated communication protocol, enabling scalable
drone-to-drone communications by simultaneously modulat-
ing PWM signals of all four motors, generating orthogonal
frequencies to increase the bit rate, described in Sec. 5.

The experimental evaluation in Sec. 6 indicates that HUM en-
ables up to 80x higher data rates than existing designs, using all
four motors as transmitters simultaneously utilizing four different
frequencies while providing better overall scalability. For example,
it can support simultaneous decoding of frames from 16 nearby
drones and communicate within an 8m range, as seen in real flight
tests. This enables applications that are otherwise unfeasible, such
as those hinted earlier, that require rich information exchanges
beyond simple ”heartbeats” [10]. Nonetheless, the cost for this
performance is minimal: we demonstrate that HUM imposes a
maximum of 7% overhead on battery life when a drone transmits
data using the side channel for coordination exclusively. Note that
side-channel communication is not needed continuously.

2 RELATEDWORK

Our work touches upon several interrelated areas. We briefly survey
relevant works next.
Acoustic communication. Recent literature explores the use of
audio signals to carry information, employing off-the-shelf micro-
phones in smartphones or wearables [39, 70–73].

Several works specifically investigate the use of acoustic side-
channels to extract information leaked by electro-mechanical de-
vices such as keyboards [8, 33] and printers [9]. Smart devices like
Secure-Vibe [30] and Deaf-Aid [22] employ audio signals generated
by vibrating motors as a dedicated communication channel. Their
design primarily focuses on leveraging acoustic signals covertly
for communication or as a side channel to extract additional in-
formation. MotorBeat [64] uses household DC motors, like those
in electric toothbrushes, to transmit acoustic messages to a smart
speaker, achieved by randomizing the switching period of the PWM
signal driving the motors. These motors, characterized by relatively
low rotation speeds, differ significantly from drone motors due to
higher rotational regimes and the presence of propellers.
Propeller noise. The noise emitted by drone motors during flight
may serve functionality such as drone identification [48] or indoor
localization and tracking [55, 65]. These systems do not aim to re-
duce propeller noise but instead leverage specific audio signatures
generated by drones during hovering for decoding identity or lo-
cation information. The transmitters are speakers carried by large
drones. These designs are intended for scenarios where groups of
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Figure 2: Spectrogram of noise generated by a CrazyFlie nano-

drone as recorded by a MEMS microphone placed onboard.

heterogeneous drones fly together, each with a distinct audio sig-
nature. This work targets systems with multiple yet homogeneous
collaborating micro- or nano-drones.

Manipulating the PWM frequency of drone motors is recognized
as a way to generate audio signals [1]. Bleep [10] relies on this
functionality to generate acoustic up- and down-chirps, achieving
a 1-2 bps bit rate for heartbeat messaging and drone identification.
Further opportunities exist within this framework, which we ex-
plore in this work, related to the characterization of the audio tone
generation, the mitigation of noise coming from propellers, and the
use of the ultrasonic part of the acoustic spectrum.

In the next section, we begin by quantitatively studying how to
best exploit the phenomena of motor-generated audio signaling
and, at the same time, how to mitigate propeller-generated noise
to improve communication. In doing so, we build the necessary
technical foundation for the rest of the paper.

3 AEROACOUSTICS

We target micro- and nano-drones of 10-25 cm in diameter and
weighing from 50 g to 500 g, which are the most common ones
for indoor applications. These typically employ brushed coreless
motors rated at a few watts of power [52].

3.1 Understanding Drone Noise

Propellers create pressure waves, and the motor casing vibrates,
generating noise when drones operate. Propellers vary in shape and
size, yet the underlying principles of generating noise are always
the same. Propellers generate harmonic or tonal and broadband
noise spread over a wide range of frequencies in the audio spectrum
band and are typically induced by turbulence. This noise source is
random and, therefore, unsteady.

We examine the physics leading to noise generation from a rotat-
ing propeller. As it spins, the pressure difference created between
the propeller’s top and bottom surfaces produces the tonal noise.
Broadband noise, on the other hand, originates from the pressure

Figure 3: Noise generated by three different nano-drones

with different motor-propeller geometries at 1m distance.

Each combination generates a different amount of noise in

the 0-23 kHz spectrum.

fluctuations on the propeller surface, particularly towards the lead-
ing edge [34]. On top of that, a Boundary Layer at the propeller
surface may be the source of narrowband tones, called long bound-
ary layer (LBL) noise, which may be observed as narrowband peaks
when the propeller rotates.

Broadband noise is usually smaller compared to tonal noise
components. Harmonic or tonal noise is periodic and can be split
into thickness and steady-loading noise. Thickness noise is generated
due to the displacement of air molecules by the volume of the
propellers and increases with increasing rotational speed. Steady-
loading noise, instead, stems from the pressure difference above
and below the blades, which generates lift and drag. This type of
noise is significant at low and moderate rotational regimes [25, 41].

