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Abstract

In this thesis, we present a study to obtain a clear and accurate overview of the progress and behaviour of
COVID-19 in the Netherlands. We distinguish two parts for this study. The first part is to estimate the
total number of infected people as a function of time by combining data from hospital admissions, daily
reported cases and serological data. Using these data sets, we found that our estimation for the number
of infected people was comparable to the estimations provided by the RIVM and Sanquin. Furthermore,
we found that on average only 39.3% of the total number of cases were detected. 1.2% of the total
number of infected people is admitted to the hospital and 18.6% of the hospitalized patients is admitted
to the ICU.
The second part is to develop a representative model that reproduces the estimated total number of
infections using a modified SEIR model. These modifications include modelling the infection rate β(t) as
a function of time using a simple linear ODE, a system of ODEs inspired by the Lotka-Volterra equations,
the implementation of gamma distributed exposed and infected stages and lastly the incorporation of
spatial heterogeneity. We found that our Lotka-Volterra inspired model was able to model multiple
consecutive waves, which differs from the standard compartmental models. The other modifications
however seemed to have only minor effects on the model and had some difficulties with matching historical
data. We conclude that our Lotka-Volterra inspired model should be used to model consecutive waves
for a longer period of time. The other modifications can be used to optimize the model.
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1 Introduction

The outbreak of the COVID-19 virus at the end of 2019 has lead to a worldwide crisis which still lingers
on today. With a quick search on the internet, we see that globally over 194 million people have been
infected, and over 4 million people are deceased up until now. In the Netherlands, there are over 1.8
million people who have been infected and almost 18 thousand people are deceased. Note that the actual
numbers of infections and deceased people are higher, as it is not possible to track all infected (and dead)
cases.

One of the aspects of COVID-19 is that the virus is transmitted mainly through small droplets or
aerosols when an infected person coughs, sneezes or talks. These droplets or aerosols carry the virus in
the air, and standing nearby an infected person may lead to the inhalation of the virus; thus becoming
infected as well. Therefore, since the outbreak of the virus, we have seen that the virus can spread rapidly
among people, especially in confined spaces. We have also seen that COVID-19 affects different people in
various ways. Most infected people develop mild symptoms such as sneezing, (dry) cough, tiredness and
fever. Some infected people do not even notice their symptoms at all, and as a consequence, they are not
aware that they are infectious to other people. However, some people develop severe symptoms such as
shortness of breath and breathing problems. As a consequence, these people need to be admitted to the
hospital or intensive care. And it is also known that the duration of their hospital admission is relatively
long (about two weeks). And this means that comparatively low number of patients can quickly fill up
a large portion of the hospital capacity. This is what happens in the Netherlands (but also in other
countries). We have seen that the hospital beds (including intensive care units) were rapidly occupied
by COVID-19 patients - increasing the pressure on hospitals and healthcare (personnel). Because of this
increase in pressure, many other patients have their (regular) healthcare being delayed or even cancelled
for an unknown period of time, such as knee operations or cancer treatments. What the consequences
are of the delayed healthcare is a major question on its own.

In order to contain the virus and elevate the pressure on the healthcare, the government decided to
take different measures such as (self-) quarantine and isolation, distance keeping or temporary closing of
restaurants, shops, gyms and the (whole) educational system. Taking different measures however does
come with consequences on health, economic and societal areas. For example, the stay-at-home policy
combined with the closure of sports activities lead to worse diets and less physical activity, thus causing
all kinds of health issues. Shopkeepers and restaurant owners (almost) lost their entire income due to
closing. And the prohibition of social activities contributes to the lack of social contacts among people.
These examples show that the government has to consider which and when certain measures must be
taken. Good and effective measures can only be taken if one has an accurate and clear overview of
the progress and behaviour of the virus throughout the country and the expected impact of a proposed
measure on this behaviour.

In order to obtain this overview, a number of steps is needed. The first step is to acquire data about the
number of hospital (and ICU) admissions and the number of positive cases per day. However, acquiring
data alone is not enough for a complete overview, because the data itself may be incomplete, and simply
not all people can be detected. By combining serological data and hospital admissions we can estimate
the total number of infected people and compare this to the number of positive tests and thus we obtain
a more reliable picture.
As a second step, we need to have a good model that accurately describes the progress and behaviour
of the epidemic, i.e., it matches the historical data and also predicts the future developments reasonably
well.
A third step that leads to good and effective measures is to have an overview of the benefits and costs of
each measure. As it was mentioned above, each measure affects the lives of people in different aspects.
So then the question arises whether or not the benefits of each measure outweigh the costs that come
along. With an accurate model, we can understand how the virus is spreading, and it makes possible
to incorporate measures into the model such that the effects of those measures can be monitored and
predicted. Such a complete model helps policymakers to weigh costs and benefits beforehand instead of
taking measures and hoping for the best1.

1”With 50 per cent of the knowledge, we have to make 100 per cent of the decisions” - Mark Rutte, Prime Minister of
the Netherlands.
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Up until now, we see for the first step that the Corona Dashboard of the Netherlands had shown that the
RIVM2 had estimated the total number of infected people as a function of time with regular updates.
We will see in Section 3 that our estimation is close to the estimation of the RIVM. Thus, in both ways
we have a reliable picture of the total number of infected people.
Although the second step is still in progress, we have seen that the RIVM has given technical briefings to
the government on a regular basis about the COVID-19 situation in the Netherlands. In these briefings,
they inform the government about the current situation and they show results of their models, including
future predictions when different measures are taken. So we can see that there is much (media) attention
on step two as well. However we note that there is still room for improvement in the second step.
Finally, we notice that in the Netherlands the third step does not receive as much attention as the
previous two steps when it comes to deciding what measures should be taken. Perhaps partly due to
the complexity of making an overview of the benefits and costs. In this thesis, we will focus on the
first two steps as well, i.e., finding good estimates for the number of infected people as function of time,
developing a model that reproduces these numbers (as reliably as possible) and we leave the third step
for future research.

Often times in mathematical epidemiology, one uses compartmental models to model the infectious dis-
eases. These models subdivide the population in different compartments, and the transmissions between
these compartments are described by a set of differential equations (DEs) and its model parameters. One
of the simplest compartmental models is the SEIR model, where S stands for the number of suscepti-
bles, E the number of exposed individuals, I the number of infected individuals and R the number of
recovered (or removed/deceased) individuals. Each individual is considered to be in one compartment
at a given time, but it is possible to move from one compartment to another. In case of the SEIR model,
individuals can move from compartment S to E, E to I and from I to R.
One of the advantages of using compartmental models is that such models are relatively easily modified
and expanded with more or different compartments. However, the addition or altering of compartments
also means the addition or altering of the model parameters that need to be estimated. Estimation of
the model parameters is not a trivial task. Some, if not, all of the model parameters also have physical
meanings that need to be taken into account. For example, in the SEIR model, we will see in this thesis
that we define the parameter γ as the inverse duration of the infection. But the value of the duration of
the infection differs among various studies (see Table 1). Another important parameter is the infection
rate β. This parameter is based on the average number of contacts a person has each day and the
probability that such a contact leads to an infection. In this thesis, we will consider β to be a function
of time and we primarily focus on the modelling of β.

A large number of studies on the modelling of COVID-19 has been published. In this thesis we mention
a selected number of studies that seems most relevant for our research questions. These studies have
applied a compartmental model to model COVID-19 in various countries and cities. From these papers,
we can see what modifications are used to certain compartmental models, how these models match with
historical data, what measures can be incorporated into these models and how they can predict future
developments. We note however that developing an accurate model for COVID-19 is an ongoing process
that will take a significant amount of time, even when the epidemic is over.

Peng et al.(2020) [1] proposed a generalized SEIR model with the inclusion of compartments P (in-
susceptible) and Q (quarantined) and D (death) to model COVID-19 in China. For the parameters,
they assumed the cure rate λ and the mortality rate κ to be time-dependent, whereas the infection
rate β is a fixed value. During parameter estimation, they wanted to overcome overfitting problems by
choosing a fixed value for the latent time γ−1, and then for each fixed γ−1, they explored its influence on
other parameters. By doing so, they found that the parameter β is very close to 1. They applied their
model based on the data from January 20th 2020 to February 16th 2020, where their study included 24
provinces in China and 16 counties in Hubei province. Then, they carried out simulations for a longer
time to forecast the course of the epidemic and compared the simulations with official data from Febru-
ary 17th to March 23rd. They expected that for most parts of China the epidemic will end no later
than the middle of March 2020. And for Wuhan city, they expected that the severe situation back then
will end up at the beginning of April 2020. Their forecasts were in well agreement with the real situation.

Godio et al.(2020) [2] adopted a generalized SEIR model from Peng et al.(2020) [1] where the com-

2’Het Rijksinstituut voor Volksgezondheid en Milieu’ (National Institute for Public Health and the Environment)
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partments P (protected category), Q (quarantined people) and D (dead people) were added to model
COVID-19 in regions of Italy, Spain and South-Korea. Model parameters were fitted in least-square
sense with a deterministic approach and with a stochastic approach using a Particle Swarm Optimiza-
tion (PSO) algorithm. They assumed a time-dependent β that is based on the contact rate calculated
using mobility data. We have seen that the PSO algorithm provides a set of possible solutions, where
each solution refers to a different set of parameters estimated by the algorithm; whereas the determin-
istic approach only gives one solution. The Italian and Spanish data were well fitted in the period of
1 March 2020 to 15 April 2020, and they showed the predicted evolution in 30 days according to their
SEIR model. The fitting of the Korean data was not ideal, but that is also due to the oscillations in the
data itself. They recommend fitting the data of the epidemic using a stochastic approach such as the
PSO method, and the influence of the time-varying infection rate β on the model prediction may open
interesting discussions about the effect of lockdown policies on the evolution of the epidemic in the future.

The SIR model was modified by Anand et al.(2020) [3] by adding the compartments quarantined Q
and unquarantined UQ. The factor of testing ft, which stands for the fraction of infected people who
are tested and quarantined is introduced. If the level of testing is increased and more number of infected
people are tested, than the number of unquarantined people will reduce, thereby controlling the spread
of the disease. They applied their model to the situation in the state Kerala, India. Parameter estima-
tion has been done by formulating a cost function and using a differential evolution optimizer. After
that, they compared the model predictions with the actual data, starting from March 8th 2020 to April
26th 2020. The model matched with the actual data, and they simulated several scenarios after April
26th 2020. After the simulations, they suggested 4 protective measures to control the pandemic in Ker-
ala. First: lift lockdown, but rapidly increase testing. Second: extend lockdown but gradually increase
testing. Third: intermittent or staggered lockdown, while the level of testing is the same. Fourth: lift
lockdown while ensuring adequate social distancing measures.

Ansumali et al.(2020) [4] reviewed the basic SIR and SEIR models and analysed their properties such as
Lyapunov stability, both with and without vital dynamics (births/deaths). After that, they introduced
the SAIR model, where A stands for the asymptotic people. These people do not have symptoms, but
can still infect people from the susceptibles group (which is the case with COVID-19). The difference
between the SAIR and the SEIR model is that it is assumed that the exposed people are not infectious
yet. Then, they examined the SAIR model both with and without vital dynamics, and analysed their
stability properties. Three parameters (γ, δ and β) are estimated in analytical ways. After that, numer-
ical solutions are shown using the estimated parameters for the countries Switzerland, Japan, France
and Italy (although parameter estimation was also done for USA, Brazil, India and Iran). Their model
matches well with the real data of those countries. The same methods are applied to the city Delhi,
India, which was a hotspot in India back then. They found that future predictions of the progress of
the disease show that for the SAIR model, herd immunity is achieved when the number of asymptotic
and infected persons is around 25% of the population, whereas the classical SIR model would predict
that herd immunity is achieved at 64.29%. However, there is no explicit expression for the onset of herd
immunity in the SAIR model yet.

The RIVM also used a compartmental model3 for COVID-19 in the Netherlands where vaccination
strategies are included. They included compartments such as IC (people in intensive care), H (hospital-
ized) and HIC (return to the hospital ward following treatment in IC). Different vaccination strategies
were assessed. These were: old to young (vaccination begins with 50-59 year olds and then progresses
though in decreasing order), young to old (vaccination starts from 18-19 year olds and then progresses
through in increasing order), alternative (18-29 year olds followed by 50-59 year olds, then progresses to
40-49 year olds and then 30-39 year olds) and no vaccination. They found that regardless of the vacci-
nation strategy, implementing a vaccination program results in fewer new infections, new cases, hospital
admissions, IC admissions, new deaths and fewer life years lost compared to no vaccination program.
The overall differences between these vaccination programs were very little, however the old to young
strategy resulted in the smallest number disease outcomes (e.g infections, cases, hospital admissions).
The studies above are examples of how compartmental models can be applied to real-life cases, and how
such models can be a useful tool to help policymakers in their decision making (RIVM).

3https://www.rivm.nl/sites/default/files/2021-03/Modellingresults%20COVID19%20vaccination%20version1.0%

2020210324_0.pdf

5

https://www.rivm.nl/sites/default/files/2021-03/Modellingresults%20COVID19%20vaccination%20version1.0%2020210324_0.pdf
https://www.rivm.nl/sites/default/files/2021-03/Modellingresults%20COVID19%20vaccination%20version1.0%2020210324_0.pdf


Although the studies have provided some new insights, we also mention at least three deficiencies.
First, the matching of historical data and the predictions are done in a relatively short period of time (a
few months). For short term policies it is a good way to start, however it would be even better if one
can model future developments in the long run (1-2 years).
Second, compartmental models such as SEIR usually show only one peak of infections, followed by a
decline of infections. This is what most of the results from the studies show as well. We observe however
that already four waves of infections occurred in the Netherlands up until now. We want to be able to
capture the different infection waves into the model.
Lastly, there is little to no attention to spatial heterogeneity, which will be explained below. So in
this thesis, we provide three new modifications to the standard SEIR model to model COVID-19 in the
Netherlands. These modifications are described in Section 2, but we will briefly mention them here.

The first modification is to develop a time-dependent function for the infection rate β(t) because the con-
tact rate of an individual changes when protective measures are applied. Different studies have provided
a time-dependent expression for the infection rate. For example, Lin et al.(2020) [5] included a stepwise
function that represents the governmental actions. The values of this stepwise function are dependent
on the strength of the lockdown. And Kaushal et al.(2020) [6] defined the infection rate with use of a
Heaviside function that represents the lockdown policy. They considered a lockdown as a sudden change
in the infection rate. In our modification, we will present two ideas that describe the infection rate as
an ordinary differential equation (ODE), where one of them is inspired by the Lotka-Volterra equations.
The second modification is to implement a non-exponential distribution for the infectious time period
and the incubation time period. The standard SEIR model assumes that these time periods are ex-
ponentially distributed, however that assumption is not realistic (Lloyd (2001) [7], [8]). Instead of the
exponential distribution, we will use the gamma distribution that describes the incubation time and the
infectious time period (Feng et al.(2007) [9]).
The third modification is to incorporate spatial heterogeneity into the model. The standard SEIR model
assumes that every individual in the population interacts with one another. However when it comes
to country-sized populations, there are parts of the population that are less likely to interact with one
another (e.g. one from Amsterdam and one from Groningen). Moreover, the virus is more likely to
spread faster in densely populated areas such as cities than in rural areas. So we will present a general
model that can take account these observations.
At last, we will also provide estimation methods that estimate the total number of infected persons per
day (undetected cases included). This number is useful to know for policymakers in the battle against
the virus. Böhning et al.(2020) [10] provided a method to estimate the total number of infections. Their
method is based statistical methods where a modified version of Chao’s estimator is introduced. This
links to a capture-recapture approach. They applied their method to the situation in Austria and other
European countries, where data they used are the cumulative count of infections and the count of new
deaths in the period of March 15th 2020 to April 7th 2020. We will see in our methods that we make
use of the data from hospital admissions and the reported positive cases.

