
Modal µ-Calculus for Free

Version of June 21, 2024

Ivan Todorov

Modal µ-Calculus for Free

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ivan Todorov
born in Varna, Bulgaria

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2024 Ivan Todorov.

Modal µ-Calculus for Free

Author: Ivan Todorov
Student ID: 5077176

Abstract

The process of using formal verification, in order to ensure that a piece of software
meets it functional requirements consists of three main steps: designing a model of the
given piece of software, translating the functional requirements, which the piece of soft-
ware must satisfy, into properties of said model and verifying that the model satisfies
those properties. Traditionally, regardless of whether the piece of software is developed
based on a predesigned model or the piece of software is developed first and its model is
designed after that, the piece of software and its model are two separate entities. There-
fore, aside from checking that the model satisfies its properties, it must also be verified
that the model accurately represents the given piece of software. While this task may ini-
tially seem simple, it gets progressively more difficult, as the piece of software becomes
more complex. And, if it turns out that the model is not accurate, then the entire formal
verification process is invalid, since it does not provide any guarantees about the actual
piece of software. In this thesis we present a solution to this problem: a way of modelling
sequential effectful programs, such that the resulting models can be directly translated
into runnable programs, thereby guaranteeing the models’ accuracy. We achieve this by
using algebraic effects, in order tomodel sequential effectful programs as instances of the
coinductive free monad, that could then be translated into runnable pieces of software
by applying the necessary effect handlers. Furthermore, we demonstrate that it is possi-
ble to express functional requirements as properties of such models using the first-order
modal µ-calculus, a fixed-point dynamic logic which has previously been used to reason
about labelled transition systems (e.g. in mCRL2).

Thesis Committee:

Chair: Dr. J. Cockx, Faculty EEMCS, TU Delft
Committee Member: Dr. C.B. Poulsen, Faculty EEMCS, TU Delft
University Supervisor: Dr. E. Demirović, Faculty EEMCS, TU Delft

Contents

Contents iii

1 Introduction 1

2 Using the First-Order Modal µ-Calculus 3

3 Modelling Effectful Programs 7
3.1 The Inductive Free Monad . 7
3.2 Representing Recursion: The Coinductive Free Monad 9
3.3 Composing Effects . 10
3.4 Adding Smart Constructors . 11

4 Hennessy-Milner Logic 13

5 Action Formulas 15

6 The Modal µ-Calculus 17
6.1 Intuitive Initial Attempt . 17
6.2 Introducing Containerization . 19

7 Regular Formulas 23

8 The First-Order Modal µ-Calculus 27

9 FromModels to Runnable Programs 31

10 Related Work 35

11 Conclusion and Future Work 37

Bibliography 39

iii

Chapter 1

Introduction

An important aspect of developing reliable software is to validate that it satisfies its func-
tional requirements. A popular approach to validating functional requirements is via testing.
However, as Dijkstra [1] famously put it, program testing can be used to show the presence of bugs,
but never to show their absence! A safer approach is to formally verify that a program satisfies
its functional requirements. In order to do this, we must decide on the following:

1. How are we going to model the given software?

2. How are we going to represent the functional requirements of the software as proper-
ties of the model?

3. Are we going to do the verification manually (e.g. in a proof assistant) or do we want
to use an automatic verification technique (e.g. model checking)?

If we want to use model checking, then we can use a tool like TLA+ [2] or mCRL2 [3],
in order to verify the functional requirements of our software. For example, in order to
use mCRL2, we have to model our software as a labelled transition system and represent
its functional requirements as properties of that labelled transition system using the modal
µ-calculus [4], a dynamic fixed-point logic. Then, mCRL2 uses model checking to check
whether the properties, that we have defined, hold for the given model. However, a down-
side of this approach is that the verification will be done on themodel (in the case of mCRL2,
the labelled transition system) rather than on the software itself. Thus, since the model is
defined separately from the software, there is a risk of the model being incorrect, meaning
that it does not correctly represent the behavior of the software. In such cases, verifying the
model is useless, as it provides no guarantees for the actual software.

Recent work by Lago and Ghyselen [5] explores an alternative approach, namely model-
checking programs involving algebraic effects and handlers. This approachmakes it possible
to verify functional requirements of effectful programs directly, without relying on models
which have to be defined separately from the programs. However, as Lago and Ghyselen [5]
demonstrate, this model-checking problem is, in general, undecidable.

In this thesiswe explore a different strategy: wemodel effectful programs in the dependently-
typed language Agda1 as instances of the coinductive free monad using algebraic effects and
we develop an embedding of the modal µ-calculus in Agda which makes it possible to ex-
press and prove functional requirements of those programs. With this approach we can first
verify that the necessary functional requirements are satisfied by a given model and then
use effect handlers to obtain a runnable program from the verified model, thereby guaran-
teeing that the model is correct and, by extension, that the runnable program also satisfies
the functional requirements. While ourwork does not rely on an automated verification tech-
nique, such as model checking, instead requiring programmers to manually prove that the

1https://agda.readthedocs.io

1

https://agda.readthedocs.io

1. INTRODUCTION

functional requirements are met, it demonstrates that dependently-typed languages, such
as Agda, are suited for expressing and verifying functional requirements using the expres-
sive logic of the modal µ-calculus. We believe the core ideas of our work are transferable to
other dependently-typed languages, such as Idris,2 Coq3 or Lean.4 However, we do rely ex-
tensively on Agda’s support for dependent pattern matching, guarded coinduction, and copattern
matching [6], which may necessitate alternative encodings in other languages.

The main contribution of this thesis is that it demonstrates how to use dynamic logic –
in particular, the first-order modal µ-calculus – to represent functional requirements of effect-
ful programs within a proof assistant. More specifically, we make the following technical
contributions:

• First (in Chapter 4), we present a deep embedding in Agda of a simple dynamic logic
known as Hennessy-Milner logic, which is the core of the first-order modal µ-calculus.

• Then (in Chapter 5), we add support for action formulas – a way of representing a set of
operations.

• Next (in Chapter 6), we extend our embedding of Hennessy-Milner logic by introduc-
ing least- and greatest-fixed-point operators, thereby turning it into an embedding of
the modal µ-calculus.

• Subsequently (in Chapter 7), we add support for regular formulas – a way of repre-
senting a (possibly infinite) sequence of action formulas.

• After that (in Chapter 8), we extend our embedding of the modal µ-calculus by intro-
ducing operators for existential and universal quantification and by adding parameters
to the fixed-point operators, thereby turning it into an embedding of the first-order
modal µ-calculus.

The remainder of this thesis is structured as follows: first (in Chapter 2), we discuss exam-
ples of expressing simple functional requirements using the first-order modal µ-calculus;
then (in Chapter 3), we show how to define the coinductive free monad in Agda, which lets us
represent possibly-non-terminating sequential effectful programs; next (in Chapters 4 to 8),
we present our embedding of the first-order modal µ-calculus in Agda;5 after that (in Chap-
ter 9), we demonstrate howwe can use effect handlers, in order to obtain runnable programs
from themodels whichwe have verified; finally, we discuss relatedwork (in Chapter 10) and
conclude and discuss future work (in Chapter 11).

2https://idris2.readthedocs.io/en/latest/
3https://coq.inria.fr/
4https://lean-lang.org/
5The full source code of our work can be found on GitHub.

2

https://idris2.readthedocs.io/en/latest/
https://coq.inria.fr/
https://lean-lang.org/
https://github.com/ivanstodorov/modal-mu-calculus-for-free

Chapter 2

Using the First-Order Modal
µ-Calculus

In this chapter we are going to look at a number of examples of how the first-order modal µ-
calculus can be used to express the functional requirements of a sequential effectful program.
However, in order to do this, we first need to have a sequential effectful program which we
would like to prove the functional requirements of. For example, imagine that you are tasked
with designing and implementing the software for an ATM. And, for the sake of simplicity,
let us only focus on one of the functionalities of an ATM, namely, allowing its users to view
the balance of their bank account. Let us assume that we would like our ATM to work as
follows:

1. To start using the ATM, a user must insert their bank card into the ATM;

2. Then, the user has to provide their bank card’s PIN code;

3. Next, the ATM checks the PIN code;

4. If the PIN code is correct, the user’s bank account balance is displayed, after which
the bank card is ejected and the ATM goes back to its initial state; otherwise, the ATM
throws an exception and halts.

From this description it becomes clear that the ATM’s software is sequential, since the ATM
can only be used by one person at a time. Furthermore, it is obvious that it contains a number
of side effects (executing IO operations, throwing exceptions, etc.). Thus, we can conclude
that the ATM’s software is some sequential effectful program. We can think of it as a short
sequence of operations which is executed a (possibly infinite) number of times (whenever a
user inserts their bank card into the ATM) and only halts, if an exception is thrown due to
an incorrect PIN code. Therefore, our ATM’s software can be represented in pseudocode as
follows:
1 ATM =
2 getPIN;
3 if correctPIN then
4 showBalance;
5 ATM;
6 else
7 throwException;

Now, after we have defined our sequential effectial program, let us come up with some
functional requirements for it and see how they can be expressed using the first-order modal
µ-calculus. One intuitive functional requirement which the ATM’s software must satisfy is
that, when the ATM’s first user starts interacting with it, they must be able to provide their

3

2. USING THE FIRST-ORDER MODAL µ-CALCULUS

bank card’s PIN code. The same must also be true for all subsequent users of the ATM.
However, for the sake of simplicity, let us only focus on the first user for now. In that case,
this requirement can also be stated as follows:

At the start of the program it must be possible to execute the getPIN operation.

This is a modal statement, because it talks about what must be possible in a particular sit-
uation, namely when the program is first executed. Therefore, it can be represented using
dynamic logic as follows:

x getPIN y true
For some program (some list of operations) the formula x A y F, where A is some operation
and F is some formula, can be read as “the first operation in the list is A and the remaining
formula F must hold for at least one possible continuation of the program”. To see what we
mean by possible continuation here, consider, for example, the correctPIN operation on line 3
which has two possible continuations: one for the case where the operation returns true (the
then branch), and one for false. The formula true holds for all programs. Thus, if we look at
the pseudocode of our ATM’s software, we can verify that it satisfies the dynamic formula
x getPIN y true, since the first operation in it is indeed getPIN and the formula true trivially
holds for the remaining program.

Another functional requirement which the ATM’s software must satisfy is that, when the
ATM’s first user starts interacting with it, they must not be able to directly view their bank
account balance. Once again, this property must also be true for all subsequent users of the
ATM, but for now we will only focus on the first user. Therefore, this requirement can also
be stated as:

At the start of the program it must not be possible to execute the showBalance
operation.

