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Abstract

Stroke is one of the leading causes of both death and disability in the world. Consequently, the processes
underlying motor recovery are a hot research topic. Electroencephalography (EEG) and diffusion weighted
magnetic resonance imaging (dMRI) are two modalities that can be used to find functional and structural
predictors for this motor recovery, respectively. Specifically, EEG measures the sources of activity (dipoles)
in the brain while dMRI provides estimates of the properties of white matter (WM) tracts such as the fiber
orientation. The estimated fiber orientations can be used to reconstruct WM connections in the brain by
performing fiber tractography.

In this thesis, we aim to introduce a framework for model selection and probabilistic tractography with
parsimonious model selection. Practically, we use a range of multi-tensor models to cope with regions with
multiple fiber populations. Furthermore, our probabilistic tractography uses the Cramér-Rao lower bound
to capture the uncertainty in the fiber orientations. We mitigate the effect of overfitting by using a model
selection method that incorporates the ICOMP-TKLD criterion to determine the most appropriate tensor
model in each voxel. Ultimately, this framework can be applied to data from stroke patients and combined
with functional regions obtained from EEG.

We assessed the performance of the model selection method by investigating the influence of b-value and
noise on the ability to detect crossing fibers in the fibercup phantom and human data. In the phantom, our
model selection reconstructed all the crossings for the b-value combination of 1500 and 2000 s/mm2 and at a
signal-to-noise-ratio (SNR) comparable to clinical acquisitions. Moreover, our model selection method was
able to identify the crossing of the corpus callosum and corticospinal tract in the human data.

A range of step sizes and curvature thresholds was used to investigate the sensitivity of our tractography
to its input parameters. In general, a smaller step size and lower curvature thresholds resulted in more deter-
ministic behavior, while a larger step sizes and higher curvature thresholds led to more probabilistic behavior
and deeper propagation into the gray matter in human data.

We compared the performance of our framework and the open source diffusion MRI toolkit Camino on
the fibercup phantom and healthy control data. In this comparison, our framework performed better in
curved bundles and reconstructed more lateral projections of the corpus callosum.

Lastly, we explored the subdivision of the brain into modules for stroke patients and healthy controls, by
combining our framework with sources obtained from EEG. Fewer modules were found in the patient group,
which might be attributed to a change in structural connections after stroke.

Altogether, we have shown that our framework was able to select the appropriate diffusion models in
crossing fiber regions and track across these crossings both in a phantom and human data. Furthermore, we
demonstrated that it is feasible to combine our framework with source locations obtained from EEG.
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1
Introduction

Stroke is one of the leading causes of both death and disability, as well as one of the main causes for a de-
creased quality of life in the world [1, 2]. Particularly, the recovery of motor function after stroke is an impor-
tant factor for the qualify of life of a patient [3]. A possible biomarker for predicting this recovery exists in the
form of the functional and structural integrity of the ipsilesional corticomotor tract [3, 4].

Two modalities that can aid in predicting stroke recovery are electroencephalography (EEG) and diffu-
sion weighted magnetic resonance imaging (dMRI). EEG provides functional information by measuring the
sources of brain activity [5], while dMRI gives structural information by delineating and characterizing white
matter (WM) bundles [4]. Specifically, dMRI measures the diffusion of water in the WM bundles. Diffusion
models are fitted to the data to estimate properties of WM tracts related to, e.g., the fiber orientation, and
fiber density [6, 7]. Probabilistic fiber tractography algorithms strive to reconstruct WM connections in the
brain by following these fiber orientations whilst taking the noise in the data into account [8]. However, the
amount of fiber orientations present is not constant over the brain, hence some type of model selections is
needed to assure an accurate reconstruction of the WM connections [9].

The aim of this thesis is to introduce a framework for model selection and probabilistic tractography with
parsimonious model selection. Essentially, our approach takes uncertainties into account that are derived
directly from the model fitting procedure. To achieve this we apply multi-tensor models, which model the
signal as a combination of multiple fiber compartments and an isotropic compartment. Additionally, this
framework can be applied to data from stroke patients and combined with functional regions obtained from
EEG.

In this thesis, we will asses the performance of the different components of this framework. First of all,
the model selection will be assessed by investigating the influence of b-value, noise and parametrization on
the ability to detect crossing fibers. Furthermore, we will perform a sensitivity analysis of the tractography to
investigate the effect of step size and curvature threshold on the outcome. Additionally, our framework will be
compared to an off-the-shelf dMRI toolkit in the form of Camino [10], which can perform both model selec-
tion and probabilistic tractography. Lastly, our framework will be combined with dipole locations obtained
using EEG to test the feasibility of using our framework to compare biomarkers between patients affected by
stroke and a control group.
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2
Literature

2.1. Stroke and stroke recovery
Stroke occurs when the blood flow to certain brain areas is severely limited and is caused by either the occlu-
sion of a cerebral artery by a blood clot (ischemic stroke), or compression of brain tissue due to a bleeding
(hemorrhagic stroke) [11]. Both causes are visualized in Figure 2.1. As a consequence of the decreased blood
flow, brain cells are deprived of oxygen, which leads to cell death. The resulting damage to the brain can
result in death of the patient or, when the patient survives, partial loss of brain functions which can lead to
decreased functionality of the limbs and problems with producing and processing speech. Furthermore, the
severity and extend of function loss depends on the position of the stroke in the brain and the amount of
brain damage [11].

(a) Ischemic stroke (b) Hemorrhagic stroke

Figure 2.1: Schematic representations of ischemic and hemorrhagic stroke, adapted from [12]

The remaining level of disability of stroke patients is determined by the recovery process after stroke and is
a major factor in their quality of life [13]. The recovery process consists of re-learning the lost motor functions
through physical therapy and a spontaneous element of which the origin is not precisely known [3]. A better
understanding of the underlying biological mechanisms governing these two processes could aid in improv-
ing the outcome of the rehabilitation process and consequently the quality of life of stroke patients [14].

2.2. The brain and diffusion
The brain can roughly be split up into two different tissue types: gray matter and white matter. The gray
matter (GM) contains neuronal cell bodies and dendrites, and can be found in the cerebral cortex and basal
nuclei. Moreover, gray matter is predominantly found in the functional regions of the brain, such as the
sensory, motor and association areas. White matter (WM) mainly consists of myelinated fibers, the axons,
that are grouped into WM bundles/tracts. Specifically, the WM bundles form the connections that allow the
different functional regions of the brain to communicate with each other and the rest of the body [11].
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2.2.1. Diffusion in the brain
Diffusion is the random motion of molecules, such as water, due to their thermal energy. Importantly, iso-
tropic diffusion occurs when the motion of the molecules is equal in all directions, whereas a directionally
dependent diffusion is referred to as anisotropic diffusion [15]. In the brain, anisotropic diffusion primarily
occurs in the white matter, whereas the diffusion in gray matter is mostly isotropic.

Figure 2.2: Schematic drawing of the diffusion in an axon, adapted from [16]

The axonal cell membranes are the dominant component in the diffusion in and around axons in the
white matter (see Figure 2.2). These membranes limit the diffusion of water in the radial direction (D(⊥)),
while the water can move freely along the axial direction (D(//)). Other cellular components such as the
myelin sheath, neurofilaments and microtubules also influence the degree of anisotropy as these impede the
radial diffusion [16].

2.3. MRI basics
In magnetic resonance imaging (MRI), magnetic fields are used to manipulate and measure the magnetiza-
tion due to nuclear spins in the body. In order to create an image, three types of magnetic fields are used in
MRI. First of all, the nuclear spins are aligned in the direction of a strong static magnetic field (> 1.5 Tesla),
the B0 field. The nuclear spins (and therefore the magnetization) will start to precess around this B0 field at a
frequency known as the Larmor frequency, which is proportional to the field strength.

Gradient coils are used to generate gradients in the static magnetic field and introduce a positional depen-
dency of the precession frequencies, which makes it possible to differentiate between signals coming from
different positions in the body. Lastly, radio frequency (RF) fields are used to flip the magnetization into a
plane that is transverse to the B0 field. This allows for measurement of the weak RF fields generated by the
precessing spins using receive coils. As a result of the positional dependence of the precession frequency this
signal can be used to form an image [17].

2.4. Diffusion weighted MRI
The first description of the effect of diffusion on the relaxation time of spins, the shortening of the T2 relax-
ation, was given by Carr and Purcell in 1954 [18]. In 1965, Stejskal and Tanner developed a sequence of gra-
dient pulses (Figure 4.12) to explicitly weigh the magnetic resonance (MR) signal with diffusion [19], which
formed the basis for the introduction of dMRI in the 1980s [20].

A typical diffusion sensitizing pulse sequence introduces a positional dependency of the spin precession
frequency by applying two gradients seperated by a rephasing 180o-pulse. Importantly, this switching of gra-
dients has no net effect in the case of a stationary spin, as the accumulated phase during the first gradient
is compensated by the second gradient. However, spins that move in the direction of the gradient will have
a residual phase due to different magnetic fields felt by the spins during the two gradient pulses. This differ-
ence in phase results in attenuation of the measured MR signal [21]. Other pulse sequences are also able to
sensitize the MR signal to diffusion. For example, the same effect can be obtained by removing the 180o-pulse
and reversing the polarization of the second gradient pulse, which is known as a bipolar gradient [15].
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Figure 2.3: Schematical representation of the positional dependency of precession frequency during the bipolar gradients. Based on
[21].

