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Abstract—Online Social Networking (OSN) applications such
as Facebook’s communication and Zynga’s gaming platforms ser-
vice hundreds of millions of users. To understand and model such
relationships, social network graphs are extracted from running
OSN applications and subsequently processed using social and
complex network analysis tools. In this paper, we focus on the
application domain of Online Social Games (OSGs) and deploy
a formalism for extracting graphs from large datasets. Our
formalism covers notions such as game participation, adversarial
relationships, match outcomes, and allows to filter out “weak”
links based on one or more threshold values. Using two novel
large-scale OSG datasets, we investigate a range of threshold
values and their influence on the resulting OSG graph properties.
We discuss how an analysis of multiple graphs—obtained through
different extraction rules—could be used in an algorithm to
improve matchmaking for players.

I. INTRODUCTION

An increasing number of complex network studies and
social network analyses use graphs to represent (the structure
in) data. Often, two extreme approaches for building a graph
from raw (observed) data are deployed. At one extreme, graphs
are straightforwardly extracted when the raw data specifies
links, such as in the case of friendship relationships for
Facebook data. At the other extreme, graphs are extracted
by applying a single, domain-specific and usually threshold-
based, rule for mapping raw data to links. The latter approach
has been used, for example, for building the graphs of mail and
email exchanges of various communities and organizations, of
messaging in Twitter and the Microsoft Messenger Network,
of hyperlinking in the Web and in the blogosphere, etc. The
impact of the choice of graph extraction rules and thresholds
has received much less attention and constitutes the focus of
this study.

We focus on the social networks formed by the actions of
players involved in online social gaming (OSG), that is, in
online gaming where the social element affects positively the
gameplay experience. Online social games such as Defense
of the Ancients (DotA) and League of Legends are each
played by tens of millions of gamers. The game is fragmented
into hundreds of thousands of non-communicating instances
(matches [1]), and groups of only about ten players are in-
volved in any instance of the game at any one time. Players can
find partners for a game instance through the use of community
web sites and online tools, which may include services that
matchmake players to a game instance. An interesting feature
of OSGs, as opposed to many online social networks, is that

not only friendship relations are formed, but also adversarial
relationships may manifest as useful social relationships.

In practice, it may be difficult to obtain a clear social
structure from an online social game. Data that has proven
economic value or private status, such as expressed friend-
ships, are rarely shared by game operators; instead, third-
parties may have access only to proxies, such as a list
of players for each game instance. Furthermore, for OSG
networks, traditional relationships such as expressed friendship
relationships may not be a good indicator of joint activity. This
may be a consequence of the classes of prosocial emotions
involved in OSGs, for example vicarious pride and happy
social embarrassment [2, Ch. 5], which are both derived from
competition. These emotions complement other prosocial emo-
tions that precede traditional friendship, such as admiration
and devotion, and may require other tools for expression.

Without a clearly specified social structure, the analyst of
OSG networks has to select and tune the extraction rule, that
is, the rule for extracting graph links from play relationships
recorded in the logs of completed and ongoing game instances.
For example, it is common to extract OSG graphs through
the simple rule of forming a link between gamers that have
played at least once together. However, this simple rule over-
emphasises the importance of a single in-game encounter,
which may have been casual or the result of an automated
matchmaking mechanism. OSG networks derived using this
rule have been recently investigated, for example for Ev-
erQuest [3], World of Warcraft [4], Fighters Club (a Facebook
application) [5], etc. In contrast, in Section III, we generalise
this formalism for graph extraction.

We further analyse, in Section IV, the interplay between
various concepts and thresholds that are used when defining
extraction rules in OSGs, and the characteristics of the result-
ing OSG graphs. Based on two large OSG datasets, we study
various rules and thresholds for extracting graphs. Using this
approach, we are able to show that even small changes in
the thresholds used for various rules, especially for the small
values that have been used by previous OSG graph studies,
can lead to significant changes in the structure and use of the
resulting graph. Thus, our work provides the tools to obtain a
broader picture of OSG graph analysis than previous work.

The results of OSG studies are useful for tuning the dis-
tributed systems on which the games operate, for improving
the game experience, and for understanding the individual and
group psychology of players. As an application of the pro-



posed analysis technique, we study the quality of matchmaking
players in game instances.

Our main contributions are:
1) We introduce a broad formalism for graph extraction

(Section III).
2) We apply our formalism to extract and analyse OSG

graphs from two large datasets, using six different ex-
traction strategies (Section IV).

3) We utilise our graph extraction analyses for improving
player matchmaking (Section V).

II. DATA SETS

We select for our study Defense of the Ancients (DotA), a
free and popular game in which social relationships, such as
same-guild membership and even friendship, can improve the
gameplay experience. DotA is a 5-against-5-player game, that
is, it consists of independent matches played by two contesting
teams of five players each. DotA is a multiplayer online
battle arena (MOBA) game, in which each player controls
an in-game representation (here, the hero), and teams have as
objective the conquest of the opposite side’s main building.
The game includes many strategic elements, from the team
operation to the management of resources and the creation of
helper troops.