This is a modal statement as well, because it talks about what must not be possible in a partic-
ular situation, namely when the program is first executed. Therefore, it can be represented
using dynamic logic as follows:

[showBalance] false

For some program (some list of operations) the formula [A] F, where A is some operation
and F is some formula, can be read as “if the first operation in the list is A, then the remain-
ing formula F must hold for all possible continuations of the program”. Furthermore, the
formula false does not hold for any program. Therefore, for any operation A the only sce-
nario in which the formula [A] false holds for some program is when the first operation
in that program is not A, since, if the first operation in that program is A, then the formula
falsemust hold for all possible continuations of the program, which is impossible. That being
said, if we look at the psudocode of our ATM’s software, we can verify that it satisfies the
dynamic formula [showBalance] false, because the first operation in it is not showBalance.

We can also add functional requirements like the previous one for other operations as
well, not just for the showBalance operation. For example, another requirement could be:

At the start of the program it must not be possible to execute the correctPIN oper-
ation (since no PIN code has been provided yet).

or:

At the start of the program it must not be possible to execute the throwException
operation (since in that case the ATM would be useless).

In fact, we can combine all of those into the following requirement:

4

At the start of the program it must not be possible to execute any operation, other
than the getPIN operation.

This is a modal statement, since it describes what must not be possible in a particular situ-
ation, namely when the program is first executed. However, at first, it seems that this re-
quirement is not as straighforward to represent using dynamic logic as the previous ones.
One way of expressing it would be as a conjunction of formulas like the one for the previous
requirement (one formula for each operation which we want to say is impossible):

[correctPIN] false ^ [showBalance] false ^ [throwException] false

Unfortunately, this representation has the downside that it includes all operations which are
part of the ATM’s software, other than the getPIN operation. This means that, if at any point
the operations in the ATM’s software change (e.g. some new operations are added, an oper-
ation is renamed, etc.), then this requirement will also have to be changed. Fortunately, this
flaw can be remedied using action formulas [3]. Action formulas are a way of representing
and reasoning about sets of operations. For example, the action formula true represents the
set of all possible operations, while the action formula false represents the empty set of op-
erations. Furthermore, any single operation can also be viewed as an action formula which
represents the singleton setwhich only contains that operation. It is also possible to construct
action formulas which represent the complement of a set of operations, the union of two sets
of operations and the intersection of two sets of operations using X, X Y Y and X X Y, respec-
tively, where X and Y are action formulas. Therefore, using action formulas the functional
requirement that at the start of the program it must not be possible to execute any operation,
other than the getPIN operation, can be expressed as follows:

[getPIN] false

This representation is a lot more compact than the alternative presented above and, more
importantly, it does not need to explicitly mention all operations which are part of the ATM’s
software, except the getPIN operation, as was the case with the other alternative. This means
that even if at some point the operations in the ATM’s software change, this requirement
will not have to be changed (unless the getPIN operation is changed). And, finally, if we
look at the pseudocode of our ATM’s software we can verify that it satisfies this requirement,
because the first operation in it is indeed getPIN, meaning that any operation other than
getPIN is not the first operation in the program.

All of the functional requirements which we have discussed so far have been relatively
simple to represent using the first-order modal µ-calculus and to verify. A big reason for
this is that so far we have only looked at requirements which talk about what must and
must not be possible, when the ATM’s first user starts interacting with it or, put differently,
what must and must not be possible at the start of the program. However, the first-order
modal µ-calculus can also be used to express more complex requirements. For example, a
very important functional requirement for our ATM’s software is that it is not possible to
view your bank account balance without first providing your bank card’s PIN code. This
requirement can also be stated as:

It is not possible to execute the showBalance operation for some user, before exe-
cuting the getPIN operation for that user.

It is important to note, that in this case we do not talk only about the first user of the ATM,
as we have done with all requirements so far, but for any user of the ATM. Thus, this re-
quirement cannot be expressed using the features of the first-order modal µ-calculus which
we have seen so far. If fact, although this requirement is relatively straightforward to verify
by inspecting the pseudocode of the ATM’s software, it requires one of the most advanced

5

2. USING THE FIRST-ORDER MODAL µ-CALCULUS

features of the first-order modal µ-calculus, in order to be expressed, namely the parameter-
ized fixed-point operators [3]. The first-order modal µ-calculus supports both a parameterized
least-fixed-point operator (µ) and a parameterized greatest-fixed-point operator (ν) which
can be used as follows:

µ X (p1:T1:=v1,...,pn:Tn:=vn) . f
ν X (p1:T1:=v1,...,pn:Tn:=vn) . f

where X is some name, pi is the name of the i-th parameter, that has type Ti and initial value
vi, and f is some formula which can reference X, but only in positive positions, meaning that
there must be an even number of negations in front of every reference to X in f, and with a
well-typed list of values for the parameters of X. Using this feature of the first-order modal
µ-calculus we can express the functional requirement that it is not possible to execute the
showBalance operation for some user, before executing the getPIN operation for that user, as
follows:

ν X (b:bool:=false) . [getPIN Y showBalance] X(b) ^

[getPIN] ((not b) ^ X(true)) ^

[showBalance] (b ^ X(false))

First, it should be noted that this definition uses the greatest-fixed-point operator, meaning
that it represents a possibly infinite sequence of operations. This is necessary, since the prop-
erty must hold for all users of the ATM, the number of which could be infinite. Moreover,
the greatest-fixed-point operator in this definition has a single parameter of type Bool. This
parameter is used to indicate, whether the getPIN operation has been executed for the current
user. Thus, its initial value is false. Then, this property states that executing any operation
which is not getPIN or showBalance is inconsequential, meaning that it does not change the
value of the boolean parameter; that executing the getPIN operation is possible only if it
has not already been executed (otherwise ¬ b would not hold) and results in the value of
the boolean parameter being changed to true; and that executing the showBalance operation
is possible only if the getPIN operation has already been executed (otherwise b would not
hold) and results in the value of the boolean parameter being changed to false.

While this last property is much more complex to write and understand than any of the
ones which we have discussed so far, it serves as an example of the capabilities of the first-
order modal µ-calculus and the possible complexity of the functional requirements which
can be expressed using it. In the remainder of this thesis we will first demonstrate how we
can write programs similar to our ATM’s software in Agda by defining them as instances of
the coinductive free monad; subsequently, we will present an Agda embedding of the first-
order modal µ-calculus which makes it possible to express and prove properties of effectful
programs, like the ones discussed in this chapter.

6

Chapter 3

Modelling Effectful Programs

In this chapter we are going to explain how we can model sequential effectful programs
in Agda. First (in Section 3.1), we present an implementation of the inductive free monad
and show how it can be used to represent finite sequential effectful programs. Then (in Sec-
tion 3.2), we show how our implementation can be extended to the coinductive free monad,
which can be used to represent programs with infinite sequences of operations. After that
(in Section 3.3), we discuss an important property of algebraic effects, namely that we can
combine a number of effects into a single effect which contains all of their operations. Finally
(in Section 3.4), we describe howwe can define smart constructors for our effects’ operations
which significantly reduce the notational overhead, that is typically introduced when com-
bining effects.

3.1 The Inductive Free Monad
The free monad is a data structure which models effectful computations and it is typically
defined as follows:1

data Freef (F : Set Ñ Set) (α : Set) : Set where
pure : α Ñ Freef F α

impure : F (Freef F α) Ñ Freef F α

where the functor F is a so-called signature functor [7], that represents the types of operations
which can occur in the computation, and α is the type of the final result. However, this defi-
nition is not strictly positive2 and is therefore not accepted by Agda. Thus, in our implemen-
tation we represent effects using containers [8], [9] – a means of representing strictly-positive
functors. Containers are defined in Agda’s standard library as follows:

record Container (s p : Level) : Set (suc (s \ p)) where
constructor _Ź_
field
Shape : Set s
Position : Shape Ñ Set p

where the Shape is a datatype which represents the operations, that are part of the effect, and
the Position defines the type of the result of each operation. Furthermore, the extension of a
container is a function which maps a container to a strictly-positive functor and is defined in
Agda’s standard library as follows:

1A universe polymorphic definition of this datatype is also possible.
2https://agda.readthedocs.io/en/v2.6.4.3-r1/language/data-types.html#strict-positivity

7

https://agda.readthedocs.io/en/v2.6.4.3-r1/language/data-types.html#strict-positivity

3. MODELLING EFFECTFUL PROGRAMS

J_K : @ {s p l} Ñ Container s p Ñ Set l Ñ Set (s \ p \ l)J S Ź P K X = Σ[s P S] (P s Ñ X)

Using these definitions, a definition of the free monad which uses the Container datatype is
also provided in Agda’s standard library:

data _*_ (C : Container s p) (X : Set x) : Set (x \ s \ p) where
pure : X Ñ C * X
impure : J C K (C * X) Ñ C * X

Using this inductive definition of the free monad it is possible to model any finite sequential
effectful program. For example, if we imagine an even simpler version of the ATM described
in Chapter 2, one which only works for a single user, we could represent it as an instance of
the inductive free monad. In order to do this, we first need to define the effect which is used
by our ATM’s software as a container: We can use the following datatype to represent the
operations which are part of the effect:

data EffectShape : Set where
getPIN : EffectShape
correctPIN : N Ñ EffectShape
showBalance : EffectShape
throwException : EffectShape

Then, we can define the effect itself by using the datatype EffectShape as the Shape and defin-
ing the Position for each operation.

effect : Container 0l 0l
Shape effect = EffectShape
Position effect getPIN = N
Position effect (correctPIN _) = Bool
Position effect showBalance = J

Position effect throwException = K

Using this effect, we can define our model of the ATM’s software as follows:

ATMf : effect * J

ATMf = impure (getPIN , λ where
n Ñ impure (correctPIN n , λ where
false Ñ impure (throwException , K-elim)
true Ñ impure (showBalance , pure)))

The program described by this model is very similar to the one discussed in Chapter 2. The
only difference is that, after showing the balance of a given user, it halts, instead of starting
from the beginning. Thus, an ATM which uses this software would only work for a single
user: if they provide the correct PIN code, then their bank account balance is shown and the
program halts, or, if they provide an incorrect PIN code, then an exception is thrown and the
program halts. However, if we want to model the version of the ATM’s software described
in Chapter 2, we cannot use this inductive implementation of the free monad, because that
software is not a finite program, as it could run forever, if every user provides their correct
PIN code. Thus, in order to represent this potentially infinite version of the ATM’s software,
we would instead need to use a coinductive implementation of the free monad.

