
 
 

Delft University of Technology

A Graph-based, Probabilistic Framework for Novel Aerospace Technology Evaluation and
Selection

Roelofs, M.N.

DOI
10.4233/uuid:fad6b4e3-5cbe-4451-b6e4-b40160617488
Publication date
2021
Document Version
Final published version
Citation (APA)
Roelofs, M. N. (2021). A Graph-based, Probabilistic Framework for Novel Aerospace Technology Evaluation
and Selection. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:fad6b4e3-5cbe-4451-b6e4-b40160617488

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:fad6b4e3-5cbe-4451-b6e4-b40160617488
https://doi.org/10.4233/uuid:fad6b4e3-5cbe-4451-b6e4-b40160617488


A Graph-based, Probabilistic 
Framework for Novel Aerospace 
Technology Evaluation and Selection 

by Martijn Roelofs 





A GRAPH-BASED, PROBABILISTIC FRAMEWORK
FOR NOVEL AEROSPACE TECHNOLOGY EVALUATION

AND SELECTION

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on Monday 29 November 2021 at 12:30 o’clock

by

Martijn Nico ROELOFS

Master of Science in Aerospace Engineering,
Delft University of Technology, the Netherlands,

born in Leidschendam, the Netherlands.



This dissertation has been approved by the promotors.

promotor: prof. dr. ir. L.L.M. Veldhuis
copromotor: dr. ir. R. Vos

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. L.L.M. Veldhuis Delft University of Technology, promotor
Dr. R. Vos Delft University of Technology, copromotor

Independent members:
Prof. dr. G.C.H.E. de Croon Delft University of Technology
Prof. dr. D. Mavris Georgia Institute of Technology
Dr. D. Soban Queen’s University of Belfast
Dr. B. Smith University at Buffalo
Dr. K. Amadori Linköping University

Reserve members:
Prof. dr. ir. R. Benedictus Technische Universiteit Delft

Keywords: Aerospace technology, Graph theory, (Bayesian) probability, decision
making

Printed by: Gildeprint

Front & Back: Made by the amazing Julieta Bolaños Arriola

Copyright © 2021 by M.N. Roelofs

ISBN 978-94-6419-392-3

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary vii

Samenvatting xi

1 Introduction 3

1.1 Technology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Technology Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research context: project MANTA. . . . . . . . . . . . . . . . . . . . . . 9

1.4 Research Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 19

2.1 Technology Evaluation and Selection . . . . . . . . . . . . . . . . . . . . 20

2.2 Analysis Frameworks for Novel Aircraft Configurations and Technologies. . 23

2.3 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Uncertainty Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Uncertainty Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Engineering systems ontology 51

3.1 Requirements for the ontology . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Basic Formal Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Information Artifact Ontology . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Physics-based Simulation Ontology. . . . . . . . . . . . . . . . . . . . . 60

3.5 Extending BFO, PSO and IAO . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Technologies as Graph Transformations . . . . . . . . . . . . . . . . . . 64

3.7 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Discussion on BFO and PSO . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Discussion on the Use of an Ontology. . . . . . . . . . . . . . . . . . . . 68

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



iv CONTENTS

4 Technology portfolio generation 71
4.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Technology Compatibility and Incompatibility . . . . . . . . . . . . . . . 73
4.3 Technology Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Generating portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Maximum Dissimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Case study: Aircraft Technologies . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Case Study: Industry Technology Set . . . . . . . . . . . . . . . . . . . . 86
4.8 Case Study: Factorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Technology portfolio evaluation 99
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Probabilistic inversion 127
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3 PI for a single technology . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 PI for technology and portfolio selection . . . . . . . . . . . . . . . . . . 148
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Synthesis 157
7.1 Method overview and comparison with state-of-the-art . . . . . . . . . . 158
7.2 The MANTA project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3 Application of methodology to MANTA . . . . . . . . . . . . . . . . . . . 173
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8 Conclusion 181
8.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Acknowledgements 187

References 189

A Constraint Satisfaction Problem 203

B Subgraph Isomorphism 207

C Graph Edit Distance 209
C.1 Fast GED Implementation Details for Graph Transformation Rules . . . . . 210



CONTENTS v

D Enabling technology set 213

E Maximum dissimilarity 215

F Portfolio Generation 217

G Factorio Results 219

H Dependency graph algorithm 223

I Computation graph algorithm 227

J System Flow Directions 231

K Dependency Graphs Case Studies 233

Curriculum Vitæ 237

List of Publications 239





SUMMARY

Technology selection is ubiquitous in all manners of complex systems engineering, de-
sign and everyday business operations. Technologies are often complex entities shrouded
in uncertainty, assumptions and interpretation. Therefore, quantifying their effect (i.e.
outcome) becomes challenging for several reasons. First, as simulations may not be
available for novel technologies, experts have to estimate their impacts. Secondly, as the
technologies may not be well-defined, different experts have different interpretations
and will assign different outcomes. Thirdly, even if analysis methods are available, there
is epistemic and model uncertainty in the outcome. Finally, available analysis frame-
works are typically application-specific, non-extensible and inflexible.

It is the objective of this thesis to pave the way towards a technology selection method-
ology that offers a structured, repeatable and traceable way to represent technologies
and consecutively quantify their impacts on an engineering system. Such a method-
ology is implemented as a decision support system, i.e. a computer program that as-
sists a decision maker throughout the decision-making process. Three components of
said methodology can be identified: technology representation and portfolio generation,
technology (portfolio) evaluation and technology (portfolio) selection.

From these three components, the following three research objectives are distilled:

• Establish a formal knowledge representation of engineering systems, such that
technologies can be described.

• Specify, develop and demonstrate a methodology that enables automatic infer-
ence of technology (parameter) dependencies, using the knowledge representa-
tion established earlier.

• Specify, develop and demonstrate a methodology that estimates uncertainty dis-
tributions and subsequently quantifies uncertainty in the system, based on a given
dependency structure, as well as support inverse uncertainty quantification.

These objectives reflect that technology evaluation in engineered systems is extremely
complex, especially in high-tech industries, such as the aerospace or automotive sectors.
They do that by aiming for automation and incorporating uncertainty into the selection
process.

A formal knowledge representation is achieved through an ontology that aims to cap-
ture engineering systems as realistically as possible. The basis of this ontology is formed
by a combination of three upper ontologies: Basic Formal Ontology (BFO), Information
Artifact Ontology (IAO) and Physics-based Simulation Ontology (PSO). With the ontol-
ogy at the foundation, the information that describes an engineering system is captured
in a knowledge graph. Such a graph contains the particulars (individuals) as nodes, and
their relations as edges. A node has a type and possibly any number of attributes. Edges
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also have a type and may contain attributes. Knowledge graphs are very flexible data
structures and, therefore, support the flexibility, extensibility and applicability of the
method.

Technology is defined in this dissertation as a materialized form of knowledge of a
system in order to alter the system’s form or behavior to satisfy certain requirements.
The key insight following from this definition is to model technologies as graph transfor-
mation rules. Such a rule takes part of a knowledge graph and transforms it into another
knowledge graph. Because the knowledge graphs describe systems, the transformation
describes the change in that system. The graph transformation rules enjoy the expres-
siveness and consistency of the underlying knowledge graphs, because a rule only con-
sists of two knowledge graphs: a pattern graph and an effect graph.

When combining technologies into technology portfolios, technology incompatibil-
ity and technology enablers have to be considered. Technology incompatibility is con-
sidered through two mechanisms: the graph transformation rules and first-order logic
(FOL) based on the ontological description. The graph transformation rules have for-
mal notions of independence associated with them that are translated into technology
compatibility. The latter approach is more flexible and extensible than the FOL-based
approach. As a result, it is advised to use that approach, unless a clear definition of tech-
nology compatibility is available.

Any framework for technology evaluation has to be modular and extensible. There
is simply no analysis method that could capture all possible systems and technologies.
Modularity is achieved by specifying separate analysis models for different aspects of
a system. Again, the ontology allows for providing context to the analysis models. A
knowledge graph specifies the pattern in a system that the analysis model applies to.

From the knowledge graph of a system (including a certain technology portfolio),
and the application of a set of analysis models, a dependency graph is generated. The
dependency graph contains all possible computation directions between the variables
in the system. From this graph, a computation graph is distilled given the quantities of
interest (QoIs) and known input variables. The computation graph contains one specific
possible computation sequence to compute the QoI from the inputs.

When a probabilistic calculation is performed, the joint probability distribution of
two dependent variables should be correctly characterized. To assist the practitioner, a
first-order-logic-based rule set is created that enables inference of dependent variables.
It works by stating generalized causal influences between properties of physical entities.
A practitioner can view which variables are considered as dependent by the rules, and
specify joint dependency structures for those.

The probabilistic inversion (PI) technique is proposed to compute a preference over
technology portfolios when their effects are uncertain. PI requires samples of the input
and output variables of an analysis model. Therefore, it poses no restriction on the type
of model, except that it is computationally tractable to generate thousands of samples.
Then, constraints (i.e. target distributions) on any of the input and output variables have
to be specified. The PI problem then aims to find a new distribution over the samples
such that all constraints are satisfied. The redistributed variables (after PI) show how the
technology variables need to change in order to achieve certain goals. Similarly, when
multiple technologies are combined into portfolios, the combined effects are quantified,
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and probabilistic inversion shows how the frequency of the technologies should change
to achieve certain goals. This frequency shift provides a preference order for selection.
Multi-objective goals can be imposed on PI, without having to be converted to a single-
objective function, as usually is done in design optimization. This comes at the cost that
each goal is treated with equal weight.

A comparison is made between the state-of-the-art method and the herein devel-
oped method towards technology evaluation and selection. Three key differences be-
tween these methods have been identified. First, the proposed method features signif-
icantly more automation than the state-of-the-art approach. Second, in the proposed
approach, all data is either stored in a knowledge graph, or is numeric. This makes it
machine-interpretable and removes all the disadvantages that textual data has in the
state-of-the-art method. Third, the approach is more flexible and extensible than the
state-of-the-art, because the dependency and computation graphs are generated on-
the-fly and uniquely for each technology portfolio. This also removes the dependency
of the impact factors on the analysis tool. Concluding, the graph-based, probabilistic
framework for technology evaluation and selection provides a robust, consistent and
traceable process to evaluate and rank technology portfolios.





SAMENVATTING

Selectie van technologie is alomtegenwoordig op alle manieren van complexe systeem-
bouw, ontwerp en dagelijkse bedrijfsvoering. Technologieën zijn vaak complexe entitei-
ten gehuld in onzekerheid, aannames en interpretaties. Daarom wordt het kwantifice-
ren van hun effect (d.w.z. uitkomst) om verschillende redenen een uitdaging. Ten eerste,
aangezien simulaties mogelijk niet beschikbaar zijn voor nieuwe technologieën, moe-
ten experts hun impact inschatten. Ten tweede, aangezien de technologieën misschien
niet goed gedefinieerd zijn, hebben verschillende experts verschillende interpretaties en
zullen ze verschillende resultaten toewijzen. Ten derde, zelfs als er analysemethoden be-
schikbaar zijn, is er epistemische en modelonzekerheid in de uitkomst. Ten slotte zijn de
beschikbare analysekaders typisch toepassingsspecifiek, niet uitbreidbaar en inflexibel.

Het is het doel van dit proefschrift om de weg vrij te maken voor een technologie-
selectiemethodologie die een gestructureerde, herhaalbare en traceerbare manier biedt
om technologieën weer te geven en achtereenvolgens hun impact op een technisch sys-
teem te kwantificeren. Een dergelijke methodologie wordt geïmplementeerd als een be-
slissingsondersteunend systeem, d.w.z. een computerprogramma dat een besluitvor-
mer bijstaat tijdens het besluitvormingsproces. Drie componenten van de genoemde
methodologie kunnen worden onderscheiden: technologierepresentatie en portfolio-
generatie, technologie (portfolio) evaluatie en technologie (portfolio) selectie.

Uit deze drie componenten worden de volgende drie onderzoeksdoelstellingen ge-
destilleerd:

• Breng een formele kennisweergave van technische systemen tot stand, zodat tech-
nologieën kunnen worden beschreven.

• Specificeer, ontwikkel en demonstreer een methodologie die automatische infe-
rentie van technologische (parameter) afhankelijkheden mogelijk maakt, gebruik-
makend van de eerder vastgestelde kennisrepresentatie.

• Specificeer, ontwikkel en demonstreer een methodologie die onzekerheidsverde-
lingen schat en vervolgens de onzekerheid in het systeem kwantificeert, op basis
van een gegeven afhankelijkheidsstructuur, en die ook de inverse onzekerheids-
kwantificatie ondersteunt.

Deze doelstellingen weerspiegelen dat de evaluatie van technologie in technische syste-
men buitengewoon complex is, vooral in hightechindustrieën, zoals de lucht- en ruimtevaart-
of automobielsector. Dat doen ze door te streven naar automatisering en door onzeker-
heid mee te nemen in het selectieproces.

Een formele kennisrepresentatie wordt bereikt door middel van een ontologie die
erop gericht is technische systemen zo realistisch mogelijk vast te leggen. De basis van

xi
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deze ontologie wordt gevormd door een combinatie van drie bovenste ontologieën: Ba-
sic Formal Ontology (BFO), Information Artifact Ontology (IAO) en Physics-based Si-
mulation Ontology (PSO). Met de ontologie aan de basis, wordt de informatie die een
engineeringssysteem beschrijft vastgelegd in een kennisgrafiek. Zo’n grafiek bevat de
bijzonderheden (individuen) als knooppunten en hun relaties als randen. Een knoop
heeft een type en mogelijk een willekeurig aantal attributen. Randen hebben ook een
type en kunnen attributen bevatten. Kennisgrafieken zijn zeer flexibele datastructuren
en ondersteunen daarom de flexibiliteit, uitbreidbaarheid en toepasbaarheid van de me-
thode.

Technologie wordt in dit proefschrift gedefinieerd als een gematerialiseerde vorm
van kennis van een systeem om de vorm of het gedrag van het systeem te veranderen
om aan bepaalde eisen te voldoen. Het belangrijkste inzicht dat uit deze definitie volgt,
is om technologieën te modelleren als regels voor grafiektransformatie. Zo’n regel maakt
deel uit van een kennisgrafiek en zet deze om in een andere kennisgrafiek. Omdat de
kennisgrafieken systemen beschrijven, beschrijft de transformatie de verandering in dat
systeem. De grafiektransformatieregels genieten de expressiviteit en consistentie van
de onderliggende kennisgrafieken, omdat een regel slechts uit twee kennisgrafieken be-
staat: een patroongrafiek en een effectgrafiek.

Bij het combineren van technologieën in technologieportfolio’s moet rekening wor-
den gehouden met incompatibiliteit met technologie en technologie-enablers. Technologie-
incompatibiliteit wordt beschouwd via twee mechanismen: de grafiektransformatiere-
gels en eerste-orde logica (FOL) op basis van de ontologische beschrijving. Aan de trans-
formatieregels voor grafieken zijn formele noties van onafhankelijkheid verbonden die
worden vertaald in technologiecompatibiliteit. De laatste benadering is flexibeler en uit-
breidbaar dan de op FOL gebaseerde benadering. Daarom wordt geadviseerd om die
benadering te gebruiken, tenzij er een duidelijke definitie van compatibiliteit van tech-
nologie beschikbaar is.

Elk raamwerk voor technologie-evaluatie moet modulair en uitbreidbaar zijn. Er is
gewoon geen analysemethode die alle mogelijke systemen en technologieën kan vast-
leggen. Modulariteit wordt bereikt door afzonderlijke analysemodellen te specificeren
voor verschillende aspecten van een systeem. Nogmaals, de ontologie maakt het mo-
gelijk om context te bieden aan de analysemodellen. Een kennisgrafiek specificeert het
patroon in een systeem waarop het rekenmodel van toepassing is.

Vanuit de kennisgrafiek van een systeem (inclusief een bepaald technologieportfolio)
en de toepassing van een set analysemodellen wordt een afhankelijkheidsgrafiek gege-
nereerd. De afhankelijkheidsgrafiek bevat alle mogelijke berekeningsrichtingen tussen
de variabelen in het systeem. Uit deze grafiek wordt een berekeningsgrafiek gedestilleerd
gezien de hoeveelheden van belang (QoI’s) en bekende invoervariabelen. De bereke-
ningsgrafiek bevat een specifieke mogelijke berekeningsreeks om de QoI uit de ingangen
te berekenen.

Wanneer een probabilistische berekening wordt uitgevoerd, moet de gezamenlijke
kansverdeling van twee afhankelijke variabelen correct worden gekarakteriseerd. Om de
beoefenaar te helpen, wordt een eerste-orde-logica-gebaseerde regelset gecreëerd die
het mogelijk maakt afhankelijke variabelen af te leiden. Het werkt door gegeneraliseerde
causale invloeden tussen eigenschappen van fysieke entiteiten te vermelden. Een beoe-
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fenaar kan zien welke variabelen door de regels als afhankelijk worden beschouwd, en
hiervoor structuren voor gezamenlijke afhankelijkheid specificeren.

De probabilistische inversie (PI) techniek wordt voorgesteld om een voorkeur bo-
ven technologieportfolio’s te berekenen wanneer hun effecten onzeker zijn. PI heeft
steekproeven nodig van de input- en outputvariabelen van een analysemodel. Daarom
stelt het geen beperking op het type model, behalve dat het rekenkundig traceerbaar
is om duizenden monsters te genereren. Vervolgens moeten beperkingen (d.w.z. doel-
verdelingen) voor elk van de invoer- en uitvoervariabelen worden gespecificeerd. Het
PI-probleem beoogt vervolgens een nieuwe verdeling over de monsters te vinden, zodat
aan alle beperkingen wordt voldaan. De herverdeelde variabelen (na PI) laten zien hoe
de technologievariabelen moeten veranderen om bepaalde doelen te bereiken. Evenzo,
wanneer meerdere technologieën worden gecombineerd in portfolio’s, worden de ge-
combineerde effecten gekwantificeerd, en de probabilistische inversie laat zien hoe de
frequentie van de technologieën zou moeten veranderen om bepaalde doelen te be-
reiken. Deze frequentieverschuiving biedt een voorkeursvolgorde voor selectie. Multi-
objectieve doelen kunnen aan PI worden opgelegd, zonder dat ze hoeven te worden ge-
converteerd naar een enkelvoudige objectieve functie, zoals gewoonlijk wordt gedaan bij
ontwerpoptimalisatie. Dit gaat ten koste van het feit dat elk doel met evenveel gewicht
wordt behandeld.

Er wordt een vergelijking gemaakt tussen de state-of-the-art methode en de hierin
ontwikkelde methode richting technologie-evaluatie en selectie. Er zijn drie belang-
rijke verschillen tussen deze methoden geïdentificeerd. Ten eerste bevat de voorgestelde
methode aanzienlijk meer automatisering dan de state-of-the-art aanpak. Ten tweede
worden in de voorgestelde benadering alle gegevens opgeslagen in een kennisgrafiek
of zijn ze numeriek. Dit maakt het machinaal interpreteerbaar en neemt alle nadelen
weg die tekstuele gegevens hebben in de state-of-the-art methode. Ten derde is de aan-
pak flexibeler en uitbreidbaar dan de state-of-the-art, omdat de afhankelijkheids- en
berekeningsgrafieken on-the-fly en uniek worden gegenereerd voor elke technologie-
portfolio. Dit neemt ook de afhankelijkheid van de impactfactoren van de analysetool
weg. Concluderend biedt het op grafieken gebaseerde, probabilistische raamwerk voor
technologie-evaluatie en -selectie een robuust, consistent en traceerbaar proces voor
het evalueren en rangschikken van technologieportfolio’s.





NOMENCLATURE

A Attributes
a Acceleration
CD Drag coefficient
CL Lift coefficient
D Dependency Graph
D Drag force
E Edges
e Oswald efficiency factor
F Cumulative density function
F Force
G (Knowledge) Graph
H Pattern Graph
I Indicator function
K Gluing graph
k Impact factor
L Pattern graph
L Lift force
MF Fuel mass
MOE Operating empty mass
MMTO Maximum take-off mass
MP Payload mass
MZF Zero-fuel mass
m Match, Morphism
N Gaussian distribution function
P Analysis Parameters, Power
p Probability
q Inter-quantile
R Effect graph, Range
S Wing area
s Sample
SE Specific Energy
T Thrust force
t Technology
V Vertices, Velocity
W Weight
x Sample vector,

optimization vector
X ,Y , Z Random vectors

Operators

∀ For all
∃ Exists
⇒ Implies
⇔ If and only if
∧ And
∨ Or
¬ Negation
∥ Compatible
⊥ Incompatible
≺ Enables

Greek symbols

α Copula shape parameter
∆ Difference
δ Deflection angle
η Efficiency
µ Mean
ρ Air density
σ Standard deviation
τ Kendall’s tau

Subscripts

ac Aircraft
bat Battery
des Descent
cl Climb
cr Cruise
e Electric, Oswald factor
f Fuel, Flap
gb Gearbox
I Input
i i -th entry
M Mass
max Maximum
O Output
OEM Operating Empty Mass
p Propeller
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req Requirement
s Shaft
tot Total
0 Initial

Acronyms
BFO Basic Formal Ontology
CAD Computer Aided Design
CDF Cumulative Distribution Function
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
DOF Degree-of-Freedom
EM Electric Machine (Electromotor)
FB Fuel burn
FD Functional Decomposition
GB Gearbox
GDC Generically Dependent Continuant
GT Gas Turbine
GUI Graphical User Interface
IC Independent Continuant
ICE Information Content Entity
IPF Iterative Proportional Fitting
IRL Integration Readiness Level

MA Mission Analysis
MDO Multidisciplinary Design Optimization
PM Power Module
PDF Probability Density Function
PI Probabilistic Inversion
POS Probability of Success
PRE Payload Range Efficiency
PSO Physics-based Simulation Ontology
QoI Quantity of Interest
SA Sensitivity analysis
SDC Specifically Dependent Continuant
SE Specific energy
S/N Signal-to-noise ratio
SPPH Serial-Parallel Partial Hybrid
SRL System Readiness Level
TCG Technology Compatibility Graph
TCM Technology Compatibility Matrix
TIF Technology Impact Forecasting
TRL Technology Readiness Level
TSEC Thrust-specific energy consumption
UQ Uncertainty Quantification
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Technology selection is ubiquitous in all manners of complex systems engineering, de-
sign and everyday business operations. From picking one design alternative over an-
other during the conceptual design of a radical new aircraft configuration, to selecting a
new manufacturing process for a small part inside a complex machine. From a research
project investigating promising technologies, to the incremental improvement of an ex-
isting product by including a new technology.

It comes as no surprise that people have researched extensively how to make good
decisions [1, 2]. This has led to the development of Decision Theory [3, 4]. A decision
maker has to choose from a set of alternatives that each lead to some outcome, and does
so by assigning utility to each outcome. For example, the alternatives could be vari-
ous aircraft technologies, while the outcome is the aircraft fuel burn for a given mission.
However, technologies are often complex entities shrouded in uncertainty, assumptions
and interpretation. Therefore, quantifying their utility (i.e. outcome) becomes challeng-
ing for several reasons:

1. As simulations may not be available for novel technologies, experts have to esti-
mate their impacts.

2. As the technologies may not be well-defined, different experts have different in-
terpretations and will assign different outcomes.

3. Even if analysis methods are available, they are typically application-specific, non-
extensible and inflexible. More often than not, specific analysis methods need to
be developed, which are stand-alone, and not integrated with existing methods.

Let us consider the first challenge. Although there is currently no practicable alternative
to using expert judgment, there are several problems. Experts may be over-confident
(illustrated in Figure 1.1), resulting in inaccurate judgment of the technology effect [5].
Conversely, experts may be non-informative; their estimation may be factually correct
but not very informative (e.g. specification of a wide range of values for a variable) [6],
as shown in Figure 1.2. The minimum and maximum values are retrieved from all ex-
perts’ estimates, or could simply be negative and positive infinity, respectively. Finally,
experts (inherent to human nature) may be inconsistent [7], leading to different tech-
nologies being assessed differently from similar technologies that have the same behav-
ior or function.

Min valueMin value Max valueMax value

Expert estimateExpert estimateActual valueActual value

Figure 1.1: Overconfident expert: very informative es-
timate, but unfortunately far from the truth.

Min valueMin value Max valueMax value

Actual valueActual value

Expert estimateExpert estimate

Figure 1.2: Uninformative expert: the truth is within
the estimate, but the estimate has a wide range.

The second challenge aggravates the first, in that the inconsistency from a single ex-
pert is magnified by the inconsistency between experts as a result of differing views of
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what a certain technology entails, how it works and what its effect is on the quantities of
interest. Besides such miscommunication, lack of communication or lack of common
data may play a role. This problem is demonstrated in Figure 1.3 1, with a well-known
cartoon in systems engineering that illustrates the miscommunication and misinterpre-
tation of different people in a systems engineering project.

(a) The technology (b) The description (c) Understanding ex-
pert 1

(d) Understanding ex-
pert 2

Figure 1.3: Misunderstanding of a technology leading to a mischaracterization of their effects

Regarding the third challenge, physics-based analysis methods are preferred to as-
sess novel technologies with reasonable accuracy. However, there is epistemic uncer-
tainty, i.e. lack of knowledge concerning the physics involved. Additionally, the tech-
nology itself may not be matured, hence its behavior and form may change during the
development process. Consider the four-level hierarchy proposed by NASA (see Figure
1.4) [8]. Each level expresses the integration of a technology in a multi-disciplinary sys-
tem, along with the requirements to reach that level. Note how the levels are stacked on
top of each other, meaning that to develop a technology at level 4, one has to go through
the other three levels first. There usually is a gap between level 1 and 3, since it is diffi-
cult to create a method or tool that relates fundamental physics to technology-specific
responses. Additionally, for novel technologies, level 1 is also often lacking, if the tech-
nology relies on an unexplored aspect of physics. Finally, when combinations of tech-
nologies are considered, their compatibility and combined effects need to be assessed.
These combined effects might involve synergies or discordance. Synergy means that the
multiple technologies affect the same target and the total impact is more than the addi-
tion of the individual contributions. Discordance means that the multiple technologies
partly or fully negate each other’s impacts. Both need to be properly defined.

1.1. TECHNOLOGY SELECTION
As we’ll see in Chapter 2, technology selection is prevalent in aircraft design practices.
It comes as no surprise that it has received considerable attention from academic re-

1https://hackernoon.com/how-to-accept-over-engineering-for-what-it-really-is-6fca9a919263, Retrieved 7
April 2021
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Figure 1.4: Levels of technnology reasearch and system development [8]. Lower levels have an increasing
number of requirements and needs, and focus more and more on fundamental principles. Traversing to higher
levels increases the amount of integration and builds on lower levels to create multidisciplinary technologies
and capabilities.

searchers. A common technique to account for the impact of technologies is through
assigning a difference to a certain parameter that describes the aircraft system. For ex-
ample, the effect of an entire flap system can be represented by a change in maximum lift
capability and subsystem mass. The Technology Identification, Evaluation and Selection
(TIES) [9–11] methodology, developed at Georgia Tech, works this way. A probabilistic
approach towards uncertainty is adopted and technology selection is done based on the
highest probability of meeting objectives [12]. The Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) is used to create a ranking of technology portfolios.
The impacts of technologies are called k-factors, because they are multiplicative factors
to an attribute of the aircraft system that is affected by the technology. The advantage
of using k-factors is that key disciplinary metrics are taken into account and no com-
mitment needs to be made to modeling a technology [13]. It is therefore a straightfor-
ward approach, and can quickly and easily identify the impact of certain technologies.
Epistemic uncertainty with regard to subsystem assessment and state of the art (SOTA)
assumptions may also be dealt with by using k-factors [14, 15]. However, subtle char-
acteristics specific to a certain technology may not be taken into account and therefore
distinguishing effects may be overlooked. For example, a certain technology may re-
quire a cutout in an existing structural member. Then the structural assessment of that
member needs to be modified to take this into account. A k-factor could perhaps only
be applied to the system mass of which the structural member is a part. Estimating the
effect of the technology, especially when the system has to be re-sized, then becomes
incredibly difficult.

Simulation environments to analyze novel technologies have also received consider-
able attention. Two major limitations of current conceptual design environments were
identified by Lu et al. [16]:

1. The application of design tools is limited to a specific vehicle type, because the
sizing method is fixed

2. Flexibility and scalability of disciplinary analysis tools is lacking

Both of these limitations should be overcome for effective evaluation of novel aircraft
concepts and technologies. However, creating a flexible and modular design environ-
ment is challenging due to the coupling of operational and systems capabilities [17].
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Nonetheless, some libraries exist (e.g. Modelica) that focus on flexibility in disciplinary
analysis. The goal is to create such solutions for all disciplines. Another important chal-
lenge for designing unconventional aircraft is consistent geometry representation. As of
now, no suitable geometry definition tool or CAD package is available that allows geom-
etry to be used continuously from conceptual design into detailed design [18].

Despite these challenges, several efforts have been made to arrive at a conceptual air-
craft design framework that is suitable for technology evaluation [19, 20]. Some include
uncertainty quantification [21–23]. Additionally, NASA has developed several physics-
based analysis tools for different disciplines, which were used in an aircraft design study
for the Next Generation Air Transportation System [24]. A practical technology eval-
uation study was performed by Heinemann et al. [25] to investigate the feasibility of
meeting the goals set for a year 2050 tube-and-wing aircraft. Several technologies are
discussed, including maneuver and gust load alleviation, a hybrid laminar-flow wing,
variable camber and active flow control.

As we can see, technology evaluation focuses on representing technologies quanti-
tatively with k-factors, whilst obscuring the intricacies of the technologies themselves.
Additionally, analysis frameworks have been developed to investigate particular, novel
technologies and designs. Even uncertainty is adopted in a multitude of research efforts.
However, the issue of consistency is systematically overlooked or avoided. Furthermore,
proper expert elicitation procedures are often not employed. There is neither a clear-cut
method to represent and capture technologies, nor a framework that enables quantify-
ing their effects consistently. When considering uncertainty, most efforts only include
forward propagation of uncertainty. While this is already valuable, the inverse problem
is of interest as well. Furthermore, while it is known that dependencies between random
variables need to be considered for a proper evaluation of the impact of technologies,
this is hardly ever done in practice.

1.2. TECHNOLOGY DEFINITION
Technology evaluation is not a straight-forward process as has been clarified above. There-
fore, this work aims to contribute to the available knowledge on how to quantify the im-
pact of a technology or technology portfolio on an engineering system. However, up to
now, we have not clarified what a technology is perceived to be within this work. In fact,
the term technology is rather broad and has enjoyed many different definitions. Marx
[26] even emphasizes the vagueness of the term:

The curious fact is that the discursive triumph of the concept of technology
is in large measure attributable to its vague, intangible, indeterminate char-
acter — the fact that it does not refer to anything as specific or tangible as a
tool or machine.

As an example of a definition, Bush [27] states:

“Technology is a form of human cultural activity that applies the princi-
ples of science and mechanics to the solutions of problems. It includes the
resources, tools, processes, personnel, and systems developed to perform
tasks and create immediate particular, and personal and/or competitive ad-
vantages in a given ecological, economic, and social context.”
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Although it is a more socio-cultural definition, it expresses the things that a technology
encompasses. Furthermore, it highlights that a technology serves a purpose, i.e. has a
function or goal. A similar conclusion is obtained from the definition by Merrill [28]:

“Technology in its broad meaning connotes the practical arts. These arts
range from hunting, fishing, gathering, agriculture, animal husbandry, and
mining through manufacturing, construction, transportation, provision of
food, power, heat, light, etc., to means of communication, medicine, and
military technology. Technologies are bodies of skills, knowledge, and pro-
cedures for making, using and doing useful things. They are techniques,
means for accomplishing recognized purposes”

Feibleman [29] approaches the definition of technology from a broader perspective,
including pure science, applied science, technology and engineering. Historically, ap-
plied science and technology were quite distinct, being practiced by natural philosphers
and articans, respectively. However, over the past few centuries, the two have merged to
a certain extent Feibleman [29]:

“There is now only the smallest distinction between applied science, the ap-
plication of the principles of pure science, and technology. The methods
peculiar to technology: trial-and-error, invention aided by intuition, have
merged with those of applied science: adopting the findings of pure science
to the purposes of obtaining desirable practical consequences. Special train-
ing is required, as well as some understanding of applied and even of pure
science.”

Mitcham and Schatzberg [30] provide a similar review of and distinction between pure
science, applied science, technology and engineering.

Although much more can be said about what technology is and how it relates to
science and engineering, the purpose of this section is to provide a working definition
within the context of this work. Therefore, the following definition is proposed:

A technology is a materialized form of knowledge applied to a given sys-
tem in order to alter the system’s form or behavior to satisfy certain re-
quirements.

Let us further expand this definition. The materialized form of knowledge ranges from
implementing a process, incorporating a protocol, or instantiating or modifying a mate-
rial entity. Thus, when the knowledge is only implicit (e.g. exists as a thought), it is not
considered materialized. The system can be any system, including social, biological and
physical systems, as well as engineered systems. For the present work, only engineered
systems are considered. The system behavior involves all processes that the system par-
ticipates in. Its form is the physical, tangible object that makes up the system in reality.
Finally, a technology has a purpose, as Bush [27] and Merrill [28] conclude. Therefore, it
has to satisfy certain requirements that capture the function or goal of the technology.

Concretely, in the aircraft domain, a technology according to this definition could be
a new material for the wingbox that makes the wing more flexible and lighter, in order
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to reduce fuel consumption. Another example would be software that enables the air-
plane to be statically unstable by correcting for deviations from equilibrium through a
controller, allowing the horizontal tailplane to be smaller and reduce fuel burn in this
way. Finally, a technology could be an operational procedure where the airspace is more
efficiently utilized, such that airplanes can fly more direct routes and have shorter loiter
times, reducing the fuel burn of a fleet of airplanes at airline level.

1.3. RESEARCH CONTEXT: PROJECT MANTA
The research presented in this thesis has been conducted as part of the MANTA project,
which is part of the European Commission CleanSky II Joint Undertaking Work Plan.
Clean Sky 2 is a Public-Private Partnership (PPP) between the European Commission and
the EU aviation industry, aiming to reduce aviation environmental impact by accelerat-
ing development and deployment of cleaner air transport technologies 2. MANTA stands
for Movables for Next Generation Aircraft and was started to develop and demonstrate
innovative multifunctional movables that increase airframe efficiency over the complete
flight envelope of business jets (BJ) and large passenger aircraft (LPA) as contribution to
the societal challenge for this topic to reduce 3 to 5% CO2. The MANTA consortium con-
sists of two industrial partners, Fokker Aerostructures and ASCO, as well as two research
centres, NLR and DLR and one university, TUD. The project is guided by three topic lead-
ers: Airbus, Dassault Aviation and Saab Aeronautics.

Technologies introduced in the MANTA project are used within this thesis to con-
duct experiments and exemplify the introduced methods. Unfortunately, the method
developed herein was not applied to MANTA due to chronological misalignment, as is
discussed in Chapter 7. Not insignificantly, the MANTA project also provided valuable
insights into the state-of-practice of industry technology selection, which incentivized
parts of the present work.

1.4. RESEARCH OBJECTIVES
The aim of any technology selection methodology is a structured, repeatable and trace-
able way to exploit all information available on applicable technologies and extracting
useful information about the effect of the technologies in order to reduce subjectivity in
the technology selection process [32]. It is the objective of this thesis to pave the way to-
wards a technology selection methodology that offers a structured, repeatable and trace-
able way to represent technologies and consecutively quantify their impacts on an engi-
neering system. Such a methodology can be implemented as a decision support system,
i.e. a computer program that assists a decision maker throughout the decision-making
process. Three components of said methodology can be identified:

1. Technology representation and portfolio generation

2. Technology (portfolio) evaluation

3. Technology (portfolio) selection.

These are elaborated below.
2www.cleansky.eu
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Technology representation and portfolio generation A formal knowledge representa-
tion method needs to be in place to describe technologies. Capturing technologies for-
mally has several benefits: knowledge capturing, knowledge sharing, consistency, and
automation. These benefits serve to build a foundation for addressing the challenges
introduced at the start of this chapter. Automation further enables us to replace human
experts by expert systems, which may improve reliability, robustness and consistency.
When human experts are still employed, a structured knowledge representation may
align their interpretations and reduce diverging assessments. A formal representation
offers a language flexible enough for practitioners to express what a certain technology
entails, while being restrictive enough such that ambiguity is avoided. If such a language
can be encoded in a structured data format, the information can be easily shared and in-
tegrated. If only one valid way exists to express a certain concept, the lack of ambiguity
also improves consistency — no matter how one starts to describe a technology, they
end up with the same description. When human experts are replaced with machine ex-
perts, we can avoid human pitfalls, such as overconfidence or bias. Of course, machines
are not perfect either. Deep neural networks may, for example, be able to learn very
complex tasks, but we have very little insight into the things they learn and how they
even work. Nonetheless, we can more easily measure the reliability and precision of a
machine expert than that of a human one.

Technology (portfolio) evaluation Novel technologies may rely on physics for which
empirical or computationally tractable estimations or simulations are unavailable. There-
fore, it is hard to quantify their impacts and effects. This problem is aggravated by the
lack of knowledge on the final form, function and behavior of the technologies. How-
ever, we require some manner of quantification of effects for an unambiguous decision
under risk/uncertainty, rather than a decision under ignorance. Technology selection
usually takes place in the conceptual design stage or early phase of a research project,
when the combinatorial design space is large. Flexible, detailed, physics-based analysis
methods are too computationally expensive to run for such a vast design space. Thus,
we need a way to easily model novel technologies for which new analysis methods have
to be developed, and have the flexibility of combining those analysis methods with our
current simulation tools. The aim is to reuse existing analysis methods and facilitate the
creation and inclusion of new ones. An evaluation framework that satisfies these needs
tackles the third challenge exposed earlier. Moreover, new disciplinary analysis meth-
ods themselves should be more flexible in the variety of systems they can analyze. The
graph-based approach introduced in this thesis enables the creators of these analysis
methods to meet this requirement.

Technology (portfolio) selection Decision Theory offers many guidelines on selecting
the best rational option from a set of alternatives. Even in presence of uncertainty, Deci-
sion Theory can be employed. However, technology selection is sometimes not the goal
of the exercise. Rather, we wish to figure out more about the technologies we are inves-
tigating, and may select a technology that seems to have a higher Technology Readiness
Level (TRL), or is easier to research and implement. Thus, Decision Theory is not the
only tool we need. A method that offers inverse inference in an uncertain environment
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is required. Through such a method, decision-makers can base their judgment on num-
bers and mathematical truths. Furthermore, it allows them to quickly investigate the
impact of inputs to the evaluation, and, thus, to quickly check the versatility (or robust-
ness) of their decisions. Robust decisions help mitigate the adverse effects of the first
two challenges in technology selection.

While these three components each have shortcomings that are addressed in this
dissertation, it is useful to consider the types of queries we would like to pose to the de-
cision support system, to guide us in the technology selection decision-making process.
These queries help to shape what the methodology should be capable of.

“Which is more beneficial for reducing QoI q, technology t1 or technology t2?” This
is a typical forward query:

argmint∈T q(S + t ) (1.1)

where T is the set of technologies, q is the quantity of interest (QoI) to be minimized,
S is the baseline system and t a technology in T that is applied to S. The baseline sys-
tem is always required, as it establishes a common ground with respect to which the
technologies are compared. Furthermore, note that system means any system, but this
dissertation solely focuses on engineered systems. In a deterministic setting, this query
may be solved using standard optimization techniques. Even simpler, assuming each
technology is quantified with fixed values, the quantity q is just computed for each tech-
nology t and the smallest is the answer to the query.

If multiple quantities of interest are considered, the targets on each QoI may result
in a different technology t being optimal to reach those goals. Then, one can use multi-
objective optimization techniques, such as weighted (linear) combinations of the objec-
tives, or a Pareto search. However, we can also frame the problem probabilistically as:

P (t |q) =∏
i

P (t |qi ) =∏
i

P (qi |t )P (t )

P (qi )
(1.2)

Now, each target P (qi ) is a probability distribution rather than a fixed value and we can
observe the posterior probability that a given technology satisfies that target. The con-
ditional probability P (qi |t ) is simply the result of a simulation that computes qi with
technology t present. Finally, P (t ) is 1/|T |, because we give each technology an equal
chance.

“What change in the technology design variables x is needed for technology t1 to have
a significant effect on the outputs y?” In general, if we have input variables x ∈ RN

and output variables y ∈RM and a model F :RN 7→RM , we want to compute x = F−1(y).
Therefore, this is an inverse query. In a Bayesian setting, we would like to compute:

P (x |y) = P (y |x) ·P (x)

P (y)
= F ·P (x)

P (y)
(1.3)

This equation is very similar to Equation 1.2. However, instead of expressing the proba-
bility of a technology given some distribution of the QoIs, here we compute the probabil-
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ity of observing some distribution P (x |y) over the input variables x given some desired
distribution P (y) over the output variables y .

“Which technology portfolio leads to most reduction in QoI q?” The difference be-
tween this query and the first is the fact that portfolios are considered instead of individ-
ual technologies. The challenge lies in that the set of technology portfolios is the power
set of technologies: P = 2T . That also means that the amount of portfolios is the power
of two of the number of technologies: |P | = 2|T |. We seek a solution to the combinatorial
problem:

argminP J (SP ) (1.4)

where J is the objective function and SP is the system after applying the technology port-
folio. If a fixed target on J is set, then the problem becomes very similar to Equation 1.2.
The only difference is that the technologies T are replaced with the technology portfo-
lios P . The first task is to find the set of feasible technology portfolios, i.e. those port-
folios for which the technologies are both mutually compatible as well as fulfilling the
constraint inequalities. The second task is to find those portfolios that realize the objec-
tive. Note the similarity between the probabilistic formulations of the first two queries
and the fact that the third query is just an extension of the first. This suggests that a single
framework could solve all three of these queries.

Such a probabilistic framework for technology evaluation and selection requires, in
the ideal case, the following capabilities. It can:

1. Observe the system of interest (SoI). The SoI is an input and the framework should
comprehend what the SoI’s composition, behavior and function are.

2. Observe the technologies. Similar as with the SoI, the framework should be able
to digest whatever technology it is presented with, and make sense of how it af-
fects the SoI. The framework understands how technologies interact physically,
with minimal prior knowledge encoded by experts. Thus, it should comprehend
physics through learning autonomously.

3. Figure out how the technologies and combinations thereof affect the objective J .
Obviously, one could naively compute all possible technology portfolios and then
compute J for each of them. However, that becomes intractable for a moderate
set of technologies, or when the simulation models are computationally expen-
sive. Therefore, a qualitative sense of physics should enable the system to pin-
point which portfolios are worthwhile to simulate and for which it can make a rea-
sonable estimate. Then, a quantitative sense of physics in the form of simulation
models have to be mapped to the remaining portfolios in order to compute J for
all of them.

4. Assign probability distributions to uncertain input variables. Based on an under-
standing of physics, much like human experts do, the framework can use past
experiences to make assertions about a current problem. For example, when a
novel technology introduces some variable for which no previous data exists, sim-
ilar variables may be found by comparing the novel technologies with previous
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technologies. Then, the data about those former technologies can be extrapolated
to the novel technology, with some additional uncertainty.

5. Understand how to rank technology portfolios even when the objective J does not
evaluate to a clear ranking. This actually is a ubiquitous problem in decision the-
ory. In the end, the problem comes down to a preference of decision and policy
makers, for example, whether they are risk-averse, risk-neutral or risk-seeking.

Some of these items are too far fetched and out of scope for this dissertation. However,
it is worthwhile to consider what an ideal probabilistic framework for technology evalu-
ation and selection should be capable of.

From the aforementioned three components — technology representation and port-
folio generation, technology (portfolio) evaluation and technology (portfolio) selection
— and ideal framework, the following three research objectives are distilled:

• Establish a formal knowledge representation of engineering systems, such that
technologies can be described.

• Specify, develop and demonstrate a methodology that enables automatic infer-
ence of technology (parameter) dependencies, using the knowledge representa-
tion established earlier.

• Specify, develop and demonstrate a methodology that estimates uncertainty dis-
tributions and subsequently quantifies uncertainty in the system, based on a
given dependency structure, as well as support inverse uncertainty quantifica-
tion.

Let us compare how these objectives lead to a method that tackles the problems with
the state-of-the-art approach. The state-of-the-art situation as sketched in Section 1.1 is
notionally displayed in Figure 1.5(a). Systems and technologies are described with text
and figures, and then analyzed using problem-specific analysis methods. The users have
to manually map the technologies to the inputs of these analysis methods. In fact, most
operations, except for the actual computations, are performed by humans.

This situation is contrasted by the method shown in Figure 1.5(b), which includes
a problem independent portion that formalizes the data structure with which systems
and technologies can be described. Moreover, analysis methods are included here as
well, in such a way that they can automatically be applied to any system or technology.
Note that the output types in this method are mostly in the form of graph data (which
is explained in subsequent chapters) and most operations are performed by computer
algorithms, rather than human experts. In summary, the method should bring two key
benefits: knowledge formalization and automation.
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Systems and technologies

Computations

Technology ranking

(a) State-of-the-art
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Figure 1.5: Comparison between state-of-the-art method and present method ideal. Most significantly, the
new method establishes problem-independent data structures, modules and knowledge that is reused. Fur-
thermore, technologies and systems are represented with graph data structures, instead of text and figures.
Finally, many parts of the technology evaluation and selection process are automated. The state-of-the-art is
a summarization (and simplification) of the approaches introduced in section 2.1.
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1.5. RESEARCH QUESTION
From the research objectives and the exposition of queries the framework has to answer,
it does not become clear how these objectives are to be attained. In order to guide the
research towards a suitable solution that satisfies the above research objectives, a main
research question is formulated as follows:

How is an aircraft technology portfolio selected in a robust, consistent
and traceable manner to minimize an objective function, given uncertain
technology metrics, while including technology dependencies?

Some of the terms used in this research question deserve further explanation. Robust
implies that the method is applicable to any technology/configuration, produces the
same result for the same analysis, and improves with new data. Consistent implies that
technologies are represented unambiguously and when different analysis methods and
assumptions are present, these are applied to all technologies equally. Finally, traceable
implies that the method supports explicit knowledge capturing and sharing.

The main research question is broken down into the following sub-questions:

1. How to represent engineering systems and technologies consistently and robustly,
allowing for knowledge capturing, reuse and sharing?

2. How to define dependencies between technologies, and how to characterize these
dependencies based on the physical behavior of the technologies?

3. How to analyze (novel) technologies in a consistent, reliable and robust manner,
such that their (combined) effects are characterized, with uncertain input met-
rics/parameters?

4. How should a ranking of a set of technologies or technology portfolios be obtained
for multiple, conflicting, uncertain quantities of interest?

Each of these is addressed in one of the chapters in this thesis. Note that some chapters
address multiple sub-questions.

Although originating from the MANTA project, this thesis research addresses the
problem of representing technologies and quantifying their effects in terms of quantities
of interest. The scope is widened to any complex system and novel technology, instead
of specifically aircraft and movable technologies. The reason is that aircraft and the as-
sociated technologies are sufficiently complex that only a holistic approach is believed
to tackle the indicated problems in a consistent, reusable manner.

1.6. THESIS OUTLINE
This thesis is structured to follow the steps in a technology evaluation and selection
workflow. However, Chapter 2 first presents the prerequisite knowledge and background
information that supports all elements of the following research chapters. Additionally,
Chapter 2 presents a literature review of relevant research fields. How this knowledge is
fed into the subsequent chapters is illustrated in Figure 1.6.
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Chapter 2: Prerequisite knowledge
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Ontology 

(Representation)

Chapter 4:
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2.8 Uncertainty propagation
2.9 Sensitivity analysis

Figure 1.6: Thesis outline following the four steps of the method: technology representation, portfolio gen-
eration, evaluation and selection. The arrows indicate how knowledge from the chapters flows from one to
another; in some cases including a specification of that knowledge.

An ontology to represent engineering systems and technologies is presented in Chap-
ter 3. This ontology forms the knowledge representation that is used by the three subse-
quent chapters, as can also be seen in Figure 1.6.

Chapters 4 through 6 discuss the following three steps of the technology evaluation
and selection process: portfolio set generation, portfolio evaluation and portfolio selec-
tion. Thus, Chapter 4 presents multiple methods to generate the technology compati-
bility matrix (TCM) in a structured, repeatable and traceable manner. The TCM is one
of the elements used to reduce the set of portfolios, by excluding those which contain
incompatible technologies. Furthermore, a method to deduce technology enabling is
discussed, which further reduces the set of possible portfolios. Finally, an auxiliary tech-
nique — maximum dissimilarity — is presented to find a representative set of portfolios,
such that only those would have to be analyzed, rather than all remaining portfolios after
pruning through the TCM.