2.4.1. The diffusion signal
The MR signal in dMRI is proportional to the T2 relaxation, the diffusion in a voxel and the intra-voxel in-
coherent motion. These last two parameters cannot be measured independently and are combined in the
apparent diffusion coefficient (ADC) [22], which results in the signal equation given below:

S = [ρ]e−t/T2 e−bD . (2.1)

Equation 2.1 shows that the signal measured in dMRI is proportional to the proton density [ρ] and can be
seen as a mix of a T2 weighted signal and a diffusion weighted signal. The first exponential represents the T2

weighting which depends on t the echo time and the T2 relaxation constant. The second exponential, which
denotes the diffusion weighting, depends on the diffusion weighting factor b (b-value) and the apparent dif-
fusion coefficient D [17].

Importantly, the axons in the brain have a size in the order of micrometers while the resolution of dMRI is
in the order of millimetres. Hence, the signal from one voxel in a dMRI acquisition measures a bulk effect of
e.g. multiple fiber bundles and other extra cellular components, and not the diffusion in individual axons [23].

The b-value is a function of the parameters shaping the gradient pulses (see Figure 4.12), has units of
mm−2s and is defined as:

b = γ2G2δ2(∆−δ/3). (2.2)

where γ represents the gyromagnetic ratio, G denotes the strength of the diffusion sensitizing gradient pulses,
δ is the duration of the separate pulses and∆ stands the time between the starting points of the two pulses [22].
Moreover, it determines the sensitivity of the MR acquisition to diffusion. In particular, a higher b-value will
allow for the measurement of smaller ADC values, but also decreases the signal-to-noise ratio (SNR) of the
acquisition, as the signal produced by voxels with a large ADC will be below the noise floor [24].

2.5. Diffusion tensor MRI
In vivo, the exponential proportionality of the dMRI signal to a single scalar ADC is only true in tissue with
isotropic diffusion. If we want to describe anisotropic diffusion, such as in WM bundles, the 3D diffusion
profile needs to be taken into account [25]. The diffusion tensor (DT) models the diffusion profile as an
ellipsoid by assuming a single Gaussian diffusion process in a voxel, which is described by a 3 x 3 DT [6]:

D =
Dxx Dx y Dxz

D y x D y y D y z

Dzx Dz y Dzz

 (2.3)

with the diagonal elements representing the diffusion in three orthogonal directions and the off-diagonal
elements representing the correlations. In general, the orthogonal directions (x,y,z) are aligned with the gra-
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dients of the MR-system [20]. The DT can be estimated by solving a linear system of 7 acquisitions, which
consist of 6 acquisitions with non-colinear gradient directions and a b=0 acquisition to estimate the non-
diffusion weighted signal [26].

The eigenvectors and eigenvalues of the DT are used to probe the microstructure of tissue in a voxel.
Particularly, the first eigenvector defines the orientation of the fiber bundles while the eigenvalues can be
used to describe the microstructure using rotationally invariant measures such as the degree of anisotropy
(fractional anisotropy or FA) and mean diffusivity (MD) [27]. These are defined as:

FA =
√

1

2

√
(λ1 −λ2)2 + (λ2 −λ3)2 + (λ3 −λ1)2√

λ2
1 +λ2

2 +λ2
3

; MD = (λ1 +λ2 +λ3)

3
, (2.4)

where λi denotes the ith eigenvector of the DT.
The main applications of DTI are in the field of neurology where the fiber orientations, by reconstructing

WM pathways using fiber tractography, can be used as an aid in the resectioning of brain tumors [28] or as
a predictive tool in stroke patients [29]. Furthermore, the scalar measures can be used to investigate the
progress of diseases such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism, and the
effects of education and aging on the brain [30]. Additionally, other applications exist in quantifiying multiple
sclerosis in the spinal cord [31], imaging muscle tissue (e.g. the tongue) [32], and planning and assessing
treatments in radiotherapy [33].

2.5.1. Limitations
DTI and its assumption of a single Gaussian process has severe limitations as it is well known that the sin-
gle tensor model does not hold in voxels with non-Gaussian diffusion [34]. This is the case in voxels with
multiple fiber populations, whose prevalence has been estimated to range from 33% up to ∼90% of the WM
voxels [9, 35]. Consequently, DTI based tractography leads to erroneously reconstructed WM pathways [36],
and ambiguous correlations of the scalar measures [37]. For example, in the case of two crossing fibers an
increase in the FA of one fiber population will result in a decrease in the FA measured using DTI [38].

2.6. Advanced diffusion models
Several methods have been developed to address the issue of multiple fiber populations in a voxel. These
can be subdivided into methods that estimate the spin displacement probability [39–41] or model the signal
coming from different fiber compartments [9, 34, 42–45]. The data acquisition for these methods uses a
larger number of gradients by uniformly distributing gradient directions at 1 b-value (High angular resolution
diffusion imaging or HARDI) [34], or by sampling the space of diffusion weighings b (q-space) in some other
fashion [40].

2.6.1. Q-space based
Q-space based methods use the signal measured in q-space and its relation to the spatial distribution of the
spins via a Fourier transform. A large number of points in q-space is necessary for reconstructing the 3D
diffusion profile leading to long scan times [39]. However, fewer points can be used when assuming a certain
distribution of spin displacement or the signal in q-space which is used in methods such as Q-ball imaging
and persistent angular structure (PAS) MRI [40, 41]. The main application of these methods is as a model-
free method to estimate fiber orientations, which can derived from the peaks of the 3D diffusion profile, and
perform fiber tractography [46].

2.6.2. Mixture models
Mixture models model the signal from multiple fiber populations as a combination of different fiber bundles
and extra-axonal compartments. A general signal model for these methods can be defined as:

S = (1− f )

(∑
i

vi S f i ber,i

)
+ f Sextr a−axonal , (2.5)

where S f i ber and Sextr a−axonal denote the signal arising from the fiber and extra-axonal compartments, f
stands for the volume fraction of the extra-axonal compartment and vi represents the volume fraction of
each fiber compartment.
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Different approaches for splitting the signal exist, such as modelling the signal as a combination of hin-
dered (Gaussian) diffusion outside the axons and restricted (non-Gaussian) diffusion inside the axon (CHARMED)
[42], separating the signal into intra-cellular, extra-cellular and ceribrospinal fluid (CSF) compartments (NODDI)
[45], extending the DT formalism with multiple anisotropic tensors and one isotropic tensor (Multitensor
models) [43, 47], and modelling the signal as a convolution between a diffusion dependent signal response
function and a fiber orientation density function (spherical deconvolution) [48].

Importantly, the mixture models do not only include information about the fiber orientations but can also
provide scalar quantities characterizing the microstructure of the brain [23]. Scalar quantities estimated in
these models range from the volume fractions of the intra and extra axonal components (NODDI, CHARMED,
Multitensor models) [49], the dispersion of axons (NODDI) [45], the FA for separate compartments (Multiten-
sor models) [24], and other FA-like measures (Spherical deconvolution) [40, 50].

2.7. Model selection
The aforementioned mixture models are capable of modelling the non-Gaussian diffusion signals produced
by multiple fiber populations. However, applying these models in voxels with a single fiber population may
result in overfitting and thus erroneous estimations of fiber orientations and model parameters [51].

In practice, model selection is used to either provide an a-priori estimate of the fiber populations or match
the suitable model to the data. Different model selection approaches exist that aim to select the model pa-
rameters best supported by the data [9] (Automatic relevance determination), estimate the number of fiber
compartments [35], determine the type of diffusion [52], and find a trade-off between goodness of fit and
model complexity [53] (parsimonious model selection).

All these different model selection methods have their own limitations. For example, the process of au-
tomatic relevance determination is very time consuming due to its use of Markov Chain Monte Carlo sam-
pling [9]. Furthermore, data specific thresholds are needed for the methods that estimate the number of fiber
compartments and determine the type of diffusion [35, 52]. Lastly, parsimonious model selection methods
require all the models to be fitted to the data separately, thus take more time depending on the amount of
models used [9, 53].

2.8. Fiber tractography
Most fiber tractography algorithms strive to reconstruct WM connections in the brain by following the lo-
cal tract orientations that were estimated using the aforementioned methods. Furthermore, other (global)
tractography algorithms exist that aim to find the total configuration of WM bundles based on the dMRI-
data [54, 55]. The rest of this section will focus on local tractography algorithms because of their relevance to
the scope of this thesis.

Tractography algorithms can be roughly subdivided into two types: deterministic and probabilistic. De-
terministic algorithms use line propagation techniques to generate streamlines from a seed region [56]. How-
ever, noise in the dMRI acquisition can introduce uncertainties and possible errors in the generated stream-
lines [57]. Alternatively, probabilistic tractography algorithms target to address this issue by modelling a
probability density function (PDF) of the fiber orientations [8]. A density of streamlines can be obtained
by sampling this PDF, which is assumed to relate to the probability of connection between voxels.

Current methods to estimate the fiber orientation PDFs are based on the shape of the diffusion tensor [58],
the variability between acquisitions (i.e. bootstrap methods) [37, 59], and the posterior probability of tensor
parameters (Bayesian inference) [8]. Limitations of these methods include the increased scanning time [60]
and long calculation times for Bayesian inference methods [61].