8

3.2. Representing Recursion: The Coinductive Free Monad

3.2 Representing Recursion: The Coinductive Free Monad
Intuitively, in order to define the coinductive freemonad, wewould need to use a coinductive
datatype which has exactly the same constructors as the inductive datatype _*_. However,
Agda does not support coinductive datatypes, only coinductive record types. Thus, we first
need to define a record type which is isomorphic to the inductuve datatype _*_. In order to
achieve this, we can use the following datatype, which captures the core structure of the free
monad:

data Free (F : Container l1 l2 Ñ Set l3 Ñ Set l4)
(C : Container l1 l2)
(α : Set l3) : Set (l1 \ l2 \ l3 \ l4) where

pure : α Ñ Free F C α
impure : J C K (F C α) Ñ Free F C α

The difference between the datatype Free and _*_ is that, while the impure constructor of
* recursively calls the datatype _*_ itself, in the impure constructor of Free that recursive
call is replaced by a call to the parameter F. Thus, we can use the datatype Free to define the
following record type:

record IndFree (C : Container l1 l2) (α : Set l3) : Set (l1 \ l2 \ l3) where
inductive
constructor xx_yy

field
free : Free IndFree C α

The IndFree record type is isomorphic to the datatype _*_, since it only has a single field
which is an instance of the datatype Free and uses IndFree itself as the value of its parameter
F, meaning that the call to the parameter F in the impure constructor of Free will actually be
a recursive call to IndFree. Since we have shown that we can define the inductive version of
the free monad as a record type, we can now also define the coinductive version of the free
monad using a record type which has the same structure as IndFree, but is coinductive:

record CoFree (C : Container l1 l2) (α : Set l3) : Set (l1 \ l2 \ l3) where
coinductive
constructor xx_yy

field
free : Free CoFree C α

Using this conindctive implementation of the free monad we can model all sequential effect-
ful programs, even infinite ones. Thus, we can now provide our definition of a program – an
instance of the coinductive free monad:

Program : Container l1 l2 Ñ Set l3 Ñ Set (l1 \ l2 \ l3)
Program = CoFree

Next, let us look at how the software of the ATM discussed in Chapter 2 can be modelled
using this approach:

ATM : Program effect J

free ATM = impure (getPIN , λ where
n Ñ xx impure (correctPIN n , λ where
true Ñ xx impure (showBalance , λ _ Ñ ATM) yy

false Ñ xx impure (throwException , K-elim) yy) yy)

9

3. MODELLING EFFECTFUL PROGRAMS

Aswe can see, thismodel is very similar toATMf , themodel of the finite version of theATM’s
software. Thus, we can conclude that, when it comes to modelling effectful programs, the
use of the coinductive free monad adds a lot expressivity compared to using the inductive
free monad, but it does not significantly increase the complexity of the models.

3.3 Composing Effects
So far, when we modelled the software of our ATM, we represented the operations which
it can perform using a single effect. However, realistically, the ATM’s software contains a
few different effects, rather than just one. Thus, a more accurate model would be one which
represents different effects separately and indicates that the ATM’s software uses a combi-
nation of all of those effect. For example, the container effect which we used to model the
ATM’s software can be split into the following three separate containers, representing three
separate effects.

data IOShape : Set where
getPIN : IOShape
showBalance : IOShape

IOEffect : Container 0l 0l
Shape IOEffect = IOShape
Position IOEffect getPIN = N
Position IOEffect showBalance = J

data VerificationShape : Set where
correctPIN : N Ñ VerificationShape

verificationEffect : Container 0l 0l
Shape verificationEffect = VerificationShape
Position verificationEffect (correctPIN _) = Bool

data ExceptionShape : Set where
throwException : ExceptionShape

exceptionEffect : Container 0l 0l
Shape exceptionEffect = ExceptionShape
Position exceptionEffect _ = K

However, all implementations of the free monad which we have shown so far, are parame-
terized by just one container, meaning that they can only use a single effect. Thus, in order
to use all three containers shown above to represent the different effects which the ATM’s
software uses, we need some way of combining those three containers into one container
which is isomorphic to the container effect. Fortunately, in Agda we can do this using the
container combinator _Z_ which is defined as follows:

Z : (C1 : Container s1 p) Ñ (C2 : Container s2 p) Ñ Container (s1 \ s2) p
(C1 Z C2) .Shape = (Shape C1 S.Z Shape C2)
(C1 Z C2) .Position = [Position C1 , Position C2]1

Using this combinator we can define the effect which is used by the ATM’s software as the
combination of the three simpler effects as follows:

effect+ : Container 0l 0l
effect+ = IOEffect Z verificationEffect Z exceptionEffect

10

3.4. Adding Smart Constructors

However, if we want to use the container effect+ in our model of the ATM’s software, then
we have to modify our model as follows:

ATM+ : Program effect+ J

free ATM+ = impure (inj1 getPIN , λ where
n Ñ xx impure (inj2 (inj1 (correctPIN n)) , λ where
true Ñ xx impure (inj1 showBalance , λ _ Ñ ATM+) yy

false Ñ xx impure (inj2 (inj2 throwException) , K-elim) yy) yy)

As we can see, this model is more difficult to read than the previous one, due to all of the
injections which have to be added for each operation. Furthermore, we can imagine what
would happen, if we try to model a more complex piece of software, or one which uses more
effects, using this approach: there will be even more injections and, as a result, the model
will be even more difficult to read and understand. Thus, in order to make this approach
viable, we need some way to get rid of those injections.

3.4 Adding Smart Constructors
We can get rid of the injections by introducing smart constructors [7]. In order to do this, we
first have to define the following type class which indicates that there is some injection from
a container C1 into a container C2:

record _:<:_ (C1 : Container l1 l2) (C2 : Container l3 l4) : Set (l1 \ l2 \ l3 \ l4) where
field
injS : Shape C1 Ñ Shape C2

projP : @ {s} Ñ Position C2 (injS s) Ñ Position C1 s

Then, we have to define the following three instances for this type class, corresponding to
the ones described by Swierstra [7].

instance
inj-id : C :<: C
injS t| inj-id |u = id
projP t| inj-id |u = id

inj-left : C1 :<: (C1 Z C2)
injS t| inj-left |u = inj1
projP t| inj-left |u = id

inj-right : t| C1 :<: C2 |u Ñ C1 :<: (C3 Z C2)
injS t| inj-right t| inst |u |u = inj2 ˝ injS inst
projP t| inj-right t| inst |u |u = projP inst

It should be noted that there are cases in which the second and third instance overlap and,
by default, Agda does not allow this behavior. However, if we explictly add the option
--overlapping-instances, then we can use the defined instances. Now, using the type class,
we can define the following smart constructors for all of the operations which are used by
the ATM’s software.

getPINs : (C : Container l1 l2) Ñ t| IOEffect :<: C |u Ñ Shape C
getPINs _ t| inst |u = injS inst getPIN

showBalances : (C : Container l1 l2) Ñ t| IOEffect :<: C |u Ñ Shape C
showBalances _ t| inst |u = injS inst showBalance

11

3. MODELLING EFFECTFUL PROGRAMS

correctPINs : (C : Container l1 l2) Ñ t| verificationEffect :<: C |u Ñ N Ñ Shape C
correctPINs _ t| inst |u = injS inst ˝ correctPIN

throwExceptions : (C : Container l1 l2) Ñ t| exceptionEffect :<: C |u Ñ Shape C
throwExceptions _ t| inst |u = injS inst throwException

Finally, using the smart constructors, we can refine our model of the ATM’s software as fol-
lows:

ATMs : Program effect+ J

free ATMs = impure (getPINs effect+ , λ where
n Ñ xx impure (correctPINs effect+ n , λ where
true Ñ xx impure (showBalances effect+ , λ _ Ñ ATMs) yy

false Ñ xx impure (throwExceptions effect+ , K-elim) yy) yy)

As we can see, the addition of smart constructors allows us to completely remove all of the
explicit injections. Their only downside is that each smart constructor requires an explicit
argument denoting the container which the operation should be injected into. However, that
is more convenient than having to explicitly write all of the injections for each operation,
especially since that container is always the same throughout the entire program, namely
the container which is given in the program’s type signature. Therefore, we recommend the
use of such smart constuctors, when using our framework and we will be using them in all
of the examples throughout the remainder of this thesis.

12

Chapter 4

Hennessy-Milner Logic

Now, that we have explained how we can model any sequential effectful program using the
coinductive free monad, it is time to show how we can formalize and use the first-order
modal µ-calculus in Agda. We are going to start our discussion by only looking at a subset
of the first-order modal µ-calculus – a simple dynamic logic, known as Hennessy-Milner
logic (HML) [10]. The syntax of HML formulas can be represented using a grammar in
Backus-Naur form (BNF) as follows:

f ::= true | false | ¬ f | f ^ f | f _ f | f Ñ f | x α y f | [α] f

As we can see from this grammar, HML contains the formulas true, which holds for all pro-
grams, and false, which does not hold for any program. Moreover, it supports all of the
standard connectives from predicate logic, namely negation, conjunction, disjunction and
implication, as well as the diamond (x α y f) and box ([α] f) modalities which we intro-
duced in Chapter 2. Therefore, we can represent HML formulas in Agda using the Formula
datatype shown in Figure 4.1.

data Formula (C : Container l1 l2) : Set l1 where
true false : Formula C
~_ : Formula C Ñ Formula C
^ ___ _ñ_ : Formula C Ñ Formula C Ñ Formula C
x_y_ [_]_ : Shape C Ñ Formula C Ñ Formula C

Figure 4.1: Definition of HML formulas in Agda

Clearly, the constructors of the Formula datatype correspond to the terminal and non-
terminal symbols in the BNF grammer shown above. It should be noted that the constructor,
corresponding to the non-terminal symbol f Ñ f, is _ñ_, because in Agda the symbol Ñ

is reserved. Furthermore, the constructor, corresponding to the non-terminal symbol ¬ f, is
„_, in order for it not to be confused with the negation function ¬_ from Agda’s standard
library. With this in mind, we can express that a given program x satisfies a given HML
formula f as x (f, where _(_ is the satisfaction relation defined in Figure 4.2.