By mapping the spectral frequencies of the propeller noise, we
can determine the dominant frequencies and harmonics. Fig. 2
shows the broadband and tonal noise generated by the propeller of
the popular CrazyFlie. We capture the audio signal using a MEMS
microphone placed directly on the frame. The plot shows the entire
spectrum, including frequencies up to 40 kHz. The noise is spread
up to 25 kHz with strong tonal noise visible up to 6 kHz.

It becomes apparent that the specific motors and propellers affect
the noise spectral signature. Fig. 3 shows the audio signal generated
by different combinations of brushed DC motors and propellers.
Note that the same combination results in an identical audio signa-
ture across different drones, changing only with changing motor
and/or propellers. All combinations are usable with the CrazyFlie
nano-drone. The noise produced by each combination differs in in-
tensity, increasing with the increasing size of motors and propellers
and their rotational speeds. In all of them, we observe prominent
noise in the audible spectrum.
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Figure 4: Spectrogram of motor generated hum of 23kHz by

modulating the PWM switching frequency on a 7x16mmDC

coreless drone motor with: (top) a mounted propeller; (mid-

dle) no propeller; and (bottom) additional tape to dampen

the motor vibrations.

3.2 Motors as Audio Sources

Motor vibrations also contribute to the generated noise, even though
the larger propeller noise often overshadows this. The continuously
changing PWM signal makes the drone motor produce sounds at
specific frequencies. The PWM signal has two properties influenc-
ing the generated sound: the duty cycle and frequency of the square
wave. By changing the duty cycle, we change the duration of the
ON time we send to the motor as a control signal. This changes
their noise; however, the duty cycle is typically governed by the
flight control logic responsible for flying the drone [14]. We can,
instead, vary the square wave frequency, that is, the number of
ON-OFF pulses itself, which is not determined by the flight control
logic but instead set at a fixed value to produce different acoustic
frequencies. We use this parameter to transmit different bits or
symbols.

Changing the frequency of the motor PWM signal results in a
hum as the motor casing and coils vibrate at a particular frequency.
Fig. 4 shows the humming noise both with and without a propeller.
The middle and bottom pictures demonstrate that the motor is
causing the hum, generating the sound even when no propeller
is attached and that the motor hum primarily depends on motor
construction. Motor casing, housing, and coils resonate at different
frequencies, generating a distinctive audio signal when powered.
Fig. 4 also demonstrates that the intensity of the motor hum reduces
when the vibration of the motor body is dampened, for example,
using a thick layer of tape. The drone frame may also have a small
dampening effect on the generated sound and may alter it if the
motors are not properly secured.

Figure 5: The noise suppressing wing morphology of a barn

owl. Distinctive features at the wing edges and upper-wing

surface contribute to the silent flight [28].

3.3 Self Interference

We employ the hum produced by altering the motor PWM signal
frequency as the main means of communication. The propellers’
audio signals become the main noise source, possibly inhibiting
reliable communication. When a drone’s motors generate the hum
encoded with information, acting as transmitters, the propellers
of each flying drone in the vicinity contribute to channel noise.
Microphones that listen to this hum inevitably need to decode it in
the presence of the background propeller noise. This is especially
true when the microphone is placed right onboard the drone.

At the receiver end, the main source of interference is listening
to the drone’s propellers. This noise likely dominates the channel
compared to the hum a distant transmitting drone produces. The
key issue is reducing the “self-inflicted” noise of the drone. The
next section illustrates how we do so.

4 TAMING PROPELLER NOISE

There are many works in the literature to reduce propeller noise [35,
36, 46, 54]. They focus on broadband noise and do not target de-
noising a specific part of the frequency spectrum. Since we can
control the motor’s transmitting audio frequency, we tune the sys-
tem to utilize the part of the spectrum with reduced interference or
stronger hum signals. Existing techniques reduce noise in the lower
frequency bands whenever possible, pushing noise to higher fre-
quencies that humans are less sensitive to. On the contrary, we are
specifically interested in pushing propeller noise to the lower part
of the frequency spectrum, freeing the higher frequency bands. We
aim to do so with minimal additional hardware or major propeller
re-designs [60].

Our inspiration is from nature: Barn owls are known to fly
silently [69]. They can do so inches away from prey without being
detected. This is possible because they have specialized plumage
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Figure 6: Propeller modification CAD diagram and the proto-

type (top); noise spectrum magnitude for the two propellers

(middle, bottom) showing up to 7 dB reduction in self-noise.

