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A B S T R A C T

We have analyzed the possibilities of wave front shaping with miniature patterned electron mirrors through
the WKB approximation. Based on this, we propose a microscopy scheme that uses two miniature electron
mirrors on an auxiliary optical axis that is in parallel with the microscope axis. A design for this microscopy
scheme is presented for which the two axes can be spatially separated by as little as 1 mm. We first provide
a mathematical relationship between the electric potential and the accumulated phase modulation of the
reflected electron wave front using the WKB approximation. Next, we derive the electric field in front of the
mirror, as a function of a topographic or pixel wise excited mirror pattern. With this, we can relate the effect
of a mirror pattern onto the near-field phase, or far field intensity distribution and use this to provide a first
optical insight into the functioning of the patterned mirror. The equations can only be applied numerically,
for which we provide a description of the relevant numerical methods. Finally, these methods are applied
to find mirror patterns for controlled beam diffraction efficiency, beam mode conversion, and an arbitrary
phase and amplitude distribution. The successful realization of the proposed methods would enable arbitrary
shaping of the wave front without electron–matter interaction, and hence we coin the term virtual phase plate
for this design. The design may also enable the experimental realization of a Mach–Zehnder interferometer for
electrons, as well as interaction-free measurements of radiation sensitive specimen.
1. Introduction

The use of spatial light modulators [1] and digital micromirror
devices [2,3] in light optics has enabled the controlled and dynamic
shaping of photon beams. Methods for the shaping of charged particle
beams are unfortunately not as versatile yet. To the electron microscopy
community its development would provide many opportunities, such as
beam mode conversion [4], or low-dose imaging of unstained biological
specimen [5,6]. Recent experimental work indicates promising progress
towards a programmable transmission-based phase plate [7] for use
in transmission electron microscopy (TEM), although upscaling of the
number of addressable pixels, as well as increasing the transmissivity
of the phase plate, may prove challenging.

1.1. Electron wave front shaping

Electron wave front modulation is realized by passing the electron
through an inhomogeneous optical medium, such as a spatially mod-
ulated electric field, or a topographically shaped phase plate. Electron
beam shaping requires a medium that acts spatially on the phase of the
electron wave front. The build-up of electrical charge at the surface
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of this medium will influence the resulting wave front modulation,
which is avoided by making use of electrically conducting materials
only. Spatial coherence of the electron across the phase modulator can
be realized by a combination of a high brightness source and a small
beam current [8]. These requirements can be fulfilled in a number of
ways.

Most commonly, electric and magnetic fields are used for charged
particle beam deflection and focusing, which can be described as
electron wave front manipulations. The fields are then generated ex-
ternal to the optical axis of the microscope and the use of electrically
conductive elements prevents charging of the electrodes. Series of mag-
netic and electric multipole elements are seen in transmission electron
microscopes and have been demonstrated to correct imaging system
aberrations [9]. The combination of a multipole electrode with an
annular aperture for vortex beam creation is reported as well [10].

Alternatively, patterned thin film amorphous carbon or silicon ni-
tride membranes that cross the beam path can modulate the phase
of the beam [11]. On the one hand this enables contrast enhance-
ment [12], such as Zernike phase contrast [13,14], while on the other
vailable online 24 November 2021
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hand beam mode conversion of plane waves into vortex beams [15–
18], non-diffracting Bessel beams [19], and probability preserving Airy
beams [20] are realized. Although transmission phase plates offer
an increased flexibility for beam shaping with respect to externally
generated fields, the limited operational life time and sensitivity to con-
tamination [12,21] are still factors that limit the long-time application
of these methods.

In contrast to the former methods that rely on transmission of the
electron, electron mirrors slow down and reflect the incident beam
prior to reaching the mirror electrode. This facilitates an alternative
method to electron beam shaping that avoids electron beam–matter
interaction. In the past, the use of tetrode electron mirrors for aber-
ration correction [22] has been experimentally demonstrated [23].
Furthermore, mirror electron microscopy [24] has been successfully
employed to measure the roughness of supersmooth surfaces, by elec-
trically biasing the specimen just below the cathode potential of the
source [25]. Also, it is suggested that a pixelwise deformable electron
mirror could be used for adaptive phase contrast enhancement [26],
and can as well be applied for electron beam lithography [27]. Electron
mirrors are usually combined with a beam separator [28] in order to
separate the trajectory of the incident and reflected electrons.

The drawbacks of transmission optics, such as phase plate contam-
ination, operational life-time, electrical charge built up at surfaces and
reduced optical transmissivity do not present themselves to mirrors.
In comparison to transmission based techniques, the use of reflection
based optics becomes increasingly advantageous when more than one
reflective element is present in the beam line. The use of multiple
beam reflective elements is seen with the recent development of an
aberration corrected low energy electron microscope/photo-emission
electron microscope (LEEM/PEEM) [29,30] instrument. Here, the mir-
ror assemblies are mounted onto the microscope column under a 90
degree angle, which is a necessity due to the large volume claim of
conventional beam separators.

More recent instrumentation developments allow for miniaturiza-
tion of beam separators [31]. This enables for instance the realization
of a proposal for aberration correction in scanning electron microscopy
(SEM) based on two miniature electron mirrors [32]. The latter paper
describes a miniature column with two parallel optical axes. The use of
parallel optical axes enables one to reduce the deflection angles in the
beam separator to below 100 mrad. In turn, this limits the deflection
dispersion in the corrector, that may ordinarily limit the performance
of such instrument [28].

The miniature mirrors in the above mentioned proposal for aberra-
tion correction may be replaced by mirrors that contain freely chosen
patterns. For the resulting optical setup, we coin the term virtual phase
plate. In this work, we describe the influence that the mirror pattern
topography has on the phase modulation of the reflected electron, and
then turn it around to find the surface topography or voltage distribu-
tion for a required wave front shape. The results are demonstrated by
means of numerical examples.

2. Phase modulation with an electron mirror

Electrons are decelerated by an electrode with a negative electric
potential that spans across the propagation axis. At a sufficiently neg-
ative electrode potential, the incident electron is completely stopped
and will be reflected back towards the direction of origin. This requires
an equipotential value that equals that of the extraction voltage at the
electron source. As the electric field in front of the mirror electrode
must satisfy the Laplace equation, the velocity of the electron gradually
changes as it approaches the mirror electrode. Hence electron mirrors
are characterized by ‘soft’ reflection fields that act as inhomogeneous
refractive medium [33]. This is different from mirrors in light optics,
for which a ‘hard’ reflection of the photon at the mirror surface takes
place.
2

t

The electric field in front of the mirror electrode satisfies the Laplace
equation, and thus any spatial topographic or charge pattern at the
mirror electrode will result in the spatial modulation of the electric
field in front of the electrode as well. As the electric field of the mirror
extends from the mirror electrode into the path of the incident electron
beam, a continues modulation of the wave front takes place as the wave
front approaches the mirror. Non-flat, structured electron mirrors have
the property to locally alter the phase of the wave front of a spatially
spread out incident electron, and the quantum mechanical effect of a
mirror perturbation [34], and periodic structures [35,36] have been
studied in the past analytically and numerically. It was suggested that
the use of controlled wave front modulation with arbitrarily patternable
mirrors could be used for structural hypothesis testing [26], but this has
to our knowledge not been demonstrated experimentally yet.

Here we will focus our attention to generalized mirror patterns and
their resulting effect on the wave front of the reflected electron wave
front. For this, we will first provide a relationship between the electric
potential and the accumulated phase modulation of the reflected elec-
tron wave front. Next, we will derive the electric field in front of the
mirror, as a function of the topographic or pixel wise excited mirror
pattern. With this, we can then relate the effect of a mirror pattern
onto the near-field phase, or far field intensity distribution and use this
to provide a first optical insight into the functioning of the patterned
mirror. We will conclude this section with a discussion on chromatic
effects.

2.1. Electron phase as a function of electric potential

In transmission electron microscopy, the acceleration of the electron
beam by the (mean inner) potential of a phase plate is usually small in
comparison to the nominal beam energy. This justifies the use of the
projection assumption, which describes the exit wave 𝜓𝑜𝑢𝑡 after passing
a plane wave electron through a phase plate as [37]

𝜓𝑜𝑢𝑡 = exp(𝑖𝜎𝑉𝑧). (1)

The term inside the exponent in [Eq. (1)] may be considered as a
phase transfer function, as it describes in the essence the effect that
the electric potential has on the phase of the transmitted electron. In
this equation, 𝜎 is an interaction constant that is proportional to the
electron wave length, and 𝑉𝑧 = 𝑉𝑧(𝑥, 𝑦) is the projected potential along
the propagation axis,

𝑉𝑧(𝑥, 𝑦) = ∫

∞

−∞
𝑉 (𝑥, 𝑦, 𝑧)𝑑𝑧. (2)

This approach does not work for electron mirrors, for a number of
reasons. Foremost, the projection assumption is invalid as the mirror
potential equals that of the beam energy. In addition, we note that the
upper boundary of the integral is ill-defined, as the wave function of the
electron will actually penetrate the mirror field to some extent behind
the classical turning point. The situation complicates even further when
the mirror electrode is not flat, but instead contains a spatial pattern.

2.1.1. Convolution model
Earlier work related to mirror electron interference microscopy

has resulted in a relationship between the mirror profile ℎ(𝑥, 𝑦) and
the phase modulation 𝜙(𝑥, 𝑦) of the reflected beam [25,38]. It was
demonstrated that under the assumption ℎ ≪ 𝑧𝑅 ≪ 𝑧1, with the mirror
electrode at 𝑧 = 0 and the field limiting aperture electrode at 𝑧1, and
with 𝑧𝑅 the coordinate plane of reflection, or turning point, in front
of the mirror surface, that the phase difference between the reflected
object and reference beam in a mirror electron interference microscope
can be obtained through [35],

𝜙(𝑥, 𝑦) = 2𝜋
𝜆𝑒

×
[

ℎ(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦, 𝑧𝑅)
]

. (3)

In the equation, 𝐺(𝑥, 𝑦, 𝑧𝑅) is called the blurring function, and 𝜆𝑒 is
he field free electron wave length. The blurring function as a function
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Fig. 1. (a) Blurring function 𝐺(𝑥, 𝑧𝑅), and (b) Spectral transfer function 𝑃 (𝑘, 𝑧𝑅), for different values of turning point coordinates 𝑧𝑅. Plot and calculations based on methods
described in [38] that we reproduced here from [25].
of one transverse spatial dimension is plotted in [Fig. 1(a)] for a range
of turning point coordinates. From the plot it is observed that the
blurring function becomes steeper when the turning point of the beam
is positioned closer to the mirror substrate. The increased steepness
of the curve renders the convolution more sensitive to high spatial
frequency components residing in the mirror pattern, as the beam is
reflected closer to the mirror electrode.

The blurring function is the Fourier transform of the ‘spectral trans-
fer function’ 𝑃 (𝑘, 𝑧𝑅), which is given by [25]

𝑃 (𝑘, 𝑧𝑅) =
√

𝜋
𝑘𝑧1

× exp(−𝑘𝑧𝑅) × erf
(

√

𝑘𝑧𝑅
)

. (4)

This function provides a direct relation between the attenuation
of different spatial components at a fixed mirror bias potential. The
spectral transfer function is plotted in [Fig. 1(b)], for a linear electric
field strength of 10 kV/mm that we assume throughout our work.