Although this implementation does not support all features of the first-order modal µ-
calculus, we can still use it to express and prove some of the functional requirements of our
ATM’s software which we discussed in Chapter 2. For example, the functional requirement,
that at the start of the program it must be possible to execute the getPIN operation, can be
expressed as follows:

property1 : Formula effect+
property1 = x getPINs effect+ y true

13

4. HENNESSY-MILNER LOGIC

(: {C : Container l1 l2} {α : Set l3} Ñ Program C α Ñ Formula C Ñ Set (l1 \ l2)
_ (true = J

_ (false = K

x (~ f = ¬ x (f
x (f1 ^ f2 = x (f1 ˆ x (f2
x (f1 _ f2 = x (f1 Z x (f2
x (f1 ñ f2 = x (f1 Ñ x (f2
x (x s1 y f with free x
... | pure _ = K

... | impure (s2 , c) = s1 ” s2 ˆ D[p] c p (f
x ([s1] f with free x
... | pure _ = J

... | impure (s2 , c) = s1 ” s2 Ñ @ p Ñ c p (f

Figure 4.2: Semantics of HML formulas

Moreover, using the satisfaction relation we can prove that our ATM’s software satisfies this
functional requirement as follows:

proof1 : ATMs (property1
proof1 = refl , zero , tt

Another functional requirement which we can express using this implementation is that
at the start of the program it must not be possible to execute any operation, other than the
getPIN operation. Unfortunately, since our current implementation of HML does not have
support for action formulas, in order to express this functional requirement, we have to ex-
plicitly mention each operation which we want to say is impossible:

property2 : N Ñ Formula effect+
property2 n = [correctPINs effect+ n] false ^

[showBalances effect+] false ^

[throwExceptions effect+] false

Then, we can once again use the satisfaction relation, in order to prove that our ATM’s soft-
ware satisfies this functional requirement.

proof2 : {n : N} Ñ ATMs (property2 n
proof2 = (λ ()) , (λ ()) , λ ()

However, as we discussed in Chapter 2, this functional requirement can be expressed in a
better way using action formulas. Thus, in the next chapter we are going to describe howwe
can add support for action formulas to our implementation of HML.

14

Chapter 5

Action Formulas

Action formulas are a way of representing sets of operations and their syntax can be repre-
sented using the following BNF grammar:

af ::= α | true | false | af | af X af | af Y af

As we mentioned in Chapter 2, every operation α is also an action formula which represents
a singleton set, containing only that operation. Moreover, the action formula true represents
the set of all operations and the action formula false represents the empty set of operations,
while the non-terminal symbols af, af X af and af Y af in the grammar make it possible to
represent the compliment of a set of operations, the intersection of two sets of operations and
the union of two sets of operations, respectively. We can represent action formulas in Agda
using the following datatype:

data ActionFormula (C : Container l1 l2) : Set l1 where
true false : ActionFormula C
act_ : Shape C Ñ ActionFormula C
_c : ActionFormula C Ñ ActionFormula C
X _Y_ : ActionFormula C Ñ ActionFormula C Ñ ActionFormula C

Furthermore, we can define a function which checks whether a given operation is part of the
set of operations represented by a given action formula as follows:

P : {C : Container l1 l2} Ñ Shape C Ñ ActionFormula C Ñ Set l1
_ P true = J

_ P false = K

s1 P act s2 = s1 ” s2
s P af c = ¬ (s P af)
s P (af1 X af2) = (s P af1) ˆ (s P af2)
s P (af1 Y af2) = (s P af1) Z (s P af2)

Now, that we have all of the necessary definitions to use action formulas, we need to incorpo-
rate them into our definion ofHML formulas shown in Figure 4.1. We can do this by changing
the constructors for the diamond and boxmodalities to use action formulas, instead of single
operations:

x_y_ [_]_ : ActionFormula C Ñ Formula C Ñ Formula C

Furthermore, we need to modify the semantics of the HML formulas shown in Figure 4.2,
in order to account for the changes in the definition. In particular, we need to redefine the
semantics for the diamond and box modalities as follows:

15

5. ACTION FORMULAS

x (x af y f with free x
... | pure _ = K

... | impure (s , c) = s P af ˆ D[p] c p (f
x ([af] f with free x
... | pure _ = J

... | impure (s , c) = s P af Ñ @ p Ñ c p (f

Using our new definition of HML, we can now define the functional requirement that
at the start of the program it must not be possible to execute any operation, other than the
getPIN operation, as follows:

property3 : Formula effect+
property3 = [(act (getPINs effect+)) c] false

Moreover, we can prove that our ATM’s software satisfies this functional requirement as
follows:

proof3 : ATMs (property3
proof3 h = K-elim (h refl)

As we can see, both the definition of the functional requirement and the proof that it is satis-
fied become cleaner with the use of action formulas, compared to the versions presented at
the end of Chapter 4. However, while action formulas are very convenient, since they make
some functional requirements simpler to represent, they do not increase the expressivity of
our HML formulas. Thus, in the next chapter we will look at how we can extend our im-
plementation of HML formulas by adding least- and greatest-fixed-point operators, thereby
changing it into an implementation of a more expressive dynamic logic, namely the modal
µ-calculus.

16

Chapter 6

The Modal µ-Calculus

In this chapter we are going to extend our implementation of HML by adding least- and
greatest-fixed-point operators, thereby transforming it into an implementation of a more ex-
pressive dynamic logic known as themodal µ-calculus. First (in Section 6.1), wewill present
the full syntax of modal µ-calculus formulas, explain the functionality behind the new struc-
tures which it introduces and describe an intuitive, but unsuccessful, attempt to implement
it in Agda. Then (in Section 6.2), we are going to discuss how we have solved the problems
of the intuitive implementation and we will give an example of how our implementation can
be used.

6.1 Intuitive Initial Attempt
Themodal µ-calculus is a fixed-point dynamic logic and its syntax is described by the follow-
ing BNF grammar:

f ::= true | false | ¬ f | f ^ f | f _ f | f Ñ f | x α y f | [α] f | µ X . f | ν X . f | X

As we can see from this grammar, all features of HML shown in Figure 4.1 are also present
in the modal µ-calculus. However, there are three new symbols in the grammar, namely the
terminal symbol X, which is used to denote formula variables, as well as the non-terminal
symbols µ X . f and ν X . f, which represent the least- and greatest-fixed-point operators,
respectively. Using these three new constructs it is possible to express recursion, hence the
modal µ-calculus is sometimes referred to as Hennessy-Milner logic with recursion. In order
to explain how this works, let us go over what the fixed-point operators actually represent.
The non-terminal symbols for the fixed-point operators introduce a new formula variable
X which is given the value f. However, using the terminal symbol X, we can reference the
formula variable X in the formula f, since the formula variable X is in scope during the defi-
nition of f. Thus, the formula variable X can reference itself recursively. This means that the
fixed-point operators define a (possibly recursive) function, denoted by the formula variable
X, which takes a formula as input and returns a formula, and represent either the least fixed
point or the greatest fixed point of that function, depending on which fixed-point operator
is used.

Now, that we have some idea about what the fixed-point operators represent, we can
try to implement them in Agda. A logical first attempt would be to use a datatype Formula1

which extends the Formula datatype with the following three constructors:

µ_ ν_ : (Formula1 C Ñ Formula1 C) Ñ Formula1 C
ref_ : Formula1 C Ñ Formula1 C

These constructors are designed based on the intuitionwhichwe discussed above – the fixed-
point operators require a function, that takes a formula as input (the new formula variable)

17

6. THE MODAL µ-CALCULUS

and returns a formula, while the constructor ref_ can be used to reference the formula vari-
ables which are introduced by the fixed-point operators. Unfortunately, this definition of
the fixed-point operators is not accepted by Agda, since the datatype Formula1 appears as an
argument to a function in one of its constructors and is therefore not strictly-positive.

In order to solve this problem, we need to come up with a different way of representing
the references to Formula1 in all of the constructors. Fortunately, we can also think of formulas
as predicates on programs. Thus, we can define a datatype Formula2 which has the same
constructors as Formula1, but expressed as follows:

µ_ ν_ : ((Program C α Ñ Set) Ñ Program C α Ñ Set) Ñ Formula2 C α
ref_ : (Program C α Ñ Set) Ñ Formula2 C α

While this approach is accepted by Agda, it also has its downsides. The main drawback of
this approach is that, as can be seen from the definitions of the constructors, it requires the
Formula2 datatype to be parameterized by the return type α of the programs which it can be
used to express properties of. Another disadvantage of this approach, that is also valid for
Formula1, is that, while we would like to use the ref_ constructor only for referencing the for-
mula variables which have been introduced by the fixed-point operators, the ref_ constructor
in Formula1 and Formula2 can take any formula as its argument, not only the intended formula
variables.

In our implementation we solve all of these issues by representing the formula variables
which are introduced by the fixed-point operators using de Bruijn indices [11]. In order to
achieve this, we add a new parameter to our definition of formulas – a natural number which
denotes the number of formula variables, that can be referenced in the current formula. With
this implementation the introduction of new formula variables by the fixed-point operators
is not represented by a function. Instead, it is expressed by incrementing the corresponding
parameter of the formula. Moreover, with this approach we can guarantee that the ref_
constructor can only be used to reference the formula variables which have been introduced
by the fixed-point operators. Our implementation of modal µ-calculus formulas in Agda is
shown in Figure 6.1.

data Formulaf p (C : Container l1 l2) : N Ñ Set l1 where
true false : @ {n} Ñ Formulaf p C n
~_ : @ {n} Ñ Formulaf p C n Ñ Formulaf p C n
^ ___ _ñ_ : @ {n} Ñ Formulaf p C n Ñ Formulaf p C n Ñ Formulaf p C n
x_y_ [_]_ : @ {n} Ñ ActionFormula C Ñ Formulaf p C n Ñ Formulaf p C n
µ_ ν_ : @ {n} Ñ Formulaf p C (suc n) Ñ Formulaf p C n
ref_ : @ {n} Ñ Fin n Ñ Formulaf p C n

Figure 6.1: Definition of modal µ-calculus formulas in Agda

Now, that we have defined the constructors for the fixed-point operators, we have to also
define the semantics of those operators. We have already seen that the fixed-point operators
represent the least fixed point and the greatest fixed point, respectively, of a function of type
Formulaf p C α Ñ Formulaf p C α. Therefore, in order to give the semantics of the fixed-point
operators, we need a way of defining the fixed points of such functions. As we have already
discussed, functions of type Formulaf p C α Ñ Formulaf p C α can also be expessed as func-
tions of type (Program C α Ñ Set) Ñ Program C α Ñ Set, since we can think of formulas as
predicates over programs. Fortunately, functions of the latter type are examples of so-called
indexed functors and the least and greatest fixed points of indexed functors can be represented
as follows:

18

6.2. Introducing Containerization

record Mu {C : Container 0l 0l} {α : Set} (F : (Program C α Ñ Set) Ñ Program C α Ñ Set)
(x : Program C α) : Set where

inductive
constructor muc
field
mu : F (Mu F) x

record Nu {C : Container 0l 0l} {α : Set} (F : (Program C α Ñ Set) Ñ Program C α Ñ Set)
(x : Program C α) : Set where

coinductive
constructor nuc
field
nu : F (Nu F) x

Unfortunately, with these definitionswe face the sameproblemwhichwementioned inChap-
ter 3, when talking about the free monad, namely that they are not strictly positive and are
therefore not accepted byAgda. Thus, in order to complete our implementation of themodal
µ-calculus, we need away to represent strictly-positive indexed functors as well as their fixed
points.