DotA, which is the representative of the MOBA game sub-
genre, is played today by an estimated1 number of players
above 20 million, world-wide. DotA has featured in several
tournaments with wide appeal to gamers and game-watchers,
such as the World Cyber Games (WCG) and the Electronic
Sports World Cup (ESWC). (To understand the phenomenon
of watching DotA games, we recommend the seminal book
on gaming culture of Rossignol [6].) Other successful MOBA
games are Blizzard DotA, Valve’s DotA2, League of Legends,
and Heroes of Newerth. Each of these games is played by
millions of players, which are loosely grouped into large
communities. In turn, most communities operate their own
game servers, maintain lists of tournaments and results, and
publish information such as resulting player rankings via
common websites.

We have collected data over multiple years for two DotA
communities, Dota-League and DotAlicious. Both communi-
ties identify each of their matches with a unique number in
increasing order, and for each match dedicated information
(such as the names of the players participating in the match
and the duration of the match) is available on a corresponding
webpage. We have crawled all the unique matches played
within these communities via their openly accessible websites,
by gradually increasing the identifier number from 1 to the
total number of matches played; we obtained the latter from
the main page of each website. Some of the webpages with a
match identifier in the crawling range appeared to be broken.
We have crawled each web page at least twice, at different
times, to reduce the effect of possible temporary unavailability
and traffic shaping of the website.

1http://www.playdota.com/forums/blog.php?b=892
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Fig. 1: Average number of matches per hour for DotAlicious
(left) and Dota-League (right).

The collected Dota-League dataset consists of 3,744,753
matches that were played between July 2006 and July 2011.
The dataset reflects for each match the names of the players
(61,198 in total) on each team, the active time, the start and
end times, various gameplay statistics per team, and the team
that has won. The active time refers to the time at which
the match opens and players can enter, while the start time
refers to the time when sufficient players are present and the
match commences. The end time refers to the time at which
the match terminates. To sanitise the Dota-League dataset, we
introduce the concept of played matches. Because we can be
sure that matches have actually been played only for matches
with correct start and end timestamps, we only consider these
matches for our study. Although the match active time stamp
is available for all matches, the match start and end time
stamps were only available from November 2008 onwards,
which corresponds to 1,470,786 played matches.

For DotAlicious, our dataset consists of 625,692 played
matches, which represents the complete set of matches played
from April 2010 to February 2012. Each match entry in the
dataset records the names of the players (62,495 in total) of
that match, the countries from which they are playing, the
result of the match (winning team, draw, or abort), the start
and end times, various gameplay statistics per player, and the
number of points obtained for each player. To sanitise this
dataset, we filtered out matches whose duration was zero,
obtaining 617,069 played matches.

To understand the general characteristics of our datasets, we
conducted an analysis of the game activity they represent. We
find that both datasets exhibit similar time patterns, along the
lines of other games and of other typical Internet applications.
The number of matches started per hour of the day shows a
clear diurnal pattern in weekdays and weekends, as can be seen
from Figure 1. In weekdays, the number of matches played
per hour rises from 6AM onwards and reaches a peak around
9PM. In weekends, the number of matches played rises from
6AM and reaches a peak around 4PM, where it stabilises until
9PM, with only a small drop around dinner time. The average
number of matches played per day of the week is fairly stable
(approaching 1000 matches/day), with slightly more matches
played in the weekends.

We find that the two datasets are also similar regarding
the inter-arrival time of matches. The time between the
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Fig. 2: Probability density of the time between consecutive
matches for each player in the DotAlicious dataset.

consecutive matches of individual players is shown, for the
DotAlicious dataset, in Figure 2. The time between matches
shows a power-law-like behaviour, with many matches being
separated by less than an hour, but also consecutive matches
being separated by more than a year.

III. A FORMALISM FOR GRAPH EXTRACTION

A common approach in online social network studies is
to model a dataset as a graph. Formally, a dataset D is
mapped onto graph G via a mapping function M(D). A simple
undirected and unweighted graph G = (N ,L) consists of a
set N of N nodes and a set L of L links. In a weighted graph
a link weight w is associated to every link in L. In a directed
network, a link between two nodes also has a direction.

A mapping is a set of rules that define the nodes and
links in a graph. Entities are often mapped to nodes, while
relations between entities are mapped to links. Entities are
usually readily identifiable as persons, events, or objects and
are therefore intuitively mapped onto nodes. Mapping relations
to links, however, is more challenging.

Entities can be related to each other in many different
and often subtle ways and due care should be given to
which relations produce insightful graphs. For example, some
relations between entities may be the result of chance, while
others have a clear origin. The difference between random
and meaningful relations is often expressed by a notion of
strength. Strength, represented by a link weight, adds another
dimension of complexity to representing and understanding
the characteristics of a network.