The organization of this thesis is as follows. In Section 2, we will explain the definitions and con-
cepts of the SEIR model. We will also see that the SEIR model has its (over)simplifications, and we
present multiple solutions to these simplifications. Next, we will estimate the number of infected indi-
viduals in the Netherlands using the data from the RIVM and compare it with other sources in Section
3. In Section 4, we will derive the initial values and initial conditions for the SEIR model. Finally,
in Sections 5, 6 and 7, we will explain the different solutions to the simplifications of the SEIR model
in more detail, and we will show numerical results of these solutions. We will end this thesis with the
discussion, conclusion and outlook.
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Study Location Parameter (days) Central tendency Variation
reported (days; inclusion)

Tracking studies
He et al. Vietnam, Malaysia, Japan, 19.3 days Mean 12.9 - 24 days

(2020) [11] China, Taiwan, USA (Infectiousness)
and Singapore

Ma et al. Various countries 5 days Median Range 0 - 24 days
(2020) [12] (serial interval -

upper limit of latent period)
Modelling studies

Li et al. China 3.47 Median 3.26 - 3.67
(2020) [13] (posterior estimation

from model)
Tuite et al. Canada 6 days Fixed parameter
(2020) [14] (fixed parameter within

a deterministic model)
Lourenço et al. UK 3 - 5 days Mean 3 - 6 days

(2020) [15] (Posterior output,
depending on

scenario tested)
Zhu et al. Wuhan, China 12.53 days Mean Variance of
(2020) [16] (posterior estimated 11.4 days

from model with
Weibull distribution)

Davies et al. UK 5 days Mean
(2020) [17, 18] (used as a prior,

drawn from a
gamma distribution)

Piccolomini et al. Italy 20 days Fixed parameter
(2020) [19] (prior, obtained from

data estimations and
clinical observations )

Table 1: Table of studies with their given infectious periods from Byrne et al.(2020) [20], either from
modelling or tracking studies. Infectious period from tracking studies is inferred from patient histories.
Infectious period from modelling studies is reported as a prior (assumed parameter value) or an posterior
estimate.
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2 The SEIR Model

In this section, we will explain the basic concepts and definitions of the SEIR model. Also, we will
explain the different (over)simplifications of an SEIR model. It is important that we understand the
concepts and ideas of such compartment models, because epidemics are often modelled using an SEIR
model, or a similar compartment model. Moreover, by knowing and understanding the simplifications of
such models, we can adapt the SEIR model to obtain a more realistic model.

First, we will show the equations of the SEIR model and explain its definitions. After that, we will
discuss a few simplifications that are part of most SEIR models. And finally, we will show possible
solutions in order to improve these models.

2.1 Definitions and concepts of the SEIR model

During modelling of an epidemic, the population in a basic SEIR model is divided into 4 compart-
ments/stages (see Figure 1):

1. Susceptibles (S): This group represents the people that have not been infected, but are susceptible
to the disease when they get in contact with infected peeple (I).

2. Exposed (E): The people in this group have been infected by the virus, however the symptoms are
not to be seen and the people cannot infect other people yet. The time between an infection of a
person and symptom onset is called the incubation time.

3. Infected (I): In this group, the people have already been infected and the symptoms have emerged.
Also, these people are able to spread the disease to the people in the susceptibles group (S) as long
as they are infected. The time period in which these people are infectious is called the infectious
time.

4. Recovered/Resistant (R): After the infectious time, an infected individual recovers from the disease
and becomes resistant to the disease as well. These people are then not able to infect other
susceptibles (S) anymore. Sometimes this group also includes people who were deceased, since
there is no difference between a deceased and a resistant person from a mathematical viewpoint.

The transition between the groups is modelled using the law of mass action from chemistry. The law of
mass action states that the rate of reactions is proportional to the active concentrations of the reactants.
We can illustrate and make clear the meaning of the law by considering the following example. Suppose
we have an irreversible reaction described by

A+B → C.

The number of the reactants are denoted by A,B and C. Now, the change in the number of C molecules
is determined by the number of collisions between A and B molecules, the probability that such a collision
will lead to the product C and the duration of the reaction. This can be formulated as

∆C︸︷︷︸
Change in number
of C molecules.

≈ k︸︷︷︸
Probability that a collision
between A and B molecules

produces molecule C per unit time.

· A︸︷︷︸
Number of A
molecules.

· B︸︷︷︸
Number of B
molecules.

· ∆t︸︷︷︸
Duration of the reaction.

where k is also called the rate constant and t denotes time. Rewriting the equation we will have

∆C

∆t
≈ k ·A ·B.

Taking the limit of ∆t→ 0, we obtain the differential equation

dC

dt
= k ·A ·B.

This is called the law of mass action. At the same rate, the number of A molecules decreases when the
reaction takes place:

dA

dt
= −k ·A ·B.

8



From these equations, we see that with a higher number of molecules of A or B (or both), the reaction
takes place at a faster rate. On the other hand with a lower number of molecules of A or B (or both),
we have a slower rate of the reaction.

In case we have the reaction
A→ C,

then the change in the number of C molecules is determined by the number of A molecules, the probability
that a molecule of A decays to a molecule of C and the duration of the reaction. This can be formulated
as

∆C ≈ k∗︸︷︷︸
Probability that a molecule

of A decays to a molecule of C
per unit time.

·A ·∆t.

Similarly as before, we obtain the differential equation

dC

dt
= k∗ ·A,

and
dA

dt
= −k∗ ·A.

Now in the case of the SEIR model, we assume that an individual in group S can get infected by
an individual in group I when they are in contact with each other. If so, the individual from S becomes
exposed and is thus in group E. The corresponding ’chemical reaction’ is then given by

S + I → E.

Next, after a few days, the exposed person becomes infectious, meaning that the person from group E
moves to group I. The reaction is given by

E → I.

After a while, we assume that the infectious person recovers, and is unable to infect other people anymore.
Similarly, the reaction is

I → R.

Combining all the reactions, we have that

S + I → E → I → R.

Using the law of mass action, we can write down a system of ordinary differential equations (ODEs) for
this whole reaction:

dS

dt
= −k1SI,

dE

dt
= k1SI − k2E,

dI

dt
= k2E − k3I,

dR

dt
= k3I,

where k1, k2, k3 are the rate constants.

In terms of mathematical epidemiology, we set k1 = β 1
Ptot

, k2 = α and k3 = γ. Then, we have the
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well-known basic SEIR model:

dS

dt
= −β SI

Ptot
, (1)

dE

dt
= β

SI

Ptot
− αE, (2)

dI

dt
= αE − γI, (3)

dR

dt
= γI, (4)

where Ptot denotes the population number. Next, we will associate physical meanings to the parameters
α, γ and β.

• We will start with the parameter γ. From our example earlier, we can approximate the equation

dR

dt
= γI

by taking the limit of ∆t→ 0 from the equation

∆R ≈ γ · I ·∆t.

Here, γ · ∆t can be interpreted as the probability that an individual moves from I to R within
∆t time, where the outcome per unit time is either that the person is recovered or not recovered
yet. An analogy for this is to think about a coin flip where the first occurrence of heads (recovery)
requires m independent trials (∆t). Now, we define the period of time in which a person is infectious
as tinf . After the infectious time, the person is then recovered. So if ∆t = tinf , we must have

∆R ≈ I,

and
γ · tinf ≈ 1,

because (almost) all individuals move from I to R within tinf time with probability 1. Thus, it
follows that

γ ≈ 1

tinf
=

1

Infectious time
. (5)

• A similar procedure can be done for the parameter α, where we look at the transmission of a person
from E to I. Thus, we look at the equation (omitting the last term)

dI

dt
= αE.

Defining the incubation period as tinc and setting ∆t = tinc, it follows that

α ≈ 1

tinc
=

1

Incubation time
. (6)

• For the parameter β, we will look at the transmission of a person from S to E. This is given by
the approximated equation

∆E ≈ β · S · I

Ptot
·∆t.

We define the parameter β as

β := Total number of contacts per person per day× chance of infection per ”contact”. (7)

where ”contacts” can be either direct or indirect (e.g. by touching a contaminated surface). If t is
in days with ∆t = 1, then the terms to model ∆E have the meaning

β · S · I

Ptot
·∆t := Total number of contacts of the susceptibles× chance of infection per contact

× chance that a contact was with an infectious person.

(8)

10



The number of contacts can be estimated, however the chance of infection per contact is un-
known. That is why we will consider β as an unknown parameter. The parameters α and γ can
be estimated from the data of the infected individuals by looking at the average incubation and
infectious times from the patient data.

Note that if we add all the equations of the SEIR model, we have

d

dt
(S + E + I +R) = 0⇒ S(t) + E(t) + I(t) +R(t) = Ptot(t) = Ptot(0). (9)

This means that the total population is constant. No new susceptibles are added (e.g. no births or
inflow from outside sources) and people who are deceased are merged into the R-group. The transitions
between the groups can be visualised using a simple flow chart.

Susceptibles Exposed Infected Recovered
β SI
Ptot α γ

Figure 1: Transitions between the 4 groups in a basic SEIR model.

The parameters above the arrows in Figure 1 are called the transition parameters, and they determine
the average rate in which the individuals move from one group to the other.

2.2 Simplifications of the SEIR model

In the case of the spread of COVID-19 through the Netherlands, such an SEIR model has the following
systematic (over)simplifications:

1. In a basic SEIR model, the parameter β is usually set to a constant value. However, in real life
this not the case, because people adapt their behaviour once the virus is spreading (stay at home,
avoiding contact with different people). Moreover, the government also takes measures in order to
control the virus (lockdown, quarantine, no gatherings etc). Therefore, it is more reasonable to
assume that β(t) is a function of time.

2. An SEIR model implicitly states that the incubation time period and the infectious time period
are both exponentially distributed with mean 1/α and 1/γ respectively (how long until the person
is infectious and how long until a person recovers). In case for the infectious time period, this
means that regardless of the time since infection, the probability of recovery within a given time
interval is constant, which is not realistic (because of the memory-loss property of an exponential
distribution). To state it in another way, the exponential distribution overestimates the number
of individuals whose duration of infection is much shorter or much longer than the mean [8]. This
will be explained more in Section 6.

3. The basic SEIR model is spatially homogeneous. This means that the model assumes that the
spread of the virus through the country is more or less homogeneous. However, that is usually not
the case. For example in the Netherlands, the first4 corona case was in Noord-Brabant, where they
also celebrated carnaval. It followed that Noord-Brabant was the first province that had taken their
first measures against the virus. After a while, we saw that the number of infected people rose in
De Randstad, which is one of the most densely populated areas in the Netherlands. However, the
number of infected people in other regions such as Groningen or Limburg were relatively low. We
will show in Section 7 a model which includes spatial heterogeneity.

4. An SEIR model does not take into account the age of individuals. However, we saw that COVID-19
was more dangerous for older people (65+) than for younger people. Also, the role of children in
the spread of COVID-19 was considered negligible compared to the role of (young) adults.

As we can see from these simplifications, it should not come as a surprise if the results of modelling are
not in line with the actual data when we use the basic SEIR model. Therefore, we should try to adapt
the basic SEIR model such that we obtain a more realistic model.

4https://nos.nl/artikel/2324870-eerste-nederlander-met-coronavirus-opgenomen-in-tilburg-man-vierde-carnaval
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2.3 Possible solutions to the simplifications

We will briefly present four solutions to the simplifications and explain how to implement these solutions
into the SEIR model.

2.3.1 β(t) as a function of time

As it is mentioned earlier, it feels more reasonable to assume that β(t) is a function of time. There
are studies who have used a time-dependent β(t) for their models, such as [5] and [6]. However, they
implemented a stepwise function or a Heaviside function that models the governmental actions such
as lockdowns. These functions are not smooth, which can cause problems when combining these β(t)
functions with the basic SEIR model. We have considered two ideas to present β(t) as a function of time.

(a) ODE for β(t)
Intuitively, when the number of infected people rises, individuals start to be more careful and
avoiding other people. Moreover, the government have to take measures as well to contain the
virus spreading. Therefore, the number of contacts per person decreases, thus β decreases. On the
other hand, when the number of infected people decreases, people start to meet up again, and the
measures are gradually removed. This leads to an increase of β. In mathematical terms, we have
the following linear ODE:

dβ

dt
= r+ − r−, (10)

where the growth rates r+ and r− are given by

r+ = k1(βhigh − β), r− = k2β
I

Ptot
. (11)

k1, k2 and βhigh are unknown parameters that have to be fit according to the data, and N is the
total population. βhigh is the term for β(t) when the situation is normal, which means just before
the spreading of the virus starts. In that situation, the number of contacts per person per day is
higher (because no risk of infection yet).

(b) Lotka-Volterra equations
The Lotka-Volterra equations are also known as the predator-prey equations. These equations are
given by

dx

dt
= c1x− c2xy,

dy

dt
= c4xy − c3y.

(12)

The idea by using the Lotka-Volterra equations to model β(t) is still the same as mentioned in
the first point. When the number of infected persons I(t) rises, β(t) decreases, and when I(t)
decreases, then β(t) increases again. Therefore, we can model this interaction between β(t) and
I(t) as a predator-prey model. Now, if we set x = β − βhigh, y = I and we ensure that β(t) has a
positive minimum, then we have

dβ

dt
= (β − βlow) · (−k1(β − βhigh) + k2(β − βhigh)I) ,

dI

dt
= c4(β − βhigh)I − c3I,

(13)

where k1 = −c1 > 0, k2 = −c2 > 0, βhigh is the maximum value and βlow is the minimum value
for β(t).

2.3.2 SEIR model with gamma distributed stages

The use of a non-exponential distribution instead of an exponential distribution means that the prob-
ability of recovery depends on the time since infection, hence the model needs to keep track of this
information [7]. One of the distributions we can choose is a gamma distribution. This corresponds to
the subdivision of both the exposed compartment E into m stages and the infected compartment I into
n stages. Then, we assume that the time spent in each substage of E is exponentially distributed, all
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with identical mean. Hence the total time spent in the m substages of E is given by the sum of m
independent exponential distributions, which is a gamma distribution. Similarly for each substage of I,
we assume that the time spent in each substage is exponentially distributed with identical means, which
implies that the total time spent in the n substages of I is gamma distributed.
The model equations are then given by:

dS

dt
= −β SI

Ptot
,

dE1

dt
= β

SI

Ptot
−mαE1,

dE2

dt
= mαE1 −mαE2,

...

dEm
dt

= mαEm−1 −mαEm,

dI1
dt

= mαEm − nγI1,

dI2
dt

= nγI1 − nγI2,

...

dIn
dt

= nγIn−1 − nγIn,

dR

dt
= nγIn.

(14)

2.3.3 Spatial heterogeneity

When modelling spatial heterogeneity, we will divide the Netherlands in different regions. The idea is to
apply the SEIR model to each region, and then connect all the SEIR models by modelling the spread of
the virus between the regions.

Now for each region, the total population per region is divided into the four stages of the SEIR model:

• Susceptibles Sm,

• Exposed Em,

• Infected Im,

• Recovered /deceased Rm,

where m = 1, 2, ..., Nr, and Nr the number of subregions. Then, the SEIR model for region m can be
generalised as

dSm
dt

= −
Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

,

dEm
dt

=

Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

− αEm,

dIm
dt

= αEm − γIm,

dRm
dt

= γIm,

(15)

where βm,n(t) is the transmission coefficient between region m and region n. If m = n, we have the
transmission coefficient within region m itself (intra-region spreading). In this case, the population
density ρm of region m is used:

dSm
dt intra

= −βm(t)
SmIm
Pm

, βm = −kmρm, (16)
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and km is an unknown fitting parameter. If m 6= n, we model the transmission of the disease between
different regions (inter-region spreading) as usual:

dSm
dt inter

= −
Nr∑

n=1,m 6=n

βm,n(t)
SmIn
Pn,tot

. (17)

2.3.4 Age groups

We can model the spread of the virus between different age groups in a similar way when we model
spatial heterogeneity. For each age group, the total population is divided into four different stages of the
SEIR model:

• Susceptibles Sk,

• Exposed Ek,

• Infected Ik,

• Recovered /deceased Rk,

where k = 1, 2, ..., Na and Na the number of age groups. Then it follows that

dSk

dt
= −

Na∑
l=1

βk,lSkI l, (18)

where βk,l is the transmission coefficient between age group k and l. It is possible to combine the age
groups with the spatial heterogeneity. We will then have the equation

dSkm
dt

= −
Nr∑
n=1

Na∑
l=1

βk,lm,nS
k
mI

l
n, (19)

where the product SkmI
l
n represents an encounter of a susceptible living in region m in age group k with

an infected living in region n in age group l.
In this thesis however, we did not included the age groups in our modelling due to time limitations.

2.4 Conclusion & Discussion

In this section, we described the definitions, concepts and the underlying assumptions of the basic
SEIR model. From this description, we have seen that the basic SEIR model has at least four different
(over)simplifications. These simplifications are: a constant parameter β, the assumption of an exponen-
tial distribution, spatial homogeneity and not taking into account the age of individuals. For each of
these simplifications, we described their possible solutions. The results of these solutions will be shown
in later sections.
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3 Estimating the number of infected persons in the Netherlands

In this section, we will estimate the number of infected people per day in the Netherlands. It is important
that we know how many people are infectious at any moment for at least 2 reasons. First, implementing
effective public and health policies can only be done if the number of infected people is known. And sec-
ondly, later on we want to analyse the output of the SEIR models by comparing it with the estimations,
because the output of the SEIR models is usually the number of infected people at a certain moment of
time.

In order to estimate the number of infected persons, we will use a data set from the RIVM that is
publicly available5. This data set consists of the following information:

• The number of positive tests (reported cases) per day,

• The number of hospital admissions per day,

• The number of deceased per day.