Figure 7: Different noise suppressing propeller modifications

and their effect on the acoustic spectrum.

and wing features that eliminate the aerodynamic noise generated
by the wings. Three key physical features contribute to the silent
flight, shown in Fig. 5: (1) a comb of stiff feathers along the lead-
ing edge, (2) a flexible fringe at the trailing edge, and (3) a soft
carpet-like material distributed on the wing top [28].

These natural adaptations influence the acoustic spectrum by
altering the wind flow over their surface. They hint at what we can

manipulate when modifying our propellers to subdue noise. Using
leading or trailing edge modifications may be an effective strategy
for reducing turbulent noise and, hence, some of the higher fre-
quency components. We cannot, however, replicate the barn owl’s
wing features directly on small-sized and fast-moving propellers.

However, we combine these observations with the discussion on
LBL noise of Sec. 3. The key insight we gain is that adding a small
boundary layer trip can produce a large reduction in broadband
noise in lightly loaded conditions [32].To this end, we use a leading
edge boundary layer trip to force the boundary layer transition.
Such uneven perturbations are also visible on the barn owl’s wings
and are believed to contribute to noise reduction [69].

We thus devised a deceptively simple modification to the drone
propellers, which greatly reduces propeller noise in the 15 kHz to
25 kHz part of the audio spectrum.We add a 0.05mm thick and 2mm
wide rectangular copper strip on each propeller blade along the
length of the propeller, as shown in Fig. 6. The strip abates LBL self-
noise by breaking down the aeroacoustic feedback loop generated
when the LBL stretches for the entire length of the propeller chord
and the propellers spin between 18,000 to 23,000 RPM. As a result,
the spectrum magnitude of the modified propellers reduces up to
7 dB, as shown in Fig. 6. The additional weight is minimal, with no
discernable effect on the static thrust generated and a negligible
effect on lifetime, as we report in Sec. 6.

Copper strips can serve as a viable solution to enhance the me-
chanical properties of propeller blades, particularly in reducing
vibrations and improving stiffness, damping, and mass distribution.
Using copper improves the stiffness of the blades – which in turn al-
ters the natural frequency – potentially reducing resonance effects
that contribute to noise and mechanical stress. Copper’s inherent
damping properties help absorb and dissipate vibrational energy,
making the propeller less susceptible to harmful vibrations. Addi-
tionally, increasing the mass distribution along the propeller blade
by attaching copper strips may help shift the operating frequency
away from any resonance conditions, reducing the likelihood of ex-
cessive vibrations. This approach is successfully applied in marine
propellers tominimize vibrations and improve propulsion efficiency,
showing similar potential for aerial propellers [15, 74]

We arrive at this design after considering several different op-
tions. These include making holes or notches of different shapes on
the original CrazyFlie propellers or adding more than a single layer
of copper tape. Each modification is based on insights gained from
existing literature [32, 61, 67]. Fig. 7 experimentally demonstrates
that our choice is best at freeing the higher frequency bands, which
is precisely our goal. Some modifications, such as the flat notch,
perform worse throughout the spectrum. Other solutions perform
similarly to our design in the lower frequency bands but worse in
the higher ones, where we seek the best performance. Our work in
this area is one of the first to explore the effect of physical propeller
modifications in the 40 kHz spectrum [35, 36, 46, 54].

5 DESIGNING HUM

The dedicated propeller design illustrated earlier is the stepping
stone for HUM, whose design we explain here. The rest of the sec-
tion specifically illustrates how we fulfil the four key requirements
outlined in the Introduction section.
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Figure 8: Exploded view of a typical DC drone motor. The

changing current through the windings induces mechanical

vibrations passing through the metal casing, producing an

acoustic hum.

Tomake our discussion concrete, we consider the CrazyFlie 2.1 [12]
nano-drone as the target platform on which we implemented and
tested our design. The CrazyFlie is equipped with four 16mm core-
less DC motors with a KV value of 14000 RPM/V. A brushless mo-
tor’s KV factor describes the relationship between the peak voltage
and its rotation speed in a no-load condition.We use bi-blade 47mm
diameter polycarbonate propellers with a pitch of 17mm. The en-
tire drone is 92mm wide diagonally and 29mm in height. Its total
dry weight is 27 g. It uses an nRF51822 radio and microcontroller
to transmit telemetry information through a wireless 2.4 GHz link.
A BMI088 6-axis IMU measures linear accelerations and angular
velocities. The flight controller runs on an STM32F405 Cortex-M4
core with 192 kB SRAM. We customize the stock firmware with the
release tag 2023.07.

Albeit the following discussion is centred on the CrazyFlie nano-
drone, our design enjoys sufficient generality to apply to other
drone platforms sharing similar features, such as the many nano-
drones based on ESP32 chips [2].