2.8.1. Parameters of tractography
In general, the behavior of a tractography algorithm depends on its propagation method, stopping criteria,
use of prior knowledge and selection of seed points. The propagation method influences the ability to follow
curved trajectories and track across crossings. In these regions a too large or constrained step size might
result in an overshoot. Interpolating the estimated fiber directions or adapting the step size and direction
based on local curvature are among the methods developed to mitigate this overshoot [62].

Stopping criteria define the endings of the streamlines and can be based on an anisotropy threshold [62],
maximum allowed curvature [8], and/or regional mask. The aim of these criteria is to either prevent tracking
in regions where the estimated fiber orientations are ill-posed (gray matter), or prevent implausible stream-
lines with sharp curvature. Additionally, prior knowledge can be used as an extra filter in the form of ROIs
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(waypoints) that a streamline should pass through to be considered anatomically plausible [63, 64].
Finally, the results of tractography algorithms, in particular deterministic algorithms, are sensitive to their

starting point. The placement of seed points can be done manually, e.g. based on prior knowledge about
anatomical relevance, and automatically based on either an anatomical atlas [65], or activation maps from
functional-MRI (fMRI) [66, 67] and electroencephalography (EEG) [68]. However, automatic methods for seed
placement are preferred as they result in better reproducibility of the tractography [69].

2.9. Basic principles of EEG
During activity, individual neurons in the brain produce intracellular and extracellular electric fields [70]. The
electric fields produced by pyramidal cells, which are located in the cortex, are of particular interest in EEG,
see Figure 2.4. These pyramidal cells consist of long dendrites extending through the cortex and produce a net
potential, the so-called open local field, which can be represented by a dipole source with a certain strength,
position and direction. This potential difference can be measured in EEG by placing a number of electrodes
on the scalp [71].

Figure 2.4: Schematic representation of an EEG measurement and the underlying anatomy, adapted from [12]

Notably, the 2D scalp field measured does not uniquely map to one 3D configuration of dipoles. In other
words, there will be an infinite number of valid dipole configurations for one scalp field map, which is known
as the inverse problem. The main challenge in EEG is to find approaches that solve this inverse problem and
unmix the 2D scalp field into the different dipole sources [70].

Evidently, several assumptions have to be made for the distribution and origin of brain activity during
different mental processes to allow for unmixing of the EEG signal. In practice, such approaches are either
based on experimental inference or modelling of the sources. Experimental inference methods intend to un-
mix the EEG signal based on the additivity of electric fields in the brain. The difference in scalp field between
an experimental task and a resting state or another reference task is assumed to only relate to sources specific
to the experimental task [70].

Model based unmixing assumes either a specific time behavior of the EEG signal (Temporal models) or
a certain spatial distribution of the sources (Spatial models). Examples of temporal models are independent
component analysis (ICA) [72] and cluster analysis [73], which assume that the EEG signal is composed of
a series of components with independent temporal behavior or a sequence of briefly stable microstates, re-
spectively. Lastly, the spatial models can be subdivided into discrete and distributed solutions that assume
either a small number of strong sources or a large number of distributed weak sources [70].

2.10. Application of EEG and MRI in stroke
As mentioned before, motor recovery is an important factor in the quality of life of a patient after stroke that
can be studied using EEG and dMRI. A possible predictor for motor recovery is the structural and functional
integrity of the corticospinal tract (CST) [3].

EEG can be used to measure the activity in the motor areas of the brain. Hence, EEG can provide func-
tional information about the CST, as the motor areas are connected to the rest of the body via the CST. More-
over, a number of correlations have been found between motor recovery and EEG measurements such as
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the power ratio of low and high frequency signals at rest [74], and the amplitude of cortical response when
performing a task [5].

Diffusion MRI can reconstruct the WM bundles in the brain and thus provide structural information about
the CST. In particular, the invariant metrics derived from the DT have been linked to motor recovery. For
example, the degree of FA asymmetry [3] and an increase in axial diffusivity (AD) have been found to correlate
with motor recovery [4]. Alternatively, tractography has been used to asses the connectivity and continuity of
the CST and other bundles related to motor function [4].

2.11. Relevance to this work
The methods and concepts described in this chapter contain some key points that can be related to the aim
of this thesis. First of all, the presence of complex fiber orientations introduces a need for diffusion mod-
els that can describe Non-Gaussian diffusion. In this thesis, we will address this through the use of multi-
compartment models which provide compartment specific measures such as the FA, as can be found in [24].

Naively applying the compartment models to the data results in overfitting due to voxels with a single fiber
population. As such, some type of model selection is needed to either give an a-priori estimate of the fiber
orientations or choose the model that best represents the data. Our aim is to use a model selection method
that is objective and requires little a-priori knowledge as an input (as opposed to [35, 52]). Therefore, we will
use parsimonious model selection which selects the models only based on the fit of the models with the data.

The fiber orientations that are obtained after this process of model fitting and selection can be used for
tractography. However, the uncertainty in the data should be taken into account to mitigate the erroneous re-
construction of WM bundles, hence a probabilistic tractography algorithm should be used. We aim to capture
this uncertainty by using an uncertainty measure derived from the model fitting procedure, the Cramér-Rao
lower bound, which represents the lowest possible variance of the model parameters given the data [75].

Lastly, the whole framework of tractography and model selection that will be developed in this thesis
should be applicable to data from stroke patients. Hence, our algorithm should be able to reconstruct mea-
sures such as FA and connectivity of motor bundles to allow for quantitative assessment of stroke related
biomarkers that have been found in literature [3, 4]. Furthermore, the algorithm should take dipole locations
that are found using EEG as an input. Ultimately, this could be used to relate the stroke predictors found
using EEG to the biomarkers found using dMRI.





3
Methods

3.1. Models
The measured signal in a voxel S j was basically modeled to originate from up to two fiber compartments and
an isotropic compartment:

S j = S0

( ∑
i=1,2

fi exp(−b j g T
j Di g j )+ fi soexp(−b j Di so)

)
, (3.1)

where S0 denotes the signal without diffusion weighing, fi and fi so are the volume fractions of the different
compartments, b j stands for the strength of the diffusion gradient of the corresponding gradient direction
g j , Di is the 3 x 3 diffusion tensor of each fiber compartment, and lastly Di so denotes the isotropic diffusion
coefficient [24].

3.1.1. Parameters and constraints
Practically, we fitted nine different diffusion models of increasing complexity to the data, see Table 3.1. These
models were based on the signal model of Equation (3.1). In the most conventional one, a single tensor
model, we parametrized the diffusion tensor Di with its eigenvalues λ1, λ2 and λ3, and three angles θ, φ and
ψ determining the tensor’s orientation. Here, θ andφ represented the orientation of the principle eigenvector
in spherical coordinates, see Figure 3.1a. The third angle ψ determined the rotation of the second and third
eigenvectors around the first eigenvector, see Figure 3.1b. The described single tensor model can be expanded
by adding an isotropic compartment.
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Figure 3.1: Schematic representation of (a) the parametrization of the first eigenvector using spherical coordinates and (b) the rotation
of the second and third eigenvector around the first eigenvector.
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Table 3.1: Summary of the diffusion tensor models, their parameters and constraints

Model Parameters # Comp Iso Extra constraints
1 θ1, φ1, ψ1, λ1, λ2, λ3, S0 1 No
2 θ1, φ1, λ∥, λ⊥, S0 1 No λ2 =λ3 =λ⊥
3 θ1, φ1, ψ1, λ1, λ2, λ3, f , S0 2 Yes
4 θ1, φ1, ψ1, λ1, λ2, λ3, f , S0 2 Yes λ1 +λ2 +λ3 = MDC
5 θ1, φ1, λ∥, λ⊥, fi so , S0 2 Yes λ2 =λ3 =λ⊥
6 θ1, φ1, θ2, φ2, λ∥, λ⊥, f1, S0 2 No λ⊥1 =λ⊥2 =λ⊥
7 θ1, φ1, θ2, φ2, λ∥, λ⊥, S0 2 No f1 = f2 = 0.5
8 θ1, φ1, θ2, φ2, λ∥, λ⊥, fi so , f1, S0 3 Yes λ⊥1 =λ⊥2 =λ⊥
9 θ1, φ1, θ2, φ2, λ∥, λ⊥1 , λ⊥2 , fi so , f1, S0 3 Yes λ2i =λ3i =λ⊥i

Further constrained versions of the signal model of Equation (3.1) were used to characterize the signal
in a crossing of two fibers. While doing so, we assumed that the axial diffusivities λ∥ of the two anisotropic
tensors are equal. Furthermore, the second and third eigenvector of each tensor were also taken to be the
same and henceforth referred to as the radial diffusivity λ⊥. We applied these constraints in the same way as
in [24], to avoid degeneracy of the parameter estimation with our data.

Other constraints that were used in the models: the isotropic diffusion coefficient was set to that of free
water 3×10−3 mm2/s and the sum of the volume fractions was set to one. The different diffusion models were
fitted by maximum likelihood estimation assuming Rician distributed noise as in [76]

3.2. Model Selection
Clearly, unconstrained fitting the two tensor model in a region with just a single fiber population still results
in overfitting. Therefore, we performed model selection with the aim to find the tensor model that best rep-
resents the underlying fiber population in each voxel.