The datasets used to create many of the well-known “real-
world” graphs often use a single explicit mapping. For in-
stance, all graphs in the Stanford Network Analysis Project’s
(SNAP)2 large graphs collection are based on explicit relations
in the source datasets with one exception [7], where graphs
are built using the co-occurrence of phrases on news sites
and blogs. For this exception, nodes (phrases) and links (co-
occurrences) have to meet a set of criteria to be added to the
graph, although the authors merely state which criteria they

2http://snap.stanford.edu/

used and do not elaborate on the systematic effects of these
criteria.

In this paper we explore how the mapping influences the
resulting graph. Since a dataset usually comprises different
types of information, e.g. location, time, etc., mapping to only
one graph might misrepresent the dataset, unless clearly put in
perspective. We consider multiple graph representations. Al-
though we use the gaming datasets as examples, the techniques
developed here are generally applicable.

Presently, many proposed complex network metrics (see,
for example, Section IV-A) only apply to unweighted graphs.
As a result, relations are often only expressed as links if the
strength is within a desired range by applying a threshold.
Thresholding, therefore, is a powerful and popular tool to
deal with weighted networks and has an important impact
on the resulting graph. For our OSG datasets, the individual
players in the dataset are always mapped to nodes. Nodes
without adjacent links are removed from the extracted graph.
We explore six different strategies to map play relationships
to links. For each strategy, a link in the extracted graph
corresponds to a different type of gaming relationship between
two players, which is likely not expressed directly in the
raw (input) data. Each mapping includes a threshold n; as
a consequence, each mapping may produce a different graph
per threshold value.

By applying different mappings and different thresholds to
the dataset, we investigate how a particular mapping and/or
threshold affects the resulting graph. We have used the fol-
lowing mappings:

SM: The number of times two players are in the Same
Match is greater than n.

SS: The number of matches played on the Same Side is
greater than n.

OS: The number of matches played on Opposing Sides is
greater than n.

ML: The number of Matches played and Lost together is
greater than n.

MW: The number of Matches played and Won together is
greater than n.

PP: This mapping is a directed version of the other five
mappings. In the PP mapping, a directed link exists
from player A to B if player A has played at least
n% of all his matches (either on the same team, or
opposing team etc.) with player B.

The different mappings are related to each other. For exam-
ple, applying mapping function SM to the Dota-League dataset
with a (low) threshold n = 10 creates graphs such that for two
players p1 and p2 a link between them is formed if p1 and
p2 occur in at least 10 different matches, while applying the
SS mapping adds the extra condition that the players played
on the same side. Our formalism can support more complex
mappings, e.g., players played against each other at least 10
times, during the winter, while located in the same country.



Dota-League DotAlicious
SM SS OS ML MW PP (SM) SM SS OS ML MW PP (SM)

N 31,834 24,119 26,373 18,047 18,301 29,500 31,702 29,377 11,198 22,813 21,783 34,523
Nlc 27,720 16,256 19,814 6,976 8,078 33 26,810 20,971 10,262 10,795 13,382 3,239
L 202,576 62,292 85,581 30,680 33,289 53,514 327,464 108,176 92,010 43,240 54,009 125,340
Llc 199,316 54,186 79,523 17,686 21,569 120 323,064 99,063 91,354 29,072 44,129 17,213
d (×10−4) 4.00 2.14 2.46 1.88 1.99 0.62 6.52 0.49 14.7 1.66 2.28 1.05
dlc (×10−4) 5.19 4.10 4.05 7.27 6.61 1100.00 8.99 2.51 17.4 4.99 4.93 16.4
µ 0.0301 0.0060 0.0114 0.0040 0.0032 - 0.0385 0.0120 0.0403 0.0095 0.0194 -
h̄ 4.42 6.30 5.40 8.09 7.67 3.70 4.24 5.3 3.97 6.80 5.95 18.45
D 14 24 21 28 26 9 17 19 12 20 22 74
C̄ 0.37 0.41 0.40 0.41 0.41 - 0.43 0.47 0.27 0.47 0.49 -
ρ 0.13 0.25 0.26 0.27 0.28 -0.10 0.08 0.25 0.01 0.27 0.29 0.20
Bm 0.04 0.09 0.09 0.17 0.12 1.21 0.03 0.04 0.05 0.06 0.06 0.37
com 85 41 55 19 22 3 131 48 68 16 20 7

TABLE I: Metrics for the Dota-League and DotAlicious datasets for a threshold value of 10, including: number of nodes N ,
number of nodes in largest connected component Nlc, number of links L, number of links in largest connected component
Llc, link density d, link density of largest connected component dlc, algebraic connectivity µ, average hop count h̄, diameter
D, average clustering coefficient C̄, assortativity ρ, maximum betweenness Bm, and maximum coreness cm.

IV. THE FORMALISM IN PRACTICE:
AN ANALYSIS OF THE EXTRACTED GRAPHS

In this section, we study the structure of the graphs formed
by using different mappings. As each mapping extracts a
different type of relationship between players, it is interesting
to know whether these relationships give rise to significantly
different graph structures. The various mappings can help
finding different properties of the two seemingly similar
datasets (see Section III). We compare the obtained graphs
using a broad selection of graph metrics, which are discussed
in Section IV-A. We discuss selected findings from these
comparisons in Section IV-B.