6.2 Introducing Containerization
Whenwewere facedwith a similar problem inChapter 3, we solved it by using containers [8],
[9]. However, containers can only be used when working with normal functors. In order to
represent strictly-positive indexed functors, we need a more complex version of containers
known as indexed containers [12]. In our implementation we use a data structure which we
have called Containeri, because it is heavily inspired by the indexed containers presented by
Altenkirch, Ghani, Hancock, et al. [12]. It has the typical structure of a container aswell as an
associated extension function1 which transforms it into an indexed functor. However, before
we can look at the exact definition of Containeri, we first need to introduce the following
auxiliary datatypes.

data FixedPoint : Set where
leastFP : FixedPoint
greatestFP : FixedPoint

data Maybe’ (α : Set l) : Set l where
val_ : α Ñ Maybe’ α
done : Maybe’ α
fail : Maybe’ α

data Result (C : Container l1 l2) (α : Set l3) : Set (l1 \ l2 \ l3) where
res_ : Maybe’ (Program C α ˆ

FixedPoint ˆ

D[n] Formuladnf -dis C (suc n) ˆ Previous C (suc n)) Ñ Result C α
ˆD : @ {s} Ñ ActionFormula C Ñ (Position C s Ñ Result C α) Ñ Result C α
ˆ@ : @ {s} Ñ ActionFormula C Ñ (Position C s Ñ Result C α) Ñ Result C α

The datatype FixedPoint is very straightforward and it is used to denote the types of fixed-
point operator (either a least- or a greatest-fixed-point operator). The datatype Maybe’ is

1For the exact implementation of the extension function, please refer to our source code on GitHub.

19

https://github.com/ivanstodorov/modal-mu-calculus-for-free

6. THE MODAL µ-CALCULUS

similar to the datatype Maybe from Agda’s standard library, but it has one additional con-
structor, and it plays an important role in the definition of the Result datatype. The datatype
Result represents the result of the satisfaction relation for a given formula and program. The
constructors _ˆD_ and _ˆ@_ represent the cases of the satisfaction relation, when the for-
mula is a diamond modality (x_y_) or a box modality ([_]_), respectively, and the program
is not pure. Meanwhile, the constructor res_ represents the cases of the satisfaction relation,
when either the result is J (expressed by the done constructor ofMaybe’) or it is K (expressed
by the fail constructor ofMaybe’) or we have reached a different fixed-point operator – either
a new fixed-point operator or a reference to a previous one. From the definition we can see
that the res_ constructor also uses the datatypes Formuladnf -dis and Previous. The datatype
Formuladnf -dis represents a formula in disjunctive normal form (DNF), while the datatype
Previous is used to represent the fixed point operators which can be referenced in a given
formula. Essentially, we can think of the datatype Previous as representing a list of pairs of
FixedPoint and Formuladnf -dis. Now, that we have gone over the necessary auxiliary data
structures, we can show our implementation of Containeri:

record Containeri (C : Container l1 l2) (α : Set l3) : Set (l1 \ l2 \ l3) where
constructor _Ź_
field
Shape : N
Position : Fin Shape Ñ Program C α Ñ List+ (Result C α)

As part of our work, we have also developed an algorithm for translating a modal µ-
calculus formula into an instance of Containeri. Our algorithm consists of the following steps:

1. Desugar all implications according to the formula f1 ñ f2 = („ f1) _ f2;

2. Desugar all negations by replacing every negated formulawith its dual, while counting
the number of negations in front of each occurrence of the ref_ constructor;

3. Replace all ref_ constructors which have an odd number of negations in front of them
with false;

4. Translate the resulting formula into DNF;

5. Define the Shape of the container as the number of conjunctions in the formula;

6. Define the Position of the container for each shape (each conjunction in the formula) as
a function which relates a given input program to a list of values of type Result, one for
each element in the given conjunction.

Let us illustrate the functionality of our algorithm via an example. Consider the formula:

ν (true ñ x true y (true ^ ref zero))

This formula does not have any particular meaning, but it suffices to demonstrate the func-
tionality of our algorithm. Moreover this formula does not use any specific effect operations
and is therefore valid for any effect. Thus, let us assume some arbitrary effect which this for-
mula is using. In order to define the satisfaction relation for some program and this formula,
we have to use our algorithm to translate the following formula into an instance of Containeri:

true ñ x true y (true ^ ref zero)

The first step is to desugar all implications:

(~ true) _ x true y (true ^ ref zero)

20

6.2. Introducing Containerization

Then, we have to desugar all negations:

false _ x true y (true ^ ref zero)

After that, we have to convert the formula to DNF:

false _ ((x true y true) ^ (x true y ref zero))

Figure 6.2: Result of converting the formula into DNF

At this point we should notice that our formula contains only one ref_ constructor and it is
preceded by an an even number of negations (zero). Thus, we do not need to replace it with
false. Moreover, we can see that our formula is a disjunction of two conjunctions. Therefore,
we can deduce that the corresponding instance of Containeri will have Shape = 2. Finally,
since instances of Containeri are also parameterized by the return type of the programswhich
they can be usedwith, let us assume that wewant to use this instance ofContaineri with a pro-
gram whose return type is J. Then, we can define the instance of Containeri corresponding
to our formula as follows:

container : Containeri effect J

Shape container = 2
Position container zero _ = [res fail]
Position container (suc zero) x with free x
... | pure _ = res done ::+ [res done]
... | impure (s , c) = (true ˆD (λ (_ : Position effect s) Ñ res done)) ::+

[true ˆD (λ p Ñ res (val (c p ,
leastFP ,
zero ,
formuladnf ,
(leastFP , formuladnf))))]

where formuladnf refers to the formula in DNF shown in Figure 6.2.
Using this algorithm we can translate any modal µ-calculus formula into an instance of

Containeri. Thus, we can define the semantics of our fixed-point operators: they are repre-
sented as either the least fixed point or the greatest fixed point, depending onwhich operator
is used, of the instance of Containeri corresponding to the given formula.

Using this implementation of the modal µ-calculus, we can now express and prove more
complex properties of programs. However, let us first consider the formulas, µ X . X and
ν X . X, in order to understand the difference between the least-fixed-point operator and the
greatest-fixed-point operator. These formulas represent the least fixed point and the great-
est fixed point, respectively, of a formula variable X, that just references itself. Since, these
formulas do not use any concrete effect operations, we can express them using the datatype
Formulaf p for some arbitrary effect as follows:

property4 : Formulaf p effect zero
property4 = µ ref zero

property5 : Formulaf p effect zero
property5 = ν ref zero

As we can see from the intuitive definitions of the record types Mu and Nu, that we showed
in Section 6.1, the only difference between them is that the record type Mu, which is used

21

6. THE MODAL µ-CALCULUS

to define the semantics of the least-fixed-point operator, is inductive, while the record type
Nu, which is used to define the semantics of the greatest-fixed-point operator, is coinductive.
This means that, in order for a formula which uses a least-fixed-point operator to be satisfied,
that least-fixed-point operator must be referenced a finite number of times, while formulas
which use a greatest-fixed-point operator can be satisfied even if that greatest-fixed-point
operator is referenced infinitely many times. Thus, property4 is not satisfied by any program,
since for all programs the least-fixed-point operator will be referenced infinitely many times.
Meanwhile, property5 is satisfied by all programs and we can prove that as follows:

proof5 : {α : Set l} Ñ {x : Program effect α} Ñ x (property5
nu proof5 = zero , λ { refl Ñ proof5 }

Now, that we know the difference between the least-fixed-point operator and the greatest-
fixed-point operator, let us see what functional requirements we can express using them. For
example, the liveness property specifies that a program can never terminate or, put differ-
ently, that whenever a program executes some operation, there is always at least one more
operation which has to be performed after it. Going back to our ATM example, we can ex-
press the liveness property as a functional requirement of our ATM’s software using the
datatype Formulaf p as follows:

property6 : Formulaf p effect+ zero
property6 = ν (([true] ref zero) ^ (x true y true))

However, this property does not hold for our ATM’s software, since it halts, if an incorrect
PIN code is provided. We can prove this as follows:

proof6 : ATMs (~ property6
proof6 = muc (zero , tt , zero , λ { refl Ñ

muc (zero , tt , false , λ { refl Ñ

muc (suc zero , λ _ Ñ K-elim) }) })

This example serves as a demonstration of the capabilities of the modal µ-calculus. As we
can see, it allows us to represent much more complex functional requirements compared to
HML. However, this additional expressivity comes at the cost of complexity, since the modal
µ-calculus and, in particular, the fixed-point operators can sometimes be complicated to use.
Thus, in the next chapter we will explain how we can extend our current implementation of
the modal µ-calculus with regular formulas – a feature which can be used to express some
fixed points, such as the one used in the liveness property, in a simpler and cleaner way.

22

Chapter 7

Regular Formulas

Regular formulas are a way of representing possibly infinite sequences of action formulas
and their syntax can be represented using the following BNF grammar:

rf ::= ϵ | af | rf · rf | rf + rf | rf * | rf +

where:

• the terminal symbol ϵ represents the empty sequence of action formulas;

• the terminal symbol af represents a sequence consisting of just a single occurrence of
the given action formula;

• the non-terminal symbol rf · rf represents the concatenation of two sequences of action
formulas;

• the non-terminal symbol rf + rf represents a choice between two sequences of action
formulas;

• the non-terminal symbol rf * represents a sequence of zero or more occurrences of the
given sequence of action formulas;

• the non-terminal symbol rf + represents a sequence of one or more occurrences of the
given sequence of action formulas;

It should be noted that the non-terminal symbol rf + can be expressed using the non-terminal
symbols rf · rf and rf *:

rf + = rf · (rf *)

Thus, in our representation of regular formulas we do not need the non-terminal symbol
rf +, since we can always add it later as syntactic sugar. With this in mind, we can represent
regular formulas in Agda using the following datatype:

data RegularFormula (C : Container l1 l2) : Set l1 where
ϵ : RegularFormula C
actF_ : ActionFormula C Ñ RegularFormula C
· _+_ : RegularFormula C Ñ RegularFormula C Ñ RegularFormula C
_* : RegularFormula C Ñ RegularFormula C

Next, in order to incorporate regular formulas into our definition of the modal µ-calculus
from Figure 6.1, we need to change the constructors for the box and diamond modalities.
However, instead of doing that, we will actually create an entirely new datatype to represent
modal µ-calculus formulas with support for regular formulas:

23

7. REGULAR FORMULAS

data Formularf (C : Container l1 l2) : N Ñ Set l1 where
true false : @ {n} Ñ Formularf C n
~_ : @ {n} Ñ Formularf C n Ñ Formularf C n
^ ___ _ñ_ : @ {n} Ñ Formularf C n Ñ Formularf C n Ñ Formularf C n
x_y_ [_]_ : @ {n} Ñ RegularFormula C Ñ Formularf C n Ñ Formularf C n
µ_ ν_ : @ {n} Ñ Formularf C (suc n) Ñ Formularf C n
ref_ : @ {n} Ñ Fin n Ñ Formularf C n

