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A B S T R A C T

The built environment is vulnerable to climate-induced extreme events and natural disasters, 
which are repeatedly exposing communities to severe consequences and market disruptions. In 
response, the construction industry is developing resilient technologies for buildings, but the 
proposed solutions are often not cost-effective, rarely eco-friendly and typically fail to address 
multiple hazards present in many locations. These shortcomings stem from the absence of a 
clearly defined framework for quantifying holistic multi-hazard resilience. As a result, investment 
decisions are ill-informed and technical solutions are sub-optimal. This paper redresses this issue 
by proposing quantitative indicators and introducing the Resilience Readiness Levels to assess the 
resilience of buildings, considering multi-domain factors (physical, social, economic, environ
mental) in single or multi-hazard contexts (heat, seismic, wind, flood). The proposed resilience 
indices and calculation methods are based on a diverse set of scientific literature and real-world 
practices, and are demonstrated on Dutch and Italian urban blocks with different local hazards 
and building layouts. The results show that the multi-domain resilience approach can support 
informed early-stage building design and retrofit decision-making for single hazards, while aiding 
prioritization and intervention planning for improving building disaster preparedness in multi- 
hazard scenarios.

1. Introduction

There is a pressing need for resilient communities. The devastating impacts of recent climatic events have triggered systemic 
failures across multiple sectors globally. In Europe alone, economic losses from climate-induced events amounted to €650 billion 
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between 1980 and 2022, of which only one third were insured [1]. Climate change effects extend beyond economics to human health 
and well-being. Disaster databases show that power outages and heat waves, resulted in over 62,000 heat-related deaths in Europe in 
2022 alone, and that the most vulnerable groups are disproportionally affected [2] particularly in southern Europe where heat-related 
deaths are increasing steadily [3]. Buildings, responsible for 40 % of energy consumption, 36 % of greenhouse gas emissions, and 35 % 
of waste [4], need urgent decarbonization to mitigate these climate impacts. However, even with net-zero goals, existing atmospheric 
carbon will continue to impact communities for decades [5], and these impacts are worsened by natural disasters such as earthquakes, 
which caused over 200,000 deaths and €250 billion in damage in the 20th century [6]. Integrating disaster-resilience-thinking into 
research, practice and policy is therefore crucial to minimize future losses.

As a result, there has been a rise in risk and resilience assessments, methods and digital tools for assets, infrastructure and human 
communities (e.g., Refs. [7–11]). More specific resilience considerations for buildings have been introduced in the REDi design 
guidelines [12–14], establishing resilience objectives and a roadmap to enhance building performance before, during and after 
disruptive events. These approaches are helpful, but they are primarily qualitative and therefore lack the incisiveness of quantitative 
methods. Resilience is defined by the ability of a building to “bounce back” to a new equilibrium within a recovery time after absorbing 
the impact of an external natural or man-made event, and is traditionally measured by metrics based on the so-called 4R’s of resilience 
[15]: (1) Robustness (R1) - the ability of a building to endure without loss of functionality; (2) Redundancy (R2) - the ability of a building 
to provide alternative options under stress; (3) Resourcefulness (R3) - the extent to which resources can be mobilized during emer
gencies; (4) Rapidity (R4) - the rate of recovery. The first two metrics influence the so-called “Response phase”, while the last two 
pertain to the “Recovery phase” of the resilient behaviour of a system (Fig. 1a).

In events such as earthquakes, windstorms and floods, resilience metrics typically focus on physical vulnerability. Building 
robustness is measured by damage quantification and fragility curves, which provide the system’s probability of achieving or 
exceeding predefined performance levels for specific hazard intensities (e.g., Refs. [16,17]). Fragility curves, which are extensively 
used in earthquake engineering to quantify structural vulnerability at component to building level, have also been adapted for other 
hazards such as flood and wind (e.g., Refs. [18,19]). Redundancy refers to the presence of “backup” components, e.g. multiple HVAC 
units and/or supplemental electrical generators and water storage supply in hospitals for continuity of operation, and their additional 
capacity to meet demands during failures; redundancy can enhance the robustness by reducing the severity of failure. Recovery ca
pacity, which integrates both resourcefulness and rapidity, is instead measured through restoration functions. These functions assess 
progress towards a recovery state using factors such as financing availability, permitting processes, repair logistics and restoration of 
utilities [12–14]. Resilience is typically assessed by assuming a time-invariant system functionality prior to the occurrence of an 
extreme event and after the completion of the restoration process. However, environmental aggressiveness can cause progressive 
damage that gradually reduces system functionality over time, thus altering the impact of extreme events of the same magnitude. To 
address this, several studies have examined the progressive degradation of system performance and its implications for resilience 
quantification, particularly within the context of life-cycle resilience analysis [e.g., 20,21].

For heat hazards, resilience metrics account for building thermal behaviour, and recent literature [22–24] highlights the growing 
need for multi-criteria frameworks to assess and enhance resilience. Prolonged exposure to heat stresses can lead to changes or 
fluctuations in a building’s functionality. Resilience is assessed by defining thresholds of air temperature or combined indices (e.g., 
operative temperature or standard effective temperatures), beyond which thermal exposure becomes uncomfortable or poses 
heat-related health risks. Building cooling measures ensure resistance and robustness against these conditions. Recovery is usually 
quantified as the time required to return to acceptable thermal conditions and ensure occupant safety. Cooling measures can also 
provide redundancy when multiple units are designed to maintain thermal comfort even if one fails, as seen in hospitals, or when 
integrated with passive cooling strategies as natural ventilation. Research studies on heat resilience are emerging (e.g., Refs. [25–27]), 

Fig. 1. Phases (a) and domains (b) of Resilience.

S. Bianchi et al.                                                                                                                                                                                                        International Journal of Disaster Risk Reduction 128 (2025) 105746 

2 



but this field is still in its infancy and requires the development of robust frameworks to define specific threshold levels, boundary 
conditions related to human behavior and power availability, and appropriate hazard models. Further research on human illness and 
mortality is critical since the exposure of individuals depends on their location and can be influenced by urban heat islands, micro
climates and differences between indoor and outdoor temperatures.

Despite these advancements across various engineering disciplines, traditional and current approaches often address only single 

Table 1 
Resilience indicators.

Hazard Phase Domain Indicator Description Reference Index Normalization

Heat Response Social CDHSETmin− crit Cumulative degree hours between SET 
minimal and critical [◦h]

[23,53] IH− Res1 CDHSETmin− crit
SETreference ⋅ Ref. period

CDHSETcrit Cumulative degree hours after SET 
critical [◦h]

[23,53] IH− Res2 CDHSETcrit
SETreference ⋅ Ref. period

NDH Number of deaths [43] IH− Res3 NDH

Building occupants
Environmental 
Economic

ERes Cooling energy consumption [kWh/m2] [23] IH− Res4 ERes

Ereference

Recovery Social TSETcrit Time to return to SET critical [h] [22] IH− Rec1 TSETcrit
Ref. period

Environmental 
Economic

ERec Cooling energy consumption [kWh/m2] [23] IH− Rec2 ERec

Ereference

Earthquake Response Physical MAFC Mean Annual Frequency of Collapse [46] IE− Res1 MAFCdamaged

MAFCundamaged

%NBS % New Building Standard [44,45] CapacityAs− Build

CapacityNewBuild
MAFEE Mean Annual Frequency of Exceedance 

of a Limit/Damage State [1/years]
[46] MAFEE

MAFEEDS threshold

RDR Residual Drift Ratio [16] IE− Res2 RDR
RDRthreshold

Social NDE Number of deaths [16] IE− Res3 NDE

Building occupants
Economic RCE Repair Cost [cost/m2] [16] IE− Res4 RCE

Replacement cost
Recovery Social DE Number of displaced people [54] IE− Rec1 DE

Building occupants
Economic DTE Downtime [months] [12] IE− Rec2 DTE

Replacement time
Environmental CEE Carbon emissions [kg CO2e/m2] [16] IE− Rec3 CEE

Replac. carbon footprint
Wind Response Physical MAFEW Mean Annual Frequency of Exceedance 

of a Limit/Damage State [1/years]
[47] IW− Res1 MAFEW

MAFEWDS threshold

Social NDW Number of deaths [16] IW− Res2 NDW

Building occupants
​ Economic RCW Repair Cost [cost/m2] [16] IW− Res3 RCW

Replacement cost
Recovery Social NAPW Number of affected people [50] IW− Rec1 NAPW