3.2.1. ICOMP-TKLD
We adopted the ICOMP-TKLD criterion for the model selection [77]. This criterion is an adapted version of
the information complexity (ICOMP) criterion [78]. The ICOMP-TKLD criterion performed model selection
through balancing the goodness of the model fit and the model complexity. The goodness of fit was quanti-
fied by the log-likelihood of the model fit error. In general, the goodness of fit is improving with increasing
complexity.

The model complexity was captured in the total Kullback-Leibler divergence (TKLD) [79]. This TKLD
quantifies the interdepedance between the model parameters, which is a direct measure of the model com-
plexity. In other words, the more interdependent the parameters are, the higher the model complexity. Ac-
cordingly, a model in which the parameters are orthogonal and thus independent will have a complexity of
zero [80].

Formally, the ICOMP-TKLD criterion was defined as:

ICOMPTKLD(θ̂i ) =−2log
(
L(θ̂i |S̃)

)
+2Ctot

(
I−1(θ̂i )

)
. (3.2)

Here, the first term quantified the goodness of fit where L is the likelihood of the fit of the parameter vector
θ̂i given the measured signal S̃. The second term represents the model complexity, where Ctot denotes the
TKLD which requires the inverse of the Fisher information matrix I−1 as an input.

3.3. Uncertainty in the fiber orientation
The previously described model selection essentially outputted the most appropriate model as estimates for
the fiber orientation(s) in each voxel. These served as an input for our probabilistic tractography algorithm.
The probabilistic tractography algorithm also needed a measure of the uncertainty in the estimated fiber
orientations. In this work, we used the Cramér-Rao lower bound (CRLB) in the solution of each model pa-
rameter to provide an estimate of the variance in the estimated fiber orientations. This CRLB was obtained
by inverting the Fisher information matrix. The diagonal of the resulting matrix contained lower bounds for
the variance that could be obtained by an unbiased estimator on the given data [75].
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In our diffusion tensor models the angles θ and φ determine the fiber orientation. The uncertainty in
these parameters was assumed to be normally distributed with a mean equal to the estimated parameter
value, a variance equal to the CRLB of the parameter and a covariance obtained from the off-diagonal ele-
ments of the CRLB matrix. This yielded a probability density function (PDF) of the fiber orientations at each
voxel, that were sampled during tractography.

3.4. Tractography algorithm
Our tractography algorithm is a standard line propagation algorithm with a fixed step size [56]. The proba-
bilistic aspect of the tractography was reflected in the placement of seed points and the sampling of the fiber
orientation PDFs from the fiber compartment(s) at each step. The starting points for the streamlines were
placed at a random position inside the seed voxels, as this allowed us to sample the variation in streamlines
based on their starting position. The streamlines were propagated by comparing the direction of the last
step in the streamline with a sample from the fiber orientation PDF of each compartment in the voxel. A
step was taken in the direction of the sample that made the smallest angle with the previous step. Propaga-
tion of the fiber was stopped when the angle between successive steps was larger than a curvature threshold,
the streamline exited the brain mask or the streamline looped back on itself. Additionally, exclusion masks
and waypoints can be used with the algorithm to filter out specific (un)wanted streamlines. In general, we
generated 5000 streamlines per seed voxel to obtain sufficient sampling of the fiber orientation PDFs.

3.5. Model selection validation
The model selection methods had to be validated to assure proper performance in regions with complex
fiber orientations, i.e. select the model with the correct amount of fiber compartments. Therefore, we used
a dataset known as the fibercup phantom, which mimics the fiber configuration in a coronal slice of the
brain (see Figure 3.2). Specifically, we used a reconstructed version of the fibercup phantom which has more
realistic diffusivity values [81]. This dataset consists of a 64 x 64 x 3 volume of isotropic 3 mm3 voxels at 3
different diffusion weightings, 650, 1500 and 2000 s/mm2, with each 65 gradient directions. Importantly, the
underlying ground truth of the fibercup phantom is known, thus it allows for voxel-wise validation of the
selected models. The performance of the model selection was evaluated with respect to three parameters
that could influence the model fit: the b-value, the model parametrization, and the noise level. Additionally,
we performed a qualitative comparison on human data to obtain an insight into the in-vivo behavior of our
model selection.

(a) (b)

2 fibers
1 fiber

C1 C2

C3

1 fiber

(c)

Figure 3.2: (a) The fibercup phantom with numbered ROIs; (b) A coronal slice of the brain with the WM bundles that are mimicked by
the fibercup, adapted from [82]; (c) The ground truth of the number of fiber compartments at each position with numbered fiber

crossings (C1-C3).

3.5.1. b-values
As mentioned before, the b-value determines the sensitivity of the dMRI acquisition to diffusion. For the 3D
diffusion profile this means that the b-value influences the ability to distinguish crossing fibers. Particularly,
a higher b-value will lead to a larger difference between the signal attenuation along and across the fiber
orientations as is visualized in Figure 3.3 [83].
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Figure 3.3: Schematic drawings of the 2D diffusion signal profile in a crossing for (a) a low b-value and, (b) a higher b-value. The yellow
arrows indicate the fiber directions whilst the orange line represents the diffusion signal.

The changing shape of the diffusion profile with b-value affects the fit of the model and thus also affects
our model selection method. In the case of our models, at least 2 b-values are needed to independently
estimate the diffusion profiles [24]. Therefore, we compared the effect of using different combinations of b-
values on the ability of our model selection method to detect crossing fibers. In practice, we used 4 different
combinations of at least 2 b-values. Ultimately, this comparison will help us identify the optimal b-values for
the in-vivo application of the model selection.

3.5.2. Model parametrization
The orientation of the eigenvectors can be parametrized in a number of ways. In this work, the models were
chosen to have a similar parametrization of these eigenvectors as this allows for a fairer comparison between
the models. The original parametrization of models 1, 3 and 4 (Table 3.1) used to be different. Specifically,
the orientation of the eigenvectors was defined using the concepts of yaw, roll and pitch (α1,α2 and α3), as
can be seen in Figure 3.4. Moreover, all these 3 angles were used to describe the orientation of the principal
eigenvector (EV1). In comparison, our parametrization included only 2 angles to describe this eigenvector.
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Figure 3.4: Parametrization of the eigenvectors by yaw, roll and pitch.

Supposedly, the complexity criterion used in our model selection, the TKLD, is independent of the coor-
dinate system [80], hence a reparametrization of our models should result in a similar output of the model
selection. Importantly, this allowed us to check whether our parametrization of models 1, 3 and 4 was equiv-
alent to the original parametrization. Therefore, we replaced 3 of the input models of the model selection
(model 1, 3 and 4) with the original parametrization and compared the output before and after replacement.
We used the fibercup data with the optimal b-values to perform this comparison.
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3.5.3. Noise
Noise also influences the model fit, as it decreases the contrast between the peaks and valleys in the signal
profile. The fibercup data is relatively noise free while in reality dMRI-acquisitions are quite noisy. Hence,
noise has to be added to the fibercup data to be able to asses the behavior of our model selection method
with noise. We used 2 levels of noise which are shown in Table 3.2. Furthermore, the SNR in this work will be
reported per b-value and is determined by:

SNR = median(Sbrain)

σnoise
. (3.3)

Table 3.2: Signal-to-noise ratios for the different noise scenarios

b = 0 b = 1500 b = 2000
Noise scenario 1 (N1) 39 11 7
Noise scenario 2 (N2) 26 7 5

3.5.4. In-vivo
The in-vivo validation was performed on data from 7 healthy controls with multiple b-values: 1000 and
2000 s/mm2. The scans were acquired on a 3T MRI scanner (Discovery MR750, GE Medical Systems). 40 gra-
dient directions were used for the diffusion weighted acquisitions combined with five non-diffusion weighted
acquisitions per b-value. Furthermore, the SNR values for the b = 0, 1000, and 2000 s/mm2 acquisitions were
estimated to be 41, 20 and 12 respectively.

Particularly, we visually compared the outputs of the model selection in the crossing of the corticospinal
tract and the corpus callosum, which is a structure also modeled by the fibercup phantom (see Figure 3.2(b,c)).
Importantly, all the outputs were registered to MNI-space to allow for a sound comparison.

3.6. Sensitivity analysis
In the literature part of this thesis we already mentioned that the behavior tractography algorithms depends
on parameters such as the propagation method and stopping criteria. Therefore, we studied the effects of
these parameters on the output of our tractography algorithm by performing a sensitivity analysis. Specifi-
cally, we studied the effect of the step size and the curvature threshold.

3.6.1. Tractometer measures
The fibercup phantom (b= 1500, 2000 s/mm2) was used to perform the sensitivity analysis using measures
from the tractometer, which is an online evaluation tool for tractography algorithms [82]. These measures
assessed the performance of the algorithm by quantifying global measures, such as the percentage of the
valid bundle covered by streamlines (Average bundle coverage or ABC), the percentage of invalid bundles
covered by streamlines (No bundle coverage or NBC) and, the angular error of the generated streamlines. ROI
specific measures that were used were the number of streamlines that either correctly connect ROIs (Valid
connections or VC), do not reach another ROI (No connection or NC) and incorrectly connect ROIs (Invalid
connections or IC).