The reason behind this decision is that we do not want to adjust the satisfaction relation for
the datatype Formulaf p, in order to incorporate regular formulas into it. Instead, we would
like to desugar Formularf into Formulaf p, thereby making it possible to reuse the satisfac-
tion relation for Formulaf p. In order to do this, we need to define a function desugar which
desugars a Formularf into Formulaf p. For the constructors true, false, „_, _^_, ___, _ñ_,
µ_, ν_ and ref_ the definition of this function is straightforward, since these get mapped to
the corresponding constructors of Formulaf p. Thus, the cases which we need to focus on are
those for the box and diamond modalities, [rf] f and x rf y f, respectively. In those cases we
first desugar the remaining formula f and then we use two separate functions desugar-rfb and
desugar-rfd for the box and diamond modality, respectively, which desugar the regular for-
mula rf, given the remaining formula desugar(f). Those functions can be defined by pattern
matching on the regular formula rf and for the constructors ϵ, actF_, _·_ and _+_ their
definitions look as follows:

desugar-rfd : {C : Container l1 l2} Ñ {n : N} Ñ

RegularFormula C Ñ Formulaf p C n Ñ Formulaf p C n
desugar-rfd ϵ f = f
desugar-rfd (actF af) f = x af y f
desugar-rfd (rf1 · rf2) f = desugar-rfd rf1 (desugar-rfd rf2 f)
desugar-rfd (rf1 + rf2) f = desugar-rfd rf1 f _ desugar-rfd rf2 f

desugar-rfb : {C : Container l1 l2} Ñ {n : N} Ñ

RegularFormula C Ñ Formulaf p C n Ñ Formulaf p C n
desugar-rfb ϵ f = f
desugar-rfb (actF af) f = [af] f
desugar-rfb (rf1 · rf2) f = desugar-rfb rf1 (desugar-rfb rf2 f)
desugar-rfb (rf1 + rf2) f = desugar-rfb rf1 f _ desugar-rfb rf2 f

As we can see, for those constructors the desugaring is straighforward, because we trans-
late them accordaing to their meanings presented above. Unfortunately, we cannot use this
approach for the constructor _*. For that case we need to use the following definitions:

x rf * y f = µ X . ((x rf y X) _ f)
[rf *] f = ν X . (([rf] X) ^ f)

However, since we represent the variables which are introduced by the fixed-point operators
using de Bruijn indices (instead of giving them explicit names), we need to use a slightly
modified version of those definitions. In order to demonstrate the desugaring of the _* con-
structor, let us consider the following formula:

ν X . x true * y X

This formula does not have any particular meaning, but it suffices to demonstrate the desug-
aring process. Using the datatype Formularf this formula can be expressed as follows:

24

ν x (actF true) * y ref zero

After desugaring the regular formula (actF true) *, which represents zero or more occur-
rences of the action formula true, this formula would look as follows:

ν µ ((x actF true y ref zero) _ ref (suc zero))

As we can see, the regular formula (actF true) * is desugared by introducing a new fixed-
point operator exactly like in the definition shown above. However, the ref zero, which in
the original formula refers to the greatest-fixed-point operator in the beginning of the for-
mula, becomes ref (suc zero) after the desugaring, in order to account for the new fixed-point
operator which has been introduced.

Using this technique, we can desugar Formularf into Formulaf p. Thus, we can define a
satisfaction relation for Formularf by desugaring it into Formulaf p and reusing the satisfaction
relation for Formulaf p. Using regular formulas, we can now express the liveness property
which we stated at the end of Section 6.2 as follows:

property7 : Formularf effect+ zero
property7 = [actF true *] x actF true y true

As we can see, this representation is a lot more compact and readable than the one we saw
at the end of Section 6.2. Moreover, since the regular formula gets desugared precisely into
the fixed-point operator which we used to express this property at the end of Section 6.2, we
can use the same proof to show that our ATM’s software does not satisfy this property:

proof7 : ATMs (~ property7
proof7 = proof6

This example illustrates the benefit of using regular formulas: they make some common
use cases of the fixed-point operators significantly simpler and cleaner to write. Now, we
have implemented all features of the modal µ-calculus into our framework. Thus, in the
next chapter we will introduce the first-order modal µ-calculus, which will add even more
expressivity to our framework, and we will briefly explain how we have implemented it in
Agda.

25

Chapter 8

The First-Order Modal µ-Calculus

The syntax of first-order modal µ-calculus formulas is described by the following BNF gram-
mar:

f ::= true | false | B | ¬ f | f ^ f | f _ f | f Ñ f | @ p:T . f | D p:T . f | x rf y f | [rf] f |

µ X (p1:T1:=v1,...,pn:Tn:=vn) . f | ν X (p1:T1:=v1,...,pn:Tn:=vn) . f | X(v1,...,vn)

From the grammar we can see that the first-order modal µ-calculus extends the modal µ-
calculus with three additional features:

1. *Any boolean expression can be a formula;

2. *Universal and existantial quantifiers are supported;

3. Least- and greatest-fixed-point operators are parameterized.

For the sake of brevity and simplicity, in this chapter we will only describe the intuition
behind our implementation of those featureswithout going into the implementation details.1

By far the simplest one of the new features is allowing any boolean expression to be a
formula. This is represented by the terminal symbol B in the grammar shown above and
such a formula holds, if the boolean expression evaluates to true. In order to incorporate this
feature into our implementation, we need to add a new constructor to Formularf which takes
some boolean value and returns a formula. However, in our implementation we provide a
more general version of this feature. We add another parameter to our definition ofFormularf ,
a level l, and we add a new constructor to Formularf which looks as follows:

val_ : @ {n} Ñ Set l Ñ Formularf C l n

Using this new constructor, we can construct a formula using any element of Set l. This can
be used together with the next feature which we will introduce, universal and existential
quantifiers, in order to express, for example, conditions. For instance, we could say that
“there exists a natural number n, such that n > 42”. Such a formula can be represented
using the existential quantifier and the val_ constructor to express the condition n > 42.
Furthermore, the formula val X holds for any program, if and only if we can provide a value
of type X. Thus, for the example, that we just introduced, in order to prove that the formula
holds for a given program, we would need to give a natural number n as well as a proof that
n > 42.

1It should be noted that the first two features mentioned above (denoted with a *) have also been added to
action formulas. However, their implementation for action formulas is exactly the same as that for first-order
modal µ-calculus formulas. Therefore, in this chapter we will only describe how we have implemented them for
the latter.

27

8. THE FIRST-ORDER MODAL µ-CALCULUS

The next new feature of the first-order modal µ-calculus is the addition of universal and
existential quantifiers which are represented by the non-terminal symbols @ p:T . f and
D p:T . f, respectively, in the BNF grammar shown above. Unfortunately, when it comes
to these two operators, our implementation does not match their definitions in the grammar.
Initially, we attempted to implement the exact behavior from the grammar by adding con-
structors to Formularf , that represent the universal and existential quantifiers, and then trans-
forming the formulas into prenex normal form (PNF), in order to separate the quantifiers
from the remainder of the formula, before continuing to transform the remainder of the for-
mula using the techniques which we have described thus far. However, this turned out to be
impossible, since, in order to transform a formula into PNF, we might need to rename some
of the variables which are introduced by the quantifiers, which cannot be done automatically.
Instead, we settled for a different, but equally expresive approach, namely representing for-
mulas in PNF from the very beginning, thereby eliminating the need to transform formulas
into PNF automatically. It should be noted, that it was necessary for us to have the formulas
in PNF. Otherwise, we would not have been able use the containerization technique which
we described in Section 6.2 and we would have needed to come up with an entirely new
containerization mechanism. Thus, in our implementation we use a new datatype called
Quantified, which represents a formula in PNF: it can introduce any number of universal and
existential quantifiers, before defining the actual formula.

The last new feature of the first-order modal µ-calculus is the fact that the least- and
greatest-fixed-point operators are parameterized. In order to represent this in our implemen-
tation, we added two additional parameters to the constructors for the least- and greatest-
fixed-point operators: a list denoting the types of the parameters and a list containing their
initial values. Furthermore, we modified the constructor ref_ by giving it an additional argu-
ment: a list of values which will be passed to the parameters of the fixed-point operator, that
is being referenced. Moreover, in order to keep track of what types of parameters each fixed-
point operator expects, we switched from using standard de Bruijn indexing, represented as
natural numbers, to indexing formulas by a Vec (List (Set l)) n, where the length of the vec-
tor n denotes the number of fixed-point operators which we can reference, while the list at
each index of the vector represents the types of the parameters expected by the correspond-
ing fixed-point operator. Finally, we introduced a new datatype called Parameterized, that is
used to represent the formulas which are passed to the fixed-point operators, parameterized
formulas in PNF.

Having said all of this, our full definition of first-order modal µ-calculus formulas looks
as follows:

data Formulai {n : N} (C : Container l1 l2) (l : Level) : Vec (List (Set l)) n Ñ Set ((suc l) \ l1)

data Quantified {n : N}
(C : Container l1 l2)
(l : Level)
(xs : Vec (List (Set l)) n) : List (Set l Z Set l) Ñ Set ((suc l) \ l1) where

formula_ : Formulai C l xs Ñ Quantified C l xs []
@(_)_ : @ {αs} Ñ (α : Set l) Ñ (α Ñ Quantified C l xs αs) Ñ Quantified C l xs (inj1 α :: αs)
D(_)_ : @ {αs} Ñ (α : Set l) Ñ (α Ñ Quantified C l xs αs) Ñ Quantified C l xs (inj2 α :: αs)

data Parameterized {n : N}
(C : Container l1 l2)
(l : Level)
(xs : Vec (List (Set l)) n) : List (Set l) Ñ Set ((suc l) \ l1) where

quantified_ : @ {αs} Ñ Quantified C l xs αs Ñ Parameterized C l xs []
_ ÞÑ_ : @ {αs} Ñ (α : Set l) Ñ (α Ñ Parameterized C l xs αs) Ñ Parameterized C l xs (α :: αs)

28

data Formulai C l where
true false : @ {xs} Ñ Formulai C l xs
val_ : @ {xs} Ñ Set l Ñ Formulai C l xs
~_ : @ {xs} Ñ Formulai C l xs Ñ Formulai C l xs
^ ___ _ñ_ : @ {xs} Ñ Formulai C l xs Ñ Formulai C l xs Ñ Formulai C l xs
x_y_ [_]_ : @ {xs} Ñ RegularFormula C l Ñ Formulai C l xs Ñ Formulai C l xs
µ_._ ν_._ : @ {αs xs} Ñ Parameterized C l (αs :: xs) αs Ñ Arguments l αs Ñ Formulai C l xs
ref_._ : @ {xs} Ñ (i : Fin (length xs)) Ñ Arguments l (lookup xs i) Ñ Formulai C l xs

Formula : (C : Container l1 l2) Ñ (l : Level) Ñ (αs : List (Set l Z Set l)) Ñ Set ((suc l) \ l1)
Formula C l αs = Quantified C l [] αs

Using this implementation we can now express the last functional requirement which
we discussed in Chapter 2, namely that it should not be possible to execute the showBalance
operation for a given user of the ATM, before executing the getPIN operation for that user.
This property can be defined using our framework as follows:

property8 : Formula effect+ 0l []
property8 = formula ν Bool ÞÑ (λ b Ñ quantified formula

[actF (act getPINs effect+ Y act showBalances effect+) c] ref zero . (b :: []) ^

[actF act getPINs effect+] (val T (not b) ^ ref zero . (true :: [])) ^

[actF act showBalances effect+] (val T b ^ ref zero . (false :: []))) . (false :: [])

As we can see, this definition is more complex than the ones which we have seen so far.
However, if we compare this definition with the example from Chapter 2, we can see that
the overall structure of the formula is maintained and the syntax is very similar. The main
difference is that in this definitionweprovide the initial value of the parameter of the greatest-
fixed-point operator at the end of the formula (false :: []), while in the example fromChapter 2
the initial value is provided directly after the parameter is introduced (b:Bool:=false).