After the portfolios that have to be evaluated are generated, a simulation model should
be constructed to compute the quantities of interest, based on the known input vari-
ables. Because each portfolio differs and different technologies may be captured with
different parameterizations, a tailor-made simulation graph is constructed in Chapter
5 for each portfolio. Because some of the inputs may be uncertain variables, their de-
pendency structure should also be indicated. This is a challenging task for engineers or
decision makers non-versed in probabilistic simulations. Therefore, the sub-task of find-
ing which pairs of variables have a dependency structure is automated by an inference
mechanism, thus alleviating the effort.

Chapter 6 introduces probabilistic inversion (PI) as a means to use the data gener-
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ated in Chapter 5 as to answer the various queries on the technologies and portfolios. PI
is an alternative to Bayesian approaches and computationally very attractive, although
it is a sample-based method. Another advantage of PI is that it works with any black-
box simulation model. Most selection queries are of an inverse nature: given a goal for
a quantity of interest, one wants to know a distribution over the inputs that satisfies that
goal. PI is able to do exactly that, when both the outputs and inputs are random vari-
ables.

To synthesize the methods and ideas presented in Chapters 4 through 6, Chapter 7
presents how the proposed methodology may have been applied to the MANTA project.
It also shows the limitations of the present framework and where opportunities lie for
further research.

The thesis is concluded in Chapter 8 by answering the four research sub-questions,
along with the main research question. Recommendations for improving on and ex-
tending the presented framework are exposed as well. Finally, an outlook towards future
research is presented.
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This chapter presents an overview of the several topics that this dissertation builds upon.
They are briefly addressed in the following paragraphs. Then, the subsequent sections
highlight each of these topics and explain them in more detail.

Ontology Human–machine communication is an active field of research and under-
standably so. Natural language is intrinsically ambiguous, which allows humans to com-
municate efficiently [33]. The ambiguous terms can be efficiently reused and are disam-
biguated based on context. However, natural language lacks the precision a computer
requires to operate on (i.e. computers do not do well with ambiguity). Ontologies are
conceptualizations of a portion of the world around us, and aim to dissect it into con-
cepts and the relations between them. They provide a framework to formally capture
knowledge and are machine-interpretable.

First-order logic First-order logic (FOL) is a formal language consisting of variables,
relations and quantifiers to construct sentences that express propositions. There are dif-
ferent types of formal languages, of which zero-order logic or propositional logic is the
least expressive. First-order logic extends propositional logic to include quantifiers and
variables, making it more expressive and most commonly used. Typically, rules are es-
tablished in FOL that construct clauses from atoms and define an implication direction
between these clauses. For example: if x is a human, x has a brain. However, the concept
of rules extends to other areas (such as graphs) as well.

Graph theory Graphs are used in this work as a means to represent knowledge about
systems and technologies. Graph transformation rules are used to modify a system with
a technology. Therefore, we need the graph theoretic concepts such as (sub)graph iso-
morphism and maximum common subgraphs. Furthermore, for creating computation
graphs, we require the notions of (directed) cycles and topological sorting of graphs.
Some graphs usually follow a certain schema, i.e. a type graph, which is induced by
an ontology. Such graphs are called knowledge graphs.
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Uncertainty quantification Because the quantification of technology qualities and im-
pacts is subject to uncertainty, their evaluation should be conducted probabilistically.
That is to say, the uncertainty has to be propagated through the simulation environ-
ment, to obtain uncertainty on the quantities of interest as well. There are multiple ways
to perform such propagation, as well as models to represent uncertainty in the first place.

Before these topics are treated, however, a literature review of state-of-the-art tech-
nology evaluation and selection practices is provided in section 2.1. Consecutively, a lit-
erature review of analysis frameworks is presented in section 2.2. Ontology is discussed
in section 2.4, followed by a description of first-order logic in section 2.5. Then, graph
theory is briefly introduced in section 2.6, while uncertainty is discussed in section 2.7
through section 2.9. Lastly, sensitivity analysis is touched upon in section 2.10, after
which the chapter is concluded.

2.1. TECHNOLOGY EVALUATION AND SELECTION
In order to make a well-informed decision as to which technologies have the most im-
pact at the lowest risk, different methods can be employed. These are discussed below,
however, in general such technology evaluation and selection is paired with uncertainty
and as such this should be incorporated in the analysis as well [13].

Any technology selection methodology should exploit all data and information avail-
able on applicable technologies and extract useful information to reduce subjectivity in
the technology selection process in a structured, repeatable and traceable way [32]. Ad-
dressing the benefit of possible novel and immature technologies during the conceptual
design phase to understand impact on design and top-level requirements is important.
Additionally, a maturity level needs to be addressed to keep overall acquisition cost in
check and finally, computation time during design space exploration should be reduced.
There is a trend towards using physics-based analyses, which are more expensive than
semi-empirical models. A methodology is shown in Figure 2.1 that combines the Tech-
nology Readiness Level (TRL), compatibility matrix (TCM), Integration Readiness Level
(IRL), sensitivity analysis and System Readiness Level (SRL). Uncertainty associated with
new technology can usually be derived based on the TRL [34]. To associate TRL with un-
certainty, the work of Kirby and Mavris [9] may be used. An elaborate characterization
of technology readiness levels and technology integration is made by Jimenez et al. [8],
who conclude that technology integration is part of technology readiness and should
be accounted for as such. Integration of software in technology readiness is considered
by Hantos [35], who proposes a TRL scale for this purpose. Additionally, SRL is stated
as a more sophisticated measure, but the difficulties in assigning IRL are exposed, as
Jimenez et al. [8] also pointed out. Besides the state-of-the-art (SOTA), business strat-
egy and value of a project (and hence, technologies) should be taken into account when
performing technology assessment and selection [36].

A common technique to account for the impact of technologies is through assigning
a difference to a certain parameter that is present in the aircraft system. For example, the
effect of an entire flap system can be represented by a change in CLmax and subsystem
mass. An example for a vehicle sizing environment is shown in Figure 2.2. The Tech-
nology Identification, Evaluation and Selection (TIES) [9–11] methodology, developed at
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Figure 2.1: Flow diagram of technology investigation method to assess impact on aircraft measures of effec-
tiveness [32]

Georgia Tech, works this way. Technology selection is done based on the highest proba-
bility of meeting objectives. Some improvements to TIES have been proposed, including
a probabilistic evaluation of the technologies [10] and a bi-level optimization strategy to
reduce computation time [37]. The impacts of technologies are called k-factors. The ad-
vantage of using k-factors is that key disciplinary metrics are taken into account and no
commitment needs to be made to model a technology [13]. It is therefore a straightfor-
ward approach, and can quickly and easily identify the impact of certain technologies.
However, subtle characteristics specific to a certain technology may not be taken into
account and therefore certain effects may be overlooked.

Figure 2.2: Example of k-factor mapping to a vehicle sizing environment [12]. The k-factors are k1 through k4.

It is important to incorporate information about the uncertainty of quantities of in-
terest when making decisions based on them. Gatian [12] developed a technology port-
folio selection process that takes into account the uncertainty associated with technol-
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ogy impacts. Probability theory is used for modeling the uncertainty. Technologies are
first evaluated individually, followed by a global sensitivity analysis to identify the most
influential k-factors. Monte Carlo simulations propagate the impacts and uncertainties
to system level and consecutively identify technology portfolio performance, as shown
in Figure 2.3. When displaying the results, two metrics can be used for comparison:
probability of success (POS) and signal-to-noise ratio (S/N). S/N represents both perfor-
mance and uncertainty and therefore offers a dimensionality reduction [12]. The Tech-
nique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used to create a
ranking of portfolios. It is concluded that S/N is better to differentiate between clumped
together portfolios, while POS is better when its values are not similar and a direct com-
parison of performance is required, which S/N is unable to provide. Alternative selection
methodologies employ a Pareto front approach, which enable a posteriori articulation of
preferences [38, 39].

Figure 2.3: Monte Carlo uncertainty propagation method [12]. The inputs are the variables modified by the
technology k-factors. The objective function is input to TOPSIS.

Epistemic uncertainty with regard to subsystem assessment and state-of-the-art (SOTA)
assumptions can also be dealt with using k-factors, which are applied to sources of epis-
temic uncertainty and consecutively modified in a sensitivity study [14, 22]. In a related
study, the method is applied to the assessment of more electric subsystems, comparing
these to hydraulic and pneumatic subsystems. Among others, the environmental con-
trol system and control surface actuators are modeled and the benefits of electrification
of these systems is investigated [15]. In terms of uncertainty, it is recognized that most
modern techniques only take into account the variance of variables, while a distinction
should be made between positive and negative uncertainty, which should be character-
ized by an asymmetric distribution [36].

A study conducted at Delft University of Technology used interval analysis (using the
efficient global optimization (EGO) approach) to propagate uncertainties through a con-
ceptual design tool, with the DAKOTA platform, and verified the method by a test case for
a Wing Ice Protection System (WIPS) [40]. A practical technology evaluation study was
performed by Heinemann et al. [25] to investigate the feasibility of meeting the goals
set for a year 2050 tube-and-wing aircraft. Several technologies are discussed, including
maneuver and gust load alleviation, a hybrid laminar-flow wing, variable camber and
active flow control.

This section presented the state-of-the-art techniques towards technology evalua-
tion and selection. Typically, existing analysis methods are employed to quantify the
effects of technologies. Inputs to those methods are changed from the baseline through
the use of so-called k-factors. This approach also allows aspects such as TRL and SRL to
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be taken into account. A technology compatibility matrix is helpful to reduce the amount
of possible combinations of technologies. The k-factor approach is simple to implement
and operate, but lacks detail that novel technologies may require. Because the k-factors
are strongly coupled to available analysis methods, the scope of technologies they can
represent is limited.

Uncertainty with respect to technology impacts is taken into account in some stud-
ies, but the joint dependencies between technologies is not taken into account, while
this is of importance, as will be discussed in subsection 2.8.3. Furthermore, only forward
propagation of uncertainty is performed, whereas, as discussed in Chapter 1, inverse
problems have to solved as well. This constitutes an opportunity for the present disser-
tation to complement existing research.

2.2. ANALYSIS FRAMEWORKS FOR NOVEL AIRCRAFT CONFIGU-
RATIONS AND TECHNOLOGIES

The previous section focused on the evaluation and selection of technologies, but skipped
over what frameworks have been developed to analyze the technologies. This section
reviews what analysis frameworks are used in contemporary literature. Physics-based
analysis and simulation are becoming more prevalent in engineering design, even dur-
ing conceptual design. This is a result of the ever-growing complexity of the engineered
systems. Especially when new technologies are applied, for which no existing data exists,
we need to resort to physics to model and evaluate them.

Technology assessment of aerospace vehicles requires an integrated, multidisciplinary
platform, with parametric geometry and sensitivity analysis [41]. Refs. [42–46] are exam-
ples of frameworks specifically created to investigate certain novel technologies. Such
rigorous analysis improves the decisions that are made during early design stages, which
usually allocate most of the resources of the entire design process [9]. Uncertainty quan-
tification is more often employed as well, to make these decisions resilient to unknowns
regarding technological developments, physical understanding or socio-economic situ-
ations [47, 48].

There is still a plethora of issues to be overcome before physics-based analysis be-
comes the norm, especially in early design stages. First of all, the application of design
tools is limited to a specific vehicle type, because the sizing method is fixed [16]. Sec-
ondly, flexibility and scalability of disciplinary analysis tools is lacking [16]. Thus, there
is a need for modular analysis frameworks, which allow for the analysis of widely varying
system architectures and behaviors [49, 50]. Evaluating different technologies or combi-
nations thereof requires all of them to be captured in a single computational framework.

Creating a flexible and modular design environment is challenging due to the cou-
pling of operational and systems capabilities [17]. Another important issue for designing
unconventional aircraft is geometry representation. As of now, no suitable geometry def-
inition tool or CAD package is available that allows geometry to be reused from concep-
tual design into detailed design [18]. Some efforts were made to apply knowledge-based
engineering to carry over geometry among different design stages [51].

Despite these challenges, several efforts have been made to arrive at a conceptual
aircraft design framework, some including uncertainty quantification. A generalized
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methodology for sizing unconventional aircraft and unconventional propulsion was pro-
posed by Bucsan et al. [20], building on previous work [19, 21]. The work by Nam [21] in-
cludes uncertainty quantification in the form of the Probabilistic Aircraft Sizing Method
(PASM) and recommends inclusion of evidence theory or the Bayesian approach into the
method (these are discussed in section 2.8). It is remarked that sizing depends greatly on
component model accuracy, which would be an area where uncertainty quantification
can help.

The Design Engineering Engine (DEE) and Multi-Model Generator (MMG) are based
around the idea of a holistic analysis framework where different analysis methods are
coupled through one data structure from which multiple models can be derived (e.g. an
aerodynamic model, a structure model) [49]. [52] presents a method with a Common
Computational Model (CCM) that is intended to contain different aspects of objects at
different levels of fidelity, as well as standardizing the interfaces between analysis and
design models. Thus, the method appears very similar to the DEE and MMG.

Efforts for automated execution of analyses have also been conducted. Mainly, an
M.Sc. thesis by Ramakers [53] and the work by Van Gent et al. [54, 55] are of particu-
lar interest. Both of these refer to the study of Pate et al. [56]. That study describes the
construction of a Fundamental Problem Graph (FPG) to deduce relations between anal-
ysis tools and the variables of a Multidisciplinary Design Optimization (MDO) problem.
From this FPG a Problem Solution Graph (PSG) is derived that defines how a particular
MDO problem should be solved.

All in all, there is a need for modular, extensible analysis frameworks that employ
physics-based analysis methods. However, currently, none of the presented frameworks
satisfactorily captures a novel engineering system incorporating novel technologies and
is then able to quantify its effects. This is because most analysis methods still focus on a
specific vehicle type, as Lu et al. [16] points out. These issues are addressed in Chapter 5.

Apart from the physics-based analysis of a novel technology or system, most frame-
works do not incorporate uncertainty quantification. And if they do, the same drawbacks
apply as were observed in the previous section on technology selection methods: depen-
dencies are not taken into account and inverse queries are not supported. These issues
are addressed in Chapter 6.

2.3. STATE-OF-THE-ART
The state-of-the-art in technology evaluation and selection is discussed in the previous
two sections. An overview of that discussion is presented in Figure 2.4. It is a more de-
tailed version of Figure 1.5(a). The method takes in a set of technologies and a system
of interest, which are combined into technology portfolios. These are subsequently de-
scribed with impact factors, which are chosen among a set defined by the available anal-
ysis tool. The analysis tool then computes several quantities of interest, which are com-
bined with qualitative selection criteria, if there are any. These criteria are then scored
and weighted by a group of experts to produce the final technology ranking.

Notice how all the steps in this methodology are performed by the users of the method,
except for the computation of the quantities of interest. Furthermore, the technologies,
system of interest and technology portfolios are all represented in a textual format. Only
the impact factors and quantities of interest form numeric data. Also notice how the
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state-of-the-art method does not contain any steps that are problem-independent. In-
deed, all steps have to be fully repeated for each technology evaluation and selection
problem.
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Figure 2.4: Overview of state-of-the-art method for technology evaluation and selection, including legend to
explain symbols and colors.
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2.4. ONTOLOGY
Ontology (uncountable noun) is a branch of philosophy that is concerned with grouping
entities into categories or classes and stating various relations between those categories
and entities. An ontology (countable noun) is a collection of such classes and relations,
that is used to represent knowledge in a certain domain in a consistent manner. The
reason why an ontology is needed in this dissertation is discussed in Chapter 3. It proves
difficult to construct an ontology that captures any form of knowledge about any sort
of entity. However, it is a useful endeavour to generalize the concepts in an ontology,
such that they become domain-independent, and may be used and extended in other
ontologies. An ontology that contains such generalizations is called an upper ontology.

While the concept ontology is a philosophical endeavor, it applies to computer sci-
ence as well. In fact, ontologies are pervasive in the current web. Known as the Semantic
Web, a set of tools and methods have been implemented that allow websites to present
data in a semantic form, using ontologies. For example, Facebook uses ontologies to
represent social networks and forms knowledge graphs with data about their users. The
Semantic Web mainly consists of a data format, called the Resource Description Frame-
work (RDF) and a language to specify ontologies, called the Web Ontology Language
(OWL). RDF represents data in the form of triples (s, p,o), where s is the subject, p is a
property or relation, and o is the object. Graph theoretically, such a triple forms a typed,
directed edge (with s and o being the nodes, and p the edge type). Additionally, RDF con-
tains specifications of the basic vocabulary, which constrains the types of subjects and
objects, and relations. OWL extends RDF to capture more high-level concepts required
to express ontological statements.

There are some concepts closely related to ontologies. The two most relevant ones
are taxonomy and mereology. A taxonomy is a classification of concepts, into classes
and subclasses, forming a hierarchical structure. An example is shown in Figure 2.5(a).
Mereology is the study of parts and the wholes they form, see Figure 2.5(b). Where a tax-
onomy classifies discrete sets of concepts, a mereology offers universal statements, such
as: airplanes have wings as parts. Mereology is an important concept in systems engi-
neering, which mostly focuses on dividing systems into subsystems and components.
An ontology may subsume both taxonomy and mereology, see Figure 2.5(c).

Facts represented in an ontology can be classified in two categories: universal and
existential statements. These are also known as the TBox (terminological component)
and ABox (assertion component). TBox statements typically apply to classes and are
therefore universal for all individuals belonging to those classes. For example, all aircraft
are vehicles:

∀x ∈ aircraft : vehicle(x) (2.1)

which is analogous to:
aircraft ⊆ vehicle (2.2)

Conversely, ABox statements are TBox-compliant and are associated with instances (i.e.
individuals or particulars) of classes. For example, the fact that the Wright Flyer is an
aircraft is stated as: aircraft(Wright Flyer). An example of an ontology with both universal
and existential statements is depicted in Figure 2.6. The Falcon 7X is a particular instance
of the class of business jets (BJ), just as the PW307A is an instance of the engine class.
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Car Boat Airplane

LPA BJ Single Prop

(a) Example of a taxonomy classifying types of vehicles
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(b) Example of a mereology describing an
airplane
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(c) Example of an ontology describing an air-
plane. It combines elements from both the
taxonomy and mereology in figures 2.5(a) and
2.5(b).

Figure 2.5: Examples of a taxonomy, mereology and ontology.

Airplane BJIs aIs a

Has PartHas Part
Falcon 7X 

Has typeHas type massmass

31,751 kg 

Has partHas part

PW307A

Has typeHas type

Engine

Figure 2.6: Example of ontology with particulars. Particulars and their relations are distinguished with a dashed
line.
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2.4.1. OPEN AND CLOSED WORLD ASSUMPTION
Equivalence is an important concept that enables categorizing individuals into classes.
Deciding equivalence between entities is difficult, because it depends on context. Usu-
ally, a workaround solution is to introduce classes for each kind of entity in a domain
ontology. However, that is labor-intensive and even then, an entity could belong to mul-
tiple classes and, therefore, a distinction between those classes is difficult to make, be-
cause without a proper definition a class is merely an ambiguous label. The main culprit
is the Open World Assumption (OWA). Under the OWA, any statement that is not ex-
plicitly included in the knowledge base is neither treated as true or false, but rather as
unknown. Thus, suppose one defines a large aircraft class as an aircraft having exactly
four engines. If a reasoner is to infer that a particular aircraft is a large aircraft, because
it has four engines, the following statements are necessary:

• Engines one to four are engines

• The aircraft is an aircraft

• The aircraft contains engines one to four

• Engines one to four are different individuals

• The aircraft only contains those four engines, and no others

If any one of these statements are missing, the OWA prevents inference of the fact that
the aircraft is a large aircraft. Conversely, the Closed World Assumption (CWA) assumes
that any statement that is not explicitly known is false. Additionally, the CWA includes
the unique name assumption that implies any two individuals with different names are
actually different individuals. Using the CWA, a reasoner would infer that the aircraft is
a large aircraft even without the last two statements.

2.4.2. ONTOLOGIES FOR ENGINEERING SYSTEMS
Naturally, efforts to develop an ontology for engineering design have been conducted.
An early effort towards this goal is the PhysSys ontology [57, 58]. It comprises three on-
tologies addressing the systems layout (component ontology), the physical processes
underlying behavior (process ontology) and the descriptive mathematical relations (En-
gMath ontology [59]) [60]. The former two build on three ontologies describing mere-
ology, topology and systems theory. Unfortunately, neither the ontology itself nor its
documentation seem to be available. Recently, the Physics-based Simulation Ontol-
ogy (PSO) is developed for the aforementioned goal [61]. It is based on Basic Formal
Ontology (BFO) for ontological realism and the classical-mechanics view on physics to
describe physical processes using partial differential equations. In their work, Cheong
and Butscher [61] mention many related approaches mainly for computer aided design
(CAD), computer aided engineering (CAE) and product lifecycle management (PLM).
Štorga et al. [62] developed an ontology to capture product designs. However, the method
fails to capture how these can be modeled and analyzed. Finally, there are several efforts
to develop ontologies specific to a certain target domain, such as Ref. [42] for flexible
part design.
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In addition to modeling the physical reality of systems, an important aspect is the
teleological view: their functioning. Kitamura and Mizoguchi [63] develop an ontology
specifically to capture functional knowledge. As such, it may be used as an extension to
ontologies like PSO, PhysSys and the one employed in this work. Other approaches fo-
cus on functional decomposition [64–69], which is mainly used in design synthesis. This
allows automatic selection of components to fulfill certain requirements. Additionally,
representing a system in terms of its behavior instead of a certain fixed parameteriza-
tion gains popularity in model-based systems engineering [65, 70–73], which may be
attributed to the formalization of behavioral descriptions. While these allow for a struc-
tured approach to describe systems and enable automated design synthesis, they all rely
on human specified functions. Hence, physical realism is not achieved through these
approaches.

Hirtz et al. [64] established a frequently used functional basis to describe the func-
tions of systems and components. The functional basis should be interpreted as a tax-
onomy and although Hirtz et al. provide descriptions of each class, these are based on
natural language and open to interpretation. A functional decomposition (FD) describ-
ing aircraft system architectures was developed by Judt and Lawson [65, 70], to consec-
utively enumerate system architectures and search for the best solution regarding some
quantity of interest (QoI) with a hybrid heuristic optimization. Their FD is problem-
specific, as is the analysis method, and therefore not easily generalized. The same holds
for AirCADia [71], which breaks down the system description into a functional and logi-
cal domain and proceeds by mapping functions to means to arrive at a system synthesis.
Sen et al. [67, 68, 74] use function–structure graphs to describe the behavior of a system
enabling physics-based reasoning on it. Although effective, it appears to only be appli-
cable to mechanical and electrical engineering domains, while continuum mechanics
seem to pose a problem to this approach. The BeCoS tool [72, 73] uses an ontology to
describe systems semantically rigorous in terms of their behavior. State-machines de-
scribe transitions within the behavior and, combined with equations, enable analysis
of the system. An approach particularly aimed at capturing functional design knowl-
edge with an ontology is presented by Kitamura and Mizoguchi [63]. It complements the
device-centric approach PhysSys, because PhysSys has no ontology for functions from
the teleological viewpoint.

2.4.3. QUALITATIVE PHYSICS

In contrast with ontological realism, qualitative physics is studied to capture causal re-
lationships in physics without fully explicating them. For example, De Kleer and Brown
[75] develop qualitative physics to describe, predict and explain the behavior of systems.
Using causal analysis and teleological reasoning, based on the qualitative physics, elec-
tronic circuits are analyzed [76]. Here, function is defined as a causal pattern between
variables. Qualitative physics relates structure to behavior, whilst teleology relates be-
havior to function. Other approaches include the process ontology [77] and bond graph
theory [78, 79]. The latter is used in PhysSys to describe processes [58]. The representa-
tion methods chosen for naïve physics tended to simplify the details required in classi-
cal physics, while focusing more on the formalisms required for efficient reasoning [61].
Ideas from qualitative physics are used in this dissertation to identify causal relation-
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ships between physical qualities, but not what these relationships look like.

2.5. FIRST-ORDER LOGIC
First-Order Logic (FOL) is a formal language consisting of variables, relations and quan-
tifiers to construct sentences that express propositions. It is called first-order logic, be-
cause it includes the concepts of variables and quantifiers — something which zeroth-
order logic, or propositional logic, does not. Higher-order logic allows predicates to have
predicates as arguments, while FOL does not. FOL follows a very clearly defined syntax
and semantics, making every sentence uniquely interpretable.

2.5.1. SYNTAX
There are two types of expression in FOL: terms and formulas. A term describes an ob-
ject, or fact, while a formula expresses a predicate that evaluates to either true or false.
The syntax of FOL is made up of symbols, which can either be logical or non-logical. The
logical symbols always have the same meaning, while non-logical symbols depend on
an interpretation.

LOGICAL SYMBOLS

A small set of logical symbols exist in FOL. They are the quantifier symbols, logical con-
nectives, parentheses and variables.

Quantifiers There are two quantifiers in FOL: the universal quantifier ∀ and the ex-
istential quantifier ∃. The former can be read as “for all” and expresses some state-
ment about all entities satisfying some condition. For example: the statement ∀x ∈
PhDC andi d ate : x ∈ Human reads that all PhD candidates are humans. In contrast,
the statement ∃x ∈ Human : x ∈ PhDC andi d ate reads that there exists (at least one)
human that is a PhD candidate.

The operator : should be interpreted as “such that”. Thus, A : B reads that the state-
ment A is such that B is true. It can mostly be omitted, but helps to clarify some sen-
tences.

Quantifiers can be nested to create more complicated sentences. However, the order
in which quantifiers are used can significantly alter the meaning of the statement. Take,
for example, the statement∀x∃y : Loves(x, y). This implies that everyone loves someone.
However, if stating ∃y∀x : Loves(x, y), the the meaning is changed to: there is someone
who is loved by everyone.

Logical Connectives These are the logical connectives used in this thesis:

• ⇒ or ⇐: Implication. A ⇒ B reads: if A then B, which is equivalent to B ⇐ A.

• ⇔: Biconditional. A ⇔ B reads: A if and only if B. This implies that A can only be
true if B is also true. Hence, the implication goes in both directions.

• ∧: Conjunction. A∧B reads: A and B.

• ∨: Disjunction. A∨B reads: A or B.
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• ¬: Negation. ¬A reads: not A.

Sometimes, the ≡ symbol is used. It implies a definition, which has the same meaning
as the ⇔ symbol.

Parentheses While parentheses are not required by FOL, they are used to make sen-
tences more readable. Furthermore, in this thesis the : symbol is used frequently, which
may be interpreted as: such that. For example, the formula ∀x∃y : P (x, y) reads that
for each x there exists a y such that the relation P is true for the assignment of those
two variables. Now, consider the example from before: ∀x∃y : Loves(x, y) and ∃y∀x :
Loves(x, y). The meaning of either sentence can be clarified by inserting parentheses
to obtain ∀x(∃y : Loves(x, y)) and ∃y(∀x : Loves(x, y)). In these latter expressions, the :
symbol could have been omitted.

Variables Variables are also logical symbols in FOL, and usually are denoted using low-
ercase letters, such as x, y, z. Effectively, variables are placeholders for propositions. That
is to say, a variable represents some object, but that object is assigned to the variable
based on the formula expressing the context. The term Father(x) could either be about
my father or your father, depending on who is assigned to x.

NON-LOGICAL SYMBOLS

The non-logical symbols are made up of predicates (or relations), functions and con-
stants. These are dependent on the domain of application.

Predicates A predicate symbol has an arity or valence. A predicate is a relation that
receives a number of arguments (which are terms) and evaluates them to either true or
false. A predicate of arity 0 is effectively a propositional variable, meaning, for example,
“It is raining”. A unary predicate takes in one term; for example: HasFather(x). This
extends to any n-ary form. A binary predicate could be HasSon(x, y).

Functions Similar to predicates, functions have an arity. In contrast to predicates,
however, functions evaluate to another term. For example, Father(x) is a function that
retrieves the father object of x. A binary function f (x, y) could, in arithmetic, denote the
summation of x and y . When the arity is zero, a function symbol is a constant.

2.5.2. FORMAL GRAMMAR
The formal grammar of FOL dictates that terms can be formed in two ways:

• With variables: any variable is a term.

• With functions: a function f (x) is a term.

One can repeatedly apply these rules to obtain other terms. Alternatively, one can form
formulas through one of the following five ways:

• With predicates: a predicate P (x) is a formula.
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• Through equality: for the terms t1 and t2, the statement t1 = t2 is a formula.

• Through negation: a statement of the form ¬A is a formula, given that A is a for-
mula.

• With logical connectives: a statement A ·B , where · can be any of the aforemen-
tioned logical connectives, is a formula, provided A and B are formulas.

• With quantifiers: a statement ∀x A, or ∃x A is a formula, when x is a variable and A
a formula.

Again, these rules can be applied consecutively to form more complicated formulas.

2.6. GRAPH THEORY
Graph theory is the study of graphs, which are mathematical structures to capture pair-
wise relations between objects. Graphs are an extremely flexible data structure, and
form the basis of the Semantic Web as introduced in section 2.4. This dissertation builds
on graphs to represent engineering systems and on graph transformations to represent
technologies. As such, graph theory is a key enabler for this dissertation. In this section,
an comprehensive overview of graph theory is presented.

A graph is a tuple G = (V ,E) where V are the nodes (vertices) and E ∈V ×V the edges,
each of which is a tuple (s, t ) where s is the source node and t the target node, in the
case of a directed edge. If the edge is undirected, there is no distinction between s and
t (see Figure 2.7(a)). We can denote the source vertex of a certain edge e ∈ E as s(e) ∈
V and similarly for the target node: t (e) ∈ V . Let’s define v(e) = {s(e), t (e)} to be the
collection of vertices connected by the edge e. For common edges, this collection is just
the source and target nodes. However, hyperedges are undirected edges with more than
two endpoints, i.e. |v(e)| > 2. Now let us define the following graph theoretic concepts.

Undirected cycle

Neighbour of b

a
b

c

d

Node

Undirected 

edge

(a) Undirected graph

Directed cycle

Successor of b

a
b

c

d

Directed edge

Predecessor of b

(b) Directed graph

Figure 2.7: Examples of an undirected and directed graph with some key concepts

Directed Graph A directed graph is a graph that contains only directed edges, as in
Figure 2.7(b).
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Neighbours Denote the edges connected to a certain vertex n as E(n), such that e ∈
E(n) ⇔ n ∈ v(e). Then the neighbours of n are all the nodes it is connected to: nb(n) =
v(E(n)) \ n. An example of neighbours is shown in Figure 2.7(a), although it also applies
to directed graphs.

Predecessors The notion of predecessors only exists in a directed graph. Denote the
incoming edges e ∈ E−(n) ⇔ t (e) = n. Then the predecessors of n are found as pred(n) =
s(E−(n)). See Figure 2.7(b) for an example.

Successors Similar to predecessors, successors only exist in a directed graph. Denote
the outgoing edges e ∈ E+(n) ⇔ s(e) = n. Then the successors of n are found as succ(n) =
t (E+(n)). See Figure 2.7(b) for an example.

Walk, Trail and Path (directed or undirected) A walk is a sequence of edges (e1, ...,en)
which joins a sequence of vertices (v1, vn+1), such that v(ei ) = {vi , vi+1}. A trail is a walk
in which all edges are distinct. A path is a trail in which all vertices are also distinct.

Cycle (directed or undirected) A cycle is a trail where the first vertex is the same as the
last, and no further vertices are repeated. See Figure 2.7 for examples in both a directed
and an undirected graph.

Directed Acyclic Graph Following the definition of a cycle, a directed acyclic graph
(DAG) is a graph with only directed edges that contains no cycles.

Tree A tree is a connected acyclic undirected graph. A connected graph means that
there exists a path between any pair of vertices in the graph. In a tree, there is exactly
one such path for a given pair of vertices. A polytree is a DAG with a tree as underlying
undirected graph.

Type Graph A type graph defines types of nodes and edges and specifies how those
nodes may be connected by those edges. An ontology can be mapped onto such a type
graph, allowing information adhering to the ontology to be represented as a knowledge
graph.

Attributed Graph An attributed graph adds two elements to the tuple describing the
graph: (A,pa). A are attributes, typically consisting of a name–value pair. We define
pa(a) ∈ V ∪E to be the parent element (either node or edge) of an attribute a ∈ A. With
this definition, it is not possible to assign attributes to attributes.

Subgraph A subgraph is a graph that is part of another graph. Thus the graph H is
a subgraph of G when V (H) ⊆ V (G) and E(H) ⊆ E(G)∩ (V (H)×V (H)). We’ll use the
notation H ⊆G to indicate that H is a subgraph of G .
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Induced Subgraph An induced subgraph H is a subgraph that is formed by a subset
of vertices VH from a graph G and all edges connecting pairs of vertices in that subset.
Thus, VH ⊆V (G) and ∀e ∈ E(G) : e ∈ E(H) ⇔ v(e) ∈ (VH ×VH ).

Bipartite graph A bipartite graph is a graph whose vertices can be divided into two
disjoint and independent sets, such that every edge connects a vertex in one subset to
one in the other subset.

2.6.1. (SUB)GRAPH ISOMORPHISM
The notion of (sub)graph isomorphism is pervasive throughout this thesis and forms an
important corner-stone of the proposed method. Two graphs G and H are isomorphic
when there is a bijection between the vertex sets of G and H :

m : V (G) 7→V (H) (2.3)

such that m is edge-preserving, meaning that ∃ f : E(G) 7→ E(H) such that ∀eG ∈ E(G) :
m(s(eG )) = s( f (eG ))∧m(t (eG )) = t ( f (eG )). For a type graph (or labeled graph) the mor-
phisms m and f should be label-preserving as well. Define a label function lG : V (G) 7→
L that maps the vertices in G to a set of labels L . Given such a function for H as well,
we require ∀vG ∈ V (G) : lG (vG ) = lH (m(vG )). The same can be defined for edge labels.
When the bijections m and f exist, G and H are isomorphic, denoted as G ∼= H .

The graph isomorphism definition can be extended to include attributes as well, i.e.
making m and f attribute-preserving. Define b : A(G) 7→ A(H) such that ∀a ∈ A(G) :
m(pa(a)) = pa(b(a))∨ f (pa(a)) = pa(b(a)). The function pa returns the parent of the
attribute, i.e. either a node or an edge.

It is not common to have to find the isomorphism between two graphs. Instead, we
are more often concerned with the subgraph isomorphism problem. The subgraph iso-
morphism problem states that given two graphs G and H , we seek to find if there exists
a subgraph G0 ⊆ G that is isomorphic to H , i.e. G0

∼= H . This is illustrated in Figure 2.8,
where it also becomes clear that a certain graph can have multiple subgraph isomor-
phisms in another graph.

There are multiple ways in which the subgraph isomorphism can be solved. One is
through a constraint satisfaction problem (CSP), which is explained in Appendix A. The
intricacies of that approach are detailed in Appendix B, along with pseudo-code for the
algorithm.

2.6.2. MAXIMUM COMMON SUBGRAPH
There are two types of maximum common subgraph (MCS): the maximum common
induced subgraph, or the maximum common edge subgraph. Whenever a MCS is men-
tioned in this thesis, it is meant to be the maximum common induced subgraph. The
MCS of two graphs G and H is a graph K for which there exists a subgraph isomorphism
in both G and H , such that it is an induced subgraph in both graphs, with as many ver-
tices as possible. This concept is illustrated in Figure 2.9. An example of a MCS between
these two graphs is shown, but it should be noted that this MCS is not unique. Different
node mappings are possible, leading to different, but equally valid, MCSs.
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Figure 2.8: Example of subgraph isomorphism: the graph on the right has two congruent subgraphs in the left
graph. The node mappings are shown with the dashed lines. The orange maps are the same for both matches,
whereas the blue and green pairs are different solutions for those nodes. A full morphism is the combination
of orange + green, or orange + blue.
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Figure 2.9: Example of a maximum common subgraph. The orange, dashed lines indicate the node mappings.
The thicker edges indicate the induced edges that make up the MCS. Note that this MCS is not unique: node d
(instead of node e) could also have been mapped to node 4, for example.

To find the MCS of two graphs, one can also employ a CSP, as is done for the subgraph
isomorphism problem. However, it turns out one can also use the graph edit distance
(GED) algorithm (see subsection 2.6.4 and Appendix C) and specify the edit costs in such
a way that the edit path contains the MCS [80].

2.6.3. GRAPH TRANSFORMATION
Specifying changes to graphs formally is done with graph transformations. Graph trans-
formations in the form of graph transformation rules are part of graph grammars, which
have been around since the 1970s and have seen some use in design automation and
synthesis [81–83].

A graph transformation r : (L ← K → R) is a construct consisting of three graphs: the
pattern L, the gluing graph K and the replacement graph or effect graph R. The pattern
L is to be matched inside a certain graph (the system in this case), while the replacement
graph R replaces the matched instance of L, if it exists. Determining what elements to
remove or add is done through the gluing graph K , which contains the corresponding
nodes and edges of L and R. See Figure 2.10 for an illustration. Here, the three graphs
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are shown as the letters corresponding to our notation. The dotted nodes and edges in
the K are just there to complete the K, but have to actual meaning. Thus, K only consists
of the nodes a, b and c, and the two edges between them. The node e is removed from
the pattern L, along with the edge connected to it. Furthermore, the nodes f and g are
added in the effect graph R, along with the three edges connected to them.

e

f

g

a

b

c

a

b

c

a

b

c

Figure 2.10: Example of a graph transformation rule. The orange dashed lines indicate mappings from the
pattern L to the gluing graph K , and from that graph to the effect graph R. The dashed, red edge and node
are removed by the rule, whereas the dashed, green nodes and edges are added by the rule. The dotted, black
nodes and edges have no meaning, and are just there to complete the letter K.

Note that K can also be empty when L and R have no common substructure. In that
case, all elements in L are removed from a graph along with any edges connected to the
removed nodes. Then R is substituted in, but will have no connections to the rest of
the graph, resulting in a disconnected graph. If K is non-empty, the difference between
L and K , denoted by L −K , are the nodes and edges which are removed by the graph
transformation. Similarly, the difference between R and K , i.e. R −K are the nodes and
edges which are added by the graph transformation.

The concept of graph matching is more formally explained using graph morphisms.
Let G be the system graph that the rule r is to be applied to. When there is a match of the
pattern L in G , there is a graph morphism m : L 7→ G . A graph morphism m consists of
two functions fV : VL 7→VG and fE : EL 7→ EG , such that sG ◦ fE = fV ◦sL and tL◦ fE = fV ◦tL

[84].

APPLICATION CONDITIONS

Application conditions (AC) are additional constraints placed on the pattern L that have
to be satisfied in order for a match m to be found. Two types of AC can be distinguished:
positive and negative ACs. A positive application condition (PAC) has to be satisfied for a
valid match, while a negative application condition (NAC) prevents a valid match when it
is satisfied. In theory, either AC can be any function over the host graph G . For example,
it may express a constraint over the total number of matches of L in G , or ensure the
absence of a certain graph element in G .

INDEPENDENCE

Graph transformation rules may interfere with one another when applied to the same
graph. Therefore, two types of independence between these rules are defined: parallel
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Figure 2.11: Parallel independent graph transformation rules. Adapted from [84]

independence and sequential independence [84]. The former implies that two transfor-
mations can be applied simultaneously. The latter implies that the transformations can
be applied in any order and produce an identical end-result.

Parallel independence Refer to Figure 2.11. Two transformations t1 : G
m17−→ H1 and

t2 : G
m27−→ H2 are parallel independent if there are morphisms d12 : L1 7→ D2 and d21 :

L2 7→ D1, such that f2 ◦d12 = m1 and f1 ◦d21 = m2 [84].
While this definition by itself is hard to follow, it can be rephrased as: two transfor-

mations are parallel independent if neither creates or deletes something the other uses,
or invalidates the application conditions of the other. Two rules are parallel dependent
when one of the following conditions is true [84, p. 362]:

1. Delete–use conflict. Rule t1 deletes a graph element that is in the match m2.

2. Produce–forbid conflict. Rule t1 creates graph elements in a way that violates a
NAC of t2.

3. Change–use conflict. Rule t1 changes attribute values to something non-commensurate
with the pattern L2.

4. Change–forbid conflict. Rule t1 changes attribute values and thereby violates a
NAC of t2.

If none of these conflicts occur for a pair of transformation rules, they are parallel inde-
pendent.

Sequential independence Refer to Figure 2.12. Two transformations t1 : G
m17−→ H1 and

t2 : H1
m27−→ H2 are sequentially independent if there are morphisms d12 : R1 7→ D2 and

d21 : L2 7→ D1, such that f2 ◦d12 = n1 and g1 ◦d21 = m2 [84].
Thus, two rules are sequential independent if neither creates something the other

uses, deletes something the other uses or creates, and neither creates or deletes some-
thing that validates or invalidates the application conditions of the other. They are se-
quential dependent when one of these conditions is met [84, p. 362]:
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Figure 2.12: Sequential independent graph transformation rules. Adapted from [84]

• Produce–use dependency. Rule t1 creates graph elements that are in the match
m2.

• Delete–forbid dependency. Rule t1 deletes graph elements such that a NAC of t2 is
validated.

• Change–use dependency. Rule t1 changes attribute values that are in the match
m2.

• Change–forbid dependency. Rule t1 changes attribute values to validate a NAC of
t2.

When no such dependency exists, the two rules are sequential independent. Note that
these dependencies are uni-directional, so t1 can be sequential independent from t2,
while t2 may sequentially depend on t1. In Chapter 3 a stronger notion of sequential
dependence is introduced: rule enabling. This notion not only indicates that there is a
sequential dependency, but that the application of t1 ensures that t2 can be applied as
well, while it first could not.

2.6.4. GRAPH EDIT DISTANCE

While graph isomorphism is a very strict definition of similarity between two graphs, it
is sometimes more useful to have a measure of similarity. Graph edit distance (GED) is
such a measure, and is often used in inexact graph matching. The idea is that a graph
G can be transformed into another graph H through a series of graph edit operations,
which collectively form an edit path. Each edit operation ei has an associated cost c(ei ) ≥
0. Then, each edit path p = (e1, ...,en) has an associated cost

C (p) =
n∑

i=1
c(ei ) (2.4)

and the GED is defined as the minimum cost of all possible paths transforming G into
H :

GED(G , H) = argminp∈P C (p) . (2.5)
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The following edit operations are included in this thesis: vertex insertion, vertex dele-
tion, vertex substitution, edge insertion, edge deletion, edge substitution, attribute in-
sertion, attribute deletion and attribute substitution. Typically, the insertion and dele-
tion cost for a certain graph element are equal and the substitution cost is either zero
when the two substituted items are equivalent, or equal to the sum of the insertion and
deletion cost if not. However, the edit costs depend on the application of the GED.

2.6.5. NODE, EDGE AND ATTRIBUTE EQUIVALENCE

Graph isomorphism, maximum common subgraphs and graph edit distance all have
in common that we seek to find a correspondence between two graphs. For unlabeled
graphs, any vertex can be matched to any other vertex, and edges can be matched when
they preserve the structure of the graphs. The same extends to attributes. For labeled
graphs, the label of a node, edge or attribute should equal the label of its matched coun-
terpart in the other graph. Note that, while a label appears to be some string (a sequence
of characters), it can be any complex piece of information. For example, it can define a
node class. Furthermore, depending on that class, a different notion of equivalence may
exist, such that certain vertices can be matched to one another, while others cannot. The
same holds for edges and attributes as well.

Complicating matters further is that it depends on the application of the subgraph
isomorphism or MCS problem how these forms of equivalence are defined. Let us clarify
these issues.

• Hierarchy equivalence. Suppose we have a node in a pattern graph that matches
any type of vehicle. Thus, its type is set to Vehicle. Now, any node in a host graph
that has a type deriving from Vehicle, may be matched with the pattern node. The
other way around, however, is not valid: when a node of type Vehicle is present in
the host graph, it cannot be matched to a node in the pattern graph with a more
specific type, e.g. Aircraft.

• Attribute equivalence. In several cases, a pattern has to match an attribute of a
certain type, but does not care about the value. For example, we require a material
with an electrical conductance property, regardless of its value. In other cases, the
value does matter: a material with a specific density is sought.

• Geometry equivalence. Matching geometry is actually an open area in research,
which has received attention from machine learning communities that view it as
the next step after image classification. Congruence in geometry is independent of
scale, rotation and translation, which complicates algorithms to find it. Further-
more, there is no single representation of geometry that assists in finding equiva-
lence. On the contrary, the pervasive triangular mesh representation actually dete-
riorates notions of equivalence, because the mesh points and edges may be rather
arbitrary.

Thus, depending on the problem, the appropriate form of equivalence has to be im-
plemented in order for the graph matching algorithm to find the correct corresponding
graphs.
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2.6.6. KNOWLEDGE GRAPHS
An ontology defines the universals and relations that are present in a certain domain.
Describing individuals adhering to an ontology can conveniently be done using a graph.
Such a graph is called a knowledge graph. A knowledge graph contains entities as nodes
and their relationships as typed edges. By having the ontology as a schema layer, logical
inference may be applied on a knowledge graph to retrieve implicit knowledge that is
not explicitly encoded in the graph. Knowledge graphs are commonly used nowadays by
the large tech companies, such as Facebook, LinkedIn, Microsoft, Amazon, etcetera.

2.7. UNCERTAINTY DEFINITIONS
More robust and reliable design decisions may be made when uncertainty is included in
the analyses [85]. Chakraborty and Mavris [86] confirms that statement in practice, by
comparing electric system architectures in commercial aircraft to hydraulic and pneu-
matic ones, while including probability distributions on the technology parameters. Most
research focuses on including uncertainty as probability distributions, but exclude de-
pendencies among random variables [12, 13, 39, 47, 87]. Zaidi et al. [88] does emphasize
the importance of dependencies and includes them in the form of copulas for aircraft
technology assessment. They propose a structured form of querying experts to deter-
mine which copula1 to use, to describe the dependency between two variables. How-
ever, that approach is not automated.

Uncertainty can be described in different ways. This section presents a common
classification of uncertainty. Additionally, model uncertainty is looked at in more de-
tail, since this is a form of uncertainty that is very important in technology evaluation.
However, model uncertainty is hard to quantify.

Uncertainty can be defined as the incompleteness in knowledge and the inherent
variability of the system and its environment [89]. A common distinction is the division
into two classes:

1. Aleatory (or statistical) uncertainty, which can be seen as the inherent variation
in variables. Other ways to define aleatory uncertainty is as type A or stochastic
uncertainty. It is an inevitable, irreducible and uncontrollable form of uncertainty,
but well identifiable.

2. Epistemic uncertainty, i.e. uncertainty due to lack of knowledge. It is also known
as cognitive, type B, reducible or subjective uncertainty.

Additional classifications can be made to characterize the origin of uncertainty. Model
form uncertainty, or alternatively model structure, non-parametric or structural uncer-
tainty, model bias, model discrepancy or unmodeled dynamics, is associated with the
ability of a model to accurately describe the physics involved. Model parameter uncer-
tainty, or parametric uncertainty then stems from estimation of model parameters. An
interesting subdivision is into parametric and parameter uncertainty, where the former
is concerned with the inputs to the model (e.g. the design variables) and the latter with

1A copula is a mathematical function that presents an elegant method to define the joint distribution of two
variables. It breaks that distribution up into a dependency structure and two marginal probability distribu-
tions of the variables.
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the (fixed) parameters of the model. Finally, error and model form uncertainty can be
classified as numerical or algorithmic uncertainty. Numerical error is added as a sep-
arate category by Oberkampf et al. [90, 91, 92]. Conversely, experimental uncertainty
deals with uncertainty in measured data and estimation of parameters from populations
of samples. Aleatory uncertainty and variability are examples of this classification.

2.8. UNCERTAINTY MODELING

The most well-known model for uncertainty is probability theory. However, there is a
wide variety of different theories, for which Oberkampf et al. [90] provides an overview,
based on the work of Klir and Smith [93] and Choquet [94]. These alternative theories
include Dempster-Schafer theory, possibility theory, Bayesian probability theory and
more.

Aleatory uncertainty is often modeled using probability theory, but representing epis-
temic uncertainty using probability is questionable since there is no reason to prefer one
probability distribution over another [95]. A literature review on uncertainty quantifica-
tion metrics for whole product life cycle cost in aerospace innovation is presented by
Schwabe et al. [96], who indicate that the probability density function is still the most
used metric, quantification of uncertainty is still largely subjective (i.e. expert judgment
of uncertainty) and no commonly accepted cost estimation methodologies exist for re-
search and development projects.