5.1 Transmitter Design: Motor Actuation

We modulate the switching frequency of the PWM signal, driving
the DC motors to transmit information. Fig. 4 demonstrates that
the acoustic signals are due to the motor hardware, whereas the
propeller does not contribute to the latter, as discussed in Sec. 3.
This insight prompts us to examine the motor structure further.

Fig. 8 shows an exploded view of the components in a typical DC
drone motor. Both cored, and coreless motors are equipped with
brushes and a commutator. In the coreless case, the rotor windings
are wrapped to form a self-supporting hollow cylinder that is typi-
cally epoxied. The humming sound is due to the current flowing
through the windings, causing interactions with the permanent
magnet. This induces resonance, leading to mechanical vibrations
because of PWM switching.

The vibrations pass through the metal casing and yield acoustic
tones. The flight controller is responsible for setting the desired
thrust. In doing so, the only controllable parameter is the duration
of the motor being ON. Most control systems use the PWM signal to
modulate the power being delivered to the motor. This is achieved

Figure 9: Magnitude of the spectrum (top) of drone motor

produced hum with increasing distance. The drone produces

hums in 500Hz intervals from 10kHz to 40kHz. The power

spectral density (bottom) of each frequency at three distances

shows the effect of distance on each humming frequency.

by setting different values of pulse width, which regulate the time
the motor is powered ON. The motor is not powered otherwise.

The PWM signal is normally a square wave with a fixed switch-
ing frequency. The flight controller makes fine adjustments to the
power given to a motor to vary the thrust and consequently set the
drone’s three-dimensional attitude. This PWM-driven control is
effective for inductive loads such as DC motors because the current
in motor windings cannot be switched ON or OFF instantaneously.
By solely changing the PWM frequency, we ensure not to alter
the power setting determined by the flight controller and time but
simultaneously set the acoustic frequency used to transmit the bits.
We experimentally verify this argument in Sec. 6.

Note that different motors transmit different acoustic frequen-
cies. As Fig. 4 shows, different mechanical properties make the
motors resonate differently. This has an impact on the frequency of
acoustic signals they can generate. Fig. 9 also shows the variation
in the intensity of the motor-generated hum with distance. The
plot indicates that the region between 15 kHz and 30 kHz features
the highest intensity, corresponding to a higher signal-to-noise
ratio. It also shows that at 3.5m (7m) distance, only the frequen-
cies between 15 kHz and 25 kHz can be detected. Thus, we make
different drones select different humming frequencies (signatures)
using different PWM frequencies, which allows them to co-exist.
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Figure 10: Ultrasonic microphone receiver circuit (top) and

PCB (bottom) for capturing HUM signals. Our design may

operate as a standalone receiver mounted aboard micro- and

nano-drones.

5.2 Receiver Design: Acoustic Sensing

We use an acoustic sensor to decode the signal. We design and
fabricate a miniature shield suitable for micro- and nano-drones.
The shield includes a microphone and amplifier circuitry to capture
the transmitted acoustic signals. We use a low-power bottom-port
SPU0410LR5H analog MEMS microphone able to capture signals
from 100Hz to 80 kHz. The microphone package comprises an
acoustic sensor, a low-noise input buffer, and an output ampli-
fier [31]. It features a particularly high gain in the 10 kHz-30 kHz
frequency region, where HUM transmits messages.

The complete schematics are shown at the top of Fig. 10.We use a
2-stage LMV358 operational amplifier featuring a rail-to-rail output
swing [58]. We set the gain to 100 with a gain of 10 for each stage.
We use a variable resistance potentiometer RV1 to set the signal
level between the stages. We can set the bandwidth by choosing
an appropriate value of C3 and C7, forming a pair of feedback
capacitors. The LMV358 op-amp works well as a low-impedance
driver/buffer. The output from the amplifier is fed to the ADC of
the drone microcontroller for sampling. The fabricated PCB, shown
at the bottom of Fig. 10, is 0.8mm thick and measures 25 × 27mm.
It weighs a total of 1.8 g. The whole circuit consumes 0.75mA while
running at 3.3 V.

The microphone’s bottom port is the acoustic inlet to receive the
sound waves. The microphone is, therefore, susceptible to the noise
propellers make. This necessitates the use of an insulating foam
cover to mitigate this effect. We investigate the impact of different
windscreens in Fig. 11, including a custom windscreen we fabricate
using lightweight packaging foam to cover the microphone inlet.
We create a specially designed 3D-printed cover that houses a
curved 3mm foam sheet to completely insulate the microphone
from any peripheral wind from the propellers. The performance of
the COTS windscreen is better at frequencies below 15 kHz. Our

Figure 11: Effect of different windscreens to mitigate pro-

peller noise.

Figure 12: Effect of microphone position on the recorded

noise power spectral density.

design outperforms the COTS configuration and all other options
at higher frequencies.