Building occupants
Economic DTW Downtime [months] [14] IW− Rec2 DTW

Replacement time
Environmental CEW Carbon emissions [kg CO2e/m2] [16] IW− Rec3 CEW

Replac. carbon footprint
Flood Response Physical RF Resistance of facades to floods [49] IF− Res1 RF

RFreference

BFP Flooded building perimeter – IF− Res2 BFP
Tot. perimeter

ABF Area of flooded building facades – ABF
Tot. envelope area

Social NDF Number of deaths – IF− Res3 NDF

Building occupants
Economic RCF Repair Cost [cost/m2] [55] IF− Res4 RCF

Replacement cost
Environmental WD Water depth [56] IF− Res5 WD

WDReference
FV Flow velocity [56] IF− Res6 FV

FVReference

Recovery Social NAPF Number of affected people [55] IF− Rec1 NAPF

Building occupants
Economic DTF Downtime [months] [13] IF− Rec3 DTF

Replacement time
Environmental CEF Carbon emissions [kg CO2e/m2] [16] IF− Rec4 CEF

Replac. carbon footprint
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hazards, failing to support decision-making for integrated resilience strategies. In recent years, multi-hazard approaches have emerged 
to enable more comprehensive resilience assessments. These methods employ either simplified multi-criteria decision-support pro
cedures (e.g., Refs. [28–31,60]) or more robust probabilistic-based methodologies that account for hazard interactions and/or physical 
vulnerability interactions for specific scenarios or across the building’s lifecycle (e.g., Refs. [32–34]). However, most of these studies 
focus on dual-hazard interactions, such as seismic-flood or seismic-wind, while broader hazards combinations are typically unex
plored. In particular, heat-related vulnerabilities, which increasingly affect communities and the environment through overheating 
and rising energy demand, are not integrated into these frameworks. Indicator-based approaches have also emerged, especially in 
seismic resilience assessment (e.g., Refs. [30,35,36]), to capture the effects of different dimensions such as damage, repair cost and 
downtime. Nonetheless, the full spectrum of potential consequences is rarely considered, often omitting a comprehensive evaluation of 
the four key resilience domains: physical, social, economic and environmental [37]. Both single-hazard and multi-hazard assessments 
would benefit from the adoption of holistic metrics that integrate multi-criteria indicators spanning all these domains (Fig. 1b).

Embedding resilience indicators into early-stage decision-making can lead to cost-effective, sustainable, safe, comfortable and 
resilient building designs and retrofits, as initial decisions affect up to 80 % of the final choices [38], making this phase crucial to 
enhance building sustainability and resilience. This study provides a practical decision-support framework for early-stage multi-hazard 
multi-domain resilience design and evaluation of individual buildings. Specifically, the study: (i) defines a comprehensive set of 
resilience indicators - either derived from existing literature or newly proposed - addressing structural safety, energy efficiency, carbon 
emissions, occupant well-being and cost; (ii) establishes holistic Resilience Readiness indices to assess resilience against single or 
multi-hazard risk scenarios, incorporating post-event response and recovery phases; and (iii) develops rating systems to support 
decision-makers in conducting impact assessments and categorizing individual buildings according to their Resilience Readiness Level. 
A key novelty of the study lies in the systematic organization and normalization of heterogeneous indicators, enabling consistent 
comparison across different hazard types and resilience domains at the building scale. This step is critical for achieving an integrated 
and comparable resilience assessment. Furthermore, contributions (ii) and (iii) represent an innovative application of the hybrid 
AHP-TOPSIS [39] decision-making method to the context of building-level resilience - an approach that, to date, remains underex
plored in the literature for operationalizing multi-domain and multi-hazard resilience assessments at the scale of individual buildings. 
The proposed framework moves beyond treating each hazard in isolation and instead supports the evaluation of combined impacts 
within a unified scenario.

The paper is organized as follows: Section 2 describes the research method, which includes the definition of multi-domain resilience 
indicators, their quantification and integration into holistic resilience scores; Section 3 applies the proposed method to urban blocks, 
characterized by different building archetypes and local hazards (The Netherlands, Italy); Section 4 discusses potential applications for 
building resilience assessment and design; Section 5 presents the main conclusions of the work.

2. Research method

This research was developed as part of the Horizon Europe MULTICARE project [40], aiming to advance resilience design, 
assessment and management of buildings through a multi-hazard perspective across various scales (component, building, urban). 
Central to the project development is the definition of multi-criteria indicators to measure building resilience against heatwaves, 
earthquakes, windstorms and floods. These indicators are crucial for integrating resilience considerations into the complex multi
disciplinary design process of buildings, enabling to assess their resilience capacity and systematically compare alternative holistic 
mitigation and adaptation strategies.

2.1. Multi-domain resilience indicators

Measurable resilience indicators were defined from literature references, current standards and practice, with a specific focus on 
quantitative parameters derived from building performance simulations and risk assessment. These indicators, summarized in Table 1, 

Fig. 2. Functionality-time (resilience) curve for heatwave scenarios based on the CDHSETcrit definition.
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describe a building’s overall capacity to respond to and recover from different extreme events.
Heat resilience is associated with the heat vulnerability of buildings, specifically how heatwaves impact both the buildings and 

their occupants. The thermal response of a building is affected by construction materials and quality, cooling measures (passive or 
active) and occupant behaviour. Although the physical (structural) domain is not particularly relevant for this hazard, since the 
structural integrity of building components is not significantly compromised by heat, the impact on the other domains is notable. The 
human response to extreme heat events can be assessed by means of the Standard Effective Temperature (SET), defined as the dry-bulb 
temperature in a hypothetical environment with 50 % relative humidity [41]. Relevant heat resilience indicators include Cumulative 
Degree Hours (CDH) between SET minimal (lowest effective temperature at which thermal comfort is still maintained) and SET critical 
(effective temperature at which thermal conditions become hazardous or uncomfortably extreme), identified below as CDHSETmin− crit, 
as well as the CDH after SET critical (CDHSETcrit) and the cumulative time from SET critical to SET minimal (TSETcrit). These indicators 
capture both the intensity of thermal conditions and the duration of exposure. This is illustrated in Fig. 2 through the CDHSETcrit, where 
the critical SET threshold can be defined based on relevant guidelines, expert judgment or established frameworks [42]. Heatwave 
duration refers to the consecutive period during which temperature exceeds a defined threshold for a minimum number of days, as 
determined by local institutions or regulatory guidelines (e.g., the World Meteorological Organization defines a heatwave as “a period 
of more than five consecutive days during which the daily maximum temperature exceeds the average maximum temperature by 5 ◦C, 
with the reference period being 1961–1990”).

By analysing temporal variations in heat-mortality associations derived from recorded data (e.g., Refs. [3,43]), the impact of 
extreme temperatures on mortality risk can also be assessed. Beyond social impacts, it is important to quantify the monetary and 
environmental losses associated with operating cooling systems to maintain acceptable indoor thermal conditions during heatwaves, 
as reflected in their operational costs and the carbon emissions from energy consumption.

For events causing structural damage, the physical impact on buildings is quantified to define their response capacity. In the context 
of earthquakes, this impact can be assessed through indices that describe the building’s damage or safety level and its residual capacity, 
particularly important in case of aftershocks. In accordance with code-compliant procedures, the safety level can be evaluated by 
comparing the building’s Capacity to the Demand - minimum code requirements - of a new structure. This Safety Index, represented by 
the %NBS (percentage of New Building Standard) in the NZSEE2017 Assessment Guidelines [44] or the IS-V (Life Safety Index) in the 
Italian 2017 Seismic Classification Assessment Guidelines, DM 65 [45], is typically used by engineers, insurance companies and 
government agencies to assess a building’s seismic risk and identify the need for retrofitting. An alternative indicator to describe the 
safety level is the Mean Annual Frequency of Exceedance (MAFE), which represents the annual probability of exceeding a certain limit 
state (structural safety and/or building serviceability) [46]. To quantify the residual capacity of a damaged structure, which is essential 
for decisions on repair, retrofit or demolition, the MAFE before (undamaged) and after (damaged) an earthquake can be used to 
determine the ratio of the Mean Annual Frequency of Collapse (MAFC). An alternative and complementary indicator, based on typical 
Engineering Demand Parameters (EDP), is the Residual Drift Ratio (RDR), measuring the permanent residual deformation of a building 
after an earthquake and expressed as the ratio of overall seismic displacement to the height of a floor or the entire building [14]. For 
wind loading, physical resilience can be assessed using similar indicators. The MAFE of a limit or damage state can be used to measure 
structural safety, building serviceability and user comfort [47], and quantified using the SAC-FEMA probabilistic approach adapted for 
wind loading [48]. Focusing on flood events, damage assessment depends on both the physical characteristics of buildings and the 
mechanical impact of water, described by water depth and flow velocity. Water depth measures the height of the water layer from 
ground level, while flow velocity indicates the potential of the flood to cause erosion, increase structural damage and transport 
sediments and debris. Quantifying these indicators enables stakeholders to implement effective water management measures, such as 
levees, embankments, lateral structures and ponds. To define physical damage, the resistance of building envelopes to floods is a key 
indicator, reflecting a building’s impermeability and defined based on the type of materials used for the windows and walls, and the 
quality of the joints [49]. Additional indicators include the flooded building perimeter, which measures the extent of flooding around 
it, and the surface area of building envelope affected by flooding, providing insight into water impact on the building’s exterior.