2.1.2. WKB approximation
The derivation of the convolution method is based on the ana-

lytical work in [38]. There, the WKB approximation is used under
the assumption of transverse mirror pattern components that do not
exceed the distance of closest approach of the electron towards the
mirror electrode. Consequently, the validity of the original convolution
model is limited to ℎ ≪ 𝑧𝑅 ≪ 𝑧1, and thus potentially reduced when
micromachined electron mirrors are considered for which ℎ ≲ 𝑧𝑅.
Instead, we here apply the WKB method numerically, such that we are
not limited by linearizations needed in the analytical work of [38], and
in that way study the extent of the validity of the convolution model
beyond the restriction ℎ ≪ 𝑧𝑅 ≪ 𝑧1.

The WKB approximation assumes the separability of the amplitude
𝑎(𝑟) and phase 𝜙(𝑟) of the wave function in the form 𝜓(𝑟) = 𝑎 exp(𝑖𝜙),
for which it is then demonstrated that the phase distribution is related
to the scalar electric field through [39],

𝜙(𝑥, 𝑦) = ℏ−1 ∫

𝑧𝑅(𝑥,𝑦)

𝑧1
𝑝(𝑥, 𝑦, 𝑧)𝑑𝑧 = ℏ−1 ∫

𝑧𝑅

𝑧1

√

2𝑚𝑒 ( − 𝑉 (𝑥, 𝑦, 𝑧)). (5)

The classical momentum 𝑝(𝑥, 𝑦, 𝑧) of the electron with field-free
energy  is integrated along paths that run in parallel with the optical
axis. For an incident plane wave, the electron trajectory is defined
to coincide with the 𝑧-axis here. The classical momentum is related
to the scalar electric field (𝑈 ) through the potential energy function,
3

𝑉 = 𝑒𝑈 (𝑥, 𝑦, 𝑧). The integration is performed between the coordinates
of the field limiting aperture 𝑧1 and the classical turning point 𝑧𝑅(𝑥, 𝑦).
The classical turning point coincides with the lateral coordinate, at
which the electric potential equals that of the extraction voltage of
the electron source ( = 𝑉 ), and this is influenced by the electric
perturbations due to the pattern at the mirror electrode.

In order to assess the effect that the pattern at the mirror electrode
has on the phase of the reflected electron, we suggest to treat the
contributions from the mirror pattern in terms of its Fourier com-
ponents. This approach is similar to what we have used in previous
work, where we demonstrated the agreement between the obtained
magnitude of phase modulation through the WKB method and direct
solutions to the Schrödinger equation [36], and note that solutions
through the WKB method are less computationally expensive. Then the
spatial phase modulation may be obtained for every component of the
field separately. For a modulus of spatial frequency 𝑘 = |�⃗�| at the
pattern, this surmounts to finding the integrated phase difference 𝐴𝑘
of the two electron trajectories that coincide with the crest and trough
of the component of the field, given as

𝐴𝑘 = 𝜙(0) − 𝜙(1∕(2𝑘)). (6)

In this expression, 𝐴𝑘 denotes the amplitude of the phase modula-
tion associated with spatial frequency 𝑘, and essentially corresponds to
the maximum of phase difference that would result from application
of the convolution model in [Eq. (3)]. The integration boundary 𝑧𝑅
in [Eq. (5)] is different for both terms in [Eq. (6)] as the electron
approaches the mirror electrode closer at the trough of the modulated
electric field. The values of 𝑧𝑅 corresponding to the trough and crest of
the field can be obtained analytically through the Lambert-W function
[see Appendix A], or numerically by solving for 𝑈 (𝑧) = 𝐸. The
complex wave function after reflection associated with this solution is
reconstructed by,

𝜓(𝑘) = exp
(

𝑖𝐴𝑘 cos(2𝜋𝑘𝑟 + 𝜃𝑘)
)

. (7)

This expression may be compared to Eq. (31) in [35], where the
effect of a single harmonic perturbation at a mirror surface was studied.
The full wave function of the incident initial plane wave when exiting
the reflection field is then described by the sum of all harmonic
components that are present in the pattern at the mirror electrode, and
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Fig. 2. Spectral transfer function obtained through the convolution model (dashed lines) and WKB approximation (solid lines), at a profile height of (a) 100 nm, and (b) 500 nm,
as a function of spatial frequency 𝑘 and closest approach 𝑧𝑅.
generalizes to

𝜓𝑀 (𝑟) = exp

(

𝑖
∞
∑

𝑛=0
𝐴𝑘𝑛 cos(2𝜋𝑘𝑛𝑟 + 𝜃𝑘𝑛 )

)

. (8)

The angle 𝜃𝑘 fixes the relative position of each term with respect to
other spatial contributions in the pattern.

2.1.3. Validity of the convolution model
We can now directly compare the phase modulation that is obtained

through the convolution model to that of the WKB approximation. This
comparison may offer a more quantitative bound on the restriction
ℎ ≪ 𝑧𝑅 ≪ 𝑧1 that is placed on the validity of the convolution based
model. For this, we obtain the phase modulation through the WKB
method for a number of pattern heights, and normalize the obtained
data to the lowest spatial frequency that we analyze. Note that the
spectral transfer function [Eq. (4)] in the convolution model is not
dependent on the pattern height, and can thus be obtained at once.

In [Fig. 2] we have plotted the spectral transfer function that is
obtained from the convolution model (dashed lines) and the WKB
approximation (solid lines), at a linear electric field strength of 10
kV/mm. In the comparison, we assumed 𝑧1 = 200 μm and a pattern
height of (a) 100 nm, and (b) 500 nm. The distance of closest approach
towards the mirror electrode (𝑧𝑅) is varied between 0 and 500 nm in this
analysis.

In both data sets we observe that the two models are in good
agreement in general. However, when 𝑧𝑅 ≤ 2 h we start to observe a
deviation. It is thus in principle possible to use the convolution model,
as long as the former strict inequality is satisfied. We choose to use the
WKB method instead in the remainder of this work.

2.1.4. Far field intensity at one spatial frequency
In the following we relate the near field phase modulation to the

resulting intensity in the far field. The far field intensity can be obtained
through Fresnel propagation of 𝜓𝑀 . We can also place a lens in front
of the mirror, and use a Fourier transform to obtain the intensity
distribution at the image plane that coincides with the focal plane of
this lens. The resulting far field diffraction intensity of a WKB phase
modulation amplitude 𝐴𝑘 can be obtained directly through the Jacobi–
Anger relationship, that expands a modulated complex exponential on
4

the left hand side into an infinite sum that contains Bessel functions
𝐽𝑛(𝜉) of order 𝑛 on the right hand side [40],

exp(𝑖𝜉 cos(𝜒)) =
∞
∑

𝑛=−∞
𝑖𝑛𝐽𝑛(𝜉) exp(𝑖𝑛𝜒). (9)

The infinite sum may be interpreted as a Fourier series, which
results in that the intensity of diffraction spots at the far field due to
the single spatial frequency 𝑘 is given explicitly by |𝐽𝑛(𝐴𝑘)|

2 where 𝑛
labels for the harmonic tones of 𝑘. In [Fig. 3(a)] we show the intensity
of the unscattered (𝑛 = 0) and the first (green triangles), second (blue
squares), and third (gray stars) order scattered beam intensities, as
a function of phase modulation amplitude 𝐴𝑘. From this figure it is
apparent that a single spatial frequency in the mirror pattern results
in a set of diffraction spots, with intensities that cannot be chosen
independently.

A practical limit of phase modulation amplitude emerges from the
Jacobi–Anger expansion, above which it becomes no longer possible to
modulate the intensity of a diffraction spot with only a single spatial
frequency in the mirror pattern, without generating higher order spots
as well. If we allow for 1% of the intensity to be directed into a
higher order diffraction spot at the image plane, the amount of phase
modulation that can be achieved with a single spatial frequency is
upper bound to 𝜋∕6 ≈ 0.5 rad [Fig. 3(b)]. Higher values of phase
modulation are then only attainable, when the development of the
higher harmonics is suppressed by adding to the fundamental pattern a
𝜃 = 𝜋 rad out of phase contribution of the respective higher harmonic
spatial frequencies.

2.1.5. Addition of multiple spatial frequencies
In the following we analyze the extent of the validity of using the

results from [Eq. (9)] and [Fig. 3(a)] when multiple spatial frequency
components are present in the mirror pattern. The result as shown in
[Fig. 3(a)] is invariant for a change in spatial frequency 𝑘. Hence, we
consider for instance the effect of combining two spatial frequencies
that are both characterized by a phase modulation amplitude 𝐴𝑘 of
say 𝐴𝑘 = 𝜋∕3. From the data shown in [Fig. 3(a)] we observe that the
intensity of the unscattered beam is reduced from 1 to approximately
0.58, thus an intensity reduction of 1 − 0.58 = 0.42. Meanwhile, the
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Fig. 3. (a) Intensity distribution at the image plane, as a function of phase modulation amplitude (𝐴𝑘) for a single and fundamental spatial frequency 𝑘. Plotted orders 𝑛 correspond
to harmonic frequencies 𝑛𝑘, with 𝑛 = 0 representing the unscattered component of the beam. (b) Relative error of the intensity of the diffraction intensity due to the generation
of higher order spots.
intensity in the first order diffraction spots related to both pattern
components increases to approximately 0.20, yielding an apparent total
intensity increase in the scattered beam of 2 × 2 × 0.20 = 0.80. This
suggests that intensity is created in the scattered beam, as a result of
adding an additional pattern component. Where did this intensity come
from?

It appears that linear addition of the effect of multiple pattern
components yields physically incompatible results. We can understand
this, by carefully analyzing the effect of multiple spatial frequencies
when inserted into [Eq. (8)], and expanding into the far field intensities
using [Eq. (9)]. For two given spatial frequency 𝑘1 and 𝑘2 (and 𝑘1 ≠ 𝑘2)
the near field wave front is described as

𝜓𝑀 (𝑟) = exp(𝑖𝐴𝑘[cos(2𝜋𝑘1𝑥) + cos(2𝜋𝑘2𝑥)])

= exp(𝑖𝐴𝑘 cos(2𝜋𝑘1𝑥)) × exp(𝑖𝐴𝑘 cos(2𝜋𝑘2𝑥)). (10)

In the far field, the intensities are then described by the product of
the Jacobi–Anger expansion of both terms, given as

𝐼 =

{ ∞
∑

𝑛=−∞
𝑖𝑛𝐽𝑛(𝐴𝑘) exp(𝑖𝑛2𝜋𝑘1)

}

×

{ ∞
∑

𝑛=−∞
𝑖𝑛𝐽𝑛(𝐴𝑘) exp(𝑖𝑛2𝜋𝑘2)

}

=

{ ∞
∑

𝑛=−∞
𝑐𝑛,1 exp(𝑖𝑛2𝜋𝑘1)

}

×

{ ∞
∑

𝑛=−∞
𝑐𝑛,2 exp(𝑖𝑛2𝜋𝑘2)

}

. (11)

Effectively, the result in [Eq. (11)] describes a product of two
Fourier sums, which can generally be expressed as a convolution of
its coefficients 𝑐𝑛,1 and 𝑐𝑛,2. From this it is concluded that the linear
addition of the effect of multiple spatial frequency components in the
pattern is not allowed in general. However, if only values of 𝐴 ≪ 1
5

𝑘

are considered, the effect of the cross terms in the product in [Eq. (11)]
become negligible, since then 𝐽0(𝐴𝑘) ≈ 1. This can be made more
explicit by considering two pattern components, that satisfy 𝑘2 = 2𝑘1
and contribute a phase modulation amplitude 𝐴𝑘1 and 𝐴𝑘2 to the
reflected electron. Then, the product in [Eq. (11)] can be evaluated
explicitly for the lower order terms and yields the following intensities,

𝐼far f ield

∝

⎧

⎪

⎨

⎪

⎩

[𝐽0(𝐴𝑘1 )𝐽0(𝐴𝑘2 )]
2 ∼ 1 Unscattered beam

[𝐽1(𝐴𝑘1 )𝐽0(𝐴𝑘2 )]
2 ∼ 𝐽 2

1 (𝐴𝑘1 ) First order of 𝑘1
[𝐽0(𝐴𝑘1 )𝐽1(𝐴𝑘2 ) − 𝐽2(𝐴𝑘1 )𝐽0(𝐴𝑘2 )]

2 ∼ 𝐽 2
1 (𝐴𝑘2 ) First order of 𝑘2.