We investigated the behavior of these tractometer measures for a range of 5 different step sizes (0.25, 0.5,
1, 2 and 3 mm) and 3 curvature thresholds (45◦, 60◦ and 80◦). Furthermore, a baseline (BL) tractography
was performed, i.e. without additional noise, as well as tractography for noise scenario 1 (see Table 3.2) to
investigate the change of sensitivity under the influence of noise. Importantly, we used noise scenario 1
because its SNR is comparable to the SNR of our human data.

3.6.2. In-vivo
In practice, the tractography algorithm should not only propagate through the white matter bundles, as is
the case in the fibercup phantom, but also through the gray matter. Therefore, we performed an additional
sensitivity analysis by investigating the performance of our tractography algorithm in the corticospinal tract
(CST). Importantly, we used the CST because of its relevance to stroke and its trajectory in the brain, which
ends in the gray matter.



16 3. Methods

The tractography was limited to one hemisphere of the brain to allow for a clear visualization of the effects
of step size and curvature threshold. Seed regions were placed at the bottom of the CST. Furthermore, we used
3 different step sizes (0.09, 0.5 and 0.9375 mm) and 3 curvature thresholds (45◦, 60◦ and 80◦). In total, 43 seed
points were used with 5000 streamlines generated per seed point.

3.7. Benchmarking
The performance of our tractography algorithm was assessed by comparing it with the open source dMRI
toolkit Camino [10] . We used this toolkit due to its similarities to our proposed framework: Camino also
allows for model selection and probabilistic multi-fiber tractography using multi-tensor models. However,
the model selection in Camino differs from our method as it uses the type of diffusion present in a voxel,
e.g. Non-Gaussian or Gaussian diffusion, to specify whether a single or dual tensor model can be used [52].
Furthermore, we used the Camino’s built-in multi-tensor models with eigenvalues that were constrained to
be positive. The probabilistic tractography in Camino was performed using its PICo tractography algorithm
with 5000 streamlines per seed point and a curvature threshold of 80 degrees. The optimal step size for trac-
tography was determined for both methods and was found to be 0.5 mm for our method and 1.5 mm for
Camino.

We performed a quantitative and qualitative comparison between the two tractography frameworks. In
the quantitative comparison we used the reconstructed version of the fibercup phantom [81] with multiple b-
values (1500/2000 mm2 s−1). Furthermore, we evaluated the performance of the two tractography algorithms
by assessing the output of the aforementioned tractometer measures. We again performed a baseline (BL)
tractography, as well as tractography at range of SNR values to investigate the sensitivity of the tractography
algorithms to noise (Table 3.2).

The qualitative comparison was performed on data from 5 of the 7 healthy controls with multiple b-values
(1000, 2000 s/mm2). Seed regions were placed in the corticospinal tract (CST) and the corpus callosum (CC).
We examined the lateral projections of the CC into the pre-central gyrus to asses the performance of the
methods on in-vivo fiber crossings.

3.8. Application to EEG sources
We investigated the feasibility of combining our tractography framework with source locations obtained from
EEG recordings. For this, we used EEG data obtained from the department of Biomechatronics & Human-
Machine Control at the faculty of Mechanical, Maritime and Materials Engineering (3ME) at the TU Delft.
In these EEG recordings, the brain activity in a subject was measured while a robotic manipulator applied
disturbances to the wrist. At the same time, the subjects performed tasks which consisted of relaxing the wrist
and ignoring the disturbances, or maintaining a certain amount of wrist flexion during the disturbances [5].
The sources that were persistent during these task were extracted from the EEG recording by performing an
independent component analysis (ICA). Furthermore, subject specific head models were used to reconstruct
the locations of the sources in the brain. The source locations were registered to MNI space to allow for
comparison between the subjects. The received EEG data consisted of 5 patients whom have had an ischemic
stroke, and 6 healthy controls. Furthermore, the amount of sources per subject ranged from 8 to 12.

The source locations, which are also known as dipoles, can be used to investigate anatomic connections
between the sources. The anatomic connections between all the different dipoles in the brain form a brain
network. In general, such a brain network can be represented by a collection of nodes in the form of brain
regions, which are connected via links formed by the anatomical connections between these regions. Ad-
ditionally, the brain networks can be subdivided into groups of densely interconnected brain regions. This
type of subdivision of the brain network is known as the modular structure of the network. Furthermore, the
groups of densely interconnected brain regions are known as modules and grouped by maximizing the within
group links and minimizing the between group links [84].

A stroke might induce changes in the modular structure, as it affects the connections between the brain
regions. Therefore, we used our tractography framework to investigate the anatomical connections and the
modular structures they form by generating streamlines originating from the dipoles. The anatomical con-
nections were quantified by counting the streamlines traveling from one dipole to the other and vice-versa.
Furthermore, the dipoles were transformed from MNI-space into patient space to serve as seed points for
the tractography. Importantly, we used spherical seed regions with a radius of 5 mm, centered at the dipole
location, to capture the uncertainty in the dipole location, which resulted in 227 seed voxels per dipole. We
generated 5000 streamlines per seed voxel with a step size of 0.5 mm. Furthermore, a curvature threshold of
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80◦ and a maximum streamline length of 1 m were used as stopping criteria. Streamlines with a length shorter
than 6 mm were excluded, as these were assumed to be anatomically implausible.

Additionally, we mapped the dipoles to a cortical atlas to allow for an inter-subject comparison of the
connections between different cortical regions. For this, we used an MNI-atlas of Brodmann areas (A stan-
dard template in MRICron [85]), which subdivides the cortex based on the tissue structure at a cellular level
(Figure 3.5). Table 3.3 shows a selection of the Brodmann areas, which relate to brain regions relevant in our
patient group.

Figure 3.5: Orthogonal slices of the Brodmann atlas used for the dipole mapping. The atlas is overlayed on the MNI-152 T1-weighted
brain template. Each different color represents a different Brodmann area.

Table 3.3: A selection of Brodmann areas with relevance for our patient group and their corresponding anatomical regions.

Brodmann Area Anatomical region
1, 2 and 3 Sensory cortices
4 Primary motor cortex
5 and 7 Sensorimotor areas and association cortices
6 Premotor cortex

Connectivity matrices for each subject group (Patients/controls) were obtained by summing the stream-
line counts of the connections between the different Brodmann areas. From these connectivity matrices, we
determined the modular structure in each subject group. Specifically, we used an algorithm from the brain
connectivity toolbox for MATLAB [84] that subdivides a brain network with directed links into modules by us-
ing the modularity statistic [84]. For both subject-groups, the algorithm was set to use the classic modularity
as criterion.





4
Results

4.1. Model selection validation
4.1.1. B-values
Table 4.1 summarizes the performance of our model selection methods for the different combinations of b-
values. In this table, we see that only one combination (b= 1500, 2000 s/mm2) of b-values led to a selection
of multiple fiber compartments in all crossing regions. In this case, 85.8 % (109 out of 127) of the multi-fiber
voxels was identified correctly. Furthermore, the fiber orientations found by the selected diffusion models
seems to correspond to the ground truth, as can be seen in Figure 4.1(a).

Table 4.1: Results for the amount of multi-fiber voxels and fiber angle between the fibers for each crossing (C1-C3) for different
combinations of b-values.

C1 C2 C3
voxels (#) Fiber angle (◦) voxels (#) Fiber angle (◦) voxels (#) Fiber angle (◦)

Ground truth 43 67.96 (± 0.080) 36 71.38 (± 0.064) 48 87.21 (± 0.57)
b = 650, 1500 3 89.31 (± 0.55) 0 x 28 87.29 (± 0.55)
b = 650, 2000 4 73.47 (± 11.0) 0 x 27 87.27 (± 0.54)
b = 650, 1500, 2000 2 68.10 (± 0.0098) 0 x 26 87.29 (± 0.59)
b = 1500, 2000 35 69.30 (± 0.55) 32 73.55 (± 1.04) 42 87.45 (± 0.58)
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Figure 4.1: (a) Comparison between the mean fiber orientations reconstructed in the crossings by our method (b=1500, 2000 s/mm2)
and the fiber orientations from the ground truth. The black dashed line indicates the fiber orientation in the ground truth; (b)

Projections to the xy-plane of the diffusion signal in C2 for the different b-values. The black dashed lines indicate the orientations along
which we can expect a signal maximum and the arrows depict the underlying fiber orientations.
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Our model selection did not select any multi-compartment models in crossing C2 for the other b-value
combinations. We investigated the radial dependence of the signal to asses whether the crossing fibers could
be distinguished, see Figure 4.1(b). Here, the signal profile for the b = 650 s/mm2 showed only a small differ-
ence in the signal attenuation along and across the fiber orientations when compared to the other b-values.
Consequently, crossing fibers were harder to distinguish at this b-value.