We can prove that our model of the ATM’s software satisfies this functional requirement
as follows:

proof8 : ATMs (property8
nu proof8 = zero ,

(λ h Ñ K-elim (h (inj1 (lift refl)))) ,
(λ { _ _ refl Ñ nuc tt }) ,
(λ { _ _ refl Ñ nuc (zero ,
(λ { _ false refl Ñ nuc (zero ,
(λ _ ()) ,
(λ ()) ,
(λ ()) ,
(λ ()) ,
λ ()) ;
_ true refl Ñ nuc (zero ,

(λ h Ñ K-elim (h (inj2 (lift refl)))) ,
(λ ()) ,
(λ ()) ,
(λ { _ _ refl Ñ nuc tt }) ,
(λ { _ _ refl Ñ proof8 })) }) ,

(λ ()) ,
(λ ()) ,
(λ ()) ,
λ ()) }) ,

29

8. THE FIRST-ORDER MODAL µ-CALCULUS

(λ ()) ,
λ ()

This proof, similarly to the definition which we just discussed, is also more complex than
the ones which we have seen so far. However, after examining the proof, we can see that, al-
though it looks complex, it only uses a few basic structures, namely the principle of explosion
(denoted using the function K-elim in Agda), the unit type (denoted as J and constructed
using tt in Agda) and propositional equiality (denoted as _”_ and constructed using refl
in Agda). Thus, this proof serves as a demonstration of how, using our framework, we can
prove even complex properties in a relatively straightforward way.

We have now introduced all features of our framework. In the remainder of this thesis, we
will first demonstrate one important advantage of our framework over traditional methods
for formal verification of effectful programs, namely that our framework allows us to obtain
runnable programs directly from the (verified) models; then, we will discuss related work;
finally, we will conclude and give some examples of future work.

30

Chapter 9

FromModels to Runnable Programs

Thus far in this thesis we have introduced a framework which allows us to represent se-
quential effectful programs as instances of the coinductive free monad and to express and
prove the functional requirements of those programs using the first-order modal µ-calculus.
However, this approach to formal verification of effectful programs has one important ad-
vantage which we have not discussed so far. Traditionally, in order to formally verify that a
given software satisfies its functional requirements, we would need to first define a model
of that software and then verify that this model satisfies the necessary functional require-
ments. However, in that case the model is defined separately from the software itself. Thus,
it is possible that the model is incorrect, meaning that it does not accurately represent the
behavior of the software, in which case verifying it is useless, since that would not provide
any guarantees for the behavior of the actual software. Fortunately, with our framework we
can avoid this problem. The reason for this is that after defining a model of an effectful pro-
gram as an instance of the coinductive free monad, we can obtain the actual implementation
of said effectful program from that model by using effect handlers. Thus, since the actual
software is obtained from the model, rather than being a completely separate entity, it is
guaranteed that the model is correct and, by extension, that the actual software also satisfies
all functional requirements which are satisfied by the model.

Let us demonstrate this with an example. Imagine that we need a program which sends
somemessages along a unidirectional synchronous communication channel between person
A and person B, such that person A can only send messages and person B can only receive
messages. In order to represent this program as an instance of the coinductive free monad,
we first need to define the effect which it uses:

data CommunicationShape : Set where
send : String Ñ CommunicationShape
receive : CommunicationShape

communicationEffect : Container 0l 0l
Shape communicationEffect = CommunicationShape
Position communicationEffect (send _) = J

Position communicationEffect receive = String

This implementation of the communication effect consists of two operations, namely send and
receive, where the send operation expresses that person A sends some message to person B
(hence it requires a single argument of type String representing the message which is being
sent) and the receive operation expresses that person B receives a message from person A
(hence its position is of type String). Now, that we have defined communicationEffect, we can
use it to define a model of our program:

31

9. FROM MODELS TO RUNNABLE PROGRAMS

program : List String Ñ Program communicationEffect J

free (program []) = pure tt
free (program (i :: is)) = impure (send i , λ _ Ñ xx impure (receive , λ _ Ñ program is) yy)

Aswe can see from the definition, the program is parameterized by a List String, representing
the list of messages which person A wants to send to person B. Furthermore, since the com-
munication channel is synchronous, person B receives all messages (the receive operation is
executed) directly after person A sends them (the send operation is executed). Now, we can
use our framework to verify, for example, that whenever the receive operation is executed,
there is a message to be received:

property9 : Formula communicationEffect 0l []
property9 = formula ν N ÞÑ (λ n Ñ quantified formula

[actF ((D(String) λ x Ñ act send x) Y act receive) c] ref zero . (n :: []) ^

[actF (D(String) λ x Ñ act send x)] ref zero . (suc n :: []) ^

[actF act receive] (val (n > 0) ^ ref zero . (pred n :: []))) . (0 :: [])

The definition of this property is very similar to that of the property which we discussed at
the end of Chapter 8. The main difference is that, instead of having a parameter of type Bool,
the greatest-fixed-point operator has a parameter of typeNwhich is used to keep track of the
number ofmessageswhich have been sent by personA, but have not been received by person
B yet. We can prove that our model of the program satisfies this requirement as follows:

proof9 : (is : List String) Ñ program is (property9
nu (proof9 []) = zero ,

(λ { refl Ñ nuc tt }) ,
(λ { refl Ñ nuc tt }) ,
(λ { refl Ñ nuc tt }) ,
λ { refl Ñ nuc tt }

nu (proof9 (x :: is)) = zero ,
(λ h Ñ K-elim (h (inj1 (x , lift refl)))) ,
(λ { _ _ refl Ñ nuc (zero ,
(λ h Ñ K-elim (h (inj2 (lift refl)))) ,
(λ ()) ,
(λ { _ _ refl Ñ nuc (lift (sďs zďn)) }) ,
(λ { _ _ refl Ñ proof9 is })) }) ,

(λ ()) ,
λ ()

As we can see, this proof is also similar in structure to the one presented at the end of Chap-
ter 8. However, since in this case our program is parameterized by a List String, we need to
pattern match on that parameter and provide a separate proof for each case.

Now, thatwe have verified that ourmodel satisfies the necessary functional requirements,
let us demonstrate how we can obtain a runnable program from our model. In order to
achieve this, we need to define a handler for communicationEffect: a function which specifies
the exact implementation of each operation of communicationEffect. However, before we can
do that, we need one more auxiliary definition:

tau : Container 0l 0l
Shape tau = J

Position tau _ = J

The container tau represents an auxiliary effect which we use to represent silent steps [13],
in order to satisfy Agda’s guardedness requirements. Using the container tau, we can define
a handler for communicationEffect as follows:

32

handler : {α : Set} Ñ Program communicationEffect α Ñ

Program tau (Maybe (α ˆ List String))
handler p = handler’ p [] []

where
handler’ : {α : Set} Ñ Program communicationEffect α Ñ List String Ñ List String Ñ

Program tau (Maybe (α ˆ List String))
free (handler’ p sent received) with free p
... | pure a = pure (just (a , received))
... | impure (send x , c) = impure (tt , λ _ Ñ handler’ (c tt) (sent ::r x) received)
... | impure (receive , c) with sent
... | [] = pure nothing
... | x :: sent = impure (tt , λ _ Ñ handler’ (c x) sent (x :: received))

As we can see from this definition, handler is a function which takes some program, that
uses communicationEffect and returns a program which uses the effect tau. Furthermore, the
handler changes the return type of the program: it adds a value of type List String to the
output of the program, which in this case represents the list of messages which person B has
received from person A, and wraps the return type in a Maybe, indicating that the program
may fail. By inspecting the implementation of handler, we can see that it works by keeping
track of two lists: onewhich contains all messages, that person B has received, and onewhich
contains allmessages, that personAhas sent, but personBhas not received yet. Moreover, we
can see that, if the receive operation is executed and there are no messages to be received, the
program fails, which is why the addition of Maybe to the return type of the output program
was necessary.

Finally, we can use handler to obtain a runnable program from our model. Thus, since
the runnable program is obtained from the model, we know that all functional requirements
which are satisfied by the model will also be satisfied by the runnable program. Moreover,
we can now define additional properties for the runnable program, namely ones which rea-
son about the behavior of the program for concrete inputs. For example, we can define the
following property, which states that person Bwill always receive all messages which person
A sends and they will be received in the same order as that in which they were sent:

@ {xs} Ñ handler (program xs) ” xx pure (tt , reverse (map just xs)) yy

Unfortunately, this property is not entirely correct, because it omits all of the silent steps
which handler introduces (one for each send and receive operation in the program). However,
even if we add all of the necessary silent steps, this property will be unprovable. The reason
for this is that, since Program is defined as a coinductive record type, we cannot compare
programs using propositional equality (_”_), as they may be infinite. Instead, in order to
prove that two programs have the same behavior, we need to define and use a notion of
bisimulation. However, while this is possible, it is out of the scope of our work and we will
therefore not cover it in this thesis.