A. Graph Metrics

To compare the graphs extracted using different mappings,
we calculate a number of network metrics for the largest
component of each extracted graph. The selected metrics all
reflect properties related to the degrees and paths between
players, and allow us to study the social relations in the
gaming community. We also include a spectral metric. The
metrics used in this section are explained in the following.
For a more in-depth explanation we refer to [8], [9].

Size(s) of the connected component(s) (N,L): The size
of the largest and other connected components indicates how
many fellow players a player can reach in the network.
Link density (d): The link density is obtained by dividing
the number of links in the network by

(
N
2

)
and indicates how

densely connected the network is. For directed graphs the
density is obtained by dividing the number of links by 2

(
N
2

)
.

Degree distribution: The degree distribution characterises
the number of direct neighbours a node has.
Algebraic connectivity: The algebraic connectivity is the
second smallest eigenvalue of the Laplacian matrix3. This is
a spectral graph metric that indicates how well connected a

3The Laplacian matrix is obtained as L = D −A, where D is a diagonal
matrix of the node degrees and A the adjacency matrix.

graph is.
Average hop count (h̄): The average hop count indicates
how many hops, on average, players are removed from each
other.
Diameter (D): The diameter is the longest shortest path, in
terms of hops, in the network.
Average clustering coefficient (C̄): The average clustering
coefficient is a measure for how many neighbours of a node
are also neighbours of each other.
Betweenness centrality (B): The betweenness centrality
score of a node indicates on what fraction of shortest paths it
is present and is a measure of node importance.
Coreness (c): A node of coreness k has at least k neighbours
with at least k neighbours.
Assortativity Coefficient (ρ): The assortativity coefficient
measures to what extent nodes link to other nodes with
similar degrees.

In addition to focussing on the largest component, we
further analyse the effect of thresholding (both on the link
weight and the play percentage for the PP mapping) on the
size and number of network components. As thresholding
removes random and weak relations between players; graphs
extracted with a high threshold value will reveal the strongest
social structures. Among the graph component representations
of these social structures, many may be of similar size,
without a clear largest component, while the collection of those
components offers insight into strong social ties.

B. Graph Analysis

In this section, based on different mapping functions and
their thresholds, we analyse the size and social structure
of the graphs extracted from our two OSG datasets (see
Section III). We compare the results for Dota-League and
DotAlicious to indicate that, while not seemingly different
for one general mapping, different mappings can reveal
fundamentally different graph characteristics, and as such
should be considered by the careful practitioner to fully
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Fig. 3: Number of nodes in the network as a function of the
threshold for Dota-League (left) and DotAlicious (right).

capture the various facets of any data set.

1) Network Sizes: We first analyse the basic sizes in terms
of nodes and links of the extracted graphs, and summarise
the results in Table I. Under the most general mapping, the
SM mapping, graphs extracted from the Dota-League and
DotAlicious datasets have different sizes (in Table I, rows N
and L, the respective columns “SM”). The network extracted
from the DotAlicious dataset contains more links, while the
two networks contain an equal number of nodes. Based on this
general mapping (column “SM” in Table I, for each of the two
datasets DotA-League and DotAlicious), the graph extracted
from the DotAlicious dataset is denser (d = 4.00 × 10−4

and d = 6.52 × 10−4, respectively), although the number of
matches in the DotAlicious dataset is half that in the Dota-
League dataset. We conclude from this that players who play
regularly together in the DotAlicious dataset do so in more
diverse combinations, because they create more links with
fewer matches, than the players in the Dota-League dataset
do.

Not only do the graphs obtained for different datasets differ,
the graphs obtained using different mappings also highlight
differences between the datasets (compare, for each row in
Table I, the respective values obtained for each dataset). In
general, it seems that players from the Dota-League dataset,
when they appear in the same game, play on opposing sides;
in contrast, for the DotAlicious dataset they play mostly on
the same side. This can be seen by contrasting the sizes of the
networks extracted using the SS and OS mappings (rows N
and L in Table I). The DotAlicious network contains almost
3 times more nodes and links for the SS mapping than for
the OS mapping. In contrast, for the Dota-League dataset, the
networks extracted using the OS mapping are larger than those
extracted using the SS mapping.

The tendency of DotAlicious players to play on the same
side and that of Dota-League players to play on opposing sides
can be seen more clearly from Figure 3, where the number of
nodes in the network as a function of the threshold is shown
for all mappings. The Dota-League graphs are larger (have
more nodes) for the OS mapping compared to the SS mapping
throughout the range of thresholds. In the DotAlicious dataset,
however, the OS mapping results in the smallest graph of
all mappings. Moreover, forming links between players that
played on the same side results in graphs that are almost
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Fig. 4: Number of nodes in the network as a function of the
play percentage for Dota-League (left) and DotAlicious (right).

as large as those produced with the SM mapping. This in-
dicates that whenever DotAlicious players play many matches
together, they almost surely play those matches on the same
side. Arguably, playing together forms a stronger social bond
than playing against each other; an observation that could not
have been made based without studying different mappings
and thresholds.