Microphone placement with respect to the drone geometry is
also crucial. We quantify the impact of this design choice as the
drone flies in Fig. 12. The chart demonstrates that the most efficient
placement is in the centre and on top of the drone, as it minimizes
self-noise across the entire frequency band. The reason for this is
that the propellers suck and push the air downwards; thus, there
are regions near the propellers where airflow is turbulent, causing
loud noise. We can limit the negative effects of this noise by placing
the microphone on top and on par or higher than the propellers.

5.3 Orthogonal Channels and Decoding

We design a communication protocol using Binary Frequency Shift
Keying (B-FSK) to encode the information over the acoustic channel.
Several parameters are to be determined, as shown in Fig. 13.

We use two different frequencies for transmission 𝑓ℎ𝑖𝑔ℎ and 𝑓𝑙𝑜𝑤 ,
each corresponding to two symbols. The higher frequency repre-
sents a ’1’ bit, and the lower frequency represents a ’0’ bit. The
choice of frequency depends on operating distance, motors, and
mechanical mounting. Based on Fig. 9, we choose a frequency cor-
responding to signals that quickly fade away, enabling communica-
tion only amongst co-located drones, or a frequency corresponding
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Figure 13: Binary Frequency Shift Keying communication

scheme for encoding HUM messages.

to signals that travel farther away, allowing communication in a
larger area. The bandwidth is the difference between the two fre-
quencies. We use a 1 kHz bandwidth. We choose this parameter to
sufficiently separate simultaneous transmissions of different drones.

Symbol time is the period for transmitting a single symbol, which,
in our case, corresponds to a single bit. The symbol time should be
set to give the receiver enough time to detect a symbol successfully.
The shorter the symbol time, the higher the data rate the system
can achieve. We evaluate symbol times from 200ms down to 25ms.
Pause time is the period between the transmission of two consecu-
tive symbols, which is added to enable easier decoding of the BFSK
signals by the receiver and has the opposite effect on data rates
compared to symbol time. We can set a pause time of 0ms between
symbols and decode accurately.

On a quadrotor, all four motors transmit different symbols. In-
deed, the acoustic waves we generate are between 15 kHz - 25 kHz,
and the corresponding wavelength is larger than the inter-motor
distance on the drone. This creates orthogonal channels at the re-
ceiver, enabling faster information exchange, as shown in Fig 14.
An alternative may be to opt for four identical transmissions, im-
proving SNR at the cost of reduced data rate. This option remains
available to system designers, who can choose the above depending
on application requirements and operating environment.

We decode the signals captured at 80 kHz which gives us a max-
imum working frequency of 40 kHz. We perform a Fast Fourier
Transform (FFT) on a sliding window of samples. The window size
is 512 samples, with the moving window progressing every 128
samples, taking 1.6ms. We then perform FFT, which takes 0.52ms
on the STM32F4 micro-controller. This window size and sampling
rate give us a bin resolution of 156.2Hz, that is, a 6 value for each
frequency and 12 in total for both 𝑓𝑙𝑜𝑤 and 𝑓ℎ𝑖𝑔ℎ frequencies.

We then calculate the average signal around each symbol fre-
quency. We compare these values and check if we observe a 2.2x

Figure 14: Simultaneous orthogonal audio frequency chan-

nels and on-board FFT decoding used by HUM to exchange

coordination messages including position or quaternion vec-

tors.

– 2.5x higher peak than the signal average. This threshold is de-
termined empirically. If such a peak is found, we consider one bit
symbol (0 or 1) to be detected. We count in successive windows
how many such symbols we can find. If we detect the same symbol
in at least 50% windows, each of them the duration of the symbol
time, then we label that as a valid symbol. Otherwise, we discard it.
If we encounter a stream of the same symbols, we split them and
treat each separately since the system assumes that a symbol will
not last longer than its configured symbol time.

Increasing the window size also causes the processing time of
the signal to increase. The window size with 128 samples allows for
a symbol time of 25ms to be seen in at most 16 windows. We find
that any symbol time duration lower than this makes distinguishing
between noise and a valid symbol difficult. This gives us a maxi-
mum data rate of 40 bps for a single audio channel in HUM with
a maximum of 160 bps per drone. This choice of communication
parameters is dictated by the purview of maximizing the data rate
and reducing the decoding errors while considering the limitations
imposed by the decoding hardware.

6 EVALUATION

Our evaluation is two-pronged. We study the communication per-
formance of HUM in Sec. 6.1, while we quantify the impact on
drone dynamics, including battery life, in Sec. 6.2. Our evaluation is
based on real flight tests on a nano UAV built using the CrazieFlie
flight controller described earlier.