33

Chapter 10

Related Work

Propositional dynamic logic (PDL) is a kind of logic which was originally introduced by
Vaughan Pratt [14] for the purpose of reasoning about computer programs. Later, HMLwas
designed by Matthew Hennessy and Robin Milner [10], based on the PDL of Pratt, with
the goal of describing the behavior of concurrent programs. And after that, the modal µ-
calculus, which is more expressive than both the PDL of Pratt andHML, was first introduced
by Dexter Kozen [4]. Since then, the modal µ-calculus has been widely used in the field of
process theory, in order to reason about the behavior of labelled transition systems. This
widespread adoption iswhat led to the development of the toolmCRL2 [3]which usesmodel
checking to verify properties, expressed using the first-order modal µ-calculus, of labelled
transition systems. The adoption of the first-ordermodalµ-calculus in ourworkwas inspired
by mCRL2. However, in our work we attempt to use the first-order modal µ-calculus in a
novel context, namely to verify properties of programs defined using algebraic effects.

In a different related line of work, it has been shown that it is possible to formalize modal
logics in a proof assistant [15]. However, such works do not make any connection between
the formalized modal logics and their meaning for computer programs. Thus, our work
differs from those by the fact that we provide semantics for the first-order modal µ-calculus
which directly link it to computer programs.

Another related, although less closely, topic of research is session types. Session types
can be used to enforce certain properties of communication channels in a distributed set-
ting, such as the order in which messages are sent and received through a given channel.
Although session types can be used to enforce some order among the operations in a dis-
tributed program, which is similar to what can be accomplished using our framework, it
should be noted that session types are typically applied to distributed programs. In contrast,
our framework provides a logic for verifying properties of sequential programs. Therefore,
at present, our work is clearly separated from session types. However, if we extend our
framework, such that it can be used to reason about concurrent and distributed programs,
then we could use it to express properties, similar to those enforced by session types.

Recent work by Lago and Ghyselen [5] extends techniques due to Ong [16] for model-
checking higher-order programs. This extension lets themautomatically verifymonadic second-
order logic propositions about programs involving algebraic effects and handlers. The work
of Lago and Ghyselen [5] also demonstrates that the model-checking problem for programs
involving algebraic effects and handlers is, in general, undecidable. Rather than usingmodel
checking, the goal of our work is to allow programmers working in a dependently-typed lan-
guage, such as Agda, to assert and verify functional properties of effectful programs.

In another contemporary line of work, Swierstra and Baanen [17] demonstrate how we
can derive effectful programs directly from a given functional specification, represented by a
pre- and postcondition. The advantage of this approach is that programs derived in this way
are guaranteed to comply with the provided functional specification and therefore there is

35

10. RELATED WORK

no need for additional verification. While our framework does not currently support such
features, an interesting prospect would be to explore whether it is possible to use first-order
modal µ-calculus formulas, such as the ones shown in this thesis, as the pre- and postcondi-
tions for such program derivations.

36

Chapter 11

Conclusion and Future Work

In this thesis we have presented a noval way of reasoning about sequential effectful pro-
grams within a proof assistant. Through the use of algebraic effects and effect handlers our
approach makes it possible to obtain runnable programs directly from a (verified) model.
Because of this, when we use our framework to verify that a model satisfies some set of re-
quirements, we are not only reasoning about that model; we are directly reasoning about all
programs which can be obtained from that model by using different effect handlers. Thus,
our approach removes the risk of having a model which does not represent the actual pro-
gram correctly. Furthermore, we have shown that it is possible to reason about programs in
a proof assistant using dynamic logic, in particular, the first-order modal µ-calculus. And,
while we have written our framework entirely in Agda, we believe that our results should
be reproducible in other proof assistants as well, as long as they have support for all of the
necessary features (e.g. coinduction).

However, our framework has its limitations. For example, in its current state it cannot
be used to reason about parallel programs. Additionally, when working with complex for-
mulas or large programs, our framework can become slow, which is a big downside, when
it comes to using it in real-world scenarios. Moreover, our framework is currently not very
user-friendly, especially for novice users, since users need to be familiar with all of the trans-
formations which are happening in the backend, in order to successfully use it.

Therefore, when it comes to future work, there are a lot of different avenues which can
be taken. Firstly, it is important to test our framework in more real-world scenarios. Most
of the examples which we presented in this thesis were very simple, since their goal was to
introduce the features of our framework. However, through those examples we have only
scratched the surface of what can be expressed using the first-order modal µ-calculus. Thus,
it would be interesting to see how our framework would perform in a real-world scenario,
when the functional requirements which have to be proven will be much more complex.

Aside from that, it is important to try to address the downsides of the framework which
we mentioned earlier. For example, one of the reasons why the framework is currently slow,
when working with large programs and/or complex functional requirements, is the large
number of transformations which occur on the backend. Those transformations are neces-
sary, in order to automate the containerization of formulas. However, containers are not
the only way of representing strictly-positive functors. It is possible that a different repre-
sentation (e.g. descriptions [18]) could be more suitable in our use case. And, if we find
a representation which formulas can be converted to directly, or using a smaller number of
transformations, that should significantly improve the performance of the framework as well
as its user-friendliness.

Another possible improvement would be to extend our framework by adding support
for parallel programs. For example, the tool mCRL2, which was a big source of inspiration
for our work, has support for parallel programs through the use of multiactions. Maybe a

37

11. CONCLUSION AND FUTURE WORK

similar feature could be added to our framework, in order to increase its functionality.
Finally, in this thesis we have shown that it is possible to use the first-order modal µ-

calculus to express and prove the functional requirements of sequential effectful programs
represented as instances of the coinductive free monad in a proof assistant. This approach
requires us to manually prove that the functional requirements are satisfied by the given
model. However, an interesting option to explore is, whether it is possible to define a refine-
ment calculus based on the first-order modal µ-calculus, which would allow us to, given a set
of functional requirements expressed using the first-order modal µ-calculus, incrementally
define amodel which satisfies all of those requirements (similar to the work of Swierstra and
Baanen [17]).

38

Bibliography

[1] Edsger Wybe Dijkstra. “Notes on Structured Programming”. EWD249 http://www.cs.
utexas.edu/users/EWD/ewd02xx/EWD249.PDF. Apr. 1970.

[2] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley, 2002. ISBN: 0-3211-4306-X. URL: http : / / research .
microsoft.com/users/lamport/tla/book.html.

[3] Jan Friso Groote andMMousavi.Modelling and analysis of communicating systems. Tech-
nische Universiteit Eindhoven, 2013.

[4] Dexter Kozen. “Results on the propositionalµ-calculus”. In:Theoretical computer science
27.3 (1983), pp. 333–354.

[5] Ugo Dal Lago and Alexis Ghyselen. “OnModel-Checking Higher-Order Effectful Pro-
grams”. In: Proc. ACM Program. Lang. 8.POPL (2024), pp. 2610–2638. DOI: 10.1145/
3632929. URL: https://doi.org/10.1145/3632929.

[6] Andreas Abel, Brigitte Pientka, David Thibodeau, et al. “Copatterns: programming
infinite structures by observations”. In: The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013. Ed. by Roberto Giacobazzi and Radhia Cousot. ACM, 2013, pp. 27–38. DOI: 10.
1145/2429069.2429075. URL: https://doi.org/10.1145/2429069.2429075.

[7] Wouter Swierstra. “Data types à la carte”. In: J. Funct. Program. 18.4 (2008), pp. 423–436.
DOI: 10.1017/S0956796808006758. URL: https://doi.org/10.1017/S0956796808006758.

[8] Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. “Categories of Con-
tainers”. In: Foundations of Software Science and Computational Structures, 6th Interna-
tional Conference, FOSSACS 2003 Held as Part of the Joint European Conference on The-
ory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings.
Ed. by Andrew D. Gordon. Vol. 2620. Lecture Notes in Computer Science. Springer,
2003, pp. 23–38. ISBN: 3-540-00897-7. DOI: 10.1007/3- 540- 36576- 1_2. URL: https:
//doi.org/10.1007/3-540-36576-1%5C_2.

[9] Michael GordonAbbott, ThorstenAltenkirch, andNeil Ghani. “Containers: Construct-
ing strictly positive types”. In: Theor. Comput. Sci. 342.1 (2005), pp. 3–27. DOI: 10.1016/
j.tcs.2005.06.002. URL: https://doi.org/10.1016/j.tcs.2005.06.002.

[10] Matthew Hennessy and Robin Milner. “On observing nondeterminism and concur-
rency”. In: International Colloquium on Automata, Languages, and Programming. Springer.
1980, pp. 299–309.

[11] Nicolaas Govert De Bruijn. “Lambda calculus notationwith nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser theorem”.
In: Indagationes mathematicae (proceedings). Vol. 75. 5. Elsevier. 1972, pp. 381–392.

39

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1145/3632929
https://doi.org/10.1145/3632929
https://doi.org/10.1145/3632929
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/3-540-36576-1%5C_2
https://doi.org/10.1007/3-540-36576-1%5C_2
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002

BIBLIOGRAPHY

[12] Thorsten Altenkirch, Neil Ghani, Peter G. Hancock, et al. “Indexed containers”. In: J.
Funct. Program. 25 (2015). DOI: 10.1017/S095679681500009X. URL: https://doi.org/10.
1017/S095679681500009X.

[13] Li-yao Xia, Yannick Zakowski, Paul He, et al. “Interaction trees: representing recursive
and impure programs in Coq”. In: Proceedings of the ACM on Programming Languages
4.POPL (2019), pp. 1–32.

[14] Vaughan R Pratt. “Semantical considerations on Floyd-Hoare logic”. In: 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). IEEE. 1976, pp. 109–121.

[15] Ana de Almeida Borges. “Towards a Coq Formalization of a QuantifiedModal Logic.”
In: ARQNL@ IJCAR. 2022, pp. 13–27.

[16] C.-H. Luke Ong. “On Model-Checking Trees Generated by Higher-Order Recursion
Schemes”. In: 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15
August 2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, 2006, pp. 81–90.
DOI: 10.1109/LICS.2006.38. URL: https://doi.org/10.1109/LICS.2006.38.

[17] Wouter Swierstra and Tim Baanen. “A predicate transformer semantics for effects
(functional pearl)”. In:Proceedings of the ACMonProgramming Languages 3.ICFP (2019),
pp. 1–26.

[18] James Chapman, Pierre-Évariste Dagand, Conor McBride, et al. “The gentle art of lev-
itation”. In: ACM Sigplan Notices 45.9 (2010), pp. 3–14.

40

https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1109/LICS.2006.38

	Contents
	Introduction
	Using the First-Order Modal μ-Calculus
	Modelling Effectful Programs
	The Inductive Free Monad
	Representing Recursion: The Coinductive Free Monad
	Composing Effects
	Adding Smart Constructors

	Hennessy-Milner Logic
	Action Formulas
	The Modal μ-Calculus
	Intuitive Initial Attempt
	Introducing Containerization

	Regular Formulas
	The First-Order Modal μ-Calculus
	From Models to Runnable Programs
	Related Work
	Conclusion and Future Work
	Bibliography