The data set is shown in Figure 2. For modelling purposes, we will use the data set that starts from
February 27th 2020 to February 3rd 2021. The data set ends at February 3rd 2021 because at that time
the Dutch vaccination programme started. Also, we saw the rise of the British variant of the virus in
the Netherlands. So, we wanted to exclude these 2 events from the modelling.
In Figure 3 the same hospital admissions per day and deceased per day are shown for clarity.

Figure 2: Data set from the RIVM with the number of reported cases, hospital admissions and deceased
per day of COVID-19 in the Netherlands. The data set starts from February 27th 2020 to February 3rd
2021.

5https://data.rivm.nl/covid-19/
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Figure 3: Hospital admissions per day and deceased per day of Figure 2 shown again for clarity.

The number of positive tests per day is not a good measure in order to estimate the number of infected
people for at least 3 reasons:

1. At the start of the pandemic, there was not enough test capacity. As a consequence, not all
individuals could get tested.

2. Even with sufficient test capacity, there are also people who do not have any symptoms at all
(asymptomatic). Thus it is likely that a majority of the asymptomatic cases will not test themselves.

3. Some people are simply not willing to test themselves. They may be scared (children), or they do
not trust the result after testing.

However, the number of hospital admissions suffer less from these shortcomings. When someone is hos-
pitalized, we can know for sure that they are infected with visible symptoms (therefore a positive ’test’).
Moreover, it is usually not up to the individuals whether or not they want to be hospitalized when their
health is at risk. Thus, we will use the number of hospital admissions as a measure to estimate the
number of infected people. This will be explained later in this section.

Furthermore, we assume that between the number of infected people and the number of hospital admis-
sions, there exists a certain factor κ. We assume that this factor κ is a constant, independent of time
which needs to be estimated from the given data.

Lastly, we will compare our estimation results with the results from the RIVM and Sanquin6, an organ-
isation specialised in blood research. The RIVM had based their estimations on serological data from
the Pienter Corona onderzoek7. Which means that they measured how many donated blood contained
antibodies against the virus. Also, they combined the serological data with the amount of hospital ad-
missions per age-group to estimate the number of infected people per day. Sanquin measured the amount
of antibodies against COVID-19 as well.

3.1 Difference in data

Before we estimate the total number of infected people, we want to distinguish the data about the hospital
admissions given by the RIVM (via the GGD) and another source called NICE (Nationale Intensive Care
Evaluatie). The differences are shown in Figure 4.

6https://www.sanquin.nl/
7https://www.rivm.nl/pienter-corona-studie
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Figure 4: Hospital admissions per day from the GGD and NICE.

The difference between the data is most noticeable during the second wave, where NICE reported more
hospital admissions than the GGD. Apparently, the RIVM uses the data of NICE on their website to
show the hospital admissions per day. So we will use the data of NICE as well.

3.2 Estimation methods

We will describe 2 methods to estimate the number of infected people with use of the hospital admissions
data and the reported positive cases data.

3.2.1 Hospital admissions

For the first method, we define the following notations

Inew(t) = total number of new infections at the time interval [t, t+ ∆t],

Rnew(t) = total number of new recoveries at the time interval [t, t+ ∆t],

Hnew(t) = total number of new hospital admissions at the time interval [t, t+ ∆t].

With these definitions, it follows that

Itot(t) =

∫ t

0

Inew(τ) dτ, Rtot(t) =

∫ t

0

Rnew(τ) dτ (20)

are the total number of people that have ever been infected and the total number people that have been
recovered until time t respectively.

We can relate Inew(t) and Hnew(t) by setting

Hnew(t) = κ

(∫ ∞
0

Inew(t− a)ρH(a) da

)
, (21)

where ρH(a) is a probability mass/density function describing the probability that an individual is hospi-
talized a days after being infected, and κ is a constant, independent of time that contains the percentage
of infections that leads to hospital admission (which we mentioned before).

Similarly, the relation between Inew(t) and Rnew(t) is as follows:

Rnew(t) =

∫ ∞
0

Inew(t− a)ρR(a) da, (22)
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where ρR(a) is a probability mass/density function describing the probability that an individual is re-
covered from the infection a days after being infected.

Now, we make a few assumptions that will simplify the estimation using the model:

1. The RIVM updated their data once per day. This means we set t in days and ∆t = 1.

2. From the serological data of Sanquin, we see that from the first half year of 2020, about 106 people
had been infected up to that moment (see Table 2). At the same time, the RIVM reported that
there were in total 104 hospital admissions up to that moment. This means that about 1% of the
infections leads to hospital admission. Though, we started with a slightly higher percentage, about
1.25%. For now, this implies that κ = 1

80 .

3. The probability density function ρH(a) is in reality unknown. Therefore we have to choose a
distribution in order to do the calculations. Hospital admission takes place (on average) 14 days
after start of the first symptoms. This number is based on the presentation given by Jaap van
Dissel on 20th May 20208. So for now, we set aH = 14 and

ρH(a) =

{
1 if a = aH ,
0 otherwise.

(23)

4. Similarly to assumptions 3, the probability density function ρR(a) is unknown. We assume that
the infectious time (the time in which a person can transmit the disease) is on average 8 days per
person. After the infectious time, we say then that the person is recovered. The infectious time
varies among different studies [20]. But for now, we will fix the infectious time to 8 days. So
similarly, we set aR = 8 and

ρR(a) =

{
1 if a = aR,
0 otherwise.

(24)

From assumptions 2 and 3, equation (21) reduces to

Hnew(t) = κ

(∫ ∞
0

Inew(t− a)ρH(a) da

)
,

=
1

80
Inew(t− aH).

(25)

We can rewrite the above equation to obtain the number of new infections per day as

Inew(t) = 80 ·Hnew(t+ aH). (26)

Similarly, by assumption 4, equation (22) reduces to

Rnew(t) =

∫ ∞
0

Inew(t− a)ρR(a) da,

= Inew(t− aR).

(27)

Consequently, we can now estimate the current number of infected persons at time t. This will be done
by subtracting the total number of people that have been recovered until time t from the total number
of people that have ever been infected until time t.

I(t) = Itot(t)−Rtot(t). (28)

We can rewrite this in a recursive formula:

I(t) = Itot(t)−Rtot(t),
= Itot(t− 1) + Inew(t)− (Rtot(t− 1) +Rnew(t)),

= I(t− 1) + Inew(t)−Rnew(t),

= I(t− 1) + Inew(t)− Inew(t− aR).

(29)

So using equation (29), we can estimate the total number of infected people at any time t, with use of
the data from hospital admissions.

8https://www.tweedekamer.nl/kamerstukken/detail?id=2020D19084&did=2020D19084
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3.2.2 Reported positive cases

In a similar way as in the first method, we can estimate the total number of infected people using the
data from the reported cases per day. We define

Inew,rep(t) = total number of new reported cases at the time interval [t, t+ ∆t],

Rnew,rep(t) = total number of new recoveries from the reported cases at the time interval [t, t+ ∆t].

Then it follows that

Itot,rep(t) =

∫ t

0

Inew,rep(τ) dτ, Rtot,rep(t) =

∫ t

0

Rnew,rep(τ) dτ (30)

are the total number of reported cases and the total number of recovered people from the reported cases
until time t respectively. We will use assumption 4 again that people are recovered 8 days after infection.
This means that expression for Rnew,rep(t) will be similar to equation (27):

Rnew,rep(t) = Inew,rep(t− aR). (31)

Consequently, we can estimate the current number of infected people from the reported cases at time t
as

Irep(t) = Itot,rep(t)−Rtot,rep(t),

=

∫ t

0

Inew,rep(τ) dτ −
∫ t

0

Rnew,rep(τ) dτ,

=

∫ t

0

Inew,rep(τ) dτ −
∫ t

0

Inew,rep(τ − aR) dτ,

=

∫ t

0

Inew,rep(τ)− Inew,rep(τ − aR) dτ,

=

∫ t

t−aR
Inew,rep(τ) dτ,

=

aR∑
k=0

Irep(t− k), t >= aR.

(32)

Where in the last line, the integral changes to a sum because we work with discrete times (per day).
Later on, we will compare both estimations from equations (29) and (32) with the results from the RIVM
and Sanquin.

3.3 Sanquin data

As we have mentioned earlier, Sanquin measured the amount of antibodies against COVID-19 in the
blood of people in the Netherlands. In this way, they can also estimate how many people have been
infected with COVID-19 in total. We will call this Itot,sq.

The results of their research for different time periods are shown in Figure 59, Table 2 and Figure
6. From their research, we see for example that at May 18th, 5.4% of the people that donated their
blood have antibodies, which means that they have been infected to COVID-19. This comes down to
around 9.2·105 total infected persons in the Netherlands. Remarkably, we see a decline in the percentages
(and the corresponding number of people) around the summer months July, August and September. We
can think of at least 2 reasons for this:

• The antibodies in individuals disappear gradually over a period of a few months. This is supported
by articles such as [21] and [22], where they found that antibodies disappeared within 3 or 4-5
months respectively. This does not mean that these people lost all of their immunity, because the
human body has other components as well that protects us against viruses, such as B and T cells.

• Some factors such as (low) sample sizes or inaccurate measurement instruments may have impacted
the results negatively. In the table we see that most measurements had around 8 ·103 blood donors.
We do not know if such sample size is large enough to estimate the total infections accurately.

9https://www.sanquin.nl/over-sanquin/nieuws/2021/01/antistoffen-tegen-coronavirus-bij-13-procent-van-de-donors-januari-2021
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As a consequence, we note that the numbers shown in the column of Itot,sq are lower estimates of the
number of infected people.

Figure 5: Monthly distribution of the antibodies found in donated blood in the Netherlands. The data
start from April 2020 to January 2021.

Date Donors Percentage donors Itot,sq in millions

with antibodies

2018 400 < 1% < 0.17
1-15 April 2020 7361 2.7% 0.459

9-18 May 7154 5.4% 0.918
22 June - 16 july 8423 5.4% 0.918

20 July - 13 August 8611 6.2% 1.054
17 August - 10 Sept 8552 5.7% 0.969

14 Sep - 8 Oct 8571 6.1% 1.037
12 Oct - 6 Nov 8701 6.8% 1.156
9 Nov - 3 Dec 8172 9.6% 1.632
7 Dec - 31 Dec 8077 10.3% 1.751
4 - 12 Jan 2021 3057 13.3% 2.261

Table 2: Results of Sanquin from Figure 5 in a table.
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Figure 6: Graphical representation of the Sanquin data from Figure 5.

3.4 Results

We apply the methods described in the earlier section to estimate the number of infected people. Also,
we show the number of people that are recovered using the same methods. Furthermore, we compare
our estimation results with the data from the RIVM and Sanquin to see how accurate the results are.
Lastly, we will also have a look at the intensive care admissions compared to the hospital admissions.

3.4.1 Estimation of the number of infected people

We use equations (29) and (32) to with the parameters

aH = 14, aR = 8, κ =
1

80
.

Combining these estimations with the estimation published by the RIVM, we get the following plots in
Figure 7:
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Figure 7: Estimated amount of infected people per day using equation (29) (blue), the estimation from
the RIVM with its uncertainty bandwidths (orange), and the estimation using equation (32) (green).
The timeline starts from February 17th 2020 to February 3rd 2021.

We see that the order of magnitude of the estimation from the hospital admissions (blue) is similar to the
RIVM estimation (orange). Whereas the estimation from reported cases (green) is much lower. However,
we see that the blue graph is slightly shifted to the left. A reason for this is because at first we assumed
that hospital admissions take place 14 days after start of the first symptoms from the presentation of
Jaap van Dissel. However in [23], we can find that 75% of the hospitalizations occur within 8 days after
symptom onset. This means that we will have to change our parameter aH . Furthermore, we want our
estimation to be matched with the results from Sanquin, so we will change the parameter κ as well. The
results with Sanquin can be seen later on.
Now, changing the parameters to

aH = 8, aR = 8, κ =
1

82
,

we have that equation (26) changes to:

Inew(t) = 82 ·Hnew(t+ aH). (33)

After that, we see that the blue graph in Figure 8 is shifted to the right.
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Figure 8: Similar plots as in Figure 7, but now with 8 days between symptoms onset and hospitalization
instead of 14 days. Moreover, percentage of infected people that are hospitalized is set to 1.22%.

Now in Figure 8, we can remark several points. At the first wave, we see that the difference between our
blue estimation and the RIVM estimation is quite large. We have to keep in mind that when the first
wave came, there was not enough capacity to test the infected people, and the whole situation was a
bit of a mess. So it is hard to tell if the estimations from ours and the RIVM at the first wave are accurate.

During the second wave, the Netherlands had enough test capacity and there was a better overview
of the epidemic. The moment the Netherlands had enough capacity was around the 1st of October10.
We see that after the assumptions changes, the peaks at the second wave are now shifted in the shaded
area of the RIVM estimation. Consequently the peaks at the first wave are now aligned as well. So apart
from the first wave, we have that the number of infected people is similar to what the RIVM estimated.

We will also look at the ratio between the estimated total infections from the reported cases (green)
and the estimated total infections from hospital admissions (blue) during the second wave. By doing
so, we can know on average the percentage of the number of total infections per day that have been
reported. The ratio plot is in Figure 9.

10https://www.volkskrant.nl/nieuws-achtergrond/door-inbreng-buitenlandse-labs-schiet-de-testcapaciteit-omhoog~bac5d620/
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Figure 9: Ratio between the estimated total infections from the reported cases and the estimated total
infections from hospital admissions, starting from the 1st of October.

From Figure 9, we can calculate the average ratio over the given time, which is 39.3%. This means
that on average, the total infections from the reported cases is merely 39.3% of the true number of total
infections. Most of the infections are therefore not reported, for reasons such as not having symptoms
(and thus not reported), not wanting to test or other factors.

3.4.2 Number of recovered persons

From equations (27) and (33), we can plot the number of recovered people per day by setting

Rnew(t+ aR) = Inew(t) = 82 ·Hnew(t+ aH). (34)

With the parameters

aH = 8, aR = 8, κ =
1

82
,

we see the number of recovered people per day in Figure 10.
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Figure 10: Number of new recoveries per day. The time period starts from February 17th 2020 to
February 3rd 2021.

Now, integrating the recoveries per day over the entire time period, we get the total amount of recovered
people. This comes down to about 3.3 million people. This is in line with the initial conditions that the
RIVM used to run their model11, where they set the total number of recovered persons at 3.13 million,
and the model starts at the 1st of February 2021.

3.4.3 Results including Sanquin data

Now, we include the results of Sanquin with the results of the RIVM and our estimation. The results
of Sanquin were the total number of infected people up until a certain time, whereas the estimations
from the RIVM and ours were the number of infected people per day. So in order to compare all of the
results, we will transform the estimations from the RIVM and ours by taking the cumulative sum of the
plots in 8, and then we divide by 8 days to take into account the infection duration. Then, the results
are shown in Figure 11.

11https://www.rivm.nl/sites/default/files/2021-03/Modellingresults%20COVID19%20vaccination%20version1.0%

2020210324_0.pdf
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Figure 11: Comparison of the Sanquin data (red) with the estimation using hospital admissions from
NICE (blue), the estimation of the RIVM (orange) and the reported cases from the RIVM (green).
Additionally, the total recovered persons per day (purple) is shown as well.

In Figure 11, we see that past the 200 days (the second wave), the difference between the Sanquin
data and our estimation is fairly large, around a million people. Where our estimation and the RIVM
estimation reaches to around 3 million infected persons, the Sanquin data is ’merely’ 2.2 million. One
possible explanation for this difference is that the antibodies in people are disappearing over time, as
we had mentioned that earlier. Before day 200, the amount of people that were infected was around
1 million by our estimation, which matches nicely with the Sanquin data. But at the end of the time
period, the difference is around 1 million. So we think that the missing 1 million people from the Sanquin
data are those who were infected during the first wave, but their antibodies are not measurable anymore.

3.4.4 Intensive Care admissions

It is also worthwhile to look at the intensive care admissions per day, since the whole policy of the
government against COVID-19 is based on alleviating the pressure on hospitals. Especially on the
amount of intensive care units (ICU’s). In Figure 12 we will plot the both the hospital admissions per
day and the intensive care admissions per day. In this way, we can estimate the percentage of hospital
admissions that were also admissioned to the intensive care.
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Figure 12: Hospital and intensive care admissions per day in the Netherlands. Data made available by
the RIVM, starting from February 27th 2020 to February 3rd 2021.

We are interested in the ratio’s between the hospital admissions and the ICU admissions as well, to see
the average percentage of people that go to the ICU after hospitalization. Note that we need to take into
account the time between hospital admission and ICU admission so that the ratio’s are from the same
dates. From [24], we see that the time between hospital admission and the ICU is on average 2 days. So
we will use that as well. After that, the ratio’s are shown in Figure 13:

Figure 13: Ratio between the hospital admissions and the ICU admissions, starting from the 1st of
October.