We use several different drones in our experiments, and each
set of motors has slight variances in their internal resistance and
physical construction. We verify that the motor tolerance variations
do not impact the sound characteristics. The generated HUM is
found to be consistent across these drones. Unless otherwise stated,
we use 1 kHz bandwidth, 25ms symbol time, and no pause time;
we generate the signal per motor (channel) with a 50% transmitter
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Figure 15: HUM decoding accuracy with varying BFSK sym-

bol time along with the system data rate achieved when us-

ing multiple orthogonal prominent hum frequencies at close

range (top) and far range (bottom).

duty cycle, and all are modified based on Sec. 4. We implement real-
time communication in our tests and demonstrate its application
towards drone coordination.

6.1 Communication Performance

We investigate HUM performance by measuring the captured sig-
nals’ Bit Error Rate (BER) and decoding accuracy (1-BER). We vary
key system parameters such as maximum data rate and number
of simultaneous transmitters while evaluating the performance
variation with different relative orientations and distances between
transmitter and receiver. As for the latter, we consider two settings:
a close range of 0.5m and a far range of 3m.
Varying symbol time and data rate. We can set different data
rates by varying the symbol time.We keep 25ms as the lower bound
for this value, leading to a maximum data rate of 40 bps per channel,
as explained in Sec.5.3. We see how the data varies with different
transmission frequency pairs from 15 kHz up to 24 kHz which are
chosen from the set of frequency bands with the highest intensity
at higher distances, as discussed in Sec. 5.1.

Fig. 15 shows the decoding accuracy for each pair with varying
separation between transmitter and receiver: close range (top) and
far range (bottom). The prominent frequency pairs 15.5-16.5 kHz
and 23-24 kHz perform better and can maintain a high decoding
accuracy. We select these frequency pairs to further test the system.
The system can achieve a maximum data rate of 160 bps with only
18% loss in accuracy using these frequencies. Lossless communica-
tion at 80 bps is possible in both ranges by selecting an appropriate
set of frequency pairs.
Varying transmitters and distance.We evaluate how multiple
nearby drones can simultaneously communicate. Each drone must
be assigned a unique frequency pair to generate the HUM BFSK
signals. Fig.16 shows the spectrogram when 16 drones flying in a
1.5m radius simultaneously transmit their ID using HUM in the
frequencies from 15 kHz to 35 kHz. We can successfully decode

Figure 16: HUM acoustic spectrogram when 16 identical fly-

ing nano drones communicate simultaneously.

Figure 17: HUM decoding accuracy with varying distance

between two flying drones when communicating.

all 16 transmissions at a receiver drone flying in the centre of the
circle using the process described earlier.

We measure the BER at varying distances to find the maximum
communication range. We use a 40 bps data rate and increment the
distance in steps of 0.5m for the two most prominent frequency
pairs. Fig. 17 shows that both frequency pairs can be decoded with-
out errors up to a 4m distance. We use HUM for drones flying up
to an 8.5m distance with the 15.5 kHz – 16.5 kHz frequency pair
and a data rate up to 40 bps.
Varying orientation. We calculate the decoding accuracy with
changing planar angles. Fig. 18 shows the results at a close range
(left) and at a far range (right), using frequency pairs 15.5 kHz–
16.5 kHz and 23 kHz–24 kHz. It shows that different transmitter-
receiver angles slightly affect the decoding accuracy. The commu-
nication environment features metal cabinets, shelves, and boxes
as shown in Fig. 20. This resulted in a loss of maximum decoding
accuracy of 25%

We achieve the best angle performance in the far range when
no surrounding occlusions exist. The lower-frequency pairs out-
perform the high-frequency ones for omnidirectional and environ-
mentally neutral settings.
PWM duty cycle. As the drone flies, its PWM duty cycle is varied
by the flight control logic depending on the desired maneuver. For
CrazyFlie drones, we empirically learn that the drone hovers at a
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Figure 18: HUM decoding accuracy with varying angles be-

tween the transmitter and receiver drones at close range (left)

and far range (right).

Figure 19: HUM decoding accuracy with varying PWM per-

centage of the HUM transmitting drone.

fixed altitude for PWM values between 45% and 75%. For values
less than 45%, the drone descends, and for PWM greater than 75%,
it ascends.

We evaluate the BER of the transmitting drone with varying
PWM percentages. Fig. 19 depicts the close and far-range results.
At close range, we observe a minimal effect of the transmitter
PWM for both frequency pairs. The system works across PWM
settings except those close to 0 or 100. This situation is transient, for
example, when the drone is rapidly ascending or descending. Thus,
around 45% to 75% PWM, the drones are hovering and performing
their operation where HUM will help build the communication link
better, which is useful.
Noise and space. We calculate the decoding accuracy in the pres-
ence of different ambient noise sources. Fig. 20 shows the results
when the noise source is 0.5m away from two drones communicat-
ing at close range using the frequency pairs 15.5 kHz–16.5 kHz and
23 KHz–24 kHz. The sources include common warehouse machine
noises like drills, hammers, etc. Human speech and music were also
included as potential sources of disturbance. As expected, different
noise sources affect the two frequency pairs differently, although
sufficient performance is achieved across all noise sources.