The impact of earthquakes, wind and floods extends beyond structural damage to affect other resilience domains. These hazards 
significantly impact the safety and well-being of building occupants. Earthquakes can cause partial or total collapse of structural 
(skeleton) and non-structural (architectural components, contents, services) elements, leading to injury or loss of life in the aftermath 
of the event, and causing people displacement during the recovery phase. Wind can damage building envelopes and roofs, resulting in 
water ingress and affecting people in various ways, ranging from serviceability loss to injuries and/or displaced people due to the 
unserviceability of houses [50]. Floods can disrupt communities by inundating buildings and causing similar displacements. In each 
case, it is essential to estimate casualties and the number of displaced individuals as resilience indicators for effective response 
planning and emergency management. The damage caused by these events also leads to economic losses. Assessing the direct financial 
impact, i.e. repair or replacement costs, is crucial for prioritizing resources and planning interventions during the response phase. The 
indirect economic loss, on the other hand, serves as a resilience indicator to define the post-disaster recovery of the building, and it 
entails delays in scheduling inspections, mobilizing workers and materials, securing financing for repairs and the repairs themselves 
[12–14]. This downtime disrupts daily activities, resulting in lost income and relocation expenses for affected occupants. Beyond 
economic indicators, the disposal of debris and the repair or replacement of building components contribute to carbon emissions and 
environmental degradation. Since resilience is inherently a key aspect of sustainability, it is essential to quantify the carbon footprint 
associated with extreme events, considering embodied carbon, energy use, material resource use and waste generation.

All the aforementioned indicators can be computed for a specific event to estimate their probable value (intensity or scenario based 
assessment). In this case, losses are quantified as the probability of exceeding a certain threshold across a range of outcomes, from 
which a Probable Maximum Loss (PML) can be derived. Time-based assessments can also be implemented to quantify the Expected 
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Annual Loss (EAL), which describes the probable performance of a building over a specified period, considering all potential events and 
their probabilities. EAL is a key metric for cost-benefit analyses and for determining appropriate insurance premiums. The choice of the 
assessment type (intensity-based, scenario-based or time-based) and the corresponding resilience indicators depends on the stake
holder and specific application. For example, an insurance company would prioritize quantifying the probability of incurring a specific 
payout for an event of a given intensity to ensure financial solvency. Moreover, as discussed in Section 2.5, the resilience indicators 
support the integration of regional variations into the assessment, thereby enabling a more context-sensitive evaluation of how 
different hazards impact building performance [e.g., 51,52].

2.2. Indicator normalization

The resilience indicators identified for each hazard have different units, therefore, normalization is performed (Table 1) to facilitate 
effective comparison and aggregation into a final multi-criteria index (Sections 2.3, 2.4). This process prevents any single indicator 
from dominating due to scale differences and enables meaningful weighting by placing the indicators on a common scale (if no weights 
are applied, all indicators are implicitly treated as equally important). As discussed below, normalization is carried out by dividing 
each resilience indicator by a relevant reference or threshold value representing its worst-case scenario. Consequently, lower values 
reflect greater system resilience in relation to that specific aspect.

Heat resilience indicators are derived from building energy performance simulations conducted over an entire year (time-based) or 
specifically for the duration of a heatwave (intensity or scenario based), with the selected time period used to normalize social in
dicators accordingly as outlined in Table 1 (IH− Res1, IH− Res2, IH− Rec1). Reference values for SET (IH− Res1, IH− Res2) are based on human 
comfort thresholds, and can be derived from existing guidelines such as ASHRAE Standard [41], while the number of deaths (IH− Res3)

can be normalized by the number of building occupants. When evaluating heat-related economic and environmental indicators (IH− Res4,

IH− Rec2), threshold values can be established either by scientific literature, input from decision-makers or public health recommen
dations, which are typically defined at the national level (as shown in Section 3).

For the other hazards, some indicators are inherently normalized (IE− Res1 - MAFC or %NBS), while others can be normalized based 
on building properties (IF− Res2). Thresholds for other physical indicators can be derived from existing standards or guidelines (e.g., 
FEMA P-58 [16] for IE− Res2, FEMA 2008 [49] for IF− Res1), literature (e.g., Franchin & Noto [57] for IE− Res1 – MAFEE), or current practice. 
For flood impacts, thresholds for water depth or flow velocity (IF− Res4, IF− Res5) can be based on levels where significant or total losses 
occur, if exceeded. For example, in areas prone to severe flooding or extreme vulnerability, the 0.1 % return period is typically used to 
guide long-term planning and mitigation efforts. Social indicators, including both deaths (IE− Res3,IW− Res3,IF− Res3) in the response phase 
and the displaced or overall affected people in the recovery (IE− Rec1, IW− Rec1, IF− Rec1), can be normalized by the number of building 
occupants, while economic (repair cost - IE− Rec2, IW− Rec2, IF− Rec2, and downtime - IE− Rec3, IW− Rec3, IF− Rec3) and environmental indicators 
(IE− Rec4, IW− Rec4, IF− Rec4) are normalized relative to the associated replacement value of the building.

It is observed, however, that some adaptations may be needed in the normalization process, as certain indicators may yield values 
close to 0 by definition (e.g., EAL). To ensure proper comparison with other indicators, it is necessary to redistribute these values more 
evenly along the scale. As discussed in Section 3, a logistic distribution can be used to address this issue as: (i) it ensures the function’s 
range aligns with the decision-making problem, (ii) the distribution is more sensitive around values that mark a shift from desirable to 
undesirable outcomes, while grouping extreme values together, reducing the impact of small changes in those areas.

Fig. 3. (a) Schematic representation of the pairwise comparison process. (b) Labelling system for Resilience Readiness Level (RRL).

S. Bianchi et al.                                                                                                                                                                                                        International Journal of Disaster Risk Reduction 128 (2025) 105746 

6 



2.3. Single-hazard resilience score

The normalized indicators are combined into hazard-specific Resilience Readiness (RR) indices which characterise the holistic 
resilience of a building, reflecting its capacity to respond and recover from an extreme event. Following an approach similar to 
Bertilsson et al. [28], the resilience phases are treated as sub-indices (RRRes - Eq. (1), RRRec- Eq. (2)) and are calculated using a geo
metric aggregation of the normalized indicators (Section 2.2) subtracted from unity – where values closer to 1 indicate high resilience. 
While linear aggregation is also possible, the geometric method was selected in this study to reflect the compounding effects of 
weaknesses across different resilience indicators. 

RRRes =1 −
∏n

i=1
IwRes i
Resi

(1) 

RRRec =1 −
∏m

i=1
IwRec i
Reci

(2) 

Different and specific weights can be assigned to reflect the relative importance of each resilience indicator within the response and 
recovery phase (wResi,wReci). When more than three normalized indicators are considered in the calculation of RRRes and RRRec, the 
Analytic Hierarchy Process (AHP) [58] can be used to determine these weights through pairwise comparisons. The relative comparison 
(xij) between two indicators (i and j) is defined using a scale ranging from 1 (equal importance) to 9 (extremely more important) 
(Fig. 3a). The overall resilience score (RR) is then calculated using a linear aggregation of the two phases, applying phase-specific 
weights (wRes,wRec) to account for their relative priority (Eq. (3)). 