Calculating the average ratio over the given time, we have an average ratio of 0.186. This means that
18.6% of the hospitalized patients are admissioned to the ICU on average.
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3.5 Conclusion & Discussion

From the data acquired from the RIVM, we have seen that by setting the percentage of new infected
people that are hospitalized to 1.22%, our estimation for the total infected people is in line with the
estimation given by the RIVM and the serological data from Sanquin. Also, we estimated the total
infected persons from the reported cases per day. Comparing these 2 estimations, we have seen that only
39.3% of the true number of total infected people are reported. Furthermore, we have seen that 18.6%
of the hospital admissions lead to intensive care admissions.
During the estimations and analysis of the data, we set a fixed value of 8 days for the average time
between symptom onset and hospitalization, where we retrieved this value from [23]. In equation (33),
we see how this value works out in our estimations. During the writing of this thesis, there are still many
uncertainties and unknowns about COVID-19, especially about parameter estimations. Over time, val-
ues such as the time between symptom onset and hospitalization may change.
This is also the case for the infectious time period (or recovery time), which means that on average,
people are recovered 8 days after infection. For example the infectious time period is used in equation
(29). However in this study [20], it mentioned several other studies that have found or used different
values for the duration of infectiousness. For example in [12] and [18], 5 days was mentioned, whereas
12.5 days was mentioned in [16]. With such variety in time for both the infectious time period and the
time between symptom onset and hospitalization, it suggests that a different (continuous) probability
distribution for ρH(a) and ρR(a) might be a better choice. As a consequence, the estimation curves will
be smoother when a continuous probability density function is used.
We expected that the ratio plot in Figure 9 would be similar to the plot in Figure 13 qualitatively,
because the green and blue graphs in Figure 8 both have similar patterns (2 spikes after day 200) on top
of each other. However, the plot in Figure 13 oscillates around a certain value (mean), whereas in Figure
9 there is an outlier with ratio 0.55. Perhaps the alignment of the blue and green graphs is shifted a few
days, which is affected by the chosen infectious and recovery time.
Nevertheless, comparing our current estimations with the data from Sanquin and the RIVM (for example
in Figure 11), the estimations have come close to that of RIVM and Sanquin. This suggest that our
current parameter values are also close to the actual values.
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4 Initial values and first results with the SEIR model

In order to solve the system of DE’s (35), we need to choose a starting date, initial conditions and values
for the parameters: α, βhigh, γ, k1, k2. As starting date we choose July 16th 2020, which is slightly before
the second wave started in the Netherlands. As it was mentioned before in Section 3, the Netherlands
had enough test capacity and a better overview of the epidemic during the second wave.

dS

dt
= −β SI

Ptot
,

dE

dt
= β

SI

Ptot
− αE,

dI

dt
= αE − γI,

dR

dt
= γI,

dβ

dt
= k1(βhigh − β)− k2

βI

Ptot
.

(35)

Next, we will discuss the choice of the parameters α, γ and the initial conditions in Section 4.1. After
that, the initial value for β(t0) and the parameter βhigh will be explained in Section 4.2. And finally, we
note that k1 and k2 are fitting parameters. We conclude this section with a few numerical solutions in
Section 4.3 and we compare those solutions with the estimated data that was shown in Section 3.

4.1 Values for γ and α and initial conditions

We recall from Section 2 that we derived estimations for the parameters γ and α. These were given by

γ ≈ 1

tinf
=

1

Infectious time

and

α ≈ 1

tinc
=

1

Incubation time
.

In Section 3, we assumed that the infectious time tinf = 8 days. For consistency, we therefore hold on
to this assumption, meaning that we set

γ =
1

8
.

For the incubation time tinc, we follow the information12 given by the RIVM, where it is mentioned that
after being infected, symptom onset mostly take place after 5-6 days. So we will set tinc = 5, and thus
we have

α =
1

5
.

On July 16th 2020, we have the following numbers (rounded) based on the RIVM data and our own
estimation from the previous section:

Ptot = 17 · 106,

S(t0) = 16 · 106,

E(t0) = 4510,

I(t0) = 3854,

R(t0) = 0.988 · 106,

where t0 is the date July 16th 2020. Furthermore, we had set tinc = 5. This means that we have that
E(t0) = I(t0 + tinc) = I(t0 + 5).

12https://www.rivm.nl/coronavirus-covid-19/ziekte
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4.2 Values for βhigh and β(t0)

We also have to estimate the value βhigh and the initial value β(t0) . Recall that βhigh is the term for
β(t) when the situation is normal, which was the case before the pandemic started. This means that no
measures were taken yet. At the start of the pandemic, we assume that S ≈ Ptot and β = βhigh, which
implies that the system of ODEs (35) becomes

dS

dt
= βhighI,

dE

dt
= βhighI − αE,

dI

dt
= αE − γI,

dR

dt
= γI.

(36)

From the equations of dE
dt and dI

dt , we can write those equations as

d

dt

(
E
I

)
=

(
−α βhigh
α −γ

)(
E
I

)
. (37)

Now, (37) is a system of the form x′ = Ax, where

A =

(
−α βhigh
α −γ

)
. (38)

This is a homogeneous system of DEs. Thus, the general solution of this system is given by

x(t) = c1v1e
λ1t + c2v2e

λ2t. (39)

From linear algebra, there exists a theorem stating that the trace of a matrix equals the sum of its
eigenvalues. This means that we have

−α− γ = Tr(A) = λ1 + λ2. (40)

Since −α− γ < 0, it follows that λ1 +λ2 < 0 as well. This means that we either have both λ1, λ2 < 0 or
one of the eigenvalues is positive. However when both eigenvalues are negative, then the epidemic would
not grow, which is not an interesting case. So we assume that one of the eigenvalues λ+ is positive and
the other λ− is negative. Thus we have that

x(t) = c1v1e
λ+t + c2v2e

λ−t. (41)

At the beginning of the epidemic, the term with the negative eigenvalue decays quickly, meaning that
we can roughly estimate the solution as

x(t) ≈ c1v1e
λ+t. (42)

Now we define the term treg as the regeneration time, which means the average time it takes for a person
to infect another person (secondary infection). We also mention the basic reproduction numberR0, which
is defined as the number of people who are infected, on average, by one person (with COVID-19). So
for example if R0 = 2, it means that the number of people being infected doubles with each ‘generation’
of transmission. This is called exponential growth. As long as R0 > 1, the number of people infected
increases faster (exponentially). More details on the reproduction number are written in Appendix A
and B.

So at the start of the epidemic, we can estimate the growth as

eλ+·treg ≈ R0. (43)

It follows that

λ+ ≈
ln(R0)

treg
. (44)
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The characteristic polynomial of matrix A is given by

(−α− λ)(−γ − λ)− αβhigh = 0,

(α+ λ)(γ + λ)− αβhigh = 0.
(45)

Using (44) and rewriting, it follows that

βhigh ≈
1

α
(α+ λ+) (γ + λ+) . (46)

Furthermore, we assumed that the incubation time is 5 days, and the infectious period is 8 days. So the
time it takes for an individual to infect another person is on average treg = 5 + 8/2 = 9 days. Also, at
the start of the epidemic in the Netherlands, the RIVM measured13 R0 = 2.2. Thus, with α = 1/5 and
γ = 1/8, we have that

βhigh ≈ 0.31. (47)

To estimate the initial value β(t0), with t0 starting at July 16th 2020, we can follow the same estimation
used for βhigh. The reproduction number on July 16th 2020 was R0 = 1.21. So we have that

β(t0) ≈ 1

α

(
α+

ln(1.21)

treg

)(
γ +

ln(1.21)

treg

)
,

≈ 0.16.

(48)

So we will use these initial values in our preliminary results.

A less rigorous approach to estimate the values for βhigh and β(t0) is that in our SEIR model, there
exists a relation between R0, β and γ in the form

R0 =
β

γ
. (49)

Then with R0 = 2.2, we have that

βhigh = 2.2 · γ,
≈ 0.28.

(50)

With R0 = 1.21, we have that

β(t0) = 1.21 · γ,
≈ 0.15.

(51)

4.3 Preliminary results

With the initial conditions and values from the previous sections, we can generate a few results with the
model given by (35).

In Python, we can use the function curve fit from scipy.optimize to fit the output of the SEIR
model to the estimated data. This function uses least-squares method to fit the model to the data.
The parameters to be fit are k1 and k2 from (35), however we also allow the parameters βhigh, α, γ and
β(t0) to be fit, though within a small range of the original value of order 10−2 to 10−3. Starting with
βhigh = 0.31 and β(t0) = 0.16, we have the following result:

13https://coronadashboard.rijksoverheid.nl/landelijk/reproductiegetal
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(a) Estimated data of the second wave of infections from Figure 8 and the result of the SEIR model. The data
starts from July 16th 2020 until January 30th 2021.

(b) Plot of β(t) with parameters k1 = 0.037, k2 = 5.016, βhigh = 0.30 and β(t0) = 0.16.

Figure 14: First results of the SEIR model with use of the initial conditions discussed earlier.

As a first fitting, we see in Figure 14a that the model captures the first peak of the estimated data quite
well, where the maxima of both the model and the data are around the same days. However the model
does not capture the second peak at all. Note also that after the fitting, the value of βhigh is slightly
changed to βhigh = 0.30.

Now if we use the β-values obtained from the less rigorous approach, i.e. , βhigh = 0.28 and β(t0) = 0.15,
we have the following plots:
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(a) Estimated data of the second wave of infections from Figure 8 and the result of the SEIR model, now with
the initial values βhigh = 0.28 and β(t0) = 0.15.

(b) Plot of β(t) with parameters k1 = 0.057, k2 = 5.69, βhigh = 0.27 and β(t0) = 0.15.

Figure 15: Results of the SEIR model with use of the initial values from the less rigorous approach.

We see that the plots from Figure 15 are similar to the plots from Figure 14. In both figures, the model
reaches a maximum at or around the same days, followed by a monotone decrease of the infections. Also,
the number of infected people in both the model and the estimated data are of the same order. A small
difference is that the curve of the model output in Figure 15a is slightly more flattened than the curve
in Figure 14a after the first peak. So we see that the values obtained from the less rigorous approach
and the estimation in Section 4 do not affect the numerical solutions that much. Although the model
could not capture the second peak, we were able to implement an ODE for β(t) into the standard SEIR
model, resulting in decent numerical solutions.
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5 Lotka-Volterra equations for β(t)

In Section 4, we showed a few results where the time-dependent function β(t) was modelled using a linear
ODE (mentioned in Section 2 as well). In this section, we will discuss a second method that models β(t)
as a function of time. This method is based on the well-known Lotka-Volterra equations, also known as
the predator-prey equations. The Lotka-Volterra equations are given by

dx

dt
= c1x− c2xy,

dy

dt
= c4xy − c3y.

(52)

Here x denotes the prey (growth inhibited by y) and y denotes the predator (growth increased by x).
Furthermore, c1, c2, c3 and c4 are positive constants. The Lotka-Volterra model has periodic solutions,
which implies that oscillations in the number of preys and predators will occur. Our goal is to use this
periodicity to model the waves of infections that have occured in the Netherlands.

First, we will discuss how to adapt the SIR model inspired by the Lotka-Volterra model in Section
5.1. After that, stability analysis of the adapted SIR model is done. Then, we will show a few numerical
solutions. In these solutions however, we observe that β(t) can become negative. We adjust the ODE
for β(t) slightly in order to prevent this in Section 5.2. With this adjustment, stability analysis is done
again, and numerical solutions are shown. Finally, we will show results where the adaptations are used
in the SEIR model in Section 5.3.

5.1 Lotka-Volterra and the SIR model

Instead of the SEIR model we have used so far, we take a small step back to apply the Lotka-Volterra
equations on the basic SIR model. The SIR model is given by

dS

dt
= −β SI

Ptot
,

dI

dt
= β

SI

Ptot
− γI,

dR

dt
= γI.

(53)

In the SIR model, the exposed compartment is not included, meaning that the susceptibles directly move
to the infectious compartment after being infected. Although this is not entirely in line with what we
have observed from COVID-19, we want to know if stability is achieved with use of Lotka-Volterra in
the model. Analysis of the stability in the SIR model simplifies the calculations.

Now, translating the Lotka-Volterra equations (52) to the SIR model (53), we have that β is the prey
(because β decreases for larger I) and I is the predator (growth in β means an increase in the amount
of infected people). Shifting the value of β upwards by the factor βhigh (which is the value of β before
the epidemic), and by setting x = β − βhigh, y = I, we have

dβ

dt
= c1(β − βhigh)− c2(β − βhigh)I, (54)

dI

dt
= c4(β − βhigh)I − c3I. (55)

If we choose c4 = S/Ptot and c3 = γ − c4βhigh, we have the same ODE as in the SIR model for I again:

dI

dt
= β

SI

Ptot
− γI.

Furthermore, we set k1 = −c1 > 0 and k2 = −c2 > 0, which yields

dβ

dt
= −k1(β − βhigh) + k2(β − βhigh)I, (56)

where the signs are chosen to obtain the correct phase space behaviour.
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5.1.1 Stability analysis of the first adapted SIR model

We will analyse the stability of the system

dβ

dt
= −k1(β − βhigh) + k2(β − βhigh)I,

dI

dt
= c4(β − βhigh)I − c3I.

(57)

The analysis is done using standard techniques by finding critical points, calculating eigenvalues and
classifying the stability of the critical points.

We find the critical points of the system by setting dβ
dt = 0 and dI

dt = 0. For dβ
dt = 0, it follows that

dβ

dt
= 0⇔ β = βhigh ∨ I =

k1
k2
. (58)

If β = βhigh, we have

dI

dt
= 0⇔ −c3I = 0,

⇔ I = 0.
(59)

So the first critical point is
(βhigh, 0).

For the case I = k1
k2

, we have that

dI

dt
= c4(β − βhigh)

k1
k2
− c3

k1
k2

= 0,

⇔ c4(β − βhigh) = c3,

⇔ β =
c3
c4

+ βhigh.

(60)

So the second critical point is (
c3
c4

+ βhigh,
k1
k2

)
.

Using that c4 = S/Ptot and c3 = γ − c4βhigh, we have(
c3
c4

+ βhigh,
k1
k2

)
=

(
γ − S

Ptot
βhigh

S/Ptot
+ βhigh,

k1
k2

)
=

(
γ
Ptot
S
,
k1
k2

)
.

So again, the critical points are

(βhigh, 0) and

(
γ
Ptot
S
,
k1
k2

)
.

Now, let f(β, I) be

f(β, I) =

[
−k1(β − βhigh) + k2(β − βhigh)I

βI S
Ptot
− γI

]
. (61)

Then calculating the partial derivatives to β and I for both equations yields the Jacobi matrix

∂f(β, I)

∂(β, I)
=

[
−k1 + k2I k2(β − βhigh)
I S
Ptot

β S
Ptot
− γ

]
. (62)

Substitution of the equilibrium point (βhigh, 0) yields the matrix[
−k1 0

0 βhigh
S
Ptot
− γ

]
. (63)
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From this we see that the eigenvalues of the matrix are

λ1 = −k1, λ2 = βhigh
S

Ptot
− γ. (64)

From these eigenvalues we see that λ1 < 0, and it follows that while βhigh
S
Ptot

< γ, we have that λ2 < 0.

So that the critical point (βhigh, 0) is an attractor. Else if γ < βhigh
S
Ptot

we have a saddle node.

Substitution of the equilibrium point
(
γ Ptot

S , k1k2

)
yields the matrix

[
0 k2

(
γ Ptot

S − βhigh
)

k1
k2

S
Ptot

0

]
. (65)

Setting the characteristic polynomial to zero gives us

λ2 − k1
k2

S

Ptot
· k2

(
γ
Ptot
S
− βhigh

)
= 0,

⇒ λ2 − k1
S

Ptot

(
γ
Ptot
S
− βhigh

)
= 0.

(66)

Now if γ Ptot

S − βhigh > 0 (⇔ γ > βhigh
S
Ptot

), we have that

λ1, λ2 = ±

√
k1

S

Ptot

(
γ
Ptot
S
− βhigh

)
, (67)

and we have a saddle node.
Otherwise, if γ Ptot

S − βhigh < 0 (⇔ γ < βhigh
S
Ptot

), we have that

λ1, λ2 = ±i

√
k1

S

Ptot

(
γ
Ptot
S
− βhigh

)
, (68)

This means that the critical point
(
γ Ptot

S , k1c2

)
is a center in the linearized system (for the non-linear

case, there is actually more analysis needed, but it is known from the Lotka-Volterra equations that a
center exists in the non-linear case).

To summarize the stability analysis, we have 2 cases:

1. If γ < βhigh
S
Ptot

, then (βhigh, 0) is a saddle node, and
(
γ Ptot

S , k1k2

)
is a center (in the linearized system).

2. If γ > βhigh
S
Ptot

, then (βhigh, 0) is an attractor and
(
γ Ptot

S , k1k2

)
is a saddle node.

Note that the condition
S

Ptot
=

γ

βhigh
(69)

means that we have reached herd immunity. So initially, we have S > γ ·Ptot/βhigh and we are in case 1.
After reaching herd immunity, the phase space changes. Then (βhigh, 0) becomes stable and the epidemic
dies out.