We test HUMwith a group of 16 drones in a 4x4x3𝑚3 flying cage,
shown in Fig. 21. We consider two scenarios: one where the drones
hover at the same altitude, that is, they are co-planar, and another

Figure 20: Floor map of the HUM communication test envi-

ronment with metallic obstacles (left) and decoding accuracy

with different ambient noise sources (right).

Figure 21: HUM operating with 16 identical flying CrazyFlies.

The transmitting drone hovers in the middle while other

drones hover at different altitudes scattered in 3D space or

radially dispersed at the same altitude (co-planar). Spectro-

grams and power spectral density when HUM operates in

either of the settings. This can be seen in [26].

one where they fly randomly scattered in three-dimensional space.
Fig. 21 demonstrates that the noise intensity is much higher when
the drones are co-planar than in the other scenario. However, in
both cases, HUM captures and decodes messages successfully.

6.2 Drone Dynamics

We consider the effect of HUMon the drone dynamics. This involves
measuring pitch, roll, yaw stability, generated thrust, and impact
on battery life. We show the impact of the HUM system on the
drone’s attitude and dynamics.
Thrust.We evaluate the effect of HUM on the thrust generated for
a varying PWM duty cycle. We use a weight scale with a custom 3D-
printed mount to measure the thrust produced by the drone using
all four motors, both when the drone motors constantly produce
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Figure 22: Generated thrust with varying PWM (top) and

with different number of motors transmitting HUM commu-

nication (bottom).

the HUM signals and when they are powered on. We test the two
scenarios with both COTS propellers and our modified propellers.

The top graph in Fig. 22 shows that the modified propellers have
a net positive effect on the generated thrust. This increase only
amounts to 0.024N in the worst case for 45% PWMduty cycle. Using
HUM, however, does seem to increase the net thrust produced using
propellers. This could be a consequence of temporarily increasing
the power input to the motors because of humming.

The bottom chart in Fig. 22 reports how the thrust varies when
hummingwith a different number of motors. As expected, the thrust
increases when more motors are humming simultaneously, yet no
significant difference in thrust is produced when three or all four
motors communicate using HUM. However, the increase that does
occur is only 0.1 N in the worst case. This is insignificant since, in
practice, we do not constantly transmit HUM signals but only in
short bursts whenever necessary. Nevertheless, we further evaluate
the effect of these spikes by testing the drone attitude stability with
HUM communication.
Attitude stability.We use the stock flight control system of the
CrazyFlie and the open source 3 degrees of freedom, Open Gim-
bal [51]. This allows us to analyze the effect of the motor transmis-
sions and the propeller modification that HUM requires to operate.
We record the roll, pitch, and yaw angles at a sampling rate of
100Hz. Every experiment starts with the batteries fully charged.
We set it at 75% PWM duty cycle and generate a constant hum at

Figure 23: Variation of the pitch, roll, and yaw angles when

the drone uses COTS and modified propellers. The green re-

gion shows when the HUM communication system is turned

on.

Figure 24: Drone battery life with varying PWM percentages

when using HUM communication with COTS and modified

propellers.

22 kHz. We let the drone stabilize for the first 5 s in an experiment
without humming to establish the baseline, and then we transmit
hum signals for another 5 s. Fig. 23 shows the results. HUM only
affects the roll and pitch axes by a maximum of 2.5◦ when using the
modified propellers and affects the yaw axis by only 0.1◦, which
can be easily compensated by tuning the PID control parameters
to account for these angular deviations.
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Battery life.We measure the battery life when using our modified
propellers on the HUM system for communication. We compare
this figure with the CrazyFlie firmware release tag 2023.07 as the
baseline. The drones send HUM signals at 5Hz after startup and we
use the same battery to maintain uniformity in results. Fig. 24 shows
the results. The graph shows two factors our system introduced
that can potentially drain battery life: propeller modification and
motor HUM signalling. We indicate these using the terns HUM
ON/OFF and COTS/modified propellers. Our modified propellers
result in a small net decrease in battery life compared to the baseline,
regardless of whether the drone uses HUM. The decrease also differs
with PWM, with a maximum of 4% change at the 60% PWM duty
cycle. Crucially, when using HUM, the worst-case battery penalty
is limited to 7%. Again, this is when the drone transmits updates
continuously using the side channel, which is not typical. As such, in
practice HUMwould only be used to coordinate and send important
information occasionally.