RR=RRRes ⋅ wRes + RRRec ⋅ wRec (3) 

To classify the RR index for a specific hazard, a universal rating scale can be defined to determine the Resilience Readiness Level 
(RRL) of a building. Based on proposed resilience classification schemes [59] and existing labelling systems for energy efficiency and 
seismic risk [60], this scale is divided into eight classes, translating numeric scores (RR, ranging from 0 to 1) into resilience grades 
(RRL, ranging from 0 % to 100 %, with 100 % indicating no impact on the building from the extreme event). The resilience classes 
range from F to A+ (where A+ represents higher resilience and G indicates low resilience); this approach makes resilience levels more 
understandable and intuitive to stakeholders (Fig. 3b).

2.4. Multi-hazard resilience score

When considering a multi-hazard scenario, the RRRes andRRRec values for different hazards can be combined to derive a compre
hensive multi-hazard resilience score for buildings, thereby allowing direct comparisons of the resilience levels of as-built, newly 
designed or retrofitted structures under various hazard conditions. This score can be derived by implementing two compensatory 
decision-support methods in a hybrid mode: (i) the AHP [58], to determine weighting for the RRRes/Rec values (performance criteria) 
and (ii) the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [61], to rank different buildings (Fig. 4). TOPSIS 
provides a measure of how far each alternative is from the ideal solution (S+

i
)
, representing the best possible performance values for 

each criterion, and from the negative ideal solution (S−
i
)
, being the worst possible performance values for each criterion. The relative 

closeness (C*
i
)

to the ideal solution can thus be quantified (Eq. (4)), representing the final resilience score (where the highest relative 
closeness indicates higher resilience). 

Fig. 4. Multi-hazard resilience scoring using a hybrid AHP-TOPSIS approach.
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C*
i =

S−
i

S+
i + S−

i
(4) 

In this way, AHP ensures consistent and reliable portrayal of the relative importance of each criterion, while TOPSIS provides 
computational efficiency, requiring only simple arithmetic operations, and its ease of understanding through the concept of proximity 
to an ideal solution. Combining AHP for weighting and TOPSIS for ranking leverages the strengths of both methods for comprehensive 
multi-criteria resilience assessment of buildings and their components [39].

2.5. Weight definition

In the proposed framework, two levels of weighting are considered: (i) indicator-level weights, assigned to individual indicators 
within each phase to capture their specific contribution to overall phase-level resilience; (ii) phase-level weights, used in the aggre
gation of the response and recovery phases to obtain the overall resilience score. Variations in these weight assignments can signif
icantly affect the calculated resilience scores and, in turn, influence decision-making - particularly for buildings that are highly 
sensitive to specific hazard types. Therefore, careful and context-sensitive weight definition is essential to ensure that decisions align 
with the specific characteristics and priorities of the problem at hand.

As discussed above, when more than three indicators and/or hazards are considered in the assessment, a pairwise comparison 
matrix can be constructed to obtain weight coefficients. Each element of the matrix represents the judgment of the decision-maker on 
the importance of one element (indicator/phases) over another using a predefined scale (typically the Saaty scale, ranging from 1 to 9 - 
Fig. 3a). These judgments are then processed to compute normalized weights reflecting the relative priority of each element [58]. Since 
the matrix reflects the priorities of decision-makers, these should be informed by the local hazard context, building function or ty
pology and the specific objective of the analysis - e.g., whether it involves resilience-informed design or planning for intervention. 
Stakeholders can tailor the definition of weights based on the dominant hazard types in their region, guided by an initial screening of 
local hazard exposure. For example, in regions where seismic risk is predominant, higher weights may be assigned to indicators related 
to structural integrity and performance. In contrast, flood-prone areas may prioritize indicators associated with water ingress resis
tance or site elevation. Similarly, building use plays a crucial role: (i) for a hospital, indicators related to operational continuity and 
human safety might be prioritized, while (ii) in residential buildings, emphasis may be placed on affordability and repair time. In a 
retrofitting scenario, decision-makers may prioritize solutions that are cost-effective, quick to implement and involve minimal health 
and safety risks. In sustainability-driven projects, carbon emissions may carry more weight, especially if emissions reduction aligns 
with broader policy goals. These context-specific considerations should guide the pairwise comparisons in the matrix to ensure that the 
resulting weights support actionable resilience evaluations. Drawing on relevant policies and stakeholder workshops, future work 
could focus on developing weighting matrices for specific hazard scenarios and building typologies, in order to promote consistent and 
context-appropriate weight definition across diverse applications.

Given the reliance on expert judgment, the resulting weight coefficients are subject to epistemic uncertainty. This stems from the 
subjective nature of the pairwise comparisons. To address this, a consistency ratio (CR, Eq. (5)) is calculated to assess the internal logic 
of the comparison matrix. A CR ≤ 10 % is generally accepted as an indicator of adequate consistency. 

CR=
CI
RI

where CI =
λmax − n
n − 1

(5) 

Where, λmax is the principal eigenvalue of the matrix, n is the order (i.e., number of criteria), and RI is the random index, which depends 
on n. This process ensures that the derived weights are not only tailored to the specific problem but also logically consistent, improving 
the robustness and interpretability of the resilience assessment.

The framework is therefore designed to accommodate context-specific weighting schemes to ensure meaningful results in diverse 
multi-hazard scenarios. While the AHP provides a structured method for deriving weights based on expert judgment and stakeholder 
input, other objective weighting methods can also be employed to minimize bias. For example, the CRITIC method (CRiteria 
Importance Through Intercriteria Correlation) evaluates weights by considering both the contrast intensity of criteria and the degree of 
conflict or correlation among them [62]. Nonetheless, although objectively derived weights are grounded in statistical properties, they 
may not fully capture contextual priorities; therefore, integrating subjective and objective approaches through hybrid methods could 
be used for balanced decision support.

2.6. Hazard interdependencies and correlations between resilience indicators

Resilience indicators may exhibit degrees of correlation. For instance, repair costs and CO2 emissions are somewhat correlated with 
the %NBS and the MAFE. These system-specific correlations are largely influenced by the design configuration. Accordingly, the 
implementation of efficient design strategies (e.g., structural material optimization) or the adoption of new technologies (e.g., sus
tainable construction materials and methods) can alter these relationships, particularly among indicators belonging to different 
resilience domains (e.g., environmental and social, as in the case of CO2 emissions vs. %NBS or MAFE). In contrast, environmental 
correlations are more complex and inherently harder to manage, yet they can significantly influence system resilience. One of the most 
critical forms of environmental correlation arises from interactions between multiple hazards. Neglecting such multi-hazard (MH) 
interactions can lead to an underestimation of potential damages and losses. In MH scenarios, hazards may occur independently, 
simultaneously (i.e., in a correlated manner) or sequentially in cascading chains [63]. These interactions can manifest at various levels. 
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• Action level: for example, when flash flooding occurs during a severe windstorm with heavy rain, a building envelope may be 
subjected simultaneously to hydraulic and wind actions.

• Structural vulnerability level: an earthquake may damage a structure, increasing its vulnerability to a subsequent hazard, such as a 
tsunami triggered by the seismic event.

• Design strategy level: a design decision targeting one hazard (e.g., selecting a façade for heatwave mitigation) may influence design 
requirements related to another (e.g., limiting inter-story drift under wind loads).

All the aforementioned MH cases can be incorporated into the proposed framework as distinct scenarios. Although rare over a 
building’s life cycle (i.e., low probability of occurrence), they can be evaluated using the same set of indicators employed for single- 
hazard assessments. For instance, an earthquake-triggered tsunami scenario would lead to elevated flood-related indicators, which 
could be quantified through dedicated simulations and considered as additional contributions relative to flood-only conditions. The 
proposed framework can accommodate hazard interactions by properly evaluating how these interactions affect indicators and, in 
turn, influence resilience metrics. This is achieved through a structured two-step process. 

• Preliminary Hazard Interaction Screening. As a first step, a preliminary screening of possible interactions is conducted between 
hazards (pairwise), based primarily on the exposure of the structure. For instance, a tall building located in a flood-prone area is a 
candidate for compound wind-flood effects. This screening helps identify plausible multi-hazard scenarios that warrant specific 
attention.