Bayesian theory is attractive, because it extends probability theory and enables us
to specify a prior belief and consecutively update that belief through evidence. Both
probability theory and Bayesian probability theory are discussed in the following two
sub-sections.

2.8.1. PROBABILITY THEORY

Probability theory is a commonly used technique for representation of uncertainty, since
it is relatively easy to implement and is well understood by engineers. A probability den-
sity function (PDF) is assigned to uncertain variables, which assigns a probability to each
value the variable can attain. With sufficient data available, a PDF can easily be fitted.
The PDF model can be chosen depending on uncertainty characteristics and its param-
eters can be estimated using the method of moments or maximum likelihood method.
However, usually during conceptual design little information is available and the prob-
ability model has to be assumed by engineers (commonly uniform [97]), which adds to
the uncertainty of the design results [98].

In aerospace applications, random variables are typically assumed independent, which
can lead to inaccuracies and therefore poor decision making and flawed design. Addi-
tionally, poor input distributions of random variables may be assumed. Copulas theory
can be used to mitigate both these problems [88]. When uncertain variables are depen-
dent and the joint distribution does not follow a specific type, mixtures are an effective
method to represent these joint distributions. Additionally, they are well capable of rep-
resenting multimodality or tail characteristics, such as leptokurtosis or skewness [99].
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2.8.2. BAYESIAN PROBABILITY THEORY

Bayesian theory (BT) is an extension of probability theory that includes evidence to sup-
port some hypothesis. Essentially, the theory revolves around Bayes’ rule which is stated
as follows [100]:

P (b|a) = P (a|b)P (b)

P (a)
(2.6)

where P (·) is the probability of the contained statement, a and b are some variables and
the operator | should be interpreted as "given" (P (·|·) is called a conditional probability).
The P (b) is called the prior, i.e. an estimation of the probability of b without evidence,
while P (b|a) is called the posterior, i.e. the updated probability of b now that some ev-
idence has become available. It’s perhaps easier to interpret b as cause and a as effect,
such that Equation 2.6 now gives a diagnosis; i.e. the probability of a certain cause given
an observed effect. Bayes’ rule is often helpful. The cause→effect is usually easily quan-
tified, whereas the other way around usually is very hard to quantify [101].

A more general form of Bayes’ rule is:

P (Y |X ,e) = P (X |Y ,e)P (Y |e)

P (X |e)
(2.7)

where e is some background evidence. Using this formulation it is clear that Bayesian
theory allows for revision of the probability of some condition when new evidence be-
comes available.

Although the Bayesian (subjectivist) view of probability has its merits over the classi-
cal (frequentist) probability theory, one of its largest drawbacks is through the "Principle
of Insufficient Reason" [102]. Basically, the Bayesian approach relies on a complete prob-
abilistic model of the domain, or in other words, a frame of discernment. This frame of
discernment sometimes has to be chosen arbitrarily, while it has a major impact on the
resulting probabilities. Therefore, the Bayesian approach needs to distinguish between
uncertainty and ignorance [102]. A similar argument is given by Soundappan et al. [103]:
if the evidence is imprecise, assumptions need be made to estimate the likelihood of the
evidence. The posterior probability can be sensitive to these assumptions.

2.8.3. DEPENDENCY MODELING

Not all random events have an equal probability of occurring simultaneously. For ex-
ample, if the ground is wet, the probability that it has been raining increases (given that
knowledge). Therefore, the probability of rain has a positive correlation with the proba-
bility of wet ground. To encode such a relationship, we need the notion of a joint prob-
ability distribution. This is simply a probability distribution over two or more random
variables. Note that a joint probability distribution (or just joint distribution for short)
is neither the same as a correlation, nor the same as a causal dependency. These three
concepts should not be confused. A correlation only measures similarity between cer-
tain trends in two sets of data. It does, however, often specify the structure of a joint
distribution. A causal dependency relates two random variables through a cause-effect
relationship, such as the ground–rain example. Such a relationship may be encoded us-
ing a joint distribution. Finally, a joint distribution represents the knowledge of how
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probable the simultaneous occurrence of two (or more) events is. In other words, the
probability of multiple statements being true (e.g. ground is wet = true and rain = true).

In this section, two methods to specify joint distributions are discussed: copulas and
Bayesian networks. The former may be included in the latter to specify local joint distri-
butions.

COPULAS

Copulas offer a general framework for specifying such multivariate distributions using
any univariate marginals and a copula function C that specifies the dependency struc-
ture between the marginals [104]. The copula function C relates a set of real random
variables U1, ...,UN with standard uniform2 margins as:

C (U1, ...,UN ) = P (U1 ≤ u1, ...,UN ≤ uN ) . (2.8)

The significance of copulas is a result of Sklar’s theorem [105] that states that any multi-
variate distribution H can be represented as a copula function of its marginals:

H(X1, ..., XN ) =C (F1(X1), ...,FN (XN )) , (2.9)

where Fi (Xi ) = P (Xi ≤ xi ), i.e. it is the cumulative density function of the variable Xi and
represents its marginal distribution. Because Fi : Xi 7→ [0,1], they are the Ui in Equa-
tion 2.8.

To specify a multivariate distribution H , a copula should be specified that captures
the dependency as required. Because it has standard uniform margins, sampling from a
copula is straightforward. Then, knowing for each variable Xi the CDF Fi and its inverse
F−1

i , each sampled variable Ui can be transformed into the values for Xi as follows:

Xi = F−1
i (Ui ) . (2.10)

The copula of a set of samples of Xi can be obtained by transforming each Xi into
copula space, i.e. its corresponding Ui . When the CDF Fi is known, this is trivial. How-
ever, when it is not known, it may be estimated through kernel density smoothing, for
example. Alternatively, the ranks of the values in Xi can be computed and divided by the
amount of samples in Xi plus one:

Ui ∼ rank(Xi )

|Xi |+1
. (2.11)

Not any function is suitable as the copula function C . The ones that have been devel-
oped are roughly divided into two families: Gaussian and Archimedean. The Archimedean
family contains, among others, the Clayton, Gumbel and Frank copulas. Some notional
examples are depicted in Figure 2.13. It is not relevant for this text to further elucidate
these copulas and their differences. However, they are so-called parametric copulas, be-
cause they are governed by a parameter that indicates the dependence strength. In the
following, this parameter is called α and can be computed from common correlation
coefficients, such as Kendall’s τ.

2A standard uniform distribution is a uniform distribution on [0,1].
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Figure 2.13: Examples of three different copula families

BAYESIAN NETWORKS

Suppose you have a set of M discrete random variables. Each discrete variable has K val-
ues. Then the total amount of possible combinations equals K M . Thus, the joint distri-
bution over all these variables grows exponentially with the amount of variables, because
for each combination of values we have to specify the probability of those values occur-
ring simultaneously. In many practical situations, however, it turns out that the joint dis-
tribution over a set of random variables is rather sparse. Many random variables are in-
dependent, because there is no direct cause-effect relationship between them. Bayesian
networks exploit this fact by including the variables as nodes in a DAG and only include
directed edges between those variables that have an causal influence on another. Then,
for each node, we only have to specify the local joint probability distribution, i.e. the
distribution over the predecessors (parents) of a node and that node itself.

Figure 2.14 shows a very simply Bayesian network for the ground–rain example. The
problem is modeled as the rain having a causal influence on the ground being wet. How-
ever, theoretically, we could have just as easily oppositely directed the edge. Mathemat-
ically speaking we would be able to perform the same inferences, even though the input
data would be different.

Rain Wet ground

Figure 2.14: Example Bayesian network with two random variables

Bayesian networks rely on conditional probability distributions, which are a special
type of joint probability distribution. Specifically, CPDs specify the probability of an
event occurring given the knowledge that some other event has occurred (or not). In
table form, see Table 2.1, this implies that each row sums to 1. This is because for each
possible value of it raining (either true or false), the combined probability of the ground
being wet or not should be one (there are no other options).

A discussion of inference in Bayesian networks is beyond the scope of this thesis.
However, the interested reader is referred to Ref. [106], which provides an exhaustive
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Table 2.1: Example of conditional probability table; T = True and F = False

Wet ground
Rain T F

T 0.9 0.1
F 0.3 0.7

introduction to Probabilistic Graphical Models (PGM), which is the overarching term for
type of mathematical formalisms of which Bayesian networks are a part. Suffice it to
say that Bayesian networks offer the possibility to reason in any direction. For example,
we can state some evidence about whether it rains and compute the probability of the
ground being wet. Conversely, we can enter that the ground is wet, and infer the prob-
ability that it has been raining. Therefore, BNs offer a powerful framework to perform
reasoning in uncertain domains, which appears enticing for technology selection under
uncertainty as well.

Particularly, one could create a Bayesian network with several discrete, binary nodes
representing the technologies. They are either included (1) or not (0), with equal prior
probability. Then, they affect the variables in the engineering system through a BN. The
leaf nodes are the QoIs. By inserting evidence (goals) on the QoI variables, backward in-
ference would give updated distributions on the technology variables. Then, each tech-
nology has an associated posterior probability of it being included or not, which should
give a decision maker information as to which technologies have the most potential of
reaching the set goal.

The drawback of the described approach using BNs is that they are not efficient with
continuous variables. For discrete BNs, there are exact algorithms, of which some are
even have linear complexity with respect to the size of the BN. For continuous BNs, how-
ever, this is not the case and inference has to resort to sampling-based methods. This is
one of the reasons why the described approach is not employed in this thesis, but rather
we use a technique called Probabilistic Inversion (PI) in Chapter 6 to achieve the same
result.

2.9. UNCERTAINTY PROPAGATION
Different methods are available to propagate uncertainties of input, parameters and
modeling to the output quantities. The characterizations and management of uncer-
tainties are required at both the discipline level and integrated system level, such that
also the relationship between uncertainties affecting input and those affecting output
are involved [107]. Computational efficiency is the main challenge that is to be tackled by
these methods. Most methods suffer from the so-called curse of dimensionality, i.e. with
an increase in uncertain variables, the algorithmic expense grows exponentially. Addi-
tionally, the propagation method can introduce an error in the estimated uncertainty, for
example by using too few samples, or simply because it assumes a certain function for
the uncertainty. An entire framework for uncertainty quantification, encompassing all
forms of uncertainty and error, has been introduced [108]. An example of industrial in-
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terest in uncertainty quantification for the evaluation of complex physical systems is the
DARPA EQUiPS (Enabling Quantification of Uncertainty in Physical Systems) program
[109], which aims to develop a rigorous framework for the propagation and manage-
ment of uncertainty in modeling and design of complex engineering systems.

Monte Carlo Simulations (MCS) remain a popular method to propagate uncertainty
through a system, especially when a black-box system is used. The main reasons are the
ease of implementation and the insensitivity to the dimensionality of the problem. The
main disadvantage of MCS is the large sample size required to provide an accurate es-
timate, due to the Central Limit Theorem. To improve the accuracy of the estimation,
i.e. reducing its variance, many variance reduction techniques were invented: antithetic
variates, control variates, importance sampling, conditional Monte Carlo sampling and
stratified sampling, for example Ref. [110]. A review of improved Monte Carlo methods
in UMDO for aerospace vehicles is provided by Hu et al. [111]. Monte Carlo simula-
tion appears especially suitable for uncertainty propagation in aeroservoelastic systems
[112]. That conclusion may be generalized to apply for any tightly coupled system.

Because of the reasons mentioned before, MCS is the most appropriate tool to use
in this dissertation for the propagation of uncertainty. It is used in Chapter 6 to quantify
the uncertainty on the QoIs. It should be noted, however, that if only discrete variables
are present in the technology selection study, a Bayesian Network could be used instead.
The benefit of using a Bayesian approach is that inverse uncertainty propagation is also
possible. Unfortunately, the Bayesian approach becomes computationally intractable
for continuous variables, unless several assumptions and restrictions on the probability
distributions (e.g. Gaussians) are satisfied. As a best-of-both-worlds solution, Chapter
6 introduces probabilistic inversion as a technique to enable the inverse queries, when
using MCS for forward uncertainty propagation.

2.10. SENSITIVITY ANALYSIS

Sensitivity analysis provides design insight on a local level, or method insight on a global
level. In a deterministic setting, local sensitivity analysis is usually performed to find the
impact of a change in input variables on the output variables [113]. This results in partial
derivatives of the output. Several techniques can be used to compute these derivatives,
which are discussed below. Gradient-based optimizers make use of these gradients to
guide a design solution to an optimal point.

In the context of design under uncertainty, input variables have a distribution of pos-
sible values, and global sensitivity analysis (GSA) is performed to investigate the effect on
output variables with respect to the entire range of input values [113]. GSA can either be
used before design to screen out those variables that have little influence (i.e. neglect
uncertainty in these variables, to reduce dimensionality in the context of uncertainty
quantification) and investigate the interaction between design and noise variables or it
can be applied after design to determine where efforts should be made to reduce uncer-
tainty.
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2.10.1. LOCAL SENSITIVITY ANALYSIS

Different techniques exist for computing gradients, i.e. derivatives, of functions (or equiv-
alently, systems). Symbolic differentiation (which is very similar to differential calculus)
produces an exact derivative. However, for even moderately complex functions, the sym-
bolic derivative can amount to several pages of expressions. Nonetheless it has success-
fully been applied in an aerodynamic shape optimization algorithm [114]. Numerical
differentiation, i.e. finite differences or divided differences, is an approximate differenti-
ation technique that is well known and can easily be applied to any function, no matter
how complex. However, it only produces an estimate of the derivative and for functions
with many inputs and outputs, the computational cost of this technique is considerable,
if not prohibitive.

Lastly, automatic differentiation was introduced as a method that has neither of these
problems: it produces an exact result at only a small computational cost. Automatic
differentiation is in principle the application of the chain rule to computer programs
[115]. The technique can either be applied in a forward-mode or reverse-mode fashion
(or some hybrid combination thereof). The reverse-mode is closely related to adjoint
differential equations [115].

Several papers discuss the principles of automatic differentiation, including forward
and reverse accumulation, adjoint program construction and operator overloading, the
if-else statement problem and iterative processes [116–119]. A robust optimization of
an aircraft concept using automatic differentiation is presented by Su and Renaud [120].
These studies were all performed in the last century and recent research shows no hint
of automatic differentiation being used, which may lead to the conclusion that it has lost
popularity. A likely explanation is the issues involved with applying automatic differen-
tiation to existing software, i.e. black-box systems.

2.10.2. GLOBAL SENSITIVITY ANALYSIS

GSA can be performed using various methods, but in general, a trade-off is made: accu-
racy of the solution versus computational efficiency. In order to take the entire proba-
bility distribution into account, which provides an accurate description of effects, GSA
becomes computationally inefficient. In fact, for a large number of variables it becomes
an intractable problem. On the other hand, simplifying the analysis by only considering
certain statistical parameters such as variance, GSA can be performed, but with loss of
accuracy and it remains computationally expensive. Another important observation is
that most GSA techniques assume independence of input variables, which in many cases
is warranted, but if not, different approaches should be used, such as copulas [113].

ANOVA (analysis of variance) is a commonly used method for GSA. It decomposes
a function into its contributing components, for which the effects and variances can be
determined [113]. From the variance, so called sensitivity indexes can be computed:
the main sensitivity index (MSI), which describes the effect of one variable, and the to-
tal sensitivity index (TSI), which is the effect of a variable and all its interaction effects
combined. ANOVA is used in a study by [121], where it is used to investigate the effect
of component confidence intervals on the system confidence interval of Bayesian net-
works.

The advantage of variance-based sensitivity analysis is that it is easy to implement
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and interpret, but it can not sufficiently describe uncertainty of systems with highly
skewed or multimodal responses [122]. An alternative to ANOVA, but still a variance-
based method, is FAST (Fourier amplitude sensitivity test) [123]. Alternatively, Sobol’
indices [124] are anoter variance-based GSA technique. GSA based on Sobol’ indices
is used by Decarlo and Mahadevan [125] on an aerothermal problem, where an impor-
tance sampling-based kernel method is developed to estimate the indices. It allows for
time-dependent multidisciplinary analysis of the sensitivity. A study by Chen et al. [113]
develops an analytical variance based GSA method, by observing that many surrogate
models are in the form of multivariate tensor-product basis functions, for which ana-
lytical solutions exist of the integrals needed to compute the sensitivity indices. So the
modeling and simulation environment should be represented by metamodels for this to
work, but it is shown that the method performs faster than Monte Carlo simulation and
avoids sampling error. The Multidisciplinary Statistical Sensitivity Analysis (MSSA) [122]
method is a relative-entropy-based SA technique proposed by Jiang et al. [122], which
captures the entire distribution of a QoI and is therefore especially suitable for RBDO.
Another method, based on Kullback-Leibler entropy, leads to the same conclusion [126].
High-dimensional model representation (HDMR) theory combined with ANOVA was in-
troduced by Opgenoord and Willcox [127] to efficiently compute sensitivities of com-
putationally costly models. The sensitivities are used to update risk and uncertainty
budgets, based on which a design can be evaluated. Polynomial Dimensional Decom-
position (PDD) can also employed for GSA and UQ of stochastic systems and a sparse
representation can be obtained that results in fewer model calls [128]. For a short review
of other GSA approaches, this work can also be consulted.

2.11. CONCLUSION
To accurately predict the impact of novel technologies, a generalized sizing and assess-
ment method is deemed appropriate, but unfortunately such a method does not yet ex-
ist. This is partly due to the challenge of parameterizing geometry and using generic
analysis methods. Another issue is the modeling at technology level. This step is usu-
ally avoided and replaced by introducing factors that account for a technology’s impact
on system parameters. Such approaches require expert knowledge as input. This is not
necessarily a problem, although subjectivity is introduced and conservatism may result.
The state-of-the-art methods for technology evaluation heavily rely on natural language
for storing information, which has to be interpreted by human experts, which may lead
to inconsistency. Furthermore, the k-factor approach heavily relies on available analysis
methods to dictate what impact factors are available. This limits the expressiveness with
which technologies can be modeled and likely omits some of their key characteristics.

Regarding uncertainty modeling and quantification, probability theory is still most
widely used. Probability theory requires probability density functions as input, which
have to be assumed by experts [98]. However, copulas theory appears promising to mit-
igate this problem. Another issue with probability theory is the single probability metric
it produces, which may over- or underestimate the actual uncertainty and hence may
lead to incorrect conclusions. Model form uncertainty remains difficult to quantify and
most efforts focus on correction strategies using Bayesian calibration or multi-fidelity
approaches. Both require high fidelity data, which may not be available or requires sig-
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nificant computational effort.
High dimensionality of practical engineering problems remains an issue to be tack-

led. Technology evaluation algorithms, including optimization, uncertainty quantifica-
tion, sensitivity analysis and surrogate modeling are commonly performed using algo-
rithms that scale exponentially with the amount of variables. Techniques to reduce a
problem’s dimensionality are available, but are not effective enough to tackle this issue
entirely.

It may be concluded that for technology evaluation and selection, there is not yet
a holistic approach that includes a modular and flexible analysis environment, or un-
certainty. Furthermore, there is no link between ontological modeling of engineering
systems and the model-based approaches for simulation. If one is to combine these el-
ements, uncertainty may best be modeled using probability theory. The most relevant
is epistemic uncertainty regarding technology impact and specification, as well as readi-
ness levels and state-of-the-art assumptions. Joint dependencies may be modeled using
copulas, or with more elaborate techniques, such as Bayesian Networks. The propaga-
tion of uncertainty is easiest using Monte Carlo Simulation, because it is independent of
the employed analysis method. Finally, sensitivity analysis may be used as a first esti-
mate of the effects of technology impacts, either locally or globally, but serves little use
for an accurate account of the quantitative impact technologies have.

The observations made in this chapter outline the developments that are made in
the subsequent chapters. Concretely, the following chapter discusses how technologies
may be represented and modeled using a formal ontology and graph theory. The chap-
ters after the next use those representations to structure the technology evaluation and
selection process, to make it more robust, consistent and traceable.



3
ENGINEERING SYSTEMS ONTOLOGY

As set out in the introduction, one of the first research objectives is to develop a formal
knowledge representation of engineering systems and technologies. Specifically:

Establish a formal knowledge representation of engineering systems, such
that technologies can be described.

As we’ve seen in Chapter 2, ontologies offer a formal means to capture and represent
domain-specific knowledge. Although it may be established that an ontology is a suit-
able solution for this research objective, the relevance of the research objective itself has
not received attention, yet. In other words, why do we need a formal knowledge repre-
sentation to start with? The reason is threefold:

• a formal knowledge representation enables us to capture and store knowledge, and

• to reuse and share that knowledge, and

• to ensure consistency and robustness.

Let’s discuss each of these in the following three paragraphs.
Without an ontology, the engineering systems and technologies would have to be

represented using some other method. Commonly, natural language is used. Extensive
reports are drafted in a text editor, with some images to clarify the textual description.
Those reports then serve as the knowledge representation. One can imagine that without
a clear structure, such reports are hard to parse, and it is difficult to determine what
knowledge actually resides within. Even when a consistent structure is followed, the
knowledge itself is in the form of text and images, both of which require considerable
interpretation to become usable information.

Although sharing a report is just as easy as sharing any digital document, the knowl-
edge contained within is not so easily reused. Say some research project carries over
from a prior one, and therefore some of the knowledge generated in the former project
is used as a starting point. Typically, only part of that knowledge is relevant to the new
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project, and in other areas that knowledge is incomplete, because of additional consid-
erations in the new project. Thus, with knowledge not captured formally, one has to
re-digest and reconfigure the existing knowledge to put it into a form that meets the new
requirements.

Consistency of knowledge representation is perceived within this thesis as that the
same knowledge would be represented in the same way at different points in time. Thus,
suppose someone expresses today’s temperature in some way in the knowledge base.
Then, if tomorrow’s temperature is recorded, it has to be done in an analogous way. Ro-
bustness is defined herein as a very similar concept, where it is meant that if there are
multiple ways to express the same information, these have to be equivalent. That way,
multiple users can use the same knowledge representation and avoid ambiguity or mis-
communication through interpretation. Clearly, natural language does neither ensure
consistency nor robustness.

Even though the preceding remarks presumed natural language as the ubiquitous
knowledge representation technique in systems engineering, they still hold when other,
more structured languages are used. For example, SysML or UML do a much better job
at capturing knowledge about engineering systems formally, but do not provide a true
ontological treatment of, at least, physics. Therefore, it is up to the modeler to come up
with the foundational concepts that make up their descriptions, and as a result, ambigu-
ity arises. Consider, in contrast, the period table of elements. This is a formal, rigorous
basis of elements that are unique and can be combined to form other, more complex
materials. However, the basis is fixed (to the extent that every now and then additions to
it are found) and serves as a vocabulary to describe materials. It is, in a sense, the same
as for mathematics. Mathematics is a language that was developed to be unambigu-
ous: a conclusion formed from mathematical statements will always be true given those
statements, and no contradicting conclusion can be drawn from those same statements.
Mathematics is based on constructs, which are only virtual (they have no real meaning,
per se), but form a basis from which all other laws and relations in mathematics fol-
low. Numbers are the most prominent of these constructs. Conversely, if we consider
functions of objects, it proves difficult to establish a basis or vocabulary of elementary
functions from which any, more complex, function can be constructed. Even though
some have been proposed [64], they are open to interpretation and debatable depend-
ing on your viewpoint. The issue with SysML and UML is that they do not include such
exhaustive bases, and instead leave that to the practitioner.

Recall that knowledge adhering to an ontology can be captured as a knowledge graph.
Graph matching requires a strong notion of node types and edge types. What graph
structure is then equivalent to another? To answer that, a type graph is needed that
specifies what kind of nodes and relationships are allowed. An ontology, although more
widely applicable than graphs, has the exact same purpose. Furthermore, an ontology
captures universal relationships between node and edge types, allowing for inference of
new facts. A piece of information encoded as a graph is typically just a set of particulars
(individuals), thus no general conclusions can be drawn from that without an accompa-
nying ontology.
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3.1. REQUIREMENTS FOR THE ONTOLOGY
Now that it is established why an ontology to represent systems and technologies is
needed, it should be defined what knowledge needs to be captured, and which infer-
ences the knowledge base should support. The answers to these two questions provide
the guidelines on the development of the ontology.

3.1.1. WHAT KNOWLEDGE SHOULD THE ONTOLOGY CAPTURE?
It is impossible as of yet to propose a basis for describing physics and the artifacts that
can be composed. This is because the actual building blocks of physics itself have not yet
been found, and there is no unified theory of physics (gravity and relativity vs. quantum
mechanics). As such, a decomposition as proposed in this research is only valid within
a certain scope, which sets limits on certain physical quantities (such as velocity, in the
context of classical mechanics versus general relativity). Any "law" that we may describe
(e.g. Newton’s first law, Maxwell’s equations) are not in fact, a law of physics, but only
hold true within a limited scope. Only when a unified theory is found, may a basis be de-
veloped along with accompanying laws that always hold true. When only focusing on the
subset of physics that systems engineering is concerned with (disregarding the develop-
ment of a Star Trek Voyager), it is perfectly reasonable to form a basis and accompanying
laws that hold within the imposed limits. Such is the aim of this study.

We argue that to uniquely define a behavior, three elements need to come together:
why, what and how. Why are the functions and requirements of the component that ex-
hibits the behavior, what is the form of the component that are necessary to exhibit its
behavior (which in turn fulfills the function) and how is a set of physical phenomena tak-
ing place in and around that component. Functions are a subset of the behavior (i.e. the
part of the behavior that is intended), while requirements could be added through con-
straints on attributes associated with the behavior. The form of a component exhibiting
the component is easily represented with geometry as a mesh, for example. However, de-
termining equivalence of meshes and geometry in general is extremely difficult. Finally,
specifying the physical phenomena involved with a behavior either requires an ontology
of those phenomena, or requires specifying an analysis method that represents a sub-
set of physics. In the latter case, different fidelity levels and assumptions in the analyses
pose a challenge. Using the form (geometry) of the associated component in the behav-
ior definition is expected to inhibit equality or equivalence determination of behaviors
for this reason: comparing form is not a trivial task. Nonetheless, a behavior should be
characterized by the form exhibiting it.

3.1.2. WHICH INFERENCES SHOULD THE ONTOLOGY SUPPORT?
Through inference, the knowledge captured using an ontology is leveraged to produce
new knowledge. In our case, the ontology should support inferences that support the
following two uses: technology portfolio generation and technology portfolio evalua-
tion. The former requires knowledge of how technologies interact and what dependen-
cies arise among them. The latter requires knowledge of how the entities in the ontology
may be modeled numerically and consecutively simulated.

The interaction among technologies results from their physical behaviors. Therefore,
as discussed before, capturing physical behavior properly is compulsory. The qualita-
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tive interaction of physical behaviors has to be known as well, such that the interaction
of technologies can then be inferred. The interaction between technologies defines two
concepts: whether a set of technologies are incompatible with one another, and whether
a set of technologies enables the application of another technology. These concepts re-
quire a notion of compatibility and a definition of what it means to enable another tech-
nology. The method for these inferences is discussed in Chapter 4.

Simulation models have to be captured by the ontology in such a way that their ap-
plication to a given system and technology set can be inferred. Therefore, the ontology
should offer concepts and rules to associate modelization to realistic entities and a de-
scription of simulation methods. How this is approached is discussed in Chapter 5.

Based on the preceding deliberation, this chapter aims to develop an ontology suit-
able to formally capture knowledge about engineering systems and technologies. It is
based on existing upper ontologies: Basic Formal Ontology, Information Artifact On-
tology and the Physics-based Simulation Ontology. These are discussed first, and the
proposed additions are addressed next. Finally, the issue of granularity is touched upon.

3.2. BASIC FORMAL ONTOLOGY
BFO is developed with the idea of ontological realism, which aims to represent reality as
it exists [61]. This allows a situation to be described as realistically as possible, without
resorting to assumptions or abstractions of it. Models are described separately and point
to such a physical reality. In general, ontological realism ensures perspectivism, which
emphasizes that multiple perspectives of the same thing may be valid [129].

BFO divides entities into continuants and occurrents, see Figure 3.1. Continuants
are entities that retain their identity throughout time, even though they may change.
Occurrents are entities that unfold in time, or temporal regions.

Entity

Continuant Occurrent

Independent 

continuant

Specifically 

dependent 

continuant

Generically 

dependent 

continuant

Figure 3.1: Primary classes in BFO, dividing entities into continuants and occurrents

Continuants are divided into independent, generically dependent and specifically
dependent continuants, as shown in Figure 3.1. The first — independent continuants
(IC) — are entities that exist irrespective of the existence of other entities and are fur-
ther divided into material and immaterial entities, see Figure 3.2. Generically dependent
continuants (GDC) are entities that have an identity, but do not exist concretely unless
concretized by some IC. For example, a novel is a GDC, and is concretized by ink printed
on paper. Multiple copies of the same GDC can, therefore, exist, and while all of these are
different ICs, there is only one GDC: the novel itself. Finally, specifically dependent con-



3.2. BASIC FORMAL ONTOLOGY

3

55

Independent 

continuant

Material 

entity

Immaterial 

entity
Site

Spatial 

region

Two-

dimensional 

region

Three-

dimensional 

region

One-

dimensional 

region

Zero-

dimensional 

region

Fiat object 

part

Object 

aggregate
Object

Continuant 

fiat boundary

Two-

dimensional 

continuant 

fiat boundary

One-

dimensional 

continuant 

fiat boundary

Zero-

dimensional 

continuant 

fiat boundary

Figure 3.2: Taxonomy of independent continuants in BFO, extends Figure 3.1
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Figure 3.3: Taxonomy of specifically dependent continuants in BFO, extends Figure 3.1

tinuants (SDC) adhere in an IC and cannot be transferred to another IC (like a GDC can).
In other words, they specifically belong to that IC. SDCs are sub-divided into qualities
and realizable entities, which are roles and dispositions, as shown in Figure 3.3. Thus,
the pressure of a portion of air is a SDC adhering in that portion of air (an IC).

Occurrents are (primarily) processes and temporal regions (see Figure 3.4). A process
is an occurrent entity that exists in time by occurring or happening, has temporal parts,
and always depends on some (at least one) material entity [129]. A temporal region,
logically, is either a temporal interval (timespan) or instance (point in time).

All the classes present in BFO are depicted in Figure 3.1, Figure 3.2, Figure 3.3 and
Figure 3.4. Refer to Smith [130] for a thorough description and definition of these classes.
For a discussion on classifying material entities and processes, refer to Refs. [131, 132].

Table 3.1 lists the relations that BFO contains. Each relation has a domain, which is
the set of classes that can act as subject to the relation, and a range, which is the set of
classes of objects for that relation. Furthermore, Table 3.1 lists the reflexivity, symmetry,
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Figure 3.4: Taxonomy of occurrents in BFO, extends Figure 3.1

transitivity and the inverse for each relation. Reflexivity entails that an entity has a rela-
tionship to itself, i.e. x relation x. Symmetry indicates that x relation y ⇒ y relation x.
Reflexivity and symmetry also have inverses: irreflexivity and asymmetry. These mean
that the negative of that property holds for the relation. Transitivity propagates a relation
through a hierarchical structure; i.e. x relation y ∧ y relation z ⇒ x relation z. Finally,
the inverse of a relation is simply its counterpart: x relation y ⇒ y inverse x.

3.3. INFORMATION ARTIFACT ONTOLOGY
The Information Artifact Ontology (IAO) was created as a domain-neutral representation
of information content entities (ICE), built on top of BFO [133]. It is supposed to be a
mid-level ontology that describes information content entities, processes that consume
or produce them, material bearers of information and relations with ICEs. The aim is to
represent different ways that information relates to the world, and keep a clear distinc-
tion between information and what that information is about. As such, IAO is consistent
with the realist ontology goal of BFO.

Figure 3.5 shows the taxonomy of classes in IAO, excluding some which are of less
relevance to our discussion (denoted by an ellipsis). To illustrate how these classes are
used, consider Figure 3.6. The flying laboratory of TUD — the Cessna Citation II with
designation PH-LAB — is considered, and the information concerning its length is cap-
tured in IAO. The dashed lines and boxes indicate particulars (individuals), whereas the
solid boxes are universals. As shown, the particular aircraft that is PH-LAB is an instance
of the Cessna Citation II class. PH-LAB has a quality, which is its length. However, the
information that represents that length is not directly captured in that quality. Instead, a
measurement of that length stores that information, with a combination of a value and
measurement unit. Additionally, this measurement may be concretized in some form. In
this particular example, it is concretized by the solid state drive of my laptop. Specifically,
the Floating-Gate MOSFETS that make up that solid state drive concretize the informa-
tion. The part of the graph that describes the conretization of the measurement is not
strictly necessary, and only serves as a demonstration.

At first, Figure 3.6 may seem too convoluted to state that the length of an aircraft
has a certain value. However, after some consideration, this really is the least amount
of information necessary to specify such a piece of information. The reason is that we
want to be able to specify a certain quality (the length) of an object (PH-LAB), in such a
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Table 3.1: Relations in BFO. The columns R, S, and T stand for Reflexive, Symmetric and Transitive, respectively.
A • indicates that relation possesses the property, while a ◦ indicates it possesses the inverse of that property

Relation Domain Range R S T Inverse
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Table 3.2: Relations in IAO. The columns R, S, and T stand for Reflexive, Symmetric and Transitive, respectively.
A • indicates that relation possesses the property, while a ◦ indicates it possesses the inverse of that property

Relation Domain Range R S T Inverse
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way that we can also capture what that quality is. That is why the “Length of PH-LAB”
is a node in the graph. Although not shown in Figure 3.6, we can start adding relations
to that node to indicate it is a spatial quality, and indicate the spatial dimension along
which it is defined (e.g. from the nose to the tail of the aircraft). The measurement of the
value of a quality has to be separate from the quality itself, because the quality’s value
could change over time. Even when it doesn’t, it can be measured in different units.
That is why the “Measurement of Length of PH-LAB” is a separate node, with relations
to a measurement value and unit label. It’s type indicates it’s value is interpreted as a
scalar value. This could alternatively be a vector, color, image or any other type of data
structure.

The relations of IAO are listed in Table 3.2. The most important relation is is about.
That relation implies that some information content entity is about some entity; hence,
captures some information about it. Several specifications of this relation exist, as well
as their inverses.
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3.4. PHYSICS-BASED SIMULATION ONTOLOGY
The Physics-based Simulation Ontology (PSO) [61] was developed to “assist in modeling
the physical phenomenon of interest in a veridical1 manner, while capturing the neces-
sary and reusable information for physics-based simulation solvers”. PSO is divided into
two ontologies: PSO-Physics and PSO-Sim. The former expresses classes and relations
to model physical phenomena, whereas the latter expresses information artifacts about
those physical phenomena, in order to model them in simulation software. Therefore,
PSO-Physics mainly builds on BFO, while PSO-Sim extends IAO.

An overview of the classes introduced in PSO-Physics is shown in Figure 3.7. PSO
adds to BFO the concepts of material substance and the made of relation, among other
things. A material substance is defined as a chemical substance that a BFO material
entity is made of [61]. It is inspired by DOLCE [134] and the material constitution theory
[135].

Furthermore, the fiat object surface is added in PSO to denote a fiat object part of a
BFO object that is minimal in one spatial dimension. Fiat object surfaces can be used
to denote (a part of) the surface of an object, such as the outer surface of a wing, for
example.

Qualities are divided into shape, state of matter, physical properties and material
properties. Physical properties are defined as a BFO quality that determines the physi-
cal state of a material entity, and can be measured as quantitative values based on some
measurement units. Material properties are defined as a BFO quality that can be mea-
sured to identify the physical characteristics of a PSO material substance. The distinc-
tion is made, because material properties can uniquely identify the type of material sub-
stance, while physical properties cannot. For example, density can uniquely identify a
type of material, while pressure cannot.

Another PSO concept is the physical behavior, which is a subclass of the BFO process

1Truthful; veracious; accurate
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Table 3.3: Relations in PSO. The columns R, S, and T stand for Reflexive, Symmetric and Transitive, respectively.
A • indicates that relation possesses the property, while a ◦ indicates it possesses the inverse of that property

Relation Domain Range R S T Inverse
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Figure 3.8: Taxonomy of classes in PSO-Sim

profile. [131] lays out the foundations of process profiles, which can be seen as specifica-
tions of a process. A process profile demarcates a part of the process that is identified for
a particular purpose, much like fiat object surfaces are parts of an object with a certain
purpose. The PSO physical behavior then is a process profile that is part of some process
while occupying the same temporal region, and follows a specific law of physics [61].

PSO reuses many relations from BFO, and introduces two. These two are listed in
Table 3.3. The physically related to relation specifies that two SDCs are related to one
another through some physical law.

PSO-Sim is not described extensively in Ref. [61]. Therefore, the visualization of its
taxonomy in Figure 3.8 is assumed by the present author, and is based on the textual
description in Ref. [61]. There are no relations introduced in PSO-Sim. Instead, it makes
use of the IAO relation is about.

3.5. EXTENDING BFO, PSO AND IAO
The proposed ontology is built with BFO, IAO and PSO as upper ontologies. Table 3.4
shows the classes that are introduced to the current ontology as subclasses of BFO. They
are loosely based on works on functional decomposition [64, 67, 68, 74] and should
therefore allow to define engineering components and how these interact. Components,
fluids and solids are all material entities. A signal generically depends on a carrier and is



3

62 3. ENGINEERING SYSTEMS ONTOLOGY

Table 3.4: Introduced classes, their superclasses and definitions, if applicable

Class Superclass Definition

Component Object (BFO)

Fluid
Material substance
(PSO)

Gas∪Liquid∪Plasma

Gas Fluid
Material substance ∧ has quality
state of matter = gas

Liquid Fluid
Material substance ∧ has quality
state of matter = liquid

Plasma Fluid
Material substance ∧ has quality
state of matter = plasma

Interface
Continuant fiat
boundary (BFO)

see Equation 3.1

Signal
Generically
dependent
continuant (BFO)

Solid
Material substance
(PSO)

Material substance ∧ has quality
state of matter = solid

Boundary flow Role (BFO)
Inflow Role (BFO)
Outflow Role (BFO)

merely the interpretation of a physical quality. The notion of an interface is introduced,
which is a continuant fiat boundary that has some dispositions. An interface occupies
a spatial region. Examples of interfaces are connection points of pipes or cables, or the
surface of an object.

interface(i ) ≡ i ∈ continuant fiat boundary ∧
∃r : i occupies spatial region(r ) ∧
∃e : i part of material entity(e) ∧
∃d : i has disposition disposition(d)

(3.1)

Interfaces are used to express interactions between physical (material and immaterial)
entities, through dispositions and functions defined on them.

Now, consider a 2D finite volume method. A portion of fluid is described with a con-
trol volume, bounded by some polygon, usually a triangle. The fluid flows through the
three faces of that triangle, but depending on the actual direction with respect to that
fluid element, it either flows into or out of that element. To support this description,
several specific subclasses of BFO role are introduced: boundary flow, inflow and out-
flow. The boundary flow merely indicates that some entity is considered as a bound-
ary to some other entity. Inflow and outflow are subclasses of boundary flow and self-
explanatory. These roles do not apply to continuum mechanics specifically; in fact, they
are valid for any control volume, where the in- and outflow of a system are of considera-
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Table 3.5: Relations in present ontology, both taken from BFO (upper part) or introduced (lower part). The
columns R, S, and T stand for Reflexive, Symmetric and Transitive, respectively. A • indicates that relation
possesses the property, while a ◦ indicates it possesses the inverse of that property

Relation Domain Range R S T Inverse
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content
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content
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•
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process of

process process ◦
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information
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information
content
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•

tion.
Table 3.5 shows the relations that are included in the proposed ontology. The relation

occupies requires some elaboration. When m occupies r , it means that the material
entity (or process) m is exactly located in spatial region r . Thus, equivalently one could
state:

m occupies r ⇒∀r1 : spatial region(r1) ∧
r1 part of r ∧ m occupies r1 .

The next few rules are necessary to reason about overlapping entities. Because the
notion of overlapping is very general (e.g. sets overlap, spatial or temporal regions over-
lap), it applies to anything, and no class restrictions are included in the rules.

r1 overlaps r2 ⇔∃r3 : r3 part of r1 ∧ r3 part of r2 (3.2)

Usually, the overlaps relationship applies to spatial regions, in which case CAD or similar
software may be used to infer it. For now, a statement is directly added to the ontology
for individuals that overlap, such that subsequent inferences can be made. Furthermore,
any spatial region that is part of another spatial region, overlaps its parent:

r1 overlaps r2 ⇐∀r1,r2 : spatial region(r1) ∧ spatial region(r2) ∧
r1 has part r2

(3.3)
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Another spatial reasoning mechanism that is needed is that any process that is part of
another process occurs in the same region:

p1 occurs in r1 ⇐∀p1, p2,r1 : process(p1) ∧ spatial region(r1) ∧
process(p2) ∧ p2 occurs in r1 ∧ p2 has part p1

(3.4)

A significant portion of domain-specific reasoning involves the interaction of pro-
cesses. Users may wish to define that a process inhibits other processes of some specific
type. This is most easily achieved by introducing a class of processes of which all indi-
viduals are inhibiting processes of some other class of process:

∀p1, p2 : p1 inhibiting process of p2 ⇒ InhibitingProcess(p1) ∧
InhibitedProcess(p2)

(3.5)

The relation inhibiting process of only informs that its operands have the potential to be
inhibitory. However, the involved processes only actually inhibit each other when they
occur simultaneously in the same spatial region:

∀p1, p2 : p1 inhibits p2 ⇔ process(p1) ∧ process(p2) ∧
p1 inhibiting process of p2 ∧
∃r1,r2 : spatial region(r1) ∧
spatial region(r2) ∧
p1 occupies r1 ∧ p2 occupies r2 ∧
r1 overlaps r2

(3.6)

Dispositions are realized in processes. When two dispositions are realized by in-
hibitory processes, these dispositions block each other. Therefore, we borrow the idea of
a blocking disposition from [136, 137]:

∀d1,d2 : d1 blocking disposition of d2 ⇔ disposition(d1) ∧ disposition(d2) ∧
∃p1, p2 :

process(p1) ∧ process(p2) ∧
p1 realizes d1 ∧ p2 realizes d2 ∧
p1 inhibits p2

(3.7)

The relation causally influences indicates that the one physical quality causes a change
in the other, according to some law of physics. This relation is not symmetric, although
it is transitive.

Finally, the assigns role relation is introduced between a role some entity. It is meant
to clarify which entities assign a certain role. For example, a person may both have the
roles of manager and friend. To some colleague, they are a manager, while to their friends
they are merely a friend, and not seen as manager.

3.6. TECHNOLOGIES AS GRAPH TRANSFORMATIONS
Consider the definition of technology presented in Chapter 1, repeated here for conve-
nience:
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A technology is a materialized form of knowledge applied to a given sys-
tem in order to alter the system’s form or behavior to satisfy certain require-
ments.

Combined with the idea of representing a system with a knowledge graph and the con-
cept of graph transformation rules, it is concluded that a technology may be represented
as a graph transformation rule that alters the system graph to reflect a change in the form
or behavior. The requirements to be satisfied can either be left implicit, to be determined
during simulation of the altered system, or explicated by stating some constraint on a
quantity of interest. Simulation then has to prove that the technology indeed satisfies its
imposed requirements.

Recall from subsection 2.6.3 that a graph transformation rule consists of a pattern
graph, an effect graph and a gluing graph. In the case of a technology, the pattern graph
specifies the part of a system that the technology applies to. For example, it could de-
scribe a turbine blade, without being specific on the actual shape of the blade. It could,
however, be specific on the type of material the blade is made of. Then, the effect graph
could introduce holes in the blade surface to introduce film cooling. The gluing graph
would in this case be the same as the pattern graph, because no elements of the turbine
blade are removed; even though material is removed, the graph description only notices
that as a change in the shape attribute of the solid that makes up the turbine blade. Fur-
thermore, the blade retains its behaviors and functions, and only receives more in the
effect graph.

At first glance, the idea of a graph transformation rule might seem to limit the scope
of which technologies can be modeled. On the contrary, the converse is true. While,
as Chapter 1 points out, a baseline system is always considered for good comparison
of different technologies, the scope of that baseline system can be as wide as required.
Essentially, the baseline system is the largest common divisor of the technologies under
investigation. So, even if the technologies are disjoint things from between one must
be chosen, there will be a system to which they are applied to fulfill a certain function.
On another note, the fact that a graph transformation rule can delete anything from the
pattern and add anything in the effect graph, makes them very expressive. The change
to a system can be as small as modifying one property’s value, to replacing the entire
system with a different one.

As we will see in the following chapter, graph transformation rules allow to automate
the technology compatibility matrix generation and other relationships between tech-
nologies. This results from the fact they are a formal language to specify what a tech-
nology is, in contrast to textual or graphical documents as used in common practice.
After the application of a technology graph transformation rule, a new system graph is
formed. These can be analyzed as any other system graph, as is discussed in Chapter
5. Multiple graph transformations can be applied to the same graph, allowing multiple
technologies to be included simultaneously. Therefore, automatically analyzing a large
set of technology portfolios becomes possible.
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3.7. GRANULARITY

One of the largest unresolved challenges with a proper ontological representation of sys-
tems is that of granularity. In this case, granularity refers to the different levels of decom-
position of a system. For example, at the highest level, an aircraft is merely an object that
transports a certain payload from one place to another, through the air. However, one
level lower, it can be broken up into the largest components that make up an airplane:
the fuselage, wings, engines and tailplane. Subsequently, these can be broken up again,
on and on, to a quantum level if one so desires.

Now, the right level of granularity would depend on where a technology makes its im-
pact. If a technology entails a new coating for a turbine blade, a gas turbine would have
to be described in such detail that turbine blades come into the picture. However, not all
parts of the gas turbine have to be described at that level of granularity: the compressor
and combustion chamber are of no concern for this technology.

The question now arises how one can traverse the various levels of granularity and
still conclude the descriptions are about the same object. Concretely, when one de-
scribes a technology as a graph transformation rule, the pattern of that rule is to be
matched in some knowledge graph describing an engineering system. If the level of
granularity in the pattern differs from that in the system graph, how can the pattern
matching algorithm detect they are still congruent?

One option is to convert all graphs to the highest level of granularity, i.e. the least
informative description. Because this is a mapping from a high-dimensional space to
a low-dimensional space, we can always perform the operation, but lose information
in the process. To perform the mapping, the mereological part of the ontology is used,
i.e. the part of relations. All sub-components are disregarded, and their behaviors are
combined into a single, all-encompassing behavior. If we were to do this in the turbine
blade example, the technology pattern would be simplified to a gas turbine as a black-
box component that converts chemical energy into a thrust force (mechanical energy).
That would match the high-level-granularity system description, which represents an
aircraft broken down into its main components, which are only described in terms of
their most top-level function and behavior. Unfortunately, it is now impossible to tell
how often and where the technology can be applied to the system, because nowhere the
amount of turbine blades is defined.

Therefore, another option is to convert graphs to the lowest level of granularity present
among the knowledge graphs considered. Because this operation has to introduce new
information, assumptions have to be made. For example, the high-level description of a
gas turbine has to be expanded into one where all its sub-components are detailed, up to
the turbine blade level. Some default configuration of a gas turbine should be assumed,
with prescribed amounts of compressor and turbine blades, combustors, etc.

Alternatively, practitioners could be notified when the expert system detects con-
flicting levels of granularity. They can subsequently determine the appropriate course
of action depending on that specific situation. Otherwise, a measure of the similarity
between graphs may be employed that reflects their semantic equivalence. Chapter 4
explores this option in the form of graph edit distance.
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3.8. DISCUSSION ON BFO AND PSO
This discussion is an opinion on some of the modeling choices in BFO and PSO. BFO
introduces process profiles to specify aspects of a process. It is argued that a process
cannot bear qualities. Therefore, to be able to assign measurement data to a process,
one has to instantiate universals that specify a certain value for a quality the process
affects. The downside of that is a rather convoluted set of process profile universals, for
example (from [131]):

• speed profile

– constant speed profile

¦ 2 mph constant speed profile

¦ 3 mph constant speed profile

• acceleration profile (increasing speed profile)

– constant acceleration profile

¦ 32 ft/s2 acceleration profile

¦ 33 ft/s2 acceleration profile

– variable acceleration profile

¦ increasing acceleration profile

For each and every possible value of the speed or acceleration, one needs to define a
process universal! Furthermore, Smith [131] argue that continuously changing values
of qualities must be represented in a discretized manner. This is a result of the finite
set of classes one can create for process profiles. This dissertation’s author, therefore,
argues against this approach. It appears best to avoid creating these process profiles,
and rather adopt the PSO approach to use physical behaviours that reflect physical laws.
A behaviour is then associated with the physical laws it is based upon, such as Newton’s
law, the laws of thermodynamics, Navier-Stokes equations, Maxwell’s equations, etc.