In addition to playing together, DotAlicious players also
like to win together. Up from a threshold of 100 the lines
for ML and MW markedly take different slopes in Figure 3
(right). The larger networks for MW compared to ML show
that winning together forms true friendships—it leads to long-
lasting relationships.

In contrast to the graphs we extract from DotAlicious, in the
graphs we extract from the Dota-League dataset, the network
sizes for the ML and MW mappings are the same, indicating
a 50-50 win ratio for matches played together. There is no
indication that play relations are strengthened by winning in
the Dota-League dataset. This can be explained by the fact
that players in Dota-League cannot choose on which side they
play; instead, the game mechanism offered in this community
only allows joining the waiting queue (see Section V). The 50-
50 win ratio we observe for matches played together indicates
that matches are generally well balanced.

By using different mappings we have revealed clear dif-
ferences between the seemingly similar datasets used in this
study. The most general SM mapping does not display those
differences; for example, the curves for SM in both the left
and right hand graph in Figure 3 are very similar. The PP
mapping, however, can also reveal a difference between the
two SM mappings, as can be observed in Figure 4. The
number of nodes in the network for the higher percentages
of games played together, is higher by an order of magnitude.
This difference indicates that although both datasets contain
pairs of players that play a high number of matches together,
only the DotAlicious dataset contains players that play a high
percentage of their matches with a select group of other
players.

Although the PP mapping reveals differences between the
DotAlicious and Dota-League datasets, it also clouds infor-
mation that was visible using the regular mappings. In the
DotAlicious dataset, the difference between the network sizes
for the OS and SS mappings is no longer clear when using the
PP mapping. The PP mapping highlights that players have, on
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Fig. 5: Clusters for the SS DotAlicious graph, for various values of the mapping threshold.

average, a win ratio of 50%. Because the PP mappings produce
directed graphs, the individual win ratio results in equally large
networks for ML and MW.

2) Social Network Structure: The metrics in the lower
half of Table I offer a better insight into the social structure
of the network. We look at three path length metrics: the
average hop count (h̄), the diameter (D), and the maximum
betweenness centrality (Bm). These three metrics relate to how
easily nodes can reach each other in the network and whether
some nodes are more important with respect to reachability.
Social networks are characterised by a low average hop count
as a function of the number of nodes, and a relatively high
clustering coefficient; Watts and Strogatz [10] call this the
small-world property. In Table I, the SM mapping of both
datasets shows very similar values for the metrics related to
path length. Based on this general mapping function, the small
average hop count and high clustering coefficient suggest that
the extracted graphs indeed show small-world properties rather
than the properties expected of random graphs.

The relatively high clustering coefficient that is often found
in social networks is often the result of the fact that a friend of
your friend is likely to also be your friend, too. For both the
Dota-League and DotAlicious graphs the clustering coefficient
of players that played in the same match is around 0.4 (0.37
for Dota-League and 0.43 for DotAlicious), indicating that the
players you play with are also likely to play among each other.
The higher clustering among DotAlicious players might be the
result of the greater control players have over with whom they
play, or might be the result of player behaviour.

Contrary to many online social networks, the competitive
element in online social games may result in foe relations,
in addition to friendship relations, which can be studied via
the OS and SS mappings. As can be seen in Table I for
DotAlicious, the clustering coefficient for the SS mapping is
higher than for the SM mapping. The increase in clustering
coefficient indicates that, if we interpret being on the same
side in a match as being friends, the friends of your friends
are indeed likely to be friends of yours. The clustering of
players increases a bit further if we use the MW mapping,
showing the strengthening effect of winning matches together.
Where winning together strengthens relations, losing matches
does, from a clustering perspective, lead to slightly weaker
relations as can be seen from the clustering coefficient for the
ML mapping. The overlap in links between the ML and MW
graphs is about 30%, i.e. 30% of the links in the ML graph

also occur in the MW graph and vice versa.
Whereas the SS mapping results in graphs with a higher

clustering coefficient for the DotAlicious dataset, the OS
mapping creates graphs with a markedly lower clustering
coefficient. Intuitively this ties in with the idea that although
a friend of your friend is also a friend of yours, an enemy of
your enemy is also your friend. Because players on opposing
sides in a match instance will most likely not dislike each other
outside the scope of that match, we nonetheless see a different
graph structure for foe relations. The much lower clustering
coefficient cannot be explained by other graph properties such
as link density. Indeed, the link density in the OS graph is
higher than in the SS graph.