• Identification and Adjustment of Affected Indicators. When potential interactions are identified, resilience indicators sensitive to such 
interactions are determined. These interactions manifest differently depending on the phase (Response or Recovery) and indicator 
domain. In the Response phase, certain indicators might exhibit complete overlap, such as “Number of deaths” under the social 
domain. In such cases, double-counting can be avoided by assigning impacts to the specific hazard responsible. For example, if a 
fatality is caused by wind during a compound wind-flood event, it is recorded solely under the wind-related indicator. In the 
Recovery phase, interactions are often amplified due to resource constraints and cascading effects. For example, downtime 
resulting from wind damage might be significantly prolonged if floodwaters delay access or overload response capacities. Con
current hazards can stress the available recovery resources, leading to extended delays even in cases where individual hazards 
might not have had such impact in isolation. Additionally, long recovery times may trigger threshold effects, where after a certain 
delay, repairs become economically or socially unfeasible. The framework is capable of capturing such time-sensitive nonlinearities 
through time-based adjustments in the Recovery indicators.

The current framework is therefore capable of accounting for compound effects through scenario-based adjustments and indicator 
disaggregation. Future extensions will build upon this foundation by formalizing coupling mechanisms within composite indicators to 
more explicitly represent the combined impacts of multiple hazards. To further enhance the understanding of interdependencies 
among resilience indicators, data-driven techniques such as Artificial Neural Networks (ANNs) [64] could be employed. These models 
are well-suited to capturing nonlinear relationships and may complement traditional decision-making approaches by deriving 
data-informed weights.

3. Application to real-world case studies

The proposed approach was applied to quantify the resilience of buildings under both (i) a single-hazard scenario (heatwave) in 
Amsterdam, The Netherlands, and (ii) a multi-hazard scenario (earthquake, heatwave, flood, wind) in Acerra, province of Naples, Italy. 
Key resilience indicators were defined to support decision-making for the two scenarios, which involved establishing an initial baseline 
characterization of the as-built structures. This aligns with the current stage of the MULTICARE project [40], where the selected urban 
blocks serve as virtual demonstration sites for testing and validating the methods and digital tools developed. The project leverages 
diverse climates and architectural styles to provide a range of real-world conditions and urban environments for evaluation, bringing 

Fig. 5. Exploded isometric perspective of the urban block analyzed in Amsterdam, with index numbers indicating the building archetype.
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together multidisciplinary experts from across Europe.

3.1. The Amsterdam case study

In a 2023 survey conducted by the Centre of Expertise City NetZero [65], 90 % of respondents indicated that they experienced heat 
stress in their homes during heatwaves in the Amsterdam centre district. They described the temperatures in their bedrooms and living 
rooms as “too hot” or “much too hot”. By 2050, the number of overheated buildings in Amsterdam is expected to rise even under a 
low-emission scenario (SSP1-2.6), which predicts a 1.7 ◦C temperature rise [66]. Heatwaves are therefore critical for the city and this 
hazard was considered for the resilience score calculation of an existing mixed-use block in the inner city. Specifically, six building 
archetypes with diverse properties were identified within the urban block (Fig. 5, where the compactness ratio represents the ratio of 
all exposed envelope surfaces to the total building volume), characterized by residential or mixed use with commercial spaces on the 
first floor, with or without cooling systems (Table 2).

Daily climate observations from Amsterdam Schiphol Airport station for the period 1951–2023 were obtained from the NOAA 
dataset [67]. The heatwave definition CTX90pct [68], which identifies a heatwave as a period when the maximum daily temperature 
exceeds the 90th percentile for at least three consecutive days, was used to select the historical heatwave year for simulation. Using the 
CTX90pct criterion, the event on July 23–27 2019 was identified as the heatwave with the highest maximum daily temperature 
(36.4 ◦C). Fig. 6a shows the hourly dry bulb temperature during the 2019 heatwave period compared to the Typical Meteorological 
Year (TMY). The 2019 heatwave saw temperature differences up to 15 ◦C above the typical year for the five days it took place, with 
temperatures returning to typical levels afterward.

Building dynamic energy simulations were conducted to derive heat resilience indicators and assess the buildings RR value under 
the selected heatwave scenario. The energy simulations were performed in Rhinoceros 3D using the parametric interface of Grass
hopper, a graphical algorithm editor that enables energy simulations with EnergyPlus [69]. Building layouts were defined using the 
data from Table 2 and divided into energy zones according to occupancy and thermal properties. Data from an in-situ energy motoring 
study was used to calibrate these models [70]. For this specific application, four indicators were chosen from Table 1: CDHSETcrit and 
ERes to describe the building’s response, and TSETcrit and ERec to define the recovery phase. The simulation was run twice for each 
archetype: once with natural ventilation and once with a cooling system operating from 7 a.m. to 7 p.m., with a setpoint temperature of 
25 ◦C. The analysis did not account for the impact of the urban context (heat island effect). An ideal loads air system, auto sized using 
the TMY weather data, was assumed.

SET indicators were computed from the natural ventilation scenario, while energy consumption indicators came from the cooling 
system scenario (Fig. 6b). In calculating RRRes, a 5-day heatwave served as the reference period for the indicators normalization. 
CDHSETcrit measured the cumulative degree hours above SET 30 ◦C [71] during the heatwave, normalized by the degree hours of 
exceeding SET 30 ◦C by at least 5 ◦C (assumed SETreference) over the same period. ERes measured cooling energy consumption during the 
heatwave, normalized by the end-use intensity of energy class level G [72] (assumed Ereference), equal to 380 kWh/m2/year for resi
dential buildings in The Netherlands. The RRRec was computed considering two weeks after the heatwave as a reference period. TSETcrit 
defined the hours returning to SET 30 ◦C by the two-week recovery period. ERec measured the cooling energy consumption during 
recovery using the same threshold as ERes (Ereference), with only the reference period changing.

The final RR values were calculated by assigning a 50/50 wt (wResi and wReci exponents in Eqs. (1) and (2)) to the indicators in the 
response and recovery phase, while a 100/0 wt (wRes/ wRec) was applied to the RRRes/RRRec (Eq. (3)), due to the negligible recovery 
time observed after the event. This was because, as outdoor temperatures dropped immediately after the heatwave, the indoor SET had 
already fallen below 30 ◦C by the time the heatwave ended. The final RR values ranged from 0.67 to 0.77 for all the buildings (Table 3), 

Table 2 
Building archetypes in the Amsterdam urban block.

Archetype 1 Archetype 2 Archetype 3 Archetype 4 Archetype 5 Archetype 6

Construction year <1975 >1995 <1975 <1975 >1995 <1975
Building use Domestic Domestic Domestic Mixed-use Mixed-use Retail
Air Conditioner Use No Yes No No Yes Yes
Wall type

Load-bearing 
masonry

Insulated load- 
bearing masonry

Load-bearing 
masonry

Load-bearing 
masonry

Insulated load- 

bearing masonry Load-bearing 
masonry

R-value wall [W/m2K] 0.35 2.5 0.35 0.35 2.5 0.35
U-value windows [W/ 

m2K]
5.8 1.1 5.8 5.8 1.1 5.8

Window-to-Wall Ratio 0.45 0.45 0.49 0.45 0.45 0.39
R-value roof [W/m2K] 0.35 2.5 0.35 0.35 2.5 0.35
R-value floor [W/m2K] 0.15 2.5 0.15 0.15 2.5 0.15
Infiltration ratio [m3/s 

per m2 façade]
0.0007 0.0004 0.0007 0.0007 0.0004 0.0007

Note. U-value indicates thermal transmittance; R-value denotes thermal resistance.
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indicating resilience ratings in classes B and A, respectively. Comparisons between archetypes revealed the influence of construction 
layers and shape geometry on the RR values. Archetypes 2 and 5 resulted in the highest values, as these buildings - constructed after 
1995 - have lightweight cladding with high thermal resistance (low thermal transmittance) compared to ones with masonry walls. For 
archetypes with similar ERes values, further comparisons of ERes revealed that buildings with lower compactness ratios tended to have 
lower energy consumption. It is important to note that this study did not account for the heat island effect, which could have raised 
outdoor temperatures and potentially resulted in lower resilience levels. The choice of a lower discomfort threshold levels, particularly 
depending on occupant sensitivity, could also contribute to this increase.