Let’s move on with categorizations in PSO. PSO categorizes energy, field and realiz-
able motion under BFO disposition. Realizable motion seems very specific; many re-
alizable processes could be listed here. Therefore, it is suggested to remove it as a first
class universal, or an elucidation is required. Conversely, a field (electric, magnetic, or
so) does seem to be a disposition. Energy is used as a quality in this work, rather than as
a disposition, as PSO suggests. We even believe energy should be treated as an indepen-
dent continuant, because of the mass–energy equivalence principle. However, the way
energy is used and represented in most engineering conduct makes the use of energy as
a quality more logical.

Regarding qualities such as power, one can say that they might not actually exist
physically. They are a way to denote the value of how a certain real quality changes over
time. Thus, a physical object does not have a velocity or acceleration. Instead, it only has
a position. The velocity and acceleration are information entities that describe how the
position changes, and how that velocity changes, respectively. A physical behavior then
involves a set of qualities of the participants of the process it belongs to. The velocity
and acceleration may then be about that process profile.
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3.9. DISCUSSION ON THE USE OF AN ONTOLOGY
An objection to the use of an ontology is that a designer or analyst must have a good
understanding of the ontology and how to represent systems and technologies in it. Be-
cause different individuals have different viewpoints and conceptions, their description
of identical entities may differ. Furthermore, the formal language of an ontology may
make it difficult to describe physical entities and phenomena properly, especially for
people with less training in its use [138]. This issue is pervasive in ontology research
and application, and there seems to be a lack of sound solutions. To alleviate this prob-
lem, ontologies should be built up of multiple, general ontologies, such as a mereology,
topology, geometry and physical process ontology [138]. The modeling process should
follow several steps: defining the components, defining the processes and behavior, and
defining the mathematics [60]. It would then be evident what to model at each step and
when to transition from one step to another. Another option is to construct a library of
systems and processes that a designer can use, rather than defining these themselves.

There may be different ontologies suitable for describing engineering systems and
the physics surrounding them. The proposed ontology can be easily replaced by such an
other ontology. Only the rules presented in this paper have to be rewritten in terms of
those ontologies, for the approach to work.

Rather than having to specify everything by hand, several relations can be deter-
mined automatically using more sophisticated software. For example, the overlaps re-
lation can be computed using CAD software. Furthermore, the interaction between
processes could be determined by simulating them and observing some key qualities.
Through principal component analysis and other statistical methods, the behavior of
groups of processes can be deduced, which then helps to establish the inhibiting pro-
cess of relationships. This possibility enables the method to extend existing systems en-
gineering practices. However, it requires a rather detailed description of the technologies
and systems; something that may not be available in the conceptual design phase.

3.10. CONCLUSION
This chapter aims to find an answer to the research question:

How to represent engineering systems and technologies consistently and ro-
bustly, allowing for knowledge capturing, reuse and sharing?

The answer is an ontology that aims to capture engineering systems as realistically as
possible. The basis of this ontology is formed by a combination of three upper ontolo-
gies: BFO, IAO and PSO. BFO aims for ontological realism, which means they try to sep-
arate what is from how that entity is described, modeled or perceived. IAO then enables
modeling the information and measurements we have on entities. PSO aims to describe
the modeling of a physical system in terms suited for partial differential equation solvers.
Thus, it bridges the gap between ontological realism and quantitative analysis.

The proposed ontology introduces some additional classes to BFO and PSO, most
notably components, interfaces and some role subclasses. Furthermore, several rela-
tions are added that enable the inferences the following chapters build upon. These
relations are elucidated and defined to reduce their ambiguity. Apart from the ontology,
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a key insight is provided that technologies can be modeled as graph transformations on
knowledge graphs that represent engineering systems. This allows technologies to be
formally captured and represented.

Because the graphical approach to knowledge representation requires graph match-
ing, granularity becomes an inhibitory factor. Granularity depends on the viewpoint
with which a certain entity is perceived. It allows a system to be described very generi-
cally, or in extensive detail. However, the resulting knowledge graphs are not isomorphic,
but semantically equivalent. Therefore, techniques to infer that equivalence have to be
developed.

Ontologies themselves are open to interpretation, as their taxonomy and resulting
relations depend on the creator’s viewpoints. The classification of energy in PSO, for
example, is debatable. Likewise, modeling physical behavior proves challenging and a
satisfactory solution that “closes the world”2 has yet to be found.

Creating the knowledge graphs is a time-intensive task and requires significant knowl-
edge of the ontology. This cannot be expected from any practitioner, and, thus, solutions
to this issue have to be found. The easiest solution is to employ knowledge engineers
to create higher-level constructs that a practitioner can readily use. Otherwise, intelli-
gent software should aid in the creation of the knowledge graphs. For example, a CAD
program could in the background construct a knowledge graph describing the spatial
regions and material entities within them, as well as their spatial relationships. That
already forms a considerable portion of the knowledge graph of an engineering system.

Despite the challenges presented above, the ontology and graph transformation rules
are used in the following chapters to automate parts of the technology evaluation and
selection process. Specifically, the next chapter develops techniques to generate tech-
nology portfolios from a set of technologies, by constructing a technology compatibility
matrix automatically.

2This refers to the Closed World Assumption (CWA) as discussed in Chapter 2.
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Figure 4.1: Common practice of constructing a TCM, using only expert judgment

In a typical technology evaluation project, different individuals (people or companies)
contribute several technologies, which are typically expressed in writing, perhaps with
accompanying drawings. From these technology descriptions, a group of experts has
to first figure out which combinations of these technologies may be applied to a sys-
tem of interest. Each valid combination is a technology portfolio and has certain merits
and drawbacks on the system performance and other quantities of interest. Then, each
portfolio should be quantified in terms of several quantities of interest. Based on this
information, the experts can select which portfolios to consider for further development
and implementation.

The issue is that the technologies are not formally expressed, and, therefore, each ex-
pert may have a different interpretation of each technology. Consequently, understand-
ing how the technologies interact becomes difficult and requires extensive discussion
with other experts. Furthermore, only the final result of these discussions are stored in
a technology compatibility matrix (TCM). Afterwards, one cannot deduce from the TCM
why certain technologies are incompatible. The process is illustrated in Figure 4.1

The ontology from Chapter 3 enables machine interpretation of the technologies,
such as to automate the construction of a TCM. Automating this task would not only
improve the consistency of the technologies’ representation, but also cuts back in time
spent. To illustrate, a TCM contains (n2 −n)/2 entries, where n is the amount of tech-
nologies. Assigning each entry by hand quickly becomes a time-intensive task [32, 85].
Enabling relationships between technologies may also be captured in the TCM, in which
case it becomes non-symmetric, and n2 −n entries have to be considered.

A TCM is not the goal itself, but a means to generate feasible combinations of tech-
nologies: technology portfolios. The reason is that the total amount of possible portfo-
lios is 2n , which poses a challenge when QoIs have to be computed for each. The TCM
helps to remove those portfolios that contain incompatible combinations of technolo-
gies. Usually, a significant reduction in feasible portfolios is obtained this way. Nonethe-
less, evaluating all remaining portfolios is usually computationally expensive, or even
intractable when high-fidelity analysis models are used. This chapter also considers how
to find a representative set of portfolios for which QoIs are computed and then projected
back onto the original set.

How technology (in)compatibility may be automatically derived with the ontology
from chapter 3 is discussed in section 4.2. Two methods are presented: one based solely
on the graph transformation rules, and another which uses FOL rules in addition. Then,
section 4.3 considers how technologies enable one another, again through two approaches:
only graph transformation rules, or those in combination with FOL. Subsequently, sec-
tion 4.4 explains how portfolios are generated taking the TCM into consideration. The
maximum dissimilarity technique that finds a representative set of portfolios is discussed
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Figure 4.2: Proposed method for constructing a TCM, using a rule-based system relying on an ontology

in section 4.5 and subsection 4.5.1. Finally, three case studies highlight different aspects
of the theoretical developments presented in this chapter. section 4.6 presents a case
study based on the MANTA project, to illustrate the FOL approach. section 4.7 shows the
application of the FOL approach to an industry technology set. This is to strengthen the
belief that the method is practically applicable. Finally, section 4.8 discusses application
of the graph-transformation-rule-based approach to a game called Factorio. Here, the
maximum dissimilarity technique is exemplified.

4.1. METHODOLOGY OVERVIEW
By evaluating what a technology modifies, rules dictate whether that modification is
compatible with another technology. That process is illustrated in Figure 4.2. Compare it
to Figure 4.1 to see what tasks the support system takes over from experts. Each of these
three elements is described in the following sections.

4.2. TECHNOLOGY COMPATIBILITY AND INCOMPATIBILITY
The purpose of this section is to infer whether any two technologies are incompatible
with one another. We assume that if no reason is found for the pair to be incompatible
(denoted by ⊥), it is compatible (denoted by ∥). Thus:

t1 ∥ t2 ⇔¬(t1 ⊥ t2) (4.1)

There are two methods to infer compatibility and incompatibility between technolo-
gies. The first is purely based on graph transformation rules, while the second imple-
ments logic-based rules to infer certain facts. The second method can be implemented
as an extension to the first, while the first can act stand-alone.

4.2.1. USING GRAPH TRANSFORMATION RULES
Technology compatibility only requires the transformation rules to be parallel indepen-
dent (see section 2.6.3). That ensures that neither technology offsets any effect of the
other. Note that transformation incompatibility only applies when the technologies are
introduced to an overlapping portion of the system graph G . Recall from section 3.6 what
a technology transformation rule is.Also keep in mind that the following discussion as-
sumes graph transformations are defined at the same level of granularity, as discussed in
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section 3.7. This assumption is necessary for all the graph matching performed through-
out this thesis.

Parallel independence is checked as follows. First the maximum common (induced)
subgraph (MCS) KL,1,2 of L1 and L2 is found as:

KL,1,2 = argmaxk1,k2
|VK1,2 | : KL,1,2

k17−→ L1,KL,1,2
k27−→ L2 (4.2)

This MCS is independent of where the technologies apply in G , which has to be reme-
died. In other words, a MCS is sought that applies to specific matches of t1 and t2 in G .

Suppose that L1
m17−→G and L2

m27−→G are the matches of the technologies in G . To find the
MCS of these matches, take KL,1,2 and define:

K1,2 = m1 ◦k1(KL,1,2)∩m2 ◦k2(KL,1,2) (4.3)

Two technologies are parallel independent, when neither t1 removes something t2

uses, or vice versa. That means that their removal graphs may not contain any node or
edge that the pattern of the other technology requires. Conversely, if that is the case, the
technologies are concluded to be incompatible:

t1 ⊥ t2 ⇐ (L1 −K1 ∩K1,2 6= ;) ∨
(L2 −K2 ∩K1,2 6= ;)

(4.4)

Constructing m1 : K1,2 7→ L1 and m2 : K1,2 7→ L2 in Equation 4.3 only uses equivalence
between variables without considering the values of these variables. However, when ei-
ther a pattern L or effect R contains variables with values, it should be checked that other
transformation rules do not interfere with these values.

Values on attributes should also be compatible with one another. Simply checking
equality is not sufficient, because rather than single values, a constraint (e.g. upper or
lower bound) may be placed on a value. In other cases, a value can be a geometry, and
compatibility either means geometrical congruence or similarity. In any of these cases,
a value can be represented as a constraint on the domain of values for the attribute.
Therefore, suppose there is a variable x ∈X. Then a constraint f : f (x) 7→ F⊆X limits the
possible values for x. When two such constraints are present, compatibility is expressed
as:

f1 ∥ f2 ≡ f1(x)∩ f2(x) 6= ; (4.5)

With value compatibility defined, technology compatibility resulting from it can be
inferred. First, the constraints expressed in L1 and L2 should be compatible. If not, the
technologies are incompatible:

t1 ⊥ t2 ⇐∃x ∈ K1,2 : fL1 (x) ⊥ fL2 (x) (4.6)

Second, the constraints in the effects of the technologies have to be compatible:

t1 ⊥ t2 ⇐∃x1 ∈ R1,∃x2 ∈ R2 : x1
∼= x2 ∧ fR1 (x1) ⊥ fR2 (x2) (4.7)

Two variables are equivalent (i.e. x1
∼= x2) when they describe the same aspect (either a

specifically dependent continuant or information content entity) of the same entity.
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So far, negative application conditions (NAC) on the graph transformation rules have
not been considered. However, they are a powerful addition to vanilla graph transfor-

mations that allows one to specify a morphism L
l7−→ L̂, such that, with the total graph

morphism L
m7−→G , there exists no morphism L̂

n7−→G with n◦l = m [140]. The incompat-
ibility definition can then be updated according to the critical pair analysis by Lambers
et al. [141]. Essentially, a negative application condition specifies a pattern in the graph
that, if present, prevents the graph transformation rule from being applicable. Therefore,
these conditions provide a convenient mechanism to specify when and how technolo-
gies are incompatible, on a case-by-case basis. They allow us to circumvent crafting logic
rules as presented in subsection 4.2.2 that should be generically applicable and need to
balance generality versus specificity. NACs are case-specific, but also more transparent,
because they are directly linked to a technology.

Let a NAC be defined as a graph morphism L
n7−→ N , where L ⊂ N . Thus, the graph N

contains the pattern L and a few additional elements, which denote the conditions that
may not be present in some host graph G if the rule the NAC belongs to is to be applied.

Then, suppose there are two transformations t1 : L1 7→ R1 and t2 : L2 7→ R2, with
negative application conditions n1 and n2, respectively. Furthermore, m1 : L1 7→ G and
m2 : L2 7→G are the matches of the transformation patterns in a host graph G . The trans-
formations t1 and t2 are incompatible in G with respect to their NACs n1 and n2 if:

t1 ⊥ t2 ⇐ t1 ◦k1(KL,1,2)∩n2 ◦k2(KL,1,2) 6= ;∧
t2 ◦k2(KL,1,2)∩n1 ◦k1(KL,1,2) 6= ; (4.8)

4.2.2. USING ONTOLOGY AND LOGIC

PHYSICAL INCOMPATIBILITY

The main reasoning mechanism for incompatibility of technologies is when their simul-
taneous application would result in a physically inconsistent situation. The following
two rules capture several of such inconsistent situations. A trivial inconsistency arises
when two material entities overlap. Thus, if two material entities occupy the same space,
they cannot co-exist. Then any two technologies introducing material entities that can-
not co-exist are incompatible:

t1 ⊥ t2 ⇐∃c1,c2,r1,r2 : material entity(c1) ∈ (R −K )1 ∧
material entity(c2) ∈ (R −K )2 ∧
spatial region(r1) ∧ spatial region(r2) ∧
c1 occupies r1 ∧ c2 occupies r2 ∧
r1 overlaps r2

(4.9)

Introducing a process that inhibits the process introduced by another technology leads
to incompatibility:

t1 ⊥ t2 ⇐∃p1, p2 : process(p1) ∈ (R −K )1 ∧
process(p2) ∈ (R −K )2 ∧
(p1 inhibits p2 ∨ p2 inhibits p1)

(4.10)
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FUNCTIONAL INCOMPATIBILITY

Often, it is undesirable to have two technologies introduce the same functionality in the
same region. Therefore, one might wish to define incompatibility between such tech-
nologies. This is the case when they introduce processes that have an equivalent effect.

For this, a form of equivalence between processes has to be defined. For now, the
equivalence is based on the effect of the process. This is inferred when two processes
realize the same type of disposition:

p1 has equivalent effect p2 ⇐∀p1, p2 : process(p1) ∧ process(p2) ∧
∃d1,d2 : disposition(d1) ∧ disposition(d2) ∧
p1 realizes d1 ∧ p2 realizes d2 ∧
d1 ⊆ d2

(4.11)

According to this definition, even when a process has multiple dispositions, only one
of which is equivalent with one from another process, the processes have an equivalent
effect. The equivalent effect is, therefore, only a subset of the full effect of the process. To
obtain a stronger notion of equivalence between the processes, the existential quantifier
on the dispositions should be replaced with a universal quantifier. Depending on one’s
viewpoint, that may be the more correct way forward.

The technology incompatibility statement that when the technologies introduce pro-
cesses that have an equivalent effect, then reads:

t1 ⊥ t2 ⇐∃p1, p2,r1,r2 :

process(p1) ∈ (R −K )1 ∧ process(p2) ∈ (R −K )2 ∧
p1 has equivalent effect p2 ∧
spatial region(r1) ∧ spatial region(r2) ∧
p1 occupies r1 ∧ p2 occupies r2 ∧
r1 overlaps r2

(4.12)

Only when the processes overlap in space are they considered incompatible, because
in theory, the one technology could introduce a process on the moon and the other on
Earth, which obviously have nothing to do with one another. This rule does not capture
the situation where the regions r1 and r2 are situated such that the processes have the
same effect in the same region nonetheless. This could happen, for example, when the
processes are flames on two sides of a metal plate. Clearly, they occur in distinct regions,
but their effect — heating the plate — is equivalent.

4.3. TECHNOLOGY ENABLING
Besides incompatibility, statements regarding technologies enabling one another have
to be inferred. When technology t1 enables t2, this is written as t1 ≺ t2. Technology
enabling occurs through two mechanisms: the graph transformation rules and physics-
based rules in the ontology. Each of these rules is overruled if any incompatibility state-
ment fires for the pair of technologies. This means that:

t1 ≺ t2 ⇒ t1 ∥ t2 (4.13)
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and, despite what any of the following rules might suggest:

t1 ⊥ t2 ⇒ t1⊀ t2 ∧ t2⊀ t1 (4.14)

4.3.1. USING GRAPH TRANSFORMATION RULES
Technology transformation rules may be sequentially dependent (see section 2.6.3). In
that case, the technology that sequentially depends on another is enabled by the latter.
Nonetheless, they still have to be parallel independent. When applied to a system graph
G , the pattern L2 should be a subgraph of G after application of t1. Meanwhile, L2 should
not appear in G , without application of t1:

t1 ≺ t2 ⇐ L2*G ∧G
t17−→ H ∧L2 ⊆ H (4.15)

This rule fires when, for example, a technology is the addition of a component to the
system, and the second technology only works for such a component. The last rule also
works when only part of a system is modified, say for example a material is changed from
metal to composite, and the other technology requires a composite material to work.

Equation 4.15 only considers a single technology enabling another single technology.
However, it may happen that a set of technologies actually enables a single technology.
When a technology is enabled by a set of other technologies, a more elaborate algorithm
is required to find such sets.

In order to find the sets of enabling technologies, we define a set of inapplicable tech-
nologies TN in a certain host graph G as ti ∈ TN : Li * G . Then, for each of the tech-
nologies in this set we need to find a collection of enabling technology sets (i.e. a set of
sets), because there may be multiple different combinations of technologies that enable
a given technology. A valid enabling technology set for ti is denoted as TE ≺ ti . When-
ever two sets TE ,x ≺ ti and TE ,y ≺ ti , and TE ,x ⊂TE ,y , then TE ,y is regarded as redundant
and is not a solution to the problem.

The algorithm to find the enabling technology sets for ti is implemented as a tree
search over the space of technology portfolios 2T\TN . The tree has one of the applicable
technologies as root and splits into whether it is included in the enabling set or not. At
each level in the tree, another applicable technology is considered. Several checks enable
the algorithm to skip certain solutions, reducing its run-time, although in the worst case
it runs in O (2|T\TN |). Pseudo-code of the algorithm is given in Appendix D.

4.3.2. USING ONTOLOGY AND LOGIC

PHYSICAL ENABLING

A technology enables another when it removes an interface or process or disposition
that inhibits one that the other encounters in the system. The converse case, when a
technology adds a process or interface that another requires, has to be handled as well.

Consider the flame in a jet engine combustor. For it to work, the airflow into the
combustor must be relatively laminar. So a technology that laminarizes the inflow of
air enables the combustion process. In other words, the enabling technology removes
the turbulence process that inhibited the flame. The second case can be illustrated by a
technology that adds a pumping process to force the fuel into the injector nozzle.
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The challenge is that when this type of enabling occurs, there may be other aspects
that still prevent the enabled technology to be fully applicable. For example, this hap-
pens when there are two processes that the technology relies on, which are both inhib-
ited by some existing process in the system. If another technology only resolves the
inhibition of one of these processes, the other process still prevents application of the
technology in question. Therefore, we need to check if all inhibiting aspects are resolved
by the enabling technology.

The above description is captured in the following rule. After applying t1 : G 7→ H1

and t2 : H1 7→ H2, this rule infers physical enabling through removal of inhibiting pro-
cesses or blocking dispositions:

t1 ≺ t2 ⇐∀ disposition(d) ∈ (R −K )2 : {Ø disposition(dG ) ∈ H1 :

dG blocking disposition of d} ∧
∀ process(p) ∈ (R −K )2 : {Ø process(pG ) ∈ H1 : pG inhibits p} ∧

([∃ disposition(d) ∈ (R −K )2 : {∃ disposition(dG ) ∈G :

dG blocking disposition of d}] ∨
[∃ process(p) ∈ (R −K )2 : {∃ process(pG ) ∈G : pG inhibits p}])

(4.16)

The other mechanism by which two technologies may enable one another is when
they resolve dependencies imposed on each other’s interfaces. This is simply the case
when, for example, two electrical conductors are connected, such that a current may
flow through. (A battery alone does not produce current, nor an electromotor by itself. If
the two are connected, however, a current flows and the function of the electromotor is
realized. The battery already fulfills its function by storing chemical energy. Depending
on your point of view, it also has a function to convert chemical energy to electric energy
and/or to provide it to some other device. In that case, the battery has these functions
realized by the complementing interface.)

For this mechanism we require the notion of complementary and collective dispo-
sitions [136]. The idea is that an object aggregate C can have a disposition D that is
formed by the mereological1 sum of its constituent dispositions di . Thus, C = ∑

ci , and
∀ci : ci has disposition di , such that D = ∑

di . The latter sum describes parthood be-
tween dispositions, which is not clearly defined. Instead, the process aggregate P that
realizes D can be described as the sum of its constituents: P =∑

pi : P realizes D . Then,
for each of these constituent processes, there must exist a part of C that manifests it:
∀pi (∃ci ∈C : ci has disposition di realized by pi ). This works, because parthood of pro-
cesses is a better defined concept.

To make this work in practice, inferences are required that establish how interfaces
enable one another’s functions. This can be done for two interfaces with the following

1Mereology is the study of parts and the wholes they form in philosophy and mathematical logic.
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rule:

I1 complements I2 ⇐ interface(I1) ∧ interface(I2) ∧
∀p0 : I2 has function f realized by p0

[(∃p2 : p0 has part p2 ∧
I2 has disposition d2 realized by p2) ∧
∀p1 : p0 has part p1 ∧
¬(I2 has disposition d2 realized by p1)

(∃d1 : I1 has disposition d1 realized by p1)]

(4.17)

This rule states that for each function of interface I2 it performs at least one of the sub-
processes involved in fulfilling that function. Furthermore, for each part of p0 that is
not manifested by interface I2, there should be a disposition in interface I1 that does
manifest it.

Looking back at the definition from Goldfain et al. [136], it should be clear that p0 in
Equation 4.17 is the collective process P . Furthermore, the interfaces I1 and I2 are the
parts ci that manifest the sub-processes pi (as p1 and p2). This rule also works when
p0 = p1 = p2, because has part is both transitive and reflexive (see Table 3.5).

Now it has been established that these two interfaces form a collective that realizes
the function intended by one of them, we can bring it back to technology level and infer
technology enabling:

t1 ≺ t2 ⇐∃ interface(I2) ∈ (R −K )2 [∃ interface(I1) ∈ (R −K )1 :

I1 complements I2
] (4.18)

Thus, a technology enables another when it complements one or more interfaces of the
other. To explain why this is taken as the enabling condition, rather than requiring each
interface to be complemented by the other technology, consider a pump. A pump has
two interfaces: inflow of non-pressurized fluid and outflow of pressurized fluid. A pump
is only fully enabled when both ports are connected. However, no single object would
simultaneously satisfy both these interfaces. Therefore, only one interface has to be
complemented by an enabling technology, even though that may mean that the enabled
technology remains with unresolved interfaces.

4.4. GENERATING PORTFOLIOS
When there are no exclusions, the set of portfolios P is the power set of the technologies
T, i.e. P= 2T. Let a portfolio P ⊆T be represented by a vector of length |T|, with binary
values indicating that when Pi = 1, ti ∈ P . Using the TCM, one can easily remove those
portfolios where: Pi = P j = 1 and TC Mi j = 0, i.e. ti ⊥ t j , ∀i , j ∈ [1, |T|].

If a portfolio contains a technology that has to be enabled by other technologies, the
portfolio is only valid if it contains all of those other technologies. The matter is com-
plicated by the possibility of multiple valid sets of enabling technologies for any given
inapplicable technology. Thus, let TN ⊂ T be the set of technologies that are not ap-
plicable and require enabling technologies. Then, when P ∩TN 6= ;, P is valid only if
∀ti ∈ P ∩TN ,∃TE ⊂ P :TE ≺ ti , whereTE is a set of enabling technologies. The algorithm
is described in Appendix F.



4

80 4. TECHNOLOGY PORTFOLIO GENERATION

4.5. MAXIMUM DISSIMILARITY
It often occurs that it is computationally intractable to analyze an entire set of entities
for a given computational budget. For example, a conceptual aircraft analysis method
easily takes several minutes to execute. If one has ten technologies, there are a total of
210 = 1024 portfolios. For each, the method is executed, which, if the method takes five
minutes, amounts to 85 hours of computations. Ten technologies is not a large set, nor
is five minutes an excessive amount of computational time for a single run.

As a solution, there are some techniques to replace the entire set with a subset that
captures as much information about the full set as possible. Only the subset is analyzed
and either is used to construct some surrogate model, or the results from the subset are
mapped back onto the full set. Typically, this is a design space exploration issue, which
could be solved using Latin Hypercube sampling or other random sample generators.
However, we can question whether simply selecting an evenly spaced out sample set in
the multi-dimensional binary space provides a proper representation of the variability
in performance of the portfolios. That is to say, how close is portfolio 100 to portfolio 101
or 011?

Maximum dissimilarity is another technique that creates a representative set of el-
ements from a given high-dimensional space. The subset is created by selecting those
elements that are maximally dissimilar to one another, under the assumption that this
gives the most diverse, representative subset of entities. Dissimilarity is scored using
some distance measure. Commonly, the entities are numeric vectors, and the distance
measure is either Manhattan or Euclidean distance. That does not work for technology
portfolios, for reasons explained in the following subsection. This is where the graph
description of technologies comes into play. Each portfolio results in a different sys-
tem graph. The similarity between these graphs could be an indication of how similar
the actual systems are, and, therefore, how similar their behavior is. Fortunately, dif-
ferent techniques exist to compute similarity over graphs, such as graph edit distance
(GED). The edit distance is the cost associated with transforming a graph into another,
by adding or removing or substituting nodes and edges. These costs can be specified in
any way, to emphasize certain aspects or properties of the graphs. For example, if only
structure is important, the cost of adding or removing edges should be high. Conversely,
if node types are important, but structure is not, only the cost of adding or removing
nodes is high.

Regardless of the distance measure, maximum dissimilarity starts by selecting an
item P0 from a set of portfolios P. Then, it iterates through the remaining portfolios
Pi ∈ P \ P0. It selects the following portfolio as argmaxPi

: d(P0,Pi ). The subset of maxi-
mally dissimilar portfolios now contains two elements, so to select a third, the MinMax
strategy is employed. For each Pi ∈ P \PD , compute dPi ,min = min(d(Pi ,P j ) ∀P j ∈ PD ),
wherePD is the subset of dissimilar portfolios. Then, the next maximally dissimilar port-
folio is chosen as argmaxPi

: dPi ,min. This selection process is repeated up to a user-
specified K number of times: the size of the maximal dissimilar subset PD . The maxi-
mum dissimilarity algorithm is provided in Appendix E.

Once PD is determined, each of these representative portfolios P j can be analyzed
and a quantity q j is computed for each. These results have to somehow be mapped back
to the original set of portfoliosP. By viewing the portfolios inPD as representative classes
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for P, it becomes a matter of computing the probability that Pi ∈ P belongs to P j ∈ PD .
For this, the softmax equation is commonly used in machine learning:

P (Pi ≡ P j ) = e−di j∑
Pk∈PD e−di k

, (4.19)

where we use the notation di j = d(Pi ,P j ). Softmax ensures that that class probabilities
add up to 1. Therefore, we can estimate the quantity q̄ for the portfolios not in PD as:

q̄i =
∑

P j ∈PD

P (Pi ≡ P j ) ·q j . (4.20)

4.5.1. GRAPH EDIT DISTANCE
The maximum dissimilarity approach works for the technology portfolios, provided we
can conjure a consistent parameterization that captures all the portfolios. When each
portfolio is represented using the same variables, it can be represented as a vector and
this approach works well with Euclidean distance. However, portfolios may lead to widely
varying systems, with no single parameterization valid for all of them. One might won-
der: what if we take the union of all parameter vectors and then just set certain variables
to zero or some other value that effectively disables them during simulation? If the value
is set to zero, this might lead to falsely estimated distances, because the measure cannot
distinguish between a valid value of zero, or one that is meant to indicate absence of that
parameter for a portfolio. Otherwise, a NaN or Inf value obviously prevents the calcula-
tion of a distance. Finally, this solution makes the distance computation dependent on
the simulation models, as these determine the parameterization.

With the graph representation of portfolios, however, graph edit distance (GED) can
be employed as the dissimilarity measure. The idea is that similar systems have similar
behaviors and their graphs will only differ by few nodes, edges and/or attributes. This
is precisely what the GED measures. In fact, we could specify the so-called edit costs
in such a way that dissimilar edges have a larger impact on the distance than dissimilar
nodes,for example. Furthermore, we could specify that replacing certain types of nodes
results in more dissimilarity than replacing other types of nodes. For now, these options
are not investigated, but they could significantly improve the accuracy, and, therefore,
the applicability of the maximum dissimilarity approach.

FAST GED IMPLEMENTATION

How the GED algorithm works is explained in Appendix C, but suffice it to say it is com-
putationally expensive, even for small to moderate size graphs. Fortunately, the graph
transformation rules offer a solution. Each portfolio is a set of technologies, which are
graph transformations applied to a certain system graph G . Therefore, a portfolio graph
GPi is different from G by the additions, deletions and substitutions of the graph trans-
formations contained in Pi . The graph edit distance between GPi and GP j then does not
have to be computed directly. Instead, let C (tk ) be the total cost (implied distance) of the
transformation tk . Then the distance di from G to GPi is computed as:

di =
∑

tk∈Pi

C (tk ) · |mtk | . (4.21)
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Here, mtk denotes the matches of technology tk in the graph G .
The transformation cost C (tk ) is computed as the sum of the additions, deletions and

attribute value substitutions in tk :

C (tk ) = ∑
n∈(L−K )k

CD (n)+ ∑
n∈(R−K )k

C A(n)+ ∑
(nL ,nR )∈A(Kk )

CS (nL ,nR ) (4.22)

where CD is deletion cost, C A addition cost and CS substitution cost. A(Kk ) are the at-
tributes in the gluing graph Kk . The cost of replacing nL with nR is zero when the value
for that attribute is equal in L and R, and some user-specified cost otherwise.

To compute the distance from one portfolio to another, one might simply assume it
is equal to di +d j . However, that is not entirely the case, because both portfolios may
add or remove equivalent graph elements, or assign an equal value to the same attribute.
Thus, the distance should account for these cases:

di j =di +d j −CS (A(Ki )∩ A(K j ))−
CD

(
(L−K )i ∩ (L−K ) j

)−
C A

(
(R −K )i

∩≡ (R −K ) j

) (4.23)

Each of these terms is addressed in section C.1, because it does not add to the present
discussion to describe them here in detail.

4.6. CASE STUDY: AIRCRAFT TECHNOLOGIES
In this section, several technologies are modeled to showcase the inferences that the
presented method enables and how these can be leveraged to automatically construct a
technology compatibility graph (TCG), which is a generalization of the TCM.

4.6.1. TEST CASE DESCRIPTION
The first case study (Sections 4.6.2 and 4.6.3) revolves around an aerodynamic surface,
such as an aircraft wing. The following technologies are considered: a vortex generator,
a plasma actuator, natural laminar flow, conformal antennas and conductive structure.
The plasma actuator, natural laminar flow and conformal antennas have the function
to reduce the friction drag of the wing. The vortex generator aims to prevent flow sep-
aration. The conductive structure is meant to remove the need for cables and can pro-
vide electricity distributed over a surface. In current practice, experts would now discuss
these technologies and establish a TCM by hand. That is, they draw up a matrix and fill
out each cell by discussing whether that pair of technologies is incompatible or has any
other dependency.

Instead, the proposed approach is applied here. The graph transformation rules
(representing technologies) are shown as knowledge graphs with the addition and re-
moval subgraphs. As such, knowledge about what a technology constitutes is captured.
Then, we show what inferences the computer algorithm would make in what order to
illustrate the approach. Rather than doing so for each pair of technologies, one of the
compatibility rules from Section 4.2 or one of the enabling rules from Section 4.3 is illus-
trated with one pair of the five technologies.
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Figure 4.3: Graph transformation of conformal antenna. Grey represents the pattern, green (dashed) the added
nodes and edges, and red (dotted) the removed nodes and edges.

4.6.2. COMPATIBILITY REASONING

Two of the incompatibility rules are illustrated in this subsection: inhibitory processes
(Section 4.6.2) and functional equivalence of processes (Section 4.6.2).

PHYSICAL INCOMPATIBILITY: INHIBITING PROCESS

A body moving through air experiences friction from the air particles colliding with the
object’s surface. When the airflow around the body is laminar, the air particles move in
layers that hardly interact. Therefore, the particles close to the surface move tangentially
to it, which reduces the friction drag, because less collisions occur. Conversely, when the
flow is turbulent, the air moves chaotically, with more friction as a result. The portion
of air that experiences friction from the body’s surface is called the boundary layer. Air
outside the boundary layer is usually regarded as laminar, while the boundary layer itself
starts of as laminar flow, but quickly transitions into turbulent flow.

On any aerodynamic surface, protrusions introduce turbulence, which inhibits lam-
inar flow. Thus, when a technology introduces natural laminar flow2, while another in-
troduces turbulence, they are incompatible, according to Equation 4.10. When taking
the pattern from Figure 4.3 (i.e. the grey and red parts of the graph) and the effect of
Figure 4.4 (i.e. the grey and green parts of the graph), both a turbulent and laminar flow
process are present.

To infer incompatibility between these two technologies, several rules are used. First,
Equation 3.5 is used to define that turbulence inhibits laminar flow. Then, Equation 3.4
establishes that the laminar flow process in Figure 4.4 occurs in the boundary layer spa-
tial region. This enables Equation 3.6 to infer that the turbulence process in Figure 4.3 in-
hibits the laminar flow process. Finally, that is the information needed for Equation 4.10
to deduce that the antenna is incompatible with the natural laminar flow technology.

2Natural laminar flow occurs when a body is shaped such that the flow around it remains laminar.
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Figure 4.4: Graph transformation of laminar flow. Grey represents the pattern, green (dashed) the added nodes
and edges, and red (dotted) the removed nodes and edges.

FUNCTIONAL INCOMPATIBILITY: PROCESS EQUIVALENCE

Although a laminar boundary layer produces less friction than a turbulent one, it is also
more prone to a process called separation. Separation is the detachment of the boundary
layer from the surface, as a result of the flow reversing direction close to the surface.
This results in a lot of additional aerodynamic drag, and, therefore, is highly undesired.
Several technologies exist that aim to turn the boundary layer turbulent in a controlled
fashion, such that it will not separate. One such technology is a plasma actuator, which
exploits ionization of air to turn it into plasma, locally. This has the effect of creating
small vortices, making the boundary layer turbulent. Similarly, a vortex generator has
the same effect, but is simply a small vane.

A plasma actuator is modeled as shown in Figure 4.5. It adds the plasma actuator
component (in green) to an existing aerodynamic surface (in grey). As a second tech-
nology, consider the vortex generator, which would have a similar graph, except for the
disposition and process of creating plasma, and without the electric interface. The in-
compatibility of these two technologies follows directly from Equation 4.12. Because the
technologies are defined similarly, the fact that p1 has equivalent effect p2 follows from
Equation 4.11.

It should be noted that in practice, these two technologies do not have to be incom-
patible. For example, if the vortex generator is placed behind the plasma actuator, it
may become more efficient due to the turbulent boundary layer. It can then be smaller.
These issues are discussed in section 4.9, along with what solution is recommended to
avoid them.

4.6.3. ENABLING REASONING

Again, two rules are highlighted to showcase the enabling relationship inferences the
ontology enables. First, we look at technologies that remove an inhibiting process to en-
able another technology in Section 4.6.3. Second, the idea of complementing interfaces
is exemplified in Section 4.6.3.
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Figure 4.5: Graph transformation of plasma actuator. Grey represents the pattern and green (dashed) repre-
sents added nodes and edges.

PHYSICAL ENABLING: REMOVAL OF INHIBITING PROCESS

Consider conformal antennas (see Figure 4.3) and natural laminar flow (see Figure 4.4).
A conformal antenna is entirely embedded in a surface, such that the surface has no
protrusions. In order to infer that the conformal antenna enables natural laminar flow,
Equation 4.16 is used. The second part of the rule, which states that an inhibitory pro-
cess or blocking disposition should be present when only natural laminar flow is applied,
is true, as already examined in section 4.6.2. After application of the conformal antenna
rule, the turbulence caused by the antenna is removed. Application of the natural lam-
inar flow rule itself causes the turbulence from the aerodynamic surface to disappear.
Now, no process exists that inhibits the laminar flow process, and the first half of Equa-
tion 4.16 is also satisfied.

PHYSICAL ENABLING: COMPLEMENTING INTERFACES

As Figure 4.5 shows, the plasma actuator contains an interface that has the disposition
to conduct electricity. However, there is no process that realizes it, which prevents Equa-
tion 4.17 from firing. If the conductive structure shown in Figure 4.6 is present, however,
such a conduction process could be instantiated between the two interfaces introduced
by each technology. In order to do that, a separate rule is added to the domain ontology,
that creates a transfer process whenever two interfaces overlap that have the disposition
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Figure 4.6: Graph transformation of conductive structure. Grey represents the pattern and green (dashed)
represents added nodes and edges.

to transmit a certain type of entity. It reads:

∃i1, i2,d1,d2, t , i d :

interface(i1) ∧ interface(i2) ∧ i1 overlaps i2 ∧
i1 has disposition d1 ∧ i2 has disposition d2 ∧
disposition(d1) ∈ ToTransmit ∧ disposition(d2) ∈ ToTransmit ∧
d1 participant type t ∧ d2 participant type t ∧
d1 interface dimension i d ∧ d2 interface dimension i d

⇒∃p0 : Transfer(p0) ∧ p0 realizes d1 ∧ p0 realizes d2

(4.24)

Conduction is such a transfer process, when the type of entity to transmit is electric en-
ergy.

With these two technologies, Equation 4.24 instantiates the process that Equation 4.17
requires to infer that the interfaces i1 (the skin surface) and i2 (the electric interface)
complement each other. That, in turn, causes Equation 4.18 to hold true, which con-
cludes that a conductive structure enables the plasma actuator. Note that the inverse
is also true, because Equation 4.17 infers that the two interfaces are complementary in
either direction.

4.6.4. THE TECHNOLOGY COMPATIBILITY GRAPH
Instead of a TCM, a technology compatibility graph (TCG) is automatically constructed
using the above approach. The TCG is shown in Figure 4.7 for the five technologies in-
vestigated in this section. Note that Figure 4.7 omits the compatible relation, because
that unnecessarily clutters the graph. Thus, when no relation is depicted between two
technologies, they are compatible.

4.7. CASE STUDY: INDUSTRY TECHNOLOGY SET
To test the applicability of the method to another practical test case, a set of technologies
from a study in aircraft industry is taken and evaluated using the proposed method. The
purpose of this demonstration is to verify whether the diverse set of technologies that
may be encountered in industry can be modeled using the graph transformation ap-
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Figure 4.7: The technology compatibility graph (TCG), a generalization of the TCM. Absence of a relation be-
tween two technologies indicates compatibility.

proach, and whether the inference rules apply to these cases. The particular set of tech-
nologies considered here apply to a complete aircraft. They are distinct from the ones
shown in the previous test case. However, due to confidentiality issues, the technologies
can not be explicitly displayed, and are replaced by generic identifiers. The differences
between the technology compatibility matrices that are generated by experts and by the
method are shown in Figure 4.8. As Figure 4.8 shows, there are only few differences be-
tween the automated method and the TCM as established by a group of experts. The first

(a) TCM by experts (b) TCM by method

Figure 4.8: TCM comparison between experts and the current method. A value of -1 denotes incompatibility,
while a value of 1 denotes enabling and is a directed relationship (thus, the 1 to the far right reads that T8
enables T12, whereas the 1 to the far left reads that T9 enables T2).

difference is the incompatibility between technologies T2 and T5, and T3 and T5. Both
pairs are assessed as incompatible by the current method, due to an inhibiting process,
with Equation 4.10. However, the reason the experts do not agree is because of the scale
of the two processes. The inhibiting process does occur in the same region as the other
process, but is much smaller and does not have a significant effect on it.

The second difference is the enabling relation between T11 and T10. The inability
of the current method to detect this, is a result of a lack in modeling capabilities. Con-
cretely, the graph rewriting rule implementation does not allow for optional patterns to
be specified, which is required for the correct implementation of T10. Thus, in prac-
tice, this limitation of the current method may prevent the correct implementation of
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some technologies. Luckily, however, most technologies won’t have to rely on optional
patterns. Nonetheless, optional patterns should be included in the method, to extend
the technology pattern graphs. An optional pattern is matched against the system graph
only when it is present in that graph, but is not a requirement for the application of the
technology.

4.8. CASE STUDY: FACTORIO

In order to demonstrate the portfolio generation algorithm and maximum dissimilar-
ity principle, another case study is conducted based on the game Factorio. Factorio is
a computer game where the player builds items from resources. These items can be
used to construct a factory which automates the process of producing items, as shown
in Figure 4.9. The ultimate goal of the game is to build a rocket that allows the player
to leave the planet they are stranded on. The player starts with only very simple recipes
and materials and has to progressively research more advanced recipes and create more
intricate components. The world is divided into square cells, and each building (e.g. a
conveyor belt, production machine, furnace or robot arm (called inserters)) takes up one
or several of these cells. Effectively, a factory constructed this way is a system. Different
technologies can be thought up too: faster inserters or conveyor belts, more efficient
production machines and electric furnaces instead of fossil fuel based ones. As such,
Factorio appears to be an excellent candidate for testing the methodology set out in this
chapter, with only graph transformation rules (as there is no actual physics involved in
Factorio) and the maximum dissimilarity approach to reduce the technology portfolio
space.

Figure 4.9: A screenshot from the game Factorio
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Table 4.1: Component types in the Factorio graph

Component Symbol Additional Properties

Chest Capacity C (500)

Conveyor Belt Straight
Conveyor Belt Clockwise
Conveyor Belt Counter-clockwise

Capacity C (4)
ItemsPerSecond ṁ (2)

Inserter
Capacity C (1)
RotationsPerSecond ω (1)
Reach l (1)

Factory
RecipyId fid (0)
Productivity P (0)

4.8.1. SYSTEM REPRESENTATION
A Factorio factory can be represented as a graph, where each node is a component, with
at least three attributes: the x location, the y location and its rotation r . Both x and y are
integer values indicating the index of a grid cell in the world, whereas r can take one of
four values: (0) up, (1) right, (2) down, and (3) left.

The different components are presented in Table 4.1. Each component introduces
some unique attributes that contains additional information about that component’s
working. The number in parentheses denotes the default value for that attribute. A
chest is a passive component that simply contains items up to its capacity. A conveyor
belt transports items from one side of a cell to another side of the cell. An inserter grabs
items from an adjacent cell and deposits them on the cell opposite of it. Finally, a factory
receives items and consumes them to produce a different item according to some recipy.

After placing components in a grid, an algorithm infers which components connect
to other components. For example, two straight conveyor belts are connected if:

• They have identical x coordinate and are adjacent in y and both point either up or
down, or

• They have identical y coordinate and are adjacent in x and both point either left
or right

Likewise, any type of conveyor belt may be connected to any other type of conveyor belt.
Conveyor belts also connect to inserters. Inserters either connect to chests, factories,
conveyor belts or other inserters.

The items (or materials) that are present in this simulation of Factorio are presented
in Table 4.2. Furthermore, the recipies that factories can use to craft other items are
given in Table 4.3. The number in parentheses denotes the amount of inputs or outputs.

Now a factory is specified as in Table 4.4. A graphical depiction of this factory is
shown in Figure 4.10. The factory retrieves items from the bottom chest and transports
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Component x y r

Chest 1 0 Up
Inserter 1 1 Up
CB S 1 2 Up
CB S 1 3 Up
CB S 1 4 Up
CB S 1 5 Up
Inserter 2 3 Right
Factory 3 3 Right
Inserter 4 3 Right
Inserter 2 4 Right
Factory 3 4 Right
Inserter 4 4 Right
Inserter 2 5 Right
Factory 3 5 Right
Inserter 4 5 Right
CB S 5 3 Up
CB S 5 4 Up
CB S 5 5 Up
CB S 5 6 Up
Inserter 5 7 Up
Chest 5 8 Up

Table 4.4: Example factory as a list of
components, with their horizontal x and
vertical y positions, and orientation r .

Figure 4.10: Example factory from Figure 4.4 visual-
ized. The symbols are defined in Table 4.1
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Table 4.2: Item types in the Factorio graph

Item

Copper Ore
Iron Ore
Copper Plate
Iron Plate
Copper Wire
Green Circuit

Table 4.3: Recipies in the Factorio graph

Recipy Inputs Outputs Crafting time (s)

Copper Plate Copper Ore (1) Copper Plate (1) 0.5
Iron Plate Iron Ore (1) Iron Plate (1) 0.5
Copper Wire Iron Plate (1) Copper Wire (2) 0.5

Green Circuit
Iron Plate (1)
Copper Wire (8)

Green Circuit (1) 0.5

them to three factories that operate in parallel. Their outputs are transported to and
stored in the upper chest.

4.8.2. TECHNOLOGY SET

A set of five technologies is defined to show the deduction of the TCM, portfolio gen-
eration and maximum dissimilarity approach. They are portrayed in Table 4.5. Each
technology has an affected component, which is a node in the factory graph that is used
as a pattern for the technology graph rewriting rule. The pattern column specifies a con-
straint on the value of an attribute in that pattern. The same holds for the effect column,
which targets the effect graph of the rewriting rule. Finally, the NAC column specifies a
constraint over an attribute value that may not be present in the system in order for the
technology to be applied.

Table 4.5: Technologies for the Factorio example factory

Technology Affected component Pattern Effect NAC

Fast Inserter Inserter ω≤ 1 ω= 2 C ≥ 2
Stack Inserter Inserter C ≤ 1 C = 4 ω≥ 2
Red Belts Conveyor Belt ṁ ≤ 2 ṁ = 3
Blue Belts Conveyor Belt ṁ ≤ 2 ṁ = 4
Factory Productivity Factory P ≤ 1 P = 1
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Table 4.6: Technology Incompatibility for the five Factorio technologies. True = incompatible.

Fast
Inserter

Stack
Inserter

Red Belts Blue Belts
Factory
Productivity

Fast Inserter - True False False False
Stack Inserter - False False False
Red Belts - True False
Blue Belts - False
Factory
Productivity

-

4.8.3. QUANTITY OF INTEREST AND ANALYSIS

Suppose the quantity of interest for the factory described above is the time it takes to
transform N plates of copper into 2N copper wires. To analyze this, the chest at x =
1, y = 0 is filled with N copper plates at time t = 0. Then the factory is simulated until the
chest at x = 5, y = 8 contains 2N copper wires. Obviously, the recipe in each of the three
factories is set to the copper wire recipe from Table 4.3.

4.8.4. TECHNOLOGY COMPATIBILITY MATRIX

Through the use of the graph transformation incompatibility rules, including those for
negative application conditions, which were explained in subsection 4.2.1, the compat-
ibility matrix for the five technologies presented in the previous subsection is derived. It
is shown in Table 4.6. The result is as expected: the two inserter technologies are in-
compatible as a result of their NACs. That is because the fast inserter setsω to 2, whereas
the NAC of the stack inserter triggers whenω≥ 2. Similarly, the stack inserter sets C to 4,
while the NAC of the fast inserter requires C < 2. The belt technologies are incompatible
because they result in different values for the ItemsPerSecond attribute ṁ.