Slice #1

b 
=

 6
50

, 1
50

0

Slice #2 Slice #3

Background
Model #1 (1 DT)
Model #2 (1 DT)
Model #3 (1 DT)
Model #6 (2 DTs)
Model #7 (2 DTs)
Model #9 (2 DTs)

b 
=

 6
50

, 2
00

0

Background
Model #1 (1 DT)
Model #2 (1 DT)
Model #4 (1 DT)
Model #5 (1 DT)
Model #6 (2 DTs)
Model #7 (2 DTs)

b 
=

 6
50

, 1
50

0,
 2

00
0

Background
Model #1 (1 DT)
Model #2 (1 DT)
Model #4 (1 DT)
Model #5 (1 DT)
Model #6 (2 DTs)

b 
=

 1
50

0,
 2

00
0

Background
Model #1 (1 DT)
Model #2 (1 DT)
Model #4 (1 DT)
Model #6 (2 DTs)
Model #7 (2 DTs)

Figure 4.2: The diffusion model selected per voxel for different combinations of b-values.

Figure 4.2 shows the models selected by our model selection in each voxel for the different b-value com-
binations. In principle, we want the model selection to select either model 6, 7, 8 or 9 in the regions with
multiple fibers from Figure 3.2(c), as these are all models with multiple anisotropic compartments. Overall,
we can see that only crossing C3 was resolved for all different b-value combinations. Notably, this was the
crossing with fibers that cross at an angle of nearly 90◦.
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The models selected within the white matter bundles were markedly different for the b-value combination
of b = 1500 and 2000 s/mm2. Specifically, model 1, a single tensor model without an isotropic compartment,
was selected in the white matter bundels, whereas model 4, a single tensor model with an isotropic compart-
ment, was only selected at the edges of the bundles. Conversely, model 4 was selected in the white matter
bundles for the other b-value combinations. For b = 1500 and 2000 s/mm2, model 1 had a better goodness
of fit in the white matter bundles, whereas model 4 had a better goodness of fit in the same region for all the
other b-value combinations.

4.1.2. Parametrization
The effect of using a different parametrization is shown in Figure 4.3. The different parametrization led to the
selection of model 2, a single tensor with cigar-shape without an isotropic compartment, instead of model 1
when compared our parametrization. Nevertheless, the percentage of correctly identified multi-fiber voxels
was the same, at 85.8%, as in the original parametrization. Additionally, the estimated fiber orientations still
matched the ground truth, as can be seen in Table 4.2.
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Figure 4.3: The diffusion model selected per voxel for the different model parametrizations both have b-values of 1500 and 2000 s/mm2.

Table 4.2: Results for the amount of multi-fiber voxels and fiber angle between the fibers for each crossing (C1-C3) for a different
parametrization and different noise scenarios.

C1 C2 C3
voxels (#) Fiber angle (◦) voxels (#) Fiber angle (◦) voxels (#) Fiber angle (◦)

Ground truth 43 67.96 (± 0.080) 36 71.38 (± 0.064) 48 87.21 (± 0.57)
Parametrization 34 69.25 (± 0.48) 30 73.38 (± 0.74) 45 87.54 (± 0.68)
N1 33 69.64 (± 1.26) 21 73.33 (± 2.20) 39 87.55 (± 1.00)
N2 28 69.52 (± 2.31) 12 74.14 (± 1.75) 34 87.17 (± 1.61)

4.1.3. Noise
As can be seen in Figure 4.4 and Table 4.2, the number of multi-fiber voxels found by our model selection
decreased with an increase in noise. Specifically, the performance in crossing C2 was affected the most by
noise, as only 33.3% (12 out of 36) of the multi-fiber voxels was reconstructed for the worst noise scenario
(N2). However, the decrease in performance was not limited to crossing C2. The amount of reconstructed
multi-fiber voxels in crossings C1 and C3 decreased by 20% and 19%, respectively. Moreover, the average
fiber orientations estimated still conformed to the ground truth. Simultaneously, the standard deviation of
the angle between the fibers increased with noise (Table 4.2).
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Figure 4.4: The diffusion model selected per voxel for different noise scenarios with b = 1500, 2000.

4.1.4. In-vivo
Figure 4.5 shows that the outputs of our model selection method in the crossing fiber region was similar
for the 7 healthy controls. On average, our model selection method selected a model with multiple fiber
compartments in 53.5% of the voxels within the red circle. Furthermore, the lowest percentage of multi-fiber
models was selected in subject 19904 (Figure 4.5(c)) with 38.7%, whereas the highest percentage of multi-fiber
models was selected in subject 19908 (Figure 4.5(g)) with 64.2%.

(a) Reference

ST

DT

(b) 19901

ST

DT

(c) 19904

ST

DT

(d) 19905

ST

DT

(e) 19906

ST

DT

(f) 19907

ST

DT

(g) 19908

ST

DT

(h) 19909

Figure 4.5: (a) A coronal slice of the MNI-152 T1-weighted template image overlayed with the corticospinal tract (CST) and corpus
callosum (CC). (b-h) The same slice with the output of our model selection for 7 healthy controls in terms of models with a single (ST)

or multiple (DT) fiber compartments. The red circles indicate the region where fibers from the CC cross the CST.



4.2. Sensitivity analysis 23

4.2. Sensitivity analysis
4.2.1. Step size
We evaluated the effect of the step size on the collective (average) performance of the tractography on all the
ROIs of the fibercup phantom by repeating the tractography algorithm 5 times for each step size. Figure 4.6
shows the effect of the step size on the different connections types (VC, NC and IC) and the angular error. In
general, we want the amount of valid connections to be as high as possible while minimizing the amount of
invalid connections and no connections.

First of all, the percentage of VCs decreased with increasing step size for both the baseline and noise sce-
nario. Specifically, the VC percentage decreased from 66.4% to 1.1% for the baseline and from 58.2% to 1.7%
for the noise scenario when increasing the step size from 0.25 to 3 mm. Conversely, the NC percentage in-
creased with increasing step size for both the baseline and noise scenario with a low of 30.2 % and a high of
98.3%. Furthermore, the IC percentage showed a slight increase for the baseline tractography with increasing
step size. The noise scenario had no significant increase in invalid connection percentage with increasing
step size. However, on average the noise scenario tractography showed a higher IC percentage than the base-
line tractography. Lastly, the angular error increased with both step size and noise level, as can be seen in
Figure 4.6(d).
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Figure 4.6: Barplots of the behavior of (a) valid connections, (b) no connections, (c) invalid connections and (d) angular error for
different step sizes.

We used a Wilcoxon rank sum test to test whether the perceived performance difference between the
different step sizes was significant. Specifically, we looked at the performance difference between adjacent
step sizes, for example 0.25 and 0.5 mm, for the different connection types and tested whether the smaller
step size performed better. Table 4.3 and Table 4.4 show that the resulting p-values for both the baseline and
the noise scenario were similar. Here, we found no significant difference in performance between the two
smallest step size, 0.25 and 0.5 mm. However, the smaller step size performed significantly better for all the
other step size combinations. Lastly, no significant differences were found for the ICs.
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Table 4.3: P-values for the comparison of the performance of our tractography algorithm with different step sizes for the baseline
tractography.

0.25 vs 0.5 mm 0.5 vs 1 mm 1 vs 2 mm 2 vs 3 mm

Valid connections x 7.0 ·10−6 2.0 ·10−13 1.8 ·10−21

Invalid connections x x x x
No connections x 1.2 ·10−5 2.2 ·10−16 1.8 ·10−21

Table 4.4: P-values for the comparison of the performance of our tractography algorithm with different step sizes for the noise scenario.

0.25 vs 0.5 mm 0.5 vs 1 mm 1 vs 2 mm 2 vs 3 mm

Valid connections x 7.6 ·10−3 3.0 ·10−7 1.8 ·10−21

Invalid connections x x x x
No connections x 7.5 ·10−5 1.5 ·10−9 1.8 ·10−21

Figure 4.7 shows the average bundle coverage (ABC) and no bundle coverage (NBC) for the different step
size. Here, The ABC seemed to only show a significant decrease for a step size of 3 mm, whereas the NBC
increased slightly with step sizes up to 2 mm.
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Figure 4.7: Barplots of the behavior of (a) average bundle coverage and (b) no bundle coverage.

4.2.2. Curvature threshold
We investigated the effect of the curvature threshold on our tractography by repeating the sensitivity analysis
for the step size with different curvature thresholds. Importantly, we repeated the tractography 5 times for
each combination of step size and curvature threshold. Figure 4.8 and 4.9 show the average performance of
the tractograpy on the tractometer measures over all the ROIs.

The VC percentage and median angular error (Figure 4.8(a,d)) did not seem to be affected by the change in
curvature threshold, as there seemed to be little change of the VC percentage and angular error for different
curvature thresholds at the same step size. Moreover, the behavior with increasing step size was found to
be similar to the results from Figure 4.6(a,d). On the other hand, the IC and NC percentage did seem to be
influenced by the curvature threshold, as lowering the threshold from 80 to 45 degrees maximally led to a
5% decrease in IC percentage and a similar increase in NC percentage. Notably, the effect of the curvature
threshold seemed to be similar for both the baseline and noise scenario.
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Figure 4.8: Barplots of the behavior of (a) valid connections, (b) no connections, (c) invalid connections and (d) angular error for
different step sizes and curvature thresholds.

The ABC and NBC for different step sizes and curvature thresholds are shown in Figure 4.9. Here, the
ABC showed similar behavior to the results from Figure 4.7(a). However, the NBC seemed to decrease with a
decrease in curvature threshold.
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Figure 4.9: Barplots of the behavior of (a) average bundle coverage and (b) no bundle coverage for different step sizes and curvature
thresholds.