As in Section IV-B1, we find again that the different
mappings allow us to see differences between the two datasets.
The clustering coefficients are the same for all graphs extracted
from the Dota-League dataset. In particular, there is no evident
difference between friend and foe relations in the Dota-
League dataset. In contrast, the difference is prominent in the
DotAlicious dataset. As observed before in this study, the PP
extension of the SM mapping shows vastly different results for
the two datasets (see Table I, the columns “PP” corresponding
to each dataset). The difference in the number of nodes is not
large, but the difference in the size of the largest strongly
connected component is. The Dota-League dataset shows no
large strongly connected component, whereas the DotAlicious
dataset shows a largest connected component of 3,000 nodes.
However, the largest strongly connected component extracted
from the DotAlicious dataset is poorly connected: it has a
diameter of 74 hops and an average hop count of 18.45.

3) Impact of the Mapping Threshold on the Resulting
Network Connectedness: An important property of networks
is whether the network is connected. A disconnected network
indicates that the nodes in the network cannot come into
contact, either directly or via intermediate nodes. The number
of connected components and the size of the largest connected
component in a network are measures of how connected or
fragmented the network is.

We find that the threshold value has a large impact on the
number of connected components, as depicted in Figure 5.
For a threshold n = 0, the extracted graphs contain a single
connected component. For increasing values of n, the extracted
networks become smaller and more indicative of clusters
of players who are actively involved in relationships with
other cluster members. The reverse process—lowering the
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Fig. 6: Number of connected components for Dota-League
(left) and DotAlicious (right).

threshold—makes the isolated clusters grow. We illustrate the
dependency between cluster growth and threshold reduction in
Figure 5, where plots from left to right depict the results for
decreasing values of the mapping threshold. As the threshold
value decreases, the few connected nodes in the left-most
image grow into a single, large connected component. In
practical terms, players first organise in smaller clusters before
these smaller clusters all connect. The player in-between the
two initial clusters depicted in the left-most image of Figure 5
clearly functions as a hub.

Although it is possible to extract an almost fully connected
network for all mappings, applying a threshold reduces the
relative size of the largest component significantly. Figure 6
shows the number of connected components excluding isolated
nodes. As the threshold value increases, the dominance of the
largest component diminishes and the number of connected
components in the graph increases rapidly. This indicates that
the network falls apart quickly in many small components
(players with a strong gaming relationship), rather than that
nodes are stripped of the giant component or that it splits
into a few large subcomponents. The small components are
all between two and five nodes in size, which is consistent
with the maximum size of five players per team that is typical
of DotA (see Section II). At a threshold value of 28, half of
the nodes are located in small clusters. At a threshold value of
100, 85% of the nodes are in small clusters, yet the distribution
of cluster sizes does not change much. The peak value at a
threshold of 28 is in the same region where the number of
nodes in the graph stops decreasing dramatically and enters a
regime of more steady decrease as was shown in Figure 3.

In Figure 7, the number of strongly connected components
in the directed graphs extracted with the PP mapping is shown
for the Dota-League dataset (left) and DotAlicious dataset
(right). The number of strongly connected components has
higher peaks in the networks extracted from the DotAlicious
dataset than for the Dota-League and also stays much higher
for higher play percentages. This indicates that although the
network falls apart in many small clusters in both datasets,
only in the DotAlicious dataset these clusters are larger
than 1 node. We argue that using the largest component to
characterise the network may provide valuable insight for low
threshold values, but still is too crude. Scaling up the range
of the threshold values could, in an easier manner than most
clustering algorithms, bring forth new and significant (strong)
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Fig. 7: Number of strongly connected components with PP
mapping for Dota-League (left) and DotAlicious (right).

gaming relations.
The betweenness centrality (B) and coreness (c) can give

clues as to whether a graph contains important nodes, such
as influential spreaders [11] for example. For the graphs con-
structed with the lower thresholds, the maximum betweenness
value indicates that between 4 and 9 percent of all the shortest
paths cross at the most central node. This value increases with
an increasing threshold while the link density increases. This
indicates that, as the largest component shrinks, some players
play an increasingly important role in facilitating short paths.

V. FORMALISM-BASED MATCH RECOMMENDATIONS

We focus in this section on the use of our formalism for
extracting graphs for improving typical game functionality.
We propose as an example an algorithm that can assist in
matchmaking decisions. A good matchmaking system can
ensure that players in a game have matching profiles and could,
therefore, take player clustering information into account. In
this section, we analyse how matches are formed by players
and propose a graph-inspired matchmaking algorithm that
leads to much stronger social ties than random matchmaking,
and is slightly better than the real algorithms used by the
communities from which we collected our datasets.

The two datasets under study represent communities that de-
ploy in practice different matchmaking algorithms. For Dota-
League, players who want to play a match first join a waiting
queue. When there are 10 or more players in the waiting
queue, the matchmaking algorithm will form teams that are
balanced in terms of the skill levels of the players. Although
this matchmaking algorithm enforces balanced matches, it
does not take into account the social ties of the players.
Sometimes players synchronise themselves out-of-game via
instant messaging tools to join the waiting queue at the same
time and thus increase the probability to end up in the same
match as their preferred players, but there is no guarantee that
they will play on the same team. In contrast, for DotAlicious,
each game server has a number of open matches waiting for
players to join, and each arriving player can select which
match to join and on which team.