5.1.2 Results of the first adaptation of the SIR model

From the stability analysis, we see that there exists a center in the phase plane, meaning that we can
expect periodicity in the numerical solutions. The periodicity of these solutions can be viewed as the
COVID-19 ’waves’ of infected persons. Therefore, we want to try to fit the model to the entire estimated
data set, such that the model matches with the waves of infections that have taken place in the Nether-
lands.
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With the inital conditions

Ptot = 17 · 106,

S(t0) = 16 · 106,

I(t0) = 3854,

R(t0) = 0.988 · 106,

β(t0) = 1.21 · γ,
βhigh = 0.31,

we show an example of the output of the first adaptation of the SIR model in Figure 16:

(a) Periodicity of the first adaptation of the SIR model (red) with the estimated data for reference (blue).

(b) Plot of β(t) with parameters βhigh = 0.31, k1 = 0.074 and k2 = 28.55. Here, we also see periodicity of the
β(t) function.

Figure 16: Example of an output of the first adaptation of the SIR model and its β(t)-plot.

We observe from Figure 16 that the model solutions are periodic, and that apparently the epidemic has

37



not died out yet. Another interesting (and more important) feature that we see is that the value of β(t)
becomes negative on several days. This is of course not possible in reality, having negative contacts per
person per day. So we need to make sure that β(t) > 0 for all t. This will be shown in the next section.

5.2 Second adjustment of the SIR model

In order to prevent that β(t) becomes negative, we can adjust the ODE for β(t) from equation (57) by
multiplying the RHS of the ODE by β. However, we will generalise this adjustment by introducing a
new parameter βlow, which can be zero. It follows that this adjustment yields the equations:

dβ

dt
= (β − βlow) · (−k1(β − βhigh) + k2(β − βhigh)I) ,

dI

dt
= c4(β − βhigh)I − c3I,

(70)

where βlow is the lowest value of β during the pandemic. Like before, we choose c4 = S/Ptot and
c3 = γ − c4βhigh to obtain the standard ODE equation for I:

dI

dt
= β

SI

Ptot
− γI.

5.2.1 Stability Analysis of the second adjustment of the SIR model

With this adjustment, we have the following three critical points:

(βlow, 0), (βhigh, 0) and

(
γ
Ptot
S
,
k1
k2

)
.

Let g(β, I) be

g(β, I) =

[
(β − βlow) · (−k1(β − βhigh) + k2(β − βhigh)I)

βI S
Ptot
− γI

]
. (71)

Then the Jacobi matrix is given by:

∂g(β, I)

∂(β, I)
=

[
−k1(β − βhigh) + k2(β − βhigh)I + (β − βlow)(−k1 + k2I) (β − βlow)(k2(β − βhigh))

I S
Ptot

β S
Ptot
− γ

]
.

(72)
Substitution of the critical point (βlow, 0) yields the matrix[

−k1(βlow − βhigh) 0
0 βlow

S
Ptot
− γ

]
. (73)

We see that the eigenvalues are

λ1 = −k1(βlow − βhigh) > 0, λ2 = βlow
S

Ptot
− γ. (74)

If βlow
S
Ptot

< γ (⇔ βlow < γ Ptot

S ), then λ2 < 0 and thus we have a saddle point.

If βlow
S
Ptot

> γ (⇔ βlow > γ Ptot

S ), then λ2 > 0 and thus we have an unstable node.

Next, substitution of the point (βhigh, 0) yields[
−k1(βhigh − βlow) 0

0 βhigh
S
Ptot
− γ

]
, (75)

with eigenvalues

λ1 = −k1(βhigh − βlow) < 0, λ2 = βhigh
S

Ptot
− γ. (76)

If βhigh
S
Ptot

< γ (⇔ βhigh < γ Ptot

S ), then λ2 < 0 and thus we have an attractor.

If βhigh
S
Ptot

> γ (⇔ βhigh > γ Ptot

S ), then λ2 > 0 and thus we have a saddle point.
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Lastly, substitution of the point
(
γ Ptot

S , k1k2

)
yields[

0
(
γ Ptot

S − βlow
) (
k2
(
γ Ptot

S − βhigh
))

k1
k2

S
Ptot

0

]
. (77)

Now setting the characteristic polynomial to zero:

λ2 − a = 0, (78)

with

a =
k1
k2

S

Ptot

(
γ
Ptot
S
− βlow

)(
k2

(
γ
Ptot
S
− βhigh

))
, (79)

it follows that we have three cases:

If γ Ptot

S < βlow < βhigh, then a > 0. Thus we have λ1,2 = ±
√
a, a saddle node.

If γ Ptot

S > βhigh > βlow, then a > 0. Thus we have λ1,2 = ±
√
a, a saddle node.

If βlow < γ Ptot

S < βhigh, then a < 0. Thus we have λ1,2 = ±i
√
a, a center (in the linearised system).

To summarize the stability analysis of all three critical points, we observe that we can distinguish three
cases:

1. If γ Ptot

S < βlow < βhigh, then (βlow, 0) is an unstable node, (βhigh, 0) is a saddle and (γ Ptot

S , k1k2 )
is a saddle node.

2. If βlow < γ Ptot

S < βhigh, then (βlow, 0) is a saddle node, (βhigh, 0) is a saddle and (γ Ptot

S , k1k2 ) is
a center.

3. If βlow < βhigh < γ Ptot

S , then (βlow, 0) is a saddle node, (βhigh, 0) is an attractor and (γ Ptot

S , k1k2 )
is a saddle.

Case 1 happens when the epidemic is extremely severe, because the recovery rate γ is very low. This
leads to an unstable situation. Case 2 is when the situation is more controllable, however (local) out-
breaks and different waves of infections happen. Lastly, case 3 happens when the epidemic starts to die
out. Note that these three cases happen in the order of 1→ 2→ 3, and it is dependent on the specific
values in which case a disease starts. So with COVID-19 in the Netherlands, we observe that we start
more or less in case 2.

5.2.2 Analytical solution - First method

For case 2, we can find an analytical solution around the critical point (γ Ptot

S , k1k2 ). Substitution of this
critical point in the Jacobi matrix yields[

0
(
γ Ptot

S − βlow
) (
k2
(
γ Ptot

S − βhigh
))

k1
k2

S
Ptot

0

]
=

[
0 −b
c 0

]
, (80)

where

b =

(
γ
Ptot
S
− βlow

)(
k2

(
βhigh − γ

Ptot
S

))
> 0, c =

k1
k2

S

Ptot
> 0. (81)

Then the eigenvalues of the matrix are

λ1,2 = ±i

√
k1
k2

S

Ptot

(
γ
Ptot
S
− βlow

)(
k2

(
βhigh − γ

Ptot
S

))
(82)

= ±i
√
cb, (83)

with corresponding eigenvectors [
0
1

]
± i

[√
b√
c

0

]
. (84)
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Then the solution corresponding to λ1 and its eigenvector is given by[
β(t)
I(t)

]
= exp

(
i
√
bct
)([0

1

]
+ i

[√
b√
c

0

])
,

=
(

cos
(√

bct
)

+ i sin
(√

bct
))([

0
1

]
+ i

[√
b√
c

0

])
,

=

−√b√c sin
(√

bct
)

cos
(√

bct
) + i

√b√c cos
(√

bct
)

sin
(√

bct
)  .

(85)

Then by Lemma 1 in chapter 3.9 from the book [25], the solution is given by[
β(t)
I(t)

]
= α1

−√b√c sin
(√

bct
)

cos
(√

bct
) + α2

√b√c cos
(√

bct
)

sin
(√

bct
)  , (86)

where α1, α2 are constants.

5.2.3 Analytical solution - Second method

Substitution of the critical point (γ Ptot

S , k1k2 ) in the Jacobi matrix yields[
0

(
γ Ptot

S − βlow
) (
k2
(
γ Ptot

S − βhigh
))

k1
k2

S
Ptot

0

]
=

[
0 −b
c 0

]
. (87)

The linearised system is of the form x′ = Ax. Then the solution to the DE is equal to

x(t) = eAtc, (88)

where

A =

[
0 −b
c 0

]
. (89)

Computing the matrix exponential eA is done as follows. We can diagonalize the matrix A such that

A = PDP−1, (90)

where

P =

[
−i
√
b√
c

i
√
b√
c

1 1

]
, (91)

D =

[
−i
√
b
√
c 0

0 i
√
b
√
c

]
, (92)

P−1 =

[
i
√
c

2
√
b

1/2

−i
√
c

2
√
b

1/2

]
. (93)

Then it follows that

An = PDnP−1 = P

[
(−i
√
b
√
c)n 0

0 (i
√
b
√
c)n

]
P−1 (94)

for n = 1, 2, .... The matrix exponential is defined as

eA =

∞∑
k=0

Ak

k!
. (95)

Then with A = PDP−1, it follows that

eAt =

∞∑
k=0

(At)k

k!
=

∞∑
k=0

(PDP−1)ktk

k!
=

∞∑
k=0

PDktkP−1

k!
= P

( ∞∑
k=0

(Dt)k

k!

)
P−1,

= P

( ∞∑
k=0

1

k!

[
(−i
√
b
√
c)ktk 0

0 (i
√
b
√
c)ktk

])
P−1,

= P

([
e(−i

√
b
√
c)t 0

0 e(i
√
b
√
c)t

])
P−1.

(96)
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So we have that

eAt = P

([
e(−i

√
b
√
c)t 0

0 e(i
√
b
√
c)t

])
P−1 =

[
−i
√
b√
c

i
√
b√
c

1 1

]
·

[
e(−i

√
b
√
c)t 0

0 e(i
√
b
√
c)t

]
·

[
i
√
c

2
√
b

1/2

−i
√
c

2
√
b

1/2

]
,

=

[
−i
√
b√
c

i
√
b√
c

1 1

]
·
[
cos (
√
bct)− i sin (

√
bct) 0

0 cos (
√
bct) + i sin (

√
bct)

]
·

[
i
√
c

2
√
b

1/2

−i
√
c

2
√
b

1/2

]
,

=

[
−i
√
b√
c

(
cos (
√
bct)− i sin (

√
bct)

)
i
√
b√
c

(
cos (
√
bct) + i sin (

√
bct)

)
cos (
√
bct)− i sin (

√
bct) cos (

√
bct) + i sin (

√
bct)

]
·

[
i
√
c

2
√
b

1/2

−i
√
c

2
√
b

1/2

]
,

=

[
cos (
√
bct) −

√
b√
c

sin (
√
bct)

√
c√
b

sin (
√
bct) cos (

√
bct)

]
.

(97)

Thus, the analytical solution is given by

x(t) = eAtc =

[
cos (
√
bct) −

√
b√
c

sin (
√
bct)

√
c√
b

sin (
√
bct) cos (

√
bct).

]
·
[
c1
c2

]
,

= c1

[
cos (
√
bct)√

c√
b

sin (
√
bct)

]
+ c2

[
−
√
b√
c

sin (
√
bct)

cos (
√
bct)

]
,

(98)

where c1 and c2 are constants.

5.2.4 Period of the analytical solution

The period of the solutions can be calculated by setting

√
cb =

√
k1
k2

S

Ptot

(
γ
Ptot
S
− βlow

)(
k2

(
βhigh − γ

Ptot
S

))
=

2π

Tperiod
. (99)

Now, if we set βhigh = 0.4, βlow = 0.1 (because then βlow < γ) and we assume at the start of the
pandemic, Ptot ≈ S, we have that

√
cb =

√
k1
k2

S

Ptot

(
γ
Ptot
S
− βlow

)(
k2

(
βhigh − γ

Ptot
S

))
=

2π

Tperiod
,

⇒ k1
k2

S

Ptot

(
γ
Ptot
S
− βlow

)(
k2

(
βhigh − γ

Ptot
S

))
=

(
2π

Tperiod

)2

,

≈ k1
k2

(
1

8
− 0.1

)(
k2

(
0.4− 1

8

))
=

(
2π

Tperiod

)2

,

≈ k1
(

1

8
− 0.1

)(
0.4− 1

8

)
=

(
2π

Tperiod

)2

,

⇒ k1 ≈
1

0.025

1

0.275

(
2π

Tperiod

)2

.

(100)

We note that k1 determines more or less the time period between each infection wave, and k2 determines
how fast the number of infected people rises. Note also that in this case, we have that k2 is a ’free’
parameter, which should be fitted according to the data.

5.2.5 Results of the second adjustment of the SIR model

We will show a few results with the second adjusted version of the SIR model. The initial conditions
in Figure 17 will be the same as in Figure 16, and we set βlow = 0.1 because then βlow < γ, which
corresponds to case 2.

41



With the adjusted version, we see in Figure 17b that the β(t) function is no longer smaller than βlow,
which is what we wanted. Furthermore in Figure 17a, from a qualitative point of view, we were able to
choose parameters in order to get two waves of infections that are around the same time as the waves
from the the estimated data.

(a) Two waves of infections from the second adjustment of the SIR model (orange) that are around the same
time as the two waves from the estimated data.

(b) Plot of β(t) with parameters βhigh = 0.31, βlow = 0.1, β(t0) = 0.16, k1 = 0.4 and k2 = 100. Note that the two
spikes occur a few days earlier than the spikes of the model.

Figure 17: Plot of an output of the second adjustment of the SIR model and its β(t)-function. Here, the
model produces two infections waves and the β(t)-function is non-negative.
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(a) Second adjustment of the SIR model with different initial values. Here, two waves of infections are produced
by the SIR model (orange), but now the first wave of the SIR model is in line with the first wave of the data.
The second wave of the SIR model is shifted more towards the middle of the second wave of the data.

(b) Plot of β(t) with parameters βhigh = 0.4, βlow = 0.1, β(t0) = 0.25, k1 = 0.239 and k2 = 83.

Figure 18: Another plot of an output of the adjusted Lotka-Volterra SIR model and its β(t)-function.
Now with other initial values.

In Figure 18, we chose to start with different initial values for βhigh and β(t0). We set β(t0) = 0.25,
because here we considered the entire data set, so that t0 starts at February 17th 2020. Thus, with
equation (49), we have that R0 = 2, which corresponds more or less to what the RIVM calculated
around that time. For βhigh, we also increase the value to 0.4 because the basic reproductive number
may be higher than what the RIVM had calculated.
With the change in initial values, we see in Figure 18a that the first wave from the SIR model is in line
with the first wave from the estimated data. The second wave from the SIR model also occurs around the
same time as the second wave from the estimated data. However, the second wave from the estimated
data is much wider.
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5.3 Lotka-Volterra and the SEIR model

So far, we applied the Lotka-Volterra equations on the SIR model, which gave us a few qualitative good
results. Now, we will return to the SEIR model again, where the SEIR equations are given by (35) with

dβ

dt
= (β − βlow) · (−k1(β − βhigh) + k2(β − βhigh)I) . (101)

This time, we will not analyse the stability of the system. Instead, we will immediately show the results
of the model output. In Figure 19 and Figure 20, we used the values βhigh = 0.31 and β(t0) = 0.16. In
Figure 21 and Figure 22 we used βhigh = 0.4 and β(t0) = 0.25. These values were used in the results of
the second adjustment of the SIR model as well.

5.3.1 Results with parameters βhigh = 0.31 & β(t0) = 0.16

(a) Output of the adjusted SEIR model. Periodicity of the adjusted SEIR model is observed by having two waves
of infections. However, the waves of the model are much larger and wider compared to the waves of the estimated
data. Also, the waves of the model occur at later moments.

(b) Plot of β(t) with parameters βhigh = 0.31, βlow = 0.12, β(t0) = 0.16, k1 = 2.05 and k2 = 375.

Figure 19: Results of the adjusted SEIR model and its β(t)-function.

44



With our first parameters, we observe in Figure 19a that the model produces two waves of infections,
where the first wave is larger than the second wave. However, the peaks of the model are much higher
and wider (especially the first wave), compared to the estimated data. This means that the model
overestimates the number of infected people. Moreover, we see that the two waves of the model occur
at a later moment, which is also not completely in line with the estimated data.

(a) Same output of the SEIR model as in Figure 19 if the model runs for a longer period of time. We observe
the occurrence of a third wave and the epidemic eventually dies out if no outside-effects are present.

(b) Plot of β(t) with parameters βhigh = 0.31, βlow = 0.12, β(t0) = 0.16, k1 = 2.05 and k2 = 375.

Figure 20: Results of the SEIR model that runs for a longer period of time. The initial values are the
same as in Figure 19.

If we run the model for a longer period of time, we see in Figure 20a that the model produces a third
wave a bit after 600 days, which means around September-October 2021. After that, the epidemic dies
out because of the change in phase space behaviour. Note that we did not include any outside-effects
such as (new) variants of the virus that may be more contagious, or inclusion of vaccination programs.
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5.3.2 Results with parameters βhigh = 0.4 & β(t0) = 0.25

(a) The adjusted SEIR model with different parameters. Compared to Figure 19a, we see that the waves of
infections in this figure is shifted more towards left, meaning that the waves of infections start earlier. Same as
in Figure 19a, the waves of infections are much higher than the waves of the estimated data.