(12)

In this result, the similarity conditions are satisfied if and only
if 𝐽0(𝐴𝑘2 ) ≈ 1 and 𝐽1(𝐴𝑘1 ) ≈ 0, thus in general when 𝐴𝑘𝑛 ≪ 1.
We use this result as a justification for linear addition of the effect
that multiple pattern contributions have on the phase of the reflected
electron, and we believe that this result is in line with the weak phase
object approximation [41] that is conventionally adhered to in the
context of thin phase plates.

2.2. Electric field as a function of mirror pattern

In the following, a description for the electric scalar potential is
derived as a function of topographic and pixel wise patterning. This
requires a solution for the Laplace equation of the scalar potential
𝑈 (𝑥, 𝑦, 𝑧) in transverse coordinates 𝑥 and 𝑦, and beam propagation
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Fig. 4. Schematic geometry of the mirror electrode, in the case of (a) topographically patterned electron mirror and (b) pixel wise patterned electron mirror. The field limiting
aperture at 𝑧 = 𝑧1 connects the mirror electric field to a region of constant potential 𝑢1.
direction 𝑧. It is assumed [also see Fig. 4] that the mirror electrode is
positioned at 𝑧 = 0 and the beam incidence and reflection takes place
in the region for which 𝑧 < 0. A field limiting aperture electrode is
positioned at 𝑧 = 𝑧1 < 0, that connects the mirror electric field to a
region of constant potential 𝑈 (𝑥, 𝑦, 𝑧 < 𝑧1) = 𝑢1.

Solutions to the Laplace equation in Cartesian coordinates can be
obtained through the method of separation of variables. The method
ordinarily invites to look for solutions in the form 𝑈 (𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌 (𝑦)
𝑍(𝑧), but this will limit the shape of the pattern potential to products of
𝑋𝑌 ≃ cos(𝑓 (𝑥)) × cos(𝑔(𝑦)) that introduce a fixed grid of zero crossings.
Instead, we will obtain solutions that describe the pattern with cross-
terms, 𝑈 (𝑥, 𝑦, 𝑧) = 𝑃 (𝑥, 𝑦)𝑍(𝑧) in which 𝑃 (𝑥, 𝑦) is the mirror pattern
function, and 𝑍(𝑧) describes the electric field attenuation above the
mirror surface. We must then obtain a solution for
𝜕2𝑃 (𝑥, 𝑦)𝑍(𝑧)

𝜕𝑥2
+
𝜕2𝑃 (𝑥, 𝑦)𝑍(𝑧)

𝜕𝑦2
+
𝜕2𝑃 (𝑥, 𝑦)𝑍(𝑧)

𝜕𝑧2
= 0. (13)

This can be cast in the separated form given as,

1
𝑃 (𝑥, 𝑦)

[

𝜕2𝑃 (𝑥, 𝑦)
𝜕𝑥2

+
𝜕2𝑃 (𝑥, 𝑦)
𝜕𝑦2

]

+ 1
𝑍(𝑧)

𝜕2𝑍(𝑧)
𝜕𝑧2

= 0 ⇒ 𝐶2
𝑝 + 𝐶

2
𝑧 = 0. (14)

The separation constants, (𝐶𝑝, 𝐶𝑧) ∈ C must be allowed complex
valued in order to satisfy the sum of separated squared coefficients.
There are two boundary conditions that the above equation must
satisfy:

1. At 𝑧 = 𝑧0 the potential distribution at the mirror electrode is
described by 𝑈0(𝑥, 𝑦, 𝑧) = 𝑢0+𝛥𝑢0(𝑥, 𝑦, 𝑧0) in the case of pixel wise
patterning. Here, 𝑢0 is the bias potential and 𝛥𝑢0(𝑥, 𝑦) describes
the (harmonic) potential variation across the mirror surface. In
the case of topographic patterning, only a bias 𝑢0 is present, and
we approximate 𝛥𝑢0 based on the pattern amplitude 𝛿 and the
linear field strength 𝐸𝑧 = 𝑢0∕(𝑧1 − 𝑧0), such that 𝛥𝑢0 = 𝐸𝑧𝛿.
We choose 𝑧0 = 0 is positioned at the origin of the coordinate
system.

2. At 𝑧 = 𝑧1 < 0, a field limiting aperture electrode is positioned
and it is assumed that at this point the scalar potential is uniform
in the transverse direction, 𝑈1(𝑥, 𝑦, 𝑧 ≤ 𝑧1) = 𝑢1.

2.2.1. Solutions at the mirror electrode
The first boundary condition relates to the potential variation at the

mirror electrode that is due to the pattern. A general solution for 𝑃 (𝑥, 𝑦)
is given (for constants 𝑝0 and 𝑝1) by

𝑃0(𝑥, 𝑦) = 𝑝0 exp(𝑖2𝜋[𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝜃]) + 𝑝1 exp(−𝑖2𝜋[𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝜃]). (15)

The coefficients 𝑘𝑥 and 𝑘𝑦 are spatial frequencies of the mirror
pattern and 𝜃 is a constant phase offset. From [Eq. (14)], this provides
the relationship

(2𝜋𝑖𝑘𝑥)2 + (2𝜋𝑖𝑘𝑦)2 = 𝐶2
𝑝 . (16)

From this it is seen that 𝐶2
𝑝 < 0 (since 𝑘 > 0, and 𝑖2 = −1) and

consequently 𝐶2 > 0. In the current form, [Eq. (15)] would allow
6

𝑧

for only one spatial frequency in the mirror pattern. Solutions to the
Laplace equation are linearly independent, which enables us to include
multiple spatial components by linear addition,

𝑃0(𝑥, 𝑦) =
∑

(𝑛,𝑚)
𝐹𝑛,𝑚 cos

(

2𝜋[𝑘𝑛,𝑥𝑥 + 𝑘𝑚,𝑦𝑦] + 𝜃𝑛,𝑚
)

. (17)

Here we implicitly assume 𝑝0 = 𝑝1 = 1∕2, such that the resulting
sum of components represents a discrete Fourier sum of amplitudes
𝐹𝑛,𝑚 and corresponding angles 𝜃𝑛,𝑚. The amplitude term 𝐹𝑛,𝑚 relates to
the electric potential (in volt, 𝛥𝑢0 in boundary condition 1) that the
corresponding spatial frequency adds to the mirror potential, and its
expression depends on the method of mirror excitation.

For topographic patterned mirrors, there is only the bias potential
𝑢0 that is applied to the mirror electrode. The profile amplitude of
the topographical features at the electrode surface (𝛿𝑛,𝑚) and the linear
electric field strength 𝐸𝑧 = (𝑢1−𝑢0)∕(𝑧1−𝑧0) is then used to approximate
the effective potential at 𝑧 = 𝑧0. The local potential at 𝑧 = 𝑧0 = 0 is then
approximated through the amplitude 𝛿𝑛,𝑚 of the harmonic contribution
and the linear field strength,

𝐹𝑛,𝑚 = 𝐸𝑧𝛿𝑛,𝑚. (18)

In the case of pixel wise applied potentials, the relationship between
𝐹𝑛,𝑚 and the individual pixel potential is somewhat more complicated
due to the finite size of the pixels. The set of potentials {𝑢𝑝} that is
used to realize a harmonic variation across the entire mirror electrode
then consists of discrete increments, rather than the smooth transition
that is the case for topographic patterning. The high spectral frequency
components that are associated with the harmonics of the individual
pixels are neglected here, as we will demonstrate that such high spec-
tral components (that is, smaller than the width of a single pixel) are
not likely to significantly influence the phase of the reflected electron.

Next, a solution for 𝑍(𝑧) must be obtained. Earlier we derived the
requirement 𝐶2

𝑧 > 0 and this in turn yields the general solution,

𝑍0(𝑧) = 𝜉1 exp(2𝜋𝑘𝑧𝑧) + 𝜉2 exp(−2𝜋𝑘𝑧𝑧). (19)

This leads to the relationship 𝐶2
𝑧 = (2𝜋)2𝑘2𝑧 and we require 𝜉2 → 0 in

order to prevent the potential from diverging in the region of reflection.
In addition, the constant 𝜉1 corresponds to the local potential value,
𝜉1 ≡ 𝐹𝑛,𝑚 for 𝑧 = 𝑧0. Finally, as 𝐶2

𝑝 + 𝐶2
𝑧 = 0, we obtain the common

wave optical relationship 𝑘2𝑥 + 𝑘2𝑦 = 𝑘2𝑧, from which we can construct
the solutions for the Laplace equation that satisfy boundary condition
1) as,

𝑈0(𝑥, 𝑦, 𝑧) = 𝑃0(𝑥, 𝑦)𝑍(𝑧)

=
∑

(𝑛,𝑚)

{

𝐹𝑛,𝑚 cos
(

2𝜋[𝑘𝑛,𝑥𝑥 + 𝑘𝑚,𝑦𝑦] + 𝜃𝑛,𝑚
)

× exp
(

−2𝜋|𝑧|
√

𝑘2 + 𝑘2
)}

. (20)
𝑛,𝑥 𝑚,𝑦
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2.2.2. Solutions at the field limiting aperture
A solution that satisfies the second boundary condition is less in-

volved than that at the mirror electrode. It is assumed that the elec-
tric field is terminated at an equipotential surface that is flat in the
plane perpendicular to the propagation (𝑧) axis, such that the function
𝑃1(𝑥, 𝑦) = constant. In a practical situation, an aperture is needed at this
plane that allows the electron beam to enter and exit the mirror field.
The effect of this aperture is not treated here and may best be treated
separately as part of a lens system in front of the mirror. The constant
is absorbed into 𝑍1(𝑧), and we are thus only concerned with finding a
solution for 𝑍1(𝑧), that has to satisfy

1
𝑍1(𝑧)

𝑑2𝑍1(𝑧)
𝑑𝑧2

= 0 ⇒
𝑑2𝑍1(𝑧)
𝑑𝑧2

= 0. (21)

The general solution is a first order polynomial, 𝑍1(𝑧) = 𝑎𝑧+𝑏. From
the boundary conditions 𝑍(𝑧1) = 𝑢1 and 𝑍(𝑧0) = 𝑢0, a solution is readily
obtained in the form of,

𝑍1(𝑧) = 𝑢0

[

1 − 𝑧
𝑧1

]

−
𝑢1𝑧
𝑧1

. (22)

In this equation, the second term drops out under the assumption
f a field-free region of constant potential at or beyond 𝑧1, for which
1 = 0.