7 DISCUSSION

We provide additional insights regarding the design choices, the ap-
plicability of HUM, and how it compares with existing techniques.
Applications. We maintain that HUM enables applications that
would otherwise be unfeasible using side-channel non-RF com-
munications. We hinted in the Introduction at several motivating
examples. Let us offer a precise quantitative perspective here, linked
with the drone identification system we mentioned.

The drone identifier currently mandated by European drone reg-
ulations is at least 12 bytes [20]. Using Bleep [10], a drone that
communicates its identification to nearby flying devices, for ex-
ample, to avoid collisions in shared airspace, takes 48 s to do so.
This time is way excessive to avoid collisions [44, 63]. Transmitting
the same amount of data with HUM is achieved in 0.6 s, which is
sufficient to react according to the identifier of the other party. With
higher processing power, the bit rate can also be increased further.

The 80x higher data rates than Bleep [10] fundamentally change
the target application domains. HUM allows drones to use non-RF
side-channel communications to transmit rich information, such as
information for coordination among multiple drones [44, 63], for
example, to maintain flight formation. Unlike Bleep, the few bits
per second provided by Bleep mainly allow periodic “heartbeats”
to be transmitted, which do not convey much more information
than the transmitting drone still exists.
Longterm impact and stability. We modify the propeller’s phys-
ical design. A potential concern is that this can have unexpected
long-term consequences on drone stability and the motor lifetime.
The modifications to eliminate self-interference are based on the
idea that simple design changes to propellers can improve commu-
nication performance. Further, the modifications are nondestructive
and easily reversible, making their usage simple and applicable on
an ad-hoc basis to existing drones.

The idea is to eventually have these modifications a natural
part of the drones carrying HUM receivers. Based on our early
assessment, the motors’ lifetime is not impacted by HUM signaling
but requires further prolonged studies to validate. As we find that
our changes do not severely affect two key drone flight parameters,
that is, generated thrust and attitude dynamics, impacts on the
long-term stability of the drone are unlikely to occur.

Performance. Our tests are dynamic, conducted with drones at
various distances navigating confined spaces and predetermined
paths to ensure collision avoidance. Movements induce Doppler
effects, with a worst-case shift of approximately 50Hz at a rela-
tive velocity of 1m/s, constituting less than 5% of the bandwidth.
Doppler variation can be managed by hovering, adjusting data rates,
or widening the frequency gap between 𝑓lower and 𝑓higher.

Our focus is on localized drone-to-drone communication. Our
experiments indicate a maximum operational range of 8.5m, shown
in Fig. 17, which is adequate for localized data exchanges, including
position, attitude, and sensor data, crucial for most decentralized
drone coordination systems [44, 63]. Multi-hop communicationmay
be layered on top of primitive HUM communication to extend the
range, adapting existing protocols. Once again, this is only possible
because the provided data rates may allow the exchange of control
messages with reasonable latency, which is instead unfeasible with
rates of a few bits per second [10].
Drone size.Wemay, in principle, implement HUM on larger drones
with the only requirement that the motors be powered with a set
PWM frequency rather than DC power. Larger drones increase the
communication range. The larger a drone is, the louder its motors
are. This is a consequence of more current flowing through the
motors and the dimensions of the motor casing itself. While the
relationship between drone size and the produced HUM intensity
is not linear, it will certainly show a positive trend. Thus, the com-
munication distance can scale with drone size. However, the larger
drones also need to have higher spacing between them. But the
energy requirements for HUM receivers will remain the same ir-
respective of size. We focused on micro- and nano-drones, as they
represent enabling factors in the target applications and represent
a challenging case to study due to resource constraints.

The CrazyFlie only hovers stably for a PWMduty cycle of around
45-75%. Above these values, the drone starts to gain or lose altitude.
We can still use HUM if the PWM is not greater than 95%. Settings
close to 100% PWM duty cycle are only rarely encountered, and
even then, only for a short period, for example, when the dronemust
rapidly gain altitude. Modifying drone speeds during transmission
presents challenges due to adjusted PWM parameters, as in Fig. 19.

8 CONCLUSION

Drone teams require localized communications through a non-RF
side channel. We design HUM precisely to this end. Based on a deep
understanding of how and where noise is generated on a drone,
we designed a propeller modification to reduce noise by taking
inspiration from the wing features of barn owls. Using a custom
ultrasonic microphone shield, we use the drone motor’s PWM
switching frequency to transmit simultaneous orthogonal channels
decoded on board. HUM’s improved signal-to-noise ratio enables
80x higher data rates than existing designs while providing better
overall scalability. We evaluated the design of HUM, its dynamic
behavior, and its communication performance in a real setting.
HUM can support simultaneous decoding across 16 drones within
an 8m range, yet the impact on battery life is a mere 7% overhead
in the worst case. Further, we want to study how to increase the
bit rate using different signal processing techniques while trading
off with respect to processing power and energy consumption.
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