(b) Plot of β(t) with parameters βhigh = 0.4, βlow = 0.1, β(t0) = 0.25, k1 = 2.05 and k2 = 305.

Figure 21: Result of the adjusted SEIR model and its β(t)-function with different parameters.

With the parameters βhigh = 0.4 and β(t0) = 0.25, we see in Figure 21a that the waves of infections
of the model occur earlier than in Figure 19a. This means that these waves are now more in line with
waves from the estimated data. However again, the model overestimates the number of infected people.
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(a) Same output of the adjusted SEIR model as in Figure 21a, but now the model runs for a longer period of
time. We observe again that the epidemic eventually dies out, but now with the addition of a third and fourth
wave.

(b) Plot of β(t) with parameters βhigh = 0.4, βlow = 0.1, β(t0) = 0.25, k1 = 2.05 and k2 = 305.

Figure 22: Same output as in Figure 21, but now the model runs for a longer period of time.

Running the model for a longer period of time again, we observe in Figure 22a that the epidemic
eventually dies out as well. Though again, the model overestimates the number of infections. We note
also that the model produces a third wave after day 400 (April 2021) and a fourth wave around day 800
(May 2022). The time period between the third and fourth wave are larger than the time period between
the other waves. Perhaps this suggests that the majority of the population has become immune to the
virus after the third wave.

5.4 Conclusion & Discussion

In this section, we have seen how we can apply the Lotka-Volterra equations into the SIR and SEIR
model. The basic Lotka-Volterra model has periodic solutions, and we wanted to use that periodicity
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to model the infection waves that have occurred in the Netherlands. This can be seen in the results of
both the SIR and SEIR models. From a qualitative point of view, we were able to match the waves of
infections of the S(E)IR model with the estimated data. However, the actual number of infections did not
match completely with the estimated data, meaning that the model with Lotka-Volterra overestimates
the number of infections. Nevertheless, this new equation for β(t) is not too complicated, while also
being able to model infection waves through periodicity. For a quantitative match of the model with the
estimated data, It would be interesting for future research if it is possible to fine-tune the function β(t)
such that the function becomes country-specific. If COVID-19 is also affected by seasonal events (such
as warmer/sunnier climates), this may also be incorporated in the β(t)-function.
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6 SEIR model with gamma distributed stages

The standard SEIR model implicitly assumes that both the incubation time period and the infectious
time period are exponentially distributed with mean 1/α and 1/γ respectively. However, assuming this
distribution, it means in the case of the infectious time period that the probability of recovery within
a given time interval is constant, regardless of the time since infection, which is unrealistic [7, 8]. In
reality we see that the chance of recovery in a given interval is initially small but increases over time.
Therefore the standard SEIR model needs to be adjusted with use of a different distribution. One of the
candidates that can be used instead is the gamma distribution. In this section we will discuss the SEIR
model where the exposed stage and the infectious stage are gamma distributed.

First, we will discuss how to adjust the standard SEIR model in Section 6.1. After that, we will show a
few numerical solutions in Sections 6.2 and 6.3, where we use both the ODE for β(t) from Section 4 and
the Lotka-Volterra equations for β(t) from Section 5.

6.1 The model equations

In these papers [7, 8, 9], the authors proposed a modification to the standard SEIR model with use of
a gamma distribution. To incorporate the gamma distribution, we subdivide the exposed compartment
E and the infected compartment I into m and n stages respectively; this is also called the method of
stages. Then, we assume that the time spent in each substage of E is exponentially distributed with
mean 1/α. Consequently, the total time spent in the m substages of E is the sum of m independent
identical exponential distributions. From probability theory, we know that this corresponds to a gamma
distribution. Specifically, the probability density function of this gamma distribution is given by

fE(t) =
(αm)m

Γ(m)
tm−1e−αmt, (102)

where Γ(m) is the gamma function. Note that the mean of the gamma distribution equalsm/(αm) = 1/α,
which is the same mean for the incubation time period when the exponential distribution is used in the
standard SEIR model.

Similarly for the infectious time period, we have a gamma distribution for the total time spent in the n
substages of I, which is given by

fI(t) =
(γn)n

Γ(n)
tn−1e−γnt. (103)

We note again that the mean of this distribution equals n/(γn) = 1/γ, which is the same mean for the
infectious time period when the exponential distribution is used in the standard SEIR model.
With the same means 1/α and 1/γ for both the standard SEIR model and this adjusted SEIR model,
it enables us to compare these models, where the only difference is in their distributions of incubation
time periods and infectious time periods.
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Using this method of stages, the modified SEIR model is given by the following equations:

dS

dt
= −β SI

Ptot
,

dE1

dt
= β

SI

Ptot
−mαE1,

dE2

dt
= mαE1 −mαE2,

...

dEm
dt

= mαEm−1 −mαEm,

dI1
dt

= mαEn − nγI1,

dI2
dt

= nγI1 − nγI2,

...

dIn
dt

= nγIn−1 −mγIn,

dR

dt
= nγIn.

(104)

Note that when m = 1 and n = 1, we have the standard SEIR model again. Next, we have that the total
number of exposed E and infected persons I are given by E =

∑m
k=1Ek and I =

∑n
i=1 Ii. Furthermore,

we will use either
dβ

dt
= k1(βhigh − β)− k2

βI

Ptot
or

dβ

dt
= (β − βlow) · (−k1(β − βhigh) + k2(β − βhigh)I)

to model the time-dependent β(t)-function.

We will also point out that the amount of stages does not need to have a biological meaning of the
infection itself. The subdivision of these stages is merely a mathematical device used to consider non-
exponential incubation/infectious time periods [8]. Although in some cases it might be possible to give
these stages a biological meaning, such as early-late incubation stage, or early-late infection stage.

6.2 Results with first ODE for β(t)

We use the same initial values from the previous section:

Ptot = 17 · 106,

S(t0) = 16 · 106,

E(t0) = 4510,

I(t0) = 3854,

R(t0) = 0.988 · 106,

β(t0) = 0.16,

βhigh = 0.31.

Because we have m and n stages for the exposed and infected compartments respectively, we will dis-
tribute the initial values E(t0) and I(t0) over their respective stages homogeneously (if possible, other
wise rounding the numbers to make sure we have integer valued numbers). So we have

Ek(t0) =
E(t0)

m
, Ii(t0) =

I(t0)

n
, (105)

for k = 1, 2, ..m and i = 1, 2, ..n. The parameters we want to fit are k1, k2, βhigh, γ, α and β(t0). We will
study two cases: 5 exposed and 5 infected stages in Section 6.2.1 and 10 exposed and 10 infected stages
in Section 6.2.2.
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6.2.1 5 Exposed and 5 Infected stages

In Figures 23a and 24a, we will show the total number of infected people as a function of time after fitting
with n,m = 5 stages for the exposed and infected compartments. We observe only marginal difference
with the preliminary results obtained in Section 4. We also observe that varying βhigh and β(t0) only
leads to marginal differences as well.

Parameters βhigh = 0.31, β(t0) = 0.16 (from Section 4).

(a) Model solution (red) of the SEIR model with 5 exposed and 5 infected stages, where the first ODE for β(t) is
used. The estimated data (blue) is also shown for reference. We observe that the difference between the results
of the standard SEIR model in Section 4 and the SEIR model with gamma distributed stages is small.

(b) Plot of β(t) with parameters βhigh = 0.30, β(t0) = 0.16, k1 = 0.050 and k2 = 5.0.

Figure 23: Result of the SEIR model with 5 exposed and 5 infected stages. Also the β(t)-function is
shown with the fitted parameters.

Parameters βhigh = 0.28, β(t0) = 0.15 (from Section 4).
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(a) Model solution of the SEIR model with 5 exposed and 5 infected stages, where the first ODE for β(t) is
used. Now, different parameters are used as well. We observe that varying the parameter values leads to a minor
difference in the results.

(b) Plot of β(t) with parameters βhigh = 0.27, β(t0) = 0.15, k1 = 0.066 and k2 = 5.0.

Figure 24: Results of the SEIR model with 5 exposed and 5 infected stages. Here, different parameter
values are used.

6.2.2 10 Exposed and 10 Infected stages

In Figures 25a and 26a, we will show the total number of infected people as a function of time after fit-
ting with n,m = 10 stages for the exposed and infected compartments. Again we observe only marginal
difference with the preliminary results obtained in Section 4 and we also observe that varying βhigh and
β(t0) leads to minor differences as well. Finally, we observe that varying the number of stages seems to
have minimal effect.

Parameters βhigh = 0.31, β(t0) = 0.16
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(a) Model solution (red) of the SEIR model with 10 exposed and 10 infected stages, where the first ODE for
β(t) is used. The estimated data (blue) is also shown for reference. We observe that the difference between the
results of the standard SEIR model in Section 4 and the SEIR model with gamma distributed stages is small.

(b) Plot of β(t) with parameters βhigh = 0.3, β(t0) = 0.16, k1 = 0.053 and k2 = 5.41.

Figure 25: Result of the SEIR model with 10 exposed and 10 infected stages. Also the β(t)-function is
shown with the fitted parameters.

Parameters βhigh = 0.28, β(t0) = 0.15
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(a) Model solution of the SEIR model with 10 exposed and 10 infected stages, where the first ODE for β(t) is
used. Now, different parameters are used as well. We observe again that varying the parameter values leads to
a minor difference in the results.

(b) Plot of β(t) with parameters βhigh = 0.27, β(t0) = 0.15, k1 = 0.084 and k2 = 6.25.

Figure 26: Results of the SEIR model with 5 exposed and 5 infected stages. Here, different parameter
values are used.

6.3 Results with Lotka-Volterra

The Lotka-Volterra model is able to capture consecutive peaks which allows us to fit our model solutions
to the entire estimated data set. So in this section we fit our model equations with 5 exposed and 5
infected stages and with 10 exposed and 10 infected stages to the data. Also in this case, we observe
that inclusion of multiple stages does not alter the behaviour of the model solutions significantly (see
Section 5).
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(a) Plot after fitting with the Lotka-Volterra SEIR model. Here we choose 5 exposed and 5 infected stages with
parameters βhigh = 0.3, βlow = 0.11, β(t0) = 0.16, k1 = 0.179 and k2 = 75. The estimated data starts from the
second wave.

(b) Same plot when the model runs for a longer time. We observe from the model that the waves of infections
increases, and eventually dies out. In general this is not a realistic scenario.

Figure 27: When the Lotka-Volterra SEIR model is used to fit only a part of the data set, it has to make
sure that the behaviour of the model is also realistic for a longer period of time. We observe however
that the behaviour is not realistic. Therefore we choose to fit the entire data set.

6.3.1 5 Exposed and 5 Infected stages - Lotka-Volterra

In Figure 28, we show the total number of infected people after fitting with 5 exposed and 5 infected
stages. We observe that the model behaves well in the sense that after each consecutive peak, the
epidemic slowly dies out. However, we observe also that the number of infected people in each peak of
the model is higher than the estimated data set. Therefore, it seems that the inclusion of a multiple
stages model only has a minor effect, because these results are similar to the results from Section 5.
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Figure 28: Result of the Lotka-Volterra SEIR model with 5 exposed and 5 infected stages. The parameters
are βhigh = 0.31, βlow = 0.1, β(t0) = 0.16, k1 = 3.50 and k2 = 375. We observe that the number of
infected people at each peak of the model is higher than the estimated data. We also observe that the
peaks of the model decline, and eventually the epidemic dies out.

6.3.2 10 Exposed and 10 Infected stages - Lotka-Volterra

We see in Figure 29 the result of the Lotka-Volterra SEIR model with 10 exposed and 10 infected stages.
We observe that the model solution behaves similarly to what we have seen in Figure 28. This implies
that altering the number of exposed and/or infected stages does not have a significant effect on the model
behaviour.

Figure 29: Lotka-Volterra SEIR model plot with parameters βhigh = 0.305, βlow = 0.097, β(t0) =
0.16, k1 = 4.608 and k2 = 359.9. The number of infected persons from the model is higher than the
estimated data.
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6.4 Conclusion & Discussion

In this section, we discussed why and how to implement gamma distributed stages in the standard SEIR
model. After that, we showed multiple results of the adjusted SEIR model, in combination with use of
our first ODE for β(t) and the Lotka-Volterra. From these results, we made several observations. First,
the differences in the results were minimal when the parameters were altered. Perhaps due to the small
change in parameter values we did not observe major changes in the model behaviour. Though we cannot
change the parameter values too much because they have to be in line with the COVID-19 statistics (such
as βhigh and β(t0) that are dependent on the reproduction number). Secondly, the inclusion of multiple
exposed and/or infected stages only lead to minor differences with the preliminary results obtained in
Section 4 and the Lokta-Volterra equations with standard SEIR model in Section 5. However, as we have
mentioned at the beginning of this section, the assumption of an exponential distribution for the time
period is unrealistic. Regardless of the minor differences in the results, we think that the assumption for
an exponential distribution should not be made, and therefore other distributions should be considered
(such as a gamma or normal distribution). Lastly, varying the number of stages seemed to have a minor
effect as well. We chose either 5 exposed and 5 infected stages or 10 exposed and 10 infected stages.
The choice for the number of stages was arbitrary, and although not necessary, we do not know yet if a
specific number of stages will have a biological meaning that is in line with COVID-19. Perhaps if we
had increased the number of stages, we would have seen a larger effect of the multiple stages model. We
recommend future research into this topic.
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7 The SEIR model and spatial heterogeneity

In the previous sections, we did not include spatial heterogeneity in the model. In this section, we will
discuss how to adjust the standard SEIR model such that spatial heterogeneity is taken into account.
Without this adjustment, the standard SEIR model implicitly assumes that the spread of the virus is
more or less homogeneous in the Netherlands. However, we already mentioned in Section 2 that the virus
did not spread homogeneously in the Netherlands. We expect that the virus spreads faster in densely
populated areas, such as in cities and other urban areas, whereas in more rural areas, the spread is much
slower. Therefore, it makes sense to include spatial heterogeneity in the model to take these observations
into account.

Before we discuss the implementation of spatial heterogeneity, we need to have a look at the RIVM
data again. The data can be grouped by the so-called 25 security regions (veiligheidsregio’s) of the
Netherlands. A map14 of all the security regions is shown in Figure 30.

Figure 30: The 25 security regions (Veiligheidsregio’s) of the Netherlands.

Now the idea is to subdivide the Netherlands into different regions such that we are able to model the
spread of the virus in and between these regions. A good way to take spatial heterogeneity into account

14https://www.rijksoverheid.nl/onderwerpen/veiligheidsregios-en-crisisbeheersing/veiligheidsregios
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would be subdivision of the Netherlands in these 25 security regions. However, in order to make the
model more tractable, we divide the Netherlands into 5 different regions: Noord (North), Oost (East),
Zuid (South), West (West) and Zuidwest (South-west). These 5 regions consist of the following security
regions:

Region Security Region Population (millions) Density (people/km2)

North 1,2,3 1.719 628
East 4,5,6,7,8,25 3.569 2356
West 9,10,11,12,13,14,15,16,17,18 7.508 14136
South 20,21,22,23,24 3.606 2804

Southwest 19 0.381 213

Table 3: Information about the 5 regions.

Region West contains most big cities and is typically an urban region, region North is a more rural
region, and regions East and South contain numerous smaller cities and are a mixed- urban/rural region.
Finally, region Southwest only contains Zeeland which has a small/negligible population.

In Figure 31, the number of hospital admissions for each region is shown. The data starts at February
27th 2020 and stops at February 3rd 2021. We observe that most admissions came from regions South
(green) and West (red) during the first wave of infections, while the regions North (blue) and Southwest
(purple) have the least number of admissions. During the second wave, the majority of the admissions
came from region West.

Figure 31: Hospital admission from different regions per day. The data starts from February 27th 2020
to February 3rd 2021. We observe a clear difference in the number of hospital admissions per region.

In Section 3, we estimated the total number of infected people in the Netherlands based on the hospital
admissions data. The same methods can be applied to the different regions to estimate the total number
of infected people per region per day. The estimation plots are shown in Figure 32. During the first wave,
we see that the estimated total infections is fairly high in region West and South. During the second
wave, region West accounts for the majority of the infections. Region West is a densely populated area
where the largest cities of the Netherlands are there as well. So this should not come as a surprise.
However, region South is less densely populated than the West, but it still has a high number of hospital
admissions and total infections.
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Figure 32: Estimated total infected persons per day for the different regions. The estimation methods
are described in Section 3.

In Figure 33, we divided the estimated total number of infections of each region by the population
number of that same region. With this, instead of the number of infected people, we see the fraction of
the population number per region that was infected. We observe that region South has in proportion
more infected people during the first wave. This is in line with what we mentioned in Section 2, i.e., the
virus started in Noord-Brabant (which is in region South) and quickly spread through the rest of the
Netherlands.