.2.3. Analytical expression for the mirror electric scalar potential
A full solution for the electric potential that is created by a topo-

raphic or pixel wise patterned mirror is provided by addition of the
eparate solutions that were obtained, and is given in full as

(𝑥, 𝑦, 𝑧) = 𝑃0(𝑥, 𝑦)𝑍(𝑧) +𝑍1(𝑧)

=
∑

(𝑛,𝑚)>0

{

𝐹𝑛,𝑚 cos
(

2𝜋[𝑘𝑛,𝑥𝑥 + 𝑘𝑚,𝑦𝑦] + 𝜃𝑛,𝑚
)

× exp
(

−2𝜋|𝑧|
√

𝑘2𝑛,𝑥 + 𝑘2𝑚,𝑦
)}

+𝑢0

[

1 − 𝑧
𝑧1

]

− 𝑢1
𝑧
𝑧1
. (23)

In this expression, we have shifted the contribution of the DC com-
ponent of the mirror pattern outside of the sum, and it is now explicitly
accounted for by the linear potential ramp provided by 𝑢0. The equation
is applicable to both pixel wise and topographically patterned mirrors,
and the elements in the sum only account for the spatial variations that
resemble the surface topography.

The derived expression for the electric potential will be used in
the calculation of the spatial phase modulation of a spread out beam
that is reflected by this potential. The expression essentially describes a
Fourier sum over all spatial frequencies that are contained in the mirror
topography. The DC contribution outside the sum contains the linear
potential ramp.

2.2.4. Qualitative influence of the pattern components on the phase modu-
lation

We can now combine the obtained description of the mirror electric
field [Eq. (23)] and the WKB approximation [Eq. (5)] and use this to
obtain an initial qualitative understanding of the influence that the
spatial frequency components of the mirror pattern have on the phase
of the reflected electron. According to the WKB approximation the
phase 𝜙(𝑟) ∝ ∫

√

𝑈 (𝑟)𝑑𝑧. Because of the square root dependence, a
irect solution that yields the phase modulation amplitude [as defined
n Eq. (6)] as a function of the electric field modulation amplitude
s not trivial. Instead, we will derive here an approximate analytical
elationship between the mirror scalar potential and the resulting phase
odulation and use this to obtain an initial understanding of the effect

hat the pattern frequency component has on the phase modulation
mplitude. At a later stage a numerical implementation of [Eq. (6)]
ill be provided which serves as the basis of our pattern calculations.
7

o

Starting from the WKB approximation, we cast [Eq. (5)] into an
alternative form:

𝜙(𝑥, 𝑦, 𝑧) = ℏ−1
√

2𝑚𝑒𝑒𝐸 ∫
√

1 − 𝑈 (𝑥, 𝑦, 𝑧)∕𝐸𝑑𝑧. (24)

The square root inside the integral can be approximated by a power
series for which the first terms are given below,
√

1 − 𝑥 ≈ 1 − 1
2
𝑥 − 1

8
𝑥2 − 1

16
𝑥3 − (𝑥4). (25)

This approximation is valid and converges, provided that |𝑥| ≤ 1.
Here, 𝑥 ≡ 𝑈∕𝐸 satisfies the convergence condition, exactly up to the
turning point of the beam where 𝑈 = 𝐸 and thus the use of the
approximation is justified.

The full evaluation of [Eq. (24)] requires to obtain the integral of
the polynomial terms 𝑥𝑛, for which we use the electric scalar potential
that from [Eq. (23)],

𝑥𝑛 = 𝐸−𝑛
[

𝐹 cos(2𝜋𝑘𝑟) exp(−2𝜋𝑘𝑧) + 𝑢0

(

1 − 𝑧
𝑧1

)]𝑛
. (26)

As the integral over the terms in [Eq. (26)] is bounded by 𝑧1 and
𝑧𝑅, it is noted that for terms 𝑛 > 1 the exponential contribution quickly
diminishes the cross terms, since

[exp(−2𝜋𝑘𝑧𝑅)]𝑛 = exp(−2𝜋𝑛𝑘𝑧𝑅) → 0 for 1∕𝑘 ≈ 𝑧𝑅, 𝑛 > 1. (27)

To understand at least qualitatively the effect that the single spatial
frequency 𝑘 has on the phase modulation, we can drop all but the first
term in the expansion, even though this hinders us to quantitatively
compare this initial result with any earlier work. The procedure yields
the following result for the approximate integrated phase �̂� along one
axis,

�̂�(𝑥0, 𝑦0, 𝑘) = −ℏ−1
√

𝑚𝑒𝑒
2𝐸 ∫

𝑧𝑅

𝑧1

{

𝐹 cos
(

2𝜋𝑘𝑟(𝑥0, 𝑦0)
)

exp(−2𝜋𝑘𝑧)

+𝑢0

(

1 − 𝑧
𝑧1

)}

𝑑𝑧

= −ℏ−1
√

𝑚𝑒𝑒
2𝐸

[

𝐹 cos(2𝜋𝑘𝑟(𝑥0, 𝑦0)) exp(−2𝜋𝑘𝑧)
−2𝜋𝑘

+𝑢0𝑧
(

1 − 𝑧
2𝑧1

)]𝑧=𝑧𝑅

𝑧=𝑧1
. (28)

The net phase modulation amplitude for a single spatial frequency
𝐴𝑘 [as defined in Eq. (6)], is obtained by evaluating the result in
[Eq. (28)] at the crest and trough of the modulated electric potential,
at which points 𝐹 cos(2𝜋𝑘𝑟) = ±𝐹 ,

𝐴𝑘 = �̂�(0, 0, 𝑘) − �̂�(1∕(2𝑘), 0, 𝑘)

= −ℏ−1
√

𝑚𝑒𝑒
2𝐸

(

𝐹
2𝜋𝑘

[exp(−2𝜋𝑘𝑧+𝑅) − exp(−2𝜋𝑘𝑧−𝑅)]

+𝑢0

[

𝑧+𝑅 − 𝑧−𝑅 −
𝑧2(+)𝑅 − 𝑧2(−)𝑅

2𝑧1

])

. (29)

The contribution of the exponential terms at the lower boundary
= 𝑧1 is set to zero explicitly here, since 1∕𝑘 ≪ 𝑧1, and 𝑧±𝑅 labels the

urning point for the crest and trough of the field. An analytical form
f the turning point coordinates is given in Appendix A, and can be
btained by solving 𝑈 (𝑧) = 𝐸 by means of the Lambert-W function [42].

From the obtained expression it is confirmed that, at equal excita-
ion parameter 𝐹 , higher spatial frequency components in the mirror
lectrode attenuate faster and consequently can modulate the reflected
eam less than low spatial frequencies. This behavior could also be
nderstood from the increased sharpening of the blurring function
n [Fig. 1] as the electron reflects closer to the mirror electrode.
onversely, one may state that the turning point coordinate 𝑧𝑅 → 𝑧0
ust be positioned closer to the mirror pattern in order to have high

patial frequencies in the pattern influence the modulation of the phase
f the reflected beam. The linear dependence 𝐴 ∝ 𝐹 demonstrates that
𝑘
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alternative to the former, the phase modulation in the reflected beam
can also be increased by increasing the amplitude of the mirror profile,
or the excitation potential in the case of pixelwise programmable
mirrors.

2.3. Phase modulation as a function of pattern pitch and bias voltage

We have obtained a description of the scalar potential as a function
of mirror topography [Eq. (29)], as well as a relationship between the
scalar potential and the phase modulation [Eq. (5)] as a function of
spatial frequency [Eq. (6)]. With that, we can now study the effect that
the spatial frequency 𝑘, and the bias potential 𝛥𝑈 (with respect to the
electron beam energy) has on the phase modulation amplitude of the
reflected electron. For this, we are limiting ourselves to a maximum
allowed electric field strength of 10 kV/mm, which is considered as a
feasible value that should not result in electrical break down or arcing.
In a setup that we are currently building [43], we aim at using a beam
energy of 2 keV and hence the following results are also based on this
value.

We have already found [Fig. 3] that the phase modulation am-
plitude must be kept small, and based on this we searched for a
parameter space that fits this requirement. We consider that for a
mirror pattern, spatial frequencies in the range of 𝑘0 ∈ [0.5⋯ 10] μm−1

an be manufactured for instance with ion beam lithography. In [Fig. 5]
e show the phase modulation amplitudes that can be realized in this

ange of spatial frequencies, as a function of profile height amplitude
nd bias potential (in volt) with respect to the beam energy. This data
as been obtained for a 2 keV electron beam energy and a linear field
trength of 10 kV/mm. As a general trend, we observe an increase in
hase modulation amplitude, as a function of both decreasing spatial
requency (increasing pattern pitch), as well as decreasing bias poten-
ial. An increase of the profile height amplitude is seen to lead to an
ncrease of the phase modulation amplitude, and consequently to phase
ollovers of 2𝜋 at increasing height values.

The obtained data indicates the sensitivity to phase modulation that
ay arise for instance due to non-flatness of the electrode wafer source
aterial. This non-flatness may be introduced as a result of mechanical

tress inside the material, and from the data shown in [Fig. 5] we see
hat this may especially pose a limitation for very low spatial frequency
urface height modulation.

.4. Mirror pattern as a function of target phase distribution

In a practical application of patterned electron mirrors, it is likely
hat the mirror pattern will be based on a desired or ‘target’ phase
istribution 𝜙target (𝑥, 𝑦) in the near field (diffraction plane). By ob-
aining the Fourier transform 𝛷target (𝑘) of this target distribution, the
hase modulation amplitude 𝐴𝑘 = |𝛷target (𝑘)| of the target distribution
s directly obtained in terms of the spatial frequencies that form the
irror pattern.

We make use of the proportionality 𝐴𝑘0 ∝ 𝐹 ≡ 𝛿𝑘, such that
he reference pattern amplitude 𝛿0 [for instance, 𝛿0 = 1 nm is shown
n Fig. 5(b)] can be scaled directly to match the phase modulation
mplitude 𝐴𝑘, by solving for 𝛿𝑘 in

𝑘 =
𝛿𝑘
𝛿0
𝜙[𝛿0]
WKB. (30)

In this equation, 𝜙[𝛿0]
WKB is the data set that contains the phase mod-

lation amplitude as a function of bias voltage and spatial frequency of
he mirror pattern, at a fixed reference profile amplitude 𝛿0 as shown

before in [Fig. 5].
When the scaling is performed for each spatial frequency of the tar-

get phase distribution, the obtained pairs {𝛷𝑘, 𝛿𝑘} return the complete
description of the mirror pattern in Fourier space. The pattern is then
8

constructed in real space through a Fourier sum

𝑃 (𝑥, 𝑦) =
∑

(𝑛,𝑚)
𝛿(𝑛,𝑚) cos

(

2𝜋[𝑘𝑛,𝑥𝑥 + 𝑘𝑚,𝑦𝑦] + ∠𝛷𝑘,(𝑛,𝑚)
)

. (31)

The electric potential in front of the mirror substrate can be recon-
structed in a similar approach.

2.5. Chromatic effects as a function of pattern parameters

Practical electron beams contain an inherent energy spread (about
0.6 eV for Schottky sources), and the value of this spread can be
reduced by means of beam monochromatizating at the expense of beam
current. The energy spread in the incident electron beam results in
a deviation from the nominal turning point coordinate (𝑧𝑅). As the
modulation of the electric field decays exponentially as a function of
this coordinate [Eq. (23)], the resulting phase modulation will deviate
from the nominal target value.