To further evaluate the influence of weight selection on the final outcomes, a sensitivity analysis was conducted. When varying the 
weights assigned to the two factors (CDHSETcrit, ERes) within the response phase - combined into a geometric aggregation (Eq. (1)) - a 
limited variation is observed across all buildings. Greater sensitivity appears in buildings with lower resilience indicators, where values 
ranged from 0.56 to 0.74 when shifting between the “extreme” weightings of 0/100 and 100/0, that is, assigning full weight to one 
factor over the other (Fig. 7a). In contrast, more pronounced variability was observed when adjusting the weights between the two 
resilience phases (RRRes, RRRec), which led to changes in the final resilience classification. This sensitivity is primarily driven by the 
strong influence of the response phase, with up to two or four resilience class shifts occurring when moving from a 0/100 to 100/ 
0 weighting for RRRes/RRRec (Fig. 7b), further highlighting how weights selection can impact the final resilience score. In the specific 
case study, recovery indicators were found to be negligible; therefore, a 100/0 weighting favoring the response phase was adopted, 
resulting in more conservative (i.e., lower) resilience scores.

3.2. The Acerra case study

An urban block in Acerra, Campania region (Italy), was chosen due to the area’s high vulnerability to climate-induced events. In 
particular, in 2022 the region experienced a 35 % increase in extreme events compared to the previous year, including intense 
heatwaves [73]. The region is also potentially affected by moderate-intensity earthquakes. Therefore, both climate-induced (heat, 
flood, wind) and seismic hazards were considered in this application. This choice also aligns with the current need for a national plan 
for reducing these risks and advancing integrated rehabilitation of the building stock [74]. The selected area in Acerra features res
idential buildings constructed in the 1980s featuring similar construction systems and materials (Table 4), but different geometries 
(number of stories, floor area, compactness ratio) (Fig. 8, Table 5).

Heatwave data acquisition and building energy simulations for the heat resilience assessment followed the same approach used in 
the Amsterdam case study. Daily climate observations from Naples Capodichino airport weather station for 1951–2023 were obtained 
from the Open-Meteo database [75]. Using the CTX90pct criterion, August 8–15-2021 was identified as the heatwave with the highest 
maximum daily temperature (36.9 ◦C). Fig. 9a shows the hourly dry bulb temperature during the 2021 heatwave period alongside the 
TMY. During the 2021 heatwave, temperatures were up to 7 ◦C higher than the typical year. After the heatwave, temperatures for both 
years aligned, with values remaining above 30 ◦C.

Using this historical heatwave, energy simulations were conducted for the 19 buildings of the area. When calculating the RRHeat 

Fig. 6. (a) Historical (July 2019) vs. TMY weather data for Amsterdam. (b) Heat resilience indicators (response: CDHSETcrit ,ERes) for the buildings 
in Amsterdam.

Table 3 
Heat resilience scoring per building archetype in the Amsterdam urban block.

Archetype 1 2 3 4 5 6

RR 0.70 0.77 0.67 0.67 0.75 0.69
RRL class B A B B B B
Rank 3 1 5 6 2 4
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values, the same resilience indicators (CDHSETcrit ,ERes; TSETcrit ,ERec) and approach as the Amsterdam case study were considered. The 
only difference was the reference value used to normalize energy consumption, set at 400 kWh/m2/year for Acerra, based on a class G 
level for residential buildings in Italy [76]. Fig. 9b shows the heat resilience indicators during and after the heatwave for all buildings. 
CDHSETcrit and TSETcrit values indicate the worst conditions for the response and recovery phases respectively, with no clear common 
pattern of SET emerging, while the cooling energy consumption show similar trends in the response and recovery phases. Assuming 
equal importance for response/recovery (wRes/ wRec = 50/50), the RRHeat values were derived, ranging from 0.35 to 0.50 for all 
buildings and indicating heat resilience ratings in classes E and D (Table 6). This lower resilience score, compared to the Amsterdam 

Fig. 7. (a) Variation of RRRes (max and min values from all buildings) as a function of the weights assigned to CDHSETcrit/ERes; b) Variation of RRHeat 

(max and min values from all buildings) as a function of the weights assigned to RRRes/RRRec.

Table 4 
Building archetype in the Acerra urban block.

Structure Façade

Construction 
year

Building 
Use

Material Lateral force- 
resisting system

Wall Windows Floor Roof

1980 Domestic Reinforced 
Concrete 
Frame

Masonry- 
Infilled frames

Hollow brick 
masonry (R- 
value: 
0.99 W/m2K)

Single pane, 
wood frame (U- 
value: 
4.36 W/m2K)

Reinforced brick- 
concrete slab (R- 
value: 
0.47 W/m2K)

Reinforced brick- 
concrete slab (R- 
value: 
0.56 W/m2K)

Fig. 8. Isometric perspective of the urban block analyzed in Acerra, with index numbers indicating the buildings in Table 5.
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Table 5 
Geometric characteristics per building in the Acerra urban block.

Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Floors 13 6 6 4 16 11 4 10 5 6 11 7 6 13 8 12 4 3 2
Compactness Ratio 0.25 0.36 0.34 0.37 0.29 0.31 0.39 0.32 0.34 0.31 0.30 0.29 0.36 0.27 0.34 0.24 0.45 0.48 0.91
Total Floor Area 

[
m2] 5384 5742 5152 3880 8458 5784 3515 4387 2550 2954 6467 7344 5095 7801 5742 10945 977 982 112
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case study, suggests that the buildings are less prepared for extreme heat. A comparison of RR values across all buildings shows that 
those with lower compactness ratios generally exhibit higher resilience; this is likely due to their reduced exposed surface areas, which 
absorb and retain less heat. For example, Building 2 has a compactness ratio of 0.36 and ranks 1st in resilience (RR = 0.50, Class D), 
while Building 19 has the highest compactness ratio (0.91) and ranks last (RR = 0.35, Class E). Mid-rise buildings (4–8 floors) tend to 
perform better in heat resilience than low-rise (1–3 floors) or high-rise buildings (10+ floors). There is no clear trend between total 
floor area and resilience, indicating that other geometric factors (compactness and height) play a more significant role.

Based on stakeholder priorities and the need to address all resilience domains (see Table 1), seismic resilience was assessed using 
four key indicators: (i) MAFEE (for the collapse limit state) and repair costs RCE to define the response phase (RRRes); (ii) DTE downtime 
and CEE carbon emissions for the recovery phase (RRRec). MAFE was calculated following the methodology proposed by Iervolino et al. 
[77]. The other loss-related indicators were assessed using the Performance-Based Earthquake Engineering (PBEE) [78] methodology. 
Seismic hazard data was sourced from the MPS04 seismic hazard model [79], adjusted for B soil type [80] (Fig. 10a). Vulnerability 
models specific to the Italian building stock were derived from Aljawhari et al. [81], categorizing buildings by the number of floors and 
year of construction (thus leading to three classes: Low, Mid and High rise buildings). The buildings in Acerra, constructed after the city 
was designated a seismic zone in 1981 [82], were designed with some consideration of seismic actions (low-code level), though they 
lack the detailed seismic provisions mandated by more modern seismic codes.

The computed resilience indicators were normalized as indicated in Table 1. As discussed in Section 2.2, the obtained values were 
remapped using a logistic logarithmic function for their use in the multi-criteria decision making approach. The mean (μ) and standard 
deviation (β) parameters of this function, can be defined by stakeholders to align with their risk profile and what they deem unac
ceptable. In this specific application, MAFE normalization used the minimum target (mean value of 2 ⋅ 10e-4) for new buildings as 
outlined by Franchin & Noto [57], with a 0.6 dispersion value, while a 0.15 % mean was applied for annual repair costs, downtime and 
carbon losses as acceptable risk level, with a 0.4 dispersion value. The dispersion values were based on damage state and consequence 
functions variability as defined in the FEMA P-58 [16].

The normalized indicators for all buildings (Fig. 10b) reveal that repair costs have higher impact on the response phase, resulting in 
a final RRRes in the range of 0.45–0.72 (using 0.5 weighting in the sub-index). In the recovery phase, normalized carbon emissions are 
slightly higher than downtime, leading to RRRec values between 0.28 and 0.67. This indicates that the buildings are better prepared for 
the response phase compared to the recovery phase. Following the same approach used for heat resilience – where equal importance is 
assumed for response/recovery (wRes/ wRec = 50/50), the RRSeismic values were derived and are summarized in Table 7. Since the 
buildings were constructed in the same period and the only difference is the number of stories, the results are obtained for the three 
analyzed categories: high-rise buildings exhibit lower resilience values (RRL = E), mid-rise buildings show an RRL = D, and higher 
resilience is observed in low-rise buildings (RRL = B). This classification is also a result of combining the vulnerability models with the 
seismic hazard specific to each building class (Fig. 10a). It is observed that the archetype-based seismic assessment, used in this 
preliminary analysis of the area, does not allow for defining a hierarchy of resilience levels among buildings within the same class, 
whereas a more detailed numerical analysis could help in this regard.