4.8.5. PORTFOLIO GENERATION

There are no inapplicable technologies, and no technologies that enable others. Thus,
the TCM is the only information that limits the possible amount of portfolios. The re-
sulting portfolios are shown in Table 4.7. As one can see in Table 4.7, there are only 18
portfolios. However, had the TCM not been there, there would have been 25 = 32 portfo-
lios.

4.8.6. MAXIMUM DISSIMILAR PORTFOLIOS

Before the dissimilar portfolios can be computed, all portfolio distances are computed.
Both the full GED algorithm (from Appendix C) and the faster algorithm described in
subsection 4.5.1 are used. As expected, they both result in the same distances between
the portfolios, which are shown in Table G.1. Note that the distances are symmetric.
Obviously, the distance of a portfolio to itself is zero.

From these distances, the maximum dissimilarity algorithm is run for K = 9 (i.e. half
of the total amount of portfolios). The first portfolio (baseline, without any technolo-
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Table 4.7: Technology Portfolios for the five Factorio technologies

Portfolio Fast Inserter Stack Inserter Red Belts Blue Belts Factory Productivity

0 0 0 0 0 0
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 1 0 1 0 0
5 0 1 1 0 0
6 0 0 0 1 0
7 1 0 0 1 0
8 0 1 0 1 0
9 0 0 0 0 1
10 1 0 0 0 1
11 0 1 0 0 1
12 0 0 1 0 1
13 1 0 1 0 1
14 0 1 1 0 1
15 0 0 0 1 1
16 1 0 0 1 1
17 0 1 0 1 1

Table 4.8: Maximum dissimilar subsets for the Factorio portfolios

Run 1 0 17 13 7 5 2 12 1 6
Run 2 0 14 16 4 8 3 15 1 11
Run 3 0 13 17 5 7 11 1 15 12

gies) is always included as the first pick. This results in the maximum dissimilar subsets
in Table 4.8. The reason there are multiple maximum dissimilar subsets is because some-
times several portfolios tie in distance to the current subset, and a random pick is made
between them.

For Run 1, the softmax probabilities are shown in Table G.2. Here, each row is one
of the 18 portfolios, and each column is a portfolio in the maximum dissimilar subset.
The entry then is the probability of the row portfolio being similar to the representative
column portfolio. Thus, each row should sum to 1. Clearly, the portfolios in the maxi-
mum dissimilar subset have a probability of 1 of belonging to their representative class
of portfolios. The fact that there are non-zero entries listed for these portfolios can be
attributed to numerical error.

4.8.7. COMPUTATION OF QOI AND PROJECTION ONTO PORTFOLIO SET
For the three runs of the dissimilarity algorithm in the previous subsection, the softmax
probabilities are used to compute estimates of the time the factories take to produce 200
copper wires (i.e. N = 100). Table 4.9 summarizes the actual time each portfolio takes,
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Table 4.9: Portfolio QoI as computed using softmax for the Factorio example. For each run, the root-mean-
squared (RMS) error and accuracy are provided, which measure how well softmax approximates the original
results.

Portfolio Actual time (s) Run 1 Run 2 Run 3

0 206 205.999 205.999 205.999
1 105 105.000 105.000 105.000
2 106 106.000 106.000 106.000
3 206 205.999 205.999 205.999
4 105 105.000 105.000 105.000
5 77 77.000 73.000 77.000
6 206 205.999 205.999 205.999
7 105 105.000 105.000 105.000
8 77 56.000 77.000 56.000
9 206 205.999 205.999 205.999
10 105 105.000 105.000 105.000
11 106 105.999 105.999 105.999
12 206 205.999 205.999 205.999
13 105 105.000 105.000 105.000
14 73 77.000 73.000 77.000
15 206 205.999 205.999 205.999
16 105 105.000 105.000 105.000
17 56 56.000 77.000 56.000

RMS error - 21.4 21.4 21.4
RMS % a - 14.3 14.3 14.3
Accuracyb - 89% 89% 89%

aRMS as percentage of the range in values in the QoI, which is 206−56 = 150.
bDefined as the amount of correctly estimated portfolios divided by the total amount of portfolios.

along with the estimates for each run of the dissimilarity algorithm. As it shows, most
portfolios have their factory running time estimated correctly. Only for portfolios 5, 8, 14
and 17 this is not always the case. Run 1 and 3 both contain portfolios 5 and 17 in their
subsets, and thus predict those with perfect accuracy. However, portfolio 8 is under-
predicted as a result and portfolio slightly over-predicted. Conversely, Run 2 contains
portfolios 8 and 14 in its subset, leading to a slight under-prediction for portfolio 5 and
an over-prediction for portfolio 17. The reason that the estimates are so dependent on
the inclusion of these portfolios in the subset can be attributed to the large discrepancy
in distances between several portfolios. As Table G.1 shows, most portfolios have costs
larger than or equal to 16 to other portfolios. However, for each portfolio, there is one
other with a cost of only 3. This is the portfolio that is identical to it, but with the addition
of technology 5: the factory productivity. This technology only incurs an edit cost of 1
for each instance it is applied to. There are only three factories in the graph, so this
technology is applied three times. The other technologies have more applications in the
graph, and therefore incur higher edit costs.
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Even though the results in Table 4.9 are acceptable, they reveal how dependent the
result of the maximum dissimilarity approach is on the specification of the graph edit
cost that is used to compute the portfolio distances. It is left for further research to in-
vestigate how different graph edit cost specifications may lead to better representation
of differences between portfolios. Clearly, in this example, technology 5 has a large im-
pact on the objective function, but incurs a small edit cost. In other words, the edit cost
does not accurately reflect how influential certain technologies are. For this approach to
work reliably, this problem needs to be addressed.

4.9. DISCUSSION

For the presented approach to work well, the graph transformation patterns should cor-
rectly match to the system graphs. However, when symmetries are present in either, am-
biguities result as a graph matching algorithm identifies multiple matches. Concretely,
this may happen when a node in the pattern is considered equivalent with multiple
nodes in the system graph. When less information is present, this issue becomes more
prevalent. Therefore, equivalence determination is one of the cornerstones of this ap-
proach. Further research has to be conducted to establish robust ways to determine
equivalence for dispositions and processes.

The implemented approach suffers from the main issue that all rule-based reason-
ing systems suffer from: the rules are crafted manually and, therefore, extending and
maintaining the rule set is labor-intensive. Much rather, we would like a framework that
learns the rules automatically. Here, link prediction in graph convolutional networks
(GCN) may prove an interesting solution. Each node represents a technology, and edges
between them their (in)compatibility to others. Then, a GCN can learn from existing
instances the features that make certain technologies incompatible, and others compat-
ible. The big question is to what extent such a method is able to generalize those pat-
terns and truly learn a useful mapping from a technology pair to a compatibility state-
ment. The other option is to let analysts have more control to specify how technolo-
gies are allowed to interact with other through the graph transformation rules. Then,
(in)compatibility is made explicit in the patterns, effects and (negative) application con-
ditions of the technologies, making the approach more labor intensive, but also more
structured and transparent.

Another key insight is that technology compatibility is not a well-defined concept.
During the rule construction, it became clear that there is hardly ever a physical reason
why technologies are incompatible. Mainly, incompatibility results from design synthe-
sis considerations where redundancy and complexity are to be avoided as much as pos-
sible. This corresponds with the functional incompatibility introduced in this chapter.
Physical incompatibility in the sense that material entities cannot intersect should be
inferred, whereas the process inhibition is only subjective. Only when functions of one
technology inhibit functions of the other, the technologies are incompatible. Only trans-
formation incompatibility can be used generically, whenever graph transformation rules
are used to represent technologies.
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4.10. CONCLUSION
With the ontology from Chapter 3 the technology compatibility matrix (TCM) can be
constructed in two ways:

• With graph transformation rules and negative application conditions

• With graph transformation rules and rules in (first-order) logic

The approach with negative application conditions is more flexible, but also requires
more rework. The logic rules can be reused across projects. Both approaches allow the
TCM to be automatically constructed, which saves practitioners a considerable amount
of effort. Because the construction is automated, it is more consistent and traceable.

In combination with additional rules or NACs, the approach also allows to infer which
groups of technologies enable other technologies. When a technology is not applicable
to the baseline system, this technique can find sets of technologies that are applicable.
Together, these enabling relationships and the TCM reduce the size of the portfolio set
considerably, which alleviates the evaluation effort. Technology enabling is absent in
the technology evaluation literature; hence, can be seen as a novel addition to tackle the
combinatorial optimization problem.

When evaluating all portfolios remains intractable, the maximum dissimilarity tech-
nique may be employed. A Latin Hypercube Sampling (or similar DOE technique) ap-
proach would not work for the combinatorial design space of technology portfolios. The
knowledge graphs developed in Chapter 3 again prove useful for the maximum dissim-
ilarity algorithm, because a notion of distance between the technology portfolios is re-
quired. While a vector of technology impact factors would provide Euclidean or Man-
hattan distance measures, it is deemed inappropriate, because not all portfolios could
be captured using a single vector. Graph (edit) distance (GED), on the other hand, can
be applied to any knowledge graph. Because the costs of the edit operations are an input
to the GED algorithm, they can be fine-tuned to approximate the best notion of semantic
equivalence. (Note that this would also partially cover the issue of granularity, exposed
in section 3.7.)

The approach is demonstrated on a case study with the game Factorio, where a set
of 18 portfolios is represented by a maximally dissimilar subset of 9 portfolios. Subse-
quently, those 9 portfolios were simulated and the results on the quantity of interest
projected back on all of the 18 portfolios using the softmax function. Each run of the
maximum dissimilarity algorithm resulted in a slightly different subset, all of which mis-
represented two portfolios. In terms of accuracy, that equates to 89%. The root-mean-
squared error as a percentage of the range in QoI values was 14%, which is significant.
Better specification of the GED costs would remedy this error.

A final contribution from this chapter is the implementation of a GED algorithm that
specifically focuses on graph transformation rules. It is shown how it substitutes the
computation of GED over two knowledge graphs, by only considering the transformation
rules that were used to arrive at those two graphs. While the original algorithm is NP-
hard, this algorithm runs in polynomial time; as a result, it requires significantly less
computation time.

In conclusion, the approach to automating portfolio generation in this chapter suf-
fers from three drawbacks. First, it relies heavily on graph matching, which fails when
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different levels of granularity are used in pattern and host graphs. Second, the logic rules
are manually crafted and hard to generalize. That is why the approach with NACs is pre-
ferred. Third, technology incompatibility is not a clearly defined concept, which ties in
with the previous issue in the sense that it depends on the practitioner’s viewpoint and
thus is better modeled using NACs than FOL.

Regardless of the method that is used to construct the technology compatibility graph,
the resulting technology portfolios have to be evaluated on some quantities of inter-
est that underlie the selection decisions down-the-line. The next chapter focuses on
how a system with a technology portfolio applied to it can be evaluated for several QoIs
semi-automatically. Again, those developments rely on the ontology and graph-based
description of systems and technologies.
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Taking hybrid-electric powertrains for aircraft as an example, there is a vast amount of
research papers that develop an analysis framework to investigate several hybrid-electric
aircraft concepts. Unfortunately, these frameworks are generally specifically tailored to
those hybrid-electric concepts, and are not able to investigate, say, wing-movable tech-
nologies. What’s more, the frameworks only tackle a certain discipline (e.g. electrical
power), and the models they employ do not allow other disciplines (e.g. mass distribu-
tion) to be analyzed. As a result, different technologies have to be analyzed using differ-
ent frameworks with different sets of assumptions and models. Therefore, considerable
(re)work is required to be able to evaluate the novel technology concepts. The aim of this
chapter is to structure and automate that process.

Quantities of interest

Baseline system

Modified systems

Technology portfolios

Computation graphs

Figure 5.1: Overview of technology portfolio evaluation. Different technologies lead to different systems, which
have to be analyzed using some set of available analysis methods. The mapping from system to a computation
graph is depicted with the bold, orange arrows, and is the process that this chapter focuses on.

The problem statement is graphically depicted in Figure 5.1. A baseline system leads
to different systems through the application of technology portfolios. Each modified
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system has to be analyzed to compute the same quantities of interest, but not any sys-
tem can fit in the same analysis framework. Therefore, a suite of analysis methods is
introduced. Each analysis method focuses on a certain part of a system and on a certain
discipline. Then, the method introduced in this chapter maps these analysis methods
to the modified systems to construct so-called computation graphs. These computa-
tion graphs contain the sequence of computations required to quantify the quantities
of interest. The framework presented in this chapter then simply executes the analysis
methods in the computation graphs in the correct order.

One might wonder how the present method positions itself with respect to the exist-
ing practices of model-based systems engineering (MBSE) and multi-disciplinary design
optimization (MDO). The short answer: it complements both and can be integrated in
existing workflows. The long answer is given in the following two paragraphs for each
field separately.

MBSE is systems engineering as before, but aided with a (computer-based) model,
that serves as the authoritative source-of-truth, instead of a collection of separate doc-
uments (in the form of text and images) as was the case in legacy systems engineering
[142]. Commonly, SysML is used as the language to make that model up with. However,
other languages are also possible. The systems engineering approach toward product
developments consists of three stages: system analysis, system development and system
integration. These stages together form the V model, see Figure 5.2. The system analysis
phase may be broken up into four parts: requirements engineering, functional design,
logical design and physical design. These together make up the RFLP approach, which
comprises the descending branch of the V model [143]. Because the present method is
more concerned with design space exploration, the R and F parts of the approach are not
as important at this stage. However, the L and P parts align with what has to be modeled
for the present approach to enable simulation of the system. Our approach enhances the
MBSE approach by automating the coupling of analysis methods to the system model.
So where conventional MBSE requires those links to be specified manually, the present
approach automates that process. Additionally, the ability to investigate multiple tech-
nologies at the same time, with no redundancy, is not supported by conventional MBSE
methods.

Regarding MDO, several methods have been proposed to construct an MDO work-
flow from a set of analyses. As Tosserams et al. [144] points out, a decomposition-based
approach entails three steps:

1. Specifying the variables and functions of each discipline

2. Specifying the partitioned problem (i.e. the distribution of variables and functions
over sub-problems and systems)

3. Coordinating the solution of the partitioned system

According to Tosserams et al. [144], the first two steps have received considerably less
attention, which is why they, and for example the method from Alexandrov and Lewis
[145, 146] automate step 2. The present method focuses more on the first step. So where
the aforementioned methods depart from a set of analysis methods already applied to a
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Figure 5.2: The RFLP approach in the V-model as the descending branch. Taken from [143].

given system, the current method automatically sets up that information from the sys-
tem specification alone.

In the next section, section 5.1, we clarify in more detail how the present approach
fits in with both MBSE and MDO. Furthermore, the approach itself is presented in de-
tail. Then, two case studies illustrate how the method could be applied in practice. First,
subsection 5.2.1 models a hybrid-electric powertrain for aircraft and demonstrates how
a power model and analysis apply to that system. Second, subsection 5.2.2 shows a full
aircraft mission analysis. Here, it is demonstrated how a cyclic dependency graph is un-
rolled in time to compute fuel burn throughout a flight. Furthermore, causal reasoning is
used to identify input variable dependencies, for a consecutive probabilistic assessment
of the fuel burn. The merits and drawbacks and outlook of the method are discussed in
section 5.3 and the chapter is concluded in section 5.4.

5.1. METHODOLOGY
As Figure 5.1 shows, a way to map a unique system to a computation graph is required.
One of the research questions from section 1.5 addresses this problem: “How to analyze
(novel) aircraft technologies in a consistent, reliable and robust manner, such that their
(combined) effects are characterized, with uncertain input metrics/parameters?” There
are three parts to the answer:

1. Each individual analysis method has to be mapped to a relevant part of the system
under investigation. This process simultaneously parameterizes the system.

2. The mapped analysis methods have to be combined to form a complete compu-
tation sequence that results in the quantification of the QoIs.

3. Uncertainty and dependencies regarding the input variables have to be specified
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and taken into account in the computation of the QoIs.

The first item may be solved through (sub)graph isomorphism matching, based on
the ontology and knowledge graphs developed in Chapter 3. This part is where the
present approach complements both MBSE and MDO practices. The use of an ontology
allows graphs to be semantically matched, if proper definitions are used in the ontology.
PSO is a suitable ontology to describe engineering systems and already contains some
ways to include analysis methods as well. However, the mapping from system to anal-
ysis method has to be stated manually. Furthermore, the PSO method appears unable
to string multiple analysis methods together to form a holistic analysis sequence. Ad-
ditionally, there does not seem to be an actual implementation of PSO. Therefore, this
chapter adds to the PSO ontology only a few relations and presents several algorithms
that form a framework around it to solve the problem defined in the previous section.

In MBSE, SysML is typically used as the language to describe systems. Why is SysML
not used in this work? The reason is that SysML is not an ontology and therefore lacks
strong definitions. In other words, the final user has too much freedom in specifying
systems according to their interpretation, which deteriorates sharing and reusing the
knowledge captured in SysML. Nonetheless, as Figure 5.3 shows, information captured
in PSO terms could be translated into SysML, and vice versa. Effectively, this entails that
the concepts that make up SysML should be brought under concepts known in PSO.
Through this translation then, the current method can be integrated in existing MBSE
workflows, or the other way around.

The work on automated execution of MDO frameworks [53–56, 144–146] address the
second point. As such, as soon as the present approach has established a mapping from
the system to the analysis methods, the inputs for those works could be generated auto-
matically, as shown in Figure 5.3. There are two slight differences between those works
and the current one, though.

1. All of these works view an analysis method as a black-box with a fixed set of (unique)
input variables, and a fixed set of output variables. For each method, those vari-
ables require a unique name to be distinguished from one another. Based on their
name, an input from one method can be matched to the output of another [54, 55].
Tosserams et al. [144], Alexandrov and Lewis [146] even require those links to be
specified manually. Ensuring unique names across the system requires the ana-
lyst to specify them a priori. The current method automates this and, therefore,
allows for a more flexible naming approach. The current method, furthermore,
allows an analysis method to have a flexible amount of input or output variables.
This is particularly helpful in situations, where, for example, a summation over
forces, masses or other quantities is required.

2. All the above works also assume a fixed direction in which an analysis method
works. When both the options A->B and B->A would be present, they’d be linked
and an infinite loop would result. Otherwise, those methods cannot decide which
of the two directions to use. Therefore, the analyst has to specify manually which
method has to be used for that particular design problem. The present method is
able to automate these decisions. It does this by first constructing the dependency
graph, which contains all the possible computation directions (so both A->B, and
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B->A) and then prune those directions that are unnecessary for a given problem
(defined by the QoIs and input variables).

MBSE SysML

PSO 
graphs

Computation 
graph

MDO
(Alexandrov, 
Totterams)

Translate

I/O

I/O

O

I

Current 
method

Automates analysis
Provides technology-infused system descriptions

Automates input

Practices Data

Figure 5.3: Overview of how the present method may be integrated with existing methods for MBSE and MDO.

The XDSM format to display an MDO architecture [147] could be used to display the
computation graphs generated by the present framework, if a translator is developed.
By extension, the same holds for exporting the computation or dependency graphs as a
plain design structure matrix.

As explained in Chapter 2, Monte Carlo Simulation (MCS) can be used to propagate
uncertainty distributions through an analysis sequence, to tackle part of item 3. How-
ever, when uncertainty quantification and propagation are performed, dependencies
between the random input variables should be established. To support an analyst in
this, a method is proposed in this chapter, which identifies those input variables that are
physically and causally related to one another, and prompts those relationships to the
user. The analyst can then decide if there indeed is a dependency, and what that de-
pendency looks like. How this information is used, is discussed extensively in Chapter
6.

The three items discussed above are combined in the method proposed in this chap-
ter. The method allows the automated coupling of (parts of) an engineering system to
suitable analysis methods, execute the aggregated analysis, and use the result to fur-
ther characterize the system. A holistic overview of the proposed method is shown in
Figure 5.4. There are two phases that divide the workflow of the present method: the
organization phase and the project phase. The organization phase establishes the in-
formation that is persistent across different projects. In other words, the mathemati-
cal models, analysis methods and domain causality rules identified and specified by the
knowledge engineer are problem independent and can be used for different technology
evaluation projects. This is why all of them are stored in a database, as indicated by the
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Figure 5.4: Overview of the steps in this method. The orange, dashed arrows indicate flow of information. The
grey arrows are the process flow. The organization phase is independent of a technology evaluation project,
and, therefore, the database is persistent across projects. The only situation to return to the organization phase
is when a project requires analysis methods that are not yet existent in the database.

orange, dashed arrows.
The project phase kicks off with an analyst specifying the system of interest (baseline

system) and the technologies they wish to investigate. Both are specified as knowledge
graphs, which are then fed into the support system that is the framework this chapter
develops. The support system creates a dependency graph for each of the modified sys-
tems (i.e. the baseline system plus a technology portfolio), using the analysis methods
present in the database. The analyst then has to specify which variables are quantities of
interest, and which are inputs. Here, the approach differs from the ones of Alexandrov
and Lewis [145, 146] and Tosserams et al. [144], because they specify a single objective
function for the optimization problem. In the current method, multiple QoIs can be
specified, because only analysis is performed, rather than an optimization. The depen-
dency graph is now pruned such that the QoIs are computed from the known inputs. It
might occur that certain intermediate variables or QoIs cannot be computed, because
an appropriate analysis method is lacking. In that case, the method will prompt the user
that this is the case, and the knowledge engineer has to specify a new analysis method
that solves the issue. When a computation graph is constructed, the support system
identifies those input variables that physically depend on one another, provided the do-
main causality rules established in the organization phase. Then, the analyst provides
all necessary input values and the quantification of the QoIs can commence.

The subsequent subsections describe how analysis methods are represented and ap-
plied to a system graph, to generate the dependency graph and computation graphs.

5.1.1. REPRESENTING ANALYSIS MODELS
The ontology as described in Chapter 3 allows one to specify a physical system. However,
no computations can be performed, yet, because there are no variables describing the
system numerically, and no analysis methods are present, nor the knowledge of what
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these analysis methods can compute. Mapping analysis methods onto the knowledge
graph that describes a system should be divided into two steps: creating a mathematical
model and mapping that mathematical model to an analysis method. The mathemat-
ical model maps the physical entities onto information content entities (i.e. numerical
variables). Thus, it provides a parameterization of the physical, real world. For exam-
ple, a rigid body is modeled as a point mass, with a velocity and acceleration in one
point. An analysis method takes a certain model of reality and computes some of the
variables from others in the model. There may be multiple analysis methods that work
with the same model, e.g. an Euler solver or full Navier-Stokes solver both represent the
fluid with the same model (finite volume discretization), but make different assumptions
about certain values and relationships between qualities in that fluid. The approach is
sketches notionally in Figure 5.5, and is explained in detail in the following two subsec-
tions.

System graph

Context graph

System

Mathematical 
model

System-specific 
variables

Model variables

Defines

Establishes

Analysis 
method

Figure 5.5: Principle of matching analysis methods to a system. The context graph describes a portion of
reality that the analysis method processes, and is matched onto the system graph that describes the system of
interest. The match is depicted with the filter icon. That match establishes a mapping between the variables
describing the system and the model variables, which are specified by the mathematical model accompanying
the analysis method.

MATHEMATICAL MODELS

A mathematical model is defined as a graph transformation, that takes a knowledge
graph and adds attributes to it. Each of these attributes is labeled with a model context,
e.g. "point mass model". Within such a context, each variable is uniquely identified by
its name. Across different contexts, therefore, variables with identical names may exist,
but it cannot be determined conclusively whether these would be the same variable.

Thus, a mathematical model m is a quadruple (l , H , A,µ), where l is the label, H =
(VH ,EH ) is a graph describing the physical system, and µ= A 7→ VH is a surjective func-
tion that assigns each attribute A to a vertex in VH . An attribute A is an ICE (e.g. a PSO
Mesh). In Figure 5.5, the context graph is H and the model variables are A.

Taking a physical system graph G , the pattern H may be found using subgraph iso-

morphism, leading to a set of matches mi : H
mi7→G . This is depicted with the filter icon in
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Figure 5.5. Then for each match the function µ is used to create copies of the attributes
A, called A′, and add them to G . Those copies are the system-specific variables in Fig-
ure 5.5, and the process of creating them is indicated with the dashed arrow annotated
with “establishes”. So first we generate the mappings µi = A′ 7→ VG , and then create a
new graph G ′ = (VG ,EG , A′). This new graph G ′ is simply the system graph parameter-
ized with the model variables.

The subgraph isomorphism problem to find the matches mi is solved using an im-
plementation of a graph edit distance (GED) algorithm by [148], which is based on the
well-known A* algorithm and the assignment problem [149]. To make the GED algorithm
solve subgraph isomorphism, the cost function as specified by [80] is implemented to
make it equivalent to the maximum common subgraph problem. A constraint is super-
posed that states that the maximum common subgraph be isomorphic to the pattern
H .

A separate algorithm infers default attributes and their relationships. These include
an object’s mass, velocity and acceleration, for example. Additionally, the fact that ac-
celeration is the time derivative of velocity, is added to the graph. The algorithm also
identifies which elements of vectors are zero and non-zero. That information is used
later on to decompose vector quantities into their constituent elements, to infer that
L = −W and T = −D , instead of L +W +T +D = 0. While the latter equation is also
correct, it is less informative than the former two, because it does not recognize that the
lift force L only acts in the vertical direction, the weight force W only in the downward
direction, the thrust force T in the forward direction, and, finally, the drag force D only
in the backward direction 1.

ANALYSIS METHODS

The attributes that a mathematical model generates are related, and an analysis model
specifies how. It takes a set of attributes that originate from the same mathematical
model and maps them onto an input/output data structure for a specific analysis method
/ tool. Several modes of an analysis dictate in which directions the computation can be
performed, e.g. mass from acceleration and force, or acceleration from mass and force.

An analysis is represented with a tuple (l ,ν, fi ), where l is the label of the mathemat-
ical model the analysis operates on. The surjective function ν : A 7→ P maps the math-
ematical model attributes A to a set of parameters P of the analysis. Attributes are the
representation of physical properties. Parameters are the input and output variables to
an analysis method. While in many cases a one-to-one relation exists, making this dis-
tinction merely an abstraction, the same parameter could capture multiple attributes.
For example, multiple forces acting on the same point mass are all mapped onto the
same analysis parameter F . The analysis method could then compute the sum of all at-
tributes mapped to F . Finally, the set of functions fi : pout ∈ P = fi (pin ∈ P ), pout ∉ pin

are the different computations the analysis enables. Each fi computes a parameter pout

from a set of input parameters pin. For Newton’s second law, for example, there are three
fi : one that computes mass, one that computes acceleration and one that computes one
of the forces (which is valid for any of the forces).

1This force-breakdown is a simplification of the actual forces on an airplane, but is a reasonable first assump-
tion and used in many undergraduate courses on aircraft aerodynamics. It suffices for the demonstration of
the method in this chapter.
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5.1.2. DEPENDENCY GRAPH
Once all matches of mathematical models are found in the graph G and the attributed
graph G ′ is constructed, all analyses that have been applied to G are collected. For each
analysis, the computation modes fi are taken. An input I ( fi ) = pin ∈ P specifies the input
parameters of the computation and an output O( fi ) = pout ∈ P the output parameters.
Taking the set of analysis parameters P , the algorithm determines the attributes in G ′
that correspond to them by applying all mapping functions in order: AI = mi ◦µ ◦ν ◦ I
for the input attributes and AO = mi ◦µ◦ν◦O for the output attributes.

The dependency graph D (this is similar to the Fundamental Problem Graph [56]) is
created by including all attributes AI ∪ AO from G ′ obtained by applying the two afore-
mentioned input/output mapping functions. In addition, analysis nodes C are included
which represent a triple (a, fi ,mi ). Here, a is the analysis and fi its computation mode,
and mi the mathematical model instance to which the analysis is applied. The two dis-
parate sets of nodes are connected by directed edges from AI to C and from C to AO .
Therefore, a bipartite graph results that displays the input/output information flow of all
analyses applicable to G . The full algorithm is provided in Appendix H.

ATTRIBUTE RELATIONS

The graph G ′ may also include attribute relations, that indicate an attribute is equal to
another, or is the (time) derivative of another. These relations are captured in the ontol-
ogy with the is derivative of and is equal to relations between ICEs. The first relation is
always attributed with a reference to the ICE that the derivative is with respect to, usu-
ally one that represents time. The second relation is self-explanatory: it dictates that the
values of two ICEs are equal for any given time.

Axioms defined in a domain-specific ontology can define how attribute relations are
inferred. For example:

a is derivative of v ⇐∀a, v, p ∧ ICE:acceleration(a) ∧ ICE:velocity(v) ∧
quality:position(p) ∧ v is about p ∧ a is about p

(5.1)

Similarly, (written in natural language for clarity) for any two material entities with the
disposition for electrical conductance, that are connected (both have the same relational
quality PSO:connection), and each has an ICE power that is about the electric energy
quality each entity possesses, then those powers are equal to another.

Furthermore, when an analysis can be applied element-wise to a vector quantity, a
decomposition of the input variables and a combination of the output variables is added
as an analysis node. For example, a force is a three-dimensional quantity. Therefore,
the sum of forces can be decomposed into the three Cartesian dimensions x, y and z.
Each force gets decomposed by an analysis node into its three components (which are
added to D as attribute nodes). Then for each dimension, an analysis node performs the
addition of the force components. Finally, the summed components are composed back
into a total force variable, see Figure 5.6.

Also included is a zero-mask ICE that is about any vector quantity and forces certain
elements to zero. For example, in a 2D coordinate system, the weight force always points
downwards, so the direction is [0, -1]. This means the x component of the force vector
will always be zero. A zero-mask in the form of [0, 1] informs us that the x component
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Analysis node

Attribute node

Figure 5.6: Decomposition and composition of vector quantities

will be zero, while the y component can assume any value. Zero masks are used in vector
decomposition to prevent zero entries from being added to D as attribute nodes.

5.1.3. COMPUTATION GRAPH
The dependency graph contains all the possible directions in which information may
flow, and, therefore, it is problem independent. A problem is defined as a set of QoIs
and known variables, specified by the analyst, as shown in Figure 5.4 at the start of this
section. Therefore, each attribute has an associated role. The role is either "known",
"QoI" or "unspecified". By default each attribute has the unspecified role. After the sys-
tem is parametrized, the practitioner has to establish which attributes are QoIs and for
which ones the values are known. Additionally, each attribute is either constant or time-
varying.

The computation graph is a subgraph of the dependency graph that specifically com-
putes the indicated QoIs from the indicated knowns. Two preprocessing steps are per-
formed before the computation graphs are created. The first step involves removing all
incoming edges of known variables. Because their value is predetermined, there is no
need to compute these (which is what an incoming edge implies). The second step is
to remove all equality analysis nodes from the graph. All attributes that reflect the same
quantity are replaced with a single attribute. The roles are assigned appropriately to
these replacement attributes. For example, when x is a known and equal to y , which is
unspecified, then x ′ is known. The same is true for the QoI role. However, when x is
known and y is a QoI, while they should be equal, an error results, because these roles
are conflicting.

To construct a computation graph, an algorithm starts by creating a single computa-
tion which contains all the QoIs and no analyses. It proceeds by extending this graph by
prepending an analysis that computes one of the QoIs, along with the input attributes to
that analysis. When multiple analyses are present in the dependency graph to compute a
single QoI, an additional computation graph is generated for each such an analysis. The
process repeats for the remaining QoIs and the newly added input attributes. A compu-
tation graph is complete when all the input attributes (leaf nodes) are knowns and each
QoI is computed (i.e. has a predecessor). This process may generate multiple computa-
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tion graphs, which use different analyses at different points.

Any computation graph has to be transformable into a directed acyclic graph (DAG)
and no attribute node may have more than one predecessor (see Figure 5.7(a)). The
above algorithm ensures the latter condition. When the graph does contain cycles (see
Figure 5.7(b)), these have to include a derivation or integration term, such that the cycle
is broken along the temporal dimension (see Figure 5.7(c)). (Concretely, x(t+1) is com-
puted from x(t ) and ∆t .) Then for a time-step t the graph is acyclic.

(a) Invalid (b) Invalid

t

(c) Valid

Figure 5.7: Valid and invalid structures in a computation graph

Note that the choice to only allow cycles that have a temporal break in them is made
to ensure the computation graph is determinate. However, it is possible to allow for
cycles, as long as they represent a converging loop of calculations. This is impossible to
ensure for black-box analysis methods. Nonetheless, if that is desired, the constraint on
a derivation or integration term in a cycle should be dropped. In that case, there should
be no cycles where different modes of the same analysis are called on the same set of
attributes. Such a condition would lead to an infinite loop where a is computed from b
and vice versa. The full algorithm is provided in Appendix I.

5.1.4. CAUSAL REASONING FOR DEPENDENCIES

From the above approach, multiple computation graphs may result, each of which is
equally valid. The designer chooses which computation graph to use, depending on
the analysis methods used in that graph. For a deterministic (single-point) computa-
tion the designer specifies the values of the known variables and the computation graph
can be executed in order to obtain the QoIs. However, when performing a probabilis-
tic computation, joint dependency structures should be imposed on the input variables,
or at least on those which have a dependency [88]. Determining which variables have
a dependency can be difficult, especially for practitioners non-versed in probabilistic
computations. To alleviate this effort, a reasoning mechanism is introduced that deter-
mines which variables are physically related. Those pairs of variables are then presented
to the designer, who has to determine what dependency exists (which may be absent,
nonetheless) and specify a value for it.

Specifically, the relation causally influences was introduced in section 3.5 as a sub-
relation of PSO physically related to, to specify that an entity causes a change in another
entity, without specifying what kind of change. As an example of a rule, consider aerody-
namics, where the geometry of an object submersed in a gas affects the pressure in the
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gas. It is written as follows:

g causally influences p ⇐ geometry(g ) ∧ pressure(p) ∧
solid(s) ∧ spatial region(sr ) ∧ gas( f ) ∧
s located in sr ∧ f occupies sr ∧
p characterizes f ∧ g characterizes s

(5.2)

One rule that is domain independent is based on a reasoning mechanism in Bayesian
networks: V-structures. The idea is that when two variables causally influence a third
variable, information cannot directly flow from the one parent to the other. However,
when the child variable is known, or constrained, a causal relationship results between
the parent variables. Thus, the rule reads:

q1 causally influences q2 ⇐ quality(q1) ∧ quality(q2) ∧ quality(q3) ∧
q1 causally influences q3 ∧ q2 causally influences q3 ∧
∃q4 : q3 is constrained by q4

(5.3)

A reasoning mechanism fires this set of rules on the attributed graph G ′ until no more
inferences are made. Then, when a computation graph is chosen, the leaf nodes (those
with no predecessor) are collected, and for each pair the algorithm checks if there exists
a causally influences relationship between them. For each pair with that relationship,
the designer is prompted to specify a dependency structure.

5.1.5. QOI COMPUTATION

For a deterministic computation, the designer is requested to provide values for all the
input variables. For constant variables, only one value should be specified, while for
time-varying variables the value at every time-step has to be specified by the analyst, as
shown in Figure 5.4. The computation is performed step-wise by marching through time.
For each time-step, which is specified by the analyst, the computation graph is executed.
The computation graph computes at least one variable in the next time-step, which kick-
starts the following iteration. Obviously, when there is no temporal dependency, the
computation graph is only executed once.

When a probabilistic simulation is to be performed, the dependency data in the form
of copulas and probability distributions on random variables have to be provided in ad-
dition to the input data for a deterministic computation. This is where the reasoning
mechanism of the previous section is employed. It indicates the pairs of input variables,
for which it is likely a dependency exists. The analyst can then either specify a full joint
distribution (an example is shown later in Figure 5.18), or merely a correlation coeffi-
cient. The method then creates a user-specified amount of samples from the distribu-
tions and runs a deterministic computation of the graph for each sample, to consecu-
tively build a Cumulative Distribution Function (CDF) on the QoIs. This is identical to
the standard Monte Carlo Simulation process.
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5.2. APPLICATION

Two case studies show how the method may be applied in practice. The first focuses
on the analysis of hybrid-electric powertrain architectures for aircraft. It is shown how
(a part of) the physical system graph G is constructed. Then, a small mathematical
model and analysis are discussed that analyze the power throughput of a generic hybrid-
electric powertrain architecture. Consecutively, it is shown the dependency graph and
one of the possible computation graphs, that is time-independent.

The second case study looks at a full aircraft mission analysis. It considers a fuel-
based aircraft, for which the fuel burn depends on the mass of the airplane, which de-
creases as fuel is burnt. Therefore, a time-dependent computation graph results. Fur-
thermore, this case study shows how force decomposition is employed to construct the
dependency graph. Finally, it is shown how a probabilistic calculation may be performed
on a flap technology that alters the aerodynamic behaviour of the aircraft throughout the
mission and show what the effect is on the fuel burn.

5.2.1. HYBRID POWERTRAIN

As de Vries et al. [46] demonstrate, a set of hybrid-electric powertrain architectures can
be analyzed for conceptual design through a generalized model. This model is the Serial-
Parallel Partial Hybrid (SPPH) architecture, shown in Figure 5.8. By setting certain pa-
rameters to zero and modifying the signs of the power input and output, nine different
hybrid-electric architectures are obtained. The disadvantage of this approach is that it is
only able to capture those nine architectures. Furthermore, if you assume the airplane
is propelled by more than one propulsor (e.g. four propellors) they would need to be
grouped into one item in the model of Figure 5.8.

Figure 5.8: Schematic of the serial-parallel partial hybrid architecture (from [46])
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In the subsequent sections, the steps from Figure 5.4 are detailed for the evaluation of
hybrid-electric powertrain architectures. To start, an electromotor and battery are mod-
eled to form a system, and then the mathematical models and analyses are applied to
that. The sections continue by deriving the dependency graph and computation graph
and analyzing the power throughput for the full SPPH architecture.

SPECIFY SYSTEM OF INTEREST

The knowledge graph describing an electromotor and battery is depicted in Figure 5.9. It
shows how the electromotor has a process that transforms energy. That process operates
on the electric input and shaft output fiat object parts. These contain energy and have
the function to transmit energy. Finally, roles specify what these fiat object parts are
with respect to the electromotor’s behavior. The same is true for the battery, although
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Figure 5.9: Knowledge graph depiction of an electromotor connected to a battery. The color coding only serves
to more easily distinguish between the graph elements.

the physical behaviours differ and, obviously, it contains chemical energy and no me-
chanical energy. The knowledge graph shows a generalized representation of these two
components.

While only the battery and electromotor are shown in this section, the same process
can be repeated for the other components in Figure 5.8, to construct the entire power-
train architecture. As the resulting graph is very large, it is omitted here for the sake of
brevity.

SPECIFY MODEL AND ANALYSIS

The mathematical model for conversion of energy in any single component is depicted
in Figure 5.10. Observe that the energy qualities do not specify what type of energy
is concerned; indeed, this is irrelevant to the model. Furthermore, the energy conver-
sion process can take any form as long as it can be captured by the energy conservation
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Table 5.1: The function µ for the power model

Attribute (label) Vertex Quantity type Unit Context
Power in (Pi n) Energy 1 Power W Power model
Power out (Pout ) Energy 2 Power W Power model
Efficiency (η) Component Non-dimensional % Power model

law. The colored portions of the graph indicate subgraphs that may be repeated multiple
times in the source graph. The model then expands to include all those subgraphs. This
way, multiple input and/or output energy flows can be considered using this one model.
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Figure 5.10: Model for energy transformation systems. Blue and yellow subgraphs may be repeated in the
engineering system’s graph.

Attributing a model instance following the function µ is shown in Table 5.1. Based on
the role assigned to an energy quality2, the appropriate power-in attribute or power-out
attribute is added. The context of each attribute is the same.

Now, the analysis takes an instance of a power model (thus, l = power model) and
applies an identity mapping through ν. That is, the parameters P correspond directly to

2It may be confusing why power is used to describe energy, rather than energy content. We view energy as
a first-class entity that has a certain content. Conservation of energy is then expressed as the total energy
content in a system remaining constant when there is no net influx or efflux of energy. However, when there
is an influx or efflux, it is easier to express them using the time-derivative of energy — power —, instead of an
amount of energy accumulated over time. Hence, the energy conservation law is expressed herein as equating
the power influx and efflux.
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the model attributes A. Then the following three modes fi are available:

Pin,i =
∑

Pout/η−
∑
\i

Pin

Pout,i =
∑

Pin ·η−
∑
\i

Pout

η=∑
Pout/

∑
Pin

(5.4)

Another model takes care of recognizing the connection instance in Figure 5.9 and
an equality analysis applies to the involved energy qualities, equating their power at-
tributes. For example, the battery terminal power is equal to the electric power input to
the electromotor.

CREATE DEPENDENCY GRAPH

Before a model can be generated from the system knowledge graph, the direction of each
energy flow has to be determined. As de Vries et al. [46] describe, there are nine feasible
combinations of directions. Appendix J elaborates on how that is automated in this dis-
sertation. However, it suffices to say here that we can figure out those different operating
configurations of the powertrain architecture, and randomly pick one to continue the
demonstration.

To each of the component instances, the power analysis equations can be applied,
resulting in the dependency graph in Figure K.1. As can be observed, this graph is very
cluttered; all possible directions of computations between variables are included. Recall
that this happens, because the quantities of interest and inputs are not yet specified at
this point. Figure K.1 also shows orphan variables nodes (the blue nodes without any
edges connecting them). These are variables that are not used or computed by any anal-
ysis method. They naturally appear for any system, and it is not necessarily a problem,
unless any of them has to become an input or QoI, evidently.

Perhaps, the construction of a dependency graph could be skipped to generate a
computation graph directly when the QoIs and inputs are known. Nonetheless, the de-
pendency graph is computationally expensive to generate, but has to only be done once.
Generating the computation graph from the dependency graph is a cheap operation,
and has to be done every time a different set of inputs or quantities of interest is evalu-
ated. Thus, it is better to only once construct the dependency graph and then generate
multiple computation graphs from it, than to generate those computation graphs di-
rectly, which would increase the total computational cost.

CREATE COMPUTATION GRAPH

While the dependency graph shows all the different things that could be computed, a
computation graph is required to show how to compute a certain quantity of interest
(QoI) from several knowns. Before such a computation graph can be generated, however,
the analyst should define which variables are known, and which are the QoIs. Taking that
as a starting point, the procedure described in subsection 5.1.3 generates all possible
computation graphs.

In this particular study, suppose the QoI is Pbat, while the knowns are P f , Pp1 and
Pp2. This problem leads to the computation graph in Figure 5.11. As one might expect,
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it shows how Pg t is computed from P f , Ps1 from Pp1 and then Pg b from Pg t and Ps1,
and so forth. Note that there is only one computation graph for this problem. This is
not necessarily true for all problems, because there may be different ways to compute
the same variable. Traversing the computation graph and providing values for the input
variables P f , Pp1, Pp2 and ηi leads to a value of the QoI Pbat.

Figure 5.11: Computation graph for SPPH powertrain architecture

COMPUTATION EXAMPLE

To show that the presented method can perform the powertrain analysis, Table 5.2 con-
tains the results of a calculation using the appropriate computation graph for each of the
nine SPPH configurations. The input variables — Pp1, Pp2, Pf and the component effi-
ciencies — are generated randomly for each architecture. The computation graph then
is used to compute the intermediate power variables and finally produces the value for
the quantity of interest: Pbat.

5.2.2. AIRCRAFT MISSION ANALYSIS
The second application is a full mission analysis of a subsconic transport aircraft with
the infusion of a novel technology: a second-degree-of-freedom flap. The idea behind
this technology is that it can be used to optimize the aerodynamic efficiency of the air-
plane throughout the mission. It shows the method’s capabilities to construct a complete
computation graph for an aircraft mission analysis, including time marching and force
decomposition. Furthermore, it shows how this computation is modified as a result of
technology inclusion. Finally, it is shown how dependencies between some technology
variables are determined and perform both a deterministic and probabilistic computa-
tion of the fuel mass. Again, the subsequent sections follow the structure of Figure 5.4.

SPECIFY SYSTEM OF INTEREST

The full aircraft description is shown in Figure 5.12. In summary, it is constructed as a
component with three sub-components: a wing, an engine and a fuel tank. While this
does not constitute an entire aircraft, it suffices for the purpose of demonstrating the
method.
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Table 5.2: Computations of Pbat for each of the nine configurations from Table J.1. The input variables (above
the first horizontal line) are generated randomly. The others are computed using a computation graph as in
Figure 5.11.

Variable S1 S2 S3 S4 S5 S6 S7 S8 S9
Pp1 1 1 1 4 4 2 2 2 1
Pp2 3 1 2 1 3 3 4 1 1
Pf 2 5 3 5 3 5 3 3 3
ηgt 0.8 0.9 0.7 0.6 0.8 0.7 0.9 0.8 0.9
ηgb 0.8 0.9 0.8 0.8 0.7 0.8 0.6 0.6 0.7
ηp1 0.9 0.8 0.7 0.9 0.8 0.7 0.6 0.8 0.7
ηp2 0.9 0.9 0.7 0.7 0.6 0.8 0.7 0.9 0.7
ηem1 0.8 0.7 0.8 0.6 0.7 0.8 0.9 0.8 0.7
ηem2 0.6 0.8 0.7 0.8 0.7 0.6 0.9 0.7 0.9
ηpm 0.9 0.9 0.7 0.9 0.8 0.7 0.6 0.9 0.6
Pgt 1.6 4.5 2.1 3 2.4 3.5 2.7 2.4 2.7
Pgb 0.169 2.8 0.251 2.556 4.743 0.071 2.34 2.4 2.38
Ps1 1.111 1.25 1.429 4.444 5 2.857 1.2 1.6 0.7
Ps2 3.333 1.111 1.4 1.429 1.8 2.4 5.714 1.111 0.7
Pe1 0.135 1.96 0.201 4.259 6.776 0.089 2.106 1.92 1.666
Pe2 5.555 1.389 0.98 1.786 1.26 1.44 6.349 1.587 0.63
Pbat 6.038 0.375 0.827 6.717 7.209 0.919 8.476 0.141 1.378

SPECIFY MODELS AND ANALYSES

Showing all the model pattern graphs and maps is omitted for brevity. Nonetheless, the
pattern graphs of the chemical conversion and lift–drag polar analysis models are shown
in Figure 5.13(a) and Figure 5.13(b), respectively. Table 5.3 shows the set of models and
analyses used to construct the dependency graph in the following subsection. In ad-
dition, particular analysis methods deal with hierarchies of objects. To elaborate: the
mass of a component is equal to the sum of its constituent masses. Likewise, compo-
nent forces add up to a resultant force. Finally, for a rigid body, considered as a point
mass, the velocity and acceleration of each sub-component is equal to the system’s ve-
locity and acceleration.

Table 5.3: Methods and analyses for mission analysis

Model/analysis Parameters Equations

Storage mtot, mfixed, mf, ṁf mtot = mfixed +mf, ṁf = ∂
∂t mf

Newton Fi , m, a
∑

i Fi = m ·a
Aero normalization F , CF , ρ, V , S F =CF ·S · 1

2ρV 2

Chemical conversion SE , ṁf, P P = SE ·ṁf

Force power F , P , V P = F ·V
Lift-drag polar CL , CD , A, e, CD0 CD =CD0 +

C 2
L

πAe
Gravity m, g , W Wx = 0,Wy = 0,Wz =−m · g
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Figure 5.12: System graph for simplified conventional aircraft. Yellow: components, Red: behaviours, Blue:
material entities, Green: energy and force.

CREATE DEPENDENCY GRAPH

The full dependency graph for the aircraft mission analysis including the flap technol-
ogy is depicted in Figure K.2. This section focuses on a part of its construction: force de-
composition. In a two-dimensional mission analysis, an aircraft is considered as a point
mass, and a force balance exists during flight: L =−W and T =−D , i.e. lift is equal to (in
magnitude) the weight and thrust is equal to drag. Therefore, the vertical and horizontal
acceleration are zero during steady flight.

Naively, applying Newton’s second law to the aircraft as a whole leads to the equation:

L +W +T +D = m ·a , (5.5)

where, even if we know that a = 0, three of the four forces need to be known for the last
to be computed. This is illustrated in Figure 5.14(a). However, only the weight force is
known; the others have to be computed. As humans, we intuitively recognize that lift and
weight act vertically, while thrust and drag act horizontally. Then, the above equation
can be split up and lift can be computed from weight. The lift-drag polar analysis3 is
used to compute drag, which in turn gives thrust.