We computed the effect of the beam energy spread through the
WKB approximation. The calculation is performed on the basis of the
data that was shown in [Fig. 5(b)] for a reference profile height of
1 nm. From this data, coordinate pairs of bias potential and spatial
frequency {𝑈bias, 𝑘0} were collected that provide 𝜋 phase shift at the
nominal beam energy (the dashed black line in the plot). Next, the WKB
approximation is performed numerically for the obtained parameter
pairs, at varying beam energies in a range 𝐸 = 𝐸0 ± 𝛥𝐸0.

The obtained phase modulation as a function of the energy de-
viation 𝛥𝐸0 with respect to the nominal beam energy 𝐸 and spatial
frequency 𝑘 that was obtained this way is shown in [Fig. 6]. This
data indicates an increased sensitivity for phase dispersion towards
higher spatial frequencies of the mirror pattern, and at increased energy
deviation. Notably at spatial frequencies above 2 μm−1 a complete
phase rollover of 2𝜋 already occurs within the 1 V analysis domain.
This result suggests that it is necessary to monochromatize the beam.
The required amount of energy filtering ultimately depends on the
smallest feature size present in the pattern, as well as the application-
dependent tolerance, as illustrated in [Fig. 6]. In addition, the data
shown motivates the use of a high linear electric field strength as this
leads to a reduced spacing between the equipotential surfaces that
reflect the slower and faster parts of the beam. A linear field strength of
10 kV/mm that we used in the above analysis is generally considered
as feasible in an electron optical setup.

3. Amplitude and phase modulation with electron mirrors

The electron mirror is the reflective counterpart of the transmission
phase plate that is used in transmission electron microscopy. As the
electron mirror fully reflects the incident wave front, the amplitude of
the reflected wave front cannot be modulated at the mirror plane. A
single electron mirror can thus be used for phase modulation only, and
the effect of this phase modulation appears as an amplitude contrast
at a diffraction plane of the mirror. This is good enough for many
applications, however, in order to fully control the wave front, not only
phase but also amplitude modulation must be realized.

Amplitude modulation in transmission optics is realized by using
a comparatively thick amplitude mask that partially blocks the beam.
This approach is not viable in the context of mirrors, as no absorption
processes take place in front of the mirror. It is however possible to
express the modulated phase of a wave front as amplitude contrast at a
plane that is conjugated to that of the mirror, by means of defocusing
the electron at this conjugate plane. The effect of a defocus of the beam
at the conjugated plane is given by the phase contrast transfer function
CTF = sin (𝜒(𝑢)), in which [44],

𝜒(𝑢) = 2𝜋
𝜆

(

𝛥𝑓𝜆2𝑢2

2
+
𝐶𝑠𝜆4𝑢4

4

)

. (32)

Here, 𝜆 is the wave length of the electron, 𝑢 the spatial frequency
component of the modulated wave front, and 𝛥𝑓 the amount of defocus.
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Fig. 5. Phase sensitivity of a reflected plane wave as a function of the bias potential (with respect to the beam energy) and spatial frequency component of the pattern, for a
reference profile pixel voltage amplitude 𝛿𝑢0 of (a) 1 mV (correspondents to 1 Åheight variation), (b) 10 mV (correspondents to 1 nm height variation), and (c) 1 V (correspondents
to 100 nm height variation). A free electron energy of 𝐸 = 2 keV and a linear field strength of 10 kV/mm is used in the calculation. The dashed black line in (b) indicates the
line of constant phase that is used for the study of sensitivity to energy spread. Phase wrapping is performed on data that corresponds to a phase modulation greater than 2𝜋.
The second term inside the brackets accounts for spherical aberration
(𝐶𝑠) of the imaging system in between the two conjugate planes.
9

When we position a second mirror at the plane conjugate to that of
the first mirror, and in the absence of a defocus, i.e., 𝛥𝑓 = 0 mm, the
wave front at a later image plane of the microscope is related to the
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Fig. 6. Phase sensitivity of the reflected electron as a function of energy variation in the incident beam, for a range of spatial frequency components. Computations are performed
for an equal target phase value of 𝜋 rad, for data points that are indicated by the dashed black line in [Fig. 5(b)]. The color map labels the deviation of the phase as a function
of energy variation 𝛥𝐸0 in the incident beam. Data obtained for a fixed profile amplitude of 1 nm, 2 keV nominal beam energy and linear field strength 𝐸𝑧 = 10 kV/mm.
sum of the individual spatial phase contributions 𝜙M1 and 𝜙M2 due to
mirror M1 and mirror M2,

𝜓𝑜𝑢𝑡 = 
{

𝜓𝑖𝑛 exp(𝑖[𝜙M1 + 𝜙M2])
}

. (33)

Here, {⋅} denotes a Fourier transform. From this expression it is
apparent that only one mirror is in principle sufficient to perform phase
only modulation, since the contributions of 𝜙M1 and 𝜙M2 to the output
wave front are interchangeable and add linearly.

However, we reason that simultaneous amplitude and phase modu-
lation is possible when two patterned mirrors are used. We will provide
two alternative methods to achieve this. The first method relies on
the CTF and the assumption that the two mirrors are placed at planes
that are conjugate to each other. The second method assumes that the
second mirror is placed at the diffraction plane of the first mirror.

We first consider the situation where the two mirrors are placed
at optical conjugate planes, and the electron is spread out over the
first mirror upon incidence. In this case, in the presence of a defocus
of the reflected electron towards the second mirror, i.e., 𝛥𝑓 ≠ 0, the
phase modulation due to the pattern at the first mirror expresses as
an amplitude modulation as the electron is spread out over the surface
of the second mirror. At the second mirror surface, local changes to
the phase of the amplitude modulated beam can be realized by a
proper choice of the pattern. However, we acknowledge that a genuine
freedom of amplitude and phase is not attainable in this configuration,
as the amplitude distribution is still limited by the CTF of the optical
system.

Alternative to the above configuration, one may also consider to
place the second mirror at the diffraction plane of the first mirror. The
amplitude distribution in the diffraction plane is the Fourier transform
of the phase pattern introduced by the first mirror. The second mirror
now introduces the phase modulation to the beam.
10
3.1. Virtual phase plate based on two electron mirrors

A practical realization of the virtual phase plate requires the posi-
tioning of two electron mirrors and additional lenses inside the electron
microscope column. An extensive discussion of integrating multiple
electron mirrors in a microscope is provided recently by Dohi and
Kruit [32]. From that work, it is concluded that through the use of
miniature electron optical components it is possible to position the
two mirrors at an axis parallel to the optical axis of the microscope.
The coupling of the microscope and mirror axis trajectories can be
performed by an electrostatic deflector, and two miniature Wien filter
type deflectors. By making use of miniaturized optical components, the
deflection angles can be kept small, such that deteriorating effects from
deflection dispersions can be avoided.

In [Fig. 7] we show a schematic design for a virtual phase plate.
In this schematic, the two mirrors are positioned opposite of each
other on a common axis and the mirror patterns face each other.
The mirror axis is parallel with the optical axis of the microscope.
The coupling of the beam trajectory between the microscope axis and
mirror axis can be performed with an electrostatic deflector that is
positioned at the optical axis on the halfway plane in between the two
mirrors, referenced to as the common cross-over plane (C.C.P.). The
beam trajectory on the mirror axis demands a deflection towards and
away from the mirrors that depends on the sign of the velocity vector
(𝑣) of the beam. This sign dependent deflection could be realized by
deflectors with crossed electric (�⃗�) and magnetic (�⃗�) fields if these
fields are both perpendicular to each other and the beam path. When
the electric and magnetic fields in such deflector satisfy the Wien
condition (�⃗� = 𝑣× �⃗�), the resulting force on the electron beam enables
either a straight passage or a deflection path for the beam, depending
on the direction of incidence. The recent development of a miniature
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Fig. 7. Design of a double mirror system for integration inside (the column of) electron microscopes. The beam enters the setup on the microscope axis from the top. Coupling
to the mirror axis is performed at the common crossover plane (C.C.P.) by means of an electrostatic deflector. Two Wien filter type beam separators (𝐸 × 𝐵) are used to perform
the direction-of-incidence dependent deflection at the mirror axis. After reflection at both mirror planes, the beam is coupled back to the optical axis and exits the setup on the
microscope axis downwards, now with phase and amplitude modulation.
Source: Schematic reproduced from [31].
electron beam separator with two parallel axes can explicitly allow for
the close proximity of both axes in the described scheme [31].

Remarkably, when the Wien condition for straight passage is also
enforced onto the straight passages on the optical axis near the entry
and exit, a full trip of a beam through the double mirror system does
not suffer from deflection dispersion in first order at the common cross-
over plane. The system can be miniaturized by making use of MEMS
technology, such that the deflection angles can be kept small (below
50 mrad) and thus suppressing deflection dispersions [32]. An in-depth
electron optical and mechanical description of the system is provided
in [43].

4. Application examples for electron mirrors

We demonstrate possible applications for patterned electron mir-
rors. Throughout this section we assume a beam energy of 2 keV and a
linear electric field strength of 10 kV/mm in the mirror region. These
numbers are based on a proof of principle experiment that we are
currently designing. Details about the numerical methods that were
used to obtain the results in the following sections are presented in
Appendix B.

4.1. Zernike phase mirror

The use of a Zernike phase plate in TEM results in a change to the
contrast transfer function provided in [Eq. (32)] as given by [44],

CTF = sin (𝜒 (𝑢)) → −cos (𝜒 (𝑢)) for 𝑢 > 𝑢ℎ. (34)

In words, the equation states that the contrast is enhanced from
near-zero to near unity for spatial frequencies 𝑢 that exceed the mod-
ulus of the spatial frequency 𝑢 of the central hole in the phase plate.
11

ℎ

The mirror equivalent of such Zernike phase plate would require an
alteration in the reflected beam such that the unscattered (on-axis)
component is shifted −𝜋∕2 rad with respect to the scattered wave
components.

In the past it is already suggested that this could be achieved with
a pixel wise programmable mirror simply by applying a bias in the
order of 70 mV (assuming a linear field strength of 10 kV/mm) to the
central pixel [26], and here we apply the method that we derived above
to the same model system. As we only aim to shift the phase of the
unscattered beam, the desired phase profile shows resemblance with a
top hat function and it should thus be expected that a large number of
spatial frequencies is involved in the resulting mirror topography.

The result of the analysis is shown in [Fig. 8] for an assumed 200 nm
hole size in the Zernike phase plate. We observe a peak in excitation
close to the optical axis that is representative of this hole size, followed
by a damped oscillation of higher harmonic contributions. It should be
noted that the effective value for 𝑢ℎ is determined in the case of an
electron mirror by the focal distance of the mirror-lens system towards
the image plane. For instance, one could increase the spread out the
wave front over the mirror surface, thereby effectively increasing the
magnification. If the mirror topography is not scaled laterally by an
equal factor, this effectively changes the range of spatial frequencies in
the reflected wave front that are phase shifted by the Zernike mirror
pattern.

4.2. Tuning diffraction efficiency

The origin of this work stems from the question if interaction-
free measurements [45] can be performed with electrons [46] in a

practical manner, in order to reduce electron beam induced radiation
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Fig. 8. Mirror topography for Zernike phase manipulation. (a) Full field reconstruction of the pattern, for a bias potential of 7 V with respect to the beam energy. (b) Cross
section of the reconstructed pattern, through the center of the topography.
damage [47] in electron microscopy [48]. Subsequent proposals for
designs of a quantum electron microscopes [49,50] that could perform
this type of experiment introduces the need for a two-port diffractive
element for electron beams [51]. The electron grating mirror is one
means to this end, but in its current form suffers from the disadvantage
of generating a two-sided diffracted beam, instead of the targeted
one-sided first order diffracted beam [36].