The risk posed by synoptic winds was also assessed to include its effects into the multi-hazard resilience rating. The hazard was 
determined based on the CNR-DT guidelines [83], which provide criteria for defining wind loads on structures. The vulnerability 
model assumed for the buildings was the one proposed by Feuerstein et al. [84] for concrete structures, also adopted in the European 
wind damage assessment by Koks & Haer [85]. However, after integrating hazard and vulnerability, the wind consequences were 
determined to be negligible - for example, the EAL was found to be below 10− 6. Consequently, wind hazard was deemed immaterial for 
the case study area.

Finally, flood risk was assessed for the Acerra urban block. Given the distance from both the coast and major rivers, pluvial flooding 
was identified as the primary hazard. Flood resilience was evaluated using four key indicators: (i) water depth WD, relative to the 100 
years of return period (as per ASCE standard [56] for ordinary structures), and repair costs RCF to define the response phase (RRRes); (ii) 

Fig. 9. (a) Historical (August 2021) vs. TMY weather data for Acerra. (b) Heat resilience indicators (response: CDHSETcrit ,ERes; recovery: TSETcrit ,ERec) 
for the buildings in Acerra.
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Table 6 
Heat resilience scoring for the buildings in the Acerra urban block.

Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RR 0.38 0.50 0.36 0.42 0.43 0.45 0.38 0.44 0.46 0.47 0.42 0.45 0.50 0.44 0.47 0.43 0.39 0.44 0.35
RRL D D E D D D D D D D D D D D D D D D E
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DTF downtime and CEF carbon emissions for the recovery phase (RRRec). The hazard data for the case study area was sourced from 
Fathom Global model [86] for multiple return periods, considering a RCP 8.5 climate scenario for the year 2050 (Fig. 11a). For each 
building, the hazard curve was defined as the maximum flood elevation expected across the building footprint (Fig. 11b). Vulnerability 
models were derived from a component-based loss assessment of a representative building archetype, as described by REDi Flood 
Guidelines [13], i.e., a four-story building without a basement. Building components were based on the FEMA P-58 [16] normative 
quantities for a residential building. The vulnerability model, for repair costs and carbon emissions, was scaled according to the 
number of floors of the building in the case study area relative to the archetype, under the assumption that only the first floor (i.e. 
ground floor) is affected by flooding. Another key assumption was the use of flood depth as the engineering demand parameter, while 
neglecting the effect of flow velocity. This simplification was deemed acceptable due to the nature of the hazard (i.e., pluvial flooding). 
A uniform first-floor elevation of 10 cm was assumed for all buildings, and this value was considered in the normalization of the water 
depth WD. Impeding factors were not considered in the evaluation of downtime for consistency with the seismic hazard. The water 
depth corresponding to the 100-year return period was found to be zero for all buildings in the study area. Even under the 1000-year 
return period scenario, only five buildings were affected by flooding. Estimates of RCF, DTF and CEF were computed and normalized 
following the same approach adopted for the seismic analysis. Renormalization using a logistic function was conducted with identical 
parameters to ensure consistency. The results indicate that flood risk is primarily driven by the hazard intensity and the number of 
building floors. Notably, the hazard exhibits non-zero values only for return periods exceeding 200 years. Moreover, taller buildings 
exhibit lower loss values, as flooding affects only the first (ground) floor while losses are normalized against the value of the entire 
structure. When computing the resilience indicators, resilience losses were therefore found to be almost zero for all buildings. As a 
result, both the response and recovery capacity for flood hazard equaled 0.99–1.00 across all buildings. This outcome is attributed to 
the use of indicators that represent annualized values derived from a time-based assessment (as discussed in Section 2.1). A 
scenario-based approach - such as selecting a 1000-year return period flood event - could have yielded a different result in the 
resilience quantification.

Finally, the obtained RRRes/Rec values for heat, seismic and flood resilience are combined to derive multi-hazard resilience scores as 
indicated in Section 2.4. Assigning equal importance for response and recovery to all hazards and applying the TOPSIS method, the 
final resilience levels (C*

i ) were derived and the buildings were classified in terms of RRL (Table 8, Fig. 12). This ranking provides an 
integrated assessment of the area, useful for an initial prioritization of integrated retrofitting strategies. The results highlight that low- 
rise buildings tend to exhibit higher resilience scores, particularly in seismic scenarios, with RRRes− E reaching a maximum of 0.72 and 
RRRec− E up to 0.67. This higher performance can be attributed to their reduced mass and typically more favourable compactness ratios, 
which also support passive thermal performance. However, they show greater variability in heat resilience, with RRRes− H ranging from 
0.03 to 0.40, indicating less consistent performance in overheating conditions. Mid-rise buildings demonstrate moderate and relatively 
balanced resilience across both hazards, with RRRes− H ranging from 0.29 to 0.46 and RRRes− E from 0.40 to 0.59. This suggests that these 
buildings may benefit from a balance between structural stability and thermal performance, although their increased height may 
introduce vulnerability under seismic loading. The narrower range of recovery scores also indicates more predictable post-event 
performance. High-rise buildings show the lowest resilience values, especially in the seismic domain (RRRes− E = 0.45, RRRec− E =

0.28). These buildings often have increased dynamic response during earthquakes and higher internal loads during heatwaves, 
contributing to greater energy use and longer recovery periods. Although they exhibit slightly more consistent performance in thermal 
resilience (RRRes− H = 0.34–0.42), their overall lower scores indicate increased vulnerability due to height and system complexity, 
especially when compactness is low or envelope design is suboptimal. As discussed above, RRRes− F and RRRec− F are equal to 0.99–1.00 
for all buildings, therefore flood hazard is not impacting the final resilience scoring (Table 8), particularly in the determination of the 
total ideal (S+

i
)

and negative ideal solution (S−
i
)

(Eq. (4)).

Fig. 10. (a) Seismic hazard curves for the Acerra region (Mean Annual Frequency of Exceedance vs. Average Spectral Acceleration -AvgSa - for Low, 
Mid and High rise buildings). (b) Seismic resilience indicators for the buildings in Acerra.
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Table 7 
Seismic resilience scoring for the buildings in the Acerra urban block.

Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RR 0.36 0.50 0.50 0.70 0.36 0.36 0.70 0.36 0.50 0.50 0.36 0.50 0.50 0.36 0.36 0.36 0.70 0.70 0.70
RRL E D D B E E B E D D E D D E E E B B B
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Among all the buildings, the results indicate that Building 18 has the highest resilience value, due to its relatively low number of 
floors (3) and a compactness ratio of 0.48. Building 1’s relatively poor resilience (RRL = E) can be attributed to its height (13 floors), 
which increases vulnerability in both heat and seismic conditions. Although its compactness ratio is low, which might help with heat 
resilience to some extent, its large size make it less resilient compared to mid-rise or low-rise buildings, and its seismic vulnerability 
especially affects the multi-hazard resilience score.

When comparing single-hazard to multi-hazard resilience scores, it is evident that heat resilience has a greater impact during the 
response phase, whereas seismic resilience plays a more significant role in the recovery phase. The rankings of buildings change when 
considering both hazards simultaneously, as the relative rankings adjust to provide a more balanced assessment of building integrated 
performance across multiple factors. It is however observed that buildings with low-rise designs typically dominate the top ranks, 
owing to their better overall performance in both heat and seismic conditions.