This is where the zero-masks from subsection 5.1.2 come into the picture. Each of
the four forces is attributed with a zero-mask, providing information about the direction

3From physics, we know that the drag of a body is dependent on the lift as well as the profile drag of that
body. We capture this by means of a so-called drag polar, a second-degree polynomial function that relates
the non-dimensional drag coefficient (CD ) to the non-dimensional lift coefficient (CL ): CD =CD,0 +kC 2

L .
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(a) Chemical conversion (b) Lift–drag polar

Figure 5.13: Pattern graphs for two analysis methods

of the forces. The grey attribute nodes in Figure 5.14(a) illustrate this. Simply removing
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Figure 5.14: Dependency graph for Newton’s Second law before and after applying zero-masks

these nodes and their edges from the dependency graph results in Figure 5.14(b). Here,
the force balances in x and z direction are decoupled, resulting in the intuition that L =
−W and T =−D !

CREATE COMPUTATION GRAPH

Ultimately, fuel burn is the quantity of interest for an aircraft mission analysis. Therefore,
either the fuel mass contained in the fuel tank is of interest, or the mass flow of fuel out
of the tank. The former is chosen. The known variables are shown in Table 5.4. Given
those specifications, the computation graph is automatically constructed, resulting in
Figure 5.15. The QoI is shown in the bottom-right corner, as a node with a diamond
shape. The overall flow of computation is clockwise. Circles are attribute nodes, while
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Table 5.4: The attribute roles for a mission analysis

Attribute Role Constant
mf QoI False
mft Known True
mgt Known True
mw Known True
CD0 Known True
A Known True
e Known True
ρ Known False
S Known True
aac Known False
Vac Known False
SE Known True
t Known False
δf Known False
ke Known False

squares are analysis nodes. Any attribute node without predecessors is a leaf node, and
hence an input variable, from Table 5.4.

Notice how the computation graph is cyclic. Therefore, the QoI depends on itself.
Luckily, there is a time derivative in the cycle; the QoI is the integral value of the fuel
mass flow, which is computed from the thrust force at a certain time-step. Thus, the
computation graph can be unrolled in time, and is, therefore, computable.

Additionally, observe that Figure 5.15 contains the technology variables δf (flap_rot)
and ke (2dofflap_k_e) as input variables, which modify through an analysis method the
CD0 and e of the wing. This is a simple example, where the technology effect is modeled
as a k-factor, but in a more elaborate example, the whole lift–drag polar analysis could
have been replaced with another analysis method as a result of introducing the flap.

The reason to represent the flap technology as in Figure 5.15, is that it is implemented
as a flap schedule that changes the camber of the wing during the entire flight. As a
result, the lift-to-drag ratio is optimized for each point in the mission, which is required
due to the changing air density ρ and aircraft mass mac.

COMPUTE QOIS

The computation graph shown in Figure 5.15 can be executed in a deterministic setting,
where each variable has one value, and if it is time-varying, has one value per time-step.
The QoI — fuel mass — is computed at all points in time, as shown in Figure 5.16(a).
Additionally, the values of all other variables in the computation are also stored, such
that, for example, the lift coefficient is also accessible, as Figure 5.16(b) shows. The full
details of the computations performed in this subsection are presented in Chapter 6.

COMPUTE QOIS IN PROBABILISTIC SETTING

The novel flap technology illustrates how dependencies are deduced. It has two at-
tributes: the flap rotation δf and an Oswald span-efficiency-factor impact ke . Rules are
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Figure 5.15: Computation graph for mission analysis of fuel-based aircraft. The QoI is the diamond shaped
node in the bottom–right corner. The general flow of computation runs clockwise.

added that state that the flap rotation influences the flap geometry, which in turn affects
the airflow around it. Because that is the same airflow as the one around the wing, the
stress in the wing structure is influenced. Because the stress is constrained during de-
sign by the material-based stress allowable, the mass of the wing structure is influenced
as well. This is an example of a causal relationship between the flap deflection and the
wing mass. All the causally influences relations deduced by the algorithm are depicted
in Figure 5.17.

Without the design constraint on the wing stress, the flap deflection would merely af-
fect the wing stress, and geometry. However, the wing structure volume and mass would
remain unaffected.

Both the wing structure mass and the flap rotation are input variables in the com-
putation graph (see Figure 5.15). Therefore, a dependency structure has to be specified
between these two variables. An example of the dependency between these two vari-
ables is shown in Figure 5.18. Each dot in this figure represents a possible combination
of the variables, and the density of dots represents the probability of those combinations
occurring. This dependency indicates that there exists a negative correlation: the higher
the maximum flap deflection, the lower the wing mass, due to load alleviation. Further-
more, the higher the maximum flap deflection, the more uncertainty exists regarding the
mass reduction; hence, the higher spread.
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Figure 5.16: Fuel mass and lift coefficient over time from mission analysis
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Figure 5.17: Causal influence relations between variables in the mission analysis example. The orange box
around wing stress indicates that it is a constrained variable.

Including the flap and the dependency structure from the previous section, whilst
also providing probability distributions to (some of) the input variables, enables the
computation graph to be executed for each sample. This is a Monte Carlo simulation and
results in a probability distribution on the quantity of interest, as shown in Figure 5.19.
Note that the fuel burn in Figure 5.19 means the block fuel burn over the entire flight. In
other words, it is the total amount of fuel burnt during the mission. The probability dis-
tribution collects the frequency of those amounts occurring as a result of uncertainties
regarding fuel specific energy, component efficiencies and masses, mission parameters,
and the technology variables.

The result for the baseline aircraft, without the flap technology, is also shown in Fig-
ure 5.19 as the blue, dashed line. This example shows how the method enables a prob-
abilistic computation of some quantity of interest, which can subsequently be used for
technology evaluation and comparison. In this particular case, the flap technology con-
centrates the fuel burn around a slightly lower median value than the baseline. Further-
more, it drops below the baseline for higher values of fuel burn; thus, it has a lower tail
dependency. Therefore, the technology reduces fuel burn overall.
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burn when a probabilistic computation is performed

5.3. DISCUSSION
The main contribution of this chapter comes from the way in which analysis modules
are put into the context of the ontology. Specifying a context graph to which an analysis
applies is more flexible than the static mapping from ontological terms to analysis terms
as employed by former approaches [61]. The context graph is matched onto a knowledge
graph describing any (novel) system, such that the analysis can be applied to that portion
of the graph. Because the context graph can be specified such that multiple pattern
extensions may be present (e.g. multiple input and/or output powers), this approach is
more flexible than common input/output matching approaches, e.g. the one used by
Van Gent et al. [54].

The SPPH application shows how the presented methodology is used to describe a
system such as a hybrid-electric powertrain for aircraft and how a computation may be
performed automatically, with minimal user interaction. Compare the approach to the
original work by de Vries et al. [46] and notice how the same is achieved, but the very spe-
cific method in that work is replaced by a very generic method that requires, as a cost, a
more thorough specification of the topic under investigation — the powertrain architec-
ture. de Vries et al. [46] obtains representative powertrains through human reasoning,
something which the current approach does not require (although would support). Fur-
thermore, to deal with different sets of input and output variables of the computation,
as well as different directions of power flow throughout the powertrains, they specify
a separate matrix (Equation 18 in Ref. [46]). With the present approach, all of that is
performed automatically, i.e. an algorithm can figure out those power flow directions
(shown in Equation 5.2.1), and generate the appropriate computation graph for each
case.

The second contribution is the qualitative physics reasoning for determining depen-
dency structures between variables. It is believed that this is the first attempt at structur-
ing and automating this process in a formal manner. Probabilistic assessment of novel
technologies and systems is gaining more foothold in present research, although its in-
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fancy in the design field causes the use of mostly basic approaches. Even though de-
pendencies between random variables are essential for a proper assessment of posterior
probability distributions, they are often overlooked or omitted. It is believed that this is
a result of a lack of knowledge and understanding of how to incorporate dependencies
between variables. Therefore, the presented method assists a practitioner in specifying
these dependencies. The qualitative causal reasoning mechanism prompts which pairs
of variables the practitioner should consider to specify a dependency for.

A primary drawback of the implemented approach is the specification of the knowl-
edge graphs. As Figure 5.9 demonstrates, these graphs become convoluted quickly, and
are therefore not easy to construct for designers or engineers non-versed in PSO or on-
tologies in general. Therefore, it is proposed to build a graphical user interface that al-
lows the user to draw up a system (e.g. using Modelica or Simulink), while the knowledge
graph is built automatically by the software based on the user inputs.

Another drawback of the current causal reasoning approach is that it relies heavily
on rules that are crafted by a domain ontology designer. However, there is research that
focuses on machine learning of causal structures. For example, schema networks [150,
151], interaction networks [152] or relational deep reinforcement learning [153] might
provide clues as to how to let a system learn causal patterns by itself, rather than relying
on a human expert to specify them.

Similarly, mathematical models and analyses are now specified by humans before-
hand. The software only performs graph matching to find the places where the analyses
may be applied. However, research into state representation learning [154] aims to au-
tomatically infer factors to describe an environment. Perhaps such an approach can
learn to automatically construct a mathematical model for systems described with the
knowledge graphs. The benefit would be that models can be ascribed to a system even
more flexibly than with the current approach, thus allowing for slight variations in how
a system is described. Graph convolutional networks might prove useful for learning the
context graphs that are used to map analyses onto the knowledge graphs for the same
reasons.

As a final remark, it should be noted that the computation graphs resulting from the
presented approach do not synthesize efficient, optimized computations. Moreover, the
approach uses graph matching extensively, which is a computationally expensive rou-
tine. As such, the presented method is not computationally efficient or optimized. Tech-
nology evaluation does not have to be, though. It is usually conducted in the conceptual
and preliminary (design) phases of a project, where high-fidelity analysis methods are
usually avoided. Additionally, the computational inefficiency is not expected to induce
so much overhead that generating thousands of samples for a Monte Carlo Simulation
becomes intractable, when an optimized code would be tractable.

5.4. CONCLUSION
This chapter presents a modular framework for conceptual design analysis that relies on
knowledge graph descriptions of the system of interest and modular analyses that are
automatically applied to such a graph. From the system knowledge graphs and a set of
analyses, a computation sequence is consecutively generated and the user is queried for
input data. In addition, qualitative physics reasoning is employed to infer input variables
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that are mutually dependent, for which a joint probability distribution has to be set up.
Then, either a deterministic or probabilistic simulation of the system can be executed.

While the method incurs a significant modeling effort, its merits reside in the ca-
pability to capture the context of analysis models and automatically apply them to any
given system. This is done through the use of the PSO ontology with the extensions
mentioned in Chapter 3. PSO itself does not provide the means to capture the context of
analysis methods, and neither was any other method found that does so. The fact that
the PSO and BFO ontologies are used with little modification shows that the method
can easily be integrated to existing methods based on those upper ontologies. Another
contribution of the presented method is the flexibility of the analysis models. Rather
than that they are black-boxes with fixed input/output, the graph-based description al-
lows the same analysis method to be automatically applied to different situations, as was
demonstrated in the hybrid-electric powertrain case study. Additionally, technologies
are easily included: they modify the system knowledge graph and a new computation
graph is built subsequently. The final contribution resides in the qualitative reasoning
for dependencies on random input variables in probabilistic computations. Although
the physics-based rules that underlie this capability are crafted by human experts, they
alleviate a practitioner’s effort when setting up a probabilistic assessment. Therefore,
this process becomes more consistent and less prone to error.

The current approach relies on rule-based algorithms, which in the future should
be replaced with more flexible learning mechanism from machine learning literature.
Finally, specifying the knowledge graphs and analysis models properly may prove chal-
lenging for practitioners. Solutions that simplify these procedures should be found.

With an evaluation of the QoIs for each technology portfolio, enough information is
available to support a selection decision among them. However, in some cases, a selec-
tion is not easily made, because uncertainty on the QoIs may prevent a clear distinction.
In such situations, insight is desired into what level of impact certain technologies have
to have for a given improvement in a QoI. This is an inverse design problem, and is the
focus of the next chapter. Thus, a method is presented that takes the probability distri-
butions on the QoIs that the method from this chapter can produce. These probability
distributions are fed into an algorithm that both enables selections between technolo-
gies, as well as the inverse design queries.
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During conceptual design, decisions are made regarding which configurations and tech-
nologies to include in an engineering system. For example, questions arise on which
wing movables to employ and where to position them, what material and structural lay-
out is optimal for the wing box, whether to use a hydraulic or an electric actuator system,
etcetera. In this dissertation, such questions are called inverse (design) queries, because
they involve working from a computed quantity of interest back to the input variables,
and figuring out how the latter should change to satisfy certain requirements. Typically,
such design decisions are supported by deterministic investigations; the different op-
tions are represented in some simulation model and quantities of interest (QoIs) are
computed for a specific, or small set of designs or missions. Such an approach provides
poor generalization of the conclusions, because these are specific to the design or mis-
sion chosen. Therefore, very little can be concluded about the performance of a certain
technology or configuration across-the-board.

Many design queries can be answered with optimization approaches. When includ-
ing uncertainty, one can use either robust design optimization or reliability-based de-
sign optimization [156–158]. These approaches usually convert a probability distribu-
tion into scalar measures like mean and variance. Moreover, they tend to focus on spe-
cific designs and/or missions. When the precise designs and missions are still unknown,
design space exploration may be employed. The high-dimensional design space can, for
example, be visualized with Cobweb plots. These display the joint distribution of the
variables and can subsequently be used to single out regions (i.e. value ranges of vari-
ables) of interest [159]. Cobweb plots can only be used to analyze the current design
space, and show which ranges of variables influence other variables. Figuring out how
the design space should change to achieve certain goals is not possible, however, and
requires other methods.

This chapter investigates probabilistic inversion (PI) to support technology develop-
ment and selection. The hypothesis is that this approach circumvents the drawbacks
associated with optimization and design space exploration approaches and is a useful
means to rank technologies when their specification and effects are uncertain. Forward
uncertainty propagation is performed through sampling and PI is employed to answer
inverse (design) queries. Probabilistic inversion is explained in section 6.1. The applica-
tion consisting of the model, the input variables and their distributions are discussed in
section 6.2. Two test cases are performed on this application. Firstly, a single technol-
ogy is analyzed with both forward uncertain quantification (UQ) and PI in section 6.3.
Secondly, a set of three technologies is assessed and PI is used to infer which technolo-
gies are most suitable to meet user-imposed requirements in section 6.4. The merits
and drawbacks of the method are discussed in section 6.5, and the work is concluded
in section 6.6 by establishing that probabilistic inversion is a powerful method for tech-
nology prioritization for selection during conceptual design and offers possibilities that
conventional optimization or design space exploration techniques do not.

6.1. METHODOLOGY
Probabilistic inversion (PI) is employed in this work to solve inverse queries. The aim is
to find the values for some input values that achieve certain goals defined on the output
variables. In this section, the principles behind PI are discussed and the algorithms to
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solve PI problems are presented.

Before diving into PI itself, though, an overview of how PI fits in with uncertainty
quantification and propagation is provided in Figure 6.1. The first part of the method,

Initial variable 

(joint) distributions

Generate N 

samples

Run model(s) for 

each sample

QoI 

distributions & 

output metrics

Perform 

PI

Traditional approaches

Variable (joint) 

distributions 

satisfying constraints

Figure 6.1: Overview of the method in three steps: uncertainty quantification & propagation and probabilistic
inversion. The information from PI can be used for subsequent technology selection.

uncertainty quantification and propagation, is common to other approaches [12, 13, 47,
87, 160]. This part entails setting up the input variables and their (joint) distributions.
Not all existing approaches employ joint distributions, but it is not unique to PI. In this
work, the joint distributions are specified using copulas, which are explained in Section
2.8.3. All the variable distributions are then sampled N times, and each sample is prop-
agated through the analysis models that compute the quantities of interest (QoIs). The
sampling procedure is indifferent to the type of model, so any black-box input/output
model works. Therefore, the models can be anything from physics-based simulations to
design codes to surrogate models. The output samples are used to construct cumulative
density functions (CDFs) on the QoIs. Further metrics may be derived from these CDFs
to support decision making. When the output does not satisfy certain goals, traditional
approaches require an iterative procedure, indicated by the dashed line in Figure 6.1.
Rather simply, the input is changed iteratively to obtain the desired output.

This is where PI comes in. Instead of adopting an iterative procedure, PI is one addi-
tional step that is conducted after the uncertainty propagation. Constraints are imposed
on any of the variables (input and output) and PI figures out how the distributions of the
other variables change to satisfy those constraints. The updated distributions are used
to answer design queries or technology prioritization queries.

6.1.1. PROBABILISTIC INVERSION

Probabilistic design, in the most general form, requires finding input random vector X ∈
RN (with some properties) to a particular model G : RN 7→ RM that yields output vector
Y ∈ RM with a pre-specified distribution. In other words, we want to find X such that
G(X ) ∼ Y (where ∼ denotes having the same distribution); hence, invert the function G
over random variables. This process is called probabilistic inversion (PI) [161].

For some simpler types of models, PI can be carried out with Bayesian methods.
In many applications, however, the function G is very complicated, so the distribution
of G(X ) is found via simulations. In such cases PI can be performed via sample re-
weighting [162], which avoids inverting the function G , by re-weighting the samples of
inputs and outputs of the model to satisfy specified constraints. The sample re-weighting
process is as follows. For a set of samples (x(i )

1 , ..., x(i )
N ) generated by sampling from X , a
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set of output samples is computed as:

(y (i )
1 , ..., y (i )

M ) =G(x(i )
1 , ..., x(i )

N )

The sample file si = (x(i )
1 , ..., x(i )

N , y (i )
1 , ..., y (i )

M ), i = 1, ...K is obtained (shown in Figure 6.1),
where each sample has the same probability p(si ) = 1/K . The idea is to find a different
than uniform distribution over the samples. That is, the weights wi have to be found,
such that re-sampling with these weights leads to a new set of samples that satisfies the
requirements on Y and X .

To make this problem computationally tractable the requirements on Y and X are
in the form of quantiles or percentiles of variables in Y and X or functions of these
variables. In this simplified form, PI via sample re-weighting can be viewed as an opti-
mization problem to find weights (w1, ..., wK ) which minimize relative information with
respect to the uniform distribution subject to linear constraints corresponding to per-
centiles of variables in Y and X or their functions. In theory, there are many distribu-
tions that could satisfy the imposed constraints, which is why the minimum relative
information gives the distribution closest to the starting distribution, i.e. the uniform
distribution. If we were only interested in computing the mean, then updating the sam-
ple weights and computing E(X ) = ∑

wi · xi would suffice. However, we are interested
in the full distributions, which requires re-sampling with the new weights to construct
them.

In principle, this problem can be solved with help of optimization software. In this
dissertation, however, the PI problem via sample re-weighting is solved with the Iter-
ative Proportional Fitting (IPF) algorithm, introduced in Ref. [163]. This algorithm is
much faster than optimization approaches. IPF starts with a uniform distribution over
the samples, and then iteratively re-weights them to satisfy the imposed constraints, one
constraint at the time. If the optimization problem is feasible, IPF converges and pro-
vides a minimally informative solution to the problem with respect to the starting distri-
bution [164]. IPF will not converge when the problem does not have a solution. In this
case algorithms that minimize ‘infeasibility’ are proposed, such as PARFUM [165] and
PREJUDICE [166, 167].

ITERATIVE PROPORTIONAL FITTING

Iterative Proportional Fitting (IPF) iteratively re-weights samples to satisfy the imposed
constraints. Those constraints are provided as percentiles for a set of variables. Even
if the complete sample set contains all variables X , IPF only requires the constrained
variables Z ⊆ X ∪Y ∪ H(X ,Y ). Thus, Z is a subset of X , Y and functions of these two.
The samples of Z are presented as a matrix:

Z =

z11 · · · z1M
...

. . .
...

zK 1 · · · zK M

 (6.1)

where K is the number of samples and M the number of variables in Z .
For each variable Zm a vector of percentiles is specified. From these percentiles the

inter-percentiles qm are derived. For example, the 5%, 50% and 95% percentiles are
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specified for Zm , then qm = [0.05,0.45,0.45,0.05]. All vectors qm are stored in the set
Q = {qm}. It is defined as a set of vectors rather than a matrix, because this allows for
different amounts of percentiles to be specified for different variables.

For each percentile, the value of the corresponding variable has to be specified. Thus,
let Qm = |qm | be the amount of quantile constraints qm on the variable Zm . Then rm has
length |rm | =Qm −1, where each entry rm j is computed as:

∀ j = 1, ...,Qm −1 : rm j ≡ P (Zm ≤ rm j ) =
j∑

i=1
qi (6.2)

For all variables, the vectors rm are collected into a set R = {rm}.
The matrix Z , the inter-percentile set C and the constraint values R together are the

inputs to the IPF algorithm. The algorithm starts by creating a set of indicator matri-
ces, which specify which samples belong to which inter-percentiles. Therefore, for each
variable there is a matrix Am ∈RK×Qm given by:

Am
i j =


Zi m ∈ (−∞,rm,1] if j = 1

Zi m ∈ (rm,Qm−1,∞) if j =Qm

Zi m ∈ (rm, j−1,rm, j ) otherwise

(6.3)

Thus, each column corresponds to an inter-percentile qm, j and each row evaluates whether
the value of that sample in Z is within the range specified by rm for that inter-percentile.
The set A = {Am} is the last piece of information IPF requires.

IPF starts with an initial vector of sample probabilities p , which is the uniform dis-
tribution over the samples. Thus, each values pi = p(si ) = 1/K . Then an outer loop runs
through a prescribed number of iterations. During each iteration, the vector p is up-
dated for each variable separately. Therefore, an inner loop runs over the variables Zm

and performs the following operation:

p ′
i =

Qm∑
j=1

Am
i j

pi q j∑
i∈Am

· j pi
(6.4)

This process is shown in Figure 6.2. After each inner loop iteration, pi is set to p ′
i . As

such, IPF updates p to satisfy each quantile constraint on each variable one at-a-time,
while possibly violating the constraints over a previous variable. However, as the itera-
tions proceed (and if the problem has a solution) the constraints for each variable will
be satisfied [161, 164].

ERROR OF IPF
The outer loop of IPF runs over a prescribed number of iterations, but it could happen
that IPF reaches satisfactory convergence before that limit is reached, or instead does
not converge on time. With the constraints and the vector p , the achieved percentiles
can be computed and compared to the specified percentiles. This provides a measure of
the error of IPF at any given iteration.

The constraints, specified by the combination of the quantiles Q and their values R,
can be written as a linear combination of the sample probability vector p . They form
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Output:
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Figure 6.2: Flowchart of the IPF algorithm. The outer loop runs over a prescribed maximum number of itera-
tions, while the inner loop iterates over all variables m.

the constraint set C , which contains for all m = 1, ..., M and j = 1, ...,Qm the following
equality:

C j ,m :
K∑

i=1
pi Am

i j = q j ,m (6.5)

Essentially, each constraint counts the number of samples that would fall within a cer-
tain inter-percentile, given the new probabilities pi . Thus, there are |C | =∑M

m=1 Qm con-
straints; one for each combination of percentile and variable in Z . The set C can now
be written as a set of linear equations C · p = q . C is a |C | ×K matrix, with each entry
C( j ,m),i = Am

i j . The vector p of length K contains pi and q are the percentiles, reshaped

into a vector of length |C |. The vector q should have the same values as the correspond-
ing entries in Q. As a measure of the error, the maximum absolute value of q −C ·p is
taken.
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PARFUM
IPF may not always converge, especially when the provided constraints make the prob-
lem infeasible. In such cases an approximate algorithm may be used. PARFUM is such
an algorithm [165], which works similar to IPF. Unlike IPF, however, PARFUM updates
each variable separately on each iteration (identical to Equation 6.4):

pm
i =

Qm∑
j=1

Am
i j

pi q j∑
i∈Am

· j pi
(6.6)

after which a mean is taken of the weights for each sample. In this case, the geometric
mean is used:

pi =
(

M∏
m=1

pm
i

) 1
M

(6.7)

When the problem is feasible, this gives the same result as IPF. When the problem is
infeasible, PARFUM provides a minimally informative solution that minimizes the dis-
tance to the constraints [161].

GROUPED SAMPLE RE-WEIGHTING

For reasons that will become apparent in section 6.4, it is sometimes desired to only re-
weight groups of samples simultaneously, instead of individually for each sample as IPF
and PARFUM do. This way, the distributions over the variables in a group of samples are
left unaltered. In order to achieve this, the sample set is divided into P disjoint groups.
After PI is performed on the full vector p , each sample has its own weight. However, now
each sample in a group should receive the same weight. This is done by simply taking
the mean of the sample weights for each group and assigning that weight to each sample
in the group:

∀si ∈P j , j = 1, ...,P : p(si ) =
∑

sk∈P j
p(sk )

|P j |
(6.8)

Afterwards, p is scaled to sum to one. Note that, because solving PI problems with
grouped sample re-weighting often is infeasible, the PARFUM algorithm should be used
instead of IPF. However, it has not yet been proven that PARFUM with this additional
step converges.

6.1.2. EXAMPLE OF APPLYING PI
Before continuing with a more realistic problem setting, a simple example is discussed
to show how probabilistic inversion works in practice. Consider the mass breakdown of
the maximum zero fuel mass MZF computed as follows:

MZF = MOE · (1−kOEM)+MP (6.9)

where MOE is the operating empty mass, kOEM is a percentage mass reduction and MP

is the passenger or payload mass. This mass breakdown is not representative of the real
world, and only is constructed for a simple demonstration of PI.

It is assumed that kOEM is uniform on the interval [0,0.3] and is independent of MOE

and MP. The margins of MOE and MP are assumed uniform on [1e4,2e5] and [5.5e3,7.7e4],
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respectively. These values are purely notional. In a real case, they would have to be esti-
mated from data or expert elicitation. Furthermore, from engineering insight it is logical
that MOE and MP are correlated, because a higher payload mass leads to higher struc-
tural mass. Conversely, no more structural mass is present than strictly necessary for a
given payload mass. This dependency is modeled with a Frank copula with α= 18.1915
corresponding to Kendall’s τ of 0.8. The Frank copula is chosen because it is symmet-
ric and has no tail dependency. The value of 0.8 is chosen arbitrarily, and should in real
applications be estimated from data or with an expert solicitation procedure. The result-
ing scatter plot of samples from the joint distribution of MOE and MP is shown in Figure
6.3(a).
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Figure 6.3: Joint distribution between MOE and MP, modeled using a Frank copula, before and after PI

Now, a given set of aircraft is considered for which MOE and MP are as specified above
and the percentage mass reduction is kOEM. Suppose that for this range of aircraft some
new technology can be considered that allows to alter the distribution of kOEM. The
question is how much percentage MOE reduction is required for a given reduction in
MZF.

The requirements on the distribution of MZF are specified in the form of 5th, 10th,
30th, 50th, 70th, 90th, 95th and 99th percentiles, which are equal to 0.2428, 0.3353, 0.7440,
1.1605, 1.5740, 1.9721, 2.1083 and 2.2932 (all ×105), respectively. These values are 11%
smaller than the original distribution of MZF.

PI requires the problem to be translated into a set of constraints. Recall that con-
straints take the form of the quantiles Q and their values R. Essentially, these are points
on the CDFs that the practitioner desires to obtain after performing PI.

Two different functions for constraints are distinguished: either a constraint fixes a
variable’s distribution so PI cannot alter it, or it reflects a new distribution that is desired
by the designer. For the first function, the percentiles of the original distributions can
be specified as constraints. However, that does not mean that the distributions are not
changed by PI at all. In case of a joint distribution, all linear combinations of the vari-
ables would have to be constrained. Thus, a distribution can never be fully constrained
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in a way that keeps it completely unaltered during PI. Nonetheless, these constraints do
limit the extent to which a distribution is affected and are therefore sufficient. Examples
of how and why certain variables or their joint distributions are constrained can be found
later in sections 6.4.1 and 6.4.2. The second constraint function requires the percentiles
of a new distribution. These percentiles may be obtained from data or from expert elici-
tation or policy makers using existing techniques. Naturally, they may be assumed to get
an indication of the resulting responses.

For this example, a fixed set of aircraft is considered. Thus, MOE and MP need to be
kept relatively unchanged and only the distribution of kOEM should be adjusted to the
requirements on the distribution of MZF. To that end, MOE and MP are constrained to
keep their 5th, 10th, 30th, 50th, 70th, 90th, 95th and 99th percentiles close to the original.
Thus, for each of these variables, each of these percentiles is specified with the value of
the original uniform distribution. Furthermore, to keep the dependency between MOE

and MP similar, the distribution of the sum of MOE and MP is also constrained on the
above eight percentiles. Therefore, the dependency imposed by Figure 6.3(a) should re-
main identical. Dropping the constraints on the margins or dependence of MOE and MP

would permit PI to alter their distributions, which would consequently reflect a different
set of aircraft.

With the aforementioned constraints, the IPF algorithm is run and a new sample set
is generated. The CDFs for the new samples are shown in Figure 6.4 (as dashed, red
lines), with the original CDFs for reference (as blue, solid lines). Notice that the CDFs of
MOE and MP hardly have changed due to the constraints, while kOEM becomes skewed
to the right as expected.
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Figure 6.4: Cumulative density functions before and after PI.

In order to better illustrate what PI does, the probability density functions (PDFs)
corresponding to the CDFs are shown in Figure 6.5. Again, the red, dashed lines show
the PDFs after PI, while the blue, solid lines are the original PDFs. The distribution
over kOEM has shifted all the way to its largest value. Observe the oscillatory nature of
the PDFs for MZF, MOE and MP. This is an important effect of using percentiles rather
than complete distributions as constraints; thus, it is inherent to IPF. PI picks samples
within each inter-percentile and re-weights those equally to meet a certain percentile
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constraint. Therefore, the distributions only match at the specified percentiles, and may
vary in-between.
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Figure 6.5: Probability density functions before and after PI.

A similar observation can be made for the bivariate distribution of MOE and MP in
Figure 6.3. After PI (Figure 6.3(b)) the scatter plot is different than the original one. Clear
discontinuities can be seen in the samples corresponding to the oscillations of the PDFs
shown in Figure 6.5. Nonetheless, the dependency between MOE and MP, measured as
the Pearson coefficient, remains almost identical to the initial value of 0.95, due to the
constraint on the sum of these two variables.

If the constraints on MOE, MP and their sum are not included, the results of PI look
very different. These are shown in Figure 6.4 and Figure 6.5 as dotted, red lines. From
both figures it becomes clear that kOEM is hardly affected, while the distributions of MOE

and MP show a larger deviation form the original. This is easily understood as PI picks
the most influential variables to achieve the constraints. In this case, obviously, MZF is
most easily reduced by reducing either MOE or MP or both. From Figure 6.5 we can fur-
thermore observe that the PDFs are smoother as PI has more freedom with a constraint
only on MZF. Thus, weights are redistributed more evenly over samples and the result-
ing PDFs and CDFs after re-sampling are smoother. Finally, the correlation between
MOE and MP also changes from 0.95 to somewhat below 0.94. That is not a big differ-
ence, but shows that for more complex problems and/or more constraints PI alters the
dependency between variables.

6.2. APPLICATION
The mission analysis method that is used to showcase PI in an aircraft technology eval-
uation and selection setting is discussed in this section. Consecutively, the inputs to this
method are presented together with their probability distributions. Finally, the tech-
nologies that are under investigation and how they are modeled is detailed.

6.2.1. MISSION ANALYSIS METHOD
A simplified mission is simulated, which starts at zero altitude and take-off speed V0

as well as an assumed fuel mass MF0 , then climbs to cruise altitude hcr and acceler-
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ates to cruise speed Vcr. The range flown during climb is now computed, but the range
flown during cruise or descent are unknown. Therefore, descent is first computed back-
wards (since the final point is known), such that the range flown during descent becomes
known. The final point is at zero altitude and V0, with zero fuel mass. When both climb
and descent have been computed, the range flown in cruise is known, which is assumed
to be flown at constant altitude and speed. In its entirety, the mission analysis function
can be described as:

(MF,R) = MA(MF0 , x) (6.10)

where x is a sample that holds a value for each of the input variables (presented in Sec-
tion 6.2.3) other than the initial fuel mass estimate MF0 . The function MA returns both
the consumed fuel mass MF and range flown R. At any point, the assumed initial fuel
mass MF0 may turn out to be insufficient (R < Rreq) . Conversely, when the entire mis-
sion is flown (R ≥ Rreq), residual fuel may remain (MF0 > MF). Therefore, an outer itera-
tion aims to find the particular value for MF0 that is adequate to fly the specified range.
That value gives the quantity of interest — fuel burn. The outer iteration is implemented
using a minimization-within-bounds algorithm, which minimizes the error in fuel mass
and range

ε(MF0 ,R) = abs(MF/MF0 −1)+abs(R/Rreq −1) (6.11)

by adjusting MF0 as:
argminMF0

ε(MF0 ,R) (6.12)

For a fair comparison between aircraft and technologies, the block fuel burn MF is not
a suitable metric: heavier, long-range aircraft consume more fuel, even if they are more
efficient than lighter, regional aircraft. Therefore, the payload-range energy efficiency
(PREE) [46] is used. However, this metric is based on energy consumption and is defined
as R · MP ·E−1, where E is the energy consumed during an entire mission. Thus, this
metric measures efficiency, which has to be increased. However, in this work the QoI
has to be minimized, so the inverse of PREE is taken, and the energy consumption is
replaced with block fuel burn, resulting in the PRE−1 metric. Thus, PRE−1 is the block
fuel normalized with range and payload mass, i.e. MF · (R ·MP)−1.

The mission analysis computations assume steady flight. Furthermore, thrust during
climb is assumed to be a constant fraction Tcl of the maximum thrust Tmax, and during
descent a constant fraction Tdes is assumed. Finally, a speed–altitude profile is assumed,
given by:

dV

dh
= Vcr −V

hcr −h
(6.13)

during climb, and the negative of that during descent. This profile is not necessarily re-
alistic, but suffices for the current application, where only differences between different
inputs matter.

6.2.2. COST COMPUTATION
No detailed cost module is present in the current method. However, a cost metric is
included in order to have a second objective that conflicts with PRE−1 . It can be inter-
preted as any kind of cost, e.g. recurring cost, non-recurring cost and/or direct operating



6

138 6. PROBABILISTIC INVERSION

cost. The baseline aircraft is considered to have a normally distributed cost with mean
µ = 1 and standard variance σ = 0.05. Each technology adds some cost measure to this
baseline distribution. Depending on these technology costs, the final cost for each port-
folio may be smaller or larger than the baseline.

6.2.3. INPUT VARIABLES
In this section the distributions and dependencies for the input variables of the mission
analysis are set up. Most researchers that include uncertainty do not focus on how the
probability distributions should be obtained [88]. Characterizing those distributions for
subsequent analysis is a challenging task, which often relies on expert judgment. Even
though that is labor-intensive and subjective, there is no viable alternative presently, and
Figure 6.1 shows it is adopted here as well. However, an alleviating remark is made by
Cook and Jarrett [157] who address the question: “How important is the choice of how to
represent input uncertainties mathematically in robust airfoil optimization?” as an ex-
ample of what effect the specific choice of uncertainty distribution has on the outcome.
The answer is that the difference between probabilistic results (i.e. different probabil-
ity distributions) is insignificant, albeit their difference with the deterministic cases was
large. In one case, even, the probabilistic optimum was Pareto-dominant with respect to
the deterministic one. Thus, including uncertainty is important. However, not just any
distribution works, and especially dependencies between variables have to be taken into
account.

Table 6.1 shows all the inputs to the mission analysis method (x in Equation 6.10).
Most of these variables are assigned a uniform distribution, to reflect a wide range of
aircraft and missions. TSEC and SE are assigned a triangle distribution, because their
mean is derived from data and the triangle distribution allocates more probability mass
around this value, while having finite bounds. Finally, some variables are represented
with scalar values, because they are aircraft independent and this way the design space
is reduced.

Table 6.1: Input variables specification

Variable Name Symbol Units Distribution Dependency
Cruise altitude hcr m Uniform Independent
Cruise speed Vcr m/s Uniform Independent
Range R m Uniform Independent
Payload mass MP kg Uniform Correlated with MOE

Take-off & Landing
speed

V0 m/s Scalar (45) Independent

Wing loading W /S N/m2 Uniform
Determines wing
area S

Wing aspect ratio A - Uniform
Determines wing
span b

Thrust-to-weight
ratio

T /W - Uniform Independent

Continued on next page
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Table 6.1 – continued from previous page
Variable Name Symbol Units Distribution Dependency
Climb throttle Tcl - Scalar (0.85) Independent
Descent throttle Tdes - Scalar (0.05) Independent
Operating empty
mass

MOE kg Uniform Correlated with MP

Clean zero-lift drag CD0 - Uniform (0.01, 0.02) Independent
Thrust specific
energy
consumption

TSEC J/(N s) Triangle (600,750,900) Independent

Oswald factor e - Scalar (0.7) Independent

Fuel Specific Energy SE J/kg
Triangle (45·106, 46·106,
47·106)

Independent

Time step ∆t s Scalar (30) N/A

6.2.4. TECHNOLOGIES

Figure 6.6: Side view of the 2nd DOF flap, with differ-
ent extreme positions

Figure 6.7: Illustration of the rotating winglet downer,
which can rotate around it’s length-axis to alter the
airflow around the winglet

In the ensuing case studies, three technologies are used to showcase PI. The first,
which is also investigated individually, is a second-degree-of-freedom (2nd DOF) flap,
see Figure 6.6. This flap has two actuators that independently control the extension and
rotation of the flap, to allow it to provide maneuver load alleviation and camber opti-
mization. Therefore, it is modeled using three variables: δf,max, kM ,flap and ke . The first
is the maximum deflection of the flap, either upward or downward. The second is the ef-
fect of maneuver load alleviation on the structural weight, measured as a percentage of
MOE. (A lighter wing box can be designed when MLA effectively reduces the maximum
load factor. [31, 168, 169]) The third models the effect of camber optimization [170] by
being added to the aircraft’s Oswald factor. Its distribution is estimated from Ref. [171].
Both δf,max and ke influence the aircraft lift–drag polar as follows:

CD =CD0 +k0 ·δf +
C 2

L

πA(e +ke ·δf)
(6.14)
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In this equation, δf is measured in degrees, thus ke is measured in 1/deg. The factor
k0 is also measured in 1/deg, and has a value of 5×10−5. That value was arbitrarily set
to obtain an interesting test case. The effect of δf for a fixed value of ke is shown in
Figure 6.8. Essentially, an increasing flap deflection shifts the polar to the right, while
reducing induced drag; thus, making the polar less steep.

In the mission analysis, the L/D ratio is optimized at each point during the mission
by varying the flap deflection angle δf in the range [0,δf,max]. During climb and cruise,
L/D is maximized by the flap for a given CL , as follows:

argminδf∈[0,δf,max] CD (6.15)

while during descent it is minimized for the steepest path:

argmaxδf∈[0,δf,max] CD (6.16)
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Figure 6.8: Lift-to-drag polars affected by flap deflection for notional 2nd DOF flap.

All three technology-defining variables, and their distributions are shown in Table 6.2.
It also shows the dependency imposed on δf,max and kM ,flap. This follows the insight that
the higher the flap deflection is, the more maneuver load alleviation is achieved. How-
ever, for increasingly large deflections, more uncertainty is present in the mass reduction
that is achieved. To model this effect, a rotated Clayton copula is used, with α= 8, com-
puted from a Kendall’s τ of 0.8. This copula is shown in Figure 6.9 in the leftmost plot.

The second technology is a rotating winglet downer, which is a rotating element orig-
inating from the winglet’s base and pointing downward, as shown in Figure 6.7. It de-
flects to alter the lift distribution around the wing tip and consequently offers maneuver
and gust load alleviation [172]. It is modeled using a single variable, kM ,downer, which also
is a percentage of MOE. When both this and the flap technology are present, the com-
bined effect is not simply the multiplication of both mass reduction factors. Instead,
kM ,downer is expected to be closer to 1 when kM ,flap is low, and vice versa. Therefore, a
negative dependency has to be imposed on these two variables. Furthermore, it is as-
sumed that it is impossible to reach either variable’s minimum when both are present.
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Figure 6.9: Dependencies between the three variables δf,max, kM ,flap and kM ,downer characterizing the 2nd

DOF flap and winglet downer.

For these reasons, this dependency is modeled using a Clayton copula with α = −0.75,
computed from a Kendall’s τ of -0.3. The resulting joint distribution is shown in the
center plot in Figure 6.9. The rightmost plot shows the dependency between δf,max and
kM ,downer, resulting from the two previously mentioned dependencies. The combined
effect of the two technologies ktot = kM ,flap ·kM ,downer. Thus, drawing from the center dis-
tribution in Figure 6.9, and applying this multiplication to obtain ktot, the distributions
in Figure 6.10 are obtained. Observe that ktot (in some cases) achieves more reduction
than either kM ,flap or kM ,downer alone, although not as much as the multiplication of their
minima (i.e. 0.8 ·0.9 = 0.72). Instead, the minimum of ktot lies around 0.77. In summary,
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Figure 6.10: Dependencies between the 2nd DOF flap and winglet downer mass impacts and their combined
effect ktot. These plots are the result of combining those from Figure 6.9 with the fact that ktot = kM ,flap ·
kM ,downer.

the 2nd DOF flap and winglet downer offer a mass reduction as follows:

∆M =


kM ,flap ·MOE if only flap

kM ,downer ·MOE if only winglet downer

ktot ·MOE if both flap and winglet downer

(6.17)
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The third technology is some engine improvement (e.g. better turbine blade cool-
ing, to increase turbine inlet temperature) that improves the thrust-specific energy con-
sumption (TSEC) of the aircraft. It is modeled with kTSEC, also shown in Table 6.2, and is
independent from the other two technologies.

Table 6.2: Technology variables specification

Variable Name Symbol Units Distribution Dependency
Maximum flap
deflection

δf,max deg Uniform (0, 30)
Correlated with
kM ,flap

2nd DOF flap mass
impact

kM ,flap - Uniform (0.8, 1)
Correlated with
δf,max

2nd DOF flap
Oswald efficiency
impact

ke deg−1 Uniform (0.012, 0.036) Independent

Rotating downer
mass impact

kM ,downer - Uniform (0.9, 1) Independent

Engine TSEC impact kTSEC - Uniform (0.5, 0.99) Independent

For each technology the cost is determined through a deterministic function of its
characterizing variables, or a random distribution, or both. These functions are crafted
to give a spread in total cost, such that a trade-off between fuel burn and cost results.
The cost impacts, and total cost are computed as:

C0 =N (µ= 1,σ= 0.05) ,

∆C ,flap = δf,max/100 ,

∆C ,downer =N (µ= 0.1,σ= 0.02) ,

∆C ,engine = (1−kTSEC)/5+N (µ= 0,σ= 0.05) ,and

C =C0 +∆C ,flap +∆C ,downer +∆C ,engine .

Here, N is a Gaussian distribution. Obviously, when a certain technology is not in-
cluded, its cost is not added to the total cost.

6.2.5. VERIFICATION
The mission analysis method is examined in this section. Firstly, the response of the
model for a single aircraft and design point is investigated. Secondly, a global sensitivity
analysis is conducted to study the response of the model, in order to support the conclu-
sions in the subsequent test cases.

MISSION ANALYSIS FOR SINGLE AIRCRAFT

An Airbus A320 aircraft is notionally represented using the available input variables to
study the various responses of the MA model. In Figure 6.11, the results of the mission
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analysis for this input are depicted. Important to observe is that, during climb and de-
scent, the flap deflection δf is always at its maximum value δf,max and otherwise zero.
This is a deficit in the lift–drag polar model (explained in section 6.2.4): the polars for
zero and maximum deflection cross in very small region. Therefore, CL is either above
or below it, and the one with least drag in that region is chosen. During cruise, the CL

is within the transition range from zero to maximum deflection, and hence a gradual
variation results. In a more realistic setting, adverse effects of flap deflection, such as
separation, have to be modeled and will influence (i.e. limit) the flap deflection.
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Figure 6.11: Mission analysis results showing variation of altitude, mass, L/D , T /D , δf and CL with range flown.

For the rest, the mission analysis computation behaves as expected, with realistic
values for all parameters(even though CL almost reaches 5 as a result of the assumption
for dV

dh ). This conclusion is not enough to support the case studies, though. To make
conclusions about the effect of technologies, or do probabilistic inversion, the sensitivity
of this analysis method has to be measured against the variables of interest.

GLOBAL SENSITIVITY ANALYSIS

A sensitivity analysis (SA) is performed to study the response of the model with respect
to changes in its input. This information supports the conclusions that are drawn from
PI in the various test cases in the following sections. For example, when PI modifies the
distribution of one variable significantly, while another is hardly affected, there are two
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possible explanations. The first explanation is that the former variable simply is more
effective in reaching the goal that PI is set out to achieve, even though both variables
have a measurable influence on that goal. In contrast, the second explanation is that the
model used to generate the samples is insensitive to the latter variable; hence, PI only
changes the former, because it is the only variable explaining the variance in the goal.

Commonly, sensitivity analyses are conducted around a particular point in the de-
sign space (local SA). This type of analysis is justified when investigating a specific de-
sign, rather than a wide range of designs. For what is currently of interest, a wide range
of aircraft designs, global sensitivity analysis is a more appropriate tool. It is performed
as follows.

There are two quantities of interest in this study: PRE−1 and cost. A sensitivity analy-
sis is only conducted on the first, as for cost there are linear equations with the technol-
ogy impact variables, and as such it is already known that the sensitivities are nonzero.
For PRE−1 , the product moment correlation, rank correlation and correlation ratio are
computed. The first is a measure of the strength of a linear association of two variables,
on a scale from -1 to 1. Rank correlation is similar, except that it measures how well the
two variables follow a monotonic function. Finally, correlation ratio provides a sense of
the extent to which a variable’s variance explains another variable’s variance. It is mea-
sured on a scale from 0 to 1. Therefore, unlike the other two, correlation ratio does not
give a direction of influence.

To study the sensitivity of the mission analysis method, the sensitivity of PRE−1 is
computed with respect to the variables in Table 6.1, without any of the technologies. The
results are shown in Figure 6.12, where the sensitivities are sorted from highest to lowest,
in an absolute sense. It becomes clear that CD0 and TSEC are most influential. That MF
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Figure 6.12: Sensitivity measures of PRE−1 with respect to the variables in Table 6.1.

is in third place is surprising, as it is the variable that is measured, except that it is not yet
normalized with R and MP. Therefore, it may be concluded that there are other variables
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explaining the variance in MF other than R and MP. Each variable’s direction of influence
agrees with engineering instinct. Therefore, it is concluded that the mission analysis
behaves as expected and shows good sensitivity with respect to the input variables.

A similar sensitivity analysis only includes the technology impact variables from Ta-
ble 6.2, in the data set where all three technologies are included. This gives the sen-
sitivities in Figure 6.13, which are as expected, except for the sign of kM ,downer. Thus,
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Figure 6.13: Sensitivity measures of PRE−1 with respect to the variables in Table 6.2.

kM ,downer has a negative correlation, while the same sign as kM ,flap is expected, because
the two are effectively the same. To check correct operation of the mission analysis, the
sensitivity study was repeated for when only the downer technology is included, which
indeed shows the correct sign for kM ,downer. With this confirmation, the incorrect sign is
deemed insignificant, because the absolute value of the correlation is small.

The sensitivity analyses show that the QoI PRE−1 is sufficiently affected by the tech-
nologies and the other input variables. Thus, PI should have little to no bias towards
certain variables as a result from model insensitivities.

6.3. PI FOR A SINGLE TECHNOLOGY

Even though PI shows most potential over conventional approaches in the case of mul-
tiple objectives, this section starts with a single technology and a single objective. This
is because relevant design queries can be answered using this approach and it is a suit-
able stepping-stone for the more involved multi-objective technology prioritization in
the next section.

For a single technology queries of the form ”what technology impacts are required
for a given reduction of x% in QoI y? “ might be of interest. Such questions are easily
posed in PI, by constraining y and observing the changes in the technology parameters.
This section shows how PI enables answering such queries, specifically for the 2nd DOF
flap technology, introduced in subsection 6.2.4. Next, the use of PI to study technology
maturation is presented.
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6.3.1. INVERSE QUERY: TECHNOLOGY STATE REQUIRED FOR PRESCRIBED

BENEFIT
Studying what values the technology variables should attain for a given change in one or
more QoI is done using PI. The technology variables (δf,max, kM ,flap and ke ) are allowed
to move freely, while the other input variables are held fixed. A distribution is specified
on PRE−1 that reduces it by some amount for each percentile. The same bivariate dis-
tributions between MOE and MP and between δf,max and kM ,flap are constrained as well.