Here we study how the diffraction efficiency of the intensity that is
directed into the first order spot can be maximized, while at the same
time keeping the intensity in the higher order spots to a minimum. We
already discussed the effect of a single spatial frequency at the mirror
pattern that would result from a sinusoidal pattern, and concluded
that the intensity of the resulting diffraction spots are provided by the
squared Bessel function of the respective diffraction order as a function
of phase modulation amplitude (𝐴𝑘) [ref. Eq. (9), and dashed line in
Fig. 9].

The generation of the higher order diffraction spots could be in
principle suppressed, by adding higher order spatial frequency com-
ponents to the mirror pattern. These pattern components must cancel
the out-of-phase contribution to their respective diffraction spot at the
image plane, with respect to the higher harmonic spot that is due to
the fundamental pattern frequency.

Numerically the pattern that is required for this is found by provid-
ing a target image plane distribution consisting of only a central spot
and the two first order diffraction spots. The target phase of the central
spot relative to the two first order diffraction spots is set to −𝜋∕2, which
is a physical requirement for a first order diffracted beam when only a
single mirror reflection takes place [also see Sections 3 and 2.1.4]. The
image plane distribution is then Fresnel propagated to the diffraction
plane, in order to obtain the amplitude and phase modulation that must
be provided for by the mirror pattern.

We have performed this computation using two different
approaches. First, we considered the use of only one mirror, thus
limiting ourselves to phase-only modulation. The obtained diffraction
spot intensities that could be realized this way are plotted in [Fig. 9]
with circle markers. The range of phase modulation amplitude values
that are shown in the plot are realized by adjusting the ratio of the
targeted central and diffracted spot amplitudes at the image plane. The
target image plane distribution is propagated towards the mirror plane,
at which we obtain the plotted phase modulation amplitude as the
largest absolute phase difference at this plane. Note that this definition
for 𝐴{𝑘} is somewhat broader than what we used before in [Eq. (6)],
where 𝐴 was used to label for the phase modulation amplitude related
12

𝑘

to a specific spatial frequency 𝑘, instead of that of the entire spectrum
{𝑘}.

From the shown data it is observed, that by making use of an image
plane target distribution (circle markers) instead of a single spatial
frequency mirror topography (dashed lines), the first order diffraction
efficiency is increased. However, we do observe that 20% intensity is
still diffracted to higher order spots when the central beam becomes
fully attenuated, although this may also be due to a limitation in the
current numerical methods that we use. A possible explanation for this
effect is given by the fact that at increasing attenuation of the central
spot, the phase modulation amplitude that is responsible for the two
first order diffraction spots increases. Consequently, this also leads to
an increase of the higher order diffraction spot intensities at the image
plane. In principle, the amount of phase that must be compensated to
cancel the generation of the higher order beams is numerically known,
and accounted for by the mirror pattern reconstruction. However, what
is currently not accounted for in the reconstruction routine is the
special case, in which the phase modulation amplitude correction of
these higher orders exceeds the threshold phase of ∼ 𝜋∕6 rad [also see
Eq. (9), and Fig. 3]. In that case, an iterative scheme must be used that
also accounts for the resulting higher harmonics. This correction is not
yet performed in the current work that is presented here.

Another effect that leads to the generation of the higher orders is
the neglect of the amplitude contrast at the mirror plane. When we
propagate the targeted image plane distribution towards the mirror
plane, the resulting wave front distribution shows both an amplitude
and a phase modulation. In the foregoing analysis, we were required
to neglect the amplitude information and instead assume a uniform
amplitude distribution at the mirror plane, as with a single mirror we
can only realize phase modulation.

We can include the effect of amplitude modulation to our calcu-
lations, by making use of two mirror reflections. In the image plane
reconstruction routines, we then assume that first mirror reflection
enables the required amplitude modulation at the second mirror plane.
With this modification in place, we can show that the diffraction
efficiency is increased. This is indicated by the square markers in
[Fig. 9]. From this, it is observed that all intensity of the central beam
can be directed into the first order positive and negative diffraction
spot.

For use as a beam splitter in Quantum Electron Microscopy, it is nec-
essary that the intensity of the central beam is directed into only either
the positive, or negative first order diffraction spot. Optically this would
be performed by a blazed grating, which adds a linear phase ramp

into the reflected wave front. Blazed grating diffraction has already
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Fig. 9. First order diffraction spot intensity dependence on the mirror patterning approach. The first order diffraction spot intensity at the image plane that results from the use of
one spatial frequency in the mirror pattern (dashed line) can be increased by inclusion of higher order spatial frequencies into the pattern. We demonstrate the efficiency that can
be reached when performing phase-only modulation with one patterned mirror (circles), and when performing phase and amplitude modulation by using two mirrors (squares).
Shown intensities are the sum of positive and negative contribution per order.
been demonstrated in TEM with phase plates [52]. We have studied
the feasibility of doing this with one electron mirror by providing a
phase-only distribution at the mirror plane, and gradually increased
the phase modulation amplitude of this phase ramp. We note that such
computation can in principle also be performed by starting out with
a target wave front at the image plane and propagate this wave front
towards the mirror plane. However, this would require a significant
increase of the numerical grid at the image plane without any expected
advantages in terms of accuracy of the wave front description at the
image plane.

In [Fig. 10] the obtained intensity of the central spot (circles),
blazed spot (rectangles), and other spots combined (triangles) is plotted
as a function of the maximum phase modulation amplitude 𝐴{𝑘} across
the entire spectrum of the linear phase ramp at the diffraction plane.
From this it is seen that a high diffraction efficiency can be obtained
especially for weak or strong exchange of spot intensity between the
central and blazed spot. The maximum intensity loss towards other
orders is limited to 19% and is found when the intensities of the central
and blazed spots are equal.

A direct comparison of the potential variation near the turning
point of the beam, in the case of (a) regular and (b) blazed diffraction
is provided in [Fig. 11]. In the figure, the bold lines indicate the
shape of the equipotential at the classical turning point of the beam.
Each next equipotential is obtained in steps of 0.5 V, and these are
included in the plot to demonstrate how the higher spatial frequency
components in the field attenuate faster away from the mirror electrode
than the slower spatial components. Also, from the shown equipotential
lines the importance of working with a beam with low energy spread
can be directly understood, as the spatial components that create the
characteristic shape of the equipotential lines attenuate within the
range of energy spread of a conventional Schottky source that is not
monochromatized.
13
For the regular diffraction we observe the fundamental spatial
frequency that is associated with the first order diffraction, and near the
classical turning point an additional higher spatial component is visible
as well. It is the higher spatial component that provides attenuation
of the undesired higher order beams that result from the fundamental
frequency.

The equipotential lines that are associated to the blazed diffraction
pattern exhibit a distinct (near)-linear slope. This is to be expected
for blazed diffraction, as a linear phase ramp must be added to the
reflected beam and the phase scales proportional to the square root of
the potential. From the equipotential lines above the classical turning
point the fast attenuation of higher spatial frequencies in the field is
observed, and at approximately 5 V above the classical turning point
only the fundamental frequency is distinctly visible.

4.3. Beam mode conversion

The conversion of plane waves into vortex beams has gained in-
creasing interest in the recent decade. Vortex beams are solutions to the
Schrödinger equation in cylindrical coordinates and are characterized
by carrying an Orbital Angular Momentum (OAM, 𝓁), which expresses
itself through an azimuthal component in the wave front [15,16].

Vortex beam generation in TEM can be realized both by using a
phase plate, or an amplitude mask. On a phase plate, a spiral ramp is
applied [15], where as in the case of an amplitude mask a diffraction
grating pattern with a dislocation at the optical axis is used [16]. The
number of dislocations 𝑁 then dictates the Orbital Angular Momentum
(𝓁) that is added into the diffracted beam.

With the use of one mirror, we can only adjust the phase of the
reflected electron and thus the proper mirror pattern can be obtained by
modeling a spiral phase pattern at the mirror plane. Such phase pattern
is shown in [Fig. 12(d)] and corresponds to 𝓁 = 3 here. In [Fig. 12(a)]
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Fig. 10. Blazed grating diffraction efficiency with one electron mirror, as a function of phase modulation amplitude 𝐴{𝑘} of the linear phase ramp at the diffraction plane. The
values of 𝐴{𝑘} are realized by adjusting the ratio of the targeted central and blazed diffraction spot intensities at the image plane. The blazed spot intensity (squares) indicates
the intensity of the first order positive diffraction spot.
Fig. 11. Comparison of the potential landscapes corresponding to (a) a regular diffraction pattern and (b) a blazed diffraction mirror pattern near the classical turning point 𝑧𝑅.
The bold line plots the potential at the classical turning point (−2000 V), and each consecutive line is obtained in steps of 0.5 V.
14
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Fig. 12. Two methods for beam mode conversion from plane wave illumination to an orbital angular momentum carrying beam. Reflection on the vortex pattern (a-c) generates a
diffraction pattern, in which the diffracted beams carry orbital angular momentum. Two dislocations are applied in this pattern, leading to a lowest value 𝓁 = ±2 in the reflected
beam. The amplitude of the topography modulation in the central region of (b) equals 20 nm. Reflection on the spiral pattern (d-f) generates an on-axis spot with orbital angular
momentum, with 𝓁 = 3 in the presented case. (Last column) For both patterns, the potential at the classical turning point is shown and these display resemblance to the phase or
amplitude masks that would produce a similar effect in TEM. Colormap ranges: phase distribution [−𝜋, 𝜋], topography ±400 nm (vortex) and ±200 nm (spiral) and ±2 mV at the
classical turning point. Results obtained for pattern bias potential of 3 V.
we show the equivalent phase pattern that corresponds to a diffracted
beam with 𝓁 = ±2 in the first order.

The reconstructed mirror pattern topographies are shown in
[Fig. 12(b, e)] and consist of high spatial frequency components with an
amplitude of up to ±400 nm (b) and ±200 nm (e) at the edges. Near the
center of the vortex pattern, the profile height amplitudes are smaller
and range around ±20 nm. We note that overall, the spatial frequencies
in the mirror pattern appear higher than those observed at either the
phase pattern at the diffraction plane, or the potential variation near
the classical turning point. This is explained by the attenuation of high
frequency components, which occur faster away from the mirror elec-
trode compared to the lower frequency components. Hence, the profile
amplitude of these higher spatial frequencies at the mirror electrode
are relatively high in comparison to the lower spatial frequencies, in
line with the observations made in [Section 2.3]. The effect of the
high spatial frequency components in the pattern quickly attenuates
in the electric field, as can be observed from the potential variation
around the averaged coordinate of the turning plane [Fig. 12(c, f)]. At
this plane, a potential modulation of ±2 mV remains, and the shape
of the potential variation mimics closely to that of the targeted phase
distribution at this plane.

4.4. Arbitrary phase and amplitude modulation

We conclude this section with a demonstration of the generality of
electron beam modulation with patterned mirrors. For this, we attempt
to create a probe at the image plane after a double mirror reflection
15
that shows resemblance to the institute logo of Delft University of
Technology. The logo contains a flame, and our goal here is to obtain
the mirror patterns that are required to realize the amplitude and phase
modulation as shown in [Fig. 13(a)]. As a first step, the targeted image
plane distribution is Fresnel propagated to the first mirror plane. This
provides us with the amplitude and phase distribution that we must
imprint into the beam. However, note that a mirror cannot be used for
near field amplitude modulation. Hence, we consider here the situation
where mirror 2 is positioned in the Fourier plane of mirror 1. We can
then realize the required amplitude distribution in front of mirror 2, by
means of phase modulation at mirror 1. We then use the reflection at
mirror 2 to add the phase modulation, such that at a Fourier plane of
mirror 2 the target wave front is realized.