Figure 33: Estimated total infected persons per day in fractions for the different regions. Here we divided
the absolute number of infections per region by the population of that region.

We note that it is not known from the data how many people are transported from one region to the
other due to lack of Intensive Care Units (ICU’s) in the hospitals. Therefore, it may be possible that
the hospital admissions per region actually came from other regions.
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Next, we will describe the implementation of spatial heterogeneity in the SEIR model in Section 7.1.
After that, we will show a few numerical solutions in Section 7.2.

7.1 Model equations for the subregions

The standard SEIR model we used earlier can still be applied to the setting with several subregions. In
general, the total population of each subregion is subdivided into four groups:

• Susceptibles Sm,

• Exposed Em,

• Infected Im,

• Recovered /deceased Rm,

where m = 1, 2, ..., Nr, and Nr is the number of subregions.

After that, the standard SEIR model can be generalised as follows:

dSm
dt

= −
Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

,

dEm
dt

=

Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

− αEm,

dIm
dt

= αEm − γIm,

dRm
dt

= γIm,

(106)

where the transmission coefficient βm,n(t) (off-diagonal) represents the transmission between an infected
from region n to a susceptible of region m. If we have βm,m(t) (diagonal), it represents the transmission
within region m.

We expect that the diagonal coefficients are larger than the off-diagonal coefficients, because the spread
of the virus is much faster within a region than between different regions. Places such as school/work/
supermarket/meeting with friends are mostly within a region, whereas for example visiting family is more
likely to be in a different region. It is therefore important to model both the diagonal and off-diagonal
coefficients differently.

7.1.1 Modelling intra-region transmission

The transmission within a region can be modelled as a chemical reaction using the law of mass action,
where population densities play the role of the chemical species. We translate this as follows:

dsm
dt intra

= −kmsmim, (107)

where we define

sm =
Sm
Am

, im =
Im
Am

[number of people/km2], (108)

and Am is the area of region Vm in square kilometers. Similarly, we define

ρm =
Pm
Am

[number of people/km2] (109)

for the population density of region Vm. With these definitions, we can rewrite equation 107 as follows:

dsm
dt intra

=
d

dt

Sm
Am intra

= −km
Sm
Am

Im
Am

,

⇒ dSm
dt intra

= −km
Pm
Am

SmIm
Pm

= −kmρm
SmIm
Pm

,

(110)

where it follows that ρmkm = βm,m.
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7.1.2 Modelling inter-region transmission

We will model the inter-region transmission of the virus as in Section 2:

dSm
dt inter

= −
Nr∑

n=1,m 6=n

βm,n
SmIn
Pn

, (111)

where βm,n is the number of contacts of an individual living in region Vm with individuals in region Vn
per day times the chance that such a contact leads to an infection.

7.1.3 ODE for βm,n(t)

Just as described in Section 2 about the ODE for β(t), we can model the temporal behaviour of the
βm,n(t) in a similar manner. Here again, we have to consider both intra and inter-region spreading. For
intra-region spreading, we have that βm,m = ρmkm. It follows that

dβm,m(t)

dt
= km,m+ (βm,m;high − βm,m)− km,m− Imβm,m,

⇒ ρm
dkm
dt

= ρmk
m,m
+ (km,high − km)− ρmkm,m− Imkm,

⇒ dkm
dt

= km,m+ (km,high − km)− km,m− Imkm.

(112)

Furthermore, if we assume the same internal spreading rates constants for all regions km,m+ = kint+ , km,m− =
kint− , we find that

dkm
dt

= kint+ (km,high − km)− kint− Imkm, (113)

where kint+ and kint− are two unknown fitting parameters.

Similarly for inter-region spreading, and assuming km,n+ = kext+ , km,n− = kext− , we have the equations

dβm,n
dt

= kext+ (βm,n;high − βm,n)− kext− Inβm,n. (114)

7.1.4 Summary of the equations model

Summarizing the equations we discussed in the previous sections, we have for our subdivisions model
the following equations:

dSm
dt

= −
Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

,

dEm
dt

=

Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

− αEm,

dIm
dt

= αEm − γIm,

dRm
dt

= γIm,

(115)

where
dkm
dt

= kint+ (km,high − km)− kint− Imkm, (116)

for intra-region spreading and

dβm,n
dt

= kext+ (βm,n;high − βm,n)− kext− Inβm,n. (117)

for inter-region spreading.
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7.2 Results of the spatial SEIR model

Now we want to fit our model to the data again. From now on, we will combine the regions Southwest
and North, because they have the lowest population density of all other regions. So in total, we will
work with Nr = 4 regions. The parameters we want to fit are kint+ , kint− , kext+ and kext− .
Furthermore, we are going to fit our model to the second wave of infections.

7.2.1 Inital values and parameters

For the intra-region spreading, we have the initial values km,high. We recall from Section 4 that we
started with βhigh = 0.31 and β(t0) = 0.16. In a similar way, we use the same value setting βm,m;high =
ρmkm;high = 0.31, which implies that

km;high = 0.31/ρm

And βm,m(t0) = ρmkm(t0) = 0.16 implies that

km(t0) = 0.16/ρm.

For inter-region spreading, we choose

βm,n;high = 0.031, βm,n(t0) = 0.016,

which is 10 times less than intra-region spreading. Other initial values are shown in Table 4:

Region Infected Recovered (millions)

North + Southwest 82 0.035
East 656 0.173

South 492 0.375
West 2624 0.404

Table 4: Initial values per region starting from July 16th 2020.

7.2.2 Numerical solutions of the spatial SEIR model

In Figures 34, 35, 36, 37, we show the total number of infected people per region as a function of time
after fitting, and Figure 38 shows us the combined result of all the regions. The estimated data of infected
people per region is also shown for reference. We obtained the following values for the parameters:

kint+ = 29.98,

kint− = 9.6 · 10−4,

kext+ = 28.04,

kext− = 0.177.

From these figures, we observe that the numerical solutions of the model are overestimated (Figures 34,
35), underestimated (Figure 37) or in between (Figure 36) compared to the estimated data. Moreover, if
all the regions are combined (Figure 38), we only observe minor differences with the preliminary results
from Section 4.3. We remark also that altering the parameter values leads to marginal differences as
well, so we will not show those results either. Lastly, in Figure 39 we show the transmission coefficients
per region as a function of time.
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Figure 34: Result from the spatial SEIR model of the region North + Southwest and its estimated
number of infected people for reference. Clearly, the model overestimates the total number of infected
people in this region.

Figure 35: Result from the spatial SEIR model of the region East and its estimated number of infected
people for reference. Here we observe also an overestimation of the spatial SEIR model.
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Figure 36: Result from the spatial SEIR model of the region South and its estimated number of infected
people for reference. This time, the model output is not overestimated nor underestimated. However,
the fitting is not too impressive either.

Figure 37: Result from the spatial SEIR model of the region West and its estimated number of infected
people for reference. We observe that the model output is underestimated.
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Figure 38: Result of the model when all the regions are combined.
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(a) Transmission coefficients of region North +
Southwest.

(b) Transmission coefficients of region East.

(c) Transmission coefficients of region South. (d) Transmission coefficients of region West.

(e) Transmission coefficients of all regions in one
figure.

(f) Plots of the the intra-region transmission coef-
ficients βm(t).

Figure 39: Plots of all the inter-region transmission coefficients per region and the intra-region transmis-
sion coefficients.

7.2.3 Spatial SEIR model with Lotka-Volterra

We want to note that it is also possible to implement the spatial SEIR model inspired by the Lotka-
Volterra equations. In a similar manner as explained in Section 5, we have the following set of DE’s:
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dSm
dt

= −
Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

,

dEm
dt

=

Nr∑
n=1

βm,n(t)
SmIn
Pn,tot

− αEm,

dIm
dt

= αEm − γIm,

dRm
dt

= γIm,

(118)

where
dkm
dt

= (km − km,low) · (−cint+ (km − km,high) + cint− (km − km,high)Im), (119)

for intra-region spreading with cint+ = ρm · kint+ and cint− = ρm · kint− .
Furthermore,

dβm,n
dt

= (βm,n − βm,n;low) · (kext+ (βm,n − βm,n;high) + kext− (βm,n − βm,n;high)In). (120)

for inter-region spreading. Unfortunately, we were not able to see fitting results. During the fitting, we
either received numerical errors or the program was unable to find (optimal) fitting parameters within
a certain amount of time, which also lead to errors. Consequently, we do not know the results and
behaviour of the spatial SEIR model with Lotka-Volterra. Therefore, this model is open for future
research.

7.3 Conclusion & Discussion

In this section, we discussed the idea and the implementation of spatial heterogeneity into the stan-
dard SEIR model. In the implementation, we made a distinction between inter-region and intra-region
spreading of the virus. After that, we showed the numerical solutions of the model for each region.
Unfortunately, we observed that the numerical results of the model did not lead to new insights. The
results after fitting were either overestimated, underestimated, or in between; and the model could not
capture the behaviour of the estimated data. For the spatial SEIR model with Lotka-Volterra, we do
not know its results and behaviour either. We can think of a few reasons for this. First, the number
of regions we had for our spatial SEIR model was Nr = 4. Perhaps if we had increased the number of
regions (to the number of security regions), then the numerical solutions would have been more accurate.
However, this means also an increase in parameters that need to be fitted. Due to time limitations, we
were not able to consider more regions, so this problem is still open for further research. Secondly, the
fitting routine we used is an in-built Python function (from a package). For simplicity and efficiency we
only considered this function, but there are other fitting routines available. This may have affected the
numerical solutions. Nevertheless, we think it is important to include spatial heterogeneity, because the
spread of the virus is not likely to be homogeneous in a country.
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8 Discussion

In this thesis, we focused on the first two steps to obtain an accurate and clear overview of the progress
and behaviour of the virus in the Netherlands. These steps were: finding good estimates for the number
of infected people as function of time and developing a model that reproduces these numbers (as reliably
as possible. Throughout the thesis, the following major topics were discussed: in Section 3 we provided
estimation methods to calculate the total number of infected people in the Netherlands. After that,
we presented three modifications to the standard SEIR model in order to solve its (over)simplifications.
These modifications were the modelling of β(t) as a function of time using a linear ODE and the Lotka-
Volterra equations in Sections 4 and 5, the use of gamma distributed stages for the SEIR model in Section
6 and the inclusion of spatial heterogeneity in Section 7.

In our estimations, we used both the daily hospital admissions data and the daily reported cases. We
have seen that with hospital admissions, we obtained an estimation that was comparable to the estima-
tions of the RIVM and Sanquin. For the reported cases however we observed that it underestimated
the number of total infections, which was to be expected because not everyone tested themselves and
initially not enough tests were available. In our method, we made a few assumptions to simplify the
calculations. The most important assumptions were the infectious time period and the time between
symptom onset and hospital admission. First we assumed a time period of 14 days between symptom
onset and hospital admission, and 8 days for the infectious time. After the first results, we changed our
assumption to 8 days for the time between symptom onset and hospital admission in order to better
match the data. Although our estimation was comparable to the estimations of the RIVM and Sanquin,
it would be interesting to see if we could improve our estimation using probability density functions (
ρH(a) and ρR(a) ) instead of a point estimation (e.g. 8 days).

We presented two ways to model the infection rate β(t) as a function of time. The first one is to
model the infection rate using a relatively simple linear ODE, where two fitting parameters are involved.
We have seen that this model (independent of the choice of the parameters) can only model a single wave,
which means that this type of a model is unable to completely match with the historical data (second
wave). Therefore, future predictions were not shown either. Nevertheless the numerical results from the
model were still decent. Moreover, we observed in our results that the infection rate changed over time,
which suggests the incorporation of an ODE for the infection rate β(t) into a compartmental model. It
would be interesting to see if we would obtain more accurate results when more fitting parameters are
involved whilst retaining the linear structure.

However, in order to be able to model multiple consecutive waves, a different phase-space behaviour
is required and non-linear terms need to be incorporated. We know that the Lotka-Volterra equations
exhibit the desired behaviour, so we developed a system of ODEs inspired by the Lotka-Volterra equa-
tions. With these equations, the models (SIR and SEIR) did match with the historical data from a
qualitative point of view, where in this case the historical data started from the beginning of the epi-
demic in the Netherlands. However, it overestimated the number of infected people. The overestimation
was more noticeable when the SEIR model was used. The results suggest that we can model multiple
waves of infections by the periodicity of the Lotka-Volterra equations. Increasing the accuracy of our
Lotka-Volterra inspired model with for example the inclusion of seasonal events would be an interesting
topic for future research.

In Section 6 we explained furthermore the idea and implementation of gamma distributed stages, where
we assumed that the incubation time period and the infectious time period were gamma distributed.
From the results, we observed that the overall behaviour of this model was comparable to the results
without gamma distributed stages in Sections 4 and 5. Even with variation in the number of stages and
parameters, it seemed to have minor effects on the behaviour of the model. One can ask then if it is
necessary to use gamma distributed (or other non-exponential distributed) stages in this case. From a
theoretical and biological point of view, we think that gamma distributed stages should be incorporated
because the assumption of an exponential distribution is not in line with reality. From a practical point
of view however, omitting the gamma distributed stages leads to less equations. The number of equa-
tions can become quite large if one wants to take spatial heterogeneity into account as well. This may
also have an effect on the calculation speed when we want to obtain numerical results. Therefore, we
recommend to explore more into this topic in the future.
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Lastly, we explained how a compartmental model can take spatial heterogeneity into account in Sec-
tion 7. Unfortunately, the numerical results were not in line with our expectations. The model was not
able to match with the historical data accurately. We note that we only divided the Netherlands into
four subregions based on the security regions, whereas there are 25 security regions in total. It would be
interesting to see if the results will be affected when all 25 security regions are considered in the model.
We will summarize our findings in the final section.
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9 Conclusion & Outlook

In order to contain the virus and elevate the pressure on the healthcare system, good and effective mea-
sures are needed. These can only be achieved if one has an accurate and clear overview of the progress
and behaviour of the virus and the expected impact of a proposed measure on this behaviour. We men-
tioned three steps in order to obtain this overview.
The first step is to acquire and combine data from hospital admissions and serological data such that we
can estimate the total number of infected people. We can then compare the estimation with the number
of positive cases to obtain a more reliable picture of the epidemic.
The second step is to have a good model that accurately describes the progress and behaviour of the
epidemic. This means that the model is able to match with historical data and also predicts the future
developments reasonably well.
The third step is to have an overview of the benefits and costs of each measure. In this way, we can
decide whether the benefits of a particular measure outweigh the costs that come along. In this thesis,
we focused on the first two steps.

We showed that it is possible to estimate the total number of infected people using hospital admis-
sions data and serological data from Sanquin. We observed that our estimation were comparable to the
estimations of the RIVM and Sanquin. Furthermore, we have also used the data from the reported cases
per day to estimate the number of infected people. With this estimation and with enough test capacity,
we found that on average only 39.3% of the total number of cases were detected. So the majority of
the infections are not detected, which is due to not wanting to test, not having symptoms (and thus no
reason to test) or other factors. Lastly, we found that on average 1.2% of the total number of infected
people is admitted to the hospital and that 18.6% of the hospitalized patients is admitted to the ICU.

In the first two sections, we mentioned a few oversimplifications of compartmental models such as
the standard SEIR model. These were for example the lack of spatial heterogeneity, only one wave
of infections can be seen and the use of a constant value for the infection rate in some cases. In this
thesis, we provided three modifications to the standard SEIR model in order to overcome these problems.

For our first modification, we first modelled the infection rate β(t) as a function of time using a lin-
ear ODE and secondly we developed a system of ODEs inspired by the Lotka-Volterra equations.
With the linear ODE, we observed that the model was unable to match with the historical data because
it cannot generate multiple consecutive waves. However, we did observe the change over time of the
infection rate, which suggests the incorporation of an ODE for the infection rate. It remains to be
investigated if we would obtain more accurate results when more fitting parameters are involved whilst
retaining the linear structure.

We observed from our Lotka-Volterra inspired model that the model was able to match qualitatively
with the historical data, because we are able to model multiple waves of infections over a longer period
of time. However, the model overestimated the number of infected people. The inclusion of other effects
like seasonal events into our model would be an interesting topic for future work to increase the accuracy
of our model.

In a standard SEIR model, an exponential distribution is used to model the transitions from E to I
and from I to R. From a biological viewpoint however, it seems more logical to use a different distribu-
tion like a gamma distribution instead. For the second modification, we implemented gamma distributed
stages into the model for the incubation and infectious time period. We observed however only minor
effects on the behaviour of the model compared to the results when no gamma distribution was assumed.
Consequently, it remains to be seen whether or not the incorporation of gamma distributed stages is
necessary. It is however important to check this when modelling different epidemics in future work.