The results in Figure 6.14 follow intuition: the median PRE−1 has reduced by 15%, as
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Figure 6.14: Cumulative density functions for 2nd DOF flap technology with original (blue) distributions and
for a 15% PRE−1 reduction (red, dashed). The vertical lines represent the medians of the two curves.
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Figure 6.15: Probability density functions for 2nd DOF flap technology with original (blue) distributions and
for a 15% PRE−1 reduction (red, dashed).

specified. Correspondingly, the maximum flap deflection has shifted to the right, as has
ke . The deflection’s median went from 17 deg to 23 deg: an increase of 35%. At the same
time, its variance reduced by 40%. The median of ke increased by 13%, from 0.0245 to
0.0277, with a variance reduction of 14%. As expected, the distribution for kM ,flap shifts
to the left, as a result of the increase in δf,max. Likewise, cost has increased. The fact that
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variance is reduced is attributed to the constraint on PRE−1 having lower variance than
the original distribution. The corresponding PDFs are shown in Figure 6.15.

While traditional approaches may be able to obtain statistical measures such as the
mean and variance, PI provides a full distribution for the variables of interest, to fulfill
certain goals. With pure forward propagation approaches, that is only attainable through
iteratively updating the input distributions and propagating these through the models.

6.3.2. ALTERNATIVE USE OF PI: INVESTIGATING TECHNOLOGY MATURATION
Technology maturation can be modeled by updating the input distributions of the tech-
nology variables [87]. However, running the analysis models again to generate thou-
sands of samples is time-consuming. With PI, the same result can be achieved, provided
the updated distributions are within the range of the original distributions. Where the
traditional approach requires propagating N samples through the analysis models twice,
the PI approach only requires a single forward propagation pass.

For the 2nd DOF flap, the distributions of δf,max and ke are adjusted. The flap deflec-
tion now follows a triangle distribution from 12 deg to 30 deg, with its peak at 20 deg. The
Oswald efficiency impact is also provided with a triangle distribution from 0.02 to 0.036,
with a peak at 0.03. In both cases, the range of values is less than the original, uniform
distribution. Furthermore, more probability mass is located around the expected values:
20 deg and 0.03, respectively. Finally, since the dependency of δf,max with kM ,flap (recall
Figure 6.9, leftmost plot) has to be maintained, kM ,flap is given an updated uniform dis-
tribution corresponding with the range of values for δf,max.

In order to set up the PI problem, the new distributions on δf,max, kM ,flap and ke are
imposed as constraints. Furthermore, the joint distributions of MOE and MP, and δf,max

and kM ,flap are constrained, as well as all input variables that should remain unchanged.
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Figure 6.16: Cumulative density functions for 2nd DOF flap technology with original (blue) distributions for
δf,max and ke . After technology maturation the CDFs are computed with PI (red, dotted) and with forward
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that order.

As Figure 6.16 illustrates, the results from forward uncertainty propagation and PI are vir-
tually identical. The only noticeable difference lies in the lower percentiles of the δf,max

and ke CDFs. This is simply a result of not constraining PI at even lower percentiles.
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Regardless, the updated CDFs of cost and fuel burn show the same effect. The corre-
sponding PDFs are shown in Figure 6.17.

Comparing the median (50-percentiles) of these two QoIs, a 3% cost increase and
an 8% fuel burn (per passenger kilometer) are measured. Furthermore, the variance of
cost decreased by 51% and for fuel burn by 20%. For the forward propagation, a 3% cost
increase and 9% fuel burn reduction are computed. Thus, as Figure 6.16 already shows,
the two approaches give an almost identical result. However, the variance reduction
using forward propagation is more pronounced: 59% as opposed to 30% for PI. This is
attributed to the discrepancy in lower percentiles, mentioned earlier.

It should be re-emphasized that the above approach only works when the matured
technology distributions lie within the originally sampled distributions. That is because
PI can only re-weight existing samples; therefore, samples outside the original set cannot
be created or inferred. However, the modified distributions should not necessarily have
the same shape as the original ones.

6.4. PI FOR TECHNOLOGY AND PORTFOLIO SELECTION
In contrast to the previous test case, all three technologies are investigated here. Rather
than inspecting a single technology, the differences between all portfolios resulting from
multiple technologies can be studied. A portfolio is simply a set of included technolo-
gies, represented as a vector, where each entry corresponds to a technology and is 1
when it is included and 0 otherwise. Thus, there are 2n portfolios in total, where n is
the amount of technologies. Additionally, the strength of PI is showcased: dealing with
multiple objectives. Rather than only having PRE−1 as goal, cost is a goal as well.

For the present study, the resulting CDFs for PRE−1 and cost are depicted in Fig-
ure 6.18 for each portfolio. It becomes clear that in terms of PRE−1 , portfolios with tech-
nology 3 (third digit is 1) perform better than the ones without it. The portfolio with
all technologies included (111) performs best (it is furthest to the left), which can be
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expected since none of the technologies were defined to have negative effects on fuel
burn. Second best is the portfolio 101, which combines technologies 1 and 3. The worst
portfolio is the baseline (000). Thus, already from that figure, if PRE−1 is the only re-
quirement, an ordering and selection of the portfolios can be made. However, with cost
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Figure 6.18: CDFs of PRE−1 and cost for multiple portfolios.

(see Figure 6.18) there is an opposite trend: the more technologies included in a port-
folio, the higher the cost. So here, portfolio 111 performs worst (furthest to the right)
and the baseline performs best. There is a different spread in the CDFs for cost, so when
constraints are imposed on fuel burn and cost simultaneously, there is no direct way of
telling which portfolio performs best. Consequently, concluding which technologies are
most promising is not directly observable anymore.

6.4.1. TECHNOLOGY PRIORITIZATION WITH MULTIPLE OBJECTIVES

The strength of PI lies in its ability to deal with multiple, possibly conflicting, goals. How-
ever, the way in which the constraints are set up affects what query is posed to PI and
provides different results. For this study, the multi-objective constraint should guide
the obtained samples towards the Pareto front of fuel burn and cost. That way, we learn
which distribution of portfolios is closest to the Pareto front. Thus, this distribution gives
the best trade-off between the objectives.

As pointed out by Binois et al. [173], there is an analogy between Pareto fronts and
the level curves of a copula1. The zero-level curve of a copula corresponds to the Pareto
front of the multivariate distribution that the copula represents. In order to redistribute
the samples closer to the Pareto front, new margins have to be specified for the objective
variables. However, specifying new margins alters the copula as well, because the cop-
ula is computed from the margins as explained in subsection 2.8.3. This is not desired,
because the dependency captured by this copula is a result of the model and should be

1A level curve of a multivariate function f is formed by all solutions {x} where f (x) = c, i.e. where the function
f has a given value c.
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treated as a physical fact. Therefore, the copula itself has to be constrained. Such a con-
straint can be implemented as the sum on the margins in copula space (the variables
Ui in subsection 2.8.3). Furthermore, this sum has to be updated every iteration of IPF,
because IPF updates the margins on every iteration. The quantiles of the sum are kept
constant, though, because that will fix the copula.

To demonstrate this procedure, both a PRE−1 target and cost target are specified.
The PRE−1 target are the percentiles of the 111 portfolio CDF. The cost target are the
percentiles of the baseline CDF (000 portfolio). These are the extremes of the sample
space, as shown in Figure 6.18.

IPF performs exactly as intended with the constraints on the margins of PRE−1 and
cost and a constraint on their copula. The margins are satisfied and the copula is hardly
affected, as Figure 6.19 and Figure 6.20 show. The obtained CDFs (see Figure 6.19) match
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Figure 6.19: Comparison of initial, specified and obtained CDFs for PRE−1 and cost, using PI with a multi-
objective constraint.

the specified CDF perfectly at the constrained percentiles. From the 95th percentile on,
the CDFs do not match, which is to be expected due to the discrete nature of PI. The
level curves after PI (red, dashed lines in Figure 6.20) are in the same location as the
initial ones (black, solid), although they wiggle around these somewhat. That is a result
of the discrete constraints, in combination with only a relatively small subset of samples
receiving most of the weight after PI. It can be shown that the copulas before and after
PI are very similar by computing the Pearson correlation coefficients. In copula space,
the correlation initially was -0.3956, while after PI it is -0.3871: a difference of only 2%.
When the constraints are less stringent, even better agreement is obtained.

The previous results may be further explained by focusing on what happens in sam-
ple space. The bivariate distribution of PRE−1 and cost is shown in Figure 6.21 on the
left, with the level curves of the 2-dimensional CDF. These level curves are similar to the
ones of the copula in Figure 6.20. The center plot in Figure 6.21 shows how these level
curves shift after PI, due to the updated margins. All except the 95th percentile lines have
moved towards the lower left corner; thus, reducing both PRE−1 and cost. Furthermore,
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Figure 6.20: Comparison of copula level curves of PRE−1 and cost, before and after PI with a multi-objective
constraint.

the lines are closer together: the updated 90th percentile is on the initial 50th percentile,
and the updated 50th percentile on the initial 10th percentile. Therefore, the reweighted
samples are squeezed into a region closer to the Pareto front. In the right plot in Fig-
ure 6.21 the updated bivariate distribution is shown. Clearly, only few samples remain
after reweighting, which explains the non-smooth results observed in Figure 6.19 and
Figure 6.20.

As a result of the multi-objective constraint the portfolio and technologies frequen-
cies in the re-sampled set have changed as well. This is the result of main interest, and
it is shown in Figure 6.22. These frequencies are simply the amount of samples that
contain a certain portfolio or technology, with respect to the total number of samples.
The change with respect to the initial sample set is shown, because not every portfolio
or technology is equally represented in the initial set (i.e. the initial frequencies are not
uniformly distributed).

Mainly portfolios 001 and 101 have received more weight, leaving technology 3 to
see an increase in frequency as well. Technology 1 only suffers a small decrease, while
technology 2 clearly does not satisfy the imposed constraint. When selecting a portfolio,
it should be 101 as it is most featured in the re-sampled set, while technology 3 should
receive most development resources.

6.4.2. TECHNOLOGY PRIORITIZATION USING GROUPED SAMPLE RE-WEIGHTING

The previous results were obtained with individual sample re-weighting. However, the
grouped sample re-weighting approach should be considered as well. The difference be-
tween the individual sample re-weighting and grouped sample re-weighting approaches
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Figure 6.21: Comparison of bivariate distribution of PRE−1 and cost, before and after PI with a multi-objective
constraint.
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Figure 6.22: Portfolio and technology frequency shifts using PI with a multi-objective constraint.

can be considered by observing Figure 6.23. On the left, the bivariate distributions for
each portfolio of PRE−1 and cost are shown. This is the entire sample space that PI works
with. When constraints are imposed and PI is performed, only a subset of these samples
remains. The center plot in Figure 6.23 shows this for individual sample re-weighting. It
becomes clear that a lot of samples receive near zero weight to move the overall bivari-
ate distribution to the bottom-left corner. Moreover, the shapes of the colored bivariate
distributions (each corresponding to one portfolio) change as a result. That means the
underlying distributions of the variables for each portfolio have shifted (similar to the
single technology case in Section 6.3). This effect is desired when one is interested in
which portfolio has the most potential to satisfy the imposed goals, when it’s initial dis-
tributions are not set in stone. On the contrary, when the distributions for each portfolio
are well defined and should not be allowed to change, the grouped approach is needed.
It’s result is shown in the rightmost plot, where the bivariate distributions of two portfo-
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lios remain, while all others have zero probability mass. The shapes of these bivariates
have not changed with respect to the leftmost plot.
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Figure 6.23: Bivariate distribution of PRE−1 and cost when: left) no constraints are imposed, i.e. before PI,
center) the margins of cost and PRE−1 are constrained and with individual sample re-weighting, and right) the
margins of cost and PRE−1 are constrained with grouped sample re-weighting.

The grouped sample re-weighting has to be performed using PARFUM, because IPF
is very likely not to converge. That is because there is too little room to play when only
the weight of entire portfolios may be changed. For this reason, PARFUM will also not
achieve the specified margins exactly, but will get as close as possible. The distance be-
tween the initial, obtained and specified CDFs can be computed using the metric pre-
sented by Cook et al. [174]. This shows for PRE−1 that the initial distance to the specified
constraint is 6.1 ·10−5 and after PI it is 5.1 ·10−5. Similarly, for cost the initial distance is
0.24 and after PI it is 0.055. Because the distance after PI is not zero, the constraints are
not satisfied exactly. Nonetheless, the distance clearly reduces, which shows that PAR-
FUM moves towards those constraints. It is the direction in which the portfolio weights
change that we are interested in. These frequency shifts are shown in Figure 6.24. Tech-
nology 3 is clearly the best choice, as it is also the only portfolio that receives increased
weight, alongside the baseline portfolio. This is not too different from the individual
sample re-weighting result, except that technology 1 has completely dropped from the
re-sampled set.

6.5. DISCUSSION
In the foregoing, a probabilistic assessment of technologies is presented, and how to se-
lect those technologies based on their probabilistic outcomes. Conventional approaches
to this problem do not employ uncertainty. Instead, deterministic points are picked at
which the technologies are evaluated and selected on. In this section, the merits of the
current probabilistic approach are discussed, compared to the conventional approach.
Furthermore, some drawbacks are identified as well.

Using probability distributions instead of deterministic values not only reflects un-
certainty during the conceptual design phase, but also allows inclusion of difficult-to-
quantify QoIs. Take the cost in this study, for example, which is only reflected using
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Figure 6.24: Portfolio and technology frequency shifts using PI with a multi-objective constraint, grouped sam-
ple re-weighting and run with PARFUM.

engineering insight to increase with higher technology performance. A Gaussian noise
is added to introduce uncertainty in that assumption. The actual value of the cost metric
does not matter, as only the relative change is of importance. Similar approaches can be
taken to include strategic preferences, or metrics such as reliability or aesthetics. The
fact that a distribution is used rather than a deterministic, fixed point reduces the bias of
assumptions made during this process.

Another argument favoring the use of a probabilistic approach is when the effect of
technologies are highly non-linear in the QoIs. In the present work the effect of each
technology is fairly linear, which shows in Figure 6.18 as parallel CDFs. As soon as the
CDFs cross each other more, the benefit of a technology over another becomes more
ambiguous. Consequently, picking a deterministic point at which to evaluate them be-
comes more difficult and arbitrary.

IPF requires a set of samples, which is why sampling is used as the uncertainty prop-
agation technique. The obvious disadvantage of sampling is the computational cost.
Thousands of samples are no exception (we used 10 to 20 thousand samples in this
study), and for each sample, the analysis method has to be run. This incurs signifi-
cant computational time, especially for more advanced simulations (our simple mission
analysis takes a couple of seconds to run, so for all samples several hours are required).
In future studies, therefore, strategies to reduce the amount of required samples should
be researched. One idea is to not compute all portfolios, but only a subset that covers
the design space efficiently. Nonetheless, this issue is common to conventional sample-
based approaches as well. Conversely, PI itself is very fast, and incurs no significant time
expenditure.

However, because PI only relies on a sample file, any analysis method can be used.
Therefore, black-box simulations and complex function can be employed easily. The
only restriction is, again, that it is fast enough to generate thousands of samples.

Another effect of PI only relying on a sample file is that it can never exceed the bound-
aries defined by those samples. Thus, PI is confined to the design space covered by the
initial sample set. If, however, distributions after PI would skew towards the limits of
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their range, that would indicate that the design space is not large enough and a more
optimal solution may be found outside of the existing samples.

As the previous paragraph suggests, PI may be used to iteratively re-define the start-
ing distributions and dependencies for the analysis. In some cases, PI incurs a depen-
dency between variables that should not be there, requiring a statement of indepen-
dence. Otherwise, PI may generate a dependency that was not modeled, but should be
present from a physical or model perspective. Then, this dependency can be included in
subsequent runs of the analysis routine.

With respect to the accuracy of the results, two things can be said. First, PI is devised
to provide an approximation of the inverse of a stochastic function. Therefore, besides
the inputs and outputs being random variables, the re-distribution of these variables
due to PI is approximate. That is a result of the discretization of the constraints, and the
re-sampling rather than inverting of the function. Second, after re-weighting, the origi-
nal samples are re-sampled. Whenever sampling occurs, there is an associated sampling
bias, due to the random nature of a sampling process. This is expected to have very little
influence on the CDFs after PI, but it could show some shift in the portfolio and technol-
ogy frequency computations. Thus, it is advised to perform re-sampling multiple times
and take an average of the results, or show an error bar. Nonetheless, the deviations due
to sampling bias are expected to be small and when a large difference in frequency is
observed after PI, this likely outweighs any possible sampling bias.

Optimization approaches are an alternative to perform function inversion. When
the metrics used for optimization are in the form of probability distributions, only some
scalar measures of those distributions (e.g. mean and variance) are actually used as ob-
jective functions. PI uses the entire distribution directly; thus, keeps more information.
Furthermore, PI easily handles multiple objectives, without requiring some weighted
combination of the objectives as optimization approaches do. Finally, while optimiza-
tion approaches aim to find a minimum objective value, PI only targets a specified value.
It therefore is less inclined to push the boundaries of the design space. However, which
of the two methods is more appropriate depends on the problem at hand. For technol-
ogy prioritization, however, we advocate the use of PI.

PI also differs from design exploration methods in that it defines a new design space
that satisfies the specified requirements, rather than only selecting subsets of the initial
design space that meet those requirements. In other words, design space exploration
can only indicate the direction to move towards, while PI specifies the path to take.

6.6. CONCLUSION
The merits of a probabilistic approach towards technology evaluation and selection are
exposed in this chapter. Rather than evaluating a deterministic, fixed point design (e.g.
only one specific aircraft and mission), a technology is evaluated for an entire space of
aircraft and missions. Using probabilistic inversion, target distributions on QoIs are set,
which consequently result in different distributions on the input variables. This shows
how the technology variables (and possibly others) need to change in order to achieve
certain requirements. Similarly, when multiple technologies are combined into portfo-
lios, the combined effects are quantified, and probabilistic inversion shows how the fre-
quency of the technologies should change to achieve certain goals. Multi-objective goals
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can be imposed on PI, without having to be converted to a single-objective function,
as usually is done in design optimization. Moreover, PI can be used with any analysis
method, because it only relies on a set of samples obtained from the analyses. However,
that limits the complexity of the model, due to computational time constraints. Thus, PI
is a powerful tool during conceptual design to explore the technology design space and
prioritize technologies for selection.

This chapter concludes the technical developments of this dissertation. It completes
the process flow of technology representation, to portfolio generation, portfolio evalu-
ation and, finally, portfolio selection. The following chapter takes these developments
and synthesizes them into an overview that is compared to the state-of-the-art. Further-
more, it discusses how the method differs from actual practice in the MANTA project,
where this research originated from.



7
SYNTHESIS

157



7

158 7. SYNTHESIS

In this chapter, the state-of-the-art approach for technology evaluation and selection is
compared with the framework proposed in this dissertation. Both approaches are sum-
marized graphically and then compared in section 7.1. Subsequently, section 7.2 dis-
cusses the MANTA project. First, the technologies in MANTA are described, followed by
a description of the process that was implemented to reach the selection of two final
technologies. Then, a description is given of how the methodology proposed within this
dissertation may be applied, in section 7.3.

7.1. METHOD OVERVIEW AND COMPARISON WITH STATE-OF-
THE-ART

Let us combine the theoretic elements developed in the previous chapters to synthesize
a holistic methodology towards technology evaluation and selection. First, however, the
state-of-the-art method is shown, to establish a baseline on which the approach that is
presented in this dissertation improves.

7.1.1. STATE-OF-THE-ART METHODOLOGY
An overview of the state-of-the-art method is presented in Figure 2.4, which is an elabo-
ration of Figure 1.5(a). The method takes in a set of technologies and a system of inter-
est, which are combined into technology portfolios. These are subsequently described
with impact factors, which are chosen among a set defined by the available analysis tool.
The analysis tool then computes several quantities of interest, which are combined with
qualitative selection criteria, if there are any. These criteria are then scored and weighted
by a group of experts to produce the final technology ranking.

Notice how all the steps in this methodology are performed by the users of the method,
except for the computation of the quantities of interest. Furthermore, the technologies,
system of interest and technology portfolios are all represented in a textual format. Only
the impact factors and quantities of interest form numeric data. Also notice how the
state-of-the-art method does not contain any steps that are problem-independent. In-
deed, all steps have to be fully repeated for each technology evaluation and selection
problem.

7.1.2. DISSERTATION METHODOLOGY
The developments from Chapters 3 through 6 are shown together in Figure 7.1. This fig-
ure is an elaboration of Figure 1.5(b). The method starts with the ontology developed in
Chapter 3. Additionally, graphs, knowledge graphs and graph transformations form the
basis of the rest of the approach. The graph theory and graph transformations are out-
lined by dashed lines to indicate they are not developed as part of the method, but rather
included as a starting point. Based on the ontology, FOL rules, parameters and analysis
methods are defined. From that point on, the system of interest and technologies are
defined, which are combined into technology portfolios. These are parameterized us-
ing the analysis methods. Then, the user is queried for the quantities of interest, input
variables and their (joint) distributions. This data is combined into the computation
graphs, which enable the evaluation of the quantities of interest, either probabilistically
or deterministically. Assuming a probabilistic approach is adopted, the method results
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in distributions on all variables, which can be fed into the probabilistic inversion (PI)
method from Chapter 6 to produce a final ranking of the technology portfolios.

The proposed method clearly shows three separate layers: a problem-independent
layer, a unique layer for a problem, and a variable layer for a problem. A problem in
this context is a set of technologies and one system of interest, to be fed into the tech-
nology evaluation and selection process. Thus, everything up to the analysis methods
is problem-independent. That is a result from the context that the ontology provides to
how parameters and analysis methods are specified. The ontology also forms the build-
ing blocks for the knowledge graphs that describe the system of interest and technolo-
gies. The unique layer is a set of elements of which there are only one in a problem.
Obviously, the system of interest and set of technologies belong here, as these together
define the problem. The portfolios and resulting system graphs are a direct result of the
SoI and technologies, and, in turn, the dependency graphs as well. Variable per prob-
lem are then the queries that are posed on the technology set. For each query, different
quantities of interest and/or input variables and/or distributions apply, which result in
different computation graphs and outcomes.

Notice that not all steps are executed by the users; instead, many steps in the unique
and variable layers are performed by the algorithms developed in the foregoing chap-
ters. Additionally, no information is stored in a textual format, but only in the form of
(knowledge) graphs or numerical data.

7.1.3. COMPARISON

It should be clear that the methods shown in Figure 2.4 and Figure 7.1 partially overlap:
they are effectively analogous in the unique and variable layers. In other words, from
the definition of the system of interest and set of technologies, portfolios are generated,
represented as numerical quantities, evaluated with some analysis method and then se-
lected based on a set of quantities of interest and/or selection criteria. However, there are
important distinctions in terms of who/what performs the steps, how the data is stored
and represented, and which steps are taken precisely.

First, the proposed method features significantly more automation than the state-
of-the-art approach. While in the latter only the evaluation of the quantities of interest
is performed automatically, the proposed methodology is automatic after the definition
of the SoI and technologies. It only requires user interaction to define the quantities of
interest, known inputs and their (joint) distributions.

Second, textual data is hard to parse, open to interpretation and does not allow for
analysis. Because of that, information is difficult to retrieve, share and reuse. Further-
more, textual data inhibits consistent and reliable decision making. In the proposed
approach, all data is either stored in a knowledge graph, or is numeric. This makes it
machine-interpretable and removes all the disadvantages that textual data has. There
are two objections to the use of knowledge graphs to store the data, however. First, gen-
erating the knowledge graphs is time-consuming and requires considerable knowledge
of the employed ontology. Second, for the rest of the approach to work automatically, all
quantities of interest must be numerical. That is also why Figure 7.1 does not feature the
selection criteria like Figure 2.4 does. These selection criteria may be subjective and rep-
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resented on an ordinal1 scale, whereas the proposed method only works with objective,
quantifiable criteria, measured on either interval2 or ratio3 scales. Of course, any sub-
jective criterion may be represented on such a scale with a numerical value. Otherwise,
one could incorporate subjective criteria in the final decision making process, in order
to circumvent this drawback.

Third, the proposed method involves more steps than the original approach, although
most of them are automated. Most notably, the extra steps involve the creation of the
dependency and computation graphs. Because these are unique for each technology
portfolio, the approach is more flexible and extensible than the state-of-the-art, where
typically one or few existing analysis tools are employed. This also removes the depen-
dency of the impact factors on the analysis tool. Sure, the parameterization of each port-
folio depends on the analysis methods that are applied to it, but each portfolio can have
a different set of parameters. Furthermore, the dependency graphs are created using a
pre-defined suite of analysis methods that are automatically mapped onto the system
graphs, as is elaborated in Chapter 5. This fact makes the approach modular and en-
ables novel analysis methods to be included, such that novel technologies can be readily
analyzed. As such, the gap between levels 1 and 3 in Figure 1.4 is reduced.

1An ordinal scale offers an ordering of its elements, where a larger value is better than a lower value. However,
the difference between two values has no meaning, i.e. the difference between 3 and 10 is interpreted as equal
to the difference between 3 and 7.

2An interval scale orders its values just like an ordinal scale does. However, in contrast to an ordinal scale, the
interval scale stipulates that the differences between values have a meaning. Thus, in an interval scale, the
difference between 10 and 20 is the same as the difference between 30 and 40.

3A ratio scale builds on interval scales by incorporating a notion of the ratio between values. That is to say, 20
is two times as much as 10, for example.
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Figure 7.1: Overview of proposed method for technology evaluation and selection. Refer to Figure 2.4 for a
legend of the icons and colors. The dashed lines indicate the component is used in the method, but not part
of it.
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7.2. THE MANTA PROJECT
This thesis research has its roots in the MANTA project, which was introduced in sec-
tion 1.3. MANTA stands for Movables for Next Generation Aircraft and was started to
develop and demonstrate innovative multifunctional movables that increase airframe
efficiency over the complete flight envelope of business jets (BJ) and large passenger
aircraft (LPA) as contribution to the societal challenge for this topic to reduce 3 to 5%
CO2. Therefore, one of the key quantities of interest for MANTA is aircraft fuel burn. In
MANTA, an initial set of 29 novel movable technologies was devised, to be analyzed and
down-selected to 2 technologies. One for a high-speed business jet (HSBJ) and one for a
large passenger aircraft (LPA).

Because of temporal misalignment, the methodology presented within this thesis
could not be applied to the MANTA project. However, MANTA provided interesting tech-
nologies for ideation, and a showcase of the state-of-practice in technology selection in
the aerospace industry. This section elaborates on that last point and as such, illustrates
some of the shortcomings with current practices that were introduced in Chapter 2.

In the following subsections, the technology evaluation and selection process in MANTA
is scrutinized in more detail than the previous discussion of Figure 7.2. The original 29
technologies are presented, after which the down-selection to the six technologies in
Figure 7.2 is explained. Then, the aircraft-level performance analysis, used to compute
the fuel burn, is discussed. Subsequently, the final technology ranking and selection
procedure is elaborated upon. Finally, a reflection on the adopted process is provided,
which shows where and how the deviations from the state-of-the-art method may have
affected the outcome of the MANTA project.

7.2.1. PROJECT OVERVIEW
The core task of the TUD during the first two stages of MANTA comprised the evaluation
of the proposed innovative movable technologies on aircraft level. In other words, the
quantities of interest (mainly fuel burn) were to be estimated for each technology, on
both a notional high-speed business jet (HSBJ) and a large passenger aircraft. Therefore,
the decision problem entailed a set of technologies, of which only two could be selected
for further research and development. One technology was to be selected for the busi-
ness jet platform, while the other would be selected for the LPA.

Within the section Flight Performance and Propulsion (FPP) of the Faculty of Aerospace
Engineering at TUD, the aircraft-level assessment of the MANTA technologies was con-
ducted by the author of this dissertation. At FPP, there is a conceptual aircraft design tool
called the Aircraft Design Initiator (Initiator for short). While its purpose is to produce
consistent airplane designs at conceptual level, it was used within MANTA to investigate
the impact of the movable technologies on conventional aircraft architectures — the BJ
and LPA. The Initiator consists of multiple modules that perform sizing and analysis of
various aspects of an aircraft, such as the mass distribution, longitudinal stability, struc-
tural layout, cabin layout, engines, aerodynamics, etc. It starts a sizing routine from a set
of top-level requirements, which are specified by the user. Several settings and param-
eters can be tweaked to guide the program to certain solutions. However, the Initiator
lacked the ability to receive a fixed aircraft design and consecutively introduce technolo-
gies and measure their effect on certain quantities of interest.
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For MANTA, an intermediate solution was implemented. The technology evaluation
and selection process adopted in MANTA largely followed the state-of-the-art approach,
as can be seen by comparing Figure 7.2 to Figure 2.4. The Initiator was modified to keep
a certain fixed aircraft baseline and the technologies were introduced as changes to ex-
isting variables in the modules of the Initiator. That is, they were modeled as k-factors
[31]. However, as shown in Chapter 7, many of the MANTA technologies are intricate,
small changes relative to the entire aircraft, and, as such, the Initiator lacked sensitivity to
those changes. Furthermore, many of the intricacies of the MANTA technologies could
not easily be captured in the existing variables and parameters present in the Initiator.
This demonstrates the need for a more systematic approach to technology assessment
at aircraft level.

The technology evaluation and selection approach adopted within MANTA is exten-
sively discussed in the following subsections, but Figure 7.2 provides an overview of the
entire process. There are four distinctions between the state-of-the-art approach and
the one that was conducted in MANTA. First, there are two systems of interest: the high-
speed business jet and the large passenger aircraft. This distinction is not impactful, be-
cause the two were kept clearly separated within MANTA, and can, therefore, be seen as
two distinct technology selection processes. Second, the adaptive secondary air intake
technology was selected for further development based solely on the fact that it is an ex-
cellent morphing technology demonstrator. This choice technically disregards MANTA’s
project objective and disregards the state-of-the-art approach for technology selection.
Third, the five technologies that were evaluated in terms of their impact on aircraft fuel
burn, had to be represented with only three technologies, because the available impact
factors disallowed a distinction between two pairs of them. Fourth, and finally, the five
technologies were only ranked based on a set of qualitative criteria, while disregarding
the quantified effects on aircraft fuel burn. In fact, the TRL was also disregarded in the
final technology ranking, while both TRL and fuel burn form MANTA’s project goals.

7.2.2. TECHNOLOGIES

At the start of the MANTA project, the consortium came up with 29 technologies, listed
in Table 7.1. The technologies can be categorized into four target applications:

1. Adaptive outer wing and winglet (LPA)

2. Multi-functional flap and adaptive trailing edge (HSBJ)

3. Morphing air inlet (LPA)

4. Morphing spoiler (LPA), formerly the Affordable leading-edge slat

Each target application has one of the two aircraft platforms associated with it. Several
of the technologies are illustrated in Figure 7.3. An example of the second degree-of-
freedom flap is shown in Figure 6.6, and the rotating winglet downer in Figure 6.7.

Note that the morphing air inlet target application only has one technology in it:
the adaptive secondary air intake. After some time, Airbus decided it was no longer in-
terested in the morphing spoiler and leading-edge slat target application. Additionally,
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Table 7.1: Innovative movable technologies proposed in the MANTA project. The six technologies in bold were
selected in a first trade-off.

Technology Platform Score 1 Score 2

Adaptive winglet LPA -1 3
Winglet with conventional tab LPA -1 3
Morphing trailing edge for a winglet LPA 0 8
Rotating winglet downer LPA -1 3
Folding wing-tip featuring load alleviation LPA 2 10
Morphing trailing edge for the wing LPA 2 8

Adaptive shock bump HSBJ -1 -1
Shock bump combined with adaptive flap HSBJ 0 4
Loads management with adaptive flap and ailerons HSBJ 0 8
Segmented ailerons HSBJ 1 5
Micro-geometric spoiler HSBJ -1 -1
Morphing spoiler HSBJ 2 10
Full-span segmented-flap system HSBJ -1 -1
Morphing flap with eccentric rod HSBJ 1 3
Second degree-of-freedom flap (inside track) HSBJ 2 10
Second degree-of-freedom flap (outside track) HSBJ 4 12
Load-bearing flap-support fairing HSBJ 2 6
Internal kinematic solution for flap deployment HSBJ 1 9
Thermoplastic welded multi-spar flap box HSBJ 3 2
Flutter suppression flap HSBJ -2 -6
Gust alleviation using pressure adaptive material HSBJ 3 8

Multi-functional / Reduced track leading edge slat LPA 4 12
Smart leading edge droop nose LPA 1 7
Multi-bar linkage deployment slat LPA 2 4
Corrosion resistant steel slat-track LPA 1 1
Silent multi-functional Krueger flap LPA 1 3

Adaptive secondary air intake LPA 4 12

Double hinged rudder LPA 2 2
Relaxed static stability - 5 13
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the morphing air inlet proved to be an excellent proving ground for morphing technol-
ogy, and was determined to be included in the final set of technologies henceforth. As
a result, the two technologies to be selected would come from either the first or second
target application.

Before any quantitative analysis was conducted, the consortium decided to reduce
the available set of technologies even further, to make the evaluation tractable. This is
precisely the type of decision the method from this dissertation aims to prevent. A set
of metrics was defined to score and rank the technologies qualitatively. These metrics
are depicted in Figure 7.4. A technology impact matrix was constructed, of which an
excerpt is shown in Figure 7.5. Particularly, the six remaining technologies after this ini-
tial selection round are shown. For these technologies, a quantitative analysis has been
performed to select one for each of the two target applications (or platforms). Note that
the adaptive air intake would be selected no matter what (as a third technology). That
decision resulted from the realization that the adaptive air intake would be the most ef-
fective demonstrator of morphing technology. However, the decision actually clashes
with the project statement, and the decision bypasses the whole technology evaluation
and selection process. Ideally, that should never happen.
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Figure 7.2: Overview of MANTA process for technology evaluation and selection
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(a) Winglet tab (b) Morphing winglet (c) Morphing slat

Figure 7.3: Illustrations of several of the MANTA technologies

Figure 7.4: Impact metrics for MANTA with color coding, identifying a percentage change required for a certain
qualitative impact.
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Figure 7.5: Impact matrix for MANTA
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7.2.3. AIRCRAFT-LEVEL PERFORMANCE ANALYSIS
For the evaluation of the impact of each technology on aircraft fuel burn, the Aircraft De-
sign Initiator [175, 176] — or Initiator, for short — was employed. The Initiator consists
of a series of disciplinary analysis and sizing modules that are combined in an efficient
framework. The individual analysis modules are continuously updated with improved
analysis methods to enhance the reliability or flexibility of the Initiator.

The Initiator typically generates a conceptual sizing of an aircraft design from top-
level requirements. However, in this case, the two target platforms were to be modeled
and kept fixed, whilst only changing parts that reflect the implementation of the MANTA
technologies. Both the LPA and HSBJ were modeled such that the Initiator would pro-
duce a design with key characteristics similar to the specifications of the reference air-
craft.

Even though the Initiator consists of a plethora of analysis modules, and we even in-
cluded a newly developed maneuver load alleviation analysis method, it lacked the capa-
bility to model all intricate details of the MANTA technologies. For example, the Initiator
does not support enough detail to model the various actuators and kinetic mechanisms
required for the different movable technologies. Furthermore, the aerodynamic model
does not support the various movables. Therefore, the common approach of k-factors
(see section 2.1) was adopted to model and quantify the technologies. The k-factors al-
ready exist as input variables to the Initiator modules and coarsely capture the effects
of the technologies. Six k-factors made up the analysis: CLmax,landing , SFC, ∆ wing mass,
∆CD0 , ∆CDinduced and ∆ flight control mass. These k-factors were subsequently fed into
the analysis methods of the Initiator to estimate the aircraft fuel burn for a given mission.

Another problem presented itself during the MANTA project. The consortium part-
ners were unable to provide estimates for these six k-factors. Because of that, it was cho-
sen to perform a sensitivity study where each k-factor was increased and decreased by
5% with respect to the baseline value, and observe the effect on the quantity of interest
— fuel burn. This would provide a guideline of what would be required for any amount
of fuel burn reduction.

The sensitivity of fuel burn with respect to the six k-factors is shown in Figure 7.6(a)
for the LPA and in Figure 7.6(b) for the HSBJ. Notice how the specific fuel consumption
(SFC) is the most influential factor, for both platforms. The zero-lift drag CD0 is in sec-
ond place for both. Beyond that, the ranking of the k-factors differs per platform, which
should translate into different technologies performing differently.
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(a) LPA

(b) HSBJ

Figure 7.6: Sensitivities of the two MANTA reference platforms to six k-factors
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7.2.4. FINAL SELECTION

The final selection criteria do not include the impact of the technologies on the aircraft
fuel burn. Even though MANTA’s objective is to reduce fuel burn by 3-5%. The following
reasoning can be found in the selection report:

“Although, the aim of MANTA is to increase the potential of movables, we
decided not to include aircraft performance into the criteria list. The reason
is that flap concepts would outrank winglet concepts on this criterion and
therefore a split is applied between flap concepts and winglet concepts. In
addition, the concepts are ranked by weight. Aircraft performance is largely
dictated by component weight and aerodynamic shape. The aerodynamic
shape is a criterion, even so the weight. If we would also add aircraft perfor-
mance to the list, we would count it twice. Therefore, this criterion is not, as
such, in the list.”

Ironically, this also happened to another of the key technology metrics:

“One of the goals of MANTA is to developing promising concepts to TRL4-
5. This is translated as feasible within MANTA. However, this is a yes or no
rating and through this difficult to rate. Therefore, this criterion was not
included in the list.”

The final selection criteria that were used to rank the technologies can be found in Ta-
ble 7.2. For the remaining five technologies (the sixth, adaptive air intake, technology
would be further developed regardless) these criteria were evaluated loosely based on
available quantitative data, but mostly based on expert judgment. The final scores and
ranking are shown in Table 7.3. Some interesting observations can be made here. For
example, the “Sensitivities vs. sizing and integration” and “Safety” criteria proved indeci-
sive, as they provide equal scores to all concepts within that target application. Because
these are qualitative criteria, it is very likely the experts were unsure how exactly the
technologies differed in these aspects, and conservatively gave them identical scores.
Another observation is that the two chosen best technologies are also best when both
target applications would not have been separated. This shows the decision was invari-
able to the target application division.

7.2.5. REFLECTION

The assessment of the criteria and scores in Table 7.3 may have been biased. Before the
selection was made, the consortium already had preferred technologies and the decision
matrices were filled out to favor the desired outcomes. This observation is seconded by
Peerlings [177, p. 133], who investigated the project’s plan, deliverables and minutes of
meetings. A discrepancy between the stated objective of a fuel burn reduction combined
with elevating technologies from TRL 1-3 to 4-5 and the consortium’s industrial interests
was noted. Thus, it is clear that there were implicit considerations and objectives when
selecting among the available technologies. Although there is no hard scientific evidence
for this, it appears that this occurs frequently in decision making with qualitative crite-
ria. Decision makers should at least include a “preference” criterion. While this does
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Table 7.2: Final selection criteria for MANTA technologies
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Table 7.3: Final decision matrix for five final technologies

Selection Crite-
ria

Winglet Concepts Flap Concepts

Morphing
tab

Conventional
tab

Rotating
downer

Outside
track

Inside
track

Geometrical
constraints

41 33 25 29 15

Sensitivities
vs. sizing and
integration

9 9 9 27 27

Safety 33 33 33 27 17
Weight 57 71 43 71 77
Cost 48 54 66 66 44

Score 188 200 176 220 180
Rank 2 1 3 1 2
Selected no yes no yes no

not remedy the bias, it makes the consideration explicit, rather than factor it into other
criteria implicitly. This improves the transparency and repeatability of the decision.

Another questionable decision during MANTA was when the initial set of technolo-
gies was reduced to the six technologies for which a quantitative analysis was performed.
Given the qualitatively scored impact matrix in Figure 7.5, and scores on the impact met-
rics, the total scores in Table 7.1 are obtained. The weighting scheme is provided in Ta-
ble 7.4 Even though the weights of the impact metrics have been defined a posteriori,
there is some mismatch between the selected concepts and the highest scoring tech-
nologies in this list. Most notably, the multi-functional (reduced track) slat concept in
the Affordable Slat target application performs as well as the adaptive air intake, while
that whole target application was dropped. Furthermore, the morphing spoiler performs
equally well to the second DOF flap with inside track actuation, and received its own
target application that replaced the slat target application. Nonetheless, the morphing
spoiler was excluded from the final technology selection. The outer wing and winglet
target application shows the most discrepancies: the conventional tab for winglet and
rotating winglet downer have significantly lower scores than the morphing trailing edge
for winlget, folding wing-tip and morphing trailing edge. The last two were not included
for the final selection, while they are among the top three scoring technologies for this
target application. Finally, relaxed static stability appears to be a very interesting tech-
nology for the MANTA objective, but was not considered, because it is outside of the
expertise of the consortium.

7.3. APPLICATION OF METHODOLOGY TO MANTA
This dissertation focuses on formalizing and automating the technology evaluation and
selection process. The ability to formally capture knowledge about technologies is a ben-
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Table 7.4: Two weighting schemes for Table 7.1

Impact metric Score 1 Score 2

Mass (component) 1 1
Mass (aircraft) 1 5
Aerodynamic Efficiency 1 5
CL,max 1 3
Power 1 5

Table 7.5: Functions of the movable technologies in MANTA

Function Sub-functions

Mass reduction

Maneuver load alleviation
Gust load alleviation
Smaller component
Lighter material

Drag reduction

Zero-lift drag
Wave drag
Induced drag
Trim drag
Laminar flow

High-lift performance increase CL,max increase

efit, and the resulting automation reduces repetitive human effort and increases consis-
tency. A framework is developed herein that should achieve these benefits, but it has
not been applied in practice. How that may be done is illustrated in this section for the
MANTA project. It directly constitutes an interesting direction for future work: how may
the herein developed method be applied in practice and what benefits are realized, and
what limitations present themselves?

For each of the original 29 technologies, several functions were assigned, which in-
dicate what each technology was supposed to do. Among these functions severe re-
dundancy was present. Therefore, a representative set of only three functions could be
identified. Some of these may be broken up into different causes that attribute to them.
These functions are shown in Table 7.5.

These functions correspond well to the k-factors with which the sensitivity study in
subsection 7.2.3 was performed. However, the specific fuel consumption (SFC), whilst
being the most influential, is not represented in these functions. Some of the technolo-
gies feature different amounts or types of actuators, and/or require more or less activa-
tion of control surfaces throughout a flight. Therefore, it seems logical that the power
requirement, along with the time of activity, should be included in the evaluation. Ef-
fectively, the hydraulic (or electric) power required by the new technologies extract that
power from the engines at the time instants that they are used; thus, temporarily in-
creasing the SFC. This increases the fuel burn, and so this effect is not a function, but is
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important to take into account, nonetheless.
Knowing these are the functions that the technologies have, and knowing the effects

that they have, the baseline system can be modeled. At the very least, we need to model
an aircraft consisting of a fuselage, wings, horizontal tail, vertical tail, engines and ac-
tuation system. The wings should have flaps, ailerons, winglets, slats and an actuation
system as parts. The fuselage has an auxiliary air intake.

The case study in Chapter 6 already showed how the second-degree-of-freedom flap
technology can be integrated into a mission analysis method for estimation of the fuel
burn at aircraft level, including uncertainty. The flap deflection was coupled to the wing
mass reduction (as an effect of MLA) through a bivariate probability distribution. Fur-
thermore, a bivariate distribution between the flap deflection and drag coefficient was
established. Together, these distributions would affect the input variables to the mission
analysis, which, combined with a flap deflection strategy throughout the flight simula-
tion, would result in a fuel burn impact. However, this approach does not enable us to
distinguish between the two flap concepts proposed within MANTA: one with the actu-
ation inside the track, and another with actuation outside of the track. The main differ-
ences are these:

• Inside track actuation removes the need for flap track fairings. Therefore, the wet-
ted area and consequently zero-lift drag of the aircraft are reduced.

• Outside track actuation does not penetrate the rear spar. This saves weight.

• Outside track actuation does not intersect the fuel tank, thus does not require dry
bays. A larger usable fuel volume results.

• Inside track actuation has lower power requirement (for the specific concept pre-
sented in MANTA).

• Outside track actuation has lower system weight.

When modeling these two alternative flap concepts, we require a few more components
in the baseline system description: the wing rear spar, fuel tank and flap track fairings.
Then, the inside track actuation concept is modeled with the following alterations the
system: removal of the flap track fairing components, change of the spar geometry (and
volume and mass), introduction of the actuation system with associated weights and
power requirements, and reduction of the fuel tank volume. The outside track actuation
concept only introduces its actuation system with associated weights and power require-
ments, and changes the flap track fairing geometry (and wetted area). The components
only have to be modeled with a mass and power requirement at first, but could be fully
analyzed with proper analysis methods when these are available and computationally
tractable. The flexibility and extensibility of the presented method allows all of the com-
ponents to be taken into account, without any further work required by the analyst.

All the other MANTA technologies have to be modeled analogously to the flap tech-
nologies as described in the foregoing. Now, the method requires the ability to analyze
the quantities of interest using the knowledge graphs and transformation rules. For that,
the analysis methods have to be specified. Fortunately, not too many methods are re-
quired for MANTA, although many of them involve complex physics. Table 7.6 shows
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Table 7.6: Required analysis methods for holistic aircraft performance assessment within MANTA

Analysis method Computes Sensitive to

Engine performance SFC
Flight condition, Drag,
Power requirements

Aerodynamics
Lift and drag coeffi-
cients

Flight condition, geometry,
control surface deflections

Aerodynamics delta
Change in lift and
drag coefficients

Flight condition, surface
imperfections, laminar
flow

Actuation Power requirements
Flight conditions, control
surface deflection rate,
hinge kinematics

Mass Mass
Component hierarchy, ge-
ometry, material, loads

Longitudinal stability
Required lift coeffi-
cient, trim angle

Flight conditions, mass bal-
ance, geometry

Geometry
Volume, component
mass

Geometry, material

the analysis methods that would be required to perform a medium-fidelity assessment
of the MANTA technologies. While the required level of fidelity is not made explicit,
the required sensitivities rule out empirical models in most cases. Therefore, mostly
physics-based models, which rely on geometrical input are required.

The rest of the methodology proceeds similar to the test case in Chapter 6, section 6.4
for the mission analysis of an aircraft with the second degree-of-freedom flap. To sum-
marize, the computation graph for each portfolio (or technology in this case) is created
following the process from Chapter 5, subsection 5.1.3. Subsequently, the probability
distributions and joint distributions for the input variables should be specified as ex-
plained in Chapter 6, subsection 6.2.3. Finally, following a Monte Carlo simulation of the
computation graph, probabilistic inversion can be utilized to answer queries about the
quantities of interest. In case of MANTA, a target on the fuel burn should be specified
that reduces it by 3-5% over the entire range in the CDF and then the frequency shift of
the technologies indicates which technologies are most likely to realize that benefit.

7.3.1. DISCUSSION OF METHOD APPLICATION
The majority of the workload induced by the proposed methodology resides in the con-
struction of knowledge graphs for the various systems and technologies that have to be
evaluated. In this section, the discussion is focused on the amount of detail that is re-
quired to construct these knowledge graphs, and what the drawbacks and benefits are.

HOW MUCH DETAIL?
Normally, the technologies have to be modeled in as much detail as needed. The base-
line system should reflect that level of detail as a consequence. However, within MANTA,



7.3. APPLICATION OF METHODOLOGY TO MANTA

7

177

combinations of technologies are not to be considered. Because of that, the compati-
bility matrix or technology enabling dependencies do not have to inferred, and we are
only interested in analyzing the performance of the system with each technology imple-
mented. Another reason neither the system nor the technologies need to be described
in much detail is the lack of sophisticated analysis methods. Although some of the tech-
nologies represent small changes to the aircraft and influence aerodynamic properties
very locally (e.g. the shock control bumps), most technologies present larger changes
to either mass or aerodynamic efficiency, or both. In those cases, a low-fidelity analysis
method suffices and the k-factor approach can be adopted.

There is only one objection to that approach. It reduces the method to a k-factor
analysis, where the knowledge about the technologies is lost. So, while for the analysis
of the technologies nothing more is required, one should still model the technologies in
sufficient detail to capture form, function and behavior. This becomes especially evi-
dent when modeling the flap and winglet technologies from Table 7.3. In terms of the
k-factors, the inside and outside flap track concepts are indistinguishable. The same
holds for the morphing and conventional tab for the winglet.