In [Fig. 13(b)] we show the Fourier spectrum of the phase compo-
nents that must be added by mirror 2. From this data it is seen that a
large number of spatial frequencies are required in the mirror pattern.
Note, however, that all of the required phase modulation amplitudes
satisfy 𝐴𝑘 ≤ 0.2 rad, which in turn is well below the limit for addition
of multiple spatial frequencies of 𝜋∕6 rad as set forth in [Section 2.1.5].
Based on this spectrum, the mirror topography is constructed and the
result of this is shown in [Fig. 13(c)]. The resulting modulation of
the electric potential in the vicinity of the classical turning point,
corresponding to the plane at which the linear electric potential equals
−2 kV, is shown in [Fig. 13(d)].

Admittedly, this result is not very intuitive as it does not clearly
resemble any feature of our targeted image plane distribution. In order

to verify the effect on the beam at the image plane after the double
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Fig. 13. Demonstration of controlled amplitude and phase modulation with two patterned mirrors. (a) Target amplitude and phase at the image plane. (b) Fourier spectrum of
target phase modulation amplitude in front of mirror 2. (c) Pattern topography of mirror 2. (d) Electric potential variation in the vicinity of the classical turning point plane of
mirror 2. (e) Reconstructed intensity at the image plane after double mirror reflection. (f) Reconstructed phase distribution at the image plane after double mirror reflection, with
partial transparency at pixels for which the reconstructed intensity is less than 0.05 for visual clarity.
mirror reflection, we reconstruct the wave front directly after the reflec-
tion at mirror 2 through [Eq. (8)], and by multiplying this result with
the amplitude distribution that resulted from the reflection at mirror 1,
as we currently do not yet have a proper model for propagating the
16
reflected beam from mirror 1 onto mirror 2. The obtained intensity
and phase distribution at the image plane are shown in [Fig. 13(e-f)]
and here we can identify what shows a resemblance with the targeted
image plane distribution. The recovery of the targeted image plane
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distribution as demonstrated here provides to us an initial evidence
for the feasibility of controlled wave front shaping with two patterned
electron mirrors.

5. Discussion and conclusion

We outlined above that in principle it is possible to gain control
over the electron beam wave front through the application of two
patterned electron mirrors. This may be referenced to methods in
light optics, where the use of two spatial light modulators (SLMs) and
polarizers [53], or the use of multiple deformable mirrors [54] enable
full spatial beam control.

The effect that a mirror pattern has on the phase of the reflected
wave front can in principle be obtained through an existing convolution
model, that we discussed in [Section 2.1.1]. Lichte made use of this
model when he successfully demonstrated its use for the measurement
of the roughness of ‘supersmooth’ electrodes by using electron mirror
interference microscopy [25]. The validity of this method is however
limited to situations where the mirror roughness is much smaller than
the distance of closest approach of the electron beam towards the
mirror electrode. This is generally not the case for electron mirrors that
are intentionally being patterned, especially for the micromirror setup
that we are currently designing [43].

For this reason, we have generalized the method by numerically
obtaining the phase difference through application of the WKB method.
In fact, our method of integrating the electric field along the crest and
through of the modulated field to obtain the phase modulation shows
some form of analogy to the experimental work of Lichte, when one
considers the integral along the crest and trough as the object and
reference beam in an interference microscope. Regardless, for this we
must rely on the validity of the WKB approximation in the vicinity of
the turning point of the electron beam. The validity of this has been
suggested by our earlier calculations [36] on grating mirrors that are
characterized with a single pitch value. We have compared our WKB
method to the example data of figure 5 in [25]. For this comparison, we
estimated from the cited work a mirror field length of 𝑧1 = 6 mm and
found a good agreement, indicating that our method converges to the
convolution model at large values of pitch. At the same time, we have
demonstrated empirically that the validity of the convolution model
breaks down whenever 𝑧𝑅 ≤ 2ℎ, i.e., when the beam approaches the
mirror pattern to within the height variations inside that pattern.

Further, we have assumed the generality of the method and have
motivated that linear addition of the effect of multiple spatial frequen-
cies in the mirror topography is at least valid when the individual
components do not add more than 𝜋∕6 rad phase modulation to the
reflected wave front. If we prefer to include stronger phase modulation
terms, this would require some form of iterative scheme that removes
the unwanted higher order spots that form during the first step of the
topography construction.

The use of replaceable, or otherwise dynamically programmable
mirror patterns would significantly increase experimental flexibility.
Although we recognize that this is technologically challenging, we
also stipulate the advantage that the backplane of the mirror does not
obscure the beam path, thus leaving plenty of access for any control
logic or circuitry. A good deal of progress with programmable mirrors
is made in the past with the development of Reflective Electron Beam
Lithography (REBL) [27]. Albeit that the geometry of the mirrors in the
REBL deviate from our implementation, since the REBL mirror contains
an individual Einzel lens in front of each pixel, it has demonstrated the
use of CMOS technology for (individual) addressing of mirror pixels
through the back plane of the device. If a practical linear mirror field
strength of 𝐸𝑧 = 10 kV/mm is assumed, this yields a correspondence
between pattern profile amplitude and pixel potential of 𝑈 = 𝐸𝑧𝛿∕𝛿0 ≈
10 mV/nm. The use of pixelwise programmable mirrors instead of
17

relying on a topographic pattern would require a smoothness that is (
less strict than that of an etched pattern, under the assumption that
each pixel can be addressed individually.

The advantage of a pixelwise programmable mirror instead of a
topographic patterned mirror is also apparent from the ability to correct
for mechanical tolerances. Tilt is the simplest form of a mechanical
error that can arise in a mirror setup. The effect of tilt is a linear field
strength gradient perpendicular to the optical axis. This resembles a
dipole field that acts perpendicular to the electron beam propagation
and results in a sideways beam deflection.

The effect of this dipole field on the beam deflection can be ap-
proximated. For an assumed mirror tilt angle 𝜃, and beam width 𝑤, the
ipole strength along the propagation axis becomes 𝐸2 = 𝑈𝜃𝑤∕(𝑧1(𝑧1+
𝑤)). Here, 𝑧1 is the length of the mirror field, and U the mirror elec-
rode bias potential. In most practical cases, 𝜃𝑤 ≪ 𝑧1. For an average
eam energy in the mirror field equal to half the electrode potential, the
eflection angle in the field may then become approximately given as
≈ 2𝜃𝑤∕𝑧1 if we assume a top hat field distribution. In a setup that we

re currently developing, we have 𝑤 = 10 μm, and 𝑧1 = 200 μm, which
eads to 𝛼 ≈ 0.1𝜃, i.e., the deflection due to a tilt error equals roughly
0% of that tilt error. With the use of silicon based mirror electrodes
nd flat glass spacers, the tilt error is easily limited below 𝜃 ≤ 1 mrad.

Other optical effects may arise from the non-flatness of the mirror
lectrode that extends the mirror pattern topography. Non-flatness can
rise for instance from mechanical stress in the mirror electrode. Stress
n one direction may lead to astigmatism in the reflected beam, and
he effect of this on the reflected beam can actually be modeled by
dding a spatial frequency with the assumed curvature into the mirror
alculations. In reference to [Fig. 5] we note that a beam width of 10 μm
i.e., a spatial frequency of 0.1 μm−1) already adds phase modulation
mplitude to the reflected beam when the curvature of the electrode is
n the order of single or double digit nanometers, depending on the bias
otential. While we recognize the non-flatness of the mirror electrode
s a possible technology barrier during the initial development of a
ouble mirror system based on topographic patterned mirrors, the
evelopment of pixelwise programmable mirrors will offer a solution
o this limitation.

We conclude the discussion on optical effects by noting that the
igh coefficient of spherical aberration that is usually associated with
lat electron mirrors can to a large extent be compensated for by the
eometry of the imaging lens in between the mirror electrode and the
mage plane [55]. For use of the virtual phase plate with high energy
lectron beams, such as those found inside a transmission electron
icroscope, we recognize the risk of electrical breakdown as one of the
ain limitations. As we rely on mirrors, this implies slowing down of

he incident beam to zero kinetic energy and thus the mirror potential
ust always be slightly more negative than that of the electron source

athode. However, we believe that this issue can be circumvented for
nstance by placing the double mirror system in front of the beam
ccelerator, close to the source module of the microscope.

Controlled wave front shaping requires a coherent electron beam.
s the degree of coherence is directly related to the reduced brightness
𝑟 of the source, a high-quality source is required. For a coherent beam,

he beam current must be limited to less than 𝐼beam ≤ 10−18𝐵𝑟 [8].
n practice this leads to a beam current in the order of 1 − −100 pA
or a Schottky source. The throughput of the microscope then becomes
imited as a trade of for beam coherence, as is similar to other phase
late techniques.

Finally, we discuss various opportunities that present themselves
ven when only fixed mirror patterns are used. In the integrated double
irror setup as it is shown in [Fig. 7], there is room for the placement

f a specimen in between the two mirrors at the mirror axis, at the
ross-over plane of the beam next to the electrostatic deflector. If one
ould apply a grating pattern on both the top and bottom mirror,

he diffractive action of both mirrors constitutes an amplitude splitter

first mirror) and amplitude combiner (second mirror). Placement of
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a specimen in the common cross over plane of the mirror axis that
may or may not block the surroundings of the mirror axis, while
leaving the on-axis region free, creates a Mach–Zehnder interferometer
and thus enables an experimental demonstration of interaction-free
measurement for electrons [45,46].

As a next step, we now imagine further possibilities when pulsed
operation of the electrostatic deflector on the optical axis becomes
possible. When given the possibility to double the low-voltage de-
flection field strength of this deflector within the time spent by the
electron at the mirror axis, the electron will be cycled back to the
mirror axis upon passing the deflector for the second time, since
the deflection angle doubles as well. This would enable multi-pass
interaction free measurements with electrons [56]. When a grating
pattern is used as beam splitter and combiner, the setup also offers
a feasible method for experimentally performing quantum electron
microscopy [49], although additional alignment difficulties must be
considered for this [50]. Of course, this would only demonstrate the
principles of quantum electron microscopy, because a real application
on beam sensitive materials would require at least 60 keV beam energy
instead of the 2 keV that was used in our calculations.

In conclusion, we have described a novel microscopy scheme that
could potentially enable the manipulation of both phase and amplitude
of an electron beam. This is realized by using two patterned elec-
tron mirrors inside a microscope. The scheme makes use of reflective
electron optical components to modulate the phase of the reflected
wave front, and in this way we expect to avoid typical issues that are
encountered in transmission based approaches to beam shaping.
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Appendix A. Turning point coordinates through the Lambert-W
function

The classical turning point 𝑧±𝑅 for the most and least nearest ap-
proach of the beam towards the mirror with a modulated potential are
found by equating the scalar electric field to the cathode potential 𝐸 at
the source,

𝑈 (𝑥±, 𝑦±, 𝑧
±
𝑅) = 𝑢0

[

1 −
𝑧±𝑅
𝑧1

]

± 𝐹𝑛,𝑚 exp(−2𝜋𝑘0|𝑧
±
𝑅|). (35)

Solutions to these equations are provided by the Lambert-W func-
tion, in the form of [42],

𝑧±𝑅 = 1
2𝜋𝑘0

×
−𝐴𝑊0

(

−𝐴−1 exp
[

−𝐵
𝐴

])

− 𝐵

𝐴
. (36)

In this equation,

𝐴 = ±
𝑢0 , 𝐵 = ±

𝐸 − 𝑢0 , 𝑘0 ≡ 𝑘𝑧 = 2𝜋
√

𝑘2𝑛,𝑥 + 𝑘2𝑚,𝑦.
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2𝜋𝐹𝑛,𝑚𝑘0𝑧1 𝐹𝑛,𝑚
(37)

In MATLAB, use of the function lambertw(k, x) enables the
calculation of 𝑘th branch of the Lambert function, evaluated at 𝑥 [58].
Solutions for 𝑧±𝑅 are obtained from the zero-th (principal) branch.