As an extension of the previous analysis, a further study was conducted to assess the impact of weight assignment on the final 
resilience scores. In this case, weights were derived using the AHP, which involved pairwise comparisons between all RRRes and RRRec 
values across the three considered hazards, resulting in a total of six criteria. Case 1 in Fig. 13 represents the baseline scenario, in which 
equal importance is assumed for all criteria, assigning a uniform weight of 0.167 to each. In addition to this baseline, two alternative 
decision-making scenarios were evaluated. In Case 2, greater importance is assigned to heat resilience, with weights of 0.322 for 
RRRes− H and RRRec− H, 0.141 for RRRes− E and RRRes− E , 0.037 for RRRes− F and RRRes− F . Under this configuration, low-rise buildings 
(Buildings 4, 7, 17–19) experienced a moderate decrease in resilience scores (approximately 10–20 %), while mid-to high-rise 
buildings showed a significant increase (20–35 %). Conversely, in Case 3, seismic resilience is prioritized with weights of 0.322 for 
RRRes− E and RRRec− E, 0.141 for RRRes− H and RRRes− H, 0.037 for RRRes− F and RRRes− F . In this scenario, low-rise buildings saw an increase 
in resilience (10–30 %), while mid-to high-rise buildings experienced a notable decrease (10–40 %). These results clearly demonstrate 
how the final resilience scores are directly influenced by the weight selection process, highlighting that mid- and high-rise buildings 
are particularly sensitive to changes in seismic resilience weights, which could be prioritized in this specific multi-hazard application.

4. Final remarks

To-date, standardized methods and frameworks for resilience assessment are unavailable, but they are essential if designers, 
owners and decision-makers attempt to holistically address the impact of climate change and other extreme events. The proposed 
resilience indicators, indices and rating scheme represent an initial effort towards this need. As demonstrated in the case study ap
plications, this index-based approach is useful for comparing the holistic resilience of buildings and for quantifying the impacts of 
future single or multiple threats. The resilience value can be used to rank buildings and determine whether their resilience levels meet 
acceptable standards based on local policies. In Amsterdam, for instance, this could involve aligning with the requirements outlined in 
the under-development Heat Program by the municipality, as the current initiatives only concern heating solutions in winter [87]. The 
ranking can also support effective resource allocation by enabling preliminary prioritization of interventions or identifying buildings 
that require more detailed investigations, as for the Acerra case study. However, it is worth noting that the analyzed urban blocks 
primarily focused on residential buildings, and incorporating additional importance factors could enhance prioritization particularly 
when different building uses are considered within a specific area.

The implementation of a resilience readiness framework could also support the introduction of dedicated incentives for integrating 
resilient technologies into buildings and promote technological innovation in construction. Resilience indicators and/or holistic 
indices can be incorporated into early-stage building design to guide the selection of rehabilitation/retrofit or design options for a 
specific building project, enabling the identification of enhanced solutions with the highest resilience value. However, it is important 
to note that the choice of normalization thresholds significantly impacts the results and should be tailored to local conditions and 

Fig. 11. (a) Flood hazard map for the Acerra region (Pluvial flooding - RCP 8.5 for year 2050, 50th Percentile - 1000 years return period) overlayed 
on the case study buildings (highlighted in orange). (b) Flood hazard curves for affected buildings in the Acerra urban block.
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Table 8 
Multi-hazard resilience scoring for the buildings in the Acerra urban block.

Building 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C*
i value 0.36 0.60 0.44 0.72 0.41 0.43 0.68 0.42 0.56 0.57 0.41 0.53 0.60 0.42 0.44 0.40 0.69 0.77 0.56

RRL E C D B D D B D C C D C C D D D B A C
Rank 19 6 12 2 16 13 4 14 8 7 17 10 5 15 11 18 3 1 9
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project constraints. For instance, in the case studies, SET was based on the critical threshold for unliveable conditions; using a lower 
discomfort threshold would result in lower resilience ratings.

The proposed approach allows resilience indicators to be derived using either simplified (analytical/empirical) methods or more 
detailed numerical analyses. For rapid resilience assessments, performance values can be obtained using analytical calculations or 
fragility data of building archetypes (e.g., seismic assessment for Acerra). This approach evaluates the impact of historical events and 
potential hazard scenarios over a building’s lifetime, supporting insurance and reinsurance sectors that typically assess the conse
quences of ‘worst-case’ or ‘most probable’ scenarios. In addition to simplified assessments, resilience indicators can be calculated 
through refined numerical simulations. This involves defining hazard models and implementing finite element models to conduct 
either quasi-deterministic, scenario or intensity-based, performance assessments (e.g., energy simulations for both Amsterdam and 
Acerra) or probabilistic component-level assessment accounting for all possible uncertainty sources (hazard-related, building defi
nition and knowledge, occupants, consequences, threshold values). This flexibility allows to accommodate different levels of risk 
assessment, ranging from basic archetype evaluations to advanced component-level assessments [88] (Fig. 14), highlighting the po
tential to extend the approach to multi-scale assessments.

While the present study does not explicitly model regional variations, the proposed framework is inherently flexible and capable of 
incorporating them. For example: (i) the estimation of expected annual losses uses hazard- and building-specific parameters that can be 
adjusted to reflect local conditions (e.g., region-specific hazard priorities or exposure patterns); (ii) variables such as total replacement 
and recovery time can be adapted to account for local impeding factors - such as material availability or regulatory constraints; (iii) the 
AHP-based weighting system can be customized using expert judgment or empirical data, ensuring that it reflects the priorities and risk 
perceptions relevant to a specific region.

Fig. 12. Multi-hazard resilience map for the Acerra urban block.

Fig. 13. Variation of the multi-hazard resilience score considering different weights: Case 1 - all hazards are equally important; Case 2 - Heat is 
moderately more important than Seismic and very strongly more important than Flood, while Seismic is strongly more important than Flood; Case 3 
- Seismic is moderately more important than Heat and very strongly more important than Flood, Heat is strongly more important than Flood.
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The approach also offers flexibility in data acquisition. When data availability or quality is limited - particularly for component- 
level risk assessments - a knowledge-based approach can be used to derive ranges of RRL values rather than a single score, which 
can be progressively refined as more data become available [89]. However, the approach may encounter limitations in large-scale 
applications, where data aggregation can obscure important local variations and lead to less accurate resilience estimates. Further 
investigation is needed for such cases, as aggregated scoring may mask critical differences that a single consolidated value cannot 
capture. Additionally, at broader spatial scales, aggregation introduces greater uncertainty and requires a careful balance between 
geospatial resolution and computational efficiency to support disaster and emergency preparedness. To address these challenges, a 
hybrid approach - combining both aggregated and disaggregated results - is recommended as a versatile and more robust solution.

5. Conclusions

As environmental uncertainties increase, there is an urgent need for holistic resilience assessment of buildings, particularly in an 
urban environment. The multifaceted nature of resilience requires multi-criteria indicators and calculation methods for both single- 
hazard and multi-hazard scenarios. This study addresses this need by providing a set of comprehensive indicators, that encompass 
structural safety, energy efficiency, carbon emissions, occupant well-being and cost, and establishes resilience readiness levels for 
buildings. These indices evaluate the effectiveness of buildings to respond to and recover from diverse extreme events. To aid decision- 
makers in evaluating and comparing resilience across different risk scenarios, the study also introduces a resilience rating system. The 
approach was demonstrated on urban blocks in The Netherlands and Italy, which are exposed to different hazards and climates. The 
demonstration showed the adaptability of the proposed method across varying environmental conditions and diverse contexts.

The paper has provided a practical framework to assess the resilience of buildings and inform decision-making and multi-risk 
management. The approach was initially conceived and demonstrated for urban block assessments, but it is adaptable to various 
levels of refinement, ranging from archetype-specific to component-level analyses. As a result, it can be extended to incorporate 
additional hazards and assess resilience across different scales, from individual building subsystems (e.g., structure or facades) to 
entire neighborhoods. The current methodology is designed to evaluate hazards independently, aligning with common practice in the 
field; however, interdependencies between hazards can impact resilience outcomes, suggesting that the framework could be extended 
to address multi-hazard scenarios. Furthermore, interdependencies between resilience indicators are not currently accounted for, but 
could be addressed in future developments - for example, through the introduction of coupling indicators that represent the combined 
effects of two or more underlying indicators. Although expert-driven weighting involves some subjectivity, applying consistency 
checks and sensitivity analyses can improve transparency and reduce its impact. Future work could develop weighting matrices based 
on policies and stakeholder input, tailored to specific hazards and building types, to ensure consistent and context-appropriate weight 
definitions. Finally, as a further development, the proposed multi-domain indicators could be used to set resilience-based design 
objectives tailored to a building’s use and hazard exposure. This involves defining resilience goals for risk categorization, functionality 
and recovery, enhancing both design and retrofitting efforts.
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