One may now wonder why to go through the trouble of describing these technologies
in detail in knowledge graphs. Why not just use the k-factor approach as that is what it
boils down to? The argument against this viewpoint is that the k-factor approach loses
information and does not allow for subsequent, more detailed investigations. Instead,
when capturing the technologies properly, the methodology in Chapter 5 allows them
to be analyzed using the k-factor approach, but also with more sophisticated analysis
methods, such as finite-element or finite-volume methods. In fact, the MANTA con-
sortium partners used such advanced analysis methods to provide estimates for the k-
factors that could be fed into the holistic aircraft analysis tool. The proposed method
would allow those advanced analysis methods to be incorporated directly into the over-
all aircraft evaluation framework, which reduces the amount of assumptions and simpli-
fications. That, in turn, is expected to yield a more accurate quantification of the QoIs.

Apart from losing information about the technology, the k-factor approach has two
more potential drawbacks. In some cases, no k-factors are available to capture a certain
technology effect. For example, the Initiator (see Section 7.2.3) is unable to take into
account power requirements of hydraulic actuators. Now, we know that down the line,
those power requirements impact the specific fuel consumption (SFC). Thus, we could
employ a k-factor towards the SFC, but it becomes difficult to estimate the effect an ac-
tuator has on SFC. Furthermore, if multiple technologies impact SFC in such a way, we
have to establish dependencies between all of their impacts. That becomes tedious very
quickly.

The other potential problem is that a technology effect cannot be effectively mod-
eled by a k-factor. For example, the second degree-of-freedom flap is meant to have a
flap schedule that makes it deploy continuously and differently during flight, to have
the aircraft fly at its optimal lift-to-drag ratio at any combination of speed and altitude.
Capturing this effect in a k-factor would average the impact of such a time-dependent
process into a single number. Estimating that single number might prove difficult, and
result in a loss of technology information.
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BENEFITS OF EXTRA DETAIL

Consider the second degree-of-freedom flap concepts. Several geometrical changes are
made to the wing rear spar and the flap track fairings, for example. For now, we simply
gave the changes in mass, volume and wetted area as inputs, making the approach not
much different from a k-factor approach. However, thanks to the knowledge graph ap-
proach, where all the components and changes are explicated, there are two important
distinctions to the k-factor approach.

1. The system description can be indefinitely refined, and the flexibility of analysis
methods would allow the mass, power and other hierarchical properties to be up-
dated properly. Therefore, k-factors are effectively introduced on-the-fly where
and when they are needed, rather than requiring some overarching one that cap-
tures them all. For higher fidelity analysis methods, such a refined specification of
the mass distribution, for example, may actually be required. This ties in directly
with the second distinction:

2. More advanced analysis methods can more easily be applied to the evaluation of
the technologies. Instead of specifying the changes in mass, volume and area, a
CAD program could calculate these based on geometry. Because a change in ge-
ometry is defined in the knowledge graph (and transformation rule), only an ac-
tual value needs to be given to that geometry attribute. A CAD program could
be automatically linked to that attribute and the changes in derived properties is
computed on-the-fly.

A NOTE ON ANALYSIS METHODS

In most technology evaluation approaches, new analysis methods are developed to be
able to quantify new QoIs and represent the new technologies. This is still required with
the proposed method. The only difference is that the present method requires the ad-
ditional specification of the context graph for each analysis method. This graph ensures
the analysis method can be automatically applied, and ensures the analysis method is
easily reused in future studies. The modularity of the presented framework poses some
requirements on newly developed analysis methods: they should be as independent as
possible from other analysis methods and perform no overlapping computations. This
is already often the case in existing software tools, so should not pose a problem.

A NOTE ON ROBUSTNESS, CONSISTENCY AND TRACEABILITY

As section 7.2 exposes, the technology evaluation process executed within MANTA de-
viated from a structured approach in that some technologies were discarded outside of
the selection process, new technologies were introduced mid-way and some technolo-
gies got selected without a reason that reflects the project objective.

Applying the present method to MANTA would solve these issues. The formal rep-
resentation of the technologies reduces ambiguity and misinterpretation. Several meet-
ings have been held to discuss what actually was and was not meant and included with
certain technologies. Formally representing the technologies would remove the need
for such meetings, while making the knowledge explicit, such that it may be retrieved,
viewed and modified at any time by any of the involved parties. This greatly enhances
traceability of the evaluation and selection process.
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At the same time, because a lot of the intensive work is automated, no technologies
would have to be dropped before an actual evaluation has taken place. This makes the
selection process more detailed and, therefore, increases the trustworthiness of the re-
sulting decisions.

A central database could be constructed to serve as the authoritative source of truth,
making all analyses consistent, as the same assumptions and inputs are used. Further-
more, the automatic construction of an analysis sequence would remove the need for a
considerable amount of manual work. Additionally, unambiguous communication be-
tween various analysis methods would be baked-in to the the method. What happened
in MANTA is that detailed calculations were performed to estimate values of k-factors.
Then, these were communicated to another partner who performed the impact analy-
sis at vehicle level. Thus, additional communication and data sharing was required to
get the numbers from the one software to another. The automated analysis framework
would remove this problem.

7.4. CONCLUSION
This chapter synthesizes the developments from the foregoing chapters into one overview,
which is compared to the state-of-the-art. Furthermore, the MANTA project is discussed,
and how it deviated from the state-of-the-art. An example is provided of how the method-
ology from this dissertation can be applied to the MANTA project. From this, the re-
quired level of detail for the knowledge graphs is discussed. Finally, decision quality is
discussed, as it is relevant to the methodology, but has not been treated previously.

A comparison is made between the state-of-the-art method and the herein devel-
oped method towards technology evaluation and selection. Three key differences be-
tween these methods have been identified. First, the proposed method features signif-
icantly more automation than the state-of-the-art approach. Second, in the proposed
approach, all data is either stored in a knowledge graph, or is numeric. This makes it
machine-interpretable and removes all the disadvantages that textual data has in the
state-of-the-art method. Third, the approach is more flexible and extensible than the
state-of-the-art, because the dependency and computation graphs are generated on-
the-fly and uniquely for each technology portfolio. This also removes the dependency of
the impact factors on the analysis tool.

The graph-theoretic description of the technologies allows users to gradually increase
the level of detail. In turn, the analysis methods employed to analyze the technologies
can be of higher fidelity. Thus, as a project such as MANTA matures, the technology as-
sessment becomes more detailed and epistemic uncertainty is reduced, ideally leading
to a better trade-off.

In the following, and final, chapter, the developments from this dissertation and the
observations from the present chapter are summarized and the most important and rel-
evant conclusions are presented. In addition, recommendations for improvements and
future research are provided.
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This dissertation set out to develop a structured, repeatable and traceable method for the
evaluation and selection of novel technologies in complex engineering systems. Three
components of the methodology were identified: technology representation and port-
folio generation, technology (portfolio) evaluation and technology (portfolio) selection.
Before answering the main research question, this chapter answers the four sub-questions
into which the main research question was divided. Subsequently, the main research
question is answered as well. Based on the answers, recommendations for improving on
and extending the work are provided thereafter. Finally, an outlook to future research
and possible extensions of the framework is given.

8.1. CONCLUSIONS
Let us consider each of the four research sub-questions, and treat them in detail.

How to represent aircraft systems and technologies consistently and robustly, allow-
ing for accurate analysis during conceptual and preliminary design? A formal knowl-
edge representation is achieved through an ontology that aims to capture engineering
systems as realistically as possible. The basis of this ontology is formed by a combination
of three upper ontologies: Basic Formal Ontology (BFO), Information Artifact Ontology
(IAO) and Physics-based Simulation Ontology (PSO). With this ontology at the founda-
tion, engineering systems are captured in knowledge graphs. Knowledge graphs are flex-
ible data structures and, therefore, support the flexibility, extensibility and applicability
of the method.

Technology is defined in this dissertation as the application of knowledge to a system
in order to alter the system’s form or behavior to satisfy certain requirements. The key
insight following from this definition is to model aircraft systems as knowledge graphs
and technologies as graph transformation rules. Because the knowledge graphs describe
systems, the transformation describes the change to that system.

How to define dependencies between technologies, and how to characterize these de-
pendencies based on the physical behavior of the technologies? The dependencies
between technologies take two forms in this dissertation. First, when combining tech-
nologies into technology portfolios, technology incompatibility and technology enablers
are considered. Secondly, for the analysis of the technology (portfolio) performance, the
dependencies between the variables that model the technologies are captured. Tech-
nology incompatibility and technology enablers are inferred through dependencies be-
tween the graph transformation rules that represent the technologies. A first-order-
logic-based rule set is created that enables inference of dependent variables. It works
by stating generalized causal influences between properties of physical entities. A prac-
titioner can view which variables are considered as dependent by the rules, and specify
joint dependency structures for those.

How to analyze (novel) aircraft technologies in a consistent, reliable and robust man-
ner, such that their (combined) effects are characterized, with uncertain input met-
rics/parameters? The key insight to answer this question is that any framework for
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technology evaluation has to be modular and extensible. Modularity is achieved by spec-
ifying separate analysis models for different aspects of a system. A knowledge graph
specifies the pattern in a system that the analysis model applies to. A parameterization
algorithm is introduced that matches the patterns of the available analysis models in the
system. For each such a match, the required parameters are then introduced to the sys-
tem graph. This approach allows the system description to be completely independent
from the analysis models. Successively, a dependency graph is generated. The depen-
dency graph contains all possible computation directions between the variables in the
system. From this graph, a computation graph is distilled given the quantities of interest
and known input variables. The computation graph contains one specific possible com-
putation sequence to compute the QoI from the inputs. When the inputs are uncertain,
a Monte Carlo Simulation is performed to propagate the uncertainty to the QoIs.

How should a ranking of a set of technologies or technology portfolios be obtained
for multiple, conflicting, uncertain quantities of interest? The probabilistic inver-
sion (PI) technique is proposed to solve this problem. The technology selection problem
is framed as an inverse problem, which is solved with PI through sample re-weighting.
A desired distribution on the quantities of interest is specified and PI redistributes the
technology portfolios to come closest to that desired goal. The shift in frequency of
the technology portfolios offers a ranking of them. Because PI is implemented as a
sample-based approach, it works with any analysis method, as long as it computation-
ally tractable to generate thousands of samples. Additionally, it can solve a variety of
other queries that are relevant to technology evaluation.

Now, the main research question “How is an aircraft technology portfolio selected in
a robust, consistent and traceable manner to minimize an objective function, given
uncertain technology metrics, while including technology dependencies?” is consid-
ered. While there is no single correct answer to this question, the method developed
within this dissertation is one possibility. Thus, the technologies, aircraft system and
analysis methods have to be represented with knowledge graphs adhering to a physics-
based ontology. A set of algorithms ensures a robust, consistent and traceable process to
evaluate the objective function. Probabilistic inversion is employed to obtain a ranking
of the technology portfolios, based on requirements on the objective function. This ap-
proach offers several benefits over the state-of-the-art approaches towards technology
evaluation and selection:

• The formal knowledge representation removes ambiguity and enables a single source
of truth.

• Automatic portfolio generation, including technology compatibility and enablers
avoids the repetitive, labor-intensive and error-prone task of creating a technology
compatibility matrix manually. This improves the consistency of the generated
portfolios.

• Analysis methods are represented with context graphs, allowing them to be au-
tomatically applied to any given system. Furthermore, this explicates what the
analysis method models and quantifies, while supporting reuse and modularity.
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• Inverse technology design and selection queries no longer have to be computed
using an iterative approach, but can be answered directly with probabilistic inver-
sion.

8.2. RECOMMENDATIONS
The work done in this dissertation is only a start and several points for improvements
and further research are left open. The first point is the ontology for engineering systems.
The present ontology does not define common concepts, such as gas turbines or wings.
For the approach to be more easily used by industry experts, an ontology that defines
the concepts in their domain of discourse allows them to more easily create the required
knowledge graphs. Currently, each institution that employs a form of model-based sys-
tems engineering may have their own standard for describing systems. However, no gen-
eralized framework can be built around that, without requiring those institutions to fill
a lot of gaps. All inference rules would have to be hand-crafted, similarity is different
for each of them and when the standard is not well defined, automation becomes nearly
impossible.

The most important considerations to arrive at a suitable ontology are how to rep-
resent physical behavior and how to deal with granularity 1. These remain questions
yet to be answered. Nonetheless, the answer to these questions involves a fixed basis of
atomic universals that enable the description of any higher-level concept (e.g. an engi-
neering system’s behavior). Physical behavior may be classified using process profiles,
that reflect the physical laws as we know them: Newton’s law, the laws of thermody-
namics, Navier-Stokes equations, Maxwell’s equations, etc. The teleological view that
assigns functions to components and systems may be included in the ontology through
a functional basis, of which several have been developed in literature. Unfortunately,
many such developments are debatable and open to interpretation — something which
should be avoided; indeed, the ontology has precisely the goal to remove ambiguity by
providing sound definitions. Whether it is possible to arrive at an exhaustive basis of
physical behaviors is unknown. However, it is assumed to be possible, and that thought
is shared by Forbus [77]:

Qualitative Process Theory concerns the structure of qualitative dynamics.
We can view it as specifying a language in which certain commonsense phys-
ical models can be written. Can this language be extended to form a full lan-
guage of behavior for physical systems? Although I have not yet done so, I
will argue that the answer is yes, and that several advantages would result
from the extension.

The graph matching processes that occur frequently throughout the proposed method-
ology — to find patterns in host graphs — are based on (sub)graph isomorphism. In-
stead, they should be based on semantic graph matching, which is a form of inexact
graph matching techniques. The idea is to match graphs based on semantic equivalence,
rather than structure and corresponding labels. Inexact graph matching is still an open
area of research, so it is unlikely that a satisfactory solution already exists for complex

1Granularity refers to the different levels of decomposition of a system, see section 3.7
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knowledge graphs such as the ones encountered in this dissertation. Nonetheless, the
graph edit cost approach might already work sufficiently well provided the edit costs are
learned based on a database of (synthetically generated) valid graphs. The downside of
that approach is that the graphs in that database have to be labeled by a human expert.

In several places, first-order logic rules are used to infer dependencies between tech-
nologies or variables. Generally, these rules are crafted to represent physical causality,
such that the system can reason qualitatively about physics. That suggests that a learn-
ing algorithm could infer these rules by itself, given observations of some physical do-
main. Research into that has already been conducted, e.g. schema networks [150, 151],
interaction networks [152] or relational deep reinforcement learning [153].

The final recommendation is to create some mechanism to support the generation
of knowledge graphs. This could either be the integration of a background process into
existing CAD software, that automatically writes a knowledge graph from the drawing a
user makes. Otherwise, a question-answer system could guide the practitioner in con-
structing a knowledge graph by firing a set of questions based on the responses that ex-
plicate the modeler’s intent. Finally, suggestions to automatically complete knowledge
graphs can be learned from previous ones, much like how Google Search completes a
query.

8.3. OUTLOOK
Provided the recommendations are implemented, the methodology presented in this
dissertation can be extended to achieve more complex and interesting tasks. For ex-
ample, the method provides a notion of similarity between technologies and systems.
Then, that similarity extends to the variables describing these entities. Given similarity
between variables, values for them can be extrapolated from previously observed values
for similar variables. Thus, the computer system can take over expert judgment. A value
in this case would be a probability distribution. The degree of similarity additionally
introduces some uncertainty.

The methodology can also be combined with experimental testing to reduce epis-
temic uncertainty. Suppose, for example, a set of technologies is evaluated and no selec-
tion can be made, because the resulting probability distributions overlap, ruling out any
form of stochastic dominance. In many cases, this situation can be improved by reduc-
ing the (epistemic) uncertainty on the input variables, which typically describe aspects
of the technologies. With the PI technique, those variables that contribute most to the
uncertainty can be singled out. A dedicated test campaign can then be conducted to es-
timate the distributions for these variables with less uncertainty. Then, the technology
evaluation can be performed again, likely resulting in a clearer ranking than before.
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A
CONSTRAINT SATISFACTION

PROBLEM

A constraint satisfaction problem (CSP) is the question of assigning values to a set of
variables, that satisfy a set of constraints. Many problems can be framed as a CSP, such
as map coloring, Sudoku puzzles, or the subgraph isomorphism problem.

Formally, a CSP consists of three elements: a set of variables X = {X1, ..., Xn}, a set
of domains D = {D1, ...,Dn} for each variable and a set of constraints C = {C1, ...,Cm}. A
domain Di holds the allowable values {v1, ..., vk } for the variable Xi . A constraint Ci is a
tuple (X ,ri ), where X ⊆ X and ri (X = v ) a constraint function defined on the variable
assignment that returns true when the constraint is satisfied, and false otherwise.

A CSP can be solved using backtracking search, which is a form of depth-first search
that chooses values for a variable one at a time and backtracks to a previous point when
no valid assignments remain. There are other algorithms to solve CSPs, and extensions
or simplifications of the backtracking search that apply in certain specific forms of a CSP.
Algorithm 1 is plain backtracking search with some additional features:

• Either return the first valid solution, or return all possible solutions. The first op-
tion is relevant if we’re only interested in whether there is a solution. The second
option when we actually want to retrieve the solutions.

• Assign a score to a solution and return the highest scoring solution.

• Provide a partial (but consistent) solution, which is completed by the algorithm.
Suppose we already found a subgraph isomorphism, but now have a supergraph
of the subgraph and want to figure out if that supergraph is also a subgraph of the
host graph, then we use this feature.

The algorithms make use of some publicly known variables (i.e. across the proce-
dures):

• S : the set of found solutions
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• S: the current solution in the backtracking search

• GetFirst: a boolean specifying whether only the first solution of interest

• GetBest: a boolean specifying if the solutions should be scored and only those with
maximum scores are kept

• qmax: the maximum score of solutions found so far

Algorithm 1 Pseudo-code for Constraint Satisfaction Problem algorithm

Require: X 6= ;
Require: ∀Di ∈D : Di 6= ;

1: procedure CONSTRAINTSATISFACTIONPROBLEM(X , D, C , S0 (optional))
2: if S0 6= NULL then
3: S ← S0

4: else
5: S ←;
6: end if
7: qmax ← 0
8: S ←;
9: XR ←X

10: DR ←D

11: for all (Xi , vi ) ∈ S do
12: (XR ,DR ) ← FORWARDCHECKING(Xi , vi , XR , DR , C )
13: end for
14: BACKTRACK(XR , DR , C )
15: return S

16: end procedure

The SCORE function in Algorithm 3 has to be supplied whenever GetBest is set to true.
It assigns a score q ≥ 0 to a complete solution of the CSP. The maximum score qmax is set
to zero at the start of the CSP in Algorithm 1.

The forward checking procedure in Algorithm 4 only checks binary constraints. It re-
duces the domains for the remaining variables to the only remaining valid values, given
the current solution.

In theory, solving a CSP works regardless of the order in which variables are assigned.
However, a good heuristic that orders the variables can significantly speed up the algo-
rithm. The heuristic in Algorithm 5 selects the first variable that has the least amount of
valid values left to assign. The idea is that when a variable only has one valid value, all
further solutions should have that value. Thus, by first assigning it and then propagating
the constraints, we prune the remaining domains and fewer possible solutions remain.
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Algorithm 2 Pseudo-code for Backtracking procedure

1: procedure BACKTRACK(XR , DR , C )
2: if GetFirst and not GetBest and S 6= ; then
3: return
4: end if
5: if XR =; then
6: KEEPBESTSOLUTION

7: return
8: end if
9: if ∃Di ∈DR : Di =; then

10: return
11: end if
12: X j ← SELECTVARIABLEMRV(XR , DR )
13: for all v j ∈ D j do
14: S ← S ∪ (X j , v j )
15: (X ′

R , D′
R ) ← FORWARDCHECKING(X j , v j , XR , DR , C )

16: BACKTRACK(X ′
R , D′

R , C )
17: S ← S \ (X j , v j )
18: end for
19: end procedure

Algorithm 3 Pseudo-code for Solution Checking procedure

1: procedure KEEPBESTSOLUTION

2: if GetBest then
3: q ← SCORE(S)
4: if q > qmax then
5: S ←;
6: S ←S ∪S
7: qmax ← q
8: else if q = qmax and not (GetFirst and S 6= ;) then
9: S ←S ∪S

10: end if
11: else
12: S ←S ∪S
13: end if
14: end procedure
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Algorithm 4 Pseudo-code for Forward Checking procedure

Require: ∀Di ∈DR : Di 6= ;
1: procedure FORWARDCHECKING(Xi , vi , XR , DR , C )
2: X ′

R ←XR \ Xi

3: D′
R ←;

4: for all X j ∈XR \ Xi do
5: D j ←;
6: Ci j ←∀(X k ,rk ) ∈C : Xi ∈ X k ∧X j ∈ X k

7: for all v j ∈ D j do
8: if ØC ∈Ci j : C (Xi , vi , X j , v j ) 7→ false then
9: D j ← D j ∪ v j

10: end if
11: end for
12: D′

R ←D′
R ∪D j

13: end for
14: return (X ′

R ,D′
R )

15: end procedure

Algorithm 5 Pseudo-code for Variable Selection heuristic (minimum remaining values)

Require: XR 6= ;
Require: ∀Di ∈D : Di 6= ;

1: procedure SELECTVARIABLEMRV(XR , DR )
2: dmin ← min(|Di |∀Di ∈DR )
3: X textmi n ← Xi : |Di | = dmin

4: return X textmi n

5: end procedure



B
SUBGRAPH ISOMORPHISM

There are multiple solutions to the subgraph isomorphism problem. However, the al-
gorithm in Algorithm 6 is based on the constraint satisfaction problem (CSP), see Ap-
pendix A. Essentially, it first finds the mapping between the vertex sets of the two input
graphs G and L. Then, for each such solution, the corresponding edge maps are found.
Finally, attributes are mapped to one another. The algorithm could be significantly sim-
plified if the two following conditions are met:

1. Between every pair of nodes, there exists at most one edge.

2. For each node or edge, all attributes are unique, i.e. are distinguishable under the
employed equivalence definition.

In the case that these conditions are met, only the first CSP has to be solved. The edges
and attribute maps then follow directly from the node maps.

In any case, Algorithm 6 attempts to find the matches of L in G , if there are any. It
accepts a few optional parameters:

1. m0: a partial solution, i.e. L0 ⊂ L such that m0 : L0 7→G .

2. OnlyFirst: a boolean specifying whether only the first solution is of interest (the
algorithm terminates after a solution is found, without attempting to find more).

3. AttrValEquiv: a boolean specifying whether attributes are to be matched based on
name only (false) or on commensurate values as well (true).
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Algorithm 6 Pseudo-code for Subgraph Isomorphism algorithm

1: procedure SUBGRAPHISOMORPHISM(G , L, m0 (optional), OnlyFirst (optional), Attr-
ValEquiv (optional)) X , D, C , S0 (optional)

2: M ←;
3: XN ←V (L)
4: DN ,i ←∀vG ∈V (G) : XN ,i ≡ vG

5: CN ←;
6: for all eL ∈ E(L) do
7: CN ←CN ∪∃eG ∈ E(G) : eL ≡ eG

8: end for
9: MN ← CONSTRAINTSATISFACTIONPROBLEM(XN , DN , CN , m0, OnlyFirst)

10: for all mN ∈MN do
11: XE ← E(L)
12: DE ,i ←∀eG ∈ E(G) : XE ,i ≡ eG

13: ME ← CONSTRAINTSATISFACTIONPROBLEM(XE , DE , ;, OnlyFirst)
14: for all mE ∈ME do
15: XA ← A(L)
16: if AttrValEquiv = true then
17: DA,i ←∀aG ∈ A(G) : X A,i ≡ aG ∧ v(X A,i ) ≡ v(aG )
18: else
19: DA,i ←∀aG ∈ A(G) : X A,i ≡ aG

20: end if
21: MA ← CONSTRAINTSATISFACTIONPROBLEM(XA , DA , ;, OnlyFirst)
22: for all mA ∈MA do
23: M ←M ∪ (mN ,mE ,mA)
24: end for
25: end for
26: end for
27: return M

28: end procedure



C
GRAPH EDIT DISTANCE

The Graph Edit Distance (GED) algorithm from Refs. [148, 149, 178] is presented in this
appendix. The algorithm is an adaptation of the well-known A* algorithm, which is sup-
plemented with the assignment problem (Hungarian algorithm) to solve for the optimal
edit costs.

Rather than explicating the full algorithm, this appendix elaborates on some specific
implementation details, that are not clearly explained in the original papers. For the
main depth-first GED algorithm, see Algorithm 2 by Abu-Aisheh et al. [148]. In line 2,
they state to generate Cv and Ce . These are the cost matrices for the nodes and edges,
respectively. These can be generated following the structure in that same paper. In the
implementation for this dissertation, a cost matrix Ca is added as well, which is the cost
of substituting and/or inserting or removing attributes. The vertices V1 are then sorted
in order of ascending costs.

The tricky part of the algorithm is in estimating the upper bound U B of the graph
edit cost. The Munkres algorithm as described by Riesen and Bunke [178] is used for
this. This algorithm returns assignments for each vertex in g1 that pairs it with a vertex
in g2 if it is substituted, or none if it is deleted. Additionally, the edit cost of those assign-
ments is returned. In case the cost matrices are not square, the Munkres algorithm only
evaluates the min(|V1|, |V2|) node substitutions. Therefore, the maximum cost of deleting
and inserting the remaining elements has to be added. This is repeated for the edges and
attributes as well, as shown in Algorithm 7. Finally, the U B is increased by one, because
of the inequality operator in line 27 of the algorithm. If the first found upper bound were
to be the lower bound as well, the algorithm would never terminate. Note that replacing
the inequality operator with a ≤ operator would also solve the problem, but makes the
algorithm less efficient, because it starts investigating solutions that are just as good as
the currently best solution.

The BESTCHILD method simply returns the edit path for which g (p)+ lb(p) is small-
est. The lower bound lb(p) is computed using Algorithm 7. Rather than considering all
elements of g1 and g2, though, only the remaining elements are considered (i.e. those
that are not already present in the current edit path). However, neither Abu-Aisheh et al.
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Algorithm 7 Pseudo-code for computing upper bound U B in GED algorithm

1: U B , NS ← MUNKRES(CV )
2: U B ←U B +max(0, |V1|−NS ) ·CD

3: U B ←U B +max(0, |V2|−NS ) ·C A

4: U B , NS ←U B+ MUNKRES(CE )
5: U B ←U B +max(0, |E1|−NS ) ·CD

6: U B ←U B +max(0, |E2|−NS ) ·C A

7: U B , NS ←U B+ MUNKRES(C A)
8: U B ←U B +max(0, |A1|−NS ) ·CD

9: U B ←U B +max(0, |A2|−NS ) ·C A

10: U B ←U B +1

[148] nor Riesen and Bunke [178] explain very well how g (p) is computed. When only
vertices are considered, g (p) is simply the sum of the entries of the cost matrix for each
edit in the current edit path. However, to consider edges all previous vertex assignments
have to be considered. When u1 7→ v2 and u3 7→ v4 any edge in g1 between u1 and u3 can
be substituted with edges in g2 between v2 and v4. Edges in g1 that do not respect the
established vertex edits have to be deleted, and, conversely, such edges in g2 have to be
inserted.

Attributes complicate the computation of g (p) even further, because both vertices
and edges can contain attributes. Therefore, for each substitution of a vertex or edge,
the costs of substituting, inserting and deleting the associated attributes has to be con-
sidered. When a vertex or edge is deleted, all of its attributes also have to be deleted.
Similarly, when a vertex or edge is inserted, all of its attributes are inserted as well.

C.1. FAST GED IMPLEMENTATION DETAILS FOR GRAPH TRANS-
FORMATION RULES

As presented in subsection 4.5.1, the edit costs that occur after application of several
graph transformation rules can be computed directly from the graph transformation
rules, without employing the computationally expensive GED algorithm as described
above. This section dives into detail of how the terms in Equation 4.23 can be computed.

First consider the substitution cost of attributes. Each technology tk might change
the value of an attribute. That attribute retains its identity, thus is present in the gluing
graph Kk . Therefore, when applying mtk to A(Kk ) one obtains the attributes in G that
are affected by tk . Given two portfolios Pi and P j , and performing this operation one
obtains the multiset A(G)i j . A multiset is a tuple M = (S,n), with S the support of the
multiset (obtained as Supp(M)), i.e. the set of which the multiset contains multiple rep-
etitions. The function n : S 7→N associates an integer multiplicity to each element in S,
i.e. the amount of times the multiset contains that element. Then, we can compute the
overlapping substitution cost as:

CS (A(Ki )∩ A(K j )) = ∑
a∈Supp(A(G)i j )

[n(a)−1] ·
[
CS (a, aRi )+CS (a, aR j )

]
. (C.1)
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For the overlapping deletion cost, we simply apply mtk to (L −K )k . This gives all
deleted elements in G . For transformations tk and tl , we take D(tk ) and D(tl ) as the
deletions. Then:

CD
(
(L−K )i ∩ (L−K ) j

)= ∑
a∈D(tk )∩D(tl )

CD (a) . (C.2)

Finally, the equivalent addition costs need to be discounted. While for added nodes
this is trivial — simply determine if they are equivalent, and if so, subtract the addition
cost twice — it is more intricate for edges and attributes. For an edge with both vertices in
R −K the problem is identical to nodes. However, when an added edge has one or both
vertices in K , then it can only be equivalent if the vertices in K , mapped to G through
mtk , are the same vertices. The same applies to attributes and the elements to which

they belong. This is the reason the
∩∼= operator is used instead of ∩ in Equation 4.23. Let’s

define this operator for nodes, edges and attributes, separately. For nodes:

ni
∩∼= n j ≡ ni

∼= n j (C.3)

For edges:

ei
∩∼= e j ≡


s(ei ) ∼= s(e j ) if s(ei ) ∈ (R −K )i ∧ s(e j ) ∈ (R −K ) j

mti ◦ s(ei ) = mt j ◦ s(e j ) if s(ei ) ∈ Ki ∧ s(e j ) ∈ K j

false otherwise

∧


t (ei ) ∼= t (e j ) if t (ei ) ∈ (R −K )i ∧ t (e j ) ∈ (R −K ) j

mti ◦ t (ei ) = mt j ◦ t (e j ) if t (ei ) ∈ Ki ∧ t (e j ) ∈ K j

false otherwise

(C.4)

For attributes:

ai
∩∼= a j ≡ai

∼= a j∧
p(ai )

∩∼= p(a j ) if p(ai ) ∈ (R −K )i ∧p(a j ) ∈ (R −K ) j

mti ◦p(ai ) = mt j ◦p(a j ) if p(ai ) ∈ Ki ∧p(a j ) ∈ K j

false otherwise

(C.5)

While these operations may seem cumbersome, they are computable in polynomial time
(provided the morphisms mtk are already known), rather than in non-polynomial time,
as the GED algorithm is.





D
ENABLING TECHNOLOGY SET

Algorithm 8 finds all the sets of technologies that enable the technologies which cannot
be applied to G . For this, it makes a call to Algorithm 9, which returns for an inapplicable
technology t any possible set of technologies that enables it. Therefore, note that the
statement return solution ≺ t should not be interpreted as returning from the method
call, but rather as a yield statement that proceeds as an enumerator. As such, for a given
technology t , there may be multiple solutions.

Algorithm 8 Pseudo-code for Enabling Technology Set algorithm

1: procedure GETENABLINGTECHNOLOGYSET(G , T, T C M)
2: TN ← t ∈T : Lt *G
3: TP ←T\TN

4: for all t ∈TN do
5: EXTENDSOLUTION(G , t , ;, TP , T C M)
6: end for
7: end procedure
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Algorithm 9 Pseudo-code for extending an enabling technology set

Require: TP 6= ;
1: procedure EXTENDSOLUTION(G , t , TE , TP , T C M)
2: te ← first element of TP

3: solution ←TE ∪ te

4: canApply ←Øti ∈TE : T C M te ,ti = 1
5: if canApply and CHECKSOLUTION(G , t , solution) then
6: return solution ≺ t
7: end if
8: EXTENDSOLUTION(G , t , TE , TP \ te , T C M)
9: if canApply then

10: EXTENDSOLUTION(G , t , solution, TP \ te , T C M)
11: end if
12: end procedure

Algorithm 10 Pseudo-code for checking if a set of technologies enables a given technol-
ogy

1: procedure CHECKSOLUTION(G , t , TE )
2: GT ←G
3: for all te ∈TE do

4: GT ←GT
te7−→G ′

T
5: end for
6: if Lt ⊆GT then
7: return true
8: else
9: return false

10: end if
11: end procedure



E
MAXIMUM DISSIMILARITY

The maximum dissimilarity algorithm in Algorithm 11 finds a subset of size K of maxi-
mally dissimilar items given a matrix of distances D between these items. One can op-
tionally specify the first item i0 to be included in the subset.
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Algorithm 11 Pseudo-code for Maximum Dissimilarity algorithm

Require: N ∈Z> 0
Require: K ∈Z≤ N
Require: D ∈RN ×RN

Require: i0 ∈ [1, N ]
1: procedure MAXIMUMDISSIMILARITY(N , K , D , i0 (optional))
2: if i0 = NULL then
3: i0 ← 1
4: end if
5: R ← 1, ..., N \ i0

6: S ← i0

7: for i ← 1,K −1 do
8: dmax ←−∞
9: imax ←−1

10: for all r ∈ R do
11: dmin ←∞
12: for all s ∈ S do
13: if Dr,s < dmin then
14: dmin ← Dr,s

15: end if
16: end for
17: if dmin > dmax then
18: dmax ← dmin

19: imax ← r
20: end if
21: end for
22: S ← S ∪ imax

23: R ← R \ imax

24: end for
25: return S
26: end procedure



F
PORTFOLIO GENERATION

This algorithm simply generates the power set of all portfolios given a set of technolo-
gies. It consecutively removes those portfolios which either contain incompatible tech-
nologies (T C M ti , j = 1) or do not contain an enabling technology set for inapplicable
technologies. The last condition is checked using the statement ØTE ∈ p : TE ≺ ti . To
find whether TE ≺ ti , the enabling technology set algorithm from Appendix D is used.
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Algorithm 12 Pseudo-code for Portfolio Generation algorithm

Require: T C M ∈ [0,1]|T|× [0,1]|T|
1: procedure GENERATEPORTFOLIOS(G , T, T C M)
2: P← 2T

3: PV ←;
4: for all p ∈P do
5: isValid ← true
6: for all ti ∈T do
7: for all t j ∈ p do
8: if T C M ti , j = 1 then
9: isValid ← false

10: end if
11: end for
12: if Lti *G and ØTE ∈ p :TE ≺ ti then
13: isValid ← false
14: end if
15: end for
16: if isValid = true then
17: PV ←PV ∪p
18: end if
19: end for
20: return PV

21: end procedure



G
FACTORIO RESULTS

The full tables of portfolio distances and softmax assignment probabilities are presented
in this appendix. They belong to the case study in section 4.8.
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Table G.1: Portfolio distances for the Factorio example

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

0
0

16
16

16
32

32
16

32
32

3
19

19
19

35
35

19
35

35
1

16
0

32
32

16
48

32
16

48
19

3
35

35
19

51
35

19
51

2
16

32
0

32
48

16
32

48
16

19
35

3
35

51
19

35
51

19
3

16
32

32
0

16
16

16
32

32
19

35
35

3
19

19
19

35
35

4
32

16
48

16
0

32
32

16
48

35
19

51
19

3
35

35
19

51
5

32
48

16
16

32
0

32
48

16
35

51
19

19
35

3
35

51
19

6
16

32
32

16
32

32
0

16
16

19
35

35
19

35
35

3
19

19
7

32
16

48
32

16
48

16
0

32
35

19
51

35
19

51
19

3
35

8
32

48
16

32
48

16
16

32
0

35
51

19
35

51
19

19
35

3
9

3
19

19
19

35
35

19
35

35
0

16
16

16
32

32
16

32
32

10
19

3
35

35
19

51
35

19
51

16
0

32
32

16
48

32
16

48
11

19
35

3
35

51
19

35
51

19
16

32
0

32
48

16
32

48
16

12
19

35
35

3
19

19
19

35
35

16
32

32
0

16
16

16
32

32
13

35
19

51
19

3
35

35
19

51
32

16
48

16
0

32
32

16
48

14
35

51
19

19
35

3
35

51
19

32
48

16
16

32
0

32
48

16
15

19
35

35
19

35
35

3
19

19
16

32
32

16
32

32
0

16
16

16
35

19
51

35
19

51
19

3
35

32
16

48
32

16
48

16
0

32
17

35
51

19
35

51
19

19
35

3
32

48
16

32
48

16
16

32
0



G

221

Table G.2: Portfolio similarities as computed using softmax for the Factorio example
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H
DEPENDENCY GRAPH ALGORITHM

The main function that generates the dependency graph for a given system is provided
in Algorithm 13. This method only generates a graph with all the attributes from the
system graph S, and calls two other methods that include the analysis nodes into the
dependency graph.

Algorithm 13 Pseudo-code for constructing dependency graph

1: procedure GETDEPENDENCYGRAPH(S)
2: G ← (A(S),;)
3: EXTENDGRAPH(G)
4: INCLUDEATTRIBUTERELATIONS(G)
5: end procedure

The extension algorithm in Algorithm 14 is the primary workhorse for the depen-
dency graph generation. It loops through all possible analysis, their applications in S
and the computation modes. Then it adds an analysis node and the appropriate input
edges and output edges to the dependency graph G . In case the analysis can be decom-
posed into multiple analyses, this is done by Algorithm 15.

The decomposition of analysis methods in Algorithm 15 is broken into three steps:
adding decomposition of the input attributes, combination of the output attributes, and
the addition of the elementwise operations. Decomposing attributes into their elements
and recombining those elements is done in ADDCOMBINEANALYSIS. This algorithm keeps
track of whether the attribute has already been decomposed. If not, its elements are
added to G and a combination and decomposition analysis are added as well. The de-
composition analysis takes the elements of a tensor quantity and copies those to the
scalar valued elements. The combination analysis does the inverse: it copies the scalar
values and places them back into the tensor quantity.

The final part of the dependency graph constitutes analysis methods that represent
equalities and derivatives. These relationships between attributes are present in the sys-
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Algorithm 14 Pseudo-code for extending the dependency graph

1: procedure EXTENDGRAPH(G)
2: for all ai ∈A do
3: for all m j ∈ m(ai ,G) do
4: for all fk ∈ f (ai ) do
5: n ← (ai , fk ,m j )
6: V (G) ←V (G)∪n
7: if ai is decomposable then
8: ADDELEMENTWISEANALYSIS(G , ai , m j , fk )
9: else

10: for all pin ∈ I ( fk ) do
11: e ← (m j ◦µ j ◦νi ◦pin,n)
12: E(G) ← E(G)∪e
13: end for
14: for all pout ∈O( fk ) do
15: e ← (n,m j ◦µ j ◦νi ◦pout)
16: E(G) ← E(G)∪e
17: end for
18: end if
19: end for
20: end for
21: end for
22: end procedure

tem graph S in the form of typed edges between attributes. Algorithm 16 adds these two
types of analysis methods.
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Algorithm 15 Pseudo-code for adding a element-wise decomposable attribute

1: procedure ADDELEMENTWISEANALYSIS(G , ai , m j , fk )
2: for all pin ∈ I ( fk ) do
3: ADDCOMBINEANALYSIS(G , m j ◦µ j ◦νi ◦pin)
4: end for
5: for all pout ∈O( fk ) do
6: ADDCOMBINEANALYSIS(G , m j ◦µ j ◦νi ◦pout)
7: end for
8: for m = 1 to number of components of ai do
9: m′

j ← m j where attributes are replaced with m-th component

10: n ← (ai , fk ,m′
j )

11: V (G) ←V (G)∪n
12: for all pin ∈ I ( fk ) do
13: e ← (m′

j ◦µ j ◦νi ◦pin,m ,n)
14: E(G) ← E(G)∪e
15: end for
16: for all pout ∈O( fk ) do
17: e ← (n,m′

j ◦µ j ◦νi ◦pout,m)
18: E(G) ← E(G)∪e
19: end for
20: end for
21: end procedure
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Algorithm 16 Pseudo-code for including attribute relations in dependency graph

1: procedure INCLUDEATTRIBUTERELATIONS(G , S)
2: for all e ∈ E(S) : type(e)=is derivative of do
3: nint ← analysis node for integration
4: nder ← analysis node for derivation
5: V (G) ←V (G)∪nint

6: E(G) ← E(G)∪ (s(e),nint)
7: E(G) ← E(G)∪ (nint, t (e))
8: V (G) ←V (G)∪nder

9: E(G) ← E(G)∪ (t (e),nder)
10: E(G) ← E(G)∪ (nder, s(e))
11: end for
12: for all e ∈ E(S) : type(e)=is equal to do
13: neq1 ← analysis node for equality
14: neq2 ← analysis node for equality
15: V (G) ←V (G)∪neq1

16: E(G) ← E(G)∪ (s(e),neq1)
17: E(G) ← E(G)∪ (neq1, t (e))
18: V (G) ←V (G)∪neq2

19: E(G) ← E(G)∪ (t (e),neq2)
20: E(G) ← E(G)∪ (neq2, s(e))
21: end for
22: end procedure



I
COMPUTATION GRAPH ALGORITHM

The computation graphs are generated from a dependency graph G , given a set of quan-
tities of interest Q. Algorithm 17 creates the first partial computation sequence, which
only contains the quantities of interest. It then calls Algorithm 18, which extends this
computation sequence to a complete and valid one, and possibly creates multiple alter-
natives along the way.

A computation sequence consists of three elements: the PENDING set are all attributes
that still have to be computed in the computation. Thus, analysis nodes have to be added
to compute those attributes. The VISITED set are the attributes that are being computed
in the computation sequence. Finally, the SEQUENCE set are the analysis nodes that
make up the computation.

Algorithm 17 Pseudo-code for computation graph algorithm

1: procedure CREATECOMPUTATIONGRAPHS(G ,Q)
2: C ←;
3: for all q ∈Q do
4: PENDING(C ) ← q
5: end for
6: PC ←C
7: while PC 6= ; do
8: PROCESSCOMPUTATION(PC , G)
9: end while

10: end procedure

Whenever a unique, complete computation sequence is found, it is added to a set of
solutions. This is done in Algorithm 18. If a sequence is not yet complete, all pending
attributes are considered, and new computation sequences are generated that include
an analysis node to compute the pending attribute. If a computation sequence is valid,
which is checked with Algorithm 20, it is added to the pool of pending solutions PC .
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Algorithm 18 Pseudo-code for extending a computation

1: procedure PROCESSCOMPUTATION(PC , G)
2: C ← FIRSTOF(PC )
3: if ISCOMPLETE(C , G) and C is a unique solution then
4: Add C to solutions
5: else
6: while PENDING(C ) 6= ; do
7: CP PENDING(C )
8: a ← FIRSTOF(CP )
9: VISITED(C ) ← a

10: if a is Known then
11: continue
12: end if
13: for all n ∈ PREDECESSORSOF(a, G) \ SEQUENCE(C ) do
14: C ′ ← COPY(C )
15: SEQUENCE(C ′) ← n
16: for all p ∈ PREDECESSORSOF(n, G) do
17: if p ∉ VISITED(C ′) then
18: PENDING(C ′) ← p
19: end if
20: end for
21: if CHECKVALIDITY(C ′), G then
22: PC ← PC ∪C ′
23: end if
24: end for
25: end while
26: end if
27: end procedure

A computation graph (i.e. sequence) is complete when it computes all the quantities
of interest, from only known variables. Furthermore, there may be no dangling analy-
sis nodes, i.e. analysis nodes without predecessors or successors. These conditions are
checked in Algorithm 19.

A computation sequence has to satisfy several constraints, which were explicated in
subsection 5.1.3. Essentially, Algorithm 20 checks if the computation graph contains no
cycles which are indeterminate, or cycles without a derivative or integral term.



I

229

Algorithm 19 Pseudo-code for checking if a computation solution is complete

1: procedure ISCOMPLETE(C , G)
2: VC ←V (G) \C
3: EC ← E(G) ∈VC ×VC

4: for all v ∈VC such that Øe ∈ EC : t (e) = v do
5: if v is a QoI then
6: return false
7: end if
8: if v is an Analysis Node then
9: return false

10: end if
11: if v is not a Known then
12: return false
13: end if
14: end for
15: return true
16: end procedure

Algorithm 20 Pseudo-code for checking if a computation solution is valid

1: procedure CHECKVALIDITY(C , G)
2: VC ←V (G) \C
3: EC ← E(G) ∈VC ×VC

4: K ← (VC ,EC )
5: for all cycle ∈ K do
6: if ∃ai , a j ∈ cycle : ai

∼= a j and mi
∼= m j and fi = f j then

7: return false
8: end if
9: if Øa ∈ cycle : a is an analysis node for derivation/integration then

10: return false
11: end if
12: end for
13: return true
14: end procedure
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SYSTEM FLOW DIRECTIONS

The Serial-Parallel Partial Hybrid (SPPH) powertrain architecture from Chapter 5 has
nine different operating directions. That is to say, electrical power has a total of nine
unique ways in which it may flow through that powertrain architecture. This is because
the battery may either supply or store energy, and the electrical machines either operate
as motors or as generators. In generic terms, any system may have different situations
where the flow of information, matter or energy through the system changes direction.
These possible directions are solved for by means of a Constraint Satisfaction Problem
(CSP). This appendix illustrates how that works by walking through the SPPH example.

To illustrate how that works, consider Figure 5.9, where the roles of the electric en-
ergy and rotational energy are merely described as boundary flows. Conversely, observe
Figure 5.10 and notice how an input and an output flow have to be specified. The model
requires this, because the direction of a flow relative to a domain determines how the
process in that domain behaves. (A simple example is a bucket with a connected hose.
If there is an inflow of water through the hose, the bucket fills up with water and even-
tually overflows. Conversely, when there is an outflow of water through the hose, the
bucket eventually empties and air is drawn in through the hose.) Thus, a boundary-flow
role is perceived as either an inflow or outflow to a certain domain. Therefore, this par-
ticular role can be divided into two sub-categories: inflow and outflow. An algorithm
needs to define the directions of flow throughout a system is to assign the appropriate
roles to each of the boundary flow entities.

In terms of the CSP, there are as many variables as there are boundary flow entities
in the system. For now, it is assumed that each boundary flow only participates in two
adjacent processes. In other words, it sits on a boundary of exactly two spatial regions.
Then, picking either of these two processes, the boundary flow either flows into it or out
of it. As such, each variable has two possible values in the CSP, and it needs to keep
track with respect to which process those values are measured. For example, the electric
energy of the battery in Figure 5.10 may flow into our out of the battery. That is measured
with respect to the battery working principle. Because of the connection with the EM,
the battery energy has the opposite role as perceived by the EM process.
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Table J.1: Solutions to the CSP obtaining all configurations of the SPPH architecture. For the variable names,
refer to Figure 5.8. Inflow is denoted + and outflow as -. The variables are grouped into sequences that need to
have the same signs in a valid solution

Variable Reference S1 S2 S3 S4 S5 S6 S7 S8 S9
Pp1 P1 - - - - - - + + +
Ps1 GB - - - - - - + + +
Pgb EM1 + + + - - - + + +
Pe1 PM + + + - - - + + +
Pbat Bat - + + - + - + - +
Pe2 PM - - + - + + - - +
Ps2 EM2 - - + - + + - - +
Pp2 P2 - - + - + + - - +

A CSP would not be complete without constraints. This particular problem is con-
strained by the conservation laws. Concretely, when a domain has an inflow, there must
be an outflow, or there must be an accumulative quality within the domain. The con-
straint reads that for each process (which discerns a domain), a full assignment for its
participants should contain any one of the three following pairs: a inflow and an outflow,
an inflow and an internal flow, or an outflow and an internal flow. Such a formulation
assumes that any internal flow has a capacity. However, an internal flow with capacity
is not always pragmatic. For example, an electric wire has an internal electric flow, but
a very small, or in fact, negligible, capacitance. In the CSP formulation, therefore, the
cases where an internal flow is required are dropped, leaving only one option: inflow
+ outflow must be present simultaneously for any domain. This is the only constraint
necessary to solve the problem.

From the CSP, all different assignments of inflow/outflow can be generated. And,
indeed, doing this for the SPPH architecture, nine assignments are obtained, as shown
in Table J.1. These are the same as the ones obtained by de Vries et al. [46]. For each
of these assignments the power model can be applied, separately. Each component in
the architecture is attributed with an efficiency variable, and each energy quality with a
power variable. For each particular model instance (limited to one component), these
power variables are attributed with the input or output role.
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Figure K.1: Full dependency graph for SPPH powertrain architecture
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Figure K.2: Dependency graph for mission analysis of conventional aircraft with second DOF flap
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