4.2.3. In vivo
The influence of the step size and curvature threshold on a tractography of the corticospinal tract is shown
in Figure 4.10 and 4.11. Figure 4.10 shows that an increase in both step size and curvature threshold resulted
in more radial branches of the CST, which are marked by the green and red ellipses. However, the increase
in curvature threshold had a larger effect than the step size on the exploration of these branches. Similarly,
Figure 4.11 shows that an increase in step size and curvature threshold related to more streamlines in the
frontal part of the brain (See the area within the red ellipse). Additionally, the streamlines traveled further
into the gray matter for an increase in curvature threshold.
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Figure 4.10: Maximum intensity projection of the streamline density in the coronal plane for different step sizes and curvature
thresholds. The streamlines are overlaid on a coronal slice of a fractional anisotropy map. The green and red ellipses mark the areas

most affected by the step size and curvature threshold change.

Figure 4.11: Maximum intensity projection of the streamline density in the sagittal plane for different step sizes and curvature
thresholds. The streamlines are overlaid on a sagittal slice of a fractional anisotropy map. The red ellipse marks the areas most affected

by the step size and curvature threshold change.
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4.3. Benchmarking
4.3.1. Fibercup phantom
The results for the global tractometer measures are shown in Table 4.5. The table shows that our method had
a lower median angular error than Camino. The average bundle coverage of Camino was slightly higher but
simultaneously the no bundle coverage of Camino was markedly higher than our method for all noise levels.

Table 4.5: Results for the median angular error, average bundle coverage and no bundle coverage for the baseline (BL) and different
noise levels (N1, N2) of the fibercup phantom.

Median angular error Average bundle coverage No bundle coverage
BL N1 N2 BL N1 N2 BL N1 N2

Our method 0.73o 1.6o 2.8o 87.0% 84.4% 83.2% 10.0% 12.7% 15.0%
Camino 2.7o 2.7o 4.2o 95.3% 88.7% 90.4% 47.7% 27.5% 32.0%

(a) Our method (VC) (b) Camino (VC)

(c) Our method (IC) (d) Camino (IC)

(e) Our method (NC) (f) Camino (NC)

Figure 4.12: The percentage of valid connections (a,b), invalid connections (c,d) and no connections (e,f) per seed region for the
baseline (BL) and different noise levels (N1,N2,) of the fibercup phantom. The dashed lines represent the average percentage of

connections for all ROIs. The green and red squares indicate the ROIs where either our method or Camino performs better, respectively.

Figure 4.12 shows that on average the percentage of valid connections decreased for increasing noise
levels, whilst the percentage of invalid and no connections increased. We used a Wilcoxon rank sum test to
test whether the perceived difference in the connection types between the two methods was significant. The
results are shown in Table 4.6. This table demonstrates that the two methods differed most significantly in
terms of valid and no connection percentage. Importantly, our method performed better in ROIs with curved
and kissing fibers (ROI 1, 5 and 12), whereas Camino performed better in ROIs with a long straight section
(ROI 7, 8 and 9). Both methods seem to perform similarly in the ROIs with crossing fibers.
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Table 4.6: P-values for the ROIs where the difference in performance of both methods is statistically significant.

Our method better Camino better
ROI 1 5 8 11 12 7 8 9 11

Valid connections 6.4·10−9 6.4·10−9 x x 6.4·10−9 0.017 0.0043 6.4·10−9 x
Invalid connections 0.0043 x 6.4·10−9 x 6.4·10−9 x x x 0.0043
No connections 6.4·10−9 6.4·10−9 x 5.6·10−5 6.4·10−9 0.0043 0.0043 6.4·10−9 x

4.3.2. Human data
An example of the crossing of the CC and CST streamlines is shown in Figure 4.13. There seemed to be more
streamlines from the CC that crossed over the CST estimated by our algorithm than by the Camino algorithm.
We have quantified this by determining the average number of streamlines passing through the fiber crossing.
The results are shown in Table 4.7.

(a) Our method

(b) Camino

Figure 4.13: Tractography outputs for the CC seed region (Red) and the CST seed region (Blue) in a coronal slice, overlaid with a
fractional anisotropy map. The orange arrows indicate the crossing fibers we are interested in.

Table 4.7: The average streamline count from the CC passing the crossing with the CST

Control 1 Control 2 Control 3 Control 4 Control 5
Our method 37 30 123 41 358
Camino 31 17 66 27 278

4.4. Application to EEG
The distribution of the dipoles over the Brodmann areas is shown in Figure 4.14. This figure shows that the
sum of all the dipoles in the control group (72 dipoles) was larger than in the patient group (56 dipoles).
Furhermore, most dipoles were located in the premotor-cortex for both subject-groups, because our EEG
recordings were performed during wrist manipulation tasks. However, compared to the patient group, the
control group showed almost double the amount of dipoles (15 vs 8) in this region.
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Figure 4.14: Distribution of the dipoles over the different Brodmann areas for the control and patient group.

Figure 4.15 shows that the modular structure was different in the patient group compared to the control
group. Specifically, we found 7 modules in the control group, whereas 6 modules were found in the patient
group. In Figure 4.15(a), the red brain region encircled by the red ellipse was formed by the sensorimotor
area, which was separate from the green region formed by the primary motor cortex. However, these two
regions merged together into one larger region in the patients, as can be seen in Figure 4.15(b).

(a) Controls

(b) Patients

Figure 4.15: The modular structure for (a) the group of controls and (b) the group of patients where each color represents a different
module. Notably, similar colors across (a) and (b) do not necessarily relate to modules with similar anatomical connections or

structure. The modules are overlayed on slices of the MNI-152 T1-weighted template image. The red ellipses indicate an ROI where
brain regions of the patients and controls were grouped differently.





5
Discussion

5.1. Model selection validation
5.1.1. B-values
Our model selection managed to reconstruct all the fiber crossings in the fibercup phantom for one 1 out of 4
combinations of b-values. Compared to the other combinations this successful b-value combination lacked
the b = 650 s/mm2 acquisition. Essentially, this low b-value led to a worse fit of the multi-fiber compartment
models on the higher b-values, as the low b-value signal lacked information about the crossing fibers. In
other words, no indents were present in the signal (See Figure 4.1), which led to a similar goodness of fit for
both the single and multi-fiber compartment models. Hence, our model selection selected the less complex
single fiber compartment models.

Outside of the crossing, our model selection method also selected different models for the b-value com-
bination of b = 1500 and 2000 s/mm2 compared to the other b-value combinations. In particular, a model
without an isotropic compartment was selected within the white matter bundles, which was to be expected
considering that the fiber density was the highest in these bundles. In the other b-value combinations, a
model with an isotropic compartment was selected and used as a compensation factor which allowed for a
reasonable fit on both the low and high b-value.

5.1.2. Parametrization
Our model selection outputted comparable models for both the parametrization of the eigenvectors in spher-
ical coordinates (Our parametrization) and in yaw, roll and pitch (The original parametrization). However,
different models were selected in parts of the white matted bundles, due to a slight increase of the complexity
measure when using the original parametrization.

5.1.3. Noise
The addition of noise resulted the selection of different models both in the bundles and crossings (Figure 4.4.
Particularly, the introduction of noise caused the log likelihoods (Our measure for goodness of fit) of the
model fits to converge to similar values. Consequently, less complex single fiber-compartment models were
selected in the fiber crossings when noise was increased.

5.1.4. In-vivo
In-vivo, our model selection produced outputs that were in accordance with expectations, as multi-fiber com-
partment models were selected in the fiber crossing formed by bundles coming from the corpus callosum and
the corticospinal tract (Figure 4.5). Furthermore, the combination of the lower b-value of 1000 s/mm2 and the
b-value of 2000 s/mm2 proved to be sufficient to capture the complex fiber configurations. Importantly, this
gives us an indication of the lower bound for the b-value that still allows for the reconstruction of crossing
fibers, as we found that including a slightly lower b-value of 650 s/mm2 hindered this reconstruction.

31
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5.2. Sensitivity analysis
5.2.1. Step size
The sensitivity analysis on the step size showed that an increase in step size influenced the amount of valid
connections and no connections, and the angular error (Figure 4.6(a,b,d)). Specifically, an increase in step
size caused a decrease in valid connection percentage and an increase in no connection percentage, which
can be explained by a higher sensitivity of the tractography to the uncertainty in fiber orientation for increas-
ing step size [86]. Generally, voxels with a higher uncertainty have a higher probability for sampling a fiber
orientation that deviates from the true fiber orientation. In the case of a small step size, the effect of these
extreme orientations is averaged out, as multiple steps are taken within one voxel. However, this averaging
effect does not take place for a large step size with only one step per voxel, thus more erroneous streamlines
are produced.

For larger step sizes, the tractography also suffered more from overshooting curves in strongly curved
bundles, such as around ROI 1, 2, 4 and 5 (see Figure 3.2(a)), which led to an increase in the amount of no
connections. Additionally, we found an increase of the angular error with increasing step size, which could
be attributed to the averaging effect of smaller step sizes.

The amount of invalid connections was not found to be influenced significantly by an increase in step size
(Figure 4.6(c) and Table 4.3 / 4.4), while we would expect more invalid connections as the larger step sizes are
more likely to deviate from the true fiber orientation. However, this effect was most likely counteracted by
the increase in no connections which results in less streamlines actually reaching another ROI.