To study the effect of a matchmaking algorithm, we present
a scoring of matches that reflects the utility derived by players
from a game. Following McGonigal [2], we assume that
matches played by players with strong social ties are enjoyed
to a higher extent than those played amongst players that have
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Fig. 8: Average match scores when performing matchmaking for DotAlicious (left) and Dota-League (right).

weak or no social ties. As we have shown in Section IV-B3,
a large part of the DotA players are grouped into relatively
small, high link-weight clusters. This indicates that these
players enjoy their gaming experience best when they play
with or against a small set of other players. Since there may
be multiple ways to rank matches, our goal is not to propose
a unique scoring methodology, but rather to show how to
compare and possibly improve matchmaking based on one
such socially-aware scoring system.

For each match, we assign a score to a match based on
the connected components, referred to as cluster, to which the
players of the match belong. Cluster membership is derived
for the different mappings (excluding PP) described in Section
III as follows: first, a threshold value of n = 100 is used
to filter out weaker links between players. Then, we identify
each connected component (cluster) in the extracted graph.
The resulting clusters are then numbered, and each cluster
member (player) is labelled with its cluster number. In our
analysis, we assign a score to every match based on the overlap
of cluster membership amongst players. Intuitively, we design
the score to reward the matches in which many players from
the same cluster participate. Specifically, a match receives one
score point for every player in clusters who are represented in
the game by two or more players.

Consider the match schematically represented in Figure 9.
Team 1 consists of players “a” to “e”, as can be seen in the
column labelled “Player”; team 2 consists of players “f” to

Fig. 9: Example of a match.

“j”. The column labelled “Cluster” records the cluster number
for each player. In total, this match is assigned 7 points, as
follows. First, 2 points are given for each of cluster 1, which
is represented in this game by players “a” and “c”, and cluster
2 (players “b” and “f”). Then, 3 points are given for players
“d”,“h”, and “j” (cluster 3). Players “e”,“g”, and “i” have no
fellow cluster members in the match and will be assigned 0
points.

To favour the small clusters that lead to novel human
emotions [2], and which are shown to be prevalent in our
datasets in Section IV-B3, we design the scoring system such
that the largest cluster is not considered when assigning points.
This effectively avoids biasing the matchmaking algorithm to
the dominant set of links, which is akin to recommending a
well-known tune, not because it is similar to the requester’s
tastes, but because it is present in most other people’s playlists.

We now propose a socially-aware matchmaking algorithm,
which works as follows. First, for each 10-minute time interval
(sliding windows), the algorithm builds a list of all the players
who are online. In practice, the algorithm can build this list
from the online information provided by the waiting rooms
of each DotA community; to obtain this list from the real
(raw) datasets (see Section II), we define a player as being
online during an interval if the player has joined at least one
match during the interval. Second, the algorithm computes the
cluster membership for each player. Third, from the largest
online players’ cluster to the smallest, all online players from
the same cluster are assigned to new matches if size permits;
otherwise, the cluster will be divided into two parts and players
from one part will be assigned into new scheduled matches. In
practice, the third step can be executed whenever the number
of players exceeds the number needed for a game (10), at
the end of the 10-minute interval, or periodically every few
minutes; when simulating the third step for this study, we
use the timestamps when matches become active, as observed
in the real (raw) dataset. The rationale behind obtaining all
the online players in a time interval is that players who are
aware that their friends are online are likely prepared to wait
for a short duration in order to play together. This behaviour



is consistent with our experience as DotA players and with
reports from experienced DotA players.

The matchmaking results are shown in Figure 8; higher
scores are better. For comparison purposes, we have also
scored the matches obtained via randomly matching players
that are online during each time interval (the “Random” match-
making algorithm in Figure 8) and the matches observed in the
real (raw) datasets (the “Original” matchmaking algorithm).
The “Random” algorithm indeed scores the lowest, as it does
not take into account social ties. Our proposed matchmak-
ing algorithm (the “Matchmaking” algorithm in Figure 8)
improves the scores of matches, by a large margin when
compared with the “Random” algorithm and by a small but
non-negligible margin when compared to the “Original” (real)
algorithm. We attribute the better scores achieved by our
admittedly simple “Matchmaking” algorithm to the difficulty
of seeing whether friends are online in the studied systems,
due to shortcomings in the offered service. Without properly
displayed information, some players may not be aware that
some of their friends are online and thus join other matches.
Indeed, we find that the improvement is smaller for DotA-
licious than for Dota-League, and attribute this to players
in DotAlicious having more freedom and tools for selecting
whom to play with. We conclude that, by using a graph
perspective instead of manual off-line synchronization, even
a simplistic matchmaking algorithm can reach higher match
utility scores by leveraging cluster information obtained after
a fairly high threshold, that is, after processing only a small
part of the original graph. By using a more complex multi-
faceted graph extraction rule that, for instance, would include
information on friend and foe relationships, we expect that an
even better matchmaking could be achieved.