In the Netherlands the epidemic started in the south of the Netherlands in the provinces Noord-Brabant
and Limburg. So we expected that it might be important to include spatial heterogeneity into the SEIR
model. The model was not able to completely match with historical data, however we had only divided
the Netherlands into four subregions due to time limitations. For future work, we recommend to divide
the Netherlands into 25 subregions based on the security regions to see if improvements are achieved.
If not, it could also very well be that the Netherlands are homogeneous enough after all and that the
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Netherlands can be treated as a single region.

In the case of COVID-19 it is observed that the disease is more serious amongst older groups. However
we observed that in the different age groups (≥ 12) the number of infections is not very different. So to
model the overall behaviour of the epidemic, it might be possible to neglect age groups. However if one
wants to mitigate the effects of the epidemic, it is important to counter the spread amongst the older
people. So for this purpose, it is significant to include age groups in order to assess which measures are
suitable to protect the older people. To model the different age groups, one can make use of contact
matrices where the contact rates between the different age groups are shown. However, using contact
matrices brings many parameters to the table. Although having many parameters is not too difficult, it
can however easily lead to notation errors and messy equations. So for future work, the inclusion of age
groups is dependent on the main purpose the researchers have.

All in all, we want to emphasize to use our Lotka-Volterra model when future developments of the
epidemic are of interest, especially for a longer period of time. Other topics described in this section can
be used to optimize and fine-tune the model.
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[15] José Lourenço, Robert Paton, Craig Thompson, Paul Klenerman, and Sunetra Gupta. Fundamental
principles of epidemic spread highlight the immediate need for large-scale serological surveys to assess
the stage of the sars-cov-2 epidemic. medRxiv, 2020.

[16] Hongjun Zhu, Yan Li, Xuelian Jin, Jiangping Huang, Xin Liu, Ying Qian, and Jindong Tan. Trans-
mission dynamics and control methodology of COVID-19: A modeling study. Applied Mathematical
Modelling, 89:1983–1998, January 2021.

73



[17] Nicholas G. Davies, , Petra Klepac, Yang Liu, Kiesha Prem, Mark Jit, and Rosalind M. Eggo.
Age-dependent effects in the transmission and control of COVID-19 epidemics. Nature Medicine,
26(8):1205–1211, June 2020.

[18] Nicholas G Davies et al. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths,
and demand for hospital services in the UK: a modelling study. The Lancet Public Health, 5(7):e375–
e385, July 2020.

[19] Elena Loli Piccolomini and Fabiana Zama. Monitoring italian COVID-19 spread by an adaptive
SEIRD model. medRxiv, April 2020.

[20] Andrew William Byrne, David McEvoy, Aine B Collins, Kevin Hunt, Miriam Casey, Ann Barber,
Francis Butler, John Griffin, Elizabeth A Lane, Conor McAloon, Kirsty O'Brien, Patrick Wall,
Kieran A Walsh, and Simon J More. Inferred duration of infectious period of SARS-CoV-2: rapid
scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19
cases. BMJ Open, 10(8):e039856, August 2020.

[21] Anding Liu, Wenjie Wang, Xuecheng Zhao, Xiaoxi Zhou, Dongliang Yang, Mengji Lu, and Yongman
Lv. Disappearance of antibodies to SARS-CoV-2 in a -COVID-19 patient after recovery. Clinical
Microbiology and Infection, 26(12):1703–1705, December 2020.

[22] N. Ahmad Aziz, Victor M. Corman, Antje K. C. Echterhoff, Marcel A. Müller, Anja Richter, Antonio
Schmandke, Marie Luisa Schmidt, Thomas H. Schmidt, Folgerdiena M. de Vries, Christian Drosten,
and Monique M. B. Breteler. Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies
from a population-based study in bonn, germany. Nature Communications, 12(1), April 2021.

[23] Christel Faes, Steven Abrams, Dominique Van Beckhoven, Geert Meyfroidt, Erika Vlieghe, and
Niel Hens and. Time between symptom onset, hospitalisation and recovery or death: Statistical
analysis of belgian COVID-19 patients. International Journal of Environmental Research and Public
Health, 17(20):7560, October 2020.
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A Reproduction Factor

A parameter that is often used to describe the progression of an epidemic is the so called reproduction
factor R(t). This factor describes how many secondary infections are caused by an infected individual,
i.e., an R(t) = 2 implies that every 100 infected individual causes 200 new infections (and the epidemic
spreads) whereas an R(t) = 0.5 implies that every 100 infected individuals only cause 50 new infections
(and the epidemic dies out). Note that the transition between spreading and dying out occurs atR(t) = 1.

In the Netherlands, the RIVM calculated the reproduction factor using methods described by Wallinga
(2006) [26]. At first sight, it may not be clear what the underlying assumptions are in this paper and how
he derived certain formulas. So in Appendix B we determined how the reproduction factor is calculated
from scratch such that we can compare our derivations with Wallinga.

A.1 Calculating the reproduction factor

Wallinga defines the following terms:

rc(t) = per capita change in number of new cases per unit of time,

r(t) = change in number of new cases per unit of time,

with the relation

rc(t) =
r(t)

I(t)
. (121)

Tc = mean generation interval,

defined as the mean duration between time of infection of a secondary infectee and the time between
time of infection of its primary infector.

b1 = the rate of leaving the exposed stage

and
b2 = the rate of leaving the infectious stage.

After that, we have the relation
Tc = 1/b1 + 1/b2. (122)

Wallinga stated that epidemic models such as SIR and SEIR implicitly specifies a generation interval
distribution. The distribution for the SIR model is an exponential distribution with mean Tc = 1/b, and
for the SEIR model it is a convolution of two exponential distributions with mean Tc = 1/b1 + 1/b2.

Then, we can calculate the reproduction factor by the formula

Rt = (1 + rc(t)/b1) · (1 + rc(t)/b2), where rc(t) > min(−b1,−b2). (123)

In our case, we have that b1 = 1/5, and b2 = 1/8.

A.1.1 Data from SEIR model

First, we will use the SEIR model output from Section 4.3 for the total infected persons per day I(t),
which can be seen in Figure 15a and the recovered persons per day R(t) to calculate r(t).

Since we take the unit of time to be in days, r(t) is simply looking at the difference (derivative) be-
tween the number of new cases for each consecutive day. And the number of new cases per day can be
calculated from

Inew(t) = I(t+ 1)− I(t) +R(t+ 1)−R(t), (124)

which we saw earlier. A plot of r(t) can be seen in Figure 40.
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Figure 40: Change in the number of new cases per day.

Then, we can plot the graph of the reproduction factor Rt in Figure 41.

Figure 41: Plot of the reproduction factor Rt

A.1.2 Data from estimated total infections

We will also calculate the reproduction factor using the data from our estimation in Figure 8. From
equation (124), calculating the number of new cases per day can be done. This is shown in the next
figure.

76



Figure 42: Number of new cases per day during the second wave using equation 124.

It is important to note that the number of new cases per day is not a smooth curve. This can cause some
trouble when calculating the r(t), which is in essence calculating the derivative of the number of new
cases per day Inew(t). Nevertheless, we can still calculate the R(t) from it, but it might not be a good
representation. Therefore, it is better to smooth the curve first, which we will do so by calculating the
moving mean (or rolling mean) with different window sizes. We chose 3, 5 and 10 days for our window
sizes (arbitrary).

Then, the results of reproduction factor for these windows sizes and the non-smoothed curve are shown
in Figures 43, 44, 45 and 46, with the estimation from the RIVM for comparison.

Figure 43: Plot of R(t) without smoothing.
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Figure 44: Plot of R(t) with window size of 3 days.

Figure 45: Plot of R(t) with window size of 5 days
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Figure 46: Plot of R(t) with window size of 10 days

It is also possible to smooth the data by fitting a polynomial curve. In Python, we can import the
package numpy.polynomial to do this for us. We can choose the degree of the polynomial and in
this case, we chose a polynomial of degree 8 to fit the polynomial to the data set. The result of the
reproduction factor after the polynomial fit can be seen in Figure 47.

Figure 47: Plot of R(t) after smoothing by a polynomial of degree 8.
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B Determining Reproduction Factor

In this section we will determine R(t) from a given function I(t). This turns out to be surprisingly
difficult and it even seems to result - for an ongoing epidemic - in an ill-posed problem. We will see that
a number of assumptions have to be made to simplify the calculations.

We want to note that during the epidemic, the reproduction factor is commonly used to describe the
progress of the virus. However, we think that calculating the reproduction factor is actually not neces-
sary in order to have a good and accurate overview of the virus. So we think that the focus should be
on the development of a good and accurate model.

B.1 Continuum model

An individual goes from state S after an infection to state E (exposed). In the stage E the individual
is assumed to be unable to cause secondary infections. After incubation time the individual moves to
stage I (infectious), in which the individual may cause secondary infections. After the infectious time
the individual moves to stage R (recovered).
We will use the following basic definitions/notation:

E(t) = total number of exposed individuals at time t. (125)

Enew(t) = number of newly exposed individuals between t and t+ ∆t. (126)

I(t) = total number of infectious individuals at time t. (127)

Inew(t) = number of newly infectious individuals between t and t+ ∆t. (128)

R(t) = total number of recovered individuals at time t. (129)

Rnew(t) = number of newly recovered individuals between t and t+ ∆t. (130)

Similar definitions can be made for S(t) and Snew(t). These expressions however will not be used in the
remainder of this section.

We can find an expression for Inew(t) in terms of I and R as follows:

I(t+ ∆t) +R(t+ ∆t) = I(t) +R(t) + Inew(t)⇒ Inew(t) = I(t+ ∆t) +R(t+ ∆t)− I(t)−R(t), (131)

which means that we can obtain Inew(t) from epidemic data on the total number of infected and recovered
individuals.
We also have the probability density for the incubation times ρEI(a), describing the probability of going
from stage E to stage I, a days after the exposure took place. This yields an expression for the new
infections Inew(t) as follows:

Inew(t) =

∫ ∞
a=0

Enew(t)(t− a)ρEI(a)da. (132)

Furthermore, we have the reproduction factor R(t) describing the number of secondary infections caused
by an individual infected between t and t+ ∆t

R(t) = number of (new) infections caused per individual in Inew(t). (133)

Furthermore we have the probability density for the infectious period ρ(a), describing the chance that a
single secondary infection caused by an infected individual, takes place a days after the primary infection.
Using these definitions we find the number of newly exposed individuals

Enew(τ) =

∫ ∞
a′=0

Inew(τ − a′)R(τ − a′)ρ(a′)da′ (134)
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and using equation (132) we obtain an integral equation for R(t)

Inew(t) =

∫ ∞
a=0

∫ ∞
a′=0

Inew(t− a− a′)R(t− a− a′)ρ(a′)ρEI(a)da′da. (135)

Equation (135) can be simplified using the following transformation

u = a+ a′, v = a′. (136)

Note that the Jacobian equals one, which means that we have (note the change in integral boundaries)

Inew(t) =

∫ ∞
u=0

∫ ∞
v=0

Inew(t− u)R(t− u)ρ(v)ρEI(u− v)dvdu. (137)

Defining the convolution (which only depends on the known/assumed probability densities)

ρ̃(u) =

∫ u

v=0

ρ(v)ρEI(u− v)dv, (138)

we finally find

Inew(t) =

∫ ∞
u=0

Inew(t− u)R(t− u)ρ̃(u)du. (139)

The problem of determining R(t) boils down to solving equation (139) using the observed infection
number Inew and the probability densities (138).

B.2 Simplifying assumptions

Using equation (139) we can find an explicit expression for R(t), provided a few assumptions are made.

Assumption 1 The function ρ̃(u) is the product of a polynomial and an exponential function:

ρ̃(u) = pne
−αu, (140)

where pn(u) is a polynomial of order n. Note that this assumption is satisfied if ρ(a′) and ρEI(a) have
an exponential/gamma distribution.

Assumption 2 The epidemic has been going on for a long time, i.e.,

t� Treg = Tinc + Tinf , (141)

where Tinc is the average incubation time and Tinf is the average time it takes to cause a secondary
infection when an individual is infectious.
Note that Assumption 2 implies that

ρ̃(u) ≈ 0 for u > t, (142)

because ρ̃(u) expresses the chance of a secondary infection after u days. This chance is now (almost)
zero, because t is much larger than the regeneration time. Note furthermore that we can approximate
equation (139) by

Inew(t) =

∫ t

u=0

Inew(t− u)R(t− u)ρ̃(u)du. (143)

We assume that t = 0 is before the start of the epidemic, i.e., Inew and its derivatives are zero at t = 0.

Assumption 3A

Inew(0) = 0,
dInew

dt
(0), ... (144)

Furthermore we assume that Inew satisfies a differential equation

Assumption 3B
dInew

dt
= rt(t)I

new(t), t > 0, (145)
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i.e., we define the logarithmic derivative rt(t) of Inew(t):

rt(t) =
d

dt
(ln (Inew(t))). (146)

Note that Assumptions 3A and 3B combined that Inew is discontinuous at t = 0. Apart from that, this
is more a definition of rt(t) and not really an assumption.
Finally we need to assume probability densities ρ(a′) and ρEI(a) in order to find an explicit expression
for R(t). We will take exponential distributions because

1. Exponential distributions yield the easiest expression for R(t).

2. The approach can easily be generalized to gamma distributions (only a bit more technical).

3. In the literature (e.g. Wallinga) this seems the preferred choice, so we can compare.

Assumption 4 Both ρEI(a) and ρ(a′) satisfy an exponential distribution with parameters b1 and b2
respectively:

ρEI(a) = b1e
−b1a, ρ(a′) = b2e

−b2a′ . (147)

Note that the choice of an exponential distributions is unphysical; for real application a generalization
to a gamma distribution seems highly advisable.

B.3 Computations

First we use Assumption 4 to compute ρ̃(u) as follows

ρ̃(u) =

∫ u

0

b1e
−b1(u−v)b2e

−b2vdv,

= b1b2e
−b1u

∫ u

0

e(b1−b2)vdv,

=
b1b2
b1 − b2

e−b1u(−1 + e(b1−b2)u),

=
b1b2
b1 − b2

(−e−b1u + e−b2u).

(148)

We then note, as a consequence of Assumption 2, that we can rewrite equation (143) as a convolution

Inew(t) =

∫ t

0

f(t− u)ρ̃(u)du, (149)

where we defined for convenience
f(τ) = Inew(τ)R(τ). (150)

We take the Laplace transform on the LHS and the RHS of equation (149) and we use that the Laplace
transform of a convolution is the product of the Laplace transforms:

Înew(s) = f̂(s)ˆ̃ρ(s). (151)

Computation of the Laplace transform of ρ̃(u) is standard (due to Assumption 4, or more general, due
to Assumption 1). Taking the Laplace transform of equation (148) we find

ˆ̃ρ(s) =
b1b2
b1 − b2

(
−1

s+ b1
+

1

s+ b2

)
=

b1b2
(s+ b1)(s+ b2)

. (152)

Substitution of equation (152) in equation (151) and solving for f̂(s) yields

f̂(s) =
Înew(s)(s+ b1)(s+ b2)

b1b2
. (153)

We now assume Assumption 3A to ensure convergence of the inverse Laplace transform. Note that we
have

L{dI
new(t)

dt
} = sÎnew(s)− Inew(0) = sÎnew(s) (154)
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and similarly

L{d
2Inew(t)

dt2
} = s2Înew(s), (155)

which means that we can rewrite the RHS of equation (153) as follows

Înew(s)(s+ b1)(s+ b2)

b1b2
=

1

b1b2

(
L{d

2Inew(t)

dt2
}+ (b1 + b2)L{dI

new(t)

dt
}+ b1b2L{Inew(t)}

)
, (156)

which means that we find

L{f(t)} = L{Inew(t)R(t)}

=
1

b1b2

(
L{d

2Inew(t)

dt2
}+ (b1 + b2)L{dI

new(t)

dt
}+ b1b2L{Inew(t)}

)
,

(157)

and taking the inverse Laplace transform on both sides and using linearity we find

Inew(t)R(t) =
1

b1b2

(
d2Inew(t)

dt2
+ (b1 + b2)

dInew(t)

dt
+ b1b2I

new(t)

)
, (158)

i.e.,

R(t) = 1 +
b1 + b2
b1b2

dInew(t)
dt

Inew(t)
+

1

b1b2

d2Inew(t)
dt2

Inew(t)
. (159)

We finally use Assumption 3B to simplify equation (159)

dInew

dt
= r(t)Inew(t)⇒ d2Inew

dt2
= r′(t)Inew(t) + r(t)

dInew

dt
= (r′(t) + r(t)2)Inew(t), (160)

and we find

R(t) = 1 +
b1 + b2
b1b2

r(t) +
1

b1b2
(r′(t) + r(t)2) =

(
1 +

r(t)

b1

)(
1 +

r(t)

b2

)
+
r′(t)

b1b2
, (161)

which is - apart from the last term - the expression of Wallinga.
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