In Table 4.3 and 4.4, we could see that a smaller step size related to a better performance in terms of valid
connection and no connection. However, no significant difference was found between the step sizes of 0.25
and 0.5 mm. In a practical situation it would be preferable to then choose the larger step size, as a doubling of
the step size will lead to half as many steps per streamline and, consequently, less calculation time. Moreover,
the averaging effect of the smaller step size would lead to an underestimation of the true fiber distribution
which is undesirable [86].

With respect to the bundle coverage, the step size was found to mainly influence the no bundle coverage,
which increased slightly with increasing step size. This could be attributed to the aforementioned sensitivity
to uncertainty, which leads to more visits to voxels that are not related to the target bundle. The average bun-
dle coverage was not influenced by the step size, which means that our tractography algorithm still produced
streamlines that propagate in the target bundle even though the amount of valid connections decreased when
increasing the step size.

5.2.2. Curvature threshold
The influence of the curvature threshold was found to be smaller than that of the step size. The main pa-
rameters influenced by the curvature threshold were the amount of invalid connections and the no bundle
coverage. Overall, the effect of the lowering the curvature threshold was a decrease in streamlines that devi-
ate from the underlying fiber orientations, which explains the decrease in both invalid connections and no
bundle coverage.

5.2.3. In-vivo
Lastly, the in-vivo results seemed to follow a slightly different pattern than that of the fibercup phantom.
Particularly, we noted a larger effect of the curvature threshold in-vivo. Most likely, this difference was caused
by the constraints put on the tractography in the fibercup phantom, which limits the tractography to the
white matter bundles. In-vivo, such a limitation was not applied, as no ground truth exists for the complex
configurations of the white matter bundles in the brain.

5.2.4. Relevance for our tractography
The sensitivity analysis on the fibercup phantom seemed to indicate that a smaller step size would lead to
a better tractography outcome. Specifically, the smaller step size effectively makes the tractography behave
more deterministic, due to the averaging effect that was mentioned before. In the fibercup phantom, this
more deterministic behavior led to better results due to the relatively simple white matter configurations
modeled by this phantom. However, our aim was to develop a probabilistic tractography algorithm, which
means that larger step sizes are needed.

In vivo, the use of a large step size and curvature thresholds caused the streamlines to go into more parts
of the brain. However, the results on the fibercup phantom showed that such a large step size led to a higher
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number of erroneously reconstructed bundles. Therefore, an intermediate step size (Around 0.5 mm for our
in-vivo data) should be used in practice, as this would make our tractography behave in a probabilistic way
while also being less sensitive to outliers in the sampling. Furthermore, the in-vivo results showed that using
such a step size combined with a high curvature threshold (80◦) would allow for streamlines to enter deeper
into the gray matter, which is where the dipoles from our EEG data are located.

5.3. Benchmarking
5.3.1. Fibercup
In the benchmarking results, the global tractometer measures showed that the median angular error for our
method was consistently lower than that of Camino. This could be attributed to the different methods used
for estimating the fiber uncertainty. Notably, the fiber orientation PDFs in Camino are based on the link be-
tween the relative magnitude and orientations of the DT’s second and third eigenvectors and the uncertainty
in fiber orientation [58]. This shape of the tensor might be invariant at lower noises levels, therefore introduc-
ing a higher angular error. Our method derives the uncertainty from the CRLB, whose value decreases with
lower noise levels [75]. The higher uncertainty in fiber orientation in Camino also explains the higher average
bundle coverage, as it allows the tractography to explore more voxels. However, this also leads to a higher no
bundle coverage which is undesirable.

The ROI specific tractometer measures showed that both methods differed most significantly in terms of
their performance on curved (Our method better) and straight bundles (Camino better). In practice, curved
bundles are more likely to be found in the brain than long straight bundles. Therefore, we expect that our
method would be better suited for applications in human data than Camino.

The observed decrease in valid connections with noise level, especially the one in ROI 11 (see 4.12), was
due to not discerning the fiber crossing by both our method and Camino’s. In the case of Camino, which
selects models based on fitted diffusion type (e.g. Non-Gaussian or Gaussian diffusion), the diffusion in the
crossing is considered to be merely Gaussian [52]. The erroneous classification in our model selection stems
from the effect of noise on the log likelihood of the different model fits. This log likelihood converges to
similar values for all models, effectively causing our model selection to pick the simplest (Gaussian) model.

5.3.2. Human data
As our method was applied to human data more fibers were tracked across the fiber crossing than with
Camino. In this region we observed that the magnitude of the second eigenvector was similar to that of the
first eigenvector. In Camino this leads to an increased uncertainty, hence, fewer fibers passing the crossing.
Performance of our method was not reduced as the uncertainty is based on the noise level and not tensor
shape.

5.4. Limitations
There are two limitations to the use of our method for probabilistic tractography. First of all, the data needs
to have multiple b-values, which preferably consist of a low b-value of at least 1000 mm2 s−1 and a high b-
value of about 2000 mm2 s−1. This is necessary to fit the more complex dual tensor models [24]. Secondly,
there is the influence of noise on the model selection. This limitation was observed in a crossing with lower
diffusivity in the fibercup phantom and resulted in selection of single tensor models. Still, the performance
on the human data, which is comparable in SNR to most modern dMRI acquisitions, suggests that tracking
across in-vivo crossings is very well possible.

5.5. Application to EEG
In the application of our framework to EEG data, the control group had more dipoles in the premotor cortex
than the patient group. This premotor cortex plays a role in voluntary movements. [11]. Notably, all the
patients had a stroke which affected their motor function. Therefore, connections to the premotor cortex
might be affected, which might lead to less activity (fewer dipoles) in this region during the wrist task in the
patient group.

Our investigation of the connectivity showed a different modular structure in the patient group compared
to the control group, as the same number of Brodmann areas was divided up into fewer modules in the patient
group. Furthermore, the sensorimotor area and the primary motor cortex were assigned to the same module
in the patient group, while they were in separate modules in the control group. Possibly, the merging of these
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modules points towards more integration of the sensorimotor cortex and primary motor cortex in the stroke
patients, which might be related to the role of the sensory pathways in stroke recovery found in literature. In
research by Vlaar et al. [5], the integrity of these sensory pathways was found to correlate with motor recovery
after stroke.



6
Conclusion and recommendations

In this thesis, we presented a framework for model selection and probabilistic tractography. Specifically, our
framework provides a method for parsimonious model selection in the form of the ICOMP-TKLD criterion
and uses the Cramér-Rao lower bound to capture the uncertainty in the estimated fiber orientations.

The performance of our method was assessed using both the fibercup phantom and human data. We
have shown that our model selection method can reconstruct fiber crossing at noise levels and b-values com-
parable to clinical acquisitions, which has been verified on the data from 7 healthy controls. Furthermore, we
have investigated the sensitivity of our tractography to changes in both step size and curvature threshold. In
general, a smaller step size and lower curvature thresholds resulted in more deterministic behavior, while a
larger step sizes and higher curvature thresholds led to more probabilistic behavior and deeper propagation
into the gray matter in human data. However, a too large step size, in the order of the voxel size (∼0.9 to 3
mm), should be avoided, as this leads to more erroneously reconstructed bundles due to a higher sensitivity
to outliers. In practice, an intermediate steps size of 0.5 mm and a curvature threshold of 80◦ should be used
on our data, as this allows for a probabilistic tractography while reducing the effect of outliers.

Our comparison with the open source dMRI toolkit Camino [10] showed that on the fibercup phantom
our method performs either better or similarly to Camino software. Furthermore, a comparison on human
data showed that our method performs better at following curved bundles, and at tracking across the crossing
of the corpus callosum and corticospinal tract.

All in all, our results both on the fibercup phantom and especially on the human data suggest that sophis-
ticated diffusion tensor reconstruction techniques combined with model selection procedures can lead to
improved fiber tractography outcomes. Furthermore, the results indicate that it is feasible to use our model
selection method to reconstruct fiber crossings and the Cramér-Rao lower bound as a measure of uncertainty
in probabilistic tractography. Lastly, the ability of our framework to track into the gray matter and across fiber
crossings makes it a suitable tool to track from source locations found in EEG.

6.1. Recommendations
A few recommendations can be done for future work. First of all, the performance of our model selection
method on the fibercup phantom suggests that for reconstructing a fiber crossing, a combination with an
intermediate (1500 s/mm) and a (2000 s/mm) high b-value works better than one with a high and a low
(650 s/mm) b-value. However, our human data did not have such an intermediate b-value. Therefore, it
would be interesting investigate if the same principle holds in human data or if this benefit is negated by the
decreased signal-to-noise ratio of the intermediate b-value.

The output of the tractography would be another interesting aspect to investigate. Specifically, the stream-
line count which quantify the probability of connection. These streamline counts have somewhat of a dis-
tance bias, as there is a higher density of streamlines closer to the seed point [23]. In general, prior knowl-
edge about the brain anatomy is necessary to extract regions that both have high streamline counts and are
anatomically plausible. Therefore, it would be useful to have a connectivity atlas. This connectivity atlas
would take the streamlines generated by the tractography as input, and automatically highlight regions that
have a high connection probability (streamline count) and are anatomically plausible.
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