Appendix B. Numerical methods

We use MATLAB for all numerical calculations. The numerical work
consists of the following subroutines:

• WKB approximation solver.
• WKB lookup table interpreter.
• Fresnel propagator.
• Target phase and amplitude solver.
• Scalar potential constructor.

In the following sections we discuss the specifics for implementing
the above listed routines into MATLAB.

B.1. WKB approximation solver

The WKB approximation [Eq. (5)] is numerically evaluated for a
single parameter set consisting of spatial frequency (𝑘0), pattern am-
plitude (𝛿0), cap electrode spacing (𝑧1) and excitation parameters beam
energy (𝐸), and pattern potential (𝑈pattern). The WKB approximation is
calculated along two trajectories that run parallel to the propagation
(𝑧) axis and coincide with a crest and through of the considered spatial
frequency, in accordance with [Eq. (6)].

The WKB approximation integral is computed over the full length
of the two axes, and is terminated at points 𝑧0 and 𝑧1. To this end,
we first calculate the integrated momentum along the both trajectories.
This procedure generates complex valued results, as the argument to
the square root becomes negative as |𝑧| < |𝑧𝑅|. We only keep the real
alued part, as this represents the data in front of the turning point.

isting 1: Definition of axial momentum for crest and trough field.

1 % Zero p i tch po t en t i a l
2 U_zero = @(z ) Up∗(1+1/d∗(+ de l t a∗exp (2∗ pi∗kp∗z )−z ) ) ;
3 % Half p i t ch po t en t i a l
4 U_hal f = @(z ) Up∗(1+1/d∗(−de l t a∗exp (2∗ pi∗kp∗z )−z ) ) ;
5
6 % Elec t ron momentum per ax i s
7 p_zero = @(z ) r ea l ( s q r t (2∗me∗ee∗(E−U_zero ( z ) ) ) ) ;
8 p _ha l f = @(z ) r ea l ( s q r t (2∗me∗ee∗(E−U_hal f ( z ) ) ) ) ;

As the non-linear behavior of the electric potential is confined in
the region close to the turning point 𝑧𝑅 ≈ 𝑧0, the numerical integra-
ion is performed on logarithmically spaced waypoints, with increased
aypoint density near 𝑧𝑅.

isting 2: Definition of axial momentum for crest and trough field.

1 % De f in i t i on of waypoints fo r i n t eg r a t i on .
2 waypoints = −logspace ( log10(−z1 ) , −9,

number_of_waypoints ) ;
3 % Numerical i n t eg r a t i on and phase ex t r a c t i on .
4 i n t _ z e r o = 2/hbar∗ i n t e g r a l ( p_zero , z1 , z0 , ' WayPoints

' , po in t s ) ;
5 i n t _ h a l f = 2/hbar∗ i n t e g r a l ( p _ha l f , z1 , z0 , ' WayPoints

' , po in t s ) ;
6 % Phase in correspondence with [Eq . (3 .5 ) ]
7 phi = i n t _ z e r o − i n t _ h a l f ;
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B.2. WKB lookup table generator

The WKB lookup table data, as shown for three reference amplitudes
in [Fig. 5] is generated by repetitive calls to the WKB approximation
routine. The lookup tables that are used for this work are obtained
for parameter space  = 2 keV, linear field strength 𝐸𝑧 = 10 kV/mm
(𝑧1 = −200 μm) and 105 waypoints in the WKB approximation integral.

he construction of the lookup table data is a relatively time consuming
ask, but has to be performed in principle only one time. We note that
he use of a lookup table reduces the calculation time at a later stage,
hen the data is used to construct mirror topographies.

isting 3: WKB lookup table generator.

1 fo r k0 = l i s t _ k 0
2 fo r Up = l i s t _ U p a t t e r n
3 WKB_data ( i _k , i _U ) = WKB_approximation ( k0 ,

delta0 , ' Pa t t e rnPo t en t i a l ' , Up , '
BeamEnergy ' , E0 , ' ApertureSpacing ' , z1 ,
' NumberOfWaypoints ' , 1e5 ) ;

4 end
5 end

The generated data matrix WKB_data and the associated list of
spatial frequencies and bias potentials are stored and used as lookup
table during the pattern reconstruction. We make use of linear interpo-
lation in the spatial frequency data points in order to compute a pattern
frequency component that is not part of the original lookup data.

Listing 4: Obtaining the profile scaling parameter for a target phase.

1 % Find in t e rpo l a t ed re fe rence amplitudes ( fo r 1 AA) .
2 phase _per _ re fe rence _ampl i tude = interp1 (k0 , WKB_data ,

pa t t e rn _k0 _va lue s ) ;
3 % Scale with re spec t to the required angle .
4 amplitudes = del ta0 . / phase _per _ re fe rence _ampl i tude

.∗ ( myPhaseTerms ) ;

B.3. Fresnel propagator

The relationship between image plane (𝜓1) and diffraction plane
(𝜓𝑀 ) distributions is described by a Fresnel propagation and interme-
diate lens action [41],

𝜓𝑀 =
(

𝜓1 ∗ exp
[

−𝑖2𝜋𝑘𝑒
𝑅2

2𝑓

])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Propagation

× exp
[

𝑖2𝜋𝑘𝑒
𝑅2

2𝑓

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Focusing

. (38)

In the equation, the wave front 𝜓1 at the common cross-over plane
is convoluted (∗) with a propagation function that depends on the
modulus of the beam wave number (𝑘𝑒), transverse radial coordinate
perpendicular to the optical axis (𝑅) and focal length (𝑓 ) of the lens,
and next focused by the focusing term.

Listing 5: Fresnel propagation from image to diffraction plane.

1 % Based on Cowley (1975) Ch . 3 , Fre sne l propagator .
2 prop = exp ( −1i ∗2∗pi∗k∗(X.^2+Y . ^ 2 ) /(2∗ f ) ) ;
3 l ens = exp ( 1 i ∗2∗pi∗k∗(X.^2+Y . ^ 2 ) /(2∗ f ) ) ;
4 % Obtain the complex wave funct ion at the d i f f r a c t i o n

plane
5 % This c a l cu l a t i on may take a while , depending on the

image s i z e .
6 d i f f r a c t i o n _ p l a n e = conv2 ( psi1 , prop , ' same ' ) .∗ l ens

/ sq r t ( numel ( l ens ) ) ;
19
B.4. Target phase and pattern solver

The Fourier transform of the phase distribution at the mirror plane
is obtained and the complex valued terms provide the basis for the
pattern reconstruction. For each phase value of the Fourier term and
associated spatial frequency, the WKB lookup is performed on the
magnitude of the Fourier term. This provides the amplitude for this
mirror topography contribution. The complex angle of the Fourier term
is used in the reconstruction of the mirror pattern in order to provide
proper relative positioning of the wave components. The number of
Fourier terms that is considered is limited by a threshold value that
can be set arbitrarily close to zero. The threshold allows to limit
computation time by skipping very high frequency components that
add virtually no phase to the reflected beam, or that would otherwise
result in an excessive pattern profile height.

Listing 6: Relating phase to pattern topography.

1 reduced _d i f f r a c t i on _p l ane = angle ( d i f f r a c t i o n _ p l a n e ) ;
2
3 % Obtain s p e c t r a l components of the angle

d i s t r i b u t i o n .
4 spectra l _components = f f t 2 ( r educed _d i f f r a c t i on _p l ane )

/ numel ( r educed _d i f f r a c t i on _p l ane ) ;
5 spectrum = f f t s h i f t ( spectra l _components ) ;
6
7 % Loop over a l l s p e c t r a l components
8 fo r row = 1: length ( ky )
9 fo r co l = 1: length ( kx )
0 th i sPh i = abs ( spectrum (row , co l ) ) ;
1 th i sK = sq r t ( kx ^2 + ky ^2 ) ;
2 % WKB lookup
3 amplitude = WKB_lookup (WKBdata , th i sPh i ,

thisK , Up) ;
4 % Add the geometr ica l pa t te rn angle to t h i s

value
5 GeoAngle = angle ( spectrum (row , co l ) ) ;
6 % Save fo r pat te rn recons t ruc t i on
7 recons t ruc t ( end +1 , : ) = [ky kx amplitude∗exp (1

i ∗GeoAngle ) ] ;
8 end
9 end

The mirror topography is reconstructed based on the coefficients
that were obtained in the previous step. For each spatial component,
the contribution to the topography is determined as a Fourier term.

Listing 7: Reconstructing the mirror topography.

1 % recons t ruc t = (3x1 ) double complex [ky kx amp∗exp
(1 i ∗phi ) ]

2 f u l l _ f i e l d = zeros ( s i z e (X) ) ;
3 fo r index = 1: s i z e ( recons t ruc t , 1 )
4 e l = recons t ruc t ( index , : ) ;
5 ky = rea l ( e l (1) ) ;
6 kx = rea l ( e l (2) ) ;
7 % Ver i f i ed recons t ruc t i on sum .
8 component = abs ( e l (3) ) .∗ ( cos ( 2∗pi ∗( kx .∗X + ky

.∗Y) + angle ( e l (3) ) ) ) ;
9 f u l l _ f i e l d = f u l l _ f i e l d + component ;
0 end
1 % Scale the f i e l d to un i t s of nanometer .
2 f u l l _ f i e l d = 1e9 ∗ f f t s h i f t ( f u l l _ f i e l d ) ;

B.5. Scalar potential constructor

The shape of the scalar electric potential, as a function of pattern
topography is calculated in accordance with [Eq. (23)]. We make use
of anonymous function declarations in MATLAB for this calculation.
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Listing 8: Scalar potential reconstruction.

1 % Bias at ana l y s i s point ( zz ) , assuming U1 = 0.
2 U0 = Up∗(1−( zz /z1 ) ) ;
3 % Modulated po t en t i a l as Anonymous funct ion .
4 UU = @(X , Y , zz , kx , ky , amp, the ta )

...
5 amp .∗ cos ( 2∗pi ∗( kx .∗X + ky .∗Y) + theta ) ∗

...
6 exp(−abs ( zz )∗2∗pi∗ s q r t ( kx^2+ky ^2 ) ) ;
7
8 fo r index = 1: s i z e ( recons t ruc t , 1 )
9 % Row elements of r econs t ruc t i on array .
0 e l = recons t ruc t ( index , : ) ;
1 ky = rea l ( e l (1) ) ;
2 kx = rea l ( e l (2) ) ;
3 amp = abs ( e l (3) ) ;
4 the ta = angle ( e l (3) ) ;
5 % Calcu la te con t r ibu t ion fo r t h i s term .
6 component = UU(X , Y , zz , kx , ky , amp, the ta ) ;
7 po t en t i a l = po t en t i a l + component ;
8 end
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