VI. RELATED WORK

Social network analysis and complex networks theory have
received increasing attention in the past few years, which
has readily resulted in a significant body of related research
papers. We refer to [12], [13] for an overview of research
on complex networks and to [14], [15] for some excellent
overviews of the developments and state of the art in social
network analysis. Most research on social network analysis,
however, only considers or defines one network for one type
of link. Instead, we consider the influence of different (social)
link definitions and combinations of link definitions on the
emerging (complex) network.

Closest to this study, our previous work [16], [17] on
graph extraction and analysis for OSGs investigates several
extraction strategies, but does not propose a formalism as
comprehensive as we propose in this work, and does not
conduct a thorough study of the impact of mapping functions
and thresholds on the characteristics of the resulting graphs.

Within the application domain of online social games, few
studies use network metrics to divide players into different
classes. For example, Kirman and Lawson [18] extract a
network from an online game by creating unweighted and

undirected links between players that ever exchanged infor-
mation in the game. They define three types of players based
on the successive removal of the highest-degree nodes until
the largest connected component falls apart. Shim et al. [3]
define implicitly a network that is used to predict future player
performance based on the relationship between mentors and
apprentices. This analysis could be extended by looking at
network-wide properties instead of only local properties. The
prediction of the success in games can also be applied to real-
world games as is done by Vaz de Melo et al. [19], where a
complex network approach is used to predict the performance
of basketball teams. The authors propose a network-based
ranking of players as a replacement for current statistics such
as assists and points scored to predict the future success of a
team.

Other studies use different definitions of links to create
different networks from the same dataset. Szell and Turner [20]
study a detailed dataset of interactions and friend/enemy rela-
tions spanning three years in the online game Pardus, which is
much less popular than the communities we investigate in this
study. They use the game as a substitute of the real-world and
test several hypotheses in the field of social dynamics such
as social balancing, network densification and triadic closure.
They study three different networks extracted from the dataset:
the network of communication between players, the network
of friends as indicated by players in the game, and the network
of enemies as indicated by players in the game. Although the
authors present a detailed analysis of the networks for each
type of interaction, and especially contribute to existing work
by analysing the network of enemy relations, their links are
either interaction based or explicitly indicated by the players.

A related study [21] on guild members in World of Warcraft
also investigates the differences between networks formed
based on different types of interaction. In this work social
network analysis is used to explore the network structure of
interactions between guild members in the online game World
of Warcraft. The authors studied 76 players that formed a
single guild and extracted networks by creating links between
players that communicate amongst each other. Different types
of interaction were classified into seven different categories
such as asking for help or group management to form seven
different networks. An analysis of these networks in terms of
reciprocity and topological structure indicates that the different
types of interaction lead to different networks. This study
focusses, however, on a rather small group of players, which
enables the authors to analyse and classify the communication
between players. In our study, we analyse large datasets by
applying different mappings, instead of analysing the dataset
to find the mappings.

VII. CONCLUSION

In this paper we have analysed in detail the first step in
many online social network studies: the mapping of a dataset
on a graph. To investigate the influence of the expert’s choice
of what type of relationship between nodes should create
a link and how strong that relationship must be, in other



words, mapping and thresholding, we studied the properties of
graphs extracted using six different mappings. As an example
application we analysed the gaming relations in two large
Online Social Games, Dota-League and DotAlicious.

Our comparison of the graphs obtained from the two
datasets through various mappings defined in our formalism
has revealed clear differences in the social relations between
the players of the respective games. For example, players of
DotAlicious are more likely to play with the same group of
players, whereas such a preference cannot be seen among
Dota-League players. Setting a relatively high threshold value
shows that strong social ties between players divide the
network into hundreds of small groups. We find that the
largest component, which is often the sole focus of network
analysis, is no longer the dominant component of the social
network. Moreover, even slight variations in the threshold
value can completely change the graph metrics for the largest
component, also for lower values of the threshold. This gives
strong evidence that our formalism offers a complementary
view to the simplistic approach based on the lowest possible
threshold value, which has been prevalent in earlier studies.

Finally, we have proposed an application that uses the
knowledge of implicit social relations in the gaming commu-
nities of Dota-League and DotAlicious. Albeit simplistic, our
proposed matchmaking algorithm could serve as an example
for system designers on how to strengthen or leverage the
social ties between players to increase their experience and
to attract more players. Our experimental results show that,
in comparison to both a random algorithm and the algorithms
used by the real communities we have studied, our matchmak-
ing algorithm improves the social cohesion of the community.

For the future, we plan to investigate more mapping strate-
gies, especially multi-thresholded, and apply them and the
strategies proposed in this work to the datasets collected in
the Game Trace Archive [22]. We also intend to explore other
practical applications for the formalism we have proposed in
this study.
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